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Exponential mixing for the Teichmiiller flow in the space
of quadratic differentials

Artur Avila®and Maria Jodo Resende**

Abstract. We consider the Teichmiiller flow on the unit cotangent bundle of the moduli space of
compact Riemann surfaces with punctures. We show thatitis exponentially mixing for the Ratner
class of observables. More generally, this result holds for the restriction of the Teichmiiller flow
to an arbitrary connected component of stratum. This result generalizes [AGY | which considered
the case of strata of squares.
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1. Introduction

Let g,n > 0 be integers such that 3g — 3 + n > 0 and let 7, , be the Teichmiiller
space of marked Riemann surfaces of genus g with » punctures. There 1s a natural
SL.(2, R) action on the unit cotangent bundle & ;,’n to g ». which preserves the natural
(infinite) Liouville measure. The orbits of the diagonal flow project to the geodesics
of the Teichmiiller metric on Ty ,.

Let @* = @3 , be the quotient of (Qé’n by the modular group Mod{g,n). The
SL(2, R) action descends to &7 ,. The Liouville measure descends to a finife measure
1= fLg.n ON @(’g‘,’n. The diagonal flow T : Gl;gn — Gl;’n is called the Teichmiiller
geodesic flow.

Veech showed that 7} is mixing with respect to u: if ¢ and ¥ are observables (L?
functions) with zero mean then

1
l' OTId — d d % 1
tggofcb(w Ydp M(Q*)fcbuftlfu (1)

Here we are interested in the speed of mixing, that is, the rate of convergence of
(1). As usual, it is necessary to specify a class of “regular” observables. The class

*This work was partially conducted during the period A.A. served as a Clay Research Fellow.
**M.J.R. was supported by Fundagio para a Ciéncia e Tecnologia (FCT-Portugal) and European Social Found
by the grant SFRH/BD/16135/2004 during the preparation of her PhD at IMPA.
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for which our results apply is the Ratner class H of observables which are Holder
with respect to the SO(2, R) action. More precisely, letting Ry denote the rotation of
angle 28, H is the set of all ¢ € L?(u) such that § — Rg¢p € L?(u) is a Holder
function (this includes all functions which are Holder with respect to the metric of the
fiber). This is a natural class to consider, since exponential mixing for observables
in the Ratner class is known to be equivalent to the “spectral gap” property for the
SL(2, R) action, (the hard direction of this equivalence being due to Ratner, see the
Appendix B of [AGY] for a discussion).

Theorem 1.1. The Teichmiiller flow is exponentially mixing with respect to | for
observables in the Ratner class.

In the sequel we will see that Theorem 1.1 is a special case of a more general result
on the restriction of Teichmiiller flow to “strata” and discuss some of the ingredients
in the proof. First we will discuss in more detail the main notions involved in this
statemendt.

1.1. Quadratic differentials and half-translation surfaces. A guadratic differen-
tial g on a Riemann surface S (compact, with punctures) assigns to each point of
the surface a complex quadratic form on the corresponding tangent space, depend-
ing holomorphically on the point. Given any local coordinate z on .S, the quadratic
differential may be written as ¢, = ¢ (z)dz?* where the coefficient ¢(z) is a holomor-
phic function; then the expression ¢, = ¢’(w)dw? with respect to any other local
coordinate w 1is determined by

d 2
¥ =9 (45

on the intersection of the domains. The norm of a quadratic differential is defined
by ||¢] = [ |¢| dz dZ (the integral does not depend on the choice of the local coor-
dinates). Quadratic differentials with finite norm are called integrable: in this case
the quadratic differential naturally extends to a meromorphic quadratic differential
on the completion of .S, with at worse simple poles at the punctures. Below we will
restrict considerations to integrable quadratic differentials.

Each quadratic differential ¢ induces a special geometric structure on the comple-
tion of S, as follows. Near any non-singular point (puncture or zero) one can choose
adapted coordinates ¢ for which the local expression of ¢ reduces to g¢ = d¢2.
Given any pair {; and {» of such adapted coordinates,

(d21)* = (d&3)*  or, equivalently, ¢; = +& + const. (2)

Thus, we say that the set of adapted coordinates is a half-translation atlas on the
complement of the singularities and S is a half-translation surface. In particular,
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S\ {singularities} is endowed with a flat Riemannian metric imported from the plane
via the half-translation atlas. The total area of this metric coincides with the norm
llg]l. Adapted coordinates ¢ may also be constructed in the neighborhood of each
singularity z; such that

gr = ¢dg?
with /; > —1. Through them, the flat metric can be completed with a conical sin-
gularity of angle equal to 7 (/; + 2) at z; (thus /; = 0O corresponds to removable

singularities).

A quadratic differential g is orientable if it is the square of some Abelian differ-
ential, that is, some holomorphic complex 1-form @. Notice that square roots can
always be chosen locally, at least far from the singularities, so that orientability has
mostly to do with having a globally consistent choice. In the orientable case adapted
coordinates may be chosen so that w; = d{. Changes between such coordinates are
given by

dty = d¢ or equivalently, & = {2 + const 3)

instead of (2). One speaks of translation atlas and translation surface in this case.
We shall be particularly interested in the case when ¢ is not orientable.

1.2. Strata. Each element of @5 , admits a representation as a meromorphic quad-
ratic differential ¢ on a compact Riemann surface of genus g with at most n simple
poles and with [|g[| = 1. To each ¢ € & , we can associate a symbol o = (k, v, €)
where

(1) k is the number of poles,
(2) v = (v;);>1 and v; is the number of zeros of order j,

(3) € € {—1, 1} is equal to 1 if g is the square of an Abelian differential and to —1
otherwise.

We denote by @3 (o) the stratum of all ¢ with symbol o. A non-empty stratum is an
analytic orbifold of real dimension 4g + 2k 42 ) " v; +¢— 3 which is invariant under
the Teichmiiller flow. Each non-empty stratum carries a natural volume form and the
corresponding measure, jio (0 ) has finite mass and is invariant under the Teichmiiller
flow.

A stratum @ , (o) is not necessarily connected, but it is finitely connected, and
the connected components are obviously SL(2, R} invariant (see [KZ], [L1], [L3]).
Veech showed that the restriction of the Teichmiiller flow restricted to any connected
component of & , (o'} 18 ergodic with respect to the restriction of pig (o). In [AGY]
it was shown that in the case of strata of squares (that is, with ¢ = 1) the Teichmiiller
flow is exponentially mixing (for a class of Holder observables) with respect to p.
Their approach is followed here and generalized to yield:
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Theorem 1.2. The Teichmiiller flow is exponentially mixing with respect to each
ergodic component of j1g (o) for observables in the Ratner class.

There is a single stratum @ , (o) with maximum dimension, which is open and
connected and has full pg , measure: for this stratum, ftg , coincides with jig (o).
Thus Theorem 1.1 is a particular case of this one.

1.3. Outline of the proof. Our approach to exponential mixing follows [AGY]
which develops around a combinatorial description of the moduli space of Abelian
differentials.

The combinatorial description which we will use in the treatment of quadratic
differentials, essentially equivalent the one of [BL], builds from the observation that
the space of (non-orientable) quadratic differentials can be viewed as a subset of the
space of Abelian differentials with involution. Indeed, it is well known that given
any quadratic differential ¢ on a Riemann surface S of genus g there exists a double
covering 7: S — S, branched over the singularities of odd order, and there is an
Abelian differential « on the surface S such that 77, (w?) = g. In other words, g lifts
to an orientable quadratic differential on S. In this construction,

* to each zero of g with even multiplicity /; > 1 corresponds a pair of zeros of w
with multiplicity m; = [;/2;

* (o each zero of ¢ with odd multiplicity /; > 1 corresponds a zero of @ with
multiplicity m; = [; 4 1;

* to each pole of ¢ with /; = —1 corresponds a removable (that is, order 0)
singularity of w.

The surface S is connected if and only if ¢ is non-orientable. Notice ix(w) = Fw,
where i: S — S is the involution permuting the points in each fiber of the double
cover 7.

An Abelian differential induces a translation structure on the surface. In particular
we can speak of the horizontal flow to the “east” and the vertical flow to the “north”
(the mvolution exchanges north with south and east with west).

Thus, we consider moduli spaces of Abelian differentials with involution and a
certain combinatorial marking. The combinatorial marking includes the order of the
zeros at the singularities, but also a distinguished singularity with a fixed eastbound
separatrix. This moduli space M is a finite cover of @ (o) where SL(2, R) is still
acting, and thus it is enough to prove the result on this space.

We parametrize the moduli space as a moduli space of zippered rectangles with
involution as follows. Choosing a convenient segment / inside the separatrix, we
look at the first return map under the northbound flow to the union of the / and its
image under the involution. This map is an interval exchange transformation with
involution, and the original northbound flow becomes a suspension flow, living in the
union of some rectangles. The original surface can be obtained from the rectangles
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by gluing appropriately. This construction can be carried out in a large open set of
M (with complement of codimension 2, see [Ve3]).

Once this combinatorial model is setup, one can view the Teichmiiller flow on
M as a suspension flow over a (weakly) hyperbolic transformation, which is itself a
skew-product over a (weakly) expanding transformation, the Rauzy algorithm with
involution.

We then consider some appropriate compact subset of the domain of the Rauzy
algorithm with involution: the induced transformation is automatically expanding
and the Teichmiiller flow is thus modelled on an “excellent hyperbolic flow” in the
language of [AGY]. Two properties need to be verified to deduce exponential mixing:
the return time should not be cohomologous to locally constant, and it should have
exponential tails. The first property is an essentially algebraic consequence of the
zippered rectangle construction. The second depends essentially on proving some
distortion estimate. Both proofs of the distortion estimate in [AGY] depend heavily
on certain properties of the usual Rauzy induction (simple description of transition
probabilities for a random walk) which seem difficult to generalize to our setting. We
provide here an alternative proof which is less dependent on precise estimates for the
random walk.

Remark 1.3. Since the moduli space of zippered rectangles with involution can be
regarded as a (Teichmiiller flow-invariant) subspace of the larger moduli space of
all zippered rectangles, it would seem natural to carry out the analysis around an
appropriate restriction of the usual Rauzy algorithm. However, while the Rauzy
algorithm can be modelled as a random walk on a finite graph, this property does not
persist after restriction (though there is still a natural random walk model, it takes
place in an infinite graph).

Acknowledgements. We thank Erwan Lanneau for suggesting the use of the double
cover construction to define an appropriate renormalization dynamics. We also thank
Carlos Matheus and Marcelo Viana for many useful remarks, and the referee for
detailed comments which greatly improved the presentation of this work.

2. Excellent hyperbolic semi-flows

In [AGY], an abstract result for exponential mixing was proved for the class of so-
called excellent hyperbolic semi-flows, following the work of Baladi—Vallée [BV]
based on the foundational work of Dolgopyat [ID]. This result can be directly used
in our work. In this section we state precisely this result, which will need several
definitions.

By definition, a Finsler manifold is a smooth manifold endowed with a norm on
each tangent space, which varies continuously with the base point.
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Definition 2.1. A John domain A is a finite dimensional connected Finsler manifold,
together with a measure Leb on A, with the following properties.

(1) Forx,x" € A,letd(x, x") be the infimum of the length of a C! path contained in
A and joining x and x’. For this distance, A is bounded and there exist constants
Cy and €¢ such that, for all € < €, for all x € A, there exists x” € A such that
d(x,x") < Cpe and such that the ball B(x', ) is compactly contained in A.

(2) The measure Leb is a fully supported finite measure on A, satisfying the fol-
lowing inequality: for all C > 0, there exists A > 0 such that, whenever a ball
B(x, r) is compactly contained in A, Leb(B(x, Cr)) < ALeb(B(x,r)).

Definition 2.2. Let L be a finite or countable set, let A be a John domain, and
let {AVY,.; be a partition into open sets of a full measure subset of A. A map
T: U, AW s A is a uniformly expanding Markov map if the following holds.

(1) For each /, T is a C! diffeomorphism between AD and A, and there exist
constants ¥ > 1 (independent of /) and C(y such that, for all x AD and all
ve A k||| < [[DT(x)-v| < Callv].

(2) Let J(x) be the inverse of the Jacobian of 7" with respect to Leb. Denote by J¢
the set of inverse branches of 7. The function log J is C! on each set A®) and
there exists C' > 0 such that, for all 2 € #, | D((log J) o h)||coay < C.

Such a map T preserves a unique absolutely continuous measure . Its density
is bounded from above and from below and is C'!.

Definition 2.3. Let T: | J; A® — A be a uniformly expanding Markov map on a
John domain. A function r: | J; AY — R is a good roof function it

(1) there exists €; > O such that » > ¢q;
(2) there exists C > 0 such that, forall /i € #, || D(r o h)||co < C;

(3) itis not possible towrite r = ¢ +po T —¢pon | J; AP, where ¥ : A — R is
constant on each set AV and ¢: A > Ris C!.

If r is a good roof function for 7', we will write r ™ (x) = Z;%) F(Tkx).

Definition 2.4. A good roof function r as above has exponential tails if there exists
oo > O such that [, e“°" dLeb < oo.

If A is a Finsler manifold, we will denote by C 1 (A) the setof functions u: A — R
which are bounded, continuously differentiable, and such that sup,__z [[Du(x)|| <
0. Let

Il gy = sup [u()] + sup || Du ()] )
x€A x€EA
be the corresponding norim.
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Definition 2.5. Let T: | J; A®) — A be a uniformly expanding Markov map, pre-
serving an absolutely continuous measure p. A hyperbolic skew-product over T' is a
map T from a dense open subset of a bounded connected Finsler manifold A to A,
satisfying the following properties.
(1) There exists a continuous map 7 : A — Asuchthat T o = 7 o T whenever
both members of this equality are defined.

(2) There exists a probability measure v on /@, giving full mass to the domain of
definition of 7', which 1s invariant under 7'.

(3) There exists a family of probability measures {vy }xea On A which is a disinte-
gration of v over p inthe following sense: x v, is measurable, vy is supported
on ! (x) and, for every measurable set A C A, v(A4) = [ vy (A) du(x).

Moreover, this disintegration satisfies the following property: there exists a
constant C > 0 such that, for any open subset O C |} AD | for any u €
CH(7~1(0)), the functionu: O — R givenby u(x) = [u(y)dvy(y) belongs
to C1(0) and satisfies the inequality

sup [Du(x)|| =C  sup [ Du(y).
xe€0 yEﬂfl(O)

(4) There exists ¥ > 1 such that, for all yq, y2 € A with (y1) = 7 (y2), holds
d(Ty1, Tya) <k~ d(v1, ).

Let T be an hyperbolic skew-product over a uniformly expanding Markov map
T'. Let r be a good roof function for 7', with exponential tails. It is then possible to
define a space A, and a semi-flow ﬁ over T on 3, using the roof function r o , in
the following way. Let A, = {(y,s) : v € s A;,0 < s < r(zy)}. For almost
all y € Aall0 <s < r(my) and all ¢+ > 0, there exists a unique » € N such that
r®ay) <t +5 < r® D (ay). Set Tt(y,s) = (T”y,s + 1 —r™(xy)). This is
a semi-flow defined almost everywhere on A, Tt preserves the probability measure
v, = v ®Leb/(v ® Leb)(ﬁr). Using the canonical Finsler metric on A, namely
the product metric given by ||(u, v)|| := [|u] + ||v||, we define the space CL(A,) as
in (4). Notice that A, is not connected, and the distance between points in different
connected components is infinite.

Definition 2.6. A semi-flow 7, as above is called an excellent hyperbolic semi-flow.

Theorem 2.7 (JAGY]). Let f} be an excellent hyperbolic semi-flow on a space A s
preserving the probability measure v,. There exist constants C > 0 and 6 > 0 such
that, for all functions U,V € CY(A,) and for all t > 0,

VU-Voﬁdvr—(fUdvr) (/Vdvr)

<C Ul |V]cre™.
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3. The Veech flow with involution
3.1. Rauzy classes and interval exchange transformations with involution

3.1.1. Interval exchange transformations with involution. Let 4 be an alphabet
on 2d > 4 letters with an involution 7 : A — # and let * ¢ A. When considering
objects modulo involution, we will use underline: for instance the involution class
of an element o € 4 will be denoted by ¢ € A = A/i. An interval exchange
transformation with involution of type (A, I, *) depends on the specification of the
following data:

Combinatorial data: et 7: A U {x} — {1,...,2d + 1} be a bijection such that
neither i (A7) C A, nor i(A,) C A7, where A; = {0 € A, () < m(%x)} and
Ay = {a € A,, m(a) > m(*x)}. The combinatorial data can be viewed as a row
where the elements of # U {x} are displayed in the order (z ' (1), ..., 771 (2d +1)).

Length data: Let A Rf be a vector satisfying

Y Ae= ) A s)

7 (o) <) w{a)>m(x)
(it is easy to find such a vector A).

Let @ = &(«A, I, x) be the set of all bijections 7 as above.
The transformation 1s then defined as follows:

(1) Let I C R be the interval (all intervals will be assumed to be closed at the left
and open at the right) centered on 0 and of length [/| = ) .4 Ae (notice that

|I| = ZZQGAA’Q)-
(2) Letmm: AU {x} — {1,...,2d + 1} be defined by 7 () = 2d 4+ 2 — 7 () and
a(e) =2d +2 — a(i(w)).

(3) Break / into 2d subintervals /, of length A, ordered according to 7.

(4) Rearrange the subintervals inside / in the order given by 7.

3.1.2. Rauzy classes with involution. We define two operations, the left and the
right on @ as follows. Let ¢ and 8 be the leftmost and the rightmost letters of the
row representing s, respectively. If f # /(o) and taking £ and putting it into the
position immediately after / (o) results in a row representing an element 7" of &, we
say that the left operation is defined at s, and it takes 7 to /. In this case, we say
that o wins and S loses. Similarly, if ¢ # 7(f) and taking « and putting it into the
position immediately before i () results in a row representing an element =’ of &,
we say that the right operation is defined at 7, and it takes 7 to =’. In this case, we
say that 8 wins and « loses.
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Remark 3.1. Notice that 8 # i (¢} and « # 7 () are equivalent conditions since the
involution 7 is a bijection. But to define left (respectively right) operation we also ask
that the row obtained after moving f§ (respectively «) represents an element of &. So
we can have none of the operations defined at some permutation, or just one, or both.

Consider an oriented diagram with vertices which are the elements of © and
oriented arrows representing the operations left and right starting and ending at two
vertices of ©. We will say that such an arrow has type left or right, respectively. We
will call this diagram by Rauzy diagram with involution. A path y of length m > 0 1is
a sequence of m arroOws, ap, . . ., dm, joining m + 1 vertices, vy, . . ., Uy, TESpEctively.
In this case we say that v starts at vg, it ends at vy, and pass through vy, ..., vpm—1.
Let y; and y2 be two paths such that the end of y; is the start of y». We define
their concatenation denoted by y1y2, which also is a path. A path of length zero is
identified with a vertex and if it has length one we identify it with an arrow.

A Rauzy class with involution R is a minimal non-empty subset of @, which is
invariant under the left and the right operations, and such that any involution class
admits a representative which is the winner of some arrow starting (and ending) in
R. Elements of Rauzy classes with involution are said (o be irreducible. We denote
by @° = &%(s,i, x) C & the set of irreducible permutations and let TT(R) be the
set of all paths.

Lemma 3.2. If 7 is irreducible then the left operation (respectively the right opera-

tion) is defined at 7 if and only if there exists A € R% satisfying (5) such that Ay > Ag
(respectively Ag > Ay) where o and B are the leftmost and the rightmost elements

of m.

Proof. Assume that the left operation is defined at 7 and let 7’ be the image of 7.
LetA' e ]R{% be a vector satisfying > /ey <n(x) )L’g = 2 >l )Ug. LetA € R%
be given by Ay = A}, + )L:B and Az = )L’é, § # «. Then A satisfies (5) and we have
lg > /13.

Assumethat Ay > Ag. Letdl, = Ag—Ag. Letn/(x) = m(x)form(x) < n(i(e)),
7' () = m(i(a)) + 1 and 7/ (x) = w{x) + 1 for w(i(a)) < m(x) < 2d + 1. We
need to show that 7" € &.

Let Ay = {€ : w(§) < w(x)}, A = {§ 1 7(§) > w(x)}, Ay = {51 2'(§) <
7' (e)js A, = (€ 1 () > (%)} Notice that 36y vy A = 2 (eyom(x) Ao
50 i(+A;) can not be properly contained or properly contain A,. If i(A;) = A,
then 7' (i (t)) > 7'(x), so w(i(a)) > (%) as well. This implies that A, = A; and
Al = sA,, and since 7 € & we have 7’ € &. a

3.1.3. Linear action. Given a Rauzy class R, we associate to each path y € TT()
a linear map B, € SL(A,Z). If y is a vertex we take B, = id. If y is an arrow with
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winner o and loser f then we define By, - ez = eg for § € A\{a}, By -eq = g +ep,

where {e¢ }¢c 4 18 the canonical basis of R, If y is a path, of the form y = y1 ... vy,
where y; are arrows foralli = 1,...,n, wetake B, = By, _,, = By, ... B,,.

3.2. Rauzy algorithm with invelution. Given a Rauzy class R C ©, consider the

set
sﬂ:{AeRﬁ: Y k= ) Aa}.

() <m(x) m(e)>m(x)

We define

Sh=8nKE Ay=8rxisl &= ]As
TeR

Let (A, 7) be an element of Af,. We say that we can apply Rauzy algorithm with
involution to (A, 7} if A¢ # Ag, where o, § € A are the leftmost and the rightmost
elements of 7, respectively. Then we define (A’, =') as follows:

(1) Let y = y(A, ) be an arrow representing the left or the right operation at s,
according to whether Ay > Ag orAg > Ay

(2) Let Aé = Ag il § is not the class of the winner of y, and )Vg = |Aq —Ag|if§ s

the class of the winner of y,i.e., A = B3 - A’ (here and in the following we will
use the notation A™ to the transpose of a matrix A).

(3) Let 7’ be the end of y.

We say that (A, /) is obtained from (A, ) by applying Rauzy algorithm with invo-
lution, of type left or right depending on whether the operation is left or right. We
have (A, 7'} € Ay, In this way we define a map Q: (A, ) — (A, ') which is
called Rauzy induction map with involution. Its domain of definition is the set of all
(A, ) € Ag% such that A, # Ag (where « and f are the leftmost and the rightmost

letters of 7) and we denote it by A ;R. The connected components A, C Agft are
naturally labeled by elements of 3t and the connected components A, of A 5% are
naturally labeled by arrows, i.e., paths in TT(R) of length 1.

We associate to (A, ) and to (A, 7’) two interval exchange transformations with
involution f: I — I and f': I" — I, respectively. The relation between (A, )
and (A', #') implies a relation between the interval exchange transformations with
involution, namely, the map f” is the first return map of f to a subinterval of 7,
obtained by cutting two subintervals from the beginning and from the end of / with
the same length Ag, where £ is the loser of y.

Let Ag, be the domain of 0", n > 2. The connected components of Ag, are nat-
urally labeled by paths in TT(31) of length #: if y is obtained by following a sequence
of arrows y1,. .., yp, then Ay, = {x € A, : Q% 1(x) e A,,, 1 <k < n}. Notice
that if y starts at 77 and ends at 7’ then A, = (B - $H) x {n}.
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If y is a path in I[T1(3) of length » ending at = € R, let
07 =0" Ay — Ag.

Let A = (V,n0 AR
Definition 3.3. A path y is said to be complete if all involution classes o € A are
winners of some arrow composing y .

The concatenation of k& complete paths is said to be k-complete.

A path y € TI(R) is positive if B, is given, in the canonical basis of ]R{%, by a
matrix with all entries positive.

Lemma 3.4. A (2d — 3)-complete path y € TI(N) is positive.

Proof Lety = yly?...yY where y is an arrow starting at 7' ~! and ending at 7.

Since y is /- complete we also canrepresentitas y = y¥) - - - Yq) where each y;

is a complete path passing through JT(l Do, zrf(l)l), ”1( ),

Let By be the matrix such that )L(l) = By, A(’H) And let B*(a, B.i) be

the coefficient on row & and on column 8 of the matrix B* . Fixk < [. We
denote C*(k) = Bm) B;‘(k) Let C*(a, B,k) be the coefﬁment on row « and
on column B of the matrix C™* (k). We want to prove that for all o, B € A we have

C*(, B.1) > 0. For r > 0 denote C (r) = B, ...B.
Since the diagonal elements of the matrices B;“ , where ¥ is an arrow, are one and

all other terms are non-negative integers, we obtain that the sequence C* (e, B, k) is
non-decreasing in k, thus:

C*@,ﬁ,k)>O:>C*(g,é,k+l)>0. (6)

Fix any «, ﬁ € A. We will reorder the involution classes of A as ¢ = aj,
2, .., 0g = E with associate numbers 0 = r; < ¥y < -+ < rg such that

C*(ai,aj,r) >0 forallr > ry. (7)

If @« = p wetaked = 1 and r; = 0 and therefore we have (7). Otherwise we
choose the smallest positive integer » such that the winner of y2 is 21 = ¢ and
let a5 be the loser of the same arrow. Notice that a1 # ay by irreducibility, and
B*(ay, 2, 12) = 1, hence C*(c1, 02, ) > O for every v > r;. This gives the result
ford = 2. -

Now we will see the general case. Assume that @y,...,¢; and ry, ..., r; have

been constructed with 8 # ap, for 1 <m < j. Let rj’. be the smallest integer greater

!
than 7; such that the winner of y*/ does not belong to {o;. ... .oy and let rjiq be
the smallest integer greater than rJ’. such that the winner of y™/+1 isin {oy,..., 0}
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Let aj 11 be the loser of y"/+1. Then «; 4 is the winner of y7i+171 and therefore
o1 ¢ {ﬂ,...,ﬁ}. Thus, for some 1 < m < j we have B* (. @j+1.7j+1) = 1
and C™ (a1, &y, rj+1 — 1) > 0, since rj 11 > ry,. Thus

C*(a1,aj41.7) >0 forallr > rjyq.

Following this process, we will obtain oy = .

Now, we will see how many complete paths we need until define r;. We need
a complete path to define each r; and another one to define each rj, for2 <j <
d — 1. And we need another complete path to define 4. Thus we need at most
2(d —2)+ 1 = 2d — 3 complete paths composing y to conclude it is positive. [

3.3. Zippered rectangles. Let 7 be a permutation in a Rauzy class € &%, Let
®, C S, be the set of all T such that

> w>0 forallw(x) <k, <2d +1,
m(x)<m(§)<ky
Z e <0 forall 1 < k; < m(%).
ky<m(®)<m(x)
Observe that ®5 is an open convex polyhedral cone and we will see later it is
non-empty.
Given a letter @ € A, we define M, () = max{m(x), 7(i(x))} and my () =

min{r(e), 7 (i {x))}.

Define the linear operator Q(r) on R as follows:

8)

2 if Mz(x) <mg(y),
2 i Ma(y) < ma(x).

I
s

Q) s,y

if mn(x) < mn(y) < M:r(x) < Mn(y): )
—1 if  mg(y) <mg(x) < Mp(y) < Mz(x),

0 otherwise.

Observe that 2(rr) is well-defined, since (2(r) - A), = (S2(7) - A);(, for all
o € A

We define the vector w € R% by w = Q(x) - A and the vector & € R% by
h = —Q(r) - 7. Tor each o € A define {, = Ay + i 7.

Lemma 3.5. If y is an arrow between (A, ) and (A', n’), then w' = B, - w.

Proof. We will consider the case when y is a left arrow. The other case is entirely
analogous. Let «(/) and «(r) be the leftmost and the rightmost letters in 7, respec-
tively. Thus «(7} is the winner and «(r) is the loser.
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By definition,

= ¥ 4- ¥ %

' (§)=n'(i(a)) 7' (§)<m’()
Since A, = A, forall @ # «(/) and A;(Z) = Aa()) — Aa(n), it is easy to verify that

w

= > A= > he=we ifaFa®).
() > (i () 2 (E) < (@)

IR~

And if @ = a(r), we have

We(r) = Y M- Y A

7’ (§)>n'(i(a(r)) n/(§)<n’(a(r))

= Y =D = k= Y kg
! (E)=m' (a(r)) ! (&)<a! (i(a(r))) a(E)=m(i(al)) w(&)<m(i(a(r)))

D D D D . D D
a(&)>m(i(a(l))) w(E)<mla(l)) a(E)>m(a(r)) w(E)<m(ila(r)))

= Wo() + Wa(r)-

Therefore, w’ = B, - w. O
Let H(m) = Q()-5;. According to the previous lemma, givena path y € TI(3)
starting at 7 and ending at 7/, we have B, - H(w) = H(x').

Lemma 3.6. If 71 € Rand v € Oy then h € R%.

Proof. Leta € A. We have
hg = Z Tg — Z T
n(&)<m(a) m(&)>x(i(e)
Suppose 7 (a), 7{i{c)) < m(x):

he = Z Tg — Z T

m(§)<m(a) 7 (§)>n(i())

D D DI T DI

m(§)<m(a) a(i(e))<m(§)<m(x) m()<m(E)<2d+1

— Z T — Z e > 0.

m(o)=m(§)<m(x) m(i (@) <7 (§)<m(x)

Analogously, if w{e), 7 (i («)) > 7 (*) we have iy > 0.
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Now we will suppose that 7{«) < () < 7 (i(«)). In this case, we have:

hy = Z Tg — Z Tg

7 (§)<m(a) 7 (&)>m(i(a))

Z T — Z g — Z T+ Z T

1=m(§)<m (%) m(a)=<m(§) <m(x) n(x)<m(§)<2d+1 m(x)<m (&) <m(i(a))

- — Z 1'&—|— Z ‘L'E>0.

m(a)<m(§)<m(x) 7 () <m (&) <m(i(a))

A
So, h € RY. ]

Lemma 3.7. Iy € TI(R) is an arrow starting at & and ending at =’ then (B)’/")_1 .
Onr C Op.

Proof. We will suppose that y is aright arrow and the other case is entirely analogous.
Let T € Oy and let & € A be the winner and 8 € A be the loser of y.
Notice we have ré = 1¢ forall § € A\{a}. Letm = 7 (i(a)). Notice that

ha =ha =hi@= ), w- > w= ) w (0
7 (§)<m(i(x)) 7 (§)>m(a) 7T (§)<m

Suppose m < w(x). Since 7'(§) = (&) for all & € A such that 7 (§) > m we
have that the first inequalities of (8) are satisfied and

Z ré — Z e <0 forallm <k < (%),
ki <m!(E)<n’(x) ky<m(§)<m(x)
Thus, it remains to prove the last inequalities to 1 < k; <m. Let 1 < k; < m. Since
ré = Ta — T8,
Z % = Z 7 <0 foralll <k; <m.

ki< (E)<a’/(x)  k=aE)<m(*)
If k; = m, by (10)

Z ré: Z -1 = Z e —hy < 0. (1)

m<m’(§)<m/(x) m<m(§)<m () 2<m(§)<m(x)

Now suppose m > () This case is analogous to the first one. We will just do
the part corresponding to (11).

2, H= 2, m¥m=h— > w>0
/(%)< (§)<m—1 m(x)<m(E)=m—1 2<m(§)<m ()

Thus 7’ € O, as we wanted to prove. O
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Definition 3.8. Let ®), C §; be the set of all 7 # 0 such that

Z e >0 forall w(x) <k, <2d +1,
7 (%)< (§)<kr

Z 1 <0 forall 1 <k; < m(x).
kp=m(§)<m (=)

(12)

Let y € TI(R) be a path starting at 7, and ending at .. In the same way we
showed that (B})™!-@, C @, inthe previous lemma, one sees that (B}) '@ C
e .

Definition 3.9. lLet 7 € TI(N) and ¢ € A. We say that « is a simple letter if
m{a) < (%) < w(i(a)) orif w(i{w)) < m(*x) < m(aw). We say that « is a double
letter if w(o) and 7 (i (@)) are either both smaller or either both greater than 7 (). If
m(a), m(i(a)) < m(x) we say that « is a left double letter or has left type, otherwise
we say that « is a right double letter or has right type.

Lemma 3.10. If 7 is irreducible then ®, is non-empty.
Proof. By invariance and irreducibility, it is enough to find some 7 € R such that

©7, is non-emplty.
Given ¢, B € A suppose we have 7 € J with one of the two following forms:

a - - i) - B i) o - (13)
or
R () V) I B (14)

We can define 7 € ® by choosing 7y, = —1g = 1l and 7z = Oforall £ €
A\la, 1.

Let us show that there exists some 7 € R satisfying this property.

By definition of permutation in &, there exist at least one double letter of each
one of the types, i.e., there exist ¢, f € 4 such that « is left double letter and B is
right double letter.

If there exists more than one double letter of both types, we can obtain another
irreducible permutation 7" which has at most one double letter of each one of the
types, as follows. First we apply left or right operations until we obtain one double
letter in the leftmost or the rightmost position, which is possible by irreducibility. We
will assume, without loss of generality, that such a letter is at rightmost position. If
there is at most one left double letter, we take the permutation obtained to be 7. But,
if there are more than one left double letter, we apply right operations, until we find a
permutation with just one left double letter. Those right operations are well-defined
since we have more than one double letter of both types.
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Suppose that o € 4 is the unique left double letter. Then, if it is necessary, we
apply right operations until obtain 7{«) = 1.
Let p € A suchthat 7(f) = 2d + 1,1i.e.,

a - - - i) - x - - P

If S is simple applying the left operation we obtain a permutation of type (13) or (14)
depending on (i (B)) > w (i () or (i (B)) < = (i(«)), respectively. If S is double
we apply the left operation until we obtain a simple letter in the rightmost position of
m and we are in the same conditions as in the previous case. O

Definition 3.11. Let us say that a path y € TT(R), starting at 77y and ending at 7., is
strongly positive if it is positive and (By)™' - @) C Og,.

Lemma 3.12. Let y be a (4d — 6)-complete path. Then vy is strongly positive.

Proof. Let d = #A. Fix t € O] \{0}. Write y as a concatenation of arrows
Y = ¥Y1---¥n> and let 77" and 7' denote the start and the end of y;. Let t° = ,
v = (By)~!-7'~1. We must show that 7" € ©n.

Let i' = —Q(x') - 7', Notice that v € @’ ,\{0} implies that 2° € Rf\{O}.
Indeed, since T € O ,, for every § € A, we have

Z 7o >0 and Z e < 0.

70 (%) <% () <70 (§) 7O (E)<mO (@) <m0 (x)

Moreover, since T # 0, there exist | < k! < 7°(x) maximal and 7°(x) <
k" < 2d + 1 minimal such that 7;0y-1 7y 7 0 and 7(z0)—1¢ry 7# 0. Since 7° is
irreducible, k" — k! < 24 — 1. Remember that h = 0 for all £ and the inequality is
strictif 7°(§) = k" + 1 and k™ < 2d + lorif 7%(&) = k! —land 1 < k! < 7°(x).
Since i* = B,, - h'~! we can consider a positive path y; ... y; and then i’ € Rf

Let 7! (%) < k' < 2d be maximal and 2 < k! < 7' (x) be minimal such that

Z r§>0 for all 7* (%) < k <k,

mi()<mi(®)<k
Z r§<0 for all k! <k < 7' ().
k<mi(&)<m(*)

We claim that
(1) if i1 e R% then k[ — ¢ (%) > kI_, — 'L () and 7 (%) — k! > 71 (x) —

i

k;_,,inparticular k] —k; > kI_, —k;_1;
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(2) ifh'~L e Rf and the winner of y; is one of the firstk/_, + 1 — 7' ~1(x) letters
after * in w'~! then k7 — k! > min{k]_, —k!_, +1,2d —k!_};

(3) if k'~ ! e Rf and the winner of ; is one of the last 7/~ (%) —k’_| + 1 letters
before * in 7' ~! then k7 — k! > min{k! | —k! | + 1kl  —2}.

> i—1

Notice that 2 < 7 (x) < 2d forall ;.

Letus see that (1), (2) and (3) imply the result, which is equivalent to the statement
that k% — k! > 2d — 2. Letus write y = y(1 ... Yaa—7) Where y(; is complete
and each y(;y = ¥s; .- Ve;. By Lemma 3.4, i* e Rf for k > eyy_3. From the
definition of a complete path, for each j > 2d — 3, there exists e; < iy < e; 41 such
that the winner of y;, is one of the letters in position mq at 7171 such that 7171 (x) <
my <k +1 Itfollowsthatkl —ki > mink] _, —k/ _, +1,2d —k{ _;},
SO

ki —ki = minfkl —kl +1,2d -k, }. (15)
In the same way there exists e; 1 < i < ¢, such that the winner of y;, is one of the
letters in position 75 at 727! such that ki, +1<my< w271 (%), Tt follows that

ki, — kg > mink]_ —ki_, + 1k, — 2}, thus
l ~ !
kgj —kej s mm{k;ji1 —keF1 + 1,ng,71 -2} (16)
By (15) and (16), we see that:

ki =kl zmindk]  —kl  +2.2d—(kl -1,k  +1)—2,2d-2}

e+l Tej41

Therefore, we obtain k;, — k'l? - k£2d—3+2d—4 - kézd—3+24—4 =z min{kgzd_3 o
ki 4+2d-2,2d— (k. _ —2d—4), (kI +2d—4)-2,2d -2} =2d 2.

We now check (1), (2) and (3). Assume that 4'~! e R%, and that y; is a right
arrow, the other case being analogous. Let « be the rightmost letter of 71 which is
the winner of y;, and let 8 be the leftmost letter of 7'~ which is the loser of y;.

Case 1: Suppose 7'~ 1(i(a)) < 7'~ 1(x).
If the winner of y; is not one of the 7' ~!(x) — k!_, + 1 last letters on the left
side of # in 7'~!, then for every £ € » such that K < a7 1(E) < 2d + 1,

we have 7'71(§) = 7' (§) and ¢{™" = < for all k! | < 7i~1(§) < 2d. Hence

kD — i) = kT — i (k) and 7l (%) — k! = i (k) — KL
If the winner & of y; appears in the k-th position counting from x to the left in
7l with k! — 1 <k < 7'71(x), then

3o 4= > 7 <0 forallk +1<j <m(%),

jrl@<ni@)  jsaiTlE)<ai—l(x)
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= Z <0 forallk! , —1<j<k—1,
jeri(®)<mi(x)  jHleri-lE)<ri-lx)
— Z rg‘l e Pl an
k<ni@<mi(x) 22 lE)<mi 1)

which implies that 7/ () — k! > min{x’~'(x) — 2,7/ 71(%) + 1 — k!_,}, hence
ki — k! > minfk!_ — k! + 1kl -2}

This shows that (1) holds and (3) holds. Moreover, (2) also holds since its hy-
pothesis can only be satisfied if k]_, = 24.

Case 2: Suppose ' ~1(i(@)) > 771 (%).

If the winner of y; is not one of the k7| — 771 (x) + 1 first letters on the
right side of x in 7'~1, then for every § € 4 such that | < 7*~1(§) < k/_,, we
have 7/ (§) = 7'"'(§) — 1and ¢}~ = 1}, s0 k] — 7' () = kl_; — m'~!(x) and
(k) — k! > 2TV — kL

If the winner « of y; appears in the k-th in 7/~ with #° 71 (%) < k < k/_, + 1,
then

Y = > ' >0 forallm(x) < j <k—1,
()<l ®)<j  wll<ri-lE)<j-1
Y = > o >0 forallk < j <kj_; +1,
M <ni@<j  wileenilE)<j
Z o =- Z o = R >0,
wi(x)<al () <k—1 2<mi—1(E)<mi—1(x)

which implies that k7 — /(%) > min{k! | + 1 — 7" 7!(x),2d — 77! ()}, hence
kI — k! >minfk!_, —k'_ +1,2d — Kk _}.

This shows that both (1) and (2) holds. Moreover, (3) also holds since its hypoth-
esis can only be satisfied if kK/_, = 2. O

Corollary 3.13. If 7 is irreducible then ®n is non-empty.

Proof. 1et y € T1(3R) be a strongly positive path starting and ending at =, which
exists by Lemma 3.12. Then (B)’j‘)_1 - @ C Og and by Lemma 3.10 the set ©7, is
non-empty. Therefore 5 is non-empty. O

Given that ®, is non-empty, it is easy to see that ®7 U {0} is in fact just the
closure of ®.
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3.3.1. Extension of induction to the space of zippered rectangles. Lety € TT(5)
be a path starting at 7 and define ®,, satisfying:

B 0, = 0.

If y is a right arrow ending at 7/, then ®,, = {7 € Oy | > 4 7x < 0}, and if
y is a left arrow ending at 7/, then ®,, = {r € O,/ | >~ 4 7 > 0}. Indeed, if y is
aright arrow and B} - v/ = 7, then

Z té:rg—rﬁ—i— Z ré

/(=)< (§)<2d+1 w(x)<m(§)<2d

= ) -
1= (&) <m (%)

= Z ré <0,

l<m(®)<m(x)

where « is the winner and g is the loser of y. The case of a left arrow is analogous.
Thus, the map

0V: Ay xOp - Ap x0,, 0. m1)= (0. m).(B) 1)

is invertible. With this we define an invertible skew-product Q over () conside-
ring all Q Y for every arrow y. So, we obtain a map from | J(A, x ©;) (where
the union is taken over all # € 3t and all arrows y starting at ) to | J(Azr x ©,,)
(where the union is taken over all 7' € M and all arrows ending at =’). Denote
Agp = Upeqn(Ax X Og).

Let (eq)qen be the canonical basis of R#. We will consider a measure in Ag
defined as follows. Let {v1,...,v,} be a basis of R¢. We have a volume form
given by w(vy,...,vq) = det(vy,...,vg). We want to define a volume form in
Ag coherent with w. Given the subspace S5 define the orthogonal vector v, =
Y o) <n(x) €x — Dn(x)=n(x) €x- We can view this vector like a linear functional
Yz: R? — R defined by ¥ (x) = (vz.x). Now we define a form o’ on S
such that w = "7 A ¥, (where A denotes the exterior product). We have that oV~
is a (d — 1)-form and it is well defined in the orthogonal complement of ¥, (i.e.,
vr (R4 = ker(y,) = 85). Notice that, given 7, 7/ € R and a path y € TI(R)
joining 7 to 7/, By, - vz = vy and

(B;k)—l . (( i ) . [2F: 4 - Sn'-

Uz, Urz) (UT["y Un’)

So, the pull-back of ®"#’ is equal to @', i.c.,

(BT 0t = ot
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Consider the volume form " and the corresponding Lebesgue measure Leb,,
on S;. So we have a natural volume measure #ig on A s which is a product of a
counting measure on R and the restrictions of Leb, on §.} and O.

Let p(A,7,7) = Al = Y yeu Ae. The subset g C Ag of all x such that
either

e O(x)is defined and ¢(Q(x)) < 1 < ¢(x),
. Q(x) is not defined and ¢ (x) > 1,
» O~ (x) is not defined and ¢(x) < 1.

is a fundamental domain for the action of Q : each orbit of Q intersects Ogx exactly
once.

Let ZS%) be the subset of B such that A(A, 7, 7) = 1. Let m;) be the restriction

of the measure #ig to the subset U;).

3.3.2. The Veech flow with involution. Using the coordinates introduced above, we
define a flow TV = (7 V:)ser 00 Ag givenby TV, (A, . 7) = (e'A, m e 7). It
is clear that 'V commutes with the map Q The Veech flow with involution is defined
by VF,: Op — UOg, VF(x) = Q”(TVr(x)), where n is the unique value such
that O™ (T V,(x)) € Og.

Notice that the Veech flow with involution leaves invariant the space of zippered
rectangles of area one. So, the restriction VF ;. 25;) o 255;) leaves invariant the
volume form which, as we will see later, is finite.

4. The distortion estimate

We will introduce a class of measures involving the Lebesgue measure and its forward
iterates under the Rauzy induction map with involution.

For g € R%, let Ay = {A €85 1 (A,q) < 1}. Let vy, be the measure on
the o-algebra of subsets of §; which are invariant under multiplication by positive
scalars, given by vy 4(A) = Lebs (A N Axq). If y is a path starting at 7 and ending
at 7w’ then

Un’q(B* +A) = Leb, ((B} - A) N An’q) = Leby (AN An’,Byq) = Vn’,By-q(A)-
Y Y

We will obtain estimates for vz 4(A, ).

Let R C G°(A) be a Rauzy class, y € TI(R), let = and 7’ be the start and
the end of y, respectively. We denote A, , x {7} = (Ag, x {7}) N A, so that
B} A p,q=Ayg.

For A" C s non-empty and invariant by involution, let M4/ (¢) = maxge s’ go
and M{(q) = M4 (g). Consider also m4/{g) = mingec 4’ go and m{g) = my(g).
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If I' C II(3R) is a set of paths starting at the same 7 € R, we denote Ar,; =
U,er Ayg- Given T' C TI(R) and ys € TI(R) we define 'y, = {y e T : ypsisthe
start of y}.

We say that a vertex 1s simple or double depending whether it is labelled by a
simple or a double letter, respectively. Notice that A ; 4 is a convex open polyhedron
which vertices are

* the trivial vertex O;
» the simple vertices g, ey, where « is simple;

* the double vertices (go + gp) '(eq + €g), where a, B are double and 7 (&) <
a(x) <w(P)orn(B) < m(x) < wl(a).
A simple vertex v = g ley is called of type @ and weight w(v) = ¢q, and a
double vertex v = (ga + g8) (e + ep) is called of type {e, B} and of weight
w(v) = qo +ap.

An elementary subsimplex of Ay 4 1s an open simplex whose vertices are also
vertices of A 4, and one of them is 0. Notice that A, , can be always written as a
union of at most Cq(d) elementary simplices, up to a set of codimension one.

A set of non-trivial vertices of A, is contained in the set of vertices of some
elementary subsimplex if and only if the vertices are linearly independent. If « is
simple then any elementary subsimplex must have a vertex of type « and if « 1s double
then any elementary subsimplex must have a vertex of type {«, x} for some x # «
with x double. If A is an elementary subsimplex with simple vertices of type «; and
double vertices of type {f;,,&;,} then vy 4 (A) = k(m, A) [ g5, [T(ag;, + qé;’z)_l
where k (77, A)is a positive integer only depending on v, and on the types of the double
vertices of A. In particular there is an integer C2(d) such that k (7, A) < Ca(d).

Let y € TI(N) be an arrow starting at = and ending at =", If T’ C TT(3N) then we
define

Uﬂ/,By'q (Ar)/ 9q)
Vg (Ayg)

Py(T |y) =

and
U/, By-q(Ayg)

Vg (A n’,q)

Py(y|m) =

We have that Py (" | y) = Pg,.¢(I'y | 7).

We define a partial order in the set of paths as follows. Let y, y; € TT(R) be two
paths. We say that y; < y if and only if v, is the start of y. A family Ty C TI(R) is
called disjoint if no two elements are comparable by the partial order defined before.
If I’y is disjoint and I'  TTI(N) is a family such thatany y € I starts by some element
ys C [y, then for every m € I,

Py(T[m) = > Py(T|ys) Pylys|m) < P(Ts | ) sup Py(T"|ys).

ys €l vs€ls
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Lemma 4.1. There exists C3(d) < 1 with the following property. Let q € Rf y €
TI($R) be an arrow starting at s with loser B. If C > 1 is such that gg > C ™' M(q)
then B

P,(y|7) > Ci(d)Cc 471,

Proof. Let « be the winner of v and let 7" be the end of y. Let A be an elementary
subsimplex of A, ,. We are going to show that there exists an elementary subsimplex
A’ C By(A) of Ay p,.q such that Leby/(A’) > C'~'Leb(A), which implies the
result by decomposition.

We will separate the proof in four cases depending on whether the winner and the
loser are simple or double.

Suppose that « and B are simple. Let A be an elementary subsimplex of Ay .
Then A" = By, - (Ar 4 N A) is an elementary subsimplex of Az p,.,. The set of
vertices of A’ differs from the set of vertices of A just by replacing the vertex qu eg
by (g +qp) " teg. Tt follows that Lebnr (A") /Lebr (A) = qp/(qa +qp) > 1/(C +
1). By considering a decomposition into elementary subsimplices we conclude that
Py(ylm) = qp/(qa +qp) > 1/(C + 1).

Suppose that the winner is simple and the loser is double. Let A be an elementary
subsimplex of Ay 4. Then A’ = B, - (A4 N A) is an elementary subsimplex of
ABp,,.4. The set of vertices of A’ differs from the set of vertices of A just by replacing
the vertices (¢x + gg) " "(ex + eg) by (qo + qx + qp) ' (ex + ep). It follows that
Lebs (A')/Lebr(A) = [T(qx + 4p)/ (o + g2 + gp) > (1/(1+ C)?™", where
the product is over all x such that A has a vertex of type {x, f}. Thus P, (y|7) >
(1/(1+ )

If the winner is double and the loser is simple, let " be the other arrow starting
at . Analogous to the previous case,

Py | m) =[x+ 9e)/ (e + 4 + qp)

=[](1-48/(qa + qx +9p))
< @2C/(1420)4,

50 Py(y|m) > QC/(1+2C)* .

Finally, suppose that the winner and the loser are both double. Let A be an
elementary subsimplex with Leb(A) > Lebz(Az4)/Ci1(d). Let Z be the set of
vertices of A and let Z C Z be the set of double vertices of type {9x.qp} with
X # a. Notice that By, - (Z\Z) is a subset of the set of vertices of A B,.q. Since
Z\Z is linearly independent, B, -(Z \Z) is also. Thus there exists an elementary
subsimplex A’ of A’ p,.; Whose set Z’ of vertices contains By - (Z\Z). Let Z’ =
Z\B, - (Z\Z). The weight of a vertice v € Z\ Z is the same weight as the weight
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of B, -v. Notice that each vertex of Z has weight at least C ~'!M(g) and each vertex
of Z' has weight at most 2M(B,, - ¢) < 4M(q). Thus

Leby (A)  k(n',A") [,e7 w(v)
Leby (A)Y  k(m, A) [1,e5 ww)

Thus Py(y|7) > C1(d) 1 Ca(d)~1(4C) 4, O

> Co(d) 1 aC) .

The proof of the recurrence estimates is based on the analysis of the Rauzy renor-
malization map. The key step involves a control on the measure of sets which present
big distortion after some long (Teichmiiller) time.

Theorem 4.2. There exists C4(d) > 1 with the following property. Let q € R%.
Then for every m € N,

Py(y € TI(R), M(By - q) > Ca(d)M(q) and m(B, - q) < M(q) | 7)
<1—Cy(d)y @D,

Proof. For 1 <k <d,let mg(g) = max my (g) where the maximum is taken over
all involution invariant sets A’ C # such that #A4" = 2k. In particular m(g) =
my{g). We will show that for 1 < k < d there exists D > 1 such that

P,(y € TI(R), M(B, -q) > DM(g) and mg (B, - ¢) < M(q) | w) < 1 — D~@~1),

(17)
(the case k = d implies the desired statement). The proof is by induction on k. For
k = 1itis obvious. Assume that it is proved for some 1 < k < d with D = Dy,

Let I" be the set of minimal paths y starting at = with M(B,, - ¢) > DoM(q).
Consider the set I'y of minimal paths y starting at 7 satisfying M(B,, -q) > DoM(q)
and mg (B, - ¢) < M(g). Since I'y C T, by (17), P,(T' N Ty) = P,(Ty) <
1 — ;™Y By definition of T' we have P,(I') = 1, then P,(I' \ [y) = 1 —
P, (' NTy) > Dg(d_l). Moreover, if y € I' \ Ty, we have my (B, - q) = M(q).
Then there exists Iy C I with P, (I'y | 7) > D @=1 and an involution invariant set
A’ C A with #A" = 2k such thatif y € T’y then mu/ (B, - g) > M(q).

For y; € I'y, choose a path y = y,y, with minimal length such that y ends at a
permutation 7z, such that either the first or the lastelement of 7, is an element of A\ A’
Let I'; be the collection of the y = y,y. thus obtained. Then P, (I'y | 7) > Dl_(d_l)
and M(B) - q) < D{M(g) for y € I'>.

Let I'; be the space of minimal paths y = y,y, with y; € I'; and M(B,, - q) >
2dD1M(q). Let T'y C T3 be the set of all y = y,y. where all the arrows of y, have
as loser an element of A’. For each y; € Ty, there exists at mostone y = y;v, € [y,
and if Py(Tq|ys) < 5y, it follows that Py(T3\Ta |7) > (1—55) D747V, 1t
remains to prove that Py(Ls | 5) < 75
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Let y = ysye € 4 such that vy € I'5. Let m, € TI(R) be the end of y; and let
« and B be the winner and the loser of ., respectively. By definition, we have that
o € A\A' and B € A'. Besides, all losers of y, are in A'.

We claim that « is simple. Suppose this is not the case. Assume, without lost
of generality, m.(¢) = 1 and 7. (f) = 2d + 1. Applying Rauzy algorithm with
involution one time we would obtain 7, (f) < 7, (%) and to keep the same winner o
we just can apply Rauzy algorithm with involution at most 2d — 4 times. But even
if we could apply Rauzy algorithm with involution those number of times, we will
have

M(By, -q) < (2d —3)D1M(g) < 2d D1M(q)

what contradicts that y € I'3. Then « is simple as we claim.

We are considering a path y = ys¥. € 4 and a permutation 7, € TI(}R)
which is the end of ;. Suppose ys = y1...ym and Ye = Ym+1...Yn, Where
y; € II(M) forall7 = 1,...,n and each y; is an arrow joining permutations zrgz_l)

and zrf) form +1 < i < n, where n]" = m,. We have y, € I'z, so, to obtain
M(By -g) > 2dD1M(q) weneed n > 2d + 1. We also have §,, = Snfj) for all
ieim,...,n}.

Let A = Ag, B,,¢ which is a finite union of elementary simplices A;. Let
Bo = pand f; betheloserofarei) fori =m,...,n. Foreachi € {m,...,n}if f;
is a simple vertex then all A; has a vertex of type B; and if ; is double then all A

has a vertex of type {B;, x} for some x ¢ {e, B;}. Let AJ(.") = B,,(A;). Notice that

the type of vertices of A}n) coincides with type of vertices of A ;. Let Z be the set of

vertices of A; and Z™ be the set of vertices of A;”). Then
(n)
Lebrgn (A7) Toez w®) (i
Leby, (Aj) [lpezom w(v)

But M(B,, -q) < DiM(g) and M(B, -q) > 2d D1M(g), so there is one term in (18)
which is less then ﬁ. Thus

Py(Ta 17 < 5
Let y = ysye € I'3\I's. Let us show that my 4 (B) -g) > M(q), which implies (17)
with & + 1 in place of £k and D = 24 D;. Assume that this is not the case. In this
case, the last arrow composing y, must have as loser an element of A’. Moreover,
No arrow composing v, has as winner an element of A’ (otherwise, the loser 8 of the
first such arrow does not belong to A" and is such that m 4u¢p31(By, - q) > M(q)).
Let Yo = Ve.sYe.e Where v, ¢ is maximal such that all losers of y, s are in A’. Then
all losers in y, g are distinct and M(B,,,, ; - q) < 2D1M(q). Let Yoo = Ve,1 - - Ve
where Ve, j = Ve, jsVe,j.e With ye ;s and ye ;. non-trivial such that all the losers of



Vol. 87 (2012) Exponential mixing for the Teichmiiller flow 613

Ve, j.s are in A\ A" and all the losers of y. j.. are in A" Let y; = YsVe sVel --- Ye.js
0 < j < [. Notice that for each j, y. ;. has distinct losers, and the same winner
o € A\ which is also the last winner of v, js. Let f € A\A' be the last loser of
Ve, j.s. Then

M(B]/j+1 . Q) - M(B)/j ) Q) < ME(B)/J'_H ) Q') - ME(BYJ' ' Q)
which implies that
(2d —1)D1M(q) <M(By -q) —M(B), - q)

< ). Mg(B,-q)—Mg(B,, -q) < dDM(g)
BEA\A

which is a contradiction. O

5. Recurrence estimates

The goal of this section is to prove proposition 5.2. It provides quantitative decay of
the measure of the set of points which take long to enter a given simplex Aj; under
iteration of the Rauzy induction map with involution.

Lemma 5.1. For every y € TI(R), there exist M > 0, p < 1 such that for every
TeN, qgc¢e R%,

P ()/ can not be written as ys vy, and M(B, -q) > 2MM(q) | JT) = o

Proof. Fix My > 0O large and let M = 2My. Let I be the set of all minimal paths y
starting at 7= which can not be written as y, ¥y, and such that M(B,, - q) > 2MM(q).
Any path y € I" can be written as y = y;y> where y; is minimal with M(B,, - q) >
2MoM(g). Let T'; collect the possible y;. Then T'; is disjoint, by minimality. Let
'y Iy be the set of all y; such that m(By, -g) = M(g). By Theorem 4.2, if M is
sufficiently large we have

Py(T\T) | 7) < 1= Culd)™ 170,

For m, € R, let y,, be a shortest possible path starting at 7, with y,, = ysy.
Let 77 be the end of y,. If My is sufficiendy large then || B, || < F7252M071 It
follows that if y1 € I'1 ends at 7. then

Py(T|y1) < 1— PByl-q(Vne | e ).

Let A CAp,, By,q be an elementary subsimplex with

Lebﬂ_’e (A;Te,Byl q)
C(d)

Lebg, (A) >
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Choose an clementary subsimplex A’ of A,Tf, Byyym, q> such that for all ¢ € A
there exists a vertice v* of A’ of type ¢ or of type {«,&} for some § € A and
Lebr, (A) > Lebr,(By,, - Ax..B,, )/ C1(d). Let Z and Z’ be the set of vertices

of A and A’, respectively. If furthermore y; € I'; then

Lebr, (A)  k(zr, A)[Tyez w(v) - Mgyt y-2(d—1)Mo
Lebr, (A)  k(me, M) [[pezr w@) — (22MoM(g))d—1 '

So, PByl'q(Vﬂe |7'[e) > 2—2(d—1)Mo and Pq(F | n) <1-— C4(d)_(d_1)2_2(d_1)M0.
L]

Proposition 5.2. For every y € T1(IM), there exist § > 0, C > O such that for every
A
meNM ge R andforeveryT > 1

Py ()/ can not be written as ysyye and M(By, - q) > TM(q) | JT) < CT 0,

Proof. T.et M and p be as in the previous lemma. Let k be maximal with T >
2K(M+1) T et T be the set of minimal paths y such that y is not of the form yyJ ye
and M(B, - q) > 2¥(M+DM(g). Any path y € T can be written as y; . .. y; where
YG) = ¥1-.. Y is minimal with M(B,,,, - q) > 2"MFDUM(q). Let [';) collect the
v@). Then the I';y are disjoint. Moreover, by Lemma 5.1, for all v € I,

PyTarn [ ve) = p-
This implies that P, (I" | ) < o*. The result follows. O

Remark 5.3. Notice that in the case of [AGY], they obtain a better recurrence esti-
mate. In fact, they obtain T-%=1 instead 7%, But our estimate will be enough.

6. Construction of an excellent hyperbolic semi-flow

6.1. The Veech flow with involution as a suspension over the Rauzy renormal-
ization. Let T be the subset of Oy of all (A, 7, 7) with ¢(A, 7, 7) = |A| =
de A Aq = 1. We denote by T, the connected components of Tg. Consider
?8(%1) = ZSgt) N Y and ?7(,1) = ZS%) N Yy Let n’/\zg) be the induced T.ebesgue
measure to Tg ),

We have that ?E% ) is transverse to the Veech flow with involution on 25;? which

is given by a certain iterate of the Rauzy induction with involution, after applying the
flow 7 'V,. We are interested in the first return map R to this section. The domain of

R is the intersection of ?gg) with the domain of definition of Q, and we have

E()L, mr)y= ("N, 7' e "),
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where (A, ', 7") = O(A, 7, 7) and

r=r(,m)=—log ||| = —logp(Q (A, 7. 7))

is the first return time. Notice that the map Risa skew-product R (A,m, 1) =
(R(A, ), e "7} over the non-invertible map R defined by R(A,7) = (e"A/, 7).
The map R is called the Rauzy renormalization map with involution and it preserves
the measure n’ﬁg)
map R.

We can see the Veech flow with involution as a suspension over the renormalization
map R. In this suspension model, we lose the control of the orbits which do not return
to ?5%1 ), However, this does not cause any problem to our considerations because the
set of such orbits has zero Lebesgue measure.

. The renormalization map R is an “invertible extension” of the

6.2. Precompact section. The suspension model for the Veech flow with involution
presented above is obtained over a discrete transformation R which is not sufficiently
hyperbolic. In general, R can not be expected to be uniformly hyperbolic, in fact, it
does not even have appropriate distortion properties. This is related to the fact that
the domain is not compact. The approach taken in [AGY] and other recent works as
[AF] and [AV] is to introduce a class of suitably small (precompact in ?g )) sections,
and to prove that the corresponding return maps have good distortion properties.

So, we will choose a specific precompact section which is the intersection of
?8(%1 ) with (finite unions of) sets of the form A, x ©,,. Let y be a path starting
at 7y and ending at 7.. Precompactness in the A direction is equivalent to having
By - (S,‘I"e \{0}) C S;S , which is a necessary condition if y is a positive path, To
take care of both the A and the t direction, we have already introduced the notion of
strongly positive.

Let [T(xr) C I1(M) be the set of paths starting and ending at the same 7= € R,
Let 7 € M and let y« € TI(x) be a strongly positive path. Assume further that if
Y« = Ys¥Y = YV then either y = y, or y is trivial. We will say that y. 1s neat.
If for example y. ends by a left arrow and starts by a sufficiently long (at least half
the length of y.) sequence of right arrows then the last condition of being neat is
automatically satisfied.

Let & = ?5%) N(Ay, x ©,,)andlet B = T N A,,. We will study the first
return map 7' to the section E under the Veech flow with involution. Notice that

the connected components of its domain are given by ?8(%1) N (A« x©,,), where
y 1is either y., or a minimal path of the form y. Yoy« not beginning by y.y«. The
restriction of Tz to each connected component of its domain has the expression

(B4

(A = —
7370 = (g

w BT ANEB) T 1),
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and the return time function is given by
rg(A,m, 1) =rg(d, m) = —log ||(B;f)_1 A

The map Tg(A, 7, 7) = (A, 7, ') is a skew-product over a non-invertible transfor-
mation Tz (A, ) = (A, 7).

Analogously to the case of the renormalization map, the Veech flow with involution

can be seen as a suspension over Tz, with roof function rz. But considering this
suspension model, we lose the control of many more orbits which do not come back
to 2. Still, due to ergodicity of the Veech flow with involution, almost every orbit is
captured by the suspension model.
6.3. Hyperbolic properties. The reason to choose the section 2 is because the
transformation 7% has better hyperbolic properties than transformations considering
larger sections and we can also describe easily the connected components of its
domain.

Lemma 6.1. Tz is a hyperbolic skew-product over Tg.

Recalling the Definition 2.5, we observe that associated to a hyperbolic skew-
product we have: a probability measure v (which we chose as the normalized re-
striction of nﬁg) to E) and a Finsler metric || - |z (which we will choose in order

to obtain the hyperbolic properties we want from Tz ). At first we will introduce a
complete Finsler metric on ?7(,1), and then we will consider its restriction denoting it
by || - [|5. Since ys is strongly positive, the section B is a precompact open subset of
?8(%1 ), therefore E will have bounded diameter with respect to such metric.

6.4. Hilbert metric. Now, we will introduce the Hilbert projective metric and state
some of its properties which we will use after. This notion can be defined for a general
convex cone C in any vector space, but in our case we only need C = Rf

We call the Hilbert pseudo-metric on Ri the function distR%r defined by

g
, foreach x, y € RY.

: Xiyj
distp> (x,y) = log max 24
i 1<i,j<2 X; Y

Suppose we are given a linear operator B € GL(2,R) such that B - R2 C R?, or
equivalently, such that all coefficients of the matrix B are non-negative. Then we
have distR%r (B-x.B-y) < distR%r (x,y) for all x,y € R2, which means that B
contracts weakly the Hilbert pseudo-metric. In particular, the Hilbert pseudo-metric
is invariant under linear isomorphisms of R .

In general, for an open convex cone C C R\ {0} whose closure does not contain
any one-dimensional subspace of R2, we define the Hilbert pseudo-metric on C by
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distc(x,v) = Oif x and y are collinear and distc(x, y) = distR%r (W (x), ¥ (v))

otherwise, where v 1s any isomorphism between ]R%r and the intersection of C with
the subspace generated by x and y (this isomorphism exist since x and y are not
Xa ¥

xgyi‘

Given two convex cones C and C’ such that C' < C then distc(x,y) <
distcr(x, y), i.e., the inclusion map C’ — C is a weak contraction of the respective
Hilbert pseudo-metrics. But if the diameter of C’ with respect to distc is bounded
by some M then we have an uniform contraction by some constant § = §(M) < 1,
ie., distc (x, y) < ddister(x, p).

It is clear that dist¢ (x, y) = 0 if and only if there exists ¢ > 0 such that y = 7x.
If we restrict the Hilbert pseudo-metric on a convex cone C to the space of rays
{rx 1t € Ry} C C we have the Hilbert metric, which is a complete Finsler metric.

collinear). If C = R% then we define distc (x, y) = maxy, ges 108

6.5. Uniform expansion and contraction. Recall that ?,(,1) 1s contained in A, X
®,, which is a product of two convex cones. In A, x ®,, we have the product
Hilbert pseudo-metric

dist((A, 7, 1), (A", 7w, ) = dista (A, 7), (A, 7)) + diste,, (z, 7).

Each product of rays {(aA, 7, b1) : a,b € Ry} C Ag x O intersects transversely
Tétl ina unique point. It follows that the product Hilbert pseudo-metric induces a
metric dist on ?;(,1). It is a complete Finsler metric.

Lemma 6.2. Given & € R, let g7: §+ — R be a functional defined by g™ (L) =
DY: gglﬁ, where gg > 0 forall B € A. Thenlog g™ (A) is 1-Lipschitz relative fo
the Hilbert metric.

Proof. Given (A, ), (A, ) € AL, we have

g"(A) 2BEpr Ag
= ———— < sup

— L= edistAﬂ(()l,n'),()u’,n))_
grA) D ggl’ﬁ 8 ?UE -

Thus log g™ (1) is 1-Lipschitz with respect to dista . O

Proof of Lemma 6.1. Let us first show that 7z is a uniformly expanding Markov
map (the underlying Finsler metric being the restriction of dista , , and the underlying
measure Leb being the induced Lebesgue measure). It is clear that E is a John
domain.
Condition (1) of Definition 2.2 1s easily verified, except for the definite contraction
of inverse branches. To %Eefk this property, we notice that an inverse branch can be
)

written as (A, ) = (m, :zr). Since y. is neat, we can write BJ’,“ — B;"* B;"O for
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some vg. Thus A can be written as (the restriction of) the composition of two maps
AL — AL h = hy o hg, where hg is weakly contracting and /.. is uniformly con-
tracting by precompactness of E in Az (which is a consequence of strong positivity
To check condition (2) of Definition 2.2, let 2(A, 77) be an inverse branch of Tz.
Let V = {v € 8§; : Y v, = 0} be the hyperplane tangent to Al at a point
(A, m) € AL. Since the coordinate 7 is fixed by & we can dismiss it. Thus the
simplified expression of 2 is h(A) = %. We will denote ¢p(B;-4) = || BJ Al =
Y
2w p(B))a.pArg, where (B})a g is the coefficient of By in the line ¢ and the column
B. So,
Br-v  Br-ia La(By-v),
¢(By-2) ¢(By-A) ¢(By-2)

So Dh(A) = P; o ¢(B; ‘A)7To B}, where By : V — BJ -V, ¢(B; - M)~ lis the
division by the scalar (B - A) on BJ -V and P: By -V — V is the projection on
V' along the direction By - A. The Jacobian of /1 at (A, ) is J o h(A) = det Dh(4),
S0,

Dh(A) v =

log J o h =logdet P — (d —2)logdet (B, - 1) + log det B

We want to prove that log J o & is Lipschitz relative to the Hilbert metric. We have
thatlog det By is constant and, by Lemma 6.2, log det ¢ (B, - 1) is 1-Lipschitz. Now
we have to verify what happens with log det P;. We have that

(n 1, B;( : )L)
W= o B )

where ng and 71 are unit vectors in §5 orthogonal to the hyperplanes V and B - V.
Indeed, the vector n and the vector B, -n; are collinear with the orthogonal projection
of (1,...,1) on §5. Note that no has no negative coefficients, so neither B, - ng and
By - ny have. Once again by Lemma 6.2, we have that each log({n;, B} - 4)) is
1-Lipschitz. Therefore, log J o h is d-Lipschitz with respect to dista_ .

To see that Tz 1s a hyperbolic skew-product over T, one checks the conditions
(1-4) of Definition 2.5. Condition (1) is obvious, and condition (4) follows from
precompactness of 2 in Az X O as before. Since Tz is a first return map, the

1 A

restriction of 71y to & is Tg-invariant. Its normalization is the probability measure

o~

v of condition (2). In order to check condition (3), it is convenient to trivialize Z to
a product (via the natural diffeomorphism E — Ex P®,,, where PV denotes the
projective space of V). Since ¥ has a smooth density with respect to the product of
the Lebesgue measure on the factors, condition (3) follows by the Leibniz rule. O

Our results give the finiteness of the measure and the integrability of the cocycle.
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Proposition 6.3. The space ZS;? has finite volume.

Proof. Consider the section 2. Notice that this section has positive measure and
almost every orbit return to 2. We have already mention the probability measure ¥
on &, which is the normalized restriction of n?gé) w0 2.

We wanl to compute [ log [|(B;)™" - x| dD.

-~
oo
=

A connected component of the domain of 75 which intersects the set {x €
rg(x) > log T'}is of the form (A, x ©,, } N ﬁ%) where y can not be written as ysy ye
with § = YaYuysys, M(B,, - qo) = D71T, where o = (1,..., 1), and D = D(ys)
1s some constant.

The projectionof 1| (Ayx@y )T onY 5%1) is absolutely continuous with a bounded
density, so

{x € (Ay x 0y, ) N ?5%) crg(x) > logT}
< Py, (y can not be written as s $y. and M(By - qo) > D™'T | x)

and the result follows by Proposition 5.2. O

6.0. Properties of the roof function. Recall H(7) = Q(x) - §;. As we have ob-
served, given a path y € I1(x), H () is invariant under the map B,. By Lemma 3.6,
if 7 € Op then —Q(;) -7 € Rf and by Corollary 3.13, ®5 is a non-empty set, SO
H(w)NR% # 8.

Lemma 6.4. Let w be an irreducible permutation and y € T1(R). The subspace
H{(m) has dimension greater than one.

Proof. Let A be a minimal double letter in the sense that A is a left double letter and
there is no double letter Z such that 7(Z) < 7 (A) or 7(i(Z)) < w(A). Let B be
a maximal double letter in the sense that B is a right double letter and there is no
double letter Z such that w(B) < 7 (Z) or w(B) < n(i(Z)).

We have

B 1= {)Le]Ré:)LA:lg-FZEg)@}

where €, = 01f « is simple, €, = —1 if « 1s left double letter and €, = 1 if a 1s
right double letter.

Given {eq tae the canonical basis of R%, we consider the basis {4 }ye )43 Of
3 obtained as follows: e, = e, if « is a simple letter, &, = ey + ey if o is a right
double letter and ¢, = ¢, —e, if  is a left double letter. We define the induced matrix
Q(m)|s, as the matrix with d — 1 columns equal to Q(7) - ey, with & € A\{A}.
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Case 1. Let C be a simple letter. Denote x¢ = Q(m)ac € {0,1,2} and y¢ =
Q(m)cp € {0, 1,2}. Thus the matrix £2(7r) has a submatrix of the form

0 2 Xc
-2 0 —yc
—x¢ yc¢ O

So, the induced matrix ©2(;r)|s,, has a submatrix of the form

2 Xc
9 —yC
—xc + yc 0

In this case the induced matrix € (s;)|s, has rank 2, exceptif x¢ = yc.

Case 11: Let D be a left double letter (the other case is analogous). Denote zp =
Qm)ap € {—2,—1,0,1,2}. Notice that 2(7)pp = 2. In this case, the matrix
() has a submatrix of the form

0 2 zZp
8 8 %[,
—ZD 2 0

therefore, the induced matrix €2(;r)|s,, has a submatrix of the form

2 24 zp
-2 -2
2—2zp 2

In this case the induced matrix ©(x)|s, has rank 2, exceptif zp = 0.

Suppose that if C is a simple letter of the permutation 7 then x¢ = y¢ and
if D is a double letter of the permutation 7 then zp = 0. Since 7 1s irreducible,
xc = yc¢ = 1. Thus =& has the form

A - - - - i(d % i(B) - - - B

If we apply the right or the left operation we obtain a reducible permutation.
So, there exists a simple letter C such that x¢ # yc¢ or there exists a double letter
D such that zp # 0. [

Recall that v = ) ()< €x = 2n(x)>n(x) €x 18 the orthogonal vector (0 S

Lemma 6.5. Let 7w be an irreducible permutation and y € TI(R). If vy € H(m),
then the subspace H(m) has dimension greater than twao.
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Proof. Let A and B be the leftmost and the rightmost letters of 7.
Since H () and v, are invariant under B, we can suppose that A is simple.
If B is simple, then s has the form

A - - i(B) - - % - i(Ad) - - B

We have that Q() - eq, Q(r) - ep and v, are linearly independent, since (vy)q4 =
(Urr)B = 0.

If 7(i(B)) < 7(i(A)) and B is double, we take a left double letter C, i.c., 7 has
the form

A - C - - i(Cy - % - i(B) - (A - - B
And in the case that (i (B)) > 7 (i(A)), 7 has the form
A - C - - i(Cy - % - - i(4) - i(B) - B

In these last two cases, we have Q() - eq, 2(m) - {ep + ec) and v, are linearly
independent, since (vz)4 = 0 and (vz)p = —(vr)c = L. O

Lemma 6.6. The roof function rg is good (in the sense of Definition 2.3).

Proof. Let ' C TI() be the set of all ¥ such that y is either ys, or a minimal path
of the form y.yo ¥y« not beginning by y. y.. Notice that I consists of positive paths.

The set # of inverse branches /2 of Tg is in bijection with I, since each inverse
BE A
branch is of the form 2(A, ) = (”B’;ihkn zr) for some y;, € T.
Yh

Leth € J€. Then rz (h(A, 7)) = log || B}, - A|. Since yy is positive, rg > log2,
which implies condition (1). By Lemma 6.2, rg (h(A, 7)) is 1-Lipschitz with respect
to dista ., so (2) follows.

Let us check condition (3). We identify the tangent space to E ata point (A, 7} €
EwithV ={A €8, : D Ay = 0}. Assume that we can write rg = v +¢oTg—¢
with ¢ C! and ¥ locally constant. Write ™ (A, ) = Z;‘;(l) re(TZ(A,7)). Then

D™ o h") = D¢ — D(¢ o h™), which can be rewritten as

1B}, )" - v " -
e = DA, ) v —D(@eoh")A, ) v, (A,m)eE,vel (19)
I(B,)" - A
If we define n
B B laiess L)
wl’l,h - n ’
(A, B} -(1,....1))
we replace (19) by

(vowpp) = DpA,m) - v—D(poh")YA,m)-v, (A,m)e B, vel
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We have that (A, w, ) = 1 forall A € §; and w, j are vectors with all coordinates
positive. By the Perron-Frobenius Theorem w, j converges to some wy, collinear
with the unique positive eigenvector of B,, (which also corresponds to the largest
eigenvalue). And wy = wop + tpvr, where wop € 8§7\{0} is the orthogonal
projection of wy, in §z and v is the orthogonal vector of §, which is invariant under
By, for all yy,.

Since DA™ — 0, we conclude that

(v,wp) = DA, m)-v, (A,m)eB,vel

Since (A, wg ) = 1, we have wy = wy. Thus wy, = wo + v, where wy €
S \{0}.

Recalling that H () is invariant under B, and intersects R%, it follows that
wy, € H(x) and Ry w, 5 is converging to R_ (Q() - 7).

Let W = Rwo & Rvy,. We have that W N H(r) # @ is closed and invariant
by B,,. By the previous two lemmas, there exists T € @, such that Q(w) - ¢ ¢ W.
But given such 7, we can construct paths y, such that B,, Q(Jr) - O, converges (O

R_ (Q(m)- r) as follows. We have already observed that Q is recurrent, so given
(A, 7.7) € B, we apply O~ until obtain (ACD, 7, 7-1) € B, We denote by y,
the path obtained previously, starting at (A1, 7, r( DY and ending at (A, 7, 7). We
follow the same procedure to obtain y, starting at (A", 7, 7= and ending at
(A, 7).

By definition of £, we have that such paths y, are strongly positive, so the
image of B} - ®,, is contracted, relatively to the Hilbert metric. Thus we have that
By, -Q(m)- O is converging to R_ (2(sr) - 7). Thus we have a contradiction. O

Theorem 6.7. The roof function rg has exponential tails.

Proof. Let m be the start of y.. The push-forward under radial projection of the
Lebesgue measure on A 7 4, onto Az NY g (1) yields a smooth measure v. Itisenough to
showthatv{x € E : rg(x) > logT} < CT‘5,f0rsomeC > 0,4 > 0. A connected
component of the domain of 7z that intersects the set {x € E : rz(x) > logT} is
of the form A, N Tg) where y can not be written as ysPye With § = yupu sy and
M(B, - qo) > C~'T, where o = (1,..., 1) and C is a constant depending on y,.
Thus

vix € B : rg(x) = 1og T}
< Py, (y can not be written as ysjye and M(By - go) = C ' T | 7).
The result follows from Proposition 5.2. 0

Using both the map 7% and the roof function rg we will define a flow T; on
the space A, = fx,v,8) 1 (x,v) € ch Ts(x,y)isdefined and 0 < 5 < rg(x)}.
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Since T is a hyperbolic skew-product (Lemma 6.1), and rz is a good roof function

(Lemma 6.6) with exponential tails (Theorem 6.7), f} is an excellent hyperbolic
semi-flow. By Theorem 2.7, we get exponential decay of correlations

o= [Fgetiav- [ Fav fzan
for C! functions £, &, that is

IC (. 8) < Ce ™ flleillEllers (20)

for some C > 0,0 > 0.

7. The Teichmiiller flow

7.1. Half-translation surfaces. Let S be a compact oriented surface of genus g >
0, let X be a finite non-empty subset of S, which we call the singular set. Let
I = {l,}vex (the multiplicity vector)be such that [, € {—1}UNand > [, = 4g—4.
We say that [, is the multiplicity of the singular point x. Consider a maximal atlas
A ={(Uy, p5: U; — V,  C)} of orientation preserving charts on S\ X such that
for all A1, A2 with Uz, N U;, # @ we have ¢A1¢;21 (z) = £z + constant, ie.,
coordinate changes are compositions of rotations by 180 and translations. We call
these coordinates the regular charts. We also assume that each singular point x has
an open neighborhood U which is isomorphic to the le“-folded cover of an open
neighborhood V C C of 0, that is, there exists a homeomorphism, called a singular
chart, ¢: U — 'V such that any branch of z +— ¢(z)?>+2/2 is aregular chart. Under
these conditions, we say that the atlas 2 defines a half-translation structure on (S, %)
with multiplicity vector /, and we call S a half-translation surface.

Since the change of coordinates preserves families of parallel lines in the plane,
we have a well-defined singular foliation %3 of S, for each direction # € PR? (the
projective space of R?). In particular, we have well-defined vertical and horizontal
directions. Notice that we can pullback the Euclidean metric in R? by the regular
charts to define a flat metric on S\ X. This flat metric does not extend smoothly to X
except at points with /, = 0. The other points of X are genuine conical singularities
with total angle 7 (I, + 2). The corresponding volume form on S\ X has finite total
mass.

Notice that from each x € X, there are I + 2 horizontal separatrices alternating
with [, +2 vertical separatrices emanating from x. A half-translation surface together
with the choice of some xy € X and of one of the horizontal separatrices X emanating
from xo 1s called a marked half-translation surface.
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7.2. Translation surfaces. If there exists a compatible atlas such that the coordinate
changes are just translations, then any maximal such atlas is said to define a trransilation
structure on (S, ¥) compatible with the half-translation structure, and we call S a
translation surface. A half-translation surface has thus either O or 2 compatible
translation structures. Locally, each half-translation structure is compatible with a
translation structure, but in general it is not true globally. Given a half-translation
surface S, we can associate a number € where ¢ = 1 or ¢ = —1 according to whether
the half-translation structure is, or is not, compatible with a translation structure (on
the other hand, obviously each translation structure 1s compatible with a unique half-
translation structure). Notice that if & = 1 then [, € 2N for every x € X (and thus
necessarily g > 1), but the converse is not generally true.

Given a translation surface S, each oriented direction # € S! determines a sin-
gular oriented foliation F3 on S. From every singularity thus emanate (I, + 2)/2
eastbound (respectively, northbound, westbound, southbound) oriented separatrices.
A translation surface together with the choice of some xy € X and of a eastbound
separatrix X emanating from xg 1s called a marked translation surface.

7.3. Translation surfaces with involution. Let S be a compact oriented surface
of genus g > 1, let by _be a finite non-empty subset of S,andlet /: S — S be an
ivolution preserving % and whose fixed points are contained in 2. A translation
structure with involution on (S, =, I) is a translation structure such that for every
regular chart ¢ of the translation structure, —¢ o [ is also a regular chart.

Notice that given (S, X, 7) we can consider the canonical projection p: S —
S = S/I. Denote & = %/1. We see that any translation structure with involution
on (S, X, I) induces by p a half-translation structure on (S, X), withe = —1 if S is
connected.

Conversely, given (.5, X} and a multiplicity vector [ such that there exists a half-
translation structure on (.S, X) with such multiplicity vector and ¢ = —1, there exists
aramified double covering p: (S, ) — (S, ) whichisunramified in S \E Indeed,
given such a half-translation structure, we can define S \E to be the set of pairs (z, &)
where z € S\X and « is an orientation of the horizontal direction through z (the
assumption that & = —1 guarantees that S is connected). It is then easy to define
the missing set ¥ necessary to compactify: each x € X with odd /,, giving rise to a
single point of % with multiplicity 2/, + 2 and each x € X with even [, giving rise to
a pair points of ¥ with multiplicity /. each one. To each half-translation surface we
can associate a combinatorial data 7, which is the multiplicity vector considered up to
labelling. The construction above gives rise to a translation surface S with singularity
set = and there is a natural involution defined, interchanging points (z, &) with fixed
zeS.

A translation surface with involution together with the choice of some % € %
and of one of the horizontal separatrices X emanating from ¥, to east is called a
marked translation surface with involution. We say that Xy is the start point of X. 1t
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is obvious that fixing %o and X we also fix (%) and 1(X).

Notice that when we do the double covering construction above we can do it in
such a way that p(X) = X and p(%o) = xo, i.e., the marked separatrix and its start
point are preserved.

As we will see in Section 8.2, we can obtain combinatorial and length data (A, 7, t)
(st 151 the Section 3.1) associated to a marked translation surface with involution
(S, %, .

7.4. Modulispaces. Let S be a surface with singular set > and genus g. To consider
the space of surfaces with fixed genus, singularity set, multiplicity vector and the
marked separatrix, we can define equivalence relations on those surfaces, obtaining
moduli spaces. Although moduli spaces are not manifolds, we can see them as
quotients of less restricted spaces, which have a complex affine manifold structure, by
the modular group of (S, X}, i.e., the group of orientation preserving diffeomorphisms
of S fixing ¥ modulo those 1sotopic to the identity. Thus, moduli spaces are complex
affine orbifolds.

7.4.1. Moduli space of marked translation surfaces. Given g > 1, a function
k: N — 2N with finite support and ) ;. ix(i) = 4g — 4, and an integer j > 0
with x(j) > 0, we let MH (g, K, j) to be the moduli space of marked translation
surfaces (S, X, xp, X) with genus g, #{x € £ : I, =i} = «(@)and [, = J.
Thus two surfaces (S, X, xp, X) and (S', X', x{, X”) are equivalent if there exists
a homeomorphism ¢: (S, X, x9, X) — (57, X', x{, X') preserving the translation
structure, the marked point and the given preferred separatrix.

An alternative way to view MJH (g, «, j) is as follows. Given a fixed surface
S, with finite singular set X, a multiplicity vector / satisfying > [; = 2g — 2, a
fixed point xo € X and some horizontal separatrix X starting from xo going east,
consider the space T H (S, X, xg, X) of all marked translation surfaces modulo the
following equivalence relation: two surfaces (S, X,x¢, X) and (S, ¥/, x{, X') are
equivalent if there exists a homeomorphism ¢: (S, X, x5, X) — (S, ¥, x}, X')
isotopic to the identity relatively to X, which preserves the translation structure. The
space MJ€ (g, «, j)is recovered in this way by taking the quotient by an appropriate
modular group, i.e., the group of orientation preserving diffeomorphisms of S, fixing
22 modulo those isotopic to the identity. The advantage of seeing the moduli space as a
quotient like this, is that it inherits a structure of complex affine orbifold, since charts
in TH(S,%,xy, X} are complex affine. Indeed, given a path y € C°([0,T], S),
we can lift it in C. Since we have the translation structure, we can do this lifting
everywhere. Thus, we can obtain a linear map H,(S, X; Z) — C, which we can
see as an element of the relative cohomology group H'(S, X;C). This map is a
local homeomorphism, thus it is a local coordinate chart. So 7 (S, X, xp, X ) has
a complex affine manifold structure.
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The Lebesgue measure on space H (S, X: C) (normalized so that the integer lat-
tice H'(S,X:Z) @ i H'(S, X: Z) has covolume one) can be pulled back via these
local coordinates, and we obtain a smooth measure on the space 7 H (S, X, xp, X). In
charts, the modular group acts (discretely and properly discontinuously) by complex
affine maps preserving the integer lattice (and hence the Lebesgue measure). This
exhibits MH (g, «, j) as a complex affine orbifold, with a canonical absolutely con-
tinuous measure vz . We denote by MH () the moduli space of marked translation
surfaces with area one and by " M 40 the measure induced by v 5 on MJFH 1,

The moduli spaces MJ are also called strata and they can be disconnected.
Kontsevich and Zorich (JKZ]) classified these connected components and they proved
that there are at most three for each strata.

7.4.2. Moduli space of marked translation surfaces with involution. Given g >
1, functions «,7n: N — N with finite support and ) .., ik{i) = 4g — 4, and an
integer j > 0 with #(j) > 0, we let MH I(g.%,7n,]) to be the moduli space
of marked translation surfaces with involution (5.%,1,%0,X) with genus g, an
involution /: S — S preserving 5. and whose fixed points are contained in X, #{x €
Sl =i} = &(), lxo = #x and#{x e ¥ I =2iand I(x) = x} = 5(2i).
Thus two surfaces (S, Z, 1, %, X) and (S, 2/, I’ 3?6, X’ are equivalent if there
exists a homeomorphism ¢: (S, 2, I, %, X) — (5, %/, 1, X, X') preserving the
translation structure and preserving the involution, in the sense that ¢ o I = I’ o ¢b.
The marked point and the chosen separatrix are also preserved.

Analogous to the previous case, we will consider the moduli space of marked
translation surfaces with involution M# I(g,%,7, J) as a larger space, which has
an affine complex manifold structure, quotiented by a modular group. Consider a
fixed translation surface S, an associated involution / : S — S, afinite singular set
% invariant by I, with a multiplicity vector [ satisfying }_/; = 4g — 4, together
with some fixed Xy € ¥ and one fixed horizontal separatrix X emanating from X.
Let THI(S, X, 1,5, X)bethesetof (S, X, 1,5y, X) modulo homeomorphism ¢
1sotopic to the identity relatively to 2, which preserves the translation structure with
involution, in particular g o I = [ o ¢.

Let 7: S — § be the involution as defined before. Consider the induced involu-
tion I*: HY(S,X;C) — HY(S, E;C) on the relative cohomology group. We can
decompose the cohomology group into a directsum H(S, £;C) = H} (S, Z: C) @
HY(S,X:C), where H} (S.%;C)and HX(S, Z:; C) are, respectively, the invariant
and the anti-invariant subspaces of 7*. Observe that, since the involution changes
the orientation of regular charts, the element of H'! (§,%:C) which represents S is
in H1(S,3;C) and a small neighborhood of it gives a local coordinate chart of a
neighborhood of S in TH I(S, E, 1, %y, X). Notice that we are considering that the
translation surface with involution S can have some regular points in £. But if we
consider the set & C X such that & has no regular points, we have that the canonical
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homomorphism H1(S, £;C) - HL(S, ; C) induced by the inclusion £ < ¥ is
an isomorphism. So we can choose 3 or T to define the coordinate charts (see [MZ)).
Since the modular group acts discretely and properly discontinuously, we obtain a
complex affine structure of orbifold to MH I(Z,%,n, j). The space H'(S ~§ C)
has a smooth standard measure which we can transport to 7 # I(S, %, I, Xo, X) ob-
taining a smooth measure in this space. Hence, the space M I inherits a smooth
measure 44 ; and the moduli space of surfaces with area one MH I (1) inherits the

, 1
induced measure ,LLSW)R T

7.4.3. Moduli space of marked half-translation surfaces. Giveng > 0, afunction
k: NU{—1} - N with finite support and > ,._,ik(i) =4g—4,¢ € {—1,1},and
an integer j > —1 with«x(j) > 0, welet MH Q(g, x, ¢, J } 1o be the moduli space of
marked half-translation surfaces (S, 2, xo, X) with genus g, #{x e Z: [, =1} =
(i) and [y, = j. Two surfaces (S, X, xo, X) and (S, &', x{;, X') are equivalent if
there exists a homeomorphism ¢: (S, X, x¢, X) — (8/, ¥, x{, X') preserving the
half-translation structure, the marked point and the fixed separatrix.

If ¢ = 1, the half-translation structure is compatible with two translation struc-
tures (corresponding to both possible orientations) and there exists a natural map
MH(g,k,j) > MIHIHQ(g,x, 1, j) which forgets the polarization. This map is a
ramified double cover of orbifolds.

Given a half-translation structure which is not compatible with a translation struc-
ture, we will associate a translation structure using the (ramified) double covering con-
struction. Definek: NU{—1} - Nbyk(2i—1) =0,k(4i) = 2K(4i)—|—l€(2i— 1),
K(4l +2) = 2k(4i + 2) Letg =443 ,. ik(i)=2g—1+3 Zz>0 K(2i — 1),
j=jitjisevenor j = 2j + 21if j is odd. Thus, we obtain a canonical injec-
tive map MHQ(g,x,—1, ) — MH(Z,&, j). In fact, by construction, the image
of this map is MH I(3.%, 7, ), where the map 7: N U {—1} — N is such that
n(2i) =#{x € T: [, = 2i and I(x) = x} and 7(2i + 1) = 0.

We also can define the quotlent map MJf’I(g, B.n.j) —> MIHQ(g.x,—1, ),
such that, to each structure (S >, 1 . X0, X ) associates the quotient structure
(S, 2, x9,X) = (S/I S/1.%,/1.X/1). Notice that this map is well-defined and
it is injective, since S is connected. Thus, we have a bijection between marked
half-translation surfaces which are not translation surfaces and connected marked
translation surfaces with involution.

As in the case of translation surfaces, the moduli spaces of marked half-translation
surfaces are called strata. Lanneau classified the connected components of each strata,
which are at most two ([L1], [L3]).

7.5. Teichmiiller flow. The group SL.(2, R) acts on M H I (or more generally, on
the space of marked translation surfaces with involution) by postcomposition in the
charts. This action preserves the hypersurface MH IV and measures p 4z on
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M T and (), ; on MIH IO,
The Teichmiiller flow is the particular action of the diagonal subgroup 7%, :=

(‘30[ 69,) and it is measure-preserving.

Notice that, the Veech flow V¥ introduced in Section 3.3.2 lifts the Teichmiiller
flow. This is readily seen by its expression as a quotient of the flow 7V which is
expressly given by the diagonal flow.

Recall that the Veech flow VF preserves the standard Lebesgue measure on Og.

Theorem 7.1 (Masur, Veech). The Teichmuiiller flow is mixing on each connected
component of each stratum of the moduli space M H QWM. wim respect to the finite
equivalent Lebesgue measure, ,u(l).

Theorem 1.2, in the setting of translation surfaces, was proved by Avila, Gouézel
and Yoccoz [AGY]. So, we will restrict the proof just to the case of half-translation
surfaces which are not translation surfaces. Thus, we can prove it, just consider-
ing marked translation surfaces with involution. In this setting, the Theorem 1.2 1s
equivalent to:

Theorem 7.2. The Teichmiiller flow is exponential mixing on each connected compo-
nent of the moduli space MFH 1 W ypirh respect to the measure MS:{)% rforobservables

in the Ramer class.

8. From the model to the Teichmiiller flow

8.1. Zippered rectangles construction. Consider an irreducible permutation 7 €

R and length data A € §;, 7 € Oy and /i € ]R{% defined by i = —Q(7) - 7.
Notice that i = (hy)ye is such that iy > Ofor all @ € A. Let (/) and a(r)

be the leftmost and the rightmost letters of r, i.e., mw(a(l)) = 1 = 7(i(a(r))) and
a(a(r)) =2d + 1 = 7@ (x())).
Define the following sets:

B (a) = {BeA: nla) <a(f) <n(x) ifl <m(a) < nw(x),
(Be: nm(x) <n(B) < m(@) if m(x) < w(e) <2d + 1
B (a) = BeA mle) <n(p) <m(x)} ifl<m(e) <w(x),
" (Be: n(x)<a(f)<n(@) ifw(x) <) <2d+ 1;
(Be: 7(a) <m(p) <7H) ifl < 7)< 7(%),
Bz(a) =

(Beh: 7(x) <7B) < 7)) if7H)<m(@)<2d+ 1:
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B (a) = {(BeA: i) <m(B) <m(x)} ifl<nm(a)<m(x),
g {(BeA: mx)<a(f)<m(e)} ifm(x)<m(a)<2d+1.

For each ¢ € 4 consider the rectangles with horizontal sides A, and vertical sides
ho defined by

= (X A X Ap) <0kl

BEB () BeBL ()

(= X d- X rs)xD0.hal

BeBs () BEBr ()

= (X he Y ag)xlheo]
(-

BeBr(a)  BeBL(w)

3o Y )Lﬁ)x[—ha,O].

BeBz () BeBz(a)

Rll
Rbl

If a ¢ {a(l), a(r)}, also consider the vertical segments:

sr={ Y abxfo Y wl

BeBL () BeBL ()
sl={- 3 mfx[o- ¥ u)
BeB () BeB ()
ser={ 2 mfx[ X o]
BeBL (@) BeBL (@)
sg;al:{_ > oalx[- X 0]
BeBL(w) BeBL(w)

If Ly, = Zﬂ(*)<ﬂ(ﬁ)§n(a(r)) TE > 0 we define

T bl
Satr) = "6y = { 2. lg} x [0, L],
a(x)<m(f)<m(a(r))
Sr l Sb I @
a) — Pilad) T
If L, < 0 we define
el b,r
Sa(l) Sz(a(l)) { Z Ag} x [0, Lg],
ala())=<m(Bf)<n(x)

b _ ¢t _
Sita(r) = Sa) = 8-
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Otherwise, if L, = 0 we take

0l obl
Sty = Sitatrn = { - > Aﬁ} 105,
)
t,r  _ obyr .
Sio =Shwan =1 2 hajxi0h
m(x)<m(B)=<m(a(r))

Notice that, for cach & € s, the labels [ and r in X&' and X5, where € € {r, b}
and X € {R, S}, are just to make clear when 7 (v) < 7 (%) or 7(*) < m(«). When
it does not lead to confusion, we will omit / and r.

Example 8.1. Figure 1 represents a zippered rectangle associated to

=D i(B) i(D) C i(C) % A i(4) B.

Figure 1. Zippered rectangle.

Define the set

Rono) = U U (R; U S;).

acAec{l,r}

We will identify, by translation, the rectangle R, with R’ for all o € 4.

If L, > 0 we identify S/ ) with the vertical segment S; of length L, at the
bottom of the right side of the rectangle Rfl ) if o(7) is the winner of 7 or at the top
of the right side of the rectangle R} @y i a(r) is the loser of 7. Symmetrically, we
identify 57,y with —S.
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If L, < 0 we identify S”( ) with the vertical segment .S, of length —L; at the
bottom of the right side of the rectangle R? () 1f a(r) is the winner of 7 or at the top
of the right side of the rectangle R’ @y o (r) is the loser of 7. Symmetrically, we
identify Sy, with —S5.

Let S*(A, 7, ) be the topological space obtained from R, ) by these identifi-

cations. Thus, S*(A, , 7) inherits from R? = C the structure of a Riemann surface
and also a holomorphic 1-form @ (given by dz).

For each o € A recall {, = A, + i 7,. We call vertices the extreme points at the
top of segments S/, and the extremes at the bottom of segments S(f Jforalla € A.
So, the vertices are points with following coordinates:

> —tg if m(e) < w(%),
Et _ Jr()=n(B)<m(x)
o

> tg if m(x) < w(@);
m(x)<m(f)<m(a)

> —tp it w(a) < T(%),
gb a{)=<m(B)<m(x)

« > tg if T(x) < T(a).
T(+)<7(B)<T ()

Now we will define a relation to identify vertices between them. Define the set

of all pairs (o, Y) with @ € A U {x} and ¥ € {L, R}. Consider the following
identification:

(e ) + 1), L) ~ (+,R) ~ (x(@ ' (¥) + 1). L),
(a7 (#) = 1), R) ~ (5, L) ~ (@(7"1 (%) = 1), R),

(a(r), R) ~ (i(a()), R),
(a(l), L) ~ (i(a(r)), L).

We say that these pairs are irregular and all other pairs we call regular. We also
identify

(a(r), R) ~ (B, L) ifn(e) +1=n(p),
(a(r). R) ~(B. L) if7(e)+1=m(h).

We can extend ~ to an equivalence relation in the set of pairs (o, Y'). This
equivalence relation describes how half-planes are identified when one winds around
an end of S*(A. 7, 7). Let & be the set of equivalence classes relative to the relation
~. Thus to each ¢ € ¥ we have one, and only one, end v, of S = 8,7 1).
When it does not lead to confusion we will use S to mean S{(A, 7, 7). From the local
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structure around v., the compactification

So.m 0 =50 ou (o)

=

is a compact Riemann surface with marked points {v.}. The 1-form @ extends to a
holomorphic 1-form on S (A, 7, ) such that at the points v, we have marked zeroes
of angle 2k, where 2k, is the cardinality of the equivalence class of c.

Given (x,0) on the bottom side of the rectangle R!,, we can transport this point
vertically and when we reach the top side, which is the point (x, iy) we identify it
with the point (x + @, 0), where @ = () - A, in the top side of R2. So, we have
the vertical flow well-defined almost everywhere (except in the points which reach
singularities in finite time). Itis clear that the return time of points in the rectangle R’
is equal to /i, and the area of the surface S, m1)is AA, 7, 1) = —2(X, Q) - 7).

When we constructed the surface S, we have an implicit relation between the
horizontal coordinates A, and A;(,) and the vertical coordinates 7, and 7, (o). Indeed,
we have an involution 7 : § — §, with a fixed point at the origin, defined as follows.
Given any point x € S there exists o € s such that x € R, or x € S%, U S2. Thus
—x € R, or —x € S5 U S/ . respectively. So /(x) is identified with —x.

Let S(A, 7, 7) be the surface S (X, 7, ) quotiented by the involution / and let
to be the set X quotiented by the involution 7. We can see that this identification
by involution implies that, for each « € A, the rectangle R’, is identified with the
rectangle R! () DY @ translation composed with a rotation of 180 degrees. So, the
top side (resp. the bottom side) of the rectangle R/, is identified with the bottom side
(resp. the top side) of the rectangle R! @)

8.2. Coordinates. Let (S, X, 1, %, X) be a marked translation surface with an in-
volution /. The marked separatrix X starts at %o and it goes to east. A segment o
adjacent to Xy contained in X 1is called admissible if the vertical geodesic ¥ pass-
ing through the right endpoint Z of ¢ meets a singularity in the positive or in the
negative direction before returning to ¢ U [(o). Symmetrically, if o is an admissi-
ble segment then /(o) starting at /(Xy) going west and ending at /(Z) (which has
a vertical geodesic meeting a singularity in the negative or in the positive direction
before returning to o U I (o)), also is an admissible segment if we consider the marked
separatrix /(X) instead of considering X .

We call a separatrix incoming if its natural orientation points towards the associated
singularity and we call it ourgoing otherwise. Let ot be the set of points of first
intersection of incoming vertical separatrices with o U I (o). Analogously, let 6~ be
the set of points of first intersection of outgoing vertical separatrices with o U (o).
Notice that Xy and I(X,) are in both sets o and o~and if Y is incoming (resp.
outgoing), then Z € o (resp. Z € o~). We extend the definition of 0 and o~ in
order to both Z and I(Z) bein the sets 6+ and o~
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Notice that p € o~ if and only if I(p) € o™, for all p € o~. Thus we will
consider just the set o™ which determines the set o~ by involution.

Let |[A] be the length of o, which also coincides with length of I(c). Let
¢r: [0, |A]] = S and ¢y : [—|A],0] — S be the arc-length parametrizations of ¢
and [ (o), respectively, such that ¢, (0) = X and ¢; (0) = 1(Xo).

We can write

ot :{1(2) :pi_l e > pi_] > P(—)i_— :[(720)}

UlZo=pl <pf < <p’ =2

where < and > refer to the natural orientation on o and /(o'), respectively.
Therefore, we have numbers

_|/l|:ai_l<-.-<a—_i_1<d(—)i;:O:a;_+<aii_<...<a;":|l|

such that ¢, (p;") = a, forall j € {1 ..., =1, 1...r}, ¢ (py) = a5 = Oand

Cbr(p(—)tr) = a(—)tr =0.

Letaj =aj, = ag anddefined; = [I;| = a —a for—I < j <r—1. Let
7; be the length of the vertical segment from the horizontal section to the singularity
corresponding to the point p;r. Notice that 7p = 0.

It is possible to verify that the first return map to the cross-section o U I (o) is well-

defined except at the points p;r. Moreover the first return time is constant on each

open interval (a;.r, a;Zr D)- So, we can consider the interval exchange transformation
with involution s associated to the cross-section o U (o) where the points defined
above are the points of discontinuity.

Let h; be the first return time of the points in the interval (a;-1,a;). We can
define the zippered rectangle which represents (S, ¥, I, %9, X) by

ZR()L,JT, ‘L’,h) = U(Clj_l,&lj) X [0, h]]
J

Lemma 8.2. If wo admissible segments o and o with the same left extreme point
Xo are such that 6 C o, then the corresponding zippered rectangles (A, m, T, h) and

()1, T, T, i;) satisfy
(A, 7, %) = Q”()L,JT, 7) for somen € N.

Proof. Let o and o be admissible segments and let the respective zippered rectangles
representations ZR(A, w, ., h) and ZR (A, 7, % h).

Consider a sequence of maximal admissible segments o’ ™ strictly contained in
o' such that ¢! = . Let z; be the right endpoint of ¢*. The right endpoint z5 of
o? corresponds to a discontinuity point of the first return map of the vertical flow

to the section o! and there is no other discontinuity point between z, and z;. By

i+1
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maximality, we conclude that, up to relabeling, Q()L 7, 1) is the representation of
such first return map. We follow this process until obtain ™ = ¢ for some n € N.
For such n we have Q”()L 7, 1) = (A, 7, 7). O

Corollary 8.3. Let (§ 31, X0, X ) be a marked translation surface with involution
and ZR(A, 7, T, h) and ZR (A, 7w, T, h) be two zippered rectangle representations of
the surface. Then there exists n € Z such that (A, 7,7) = Q™(A, 7, 1).

Proof. 1et o and & be admissible segments of ZR(A,x, 7, h) and ZR(i, T, T, E),
respectively. By definition, the initial points of ¢ and ¢ are the same Xo. Suppose,
without loss of generality, that 6 C o. B

By the previous lemma there exists » € N such that (A, 7,7) = Q”(A, 7T,7).
Thus, the result follows. O

Given a marked translation surface with involution (S, =, I, %, X) with zippered
rectangle representation ZR(A, , 7, /), we can cut and paste it appropriately until
we obtain a surface (57, &', I’, ¥, X’) which representation in zippered rectangles is
an iterated by Rauzy induction with involution of the first marked translation surface
with involution. Since these operations preserve the relation between parallel sides,
then S and S” are isomorphic and the marked separatrix is mapped to one another.
Moreover if we have a marked translation surface with involution (51,21, 11, %1, X1)
which is near (S, X, I, X, X), by the continuity of the marked separatrix and of
the singularities, we will obtain, up to relabel, a zippered rectangle construction
ZR(A1, 7,11, h1) near ZR(A, 7,1, k). So, the zippered rectangle construction,
gives a system of local coordinates in each stratum of the moduli space.

Using the zippered rectangles construction, we obtain a finite covering ZR,
of a stratum of the moduli space of marked translation surfaces with mvolution,
MHI(Z, %, 7, j). Under the condition (A,kh) = 1, we get the space of zippered
rectangles of area one covering the space MH IV(g, %, 7, j). We have a bijection
between Rauzy classes with involution and a connected component of a stratum of
the moduli space of translation surfaces with involution (see [BL]). Thus we have a
well-defined map proj: O — €, where € = C(R) is a connected component of
MHI(Z, %, 7, j)and projo Q = proj. The fibers of this map are almost everywhere
finite (with constant cardinality). The projection of the standard Lebesgue measure
on Ug is (up to scaling) the standard volume form on €.

The subset Ug) = proj 1(€W) of surfaces with area one is invariant by the
Veech flow. So, the restriction 77V, (x): 6;) — Ug) leaves invariant the volume
form that projects, up to scaling, to the invariant volume form on €D It was proved
by Veech that this volume form is finite using the lift measure on ZSE%).

8.2.1. Homeology and cohomology. For cach ¢ € 4 consider the curve ¢, which
is a path in R x 7 joining & — ¢y to &, if w(a) > 7 (%) or joining &, to &, + ¢y if
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m(a) < w(x). Note that I(cy) = —Ci(a).

Consider the relative homology group H1(S, ¥ Z) of the surface S relative to
the finite set of singularities 3. We have a decomposition of the relative homol-
ogy group into an invariant subgroup H;" (S, X:Z) and an anti-invariant subgroup
H (S, T: 7)), with respect to the involution 7. Following Masur and Zorich ([MZ]),
we can choose a basis in H{ (S, T; Z) which has dimension d — 1, where d is the
number of classes of A'. The elements of the basis will be lifts of a collection of
saddle connections on S, where S is the surface S quotiented by involution.

Analogously, the first (de Rham) cohomology group H ! (5,%:Q),is decomposed
into an invariant subspace H }r (5, ¥; C) and an anti-invariant subspace H1(S, £; C),
under the induced involution /*: H(S, E:C) — H(S,¥;C) Notice that [»] is
anti-invariant under the induced involution, so [w] € H1(S, X, C) and we also have:

szg

In Section 7.4.2 we have observed that 5! (§ L C) yields local coordinates of an
element of a stratum of the moduli space of translation surfaces with involution. So if
we consider the set of {, = Ay +ity suchthatA, v € §; we obtain coordinates which
describe S (A, 77, 7). And as we have seen in Section 8.2, for any other pair (5, ')
in a neighborhood of (S, @) we can find coordinates (A', 7/, 7'} of (', »’), and so
we can define the vectors ¢, as in Section 8.1. For more detalls in the construction
of coordinates see [Ve3].

8.3. Teichmiiller flow is exponential mixing. In Section 7.5 we have seen the
relation between the Teichmiiller flow and the Veech flow, which is naturally identified

with the first return map of the renormalization operator to the section ?g ),

We will identify ?5%1) xR with a connected component €V by the map P : f;%) X
R — €W definedby P(z,s) = T F s (proj(z)), where z = (A, 7, ) and proj: Ag —
€ 1s the natural projection.

Lemma 8.4. Let f: €N — R be a C' compactly supported function and let § > 0
be as in (20). There exists €9 > 0 and C > 0 such that for every t > 0, there
exists a C! function f©: Ar — R, such that || f o P — fO |20,y < Ce™" and

||f(t)||cl(3r) < Ce¥

Proof. Letdy > 0be small and let ¥, C f&r be the union of connected components
of A, which contain points (A, 7, 7,s) with s > §pt. Let f(’f) = 0in Y; and
f© = f o P inthe complement. The estimate || f o P — f©||p2¢,y < Ce™" is

I'The complex dimension of the moduli space of half-translation surfaces of genus g with ¢ singularities is
2¢ +o—2andd =2g +0—1.
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then clear since | f o P — f | co < || f||co, while the support of f o P — £ has
exponentially small v measure (since the roof function has exponential tails).

For the other estimate, it is enough to show that if (z,s5) € A, and P(z,s)
belongs to any fixed compact set K € €W then P is locally Lipschitz near (z, s),
with constant bounded by C(K)e€®¥  Here we fix some arbitrary Finsler metric
in € (the precise choice is irrelevant since K is compact). This result is obvious
if we impose some bound on s, say 0 < s < 1, since P is smooth. If s > O
is such that s < s < sg + 1, notice that for (z’, s") in a neighborhood of (z, s),
P(z',s') is obtained from P(z,s’ — so) by applying the Teichmiiller flow for time
so. Thus, it is enough to show that if x and 7" F 4, (x) belong to some fixed compact
set of € then 77 F so 18 locally C ¢C% Lipschitz in a neighborhood of x. This is a
well known estimate, for instance, we can define a Finsler metric on €™ such that
T F 5, is globally Lipschitz with Lipschitz constant ¢2% (see [AGY], §2.2.2, for the
construction of a metric in the whole strata of squares, the Finsler metric we need
here being just the restriction to the substrata). O

Lemma 8.5. If f: €W — R is C! and compactly supported with | fdven) = 0
then there exist C > 0, € > 0 such that fort > 0,

ff (foT Fy)dveay < Ce™ . (21)

Proof. We can estimate (21) with exponentially small error by comparison with the
correlations | f & f@oT,dv—(f f®dv)?, where @ is provided by the previous
lemma. Those decays exponentially by (20). O

Finally, we are in a position to prove the main theorem:

Proof of Theorem 1.2. 1Let H be the Hilbert space of SO(2, R) invariant L2 (ve))
functions with zero mean. As shown in Appendix B of [AGY], exponential decay
of correlations for the Ratner class follows from the existence of a dense set of f
in f such that (21) decays exponentially fast. Since compactly supported smooth
functions are dense in A, the result follows. O

References

[AF] A. Avila and G. Forni, Weak mixing for interval exchange transformations and trans-
lation flows. Ann. of Math. 165 (2007), 637-664,. Zbl 1136.37003 MR 2299743

[AGY] A. Avila, S. Gouezel, and J.-C. Yoccoz, Exponential mixing for the Teichmiiller flow.
Inst. Hautes Etudes Sci. Publ. Math. 104 (2006), 143-211.Zb1 05117096 MR 2264836

[AV] A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich
conjecture. Acta Math. 198 (2007), 1-56. Zbl 1143.37001 MR 2316268



Vol. 87 (2012) Exponential mixing for the Teichmiiller flow 637

[BV]

[B]

[BL]

[D]

[F]

[KZ]

[L1]

[L3]

[MMY]

[M]

[MZ]

[Ra]

[R]

[Vel]

[Ve2]

[Ve3]

[Ved]

[Z1]

V. Baladi and B. Vallée, Exponential decay of correlations for surface semi-flows
without finite Markov partitions. Proc. Amer. Math. Soc. 133 (20053), no. 3, 865-874.
Zbl 1055.37027 MR 2113938

C. Boissy, Degenerations of quadratic differentials on CP1. Geom. Topol. 12 (2008),
no. 3, 1345-1386. Zbl 1146.30020 MR 2421130

C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for
quadratic differentials. Ergodic Theory Dynam. Systems 29 (2009), no. 3, 767-816.
Zbl 1195.37030 MR 2505317

D. Dolgopyat, On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998),
no. 2, 357-390. Zbl 0911.58029 MR 1626749

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher
genus. Ann. of Math. 155 (2002), 1-103. Zbl 1034.37003 MR 1888794

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of
Abelian differentials with prescribed singularities. Invent. Math. 153 (2003), 631-678.
Zbl 1087.32010 MR 2000471

E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differ-
entials with prescribed singularities. Comment. Math. Helv. 79 (2004), 471-501.
7Zbl 1054.32007 MR 2081723

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic
differentials. Ann. Sci. Fe. Norm. Supér. 41 (2008), 1-56. Zbl 1161.30033 MR 2423309

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth type inter-
val exchange transformations. J. Amer. Math. Soc. 18 (2005),823-872.7bl 1112.37002
MR 2163864

H. Masur, Interval exchange transformations and measured foliations. Ann. of Math.
115 (1982), 169-200. Zbl 0497.28012 MR 0644018

H. Masur and A. Zorich, Multiple saddle connections on flat surfaces and the principal
boundary of the moduli spaces of quadratic differentials. Geom. Funct. Anal. 18 (2008),
919-987. Zbl 1169.30017 MR 2439000

M. Ratner, The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dy-
nam. Systems 7 (1987), no. 2, 267-288. Zbl 0623.22008 MR 0896798

G. Rauzy, Echanges d’intervalles et transformations induites. Acta Arith. 34 (1979),
315-328. 7Zbl 0414.28018 MR 0543205

W. Veech, Interval exchange transformations. J. Analyse Math. 33 (1978), 222-272.
Zbl 0455.28006 MR 0516048

W. Veech, Gauss measures for transformations on the space of interval exchange maps.
Ann. of Math. 115 (1982), 201-242. 7bl 0486.28014 MR 0644019

W. Veech, The Teichmiiller geodesic flow. Ann. of Math. 124 (1986), 441-530.
Zbl 0658.32016 MR 0866707

W. Veech, Moduli spaces of quadratic ditferentials. J. Analyse Marh. 55 (1990),
117-170. Zbl 0722.30032 MR 1094714

A. Zorich, Asymptotic flag of an orientable measured foliation on a surface. In Geo-
metric study of foliations (Tokyo, 1993), World Scientific Publishing, River Edge, NJ,
1994, 479-498. MR 1363744



638 A. Avila and M. J. Resende CMH

[Z2] A. Zorich, Finite Gauss measure on the space of interval exchange transforma-
tions. Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 325-370.
Zbl 0853.28007 MR 1393518

[73] A. Zorich, Deviation for interval exchange transformations. Ergodic Theory Dynam.
Systems 17 (1997), 1477-1499. Zbl 0958.37002 MR 1488330

Received August 8, 2009

Artur Avila, Laboratoire de Probabilités et Modeles aléatoires. Université Pierre et Marie
Curie, Boite courrier 188, 75252 Paris Cedex 05, France; current address: IMPA, Estrada
D. Castorina 110, Jardim Boténico, 22460-320 Rio de Janeiro, Brazil

E-mail: artur@math.sunysb.edu
Maria Jodo Resende, IMPA, Estrada D. Castorina 110, Jardim Botanico, 22460-320 Rio de
Janeiro, Brazil; current address: Universidade Federal Fluminense, Instituto de Matematica

e Estatistica, Departamento de Matematica Aplicada, Rua Mdrio Santos Braga, S/N, Campus
do Valonguinho CEP 24020-140, Nitersi, RJ, Brazil

E-mail: mjoaor @impa.br



	Exponential mixing for the Teichmüller flow in the space of quadratic differentials

