
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 87 (2012)

Artikel: Higher arithmetic Chow groups

Autor: Burgos Gil, José Ignacio / Feliu, Elisenda

DOI: https://doi.org/10.5169/seals-323255

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-323255
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 87 2012), 521–587
DOI 10.4171/CMH/262

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Higher arithmetic Chow groups

José Ignacio Burgos Gil and Elisenda Feliu

Abstract. We give a new construction of higher arithmetic Chow groups for quasi-projective
arithmetic varieties over a field. Our definition agrees with the higher arithmetic Chow groups
defined by Goncharov for projective arithmetic varieties over a field. These groups are the
analogue, in the Arakelov context, of the higher algebraic Chow groups defined by Bloch.
For projective varieties the degree zero group agrees with the arithmetic Chow groups defined
by Gillet and Soulé, and in general with the arithmetic Chow groups of Burgos. Our new
construction is shown to be a contravariant functor and is endowed with a product structure,
which is commutative and associative.

Mathematics Subject Classification 2010). 14G40, 14C15, 14F43.

Keywords. Arakelov geometry, higher Chow groups, Beilinson regulator, intersection theory,
Deligne cohomology.

Introduction

LetX be an arithmetic variety, i.e. a regular scheme which is flat and quasi-projective
over an arithmetic ring. In [14], Gillet and Soulé defined the arithmetic Chow groups
of X, denoted by

c
CHp.X/, whose elements are classes of pairs Z; gZ/, with Z a

codimension p subvariety of X and gZ a Green current for Z. Later, in [5], the
first author gave an alternative definition for the arithmetic Chow groups, involving
the Deligne complex of differential forms with logarithmic singularities along infinity,

Dlog.X;p/, that computes real Deligne–Beilinson cohomology, HD X; R.p//.
When X is proper, the two definitions are related by a natural isomorphism that takes

into account the different normalization of both definitions. In this paper, we follow
the latter definition.

It is shown in [5] that the following properties are satisfied by

c
CHp.X/:

The groups

c
CHp.X/ fit into an exact sequence:

CHp 1;p X/ D2p 1
log X; p/= im dD

a

c
CHp X/ CHp X/ 0; 1)

This work was partially supportedby theprojects MTM2006-14234-C02-01andMTM2009-14163-C02-01.
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where CHp 1;p X/ is the term Ep 1; p
2 X/ of the Quillen spectral sequence

see [23], §7) and is the Beilinson regulator.

There is a pairing

c
CHp X/

c
CHq X/

c
CHpCq X/Q

turning
Lp 0

c
CHp.X/Q into a commutative graded unitary Q-algebra.

If f W X Y is a morphism, there exists a pull-back morphism

f W

c
CHp Y /

c
CHp X/:

Assume that X is proper and defined over an arithmetic field. Then the arithmetic
Chow groups have been extended to higher degrees by Goncharov, in [16]. These
groups are denoted by

c
CHp.X;n/ and are constructed in order to extend the exact

sequence 1) to a long exact sequence of the form

c
CHp X; n/ CHp X; n/ H2p n

D X; R.p//
a

c
CHp X; n 1/!

CHp X; 1/ D2p 1
log X; p/= im dD

a

c
CHp X/ CHp X/ 0:

Explicitly, Goncharov defined a regulator morphism

Zp X; / P D2p
D X; p/;

where

Zp.X; / is the chain complex given by Bloch in [3], whose homology groups
are, by definition, CHp X; /;
DD X; / is the Deligne complex of currents.

Then the higher arithmetic Chow groups of a regular complex variety X are defined
as CHp.

c
X; n/ WD Hn.s.P0//, the homology groups of the simple of the induced

morphism

P0
W Zp X; /

P
D2p

D X; p/=D2p X;p/:

For n D 0, these groups agree with the ones given by Gillet and Soulé. However,
this construction leaves the following questions open:

1) Does the composition of the isomorphismKn.X/Q Š
the morphism induced by agree with the Beilinson Lp

CHp X;n/Q with0
P regulator?

2) Can one define a product structure on
Lp;

CHp. n/?n X;
3) Are there well-defined pull-back morphisms?c
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The use of the complex of currents in the definition of P is the main obstacle
encountered when trying to answer these questions, since this complex does not behave

well under pull-back or products. Moreover, the usual techniques for the comparison
of regulators apply to morphisms defined for the class of quasi-projective varieties,
which is not the case of P.

In this paper we develop a higher arithmetic intersection theory by giving a new
definition of the higher arithmetic Chow groups, based on a representative of the
Beilinson regulator at the chain complex level. Our strategy has been to use the
Deligne complex of differential forms instead of the Deligne complex of currents
in the construction of the representative of the Beilinson regulator. The obtained
regulator turns out to be a minor modification of the regulator described by Bloch
in [4].

The present definition of higher arithmetic Chow groups is valid for quasi-
projective arithmeticvarieties over a field, pull-back morphisms are well-defined and can

be givenacommutative andassociative product structure. Therefore, thisconstruction
overcomes the open questions left by Goncharov’s construction.

The authors, jointly with Takeda, prove in [6] that this definition agrees with
Goncharov’s definition when the arithmetic variety is projective. Moreover, by a direct
comparison of our regulator with P, it is also proved that the regulator defined by
Goncharov induces the Beilinson regulator. In this way, the open questions 1)–(3)
are answered positively. Moreover, the question of the covariance of the higher arithmetic

Chow groups with respect to proper morphisms will also be treated elsewhere.

Note that since the theory of higher algebraic Chow groups given by Bloch,
CHp X; n/ is only fully established for schemes over a field, we have to restrict
ourselves to arithmetic varieties over a field. Therefore, the following question remains
open:

1) Can we extend the definition to arithmetic varieties over an arithmetic ring?

Let us now briefly describe the constructions presented in this paper. First, for

A

the construction

A

of the higher Chow groups, instead of using the simplicial complex
defined by Bloch in [3], we use its cubical analog, defined by Levine in [19], due to its
suitability for describing the product structure on CH X; / Thus Zp.X;n/0 will
denote the normalized chain complex associated to a cubical abelian group. Let X be
a complex algebraic manifold. For every p 0, we define two cochain complexes,

D ;Zp.X; p/0 and D X; p/0, constructed out of differential forms on X n

with logarithmic singularities along infinity D P1 n f1g). For every p 0, the
following isomorphisms are satisfied:

H 2p n DA;Zp.X; p/0/ Š CHp X; n/R; n 0;

Hr DA X; p/0/ Š Hr
D X;R.p//; r 2p;
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where the first isomorphism is obtained by a explicit quasi-isomorphism

D2p
A;Zp X; p/0 Zp X; /0 R

see 2.4 and 2.5).
We show that there is a natural chain morphism see 3.1)

D2p
A;Zp X; p/0 D2p

A X; p/0
which induces, after composition with the isomorphism

Kn.X/Q ŠM
p 0

CHp X; n/Q

described by Bloch in [3], the Beilinson regulator Theorem 3.5):

Kn.X/Q ŠM
p 0

CHp X; n/Q M
p 0

H2p n
D X; R.p//:

In the second part of this paper we use the morphism to define the higher
arithmetic Chow group

c
CHp.X; n/, for any arithmetic variety X over a field. The

formalism underlying our definition is the theory of diagrams of complexes and their
associated simple complexes, developed by Beilinson in [1]. Let X† denote the
complex manifold associated with X and let be the involution that acts as complex
conjugation on the space and on the coefficients. As usual as superscript will mean
the fixed part under Then one considers the diagram of chain complexes

yZp.X; /0 D 0BBBBBBBB@

Zp.X†; / 2p
A X†;p/0 R D 0

1

Zp.X; /0
2p
A;Zp X†;p/D 0

0
1

2p
log X†;p/

i

ZD

1CCCCCCCCA

where ZD2p
log X†; p/ is the group of closed elements of D2p

log X†;p/ considered
as a complex concentrated in degree 0. Then the higher arithmetic Chow groups
of X are given by the homology groups of the simple of the diagram yZp.X; /0

Definition 4.3):

c
CHp X; n/ WD Hn.s. yZ

p X; /0//:
The following properties are shown:

Theorem 4.8: Let CHp.

c
X/ denote the arithmetic Chow group defined in [5].

Then there is a natural isomorphism

c
CHp X/ Š

c
CHp X; 0/:

It follows that if X is proper,

c
CHp.X; 0/ agrees with the arithmetic Chow group

defined by Gillet and Soulé in [14].
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Proposition 4.4: There is a long exact sequence

c
CHp X; n/ CHp X; n/ H2p n

D X†; R.p//
a

c
CHp X; n 1/! CHp X; 1/

D2p 1
log X†;p/ im dD

a

c
CHp X/ CHp X/ 0;

with the Beilinson regulator.

Proposition 4.12 Pull-back): Let f W X Y be a morphism between two
arithmetic varieties over a field. Then there is a pull-back morphism

c
CHp Y;n/ f

c
CHp X; n/;

for every p and n, compatible with the pull-back maps on the groups CHp X; n/
and H2p n

D X; R.p//.

Corollary 4.16 Homotopy invariance): Let W X Am X be the projection
on X. Then the pull-back map

W

c
CHp X; n/

c
CHp X Am; n/; n 1

is an isomorphism.

Theorem 5.46 Product): There exists a product on

c
CH X; / WD M

p 0;n 0 c
CHp X; n/;

which is associative, graded commutative with respect to the degree n.

The paper is organized as follows. The first section is a preliminary section. It
is devoted to fix the notation and state the main facts used in the rest of the paper.

It includes general results on homological algebra, diagrams of complexes, cubical
abelian groups and Deligne–Beilinson cohomology. In the second section we recall
the definition of the higher Chow groups of Bloch and introduce the complexes of
differential forms being the source and target of the regulator map. We proceed in
the next section to the definition of the regulator and we prove that it agrees with
Beilinson’s regulator. In Sections 4 and 5, we develop the theory of higher arithmetic
Chow groups. Section 4 is devoted to the definition and basic properties of the higher
arithmetic Chow groups and to the comparison with the arithmetic Chow group for
n D 0. Finally, in Section 5 we define the product structure on CH

c
X; / and prove

that it is commutative and associative.
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1. Preliminaries

1.1. Notation on co) chain complexes. We use the standard conventions on co)
chain complexes. By a co) chain complex we mean a co)chain complex over the
category of abelian groups.

The cochain complex associated to a chain complex A is simply denoted by A
and the chain complex associated to a cochain complex A is denoted by A The
translation of a cochain complex A ; dA/ by an integer m is denoted by AOEm

Recall that AOEm n
D AmCn and the differential of AOEm is 1/mdA. If A ;dA/ is

a chain complex, then the translation of A by an integer m is denoted by AOEm In
this case the differential is also 1/mdA but AOEm n D An m.

The simple complex associated to an iterated chain complex A is denoted by

s.A/ and the analogous notation is used for the simple complex associated to an
iterated cochain complex see [8] 2 for definitions).

The simple of a cochain map A f B is the cochain complex s.f / ; ds/ with
s.f /n D An °Bn 1, and differential ds.a;b/ D dAa; f a/ dBb/. Note that this
complex is the cone of f shifted by 1. There is an associated long exact sequence

H n s.f / / Hn A / f Hn B / HnC1 s.f / / 1.1)

If f is surjective, there is a quasi-isomorphism

ker f i s. f / ; x7! x; 0/; 1.2)

and if f is injective, there is a quasi-isomorphism

s.f /OE1 B A ; a; b/ 7! OEb : 1.3)

Analogously, equivalent results and quasi-isomorphisms can be stated for chain
complexes.

Following Deligne [10], given a cochain complex A and an integer n, we denote
by nA the canonical truncation of A at degree n.
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1.2. The simple of a diagram of complexes. We describe here Beilinson’s ideas

on the simple complexes associated to a diagram of complexes see [1]). A diagram
of chain complexes is a diagram of the form

D D 0BBB@

B1 B2 : : : Bn

A1

1

A2

0

1 2

::: An

n

AnC1

0n

1CCCA 1.4)

Consider the induced chain morphisms

nC1

M
iD1

Ai ';'1;'2
n

M
iD1

B i;

'1.ai/ D i ai/ if ai 2 Ai ;

'2.ai/ D
0

i 1.ai/ if ai 2 Ai ;

'.ai/ D .'1 '2/.ai/ D i 0

i 1/.ai/ if ai 2 Ai :

1.5)

where we set
nC1 D 00 D 0). The simple complex associated to the diagram D

is defined to be the simple of the morphism ':
s.D/ WD s.'/ : 1.6)

1.3. Morphisms of diagrams. A morphism between two diagrams D and D0
consists of a collection of morphisms

Ai hAi A0i
; B i

hBi B 0i ;

commuting with the morphisms i and 0i for all i Any morphism of diagrams

D
h

D0 induces a morphism on the associated simple complexes s.D/
s.h/

s.D0/ : Observe that if, for every i hAi and hBi are quasi-isomorphisms, then s.h/ is
also a quasi-isomorphism.

1.4. Product structure on the simple of a diagram. Let D and D0 be two
diagrams as 1.4. Consider the diagram obtained by the tensor product of complexes:

D D0/ D 0BBBBBB@

BB1 01 B2 B02 : : : Bn B 0n

1 1

AA1 01 AA2 02

0

1
0
1

2 2

: : : An

n n

A0n AnC1 A0nC1

0n 0n

1CCCCCCA

1.7)
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In [1], Beilinson defined, for every 2 Z, a morphism

s.D/ s.D0/ s.D D0/

as follows. For a 2 A; a0 2 A0;b 2 B and b0 2 B0, set

a a0 D a a0;

b a0 D b 1 /'1.a0/ C '2.a0//;

a b0 D 1/dega '1.a/ C .1 /'2.a// b0;

b b0 D 0;

where the tensor product between elements in different spaces is defined to be zero.

If B C are chain complexes, let

W s.B C / s.C B /
be the map sending b c 2 Bn Cm to 1/nmc b 2 Cm Bn.

Lemma 1.8 Beilinson). i) The map is a morphism of complexes.

ii) For every ; 0 2 Z, is homotopic to 0

iii) There is a commutative diagram

s.D/ s.D0/ s.D D0/

s.D0/ s.D/ 1
s.D0 D/ :

iv) The products 0 and 1 are associative.

1.5. Aspecific type ofdiagrams. In thisworkwe will use diagrams of the following
form:

D D 0BBB@

B1 B2

A1

1

A2

0

1 2
1CCCA ; 1.9)

with 01 a quasi-isomorphism. For this type of diagrams, since 01 is a quasi-isomorphism,

we obtain a long exact sequence equivalent to the long exact sequence related
to the simple of a morphism. Since a diagram like this induces a map A1 B2 in
the derived category, we obtain

Lemma 1.10. LetD be a diagram like 1.9). Then there is a well-defined morphism

Hn.A1/ /; OEa1 7! 2. 01Hn.B2 / 1
1OEa1 :
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Moreover, there is a long exact sequence

Hn.s.D/ / Hn.A1/ Hn.B2/ Hn 1.s.D/ / 1.11)

Consider now a diagram of the form

D D 0BBB@

B1 B2

A1

1

A2

0

1 2

A3

0
2

1CCCA ; 1.12)

with 01 a quasi-isomorphism and 02 a monomorphism.

Lemma 1.13. Let D be a diagram as 1.12) and let D0 be the diagram

D0 D 0BBB@

B1 B2 A3

A1

1

A2

0

1 2
1CCCA ; 1.14)

Then there is a quasi-isomorphism between the simple complexes associated to D
and to D0:

s.D/ s.D0/ :

Proof. It follows directly from the definition that the simple complex associated to

D is quasi-isomorphic to the simple associated to the diagram

D00 D 0BBBB@

B1 s.A3
0

2 B2/OE1

A1

1

A2:

0

1 2
1CCCCA ; 1.15)

Then the quasi-isomorphism given in 1.3) induces a quasi-isomorphism

s.D0/ s.D00/

as desired.

Corollary 1.16. For any diagram of the form 1.12), there is a long exact sequence

Hn.s.D/ / Hn.A1/ Hn 1.s. 02// Hn 1.s.D/ / : 1.17)

Proof. It follows from the previous lemma together with Proposition 1.10.
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1.6. Cubical abelian groupsand chain complexes. LetC D fCngn 0 bea cubical

abelian group with face maps iji W Cn Cn 1, for i D 1; : :: ; n and j D 0; 1, and
degeneracy maps i W Cn CnC1, for i D 1; : : : ; n C 1. Let Dn Cn be the
subgroup of degenerate elements of Cn, and let zCn D Cn=Dn.

Let C denote the associated chaincomplex, that is, the chain complex whose n-th
graded piece is Cn and whose differential is given by i D P

n
iD1PjD0;1. 1/iCjiji :

Thus D is a subcomplex and Cz is a quotient complex. We fix the normalized chain
complex associated to C NC to be the chain complex whose n-th graded group
is NCn WD T

n ker i1; and whose differential is i D PiD1.
n 1/iiD1

i0: It is
wellknown

i i
that there is a decomposition of chain complexes C Š NC °D giving an

isomorphism NC Š zC :
For certain cubical abelian groups, the normalized chain complex can be further

simplified, up to homotopy equivalence, by considering the elements which belong
to the kernel of all faces but i01

Definition 1.18. Let C be a cubical abelian group. LetN0C be the complex defined
by

N0Cn D

n

\iD1

ker i1
i \

n

\iD2

ker i0
i ; and differential i D i01: 1.19)

The proof of the next proposition is analogous to the proof of Theorem 4.4.2 in
[2]. The result is proved there only for the cubical abelian group defining the higher
Chow complex see 2.1 below). We give here the abstract version of the statement,
valid for a certain type of cubical abelian groups.

Proposition 1.20. Let C be a cubical abelian group. Assume that it comes equipped
with a collection of maps

hj W Cn CnC1; j D 1;: : : ; n;

such that, for any l D 0;1, the following identities are satisfied:

i1j hj D i1
jC1hj D sji1j ;

i0j hj D i0
jC1hj D id;

i l
ihj D ´hj 1ili ; i< j;

hj ili 1; i> j C 1:

1.21)

Then the inclusion of complexes

i W N0C NC

is a homotopy equivalence.
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Proof. Let gj W NCn NCnC1 be defined as gj D 1/n j hn j if 0 j n 1
and gj D 0 otherwise. Then there is a well-defined morphism of chain complexes

Hj D IdCigj C gj i/ W NC NC :

This morphism is homotopically equivalent to the identity.
Let x 2 NCn and 0 j n 1. Then

ihn j x/ D
nC1

X
iD1

1/ii0
i hn j x/

D
n j 1

X
iD1

1/ihn j 1i0i x/ C
nC1

X
iDn jC2

1/i hn ji0
i 1.x/;

hn j 1i.x/ D
n

X
iD1

1/i hn j 1i0i x/:

Hence,

igj x/ C gj i.x/

D 1/n j
n

X
iDn jC1

1/i 1 hn j i0
i x/ C 1/n j 1

n

X
iDn j

1/i hn j 1i0
i x/:

We consider the decreasing filtration G of NC given by

Gj NCn D fx 2 NCn j i0
i x/ D 0; i > max.n j;1/g: 1.22)

Then G0NC D NC and for j n 1, GjNCn D N0Cn. If x 2 GjC1NC
then igj x/ C gj i.x/ D 0 and thus, Hj x/ D x. Moreover, if x 2 GjNC then

Hj x/ 2 GjC1NC Thus, Hj is the projector from GjNC to GjC1NC
Thus, the morphism ' W NC N0C given, on NCn, by ' WD Hn 2 B BH0

forms a chain morphism homotopically equivalent to the identity. Moreover ' is the
projector from NC to N0C Hence, ' B i is the identity of N0C while i B ' is
homotopically equivalent to the identity of NC

Remark 1.23. To every cubical abelian group C there are associated four chain
complexes: C NC N0C and Cz In some situations it will be necessary to
consider the cochain complexes associated to these chain complexes. In this case we
will write, respectively, C NC N0C and Cz :

1.7. Cubical cochain complexes. Let X be a cubical cochain complex. Then, for
every m, the cochain complexes NXm; N0Xm and zXm are defined.
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Proposition 1.24. Let X Y be two cubical cochain complexes and let f W X
Y be a morphism. Assume that for every m, the cochain morphism

Xm
fm

Ym

is a quasi-isomorphism. Then the induced morphisms

NXm
fm

NYm and zCm
fm

zYm

are quasi-isomorphisms.

Proof. The proposition follows from the decompositions

Hr Xm/ D Hr NXm/ °Hr DXm/ and H r Ym/ D H r N Ym/ °Hr DYm/;

and the fact that fm induces cochain maps

NXm
fm

NYm and DXm
fm

DYm:

Proposition 1.25. Let X be a cubical cochain complex. Then the natural morphism

H r NXn/ f NHr Xn /
is an isomorphism for all n 0.

Proof. The cohomology groups Hr.X / have a cubical abelian group structure.
Hence there is a decomposition

H r X / D NHr X /°DHr X /:
In addition, there is a decomposition Xn D NXn °DXn : Therefore

H r X / D H r NX /° Hr DX /:
The lemma follows from the fact that the identity morphism in Hr.X / maps

NHr.X / to Hr.NX / and DHr.X / to Hr.DX /:

1.8. Deligne–Beilinson cohomology. In this paper we use the definitions and
conventions on Deligne–Beilinson cohomology given in [5] and [8], chapter 5.

One denotes R.p/ D .2 i/p R C. Let X be a complex algebraic manifold
and denote by Elog;R X/.p/ the complex of real differential forms with logarithmic

singularities along infinity, twisted by p. Let Dlog.X; p/; dD/ be the Deligne
complex of differential forms with logarithmic singularities, as described in [5]. It
computes real Deligne–Beilinson cohomology of X, that is,

Hn Dlog.X; p// D Hn
D X; R.p//:
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This complex is functorial on X.
The product structure in Deligne–Beilinson cohomology can be described by a

cochain morphism on the Deligne complex see [5]):

log.X; q/ DnCmDn
log.X; p/ Dm

log X; p C q/;

x y 7 x y:

This product satisfies the expected relations:

1) Graded commutativity: x y D 1/nmy x:
2) Leibniz rule: dD.x y/ D dDx y C 1/nx dDy:

Proposition 1.26. The Deligne product is associative up to a natural homotopy,

i.e. there exists

hW Dr
log.X;p/ D s

log.X; l/ DrCsCtlog.X; q/ Dt
log X;p C q C l/

such that

dDh.!1 2 3/ C hdD.!1 2 3/ D 1 2/ 3 1 2 3/:

Furthermore, if 1 2 D2p
log X; p/, 2 2 Dlog.

2q X; q/ and 3 2 D2llog.X;l/ satisfy

dD!i D 0 for all i then

h.!1 2 3/ D 0: 1.27)

Proof. This is [5], Theorem 3.3.

1.9. Cohomology with supports. Let Z be a closed subvariety of a complex
algebraic manifold X. Consider the complex Dlog.X n Z; p/; i.e. the Deligne complex
of differential forms in X n Z with logarithmic singularities along Z and infinity.

Definition 1.28. The Deligne complex with supports in Z is defined to be

Dlog;Z.X; p/ D s.Dlog.X;p/ Dlog.X n Z; p//:

The Deligne–Beilinson cohomology with supports in Z is defined as the cohomology
groups of the Deligne complex with supports in Z:

D;Z X;R.p// WD Hn Dlog;Z.X;p//:H n

Lemma 1.29. Let Z; W be two closed subvarieties of a complex algebraic manifold
X. Then there is a short exact sequence of Deligne complexes,

0 Dlog.X n Z \ W; p/
i

Dlog.X n Z;p/ ° Dlog.X n W; p/
j Dlog.X n Z [W; p/ 0;

where i. / D ; / and j. ; / D C
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Proof. It follows from [7], Theorem 3.6.

In addition, Deligne–Beilinson cohomology with supports satisfies a semipurity
property. Namely, let Z be a codimension p subvariety of an equidimensional complex

manifold X, and let Z1; : : :; Zr be its codimension p irreducible components.
Then

D;Z X; R.p// D ´0; n < 2p;
Hn

L
r
iD1

ROEZi ; n D 2p:
1.30)

For the next proposition, let iZ denote the current integration along an irreducible
variety Z. In the sequel we will use the conventions of [8] §5.4 with respect to the
current associated to a locally integrable form and to the current iZ.

Proposition 1.31. Let X be an equidimensional complex algebraic manifold and

Z a codimension p irreducible subvariety of X. Let j W X Xx be a smooth
compactification of X with a normal crossing divisor as its complement) and xZ the
closure of Z in Xx. The isomorphism

cl
W ROEZ

Š H 2p
D;Z X;R.p//

sends OEZ to OE.j w; j g/ for any OE.w; g/ 2 H2p
D; xZ

Xx; R.p// satisfying the relation

of currents in Xx

2@ N@OEg D OEw i xZ: 1.32)

Proof. See [8], Proposition 5.58.

In particular, assume that Z D div.f / is a principal divisor, where f is a rational
function on X. Then OEZ is represented by the couple

2 log.f fN// 2 H2p.0; 1
D;Z X;R.p//:

The definition of the cohomology with support in a subvariety can be extended
to the definition of the cohomology with support in a set of subvarieties of X. We

explain here the case used in the sequel. Let Zp be a subset of the set of codimension
p closed subvarieties ofX, that is closed under finite unions. The inclusion of subsets

turns Zp into a directed ordered set. We define the complex

Dlog.X n Zp; p/ WD lim
Z2Zp

Dlog.X n Z;p/; 1.33)

which is provided with an injective map

Dlog.X; p/ i Dlog.X n Zp;p/:
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As above, we define

Dlog;Zp.X; p/ WD s.i/
and the Deligne–Beilinson cohomology with supports in Zp as

D;Zp.X;R.p// WD Hn Dlog;Zp.X; p//:Hn

1.10. Real varieties. A real variety X consists of a couple XC; F1/, with XC a

complex algebraic manifold and F1 an antilinear involution of XC.
If X D XC; F1/ is a real variety, we will denote by the involution of

Dnlog.XC; p/ given by

/ D F1 :

Then the real Deligne–Beilinson cohomology of X is defined by

Hn
D X; R.p// WD H n

D XC; R.p// ;

where the superscript means the fixed part under
The real cohomology of X is expressed as the cohomology of the real Deligne

complex

Dnlog.X; p/ WD Dnlog.XC; p/ ;

i.e. there is an isomorphism

H n
D X;R.p// Š Hn Dnlog.X;p/; dD/:

1.11. Truncated Deligne complex. In the rest of the work, we will consider the
Deligne complex canonically) truncated at degree 2p. For simplicity we will denote

it by

Dlog.X; p/ D 2pDlog.X;p/:
The truncated Deligne complex with supports in a variety Z is denoted by

Dlog;Z X; p/ D 2pDlog;Z X; p/ and the truncated Deligne complex with
supports in Zp is denoted by Dlog;Zp.X; p/ D 2pDlog;Zp.X; p/.

Note that, since the truncation is not an exact functor, it is not true that

Dlog;Zp.X; p/ is the simple complex of the map Dlog.X; p/ Dlog.X nZp; p/.

2. Differential forms and higher Chow groups

In this section we construct a complex ofdifferential formswhich is quasi-isomorphic
to the complex Zp.X; /0 R. This last complex computes the higher algebraic
Chow groups introduced by Bloch in [3] with real coefficients. The key point of this
construction is the set of isomorphisms given in 1.30).
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This complex is very similar to the complex introduced by Bloch in [4] in order
to construct the cycle map for the higher Chow groups. In both constructions one
considers a 2-iterated complex ofdifferential formson acubical or simplicial scheme.
Since this leads to a second quadrant spectral sequence, to avoid convergence problems,

one has to truncate the complexes involved. The main difference between both
constructions is the direction of the truncation. We truncate the 2-iterated complex at

the degree given by the differential forms, while in loc. cit. the complex is truncated
at the degree given by the simplicial scheme.

2.1. The cubical Bloch complex. We recall here the definition and main properties
of the higher Chow groups defined by Bloch in [3]. Initially, they were defined
using the chain complex associated to a simplicial abelian group. However, since

we are interested in the product structure, it is more convenient to use the cubical
presentation, as given by Levine in [19].

Fix a base field k and letP1 be the projective lineoverk. Let D P1nf1g.Š A1/:
The cartesian product P1/ has a cocubical scheme structure. For i D 1; : :: ; n, we
denote by ti 2 k [ f1g/ n f1g the absolute coordinate of the i-th factor. Then the
coface and codegeneracy maps are defined as

ii0.t1; : :: ; tn/ D t1; : : : ; ti 1;0;ti; : : : ; tn/;

ii1.t1; : :: ; tn/ D t1; : : : ; ti 1;1; ti; : : : ; tn/;
i t1; : :: ; tn/ D t1; : : : ; ti 1; tiC1; : :: ; tn/:

Then inherits a cocubical scheme structure from that of P1/ An r-dimensional
face of n is any subscheme of the form i i1

j1 i ir
jr

n r /.
We have chosen to represent A1 as P1 n f1g so that the face maps are represented

by the inclusion at zero and the inclusion at infinity. In this way the cubical structure
of is compatiblewith the cubical structure of P1/ in [9]. In the literature the usual
representation A1 D P1 n f1g is often used. We will translate from one definition
to the other by using the involution

x 7 x
x 1

: 2.1)

This involution has the fixed points f0;2g and interchanges the points 1 and1.
Let X be an equidimensional quasi-projective variety of dimension d over the

field k. Let Zp.X; n/ be the free abelian group generated by the codimension p
closed irreducible subvarieties of X n, which intersect properly all the faces of

n. The pull-back by the coface and codegeneracy maps of endow Zp.X; / with
a cubical abelian group structure. Let Zp.X; /; i/ be the associated chain complex
see 1.6) and consider the normalized chain complex associated to Zp.X; /

Zp X; n/0 WD NZp X; n/ D
n

\iD1

ker i1
i :
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Definition 2.2. Let X be a quasi-projective equidimensional variety over a field k.
The higher Chow groups defined by Bloch are

CHp X; n/ WD Hn.Zp X; /0/:

Let N0 be the refined normalized complex of Definition 1.18). Let Zp.X; /00
be the complex with

Zp X;n/00 WD N0Zp X; n/ D
n

\iD1

ker i1
i \

n

\iD2

ker i0
i :

Fix n 0. For every j D 1;: : : ; n, we define a map

nC1
hj n;

t1; : : : ; tnC1/ 7 t1; : : : ; tj 1; 1 tj 1/.tjC1 1/; tjC2; : : :; tnC1/:

2.3)

The refined normalized complex of [2] §4.4 is given by considering the elements in
the kernel of all faces but i11 instead of i01 likehere. Taking this into account, together
with the involution 2.1), the map hj agrees with the map denoted by hn j in [2]
§4.4. Therefore, the maps hj are smooth, hence flat, so they induce pull-back maps

hj W Zp X; n/ Zp X; n C 1/; j D 1; : : :; n C 1; 2.4)

that satisfy the conditions of Proposition 1.20. Therefore the inclusion

Zp X; n/00 WD N0Zp X; n/ Zp X; n/0

is a homotopy equivalence see [2] §4.4).

2.2. Functoriality. It follows easily from the definition that the complexZp.X; /0
is covariant with respect to proper maps with a shift in the grading) and contravariant
for flat maps.

Let f W X Y be an arbitrary map between two smooth varieties X, Y Let
Zp
f Y; n/0 Zp.Y; n/0 be the subgroup generated by the codimension p irreducible

subvarietiesZ Y n, intersectingproperly the faces of n and such that the
pullbackX Z intersectsproperly the graph of f f ThenZp

f Y; /0 isa chaincomplex

and the inclusion of complexes Zp
f Y; /0 Zp.Y; /0 is a quasi-isomorphism.

Moreover, the pull-back by f is defined for algebraic cycles in Zp
f Y; /0 and hence

there is a well-defined pull-back morphism

CHp Y; n/ f CHp X; n/:

A proof of this fact can be found in [20], 3.5. See also [18].
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2.3. Product structure. Let X and Y be quasi-projective smooth varieties over k.
Then there is a chain morphism

s.Zp X; /0 Zq Y; /0/ [ ZpCq X Y; /0

inducing exterior products

CHp X; n/ CHq Y; m/ [ CHpCq X Y; n C m/:

More concretely, let Z be a codimension p irreducible subvariety of X n,

intersecting properly the faces of n and let W be a codimension q irreducible
subvariety of Y m, intersecting properly the faces of m. Then the codimension

p C q subvariety

Z W X n Y m
Š X Y n m

Š X Y nCm;

intersects properly the faces of nCm. By linearity, we obtain a morphism

Zp X; n/ Zq Y; m/ [ ZpCq X Y; n C m/:

It induces a chain morphism on the normalized complexes

s.Zp X; /0 Zq Y; /0/ [ ZpCq X Y; /0;

and hence there is an external product

[ W
CHp X;n/ CHq Y; m/ CHpCq X Y; n C m/; 2.5)

for all p, q, n, m.
If X is smooth, then the pull-back by the diagonal map W X X X is defined

on the higher Chow groups, CHp X X; / CHp X; /: Therefore, for all p,
q, n, m, we obtain an internal product

[ W
CHp X; n/ CHq X; m/ CHpCq X X; n C m/ CHpCq X; n C m/:

2.6)
In the derived category of chain complexes, the internal product is given by the
morphism

s.Zp.X; /0 Zq.X; /0/ [ ZpCq.X X; /0

ZpCq X X; /0 ZpCq.X; /0:

Proposition 2.7. Let X be a quasi-projective smooth variety over k. The pairing
2.6) defines an associative product on CH X; / D Lp;n

CHp X; n/. This product
is graded commutative with respect to the degree given by n.

Proof. See [19], Theorem 5.2.
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2.4. Differential forms and affine lines. For every n; p 0, let Dlog.X n;p/
be the truncated Deligne complex of differential forms in X n, with logarithmic
singularities at infinity. The structural maps of the cocubical scheme induce a

cubical structure on Drlog.X ;p/ for every r and p.
Consider the 2-iterated cochain complex

Dr; n
log.X n; p/;A X; p/ D Dr

with differential dD; i D P
n
iD1. 1/i i0i i1i //. Let

DA X;p/ D s.D ;
A X; p//

be the associated simple complex. Hence its differential ds in DA X; p/ is given,
for every 2 D r; n

A X;p/, by ds. / D dD. / C 1/ri. / Since we are using
cubical structures, this complex does not compute the right cohomology and we have

to normalize it.
For every r, n we write

Dr; n
log.X n; p/0 WD N Dr

A X; p/0 D Dr log.X n;p/:

A

Therefore D ; X;p/0 is the normalized 2-iterated complex and we denote byA
D X; p/0 the associated simple complex.

Proposition 2.8. The natural morphism of complexes

Dlog.X; p/ D D ;0
A X; p/0 DA X; p/0

is a quasi-isomorphism.

Proof. Consider the second quadrant spectral sequence with E1 term given by

Er; n
1 D Hr D ; n

A X; p/0/:

Since

Dr; n
A X; p/0 D 0; for r < 0 or r > 2p,

this spectral sequence converges to the cohomology groups H DA X;p/0/. This
is the main reason why we use the truncated complexes.

If we see that, for alln > 0, the cohomology of the complexD ; n
A X; p/0 is zero,

the spectral sequence degenerates and the proposition is proved. By the homotopy
invariance of Deligne–Beilinson cohomology, there is an isomorphism

1 W H Dlog.X n;p// H Dlog.X; p//:i1
1 B B i1

By definition, the image of H Dlog.X n; p/0/ by this isomorphism is zero.
Since H Dlog.X n; p/0/ is a direct summand of H Dlog.X n; p//, it
vanishes for all n > 0.
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We define the complex DA X; p/00 to be the simple complex associated to the
2-iterated complex with

Dr; n
log.X n ; p/:A X; p/00 D N0 Dr

Corollary 2.9. The natural morphism of complexes

Dlog.X; p/ D D ;0
A X;p/00 DA X; p/00

is a quasi-isomorphism.

Proof. It follows from Proposition 2.8, Proposition 1.20 using as maps fhj g the ones

induced by the maps hj defined in 2.3) and Proposition 1.24.

2.5. A complex with differential forms for the higher Chow groups. Let Zp
n;X

pn

be the set of all codimension p closed subvarieties of X n intersecting properly
the faces of n. We consider it as a set ordered by the inclusion relation. When there
is no source of confusion, we simply write Z or even Zp. Consider the cubical
abelian group

H p X; / WD H2p
D;Zp X ;R.p//; 2.10)

with faces anddegeneracies induced by those of LetHp.X; /0 be the associated

normalized complex.

Lemma 2.11. Let X be a complex algebraic manifold. For every p 0, there is an
isomorphism of chain complexes

1 W Zp X; /0 R Š Hp X; /0;

sending z to cl.z/.

Proof. It follows from the isomorphism 1.30).

Remark 2.12. Observe that the complex Hp.X; /0 has the same functorial properties

as Zp.X; /0 R.

LetD ;
A;Zp.X;p/0 be the 2-iterated cochain complex, whose component of bidegree

r; n/ is

D r
log;Zpn X n; p/0 D N Dr

log;Zpn X n;p/ D N 2pD r
log;Zpn X n ;p/;

and whose differentials are dD; i/. As usual, we denote by DA;Zp.X;p/0 the
associated simple complex and by ds its differential.

LetD2p
A;Zp X; p/0 be the chain complex whose n-graded piece isD2p n

A;Zp X; p/0.
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Proposition 2.13. For every p 0, the family of morphisms

D2p n
A;Zp X; p/0

0

1
Hp X; n/0;

n;gn/; : : : ; 0; g0// 7 OE.!n; gn/

defines a quasi-isomorphism of chain complexes between D2p
A;Zp X; p/0 and

Hp.X; /0.

Proof. The map is well defined because n; gn/ 2 D2p
log;Zpn X n; p/0. Therefore,

by definition of the truncated complex n; gn/ is closed. To see that it is a

morphism of complexes we compute

01ds..!n; gn/; :: : ; 0; g0// D 01 1/2pi.!n; gn/ C dD.!n 1;gn 1/;: : : /
D OEi.!n; gn/ C dD.!n 1; gn 1/ D iOE.!n; gn/ :

Now we consider the second quadrant spectral sequence with E1-term

E n;r
1 D H r Dlog;Zp.X n; p/0/:

By construction, E n;r
1 D 0 for all r > 2p. Moreover, for all r < 2p and for all n,

the semipurity property of Deligne–Beilinson cohomology implies that

H r Dlog;Zp.X n; p// D 0: 2.14)

Hence, by Proposition 1.24, the same is true for the normalized chain complex

Hr Dlog;Zp.X n;p/0/ D 0; r < 2p:

Therefore, the E1-term of the spectral sequence is

1 D ´0 if r ¤ 2p;
E n;r

H2p. Dlog;Zp.X n; p/0/ if r D 2p:

Finally, from Proposition 1.25, it follows that the natural map

H 2p Dlog;Zp.X n ; p/0/ H p X;n/0

is an isomorphism. Using the explicit description of the spectral sequence associated

to a double complex, it is clear that the morphism induced in cohomology by 01

agrees with the morphism induced by the spectral sequence. Hence the proposition
is proved.

We denote
CHp X;n/R D CHp X;n/ R:
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Corollary 2.15. Let z 2 CHp X; n/R be the class of an algebraic cycle z in X n.

By the isomorphisms of Lemma 2.11 and Proposition 2.13, the algebraic cycle z is
represented, in H2p n.DA;Zp.X;p/0/, by any cycle

n; gn/; : : : ; 0; g0// 2 D2p n
A;Zp X; p/0

such that
cl.z/ D OE.!n;gn/ :

Remark 2.16. Our construction differs from the construction given by Bloch in [4]
in two points:

He considered the 2-iterated complex of differential forms on the simplicial

AA

scheme An, instead of the differential forms on the cubical scheme n.

In order to ensure the convergence of the spectral sequence in the proof of last

proposition, he truncated the 2-iterated complex in the direction given by the
affine schemes.

2.6. Functoriality of D X; p/0. In many ways, the complex D;Zp ;Zp.X; p/0

behaves like the complex Z X; /0.

Lemma 2.17. Let f W X Y be a flat map between two equidimensional complex
algebraic manifolds. Then there is a pull-back map

f W DA;Zp.Y; p/0 DA;Zp.X; p/0:

Proof. We will see that in fact there is a map of iterated complexes

f W D r; n
A;Zp.Y; p/ Dr; n

A;Zp.X; p/:
LetZ be a codimension p subvariety of Y n intersecting properly the faces of n.

Since f is flat, there is a well-defined cycle f Z/. It is a codimension p cycle of
X n intersecting properly the faces of n, and whose support is f 1.Z/. Then,
by [14], 1.3.3, the pull-back of differential forms gives a morphism

Dlog.Y n
n Z;p/ f Dlog.X n

n f 1 Z/;p/:
Hence, there is an induced morphism

Dlog.Y
n

n Zp
Y ; p/ f lim

Z2Zp
Y

Dlog.X n
n f 1 Z/; p/

Dlog.X n
n Zp

X;p/;
and thus, there is a pull-back morphism

f W D ; n
A;Zp.Y;p/ D ; n

A;Zp.X;p/
compatible with the differential i.
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Remark 2.18. The pull-back defined hereagrees with the pull-back defined by Bloch
under the isomorphisms of Lemma 2.11and Proposition 2.13. Indeed, letf W X Y
be a flat map. Then, if Z is an irreducible subvariety of Y and .!;g/ a couple
representing the class of OEZ in theDeligne–Beilinsoncohomology with support, then
the couple f ;f g/ represents the class of OEf Z/ see [14], Theorem 3.6.1).

Proposition 2.19. Let f W X Y be a morphism of equidimensional complex
algebraic manifolds. Let Zp

f be the subset consisting of the subvarieties Z of Y n

A

intersecting properly the faces of n and such that X Z n intersects properly
the graph of f f Then

i) the complex D ;Zpf
Y;p/0 is quasi-isomorphic to DA;Zp.Y; p/0;

ii) there is a well-defined pull-back

f W DA;Zpf
Y; p/0 DA;Zp.X; p/0:

Proof. Arguing as in the proof of the previous proposition, there is a pull-back map

f W Dlog.Y n
n Zp

f ;p/ f Dlog.X n
n Zp; p/;

inducing a morphism

f W DA;Zpf
Y; p/ DA;Zp.X; p/;

and hence a morphism

f W DA;Zpf
Y; p/0 DA; Zp.X; p/0:

All that remains to be shown is that the inclusion

DA;Zpf
Y; p/0

i
DA;Zp.Y; p/0

is a quasi-isomorphism. By the quasi-isomorphism mentioned in Paragraph 2.2 and
the quasi-isomorphism of Proposition 2.13, there is a commutative diagram

Zp
f Y; /0 R DA;Zpf

Y; p/0

i

Zp.Y; /0 R DA;Zp.Y; p/0:

The proof that the upper horizontal arrow is a quasi-isomorphism is analogous to the
proof of Proposition 2.13. Thus, we deduce that i is a quasi-isomorphism.



544 J. I. Burgos Gil and E. Feliu CMH

3. Algebraic cycles and the Beilinson regulator

Inthissectionwedefine a chainmorphism, in the derivedcategoryofchain complexes,
that induces in homology the Beilinson regulator.

The construction is analogous to the definition of the cycle class map given by
Bloch in [4], with the minor modifications mentioned in 2.16. However, in [4]
there is no proof of the fact that the composition of the isomorphism Kn.X/Q Š
Lp 0 CHp X; n/Q with the cycle class map agrees with the Beilinson regulator.

3.1. Definition of the regulator. Consider the map of iterated cochain complexes
defined by the projection onto the first factor

D r; n
A;Zp.X;p/

D 2ps.Dlog.X n ;p/ Dlog.X n
n Zp; p//r Drlog.X n; p/;

.!;g/ 7 !:
It induces a cochain morphism

DA;Zp.X;p/0 DA X;p/0;

and hence a chain morphism

D2p
A;Zp X;p/0 D2p

A X;p/0: 3.1)

The morphism induced by in homology, together with the isomorphisms of
Propositions 2.8, 2.11 and 2.13, induce a morphism

W CHp X; n/ CHp X; n/R H2p n
D X; R.p//: 3.2)

By abuse of notation, it will also be denoted by
By Corollary 2.15, we deduce that, if z 2 Zp.X; n/0, then

z/ D n; :: : ; 0/;

for any cycle n; gn/; : : :; 0; g0// 2 D2p n
A;Zp X; p/0 such that OE.!n; gn/ D cl.z/.

Proposition 3.3. i) The morphism
W D2p

A;Zp X;p/0 D2p
A X; p/0 is

contravariant for flat maps.

ii) The induced morphism
W

CHp X;n/ H2p n
D X; R.p// is contravariant

for arbitrary maps.

Proof. Both assertions are obvious. Let

z D n; gn/; : : :; 0; g0// 2 D2p n
A;Zp X; p/0
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be a cycle such that its inverse image by f is defined. This is the case when f is flat
or when z belongs to D2p

A;Zp
f

X;p/0. In both cases

f n; gn/; :: : ; 0; g0// D f n;f gn/; :: : ; f 0;f g0//

and the claim follows.

Remark 3.4. Let X be an equidimensional compact complex algebraic manifold.
Observe that, by definition, the morphism

W
CHp X; 0/ D CHp X/ H2p

D X; R.p//

agrees with the cycle class map cl.
Now let E be a vector bundle of rank n over X. For every p D 1; : : : ; n, there

exists a characteristic class CCHp E/ 2 CHp X/ see [17]) and a characteristic class

CDp E/ 2 H2p
D X; R.p//, called the p-th Chern class of the vector bundle E. By

definition, cl.CCH
p E/. Hence,p E// D CD

CCH
p E// D C D

p E/;

for all p D 1; : : : ;n.

3.2. Comparison with the Beilinson regulator. We prove here that the regulator
defined in 3.2) agrees with the Beilinson regulator.

The comparison is based on the following facts:

The morphism is compatible with inverse images.

The morphism is defined for quasi-projective schemes.

In view of these properties, it is enough to prove that the two regulators agree when
X is a Grassmanian manifold, which in turn follows from Remark 3.4.

Theorem 3.5. Let X be an equidimensional complex algebraic scheme. Let 0 be
the composition of with the isomorphism given by the Chern character

0
W Kn.X/Q Š

M
p 0

CHp X;n/Q M
p 0

H2p n
D X; R.p//:

Then the morphism 0 agrees with the Beilinson regulator.

Proof. The outline of the proof is as follows. We first recall the description of the
Beilinson regulator in terms of homotopy theory of simplicial sheaves as in [15].
Then we recall the construction of the Chern character given by Bloch. We proceed
reducing the comparison of the two maps to the case n D 0 and for X a Grassmanian
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scheme. We finally prove that at this stage both maps agree. Our site will always be
the small Zariski site over X.

Consider X as a smooth quasi-projective variety over C. Let B GLN be the
simplicialversion of the classifying space of the groupGLN C/viewed asa simplicial
complex manifold. Recall that all the face morphisms are flat. Let B GLN;X be the
simplicial sheaf over X given by the sheafification of the presheaf

U 7! B GLN U; OU //
for every Zariski open U X. This is the same as the simplicial sheaf given by

U 7! Hom.U; B GLN /;

where Hom means the simplicial function complex.
Consider the inclusion morphisms B GLN;X B GLNC1;X for all N 1, and

let
B GLX D lim B GLN;X:

Let Z1B GLN;X and Z1B GLX be the sheaves associated to the respective Bousfield–

Kan completions. Finally, let Z be the constant simplicial sheaf on Z and
consider the following sheaves on X

KX D Z Z1B GLX;

KN
X D Z Z1B GLN;X:

By [15], Proposition 5, there is a natural isomorphism

Km.X/ Š H m X;KX/ D lim
N

H m X;KN
X /:

HereH ; / denotes the generalized cohomology with coefficients inKX andKNX
as described in [15].

The Beilinson regulator is the Cherncharacter taking values in Deligne–Beilinson
cohomology. The regulator can be described in terms of homotopy theory of sheaves

as follows.
Consider the Dold–Puppe functor K / see [12]), which associates to every

cochain complex of abelian groups concentrated in non-positive degrees, G a

simplicial abelian group K G/, pointed by zero. It satisfies the property that

i K G/; 0/ D H i.G /
In [13], Gillet constructs Chern classes

C D
p 2 H 2p B GLN ; R.p//; N 0;

which induce morphisms

X; K DX. ; p/OE2p /; N 0cD
p;X W KN
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in the homotopy category of simplicial sheaves.

X; KNC1These morphisms are compatible with the morphisms KN X; Therefore,
we obtain a morphism

Km.X/ D lim
N

H m X;KN
X /

CDp;X H2p m
D X; R.p//:

Using the standard formula for the Chern character in terms of the Chern classes, we
obtain a morphism

Km.X/
chD

H2p m
D X; R.p//;

which is the Beilinson regulator.
TheCherncharacter for higher Chow groups. Thedescription of the isomorphism

Kn.X/Q Š
Lp 0 CHp X; n/Q given by Bloch follows the same pattern as the

description of the Beilinson regulator. However, since the complexes that define the
higher Chow groups are not sheaves in fact not even functors) on the big Zariski site,
a few modifications are necessary. We give here a sketch of the construction. For
details see [3].

If Y is a simplicial scheme whose face maps are flat, then there is a well-defined
2-iterated cochain complex Zp.Y ; /0; whose n; m/-bigraded group is

Zp Y n;m/0;

and induced differentials. The higher algebraic Chow groups of Y are then defined
as

CHp Y ;n/ D Hn Zp Y ; /0/:

Since the face maps of the simplicial scheme B GLN are flat it follows that the
group CHp B GLN ;n/ is well defined for every p and n.

First, Bloch constructs universal Chern classes

C CH
p 2 CHp B GLN; 0/;

following the ideas of Gillet. These classes are represented by elements

C CH;ip 2 Zp BiGLN ;i/0:

Because at the level of complexes the pull-back morphism is not defined for
CH;i
p to X, asarbitrary maps, one cannot consider the pull-back of these classes C

was the case for the Beilinson regulator. However, by [3], 7, there exists a purely
transcendental extension L of C, and classes C

CH;i
p defined over L, such that the

CH;i
p is defined for every C-morphism f W V BiGLNpull-back f C

Then there is a map of simplicial Zariski sheaves on X

B GLN;X KX.g Zp
XL ; /0/;
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where g W XL X is the natural map obtained by extension to L.
There is aspecialization process described in [3], which, in the homotopy category

of simplicial sheaves over X, gives a well-defined map

KX.g Zp
XL ; /0/ KX.Zp

X ; /0/:

p;X 2 OEB GLN;X; KX.ZXTherefore, there are maps CCH ; p// where OE ; denotes
the set of arrows in the homotopycategory. Proceeding as above, we obtain the Chern
character morphism

Km.X/ M
p 0

CHp X; m/Q:

For m D 0, this is the usual Chern character.

End of the proof. Since, at the level of complexes, is functorial for flat maps,
there is a sheaf map

W KX.ZX ;p// K Dlog.X; p//

in the small Zariski site of X.
It follows that the composition B CCHp is obtained by the same procedure

as the Beilinson regulator, but starting with the characteristic classes CCHp / 2
H2p

D X; R.p// instead of the classes CDp Therefore, it remains to see that

C CH
p / D C D

p : 3.6)

For integers N; k 0 let Gr.N;k/ be the complex Grassmanian scheme of
Nplanes in Ck. It is a smooth complex projective scheme. Let EN;k be the rank N
universal bundle of Gr.N; k/ and Uk D Uk; / its standard trivialization. Let N Uk

denote the nerve of this cover. It is a hypercover of Gr.N; k/, N Uk Gr.N; k/.
Consider the classifying map of the vector bundle EN;k,

'k W N Uk B GLN ;

which satisfies EN;k/ D 'k EN / for EN the universal vector bundle over

B GLN Observe that all the faces and degeneracy maps of the simplicial scheme

N Uk are flat, as wellas the inclusion mapsNlUk Gr.N; k/. Thus CHp N Uk; m/
is defined and there is a pull-back map

CHp Gr.N; k/; m/ CHp N Uk;m/:

Since is defined on N Uk and is a functorial map, we obtain the following
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commutative diagram:

CHp B GLN; 0/

'k
H2p

D B GLN ; R.p//

'k

CHp N Uk; 0/ H2p
D N Uk; R.p//

K0.Gr.N; k//
CCHp

CDp

CHp Gr.N; k/; 0/ H2p
D Gr.N; k/; R.p//.

By construction, CCHp EN;k/ is the standard p-th Chern class in the classical Chow
group of Gr.N; k/, and CDp EN;k/ is the p-th Chern class in Deligne–Beilinson
cohomology. It then follows from Remark 3.4 that

C CH
p EN;k// D C D

p EN;k/: 3.7)

The vector bundle EN;k 2 K0.Gr.N;k// D lim!M OEGr.N;k/; KM is represented,

in the homotopy category of simplicial sheaves, by the diagram

Gr.N;k/ N Uk 'k B GLN ;

where the map is a weak equivalence of sheaves because N Uk is a hypercover of
Gr.N;k/. This means that

'k C CH // D CCH
p EN

p EN;k//: 3.8)

Also, since is an hypercover, is an isomorphism in Deligne–Beilinson
cohomology. Moreover, for each m0, there exists k0 such that, if m m0 and k k0,

'k is an isomorphism on the cohomology group H2mD ; R.m//. To see this, we
first use the computation of the mixed Hodge structure of the cohomology of the
classifying space given in [11] and the well known mixed Hodge structure of the
cohomology of the Grassmanian manifolds to reduce it to a comparison at the level
of singular cohomology. Then we use that the infinite Grassmanian is homotopically
equivalent to the classifying space. Finally we use the cellular decomposition of the
infinite Grassmanian to compare its cohomology with the cohomology of the finite
Grassmanian see for instance [22]).

Under these isomorphisms, we obtain the equality

CD
p EN;k/ D / 1'k CD

p EN //: 3.9)
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Hence,

CCH
p EN

p EN// D C D / 'k C CH // D 'kCD
p EN

p EN /

'k CCH // D 'kC D
p EN

p EN /:

The last equality follows directly from 3.7), 3.8) and 3.9). Therefore, the theorem
is proved.

4. Higher arithmetic Chow groups

LetX be an arithmetic variety over a field. Using the descriptionof the Beilinson
regulator given in Section 3, we define the higher arithmetic Chow groups,

c
CHn.X; p/.

The definition is analogous to the definition given by Goncharov, in [16], but using
differential forms instead of currents.

We need to restrict ourselves to arithmetic varieties over a field, because the
theory of higheralgebraic Chowgroupsby Bloch is only well establishedfor schemes

over a field. That is, we can define the higher arithmetic Chow groups for arbitrary
arithmetic varieties, but since the functoriality properties and the product structure
of the higher algebraic Chow groups are described only for schemes over a field,
we cannot give a product structure or define functoriality for the higher arithmetic
Chow groups of arithmetic varieties over a ring. Note however that, using work by
Levine [21], it should be possible to extend the constructions here to smooth varieties
over a Dedekind domain, at least after tensoring with Q. In fact, when extending the
definition to arithmetic varieties over a ring, it might be better to use the point of view
of motivic homology à la Voevodsky or any of its more recent variants.

4.1. Higher arithmeticChowgroups. Following [14], an arithmetic field is a triple

K;†; F1/, whereK is a field, † is a nonempty set of complex immersionsK C
and F1 is a conjugate-linear C-algebra automorphism of C† that leaves invariant
the image of K under the diagonal immersion. By an arithmetic variety X over the
arithmetic ring K we mean a regular quasi-projective K-scheme X.

To the arithmetic variety X we associate a complex variety XC D ` 2† X and
a real variety XR D XC; F1/. The Deligne complex of differential forms on X is
defined from the real variety XR as

log.XC; p/ Did ;Dn
log.X;p/ WD Dn

where is the involution as in Paragraph 1.10. We define analogously the chain
complexes

D2p
A X; p/0; D2p

A X; p/00; D2p
A;Zp X;p/0; and D2p

A;Zp X; p/00:
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Let 1 be the composition

1 W Zp X; n/0
R

Zp X; n/0 R
FR

Zp XR; n/0 R Š Hp X; n/0:

We consider the diagram of complexes of the type of 1.12)

yZp.X; /0 D 0BBBBB@

Hp.X; /0 D2p
A X;p/0

1

Zp.X; /0

0

1

D2p
A;Zp X; p/0 ZD2p

log X; p/

i
1CCCCCA

4.1)

whereZD2p
log X;p/ is thechain complexwhich iszero in all degrees except indegree

zero, where it consists of the vector subspace of cycles in D2p
log X; p/. Note that it

agrees with ZEp;p
log;R X/.p/, the subspace of Ep;p

log;R X/.p/ consisting of differential
forms with logarithmic singularities that are real up to a product by .2 i/p, of type

p;p/ and that vanish under @ and N@. The morphism i is the inclusion of chain
complexes.

Definition4.2. The higher arithmeticChowcomplex is the simplecomplex associated

to the diagram yZp.X; /0, as defined in 1.6):

yZp X; /0 WD s. yZ
p X; /0/:

Recall that, by definition, yZp.X; n/0 consists of 5-tuples

Z; 0; 1; 2; 3/ 2 Zp X;n/0 °D2p n
A;Zp X;p/0° ZD2p

log X; p/n

° Hp X; n C 1/0 °D2p n 1
A X; p/0;

and the differential is given by

yZp X; n/0
d

yZp X;n 1/0

Z; 0; 1; 2; 3/ 7 i.Z/;ds. 0/; 0; 1.Z/ 01 0/ i. 2/;

0/ 1 ds. 3/ :

Note that 1 will be zero unless n D 0. Its differential, however, is always zero.

Definition 4.3. Let X be an arithmetic variety over an arithmetic field. The p; n/-th
higher arithmetic Chow group of X is defined by

c
CHp X; n/ WD Hn. yZp X; /0/; p;n 0:
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By its definition as the cohomology of a simple of a diagram of complexes it
comes equipped with the following morphisms

W

c
CHp X; n/ CHp X;n/; OE.Z; 0; :: : ; 3/ D OEZ ;

a
W H2p n

D X; R.p//
c
CHp X;n/; a.OEa / D OE.0; 0; 0; 0; a/ ;

a
W D2p 1

log X; p/
c
CHp X;0/; a. Qa/ D OE.0; 0; dDa;0; a/ ;

W

c
CHp X; 0/ ZD2p

log X; p/; OE.Z; 0; :: : ; 3/ / D 1:

Proposition 4.4. There is a long exact sequence

c
CHp X; n/ CHp X; n/ H2p n

D X; R.p//
a

c
CHp X; n 1/!

CHp X; 1/ D2p 1
log X; p/= im dD

a

c
CHp X; 0/ CHp X;0/ 0;

4.5)

where is the Beilinson regulator.

Proof. It follows from Theorem 3.5, Lemma 1.16 and the fact that the homology
groups of the complex

s.ZD2p
log X;p/

i
D2p

A X; p/0/

are H2p n
D X; R.p// in degree n ¤ 0 and D2p 1

log X; p/= im dD in degree 0.

Remark 4.6. Let Dy
;

A X; p/0 be the 2-iterated cochain complex given by the
quotient D ;

A X; p/0=D2p;0.X; p/. That is, for all r, n,

A X;p/0 D ´0 if r D 2p and n D 0;
Dy

r; n

Dr; n
A X; p/0 otherwise:

Let yDA X;p/0 denote the simple complex associated to Dy ;
A X; p/0. Consider the

composition of with the projection map

W D2p
A;Zp X; p/0 D2p

A X; p/0 Dy
2p
A X; p/0:

Then there is a diagram of chain complexes of the type of 1.9)

0BBBBB@

Hp X; /0 Dy2p
A X;p/0

1

Zp X; /0

0

1

D2p
A;Zp X; p/0

1CCCCCA .4:7/
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By Proposition 1.13, the simple complex associated to the diagram .4:7/ is
quasiisomorphic to the complex yZp.X; /0 and hence, itshomology groupsare isomorphic
CHp.

c
X; / Nevertheless, in order to define a product structure in CH X; / it is

better to work with the diagram 4.1). c
4.2. Agreement with the arithmetic Chow groups. Let X be an arithmetic variety
and let

c
CHp.X/ denote the p-th arithmetic Chow group of X as defined by Burgos

in [5]. We recall here its definition.
For every p, let Zp.X/ D Zp.X; 0/ and let ZD2p

log X; p/ denote the subgroup

log X; p/. Let yZp.X/ denote the setof cycles of D2p

² Z; .!;gQ// 2 Zp X/°ZD2p
log X; p/° imdD

D2p 1
log X n Zp;p/ D dDgQ;

cl. ³:Z/ D OE.!;g/

If Z 2 Zp.X/, a Green form for Z is a couple .!; gQ/
as before such that cl.Z/ D

OE.!;g/ ; where g is any representative of gQ.

Let Y be a codimension p 1 subvariety of X and let f 2 k Y /. As shown in
[5], 7, there is a canonical Green form attached to div f It is denoted by g.f / and

it is of the form .0;gQ.f // for some class gQ.f /.
Let bRatp.X/ be the subgroup of yZp.X/ generated by

f.div f; g.f // j f 2 k Y /; Y X a codimension p 1 subvarietyg:

For every p 0, the arithmetic Chow group of X is defined by

c
CHp X/ D yZp X/=bRatp X/:

It is proved in [14], Theorem 3.3.5 and [5], Theorem 7.3, that these groups fit into
exact sequences

CHp 1;p X/ D2p 1
log X; p/= im dD

a

c
CHp X/ CHp X/ 0

where:

CHp 1;p X/ is the term Ep 1; p
2 in the Quillen spectral sequence see 7 of

[23]).

The map is the cycle class map and is the Beilinson regulator after composition
with the isomorphism K1.X/Q Š Lp 0 CHp 1;p X/Q.

The map is the projection on the first component.

The map a sends to .0; dD ; //.
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Theorem 4.8. The morphism

c
CHp X/ ˆ

c
CHp X; 0/;

OE.Z;.!; gQ// 7 OE.Z; .!; g/;0;0;0/ ;

where g is any representative of
gQ 2 D2p 1

log X; p/= im dD, is an isomorphism.

Proof. We first prove that ˆ is well defined. Afterwards, we will prove that the
diagram

CHp 1;p X/

Š

D2p 1
log X; p/= im dD

a

D c
CHp X/

ˆ

CHp X/

Š

0

CHp X; 1/ D2p 1
log X; p/= im dD

a

c
CHp X; 0/ CHp X; 0/ 0

is commutative. The statement then follows from the five lemma.
The proof is a consequence of Lemmas 4.9, 4.10 and 4.11 below.

Lemma 4.9. The mapˆ is well defined.

Proof. We have to prove that

i) the elements in the image of ˆ are indeed cycles in yZp.X; 0/0;

ii) the mapˆ does not depend on the choice of a representative of g;

iii) the mapˆ is zero on bRatp.X/.

Let OE.Z;.!; gQ// 2 c
CHp.X/. The claim i) follows from the equality cl.Z/ D

OE.!; gQ/ D OE.!; g/ Indeed, since ds.!; g/ D 0,

d.Z; .!; g/; 0; 0; 0/ D .0; 0; 0; cl.Z/ cl.!;g/;0/ D 0:

To see ii), assume that g1; g2 2 D2p 1
log X; p/ are representatives of gQ, i.e. there

exists h 2 D2p 2
log X;p/ such that dDh D g1 g2: Then

d.0; .0; h/;0;0;0/ D .0; .0; g1 g2/; 0; 0; 0/

D Z;.!; g1/; 0; 0; 0/ Z; .!; g2/; 0; 0; 0/

and therefore we have OE.Z; .!;g1/; 0; 0; 0/ D OE.Z; .!; g2/; 0; 0; 0/ :
Finally, to prove iii), we have to see that, if Y is a codimension p 1 subvariety

and f 2 k Y /, then

ˆ div f; g.f // D 0 2 c
CHp X; 0/;
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i.e. that
OE.div f;.0; g.f //;0;0;0/ D 0;

for any fixed representative g.f / of gQ.f /.
Let fO be the function of Y 1 given by y; t1 W t2// 7!

t1 t2f.y/
t1 t2 : Its divisor

defines a codimension p subvariety of X 1. Moreover, it intersects properly

X .0 W 1/ and X .1 W 0/. Fix g.fO/ to be any representative of gQ.fO/. Since

i.gQ.fO// D gQ.f /; there existsh 2 D2p 1
log Xndiv f;p/ withdDh D i.g.fO// g.f /:

Then

d.div fO; .0;g.fO/; .0; h//; 0; 0; 0/ D div f; .0;g.f //; 0; 0; 0/

as desired.

Lemma 4.10. There are isomorphisms

CHp X/ '1 CHp X;0/;

CHp 1;p X/ '2 CHp X;1/;

making the following diagrams commutative:

CHp 1;p X/

'2

D2p 1
log X; p/= im dD

D

CHp X;1/ D2p 1
log X; p/= im dD,

c
CHp.X/

ˆ
CHp X/

'1

c
CHp.X;0/ CHp X; 0/:

Proof. Both isomorphisms are well known. The morphism '1 is the isomorphism
between the classical Chow group CHp X/ and the Bloch Chow group CHp X; 0/.
The diagram is obviously commutative, since '1.OEZ / D OEZ

The isomorphism '2 is defined as follows. Let f 2 CHp 1;p X/. It can be
represented by a linear combination

Pi
OEfi wherefi 2 k Wi/, Wi is acodimension

p 1 subvariety of X and Pdiv fi D 0. Let fi be the restriction of the graph of

fi in X P1, to X 1. That is, fi is the codimension p subvariety of X 1

given by

f.y; fi y//j y 2 Wi; fi y/ ¤ 1g:
Then '2.f / is represented by the image in

Zp X; 1/=DZp X; 1/ Š Zp X; 1/0

ofP fi where DZp.X; 1/ are the degenerate elements.
We want to see that '2 D i.e.,

Pi fi/ D POEfi / See [5] or [8] for
more details on the definition of on the right hand side.

Let f D Pi
OEfi 2 CHp 1;p X/ be as above. For every i we can choose:
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a rational function fQi 2 k X/ whose restriction to Wi is fi
a Green form for Wi g.Wi/ D i; gi/:

The form
g.fQi / WD 0; 1

2
log fQi

xQ

f i

is a Green form for the divisor div fQi on X.
Let denote the ?-product of Green forms as described by Burgos in [5]. Then

we write
; gQ / DXg.fQi/ g.Wi /:

Since the first component of g.fQi/ is zero, we have that D 0 as well. Moreover,

since .0; gQ / is a Green form for
Pi

div fQi \ Wi D Pi
div fi D 0, we can obtain a

representative g of gQ that is a closed smooth form. Then g is a representative of

P
OEfi /

Let us show now that g is a representative of '2.f // as well. By the results of
the previous sections, the form

Pi fi / is obtained as follows. Let Z 2 Zp.X;1/0
be a cycle in the normalized group that differs from

P fi by a degenerate element.

We consider a representative Z; gZ/ 2 D2p
Zp.X 1; p/0 of Z. Since

D i01.!Z; gZ/ i11.!Z; gZ/

represents the class of
Pi

divfi D 0, the class of is zero and hence there exists

.!;g/ such that dD.!;g/ D Moreover, since dD!Z D 0 and the complex

Dlog.X 1; p/0 is acyclic see the proof of Proposition 2.8), there exists 2
D2p 1

log X 1;p/0 such that dD. / D Z. Then
Pi fi/ is represented by

C i. /
Therefore, we start by constructing the cycle Z and suitable forms Z;gZ/

representing the class of Z. Consider the rational function hi 2 k X 1/ given
by

y; t1 W t2// 7!
t1 t2fQi y/

t1 t2
:

If we write div fi D div fi /0 div fi/1 where div fi/0 is the divisor of zeroes
and div fi/1 is the divisor of poles, the intersection of the divisor of hi with Wi
div hi \Wi is exactly fi div fi/1. Observe that div fi/1 is a codimension p
degenerate cycle. Moreover div hi \ Wi belongs to Zp.X; 1/0. Hence

Z DXdiv hi \Wi

2 log hi xhi/ be the canonical Green form foris the cycle we need. Let g.hi/ D .0; 1

div hi Then, as above, a Green form for Z is given by

Xg.hi/ g.Wi / D .0; gQZ/:
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Now, observe that

i.0; gQZ/ DX
i
i01.g.hi // g.Wi/ DX

i
g.fQi/ g.Wi/ D .0; gQ /:

Since we canassume thatg isa smooth representative of
gQ

wehave that ds.g ;0/ D
.0; g /; and hence by the above description of we see that

Xi
fi D g :

This finishes the proof of the lemma.

Lemma 4.11. The following diagram is commutative:

c
CHp.X/

ˆD2p 1
log X; p/= im dD

a

a

c
CHp.X; 0/.

Proof. Let
Q 2 D2p 1

log X; p/= im dD. Then the lemma follows from the equality

d.0; ;0/; 0; 0; 0/ D .0; dD ; /;0;0;0/ C .0; 0; 0; 0; /
in

c
CHp.X;0/.

This finishes the proof of Theorem 4.8.

4.3. Functoriality of the higher arithmetic Chow groups

Proposition 4.12 Pull-back). Let f W X Y be a morphism between two arithmetic
varieties. Then, for all p 0, there exists a chain complex, yZp

f Y; /0 such that:

i) There is a quasi-isomorphism

f Y; /0 yZp Y; /0:yZp

ii) There is a pull-back morphism

f W yZp
f Y; /0 yZp X; /0;

inducing a pull-back morphism of higher arithmetic Chow groups

c
CHp Y;n/ f

c
CHp X; n/;

for every p; n 0.
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iii) The pull-back is compatible with the morphisms a and That is, there are

commutative diagrams

H2p n 1
D Y; R.p//

a

f c
CHp.Y;n/

f
CHp Y; n/

f

H2p n 1
D X; R.p// a

c
CHp.X;n/ CHp X; n/ :

4.13)

Proof. Recall that there are inclusions of complexes

Zp
f Y; /0 Zp Y; /0;

Hp
f Y; /0 Hp Y; /0;

DA;Zp
f

Y; p/0 DA;Zp.Y; p/0;

which arequasi-isomorphisms. The pull-back by f is defined for any inZp
f Y; /0;

f Y; /0 or inD
A

inH p
;Zpf

Y;p/0. Moreover, by construction, there is a commutative

diagram

Zp
f Y; /0

f

1 Hpf Y; /0

f

DA;Zpf
Y; p/0

f

0

1 DA Y;p/0

f
ZD2p

log X;p/i

f
Zp.X; /0 1

DAHp.X; /0 DA;Zp.X;p/0
0

1
X;p/0 ZD2p

log Y;p/ :i

Let yZp
f Y; /0 denote the simple associated to the first row diagram. Then there is a

pull-back morphism

f W yZp
f Y; /0 yZp X; /0:

Moreover, as noticed in 1.3, the natural map

f Y; /0 yZp Y; /0yZp

is a quasi-isomorphism. Therefore, i) and ii) are proved. Statement iii) follows
from the construction.

Remark 4.14. If the map is flat, then the pull-back is already defined at the level of
the chain complexes yZp.Y; /0 and yZp.X; /0.

Proposition 4.15 Functoriality of pull-back). Let f W Y and g W Y Z be two
morphisms of arithmetic varieties. Then

f B g D g B f / W

c
CHp Z; n/

c
CHp X; n/:
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gf[g Z; n/0 be the subgroup of yZp.Z; n/0 obtained considering, atProof. Let yZp

each of the complexes of the diagram yZp.Z; /0, the subvarieties W of Z n

intersecting properly the faces of n and such that

X W n intersects properly the graph of g B f
Y W n intersects properly the graph of g.

That is,

yZp
gf [g Z; n/0 D yZp

gf Z; n/0 \ yZp
g Z; n/0:

Then the proposition follows from the commutative diagram

yZp.X; /0

yZp
gBf /

g

gf[g Z; /0

yZp

f

f Y; /0:

Corollary 4.16 Homotopy invariance). Let
W X Am X be the projection on

X. Then the pull-back map

W

c
CHp X; n/

c
CHp X Am;n/

is an isomorphism for all n 1.

Proof. It follows from the five lemma in the diagram 4.13), using the fact that both
the higherChowgroups and the Deligne–Beilinsoncohomology groups are homotopy
invariant.

5. Product structure

Let X, Y be arithmetic varieties over an arithmetic field K. In this section, we
define an external product,

c
CH X; /

c
CH Y; /

c
CH X Y; / and an

internal product

c
CH X; /

c
CH X; /

c
CH X; / for the higher arithmetic

Chow groups. The internal product endows

c
CH X; / with a ring structure. It

will be shown that this product is commutative and associative. There are two main
technical difficulties. The first one is that we are representing a cohomology class

with support in a cycle by a pair of forms, the first one smooth on the whole variety
and the second one with singularities along the cycle. The product of two singular
forms has singularities along the union of the singular locus. Therefore, in order to
define a cohomology class with support on the intersection of two cycles we need
a little bit of homological algebra. To this end we adapt the technique used in [5].
The second difficulty is that the external product in higher Chow groups is not graded
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commutative at the level of complexes, but only graded commutative up to homotopy.
To have explicit homotopies we will adapt the techniques of [19].

Recall that the higher arithmetic Chow groups are the homology groups of the

01

simple complex associated to a diagram of complexes. Therefore, in order to define
a product, we use the general procedure developed by Beilinson, as recalled in 1.4.
To this end, we need to define a product for each of the complexes in the diagram
yZp.X; /0 4.1), commuting with the morphisms 1, and i The pattern for
the external product construction is analogous to the pattern followed to define the
external product for the cubical higher Chow groups, described in 2.3.

For the complex Zp.X; /0 we already have an external product recalled in §2.3.

Since the complex Hp.X; /0 is isomorphic to Zp
R XR; /0, the external product on

the complex H X; /0 can be defined by means of this isomorphism. We will now
construct the product for the remaining complexes.

5.1. Product structure on thecomplexesDA X; p/andZD2p
log X;p/ We start

by defining a product structure on DA X;p/. Let

X Y n m p13
X n; X Y n m p24

Y m

log.X n;p/be the projections indicated by the subindices. For every 1 2 Dr
log.Y m; q/, we defineand 2 2 Ds

1 A 2 WD 1/nsp13!1 p24!2 2 D rCslog X Y nCm; p C q/;

where in the right hand side is the product in the Deligne complex see §1.8).

This gives a map

Dr1
A Y; q/ A Dr1Cr2

A X; p/ D r2
A X Y; p C q/;

1; 2/ 7 1 A 2:

Lemma 5.1. The map A satisfies the Leibniz rule. Therefore, there is a cochain
morphism

s.DA X; p/ DA Y; q// A DA X Y; p C q/:

Proof. Let!1 2 Drlog.X; n/and!2 2 Dslog.Y; m/. By definition of i, the following
equality holds

i.p13!1 p24!2/ D p13.i!1/ p24!2 C 1/np13!1 p24.i!2/:
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Then

ds.!1 A 2/ D 1/nsds.p13!1 p24!2/

D 1/nsdD.p13!1 p24!2/ C 1/rCsCnsi.p13!1 p24!2/

D 1/nsdD.p13!1/ p24!2 C 1/rCnsp13!1 dD.p24!2/

C 1/rCsCnsp13.i!1/ p24!2

C 1/rCsCnCnsp13!1 p24.i!2/

D dD!1 A 2 C 1/rCn 1 A dD.!2/

C 1/r i!1 A 2 C 1/rCnCs 1 A i.!2/

D ds.!1/ A 2 C 1/rCn 1 A ds.!2/;

as desired.

Definition 5.2. Let Dlog.X Y ; p/0 be the 3-iterated cochain complex
whose r; n; m/-th graded piece is the group Drlog.X Y n m; p/0 and
whose differentials are dD; i; i/. Let

DA A.X Y; p/0 WD s Dlog.X Y ; p/0 5.3)

be the associated simple complex.

Remark 5.4. Observe that there is a cochain morphism

DA A.X Y; p/0 DA X Y;p/0

log.X Y n m; p/ to 2 Drsending 2 Dr log.X Y nCm; p/ under
the identification

nCm Š n m ;

x1; : :: ; xnCm/ 7 x1; : : : ; xn/; xnC1; :: : ;xnCm//:

Moreover, the product A that we have defined previously, factors through the
morphism and a product, also denoted by A,

DA X;p/ DA Y; q/ A DA A.X Y; p C q/:

In order to define the product on the complex ZD2p
log X; p/ recall that we have

an isomorphism see [5])

log X;p/ Š ZEp;pZD2p
log;R X/.p/
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and that the restriction of the product to this subspace is given by the product ^.
The inclusion i is compatible with the product A and the product ^. That

is, consider the projections pX W X Y X and pY W X Y Y Then, if
2 ZEp;p X/.p/ and 2 ZEq;q

log; log; Y /.q/, we putR R

^ D pX / ^ pY / 2 ZEpCq;pCq
log;R X Y /.p C q/:

We have a commutative diagram

ZEp;p
log;R Y /.q/ ^log;R X/.p/ ZEq;q

i i

ZEpCq;pCq
log;R X Y /.p C q/

i

s.DA X; p/0 DA Y; q/0/
A

DA X Y; p C q/0:

5.2. Product structure on the complex DA;Zp X; p/. We define here a product

on the complex DA;Zp.X; p/. It will be compatible with the product on DA X; p/,
under the morphism and with the product on Hp.X; /0 under 01

Let X; Y be two real varieties. For every p, let Zp
X;n be the subset of codimension

p subvarieties of X n intersecting properly the faces of n. Let

X;Y;n;m ZpCqZp;q
X Y;nCm

be the subset of the set of codimension p C q subvarieties of X Y nCm,

intersecting properly the faces of nCm, which are obtained as the cartesian product

Z W with Z 2 Zp
X;n and W 2 Zq

Y;m
For shorthand, we make the following identifications:

Zq
Y;m D fX Z j Z 2 Zq

Y;mg Zq
X Y;nCm

;

Zp
X;n D fW Y j W 2 Zp

X;mg Zp
X Y;nCm

:

To ease the notation, we write temporarily

n;m
X;Y WD X Y n m:

For every n, m, p, q, let j p;q
X;Y n; m/ be the morphism

Dlog.
n;m

X;n; p C q/ ° Dlog.
n;m

X;Y nZ
p

X;Y n Zq
Y;m; p C q/

jp;q
X;Y n;m/

Dlog.
n;m
X;Y n Zp

X;n [Zq
Y;m; p C q/

induced on the limit complexes by the morphism j in Lemma 1.29.
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Lemma 5.5. There is a short exact sequence

0 Dlog.
n;m
X;Y n Zp;q

X;Y;n;m; p C q/

Dlog.
n;m

X;n; p C q/° Dlog.
n;m

X;Y n Zp
X;Y n Zq

Y;m; p C q/

jp;q
X;Y n;m/

Dlog.
n;m
X;Y n Zp

X;n [ Zq
Y;m; p C q/ 0:

Proof. This follows from Lemma 1.29.

By the quasi-isomorphism between the simple complex and the kernel of an
epimorphism see 1.2)), for every n, m, there is a quasi-isomorphism

Dlog.
n;m

X;Y;n;m; p C q/ s. jp;q
X;Y n Zp;q

X;Y n;m//
7 .!;!; 0/:

It induces a quasi-isomorphism

Dlog;Zp;q
X;Y;n;m X;Y ;pCq/ s Dlog.

n;mn;m
X;Y ; pCq/ X;Y n; m// ;

ip;q
X;Y n;m/

s. j p;q

5.6)
where ip;q

X;Y n;m/ is defined by

Dlog.
n;m
X;Y ;p C q/

ip;q
X;Y n;m/

s. jp;q
X;Y n; m// ;

7 .!; !;0/:

Remark 5.7. Observe that there is an induced bicubicalcochain complex structure on

s.ip;q
X;Y ; // For every r, let s.ip;q

X;Y ; //r0 denote the 2-iterated complex obtained
by taking the normalized complex functor to both cubical structures. Consider the
3-iterated complex s.ip;q

X;Y ; //0 whose piece of degree r; n; m/ is the group

r 2pC2qs.ip;q
0 and whose differential is ds; i; i/. Denote by s.ip;q

X;Y n; m//r X;Y /0 the
associated simple complex. Observe that the differential of D 0; 1; 2/; 3/ 2
s.ip;q

X;Y /r0 is given by

d0s. 0; 1; 2/; 3/ D dD 0; 0 dD 1; 0 dD 2/; 1 C 2 C dD 3/:

Definition 5.8. Let A be the map

log;Zp.X n; p/0 DsDr
log;Zq Y m ; q/0

A s.ip;q n;m//rCs
X;Y 0

defined by sending .!; g/ 0;g0/ to

1/ns 0; g 0; 1/r g0/; 1/r 1g g0/:
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Lemma 5.9. The map A defines a pairing of complexes

s DA;Zp.X;p/0 DA;Zq Y; q/0
A s.ip;q

X;Y /0 :

log;Zp.X n; p/0 and 0; g0/ 2 DsProof. Let .!; g/ 2 Dr log;Zq Y m; q/0.

Then we have to see that

d0s..!; g/ A 0; g0// D d0s.!; g/ A 0; g0/ C 1/r n.!; g/ A d0s.!0; g0/:

That is, we have to show that the following two equalities hold:

ds..!; g/ A 0; g0// D ds.!; g/ A 0; g0/ C 1/r n.!; g/ A ds.!0; g0/;

i..!; g/ A 0; g0// D 1/si.!;g/ A 0; g0/ C 1/n.!;g/ A i.! 0; g0/:

The proof of the second equality is analogous to the proof of Lemma 5.1. The first
equality is a direct computation.

We define a complexDA A;Zp;q
X;Y

X Y; pCq/0 that is analogous to the complex

DA A X; p/0 of Definition 5.2.

Definition 5.10. Let DA A;Zp;q
X;Y

X Y; p Cq/0 be the simple complex associated

to the 3-iterated complex whose r; n; m/ graded piece is

Dr
log;Zp;q

X;Y;n;m
X Y n m; p C q/0:

As in Remark 5.4, we will denote by the morphisms obtained by identifying
n m with nCm.

DA A;ZpCq X Y; p C q/0 DA; ZpCq X Y; p C q/0:

We will denote by the morphisms obtained by forgetting the support:

DA A;Zp;q
X;Y

X Y; p C q/0 DA A.X Y;p/0;

X;Y /0s.ip;q DA A.X Y;p/0:

There are also natural morphisms, whose definitions are obvious,

DA A;Zp;q
X;Y

X Y; p C q/0 DA A;ZpCq X Y; p C q/0;

DA A;Zp;q
X;Y X;Y /0X Y; p C q/0 s.ip;q :

Lemma 5.11. The natural map

DA A;Zp;q
X;Y X;Y /0X Y;p C q/0 s.i p;q 5.12)

is a quasi-isomorphism. Moreover, it commutes with
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Proof. It follows from the quasi-isomorphism 5.6).

The external product on DA;Z ; /0 is given, in the derived category of
complexes, by

Dr
A;Zp

X
X;p/0 Ds

A;Zq
Y

Y;q/0 A s.ip;q
X;Y /rCs

0

D rCs
A A;Zp;q

X;Y
X Y; p C q/0 DrCs

A;ZpCq
X Y

X Y; p C q/0:

The fact that to define the product in this complex we need to invert a quasi-isomorphism

is the main reason of the complexity of the definition of the product on the
higher arithmetic Chow groups.

By definition, it is clear that this morphism commutes with the morphism defined
on the complex DA X; p/. It remains to be seen that the product on D2p n

A;Zp X; p/0

is compatible with the product on Hp.X; n/0, under the quasi-isomorphism 01

X Y /2pC2q lLet 2 s.ip;q
0 and let

0
l ; : : : ; l

l / 2
l

M
jD0

X;Y j; l j//2pC2q
2pC2qs.ip;q

0

be the components of corresponding to the degree .2pC2q; j; j l/. These are
the components that have maximal degree as differential forms and, by the definition
of the truncated complex they satisfy ds!jl D 0. Thus, the form j

l defines a

cohomology class OE!j X;Y j;l j //0l in the complex s.ip;q Since there is a
quasiisomorphism

Dlog;Zp;q
X;Y

X Y l; p C q/0 s.ip;q
X;Y j; l j //0;

we obtain a cohomology class in H Dlog;Zp;q
X;Y

X Y l;p C q/0/. Hence,

l 2 HpCq.X Y;l/0. This procedure defines a chaina cohomology class OE! j
morphism, denoted by 01

X;Y /2pC2q ls.ip;q
0

0

1 HpCq X Y; l/0;

7 Xj
OE!jl :

By composition, we can define a morphism, also denoted by 01

DA A;Zp;q
X;Y

X Y; p C q/0
0

1
HpCq X Y; /0:
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Moreover there is a commutative diagram

DA A;Zp;q
X;Y

X Y; p C q/0
0

1

HpCq.X Y; /0.

DA;ZpCq X Y; p C q/0

0

1

Proposition 5.13. Let Z 2 Zp
X;n and T 2 Zq

Y;m Let OE.!Z; gZ/ 2 Hp.X; n/0
represent the class of a cycle z 2 Zp.X; n/0 with support on Z and let
OE.!T ;gT / 2 Hq.Y; m/0 represent the class of a cycle t 2 Zq.Y; m/0 with support

on T Then

OE.!Z; gZ/ A T ; gT / 2 HpCq X Y; n C m/0

represents the class of the cycle z t in ZpCq.X Y; n C m/0.

Proof. It follows from [14], Theorem 4.2.3 and [5], Theorem 7.7.

Corollary 5.14. For every p, q, n, m, the diagram

D2p n
A;Zp X; p/0 D2q m

A;Zq Y;q/0
0

1

A

Hp.X;n/0 Hq.Y; m/0

X;Y /2pC2q n ms.ip;q
0 0

1

HpCq.X Y; n C m/0

is commutative.

5.3. Product structure on the higher arithmetic Chow groups. Once we have

defined a compatible product on each of the complexes involved, the product on the
higher arithmetic Chow groups is given by the following diagram.
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Hp.X;n/0 Hq.Y; m/0 2p n
A X;p/0 DD 2q m

A Y;q/0

AZp.X;n/0 Zq.Y; m/0

1

2p n
A;Zp X;p/0 DD 2q m

A;Zq Y;q/0

0

1

A

2p
log X;p/n ZDZD 2q

log Y;q/m

i

^2.pCq/ n m
A A X Y;pCq/0HpCq.X Y;nCm/0 D

1

ZpCq.X Y;nCm/0
p;q
X;Y/s.i 2pC2q n m

0

0

1

2.pCq/
log X Y;pCq/nCmZD

i

2.pCq/ n m
A A X Y;pCq/0HpCq.X Y;nCm/0 D

1

DZpCq.X Y;nCm/0
2.pCq/ n m
A A;Zp;q

X;Y
X Y;pCq/0

0

1

2.pCq/
log X Y;pCq/nCmZD

i

2.pCq/ n m
A X Y;pCq/0HpCq.X Y;nCm/0 D

1

ZpCq.X Y;nCm/0
2.pCq/ n m
A;ZpCq X Y;pCq/0D

0

1

2.pCq/
log X Y;pCq/nCmZD

i

Observe that, in the first set of vertical arrows is where the product is defined, in
the second set of vertical arrows we are just inverting the quasi-isomorphism 5.12),
finally in the last set of vertical arrows we are applying the morphism

The abovediagram inducesamorphism in thederived category ofchain complexes

s yZp X; /0 yZ
q Y; /0 [ s yZpCq X Y; /0 D yZpCq X Y; /0:

Recall here the notation we are using, the symbol yZp.X; /0 denotes the diagram
where the symbol yZp.X; /0 denotes the associated simple complex.

By 1.4, for any 2 Z there is a morphism :

yZp X; /0 yZq Y; /0 s yZ
p X; /0 yZ

q Y; /0 :

The composition of with[ induces a product

c
CHp X;n/

c
CHq Y; m/ [

c
CHpCq X Y; n C m/;

independent of
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Finally the pull-back by the diagonal map X X X gives an internal product
on

c
CHp.X; /:

c
CHp X; n/

c
CHq X; m/ [

c
CHpCq X X; n C m/

c
CHpCq X;n C m/:

Thus, in thederivedcategory ofcomplexes, the product isgiven by thecomposition

yZp X; n/0 yZq X;m/0

s yZp X; n/0 yZq X; m/0 [ yZpCq X X;n C m/0

yZpCq X X;n C m/0 yZpCq X; n C m/0:

Remark 5.15. It follows from the definition that, for n D 0, the product [ agrees

with the product on the arithmetic Chow group

c
CHp.X/ defined in [5].

5.4. Commutativity of the product. Let X;Y be arithmetic varieties over a field
K. We prove here that the pairing defined in the previous subsection on the higher
arithmetic Chow groups is commutative, in the sense detailed below.

We first introduce some notation:

If B ; C are chain complexes, let

W s.B C / s.C B /

be the map sending b c 2 Bn Cm to 1/nmc b 2 Cm Bn.

Let X;Y be the morphism

X;Y W Y X X Y

interchanging X with Y

We will prove that there is a commutative diagram

c
CHp.X; n/

c
CHq.Y; m/ [

c
CHpCq.X Y;n C m/

X;Y

c
CHq.Y; m/

c
CHp.X; n/ [

c
CHpCq.Y X; n C m/.

In particular, the internal product on the higher arithmetic Chow groups will be
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graded commutative with respect to the degree n. That is, if W 2 c
CHp.X; n/ and

Z 2
c
CHq.X; m/, then

W [Z D 1/nmZ [ W:

Recall that, by definition, the product factorizes as

c
CHp X;n/

c
CHq Y; m/ HnCm.s. yZp X; /0 yZ

q Y; /0// [
c
CHpCq X Y; nCm/:

By Lemma 1.8, this factorization is independent on the integer Moreover, there
is a commutative diagram

c
CHp.X; n/

c
CHq.Y; m/ HnCm.s. yZp.X; /0 yZq.Y; /0//

c
CHq.Y; m/

c
CHp.X;n/

1

HnCm.s. yZp.Y; /0 yZq.X; /0//

Therefore, all that remains is to check the commutativity for

s yZp X; /0 yZ
q Y; /0 [Ü yZpCq X Y; /0: 5.16)

Hence, we want to see that, in the derived category of chain complexes, there is a

commutative diagram

s yZp.X; /0 yZq.Y; /0 [ yZpCq.X Y; /0
X;Y

s yZq.Y; /0 yZp.X; /0 [ yZpCq.Y X; /0:

The obstruction to strict commutativity comes from the change of coordinates

nCm D
m n n;m n m

D nCm;
y1; :: : ;ym; x1;: : : ; xn/ 7 x1; :: : ;xn; y1; : : :; ym/:

5.17)

Recall that the product is described by the big diagram in §5.3. In order to prove
the commutativity, we change the second and third row diagrams of this big diagram,
bymore suitablediagrams. These changes do not modify the definitionof theproduct,
but ease the study of the commutativity.

We define a complex Zp
A A X; n/0 analogously to the definition of the complex

DA A X; p/0 see 5.2). Let

Zp X; n;m/0 WD Zp X; n C m/0;
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and let i0 DP
n
iD1. 1/i i0i and i00

D P
nCm
iDnC1. 1/i ni0i Then

Zp X; ; /0; i0;i00

/

is a 2-iterated chain complex. For the sake of simplicity, we denote both i0 and i00

by i.
Denote by Zp

A A X; /0 the associated simple complex, and analogously define

the complex Hp
A A X; /0.

Let yZ
p;q
A A X Y; /0 be the diagram

HpCq
A A.X Y; /0 D2.pCq/

A A X Y;p Cq/0:

ZpCq

1

A A.X Y; /0

0

1

s.ip;q
X;Y/2.pCq/

0

""""""""""""
ZD2pCq

log X Y;p Cq/

i

This diagram will fit in the second row of the new big diagram. Denote by

yZp;q
A A X Y; /0 the simple complex associated to this diagram.

The third row of the new big diagram corresponds to a diagram whose complexes
are obtained from the refined normalized complex of Definition 1.18. The fact that,
in these complexes, most of the face maps vanish is the key point to construct
explicit homotopies for the commutativity of the product. So, consider the following
complexes:

Let Zq.X; ; /00 be the 2-iterated chain complex with

Zq X; n;m/00 WD \i¤0;nC1

ker i0
i Zq X; n C m/0;

and with differentials i0; i00/ D i0
nC1

/. Denote by Zq
1 ; i0 A A X; /00 the

associated simple complex.

Let Dlog.X ; p/00 be the 3-iterated complex whose r; n; m/-
graded piece is

log.X n m; p/00 D \i¤0;nC1

Dr ker i0
log.X nCm; p/0;i D r

and with differentials dD; i0
nC1

/. Let DA1 ; i0 A X; p/00 be the associated
simple complex.

Let Dlog;Zp;q
X;Y; ;

X Y ;p Cq/00 be the 3-iterated complex with

Dr
log;Zp;q

X;Y;n;m
X Y n m; p C q/00 D \i¤0;nC1

ker i0
i
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as a subset of Drlog;Zp;q
X;Y;n;m

X Y nCm; p C q/0. The differentials are

given by dD; i0
nC1

/. Let DA1; i0 A;Zp;q
X;Y

X Y;p/00 be the associated

simple complex.

Remark 5.18. Observe that there are induced morphisms

ZpCq
A A X Y; /00

1
HpCq

A A X Y; /00;

D2.pCq/
A A;Zp;q

X;Y
X Y; p C q/00

0
1

HpCq
A A X Y; /00;

D2.pCq/
A A;Zp;q

X;Y
X Y; p C q/00 D2.pCq/

A A X Y; p C q/00:

Let yZ
p;q
A A X Y; /00 be the diagram

pCq
A A.X Y; /00 DH 2.pCq/

A A X Y;pCq/00:

Z

1

pCq
A A.X Y; /00

##########
2.pCq/
A A;ZD p;q

X;Y
X Y;pCq/00

0

1

2pCq
log X Y;pCq/

i

ZD

This is thediagram fitting in the third row of the new diagram. Let yZp;q
A A X Y; /00

be the simple complex associated to this diagram.

Lemma 5.19. Let X be an arithmetic variety over a field.

i) The natural chain morphisms

Zq
A A X; /00

i Zq
A A X; /0; 5.20)

Zq
A A X; /0 Zq X; /0; 5.21)

are quasi-isomorphisms.

ii) The natural cochain morphisms

DA A.X; p/00
i DA A.X; p/0; 5.22)

DA A;Zp;q
X;Y

X Y; p C q/00
i DA A;Zp;q

X;Y
X Y; p C q/0; 5.23)

DA A.X; p/0 DA X; p/0; 5.24)

are quasi-isomorphisms.

Proof. The proofs of the facts that the morphisms i are quasi-isomorphisms are

analogous for the three cases. For every n, m, let B.n;m/ denote eitherZp.X;n;m/,
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log.X n m;p/ or DrDr
log;Zp;q

X;Y;n;m
X Y n m; p Cq/, for some r.

The groups B.n; m/0 and B.n;m/00 are defined analogously.
Observe that for every n; m, B. ; m/ and B.n; / are cubical abelian groups. We

want to see that there is a quasi-isomorphism

s.N 2
0 N1

0 B. ; // i s.N2N 1B. ; //; 5.25)

where the superscript 1 refers to the cubical structure given by the first index n and

the superscript 2 to the cubical structure given by the second index m. A spectral
sequence argument together with Lemma 1.20 and Proposition 1.24 show that there is
a quasi-isomorphism s.N2N10 B. ; // s.N2N1B. ; //: By Lemma 1.20 and
an spectral sequence argument again, we obtain that there is a quasi-isomorphism

s.N20 N10 B. ; // i s.N2N10 B. ; //: Therefore, 5.25) is a quasi-isomorphism.
The proofs of the facts that the morphisms in 5.21) and 5.24) are quasi-isomorphisms

are analogous to each other. Therefore, we just prove the statement for the
morphism 5.21). Consider the composition morphism

j W Zq X;m/0 Zq X; 0; m/0 Zq
A A X; m/0:

The composition of morphisms Zq.X; m/0
j Zq

A A X; m/0 Zq.X; m/0 is the
identity. Hence, it is enough to see that j is a quasi-isomorphism. Consider the 1st
quadrant spectral sequence with

E1
n;m D Hm.Zq X; n; /0/:

We will see that if n 1, E1n;m D 0. By the homotopy invariance of higher Chow
groups, the map

f W Zq X n; /0
i11 i11 Zq X; /0

is a quasi-isomorphism. By Proposition 1.24, it induces a quasi-isomorphism

f W Zq X n; /0 D NZq X n; /0 NZq X; /0

where the cubical structure on Zq.X; /0 is the trivial one. Since for a trivial cubical
abelian group NZq.X; /0 D 0, we see that

Hm.Zq X; n; /0/ D 0; n > 0;

and hence

n;m D ´0 if n > 0;
E1

CHq X; m/ if n D 0:



Vol. 87 2012) Higher arithmetic Chow groups 573

It follows from the lemma that the product on the higher arithmetic Chow groups
is also represented by the following diagram of complexes:

Hp.X;n/0 Hq.Y; m/0 2p n
A X;p/0 DD 2q m

A Y;q/0

AZp.X;n/0 Zq.Y; m/0

1
##########

2p n
A;Zp X;p/0 DD

$$$$$$$$$$$

2q m
A;Zq Y;q/0

0

1

pCq
A A.X Y;nCm/0 p;q D

2p
log X;p/n ZDZD 2q

log X;q/m

i

^H 2.pCq/ n m
A A X Y;pCq/0

pCq
A A.X Y;nCm/0Z

1
##########

p;q
X;Y/s.i

$$$$$$$$$$$

2pC2q n m
0

0
1

2.pCq/
log X Y;pCq/nCmZD

i

pCq
A A.X Y;nCm/00H

i

2.pCq/ n m
A A X Y;pCq/00D

i

pCq
A A.X Y;nCm/00Z

i

1

i

2.pCq/ n m
A A;ZD p;q

X;Y
X Y;pCq/00

0
1

2.pCq/
log X Y;pCq/nCmZD

i

pCq
A A.X Y;nCm/00H 2.pCq/ n m

A A X Y;pCq/00D

pCq
A A.X Y;nCm/00Z

1

2.pCq/ n m
A A;ZpCq X Y;pCq/00D

0

1

2.pCq/
log X Y;pCq/nCmZD

i

2.pCq/ n m
A X Y;pCq/0HpCq.X Y;nCm/0 D

1

ZpCq.X Y;nCm/0
2.pCq/ n m
A;ZpCq X Y;pCq/0D

0

1

2.pCq/
log X Y;pCq/nCm.ZD

i

In the first set of vertical arrows of this diagram is where the product is defined.
In the second set of vertical rows we invert the quasi-isomorphisms that relate the
normalized complex and the refined normalized complex. Moreover, we also invert
the quasi-isomorphism analogous to 5.12). In the third set of vertical arrows we just
consider the change of supports Zp;q

X;Y ZpCq. We will denote the map induced by
this change of support by Finally in the last set of vertical arrows we apply the
morphisms induced by the identification n m

D nCm.



574 J. I. Burgos Gil and E. Feliu CMH

Let yZpCq
A A X Y; /00 denote the simple of the diagram of the fourth row. Hence,

in the derived category of complexes, this product is described by the composition

s. yZp.X; /0 yZq.Y; /0/ [ yZp;q
A A X Y; /0

yZp;q

i

%

%

%

A A X Y; /00 yZpCq
A A X Y; /00

yZpCq.X Y; /0:

A A X Y; /00 and yZpCqNote that the difference between the complexes yZp;q
A A X

X;Y ZpCq. This is indicated by either twoY; /00 lies on the change of supports Zp;q

codimension superscripts p, q in the first one or a unique codimension superscript

p C q in the second.
We next use this description of the product in the higher arithmetic Chow groups

in order to prove its commutativity.
Recall that the map n;m is defined by

nCm D
m n n;m n m

D nCm;

y1; :: : ;ym; x1;: : : ; xn/ 7 x1; :: : ;xn; y1; : : :; ym/:

Let

X;Y;n;mW Y X m n X Y n m

be the map X;Y n;m.
We define a morphism of diagrams

yZ
p;q
A A X Y; /0

X;Y;
yZ

q;p
A A Y X; /0

as follows:

Let X;Y; W ZpCq
A A X Y; /0 ZpCq

A A Y X; /0 be the map sending

Z 2 ZpCq X Y; n;m/0 to 1/nm
X;Y;n;m.Z/ 2 ZpCq Y X; m; n/0:

The morphism X;Y; W H pCq
A A X Y; /0 H pCq

A A Y X; /0 is defined
analogously.

Let X;Y; W DA A X Y; p C q/0 DA A Y X; p C q/0 be the map that,
at the ; n; m/ component, is

1/nm log.X Y n m ; pCq/0 DX;Y;n;mW D log.Y X m n ; pCq/0:

Observe that it is a cochain morphism.
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We define analogously the morphism
W s.ip;q / s.iq;p / :X;Y; X;Y Y;X

These morphisms commute with the morphisms 1; 01 and Hence, they induce a

morphism ofdiagrams and therefore amorphism on the associated simple complexes:

yZp;q
A A X Y; /0

X;Y;
yZq;p

A A Y X; /0:

A A X Y; /00 and to yZpCqNote that the morphism X;Y; restricts to yZp;q
A A X

Y; /00.

Lemma 5.26. The diagram

yZp;q
A A X Y; /0

X;Y;

yZp;q
A A X Y; /00

i

X;Y;

yZpCq
A A X Y; /00

X;Y;

yZq;p
A A Y X; /0 yZq;p

A A Y X; /00
i yZpCq

A A Y X; /00

is commutative.

Proof. The statement follows from the definitions.

Lemma 5.27. The diagram

s. yZp.X; /0 yZq.Y; /0/ [ yZp;q
A A X Y; /0

X;Y;

s. yZq.Y; /0 yZp.X; /0/ [ yZq;p
A A Y X; /0

is commutative.

Proof. It follows from the definition that the morphism
X;Y;

commutes with the
product in Z X; /0 and in H X; /0. The fact that it commutes with A and

p;q is an easy computation.

By Lemmas 5.26 and 5.27, we are left to see that the diagram

yZpCq
A A X Y; /00

X;Y;

yZpCq.X Y; /0

X;Y

yZpCq
A A Y X; /00 yZpCq.Y X; /0

5.28)
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is commutative up to homotopy. We follow the ideas used by Levine, in [19], 4, in
order to prove the commutativity of the product on the higher algebraic Chow groups.
We will end up with an explicit homotopy for the commutativity of diagram 5.28.

Remark 5.29. For any scheme X, consider the morphism

yZp
A A X; /00 yZp

A A X; /00

induced by 1/nm
n;m at each component. Then

X;Y; D X;Y
and hence,

the commutativity of the diagram 5.28) will follow from the commutativity up to
homotopy) of the diagram

yZp
A A X; /00

&&&&&&&&&&&
yZp.X; /0:

yZp
A A X; /00 '''''''''''

Let Wn be the closed subvariety of nC1 P1 defined by the equation

t1.1 x1/.1 xnC1/ D t1 t0; 5.30)

where t0 W t1/ are the coordinates in P1 and x1; :: : ; xnC1/ are the coordinates
in nC1. Recall that we have identified 1 with the subset t0 6D t1 of P1, with
coordinate x D t0=t1. Then there is an isomorphism Wn Š

n 1. The inverse
of this isomorphism is given by

nC1 'n
Wn;

x1;: : : ; xnC1/ 7 x1; : : : ; xnC1;x1 C xnC1 x1xnC1/:

Consider the projection

nW Wn n ; x1; : :: ; xnC1;t/7! x2; :: : ;xn; t/:

Let be the permutation

n n; x1; : : : ; xn/ 7! x2; : : : ; xn; x1/:

Remark 5.31. Let n;m be the map defined in 5.17). Observe that it is decomposed
as n;m D B

m: : : B : Therefore, n;m D B
m:: : B :
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It is easy to check that the following identities are satisfied:

0 D
8ˆn'nii

id if i D 1;

ii 1
0 n 1'n 1 if i D 2; : : : ; n;

if i D n C 1I

<

:̂
1 D

8ˆn'nii
in1

n if i D 1;

ii 1
1 n 1'n 1 if i D 2; : : : ; n;

in1
n if i D n C 1:

<

:̂

5.32)

n be the pull-back of Wn to X n. Then the mapsLet W X

n X n; and 'n W X nC1 W X
n W

W X
n

are defined accordingly.

Proposition 5.33. Let X be a quasi-projective regular scheme over a field k.

i) The scheme Wn is a flat regular scheme over n.

ii) There is a well-defined map

Zp X; n/
hn

Zp X;n C 1/; Y 7! 'n n Y /:

Proof. See [19], Lemma 4.1.

For every n 1, we define the morphisms

H p X; n/
hn Hp X; n C 1/;

Dlog.X n;p/ hn
Dlog.X nC1 ; p/;

Dlog;Zp.X n;p/
hn

Dlog;Zp.X nC1 ; p/;

by hn D 'n n: By Proposition 5.33, ii), these morphisms are well defined.

Lemma 5.34. Let be an element ofZq.X;n/0, Hp.X; n/0, Dlog;Zp.X n; p/0

or Dlog.X n; p/0. Then the following equality is satisfied:

ihn. / C
n 1

X
iD1

i / D C 1/nC1 /:1/ihn 1i0
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Proof. By hypothesis, i1i / D 0 for all i D 1; : : : ; n. Then, by the pull-back of the

i 'n n / D 0. Therefore, using 5.32),equalities 5.32), we see that i1

ihn. / D
nC1

X
iD1

X
jD0;1

i 'n n / D1/iCj ij
nC1

X
iD1

i 'n n /1/ii0

D C

n

X
iD2

1/i'n n 1i
0
i 1. / C 1/n 1 /

D
n 1

X
iD1

i / C 1/nC1 /;1/i hn 1i0

as desired.

Proposition 5.35. Let X be an arithmetic variety over a field. Then the following
diagram is commutative up to homotopy.

yZp
A A.X; n/00 &&&&&&&&&&&

yZp X;n/0:

yZp
A A.X; n/00 '''''''''''

Proof. We start by defining maps

Zp X; n;m/00
Hn;m

Zp X; n C m C 1/0;

Hp X; n;m/00
Hn;m Hp X; n C m C 1/0;

Dlog.X n m; p/00
Hn;m Dlog.X nCmC1 ; p/0;

Dlog;Zp.X n m; p/00
Hn;m Dlog;Zp.X nCmC1 ;p/0:

By construction, these maps will commute with 1; 01 and This will allow us to
define the homotopy for the commutativity of the diagram in the statement.

All the mapsHn;m willbe defined in the same way. Thus, letB.X; n; m/00 denote
either Zp.X; n; m/00, Hp.X; n; m/00, Dlog.X n m; p/00; or Dlog;Zp.X

n m; p/00: For the last two cases, B.X; n; m/00 is a cochain complex, while
for the first two cases, it is a group. Analogously, denote by B.X; n C m C 1/0
the groups/complexes that are the target of Hn;m. The map Hn;m will be a cochain
complex for the last two cases.

Let 2 B.X;n; m/00. Then let Hn;m. / 2 B.X;n C m C 1/0 be defined by

Hn;m. / D ´P
n 1

iD0
1/.mCi/.nCm 1/

hnCmC1.. /mCi. //; n ¤ 0;

0; n D 0:
5.36)
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From the definition it follows that:

B If B.X; n;m/00 is Dlog.X n m;p/00; or Dlog;Zp.X n m; p/00,

then

dDHn;m. / D Hn;mdD. /;
i.e. Hn;m is a cochain morphism.

B 1Hn;m D Hn;m 1, 01 Hn;m D Hn;m 01 and Hn;m D Hn;m
Recall that in all these complexes,

i0. / D i01. / 2 B.X; n 1;m/00;

i00. / D i0
nC1. / 2 B.X; n; m 1/00:

Lemma 5.37. For every 2 B.X; n; m/00 we have

iHn;m. / Hn 1;mi0 nC1. / D 1/nm
n;m. /:1. / 1/nHn;m 1i0

Proof. If n D 0, since D 0;m. / and H0;m. / D 0 the equality is satisfied. For
simplicity, for every i D 0; : : :; n 1, we denote

n;m. / D 1/.mCi/.nCm 1/
hnCmC1.. /mCi // 2 B.X; n C m C 1/0:H i

An easy computation shows that

i0

j / D ´ i0j 1 / if j ¤ 1;

i0n. / if j D 1;

and hence

i0
j /i / D

8
<̂

:̂
/i i0j i / ifj > i;
/i 1i0n. / if j D i;
/i 1i0n iCj / ifj < i:

Therefore,

iH i
n;m. / D

nCmC1

X
jD1

1/jC.mCi/.nCm 1/i0

j hnCmC1.. /mCi //

D 1/1C.mCi/.nCm 1/. /mCi /C. 1/.mCiC1/.nCm 1/. /mCiC1 /

C
nCm

X
jD2

1/jC.mCi/.nCm 1/
hnCm.i0j 1. /mCi //:

Recall that the only non-zero faces of are i01 and i0
nC1

Therefore, from the
equalities 5.32), we see that the only non-zero faces are the faces corresponding to
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the indices j D m C i C 2 and j D i C 2. In these cases, they take the values

/mCi i01 and /mCi 1i0
nC1

respectively. Therefore, if i ¤ n 1, we obtain

n;m. / D 1/.mCi/.nCm 1/. /mCi Z/iH i

C 1/.mCiC1/.nCm 1/. /mCiC1 /
C 1/.mCi/.nCm 2/

hnCm.. /mCi i01. //
C 1/iC.mCi/.nCm 1/

hnCm.. /m 1Cii0
nC1. //:

Observe that 1/iC.mCi/.nCm 1/
D 1/.mCi 1/.nCm/Cn. Therefore, the last

summand in the previous equality is exactly

H i
n 1;m.i01. // C 1/nHi

n;m 1.i0
nC1. //:

j 1 /mCi. / D 0, for j D 2; : : : ; n m. Therefore,If i D n 1, then i0

iH n 1
n;m / D 1/1C.mCn 1/.nCm 1/. /mCn 1 /

C 1/.mCn/.nCm 1/. /mCn /

C 1/n 1C.mCn 1/.nCm 1/
hnCm.. /m 1Cii0

nC1. //

D 1/.mCn 1/.nCm 1/. /mCn 1 / C

C 1/nC.mCn 2/.nCm/hnCm.. /m 1Ci i0
nC1. //:

Finally, we have seen that

iHn;m. / D 1/m.nCm 1/. /m / C
n 2

X
iD0

Hi
n 1;m.i01. //

C
n 1

X
iD0

1/nH i
n;m 1.i0

nC1. // C ;

and since 1/m.nCm 1/
D 1/nm, we obtain the equality

iHn;m. / Hn 1;m.i0
nC1. // D 1/nm

n;m. /:1. // 1/nHn;m 1.i0

Let

Zp
A A X; /00

H
Zp X; C1/0; Hp

A A X; /00
H Hp X; C1/0;

be the maps which are Hn;m on the n; m/-component. Let

D2p
A A;Zp.X;p/00

H
D2p 1

A;Zp X; p/0;
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be the maps which are 1/rHn;m on the r; n; m/-component. Observe that now

dDH D HdD:
Let

H W yZp
A A X;n/00 yZp X; n C 1/0

be defined by

H.Z; 0; 1; 2; 3/ D H.Z/; H. 0/; 1; H. 2/; H. 3//:

Let x D Z; 0; 1; 2; 3/ 2 yZp
A A X;n/00. Then

dH.x/ D iH.Z/;dsH. 0/; dD. 1/; 1H.Z/ 0

1H. 0/

C iH. 2/; H. 0/ C dsH. 3/ 1/
Hd.x/ D Hi.Z/;Hds. 0/; dD. 1/; H 1.Z/ C H 0

1 0/ C Hi. 2/;
H 0/ C Hds. 3/ C H. 1//:

log;Zp.X n m; p/00, we haveObserve that for 0 2 Dr

Hds. 0/ D HdD. 0/ C 1/rHi. 0/ D dDH. 0/ C 1/rHi. 0/;

dsH. 0/ D dDH. 0/ C 1/r iH. 0/:

log.X n m; p/00. Moreover, since 1The same remark applies to 3 2 Dr
equals zero in all degrees but 0 and H is the identity in degree zero, we have, by
Lemma 5.37,

dH.x/ C Hd.x/ D x x/:

Corollary 5.38. The following diagram is commutative up to homotopy:

yZpCq
A A X Y; /00

X;Y;

yZpCq.X Y; /0

X;Y

yZpCq
A A Y X; /00 yZpCq.Y X; /0.

Proof. It follows from Proposition 5.35.

Corollary 5.39. Let X; Y be arithmetic varieties.

i) Under the canonical isomorphism X Y Š Y X, the pairing

c
CHp X;n/

c
CHq Y; m/ [

c
CHpCq X Y; n C m/;

is graded commutative with respect to the degree n.

ii) The internal pairing

c
CHp X; n/

c
CHq X; m/ [

c
CHpCq X; n C m/;

is graded commutative with respect to the degree n.
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5.5. Associativity. We prove here that the product for the higher arithmetic Chow
groups is associative. First of all, observe that the product on Z X; /0 is strictly
associative. Hence, all that remains is to study the associativity of the product in
the complexes with differential forms, except for ZD2p

log.X;p/ where it is already
associative. The key point will be Proposition 1.26.

Denote by h the homotopy for the associativity of the product in the Deligne
complex of differential forms of Proposition 1.26. Let X, Y Z be complex algebraic
manifolds. Then the external product A is associative, in the sense that there is a

commutative diagram up to homotopy:

DrA X; p/0 DsA Y;q/0 DtA Z;l/0

A id id A

D rCs
A X Y;p Cq/0 DtA Z;l/0

A

DrA A Y Z; q Cl/0X; p/0 DsCt

A

D rCsCt
A X Y Z; p Cq Cl/0 5.40)

This follows from the fact that the homotopy h is functorial see [5]).

Proposition 5.41. Let X, Y Z be complex algebraic manifolds. Then there is a
commutative diagram, up to homotopy:

A;Zp.X; p/0 DsD r
A;Zq Y; q/0 D t

A;Zl Z; l/0

A id ****
* id

***
A

****

+++++++++++++
DrCs

A;ZpCq X Y;p Cq/0 Dt
A;Zl Z; l/0

++++++++A ++++

A;Zp.X;p/0 DsCtDr
A;ZqCl Y Z; q Cl/0

****
****

****
A

D rCsCt
A;ZpCqCl X Y Z; p Cq Cl/0

Proof. In order to prove the proposition, we need to introduce some new complexes,
which are analogous to s.ip;q

X;Y / but with the three varieties X;Y;Z. Due to the
similarity, we will leave the details to the reader.

X;Y;Z D X Y Z nCmCd LetWe write n;m;d

log.
n;m;dA D D X;Y;Z n Zp log. n;m;d

X;n ;k/°D X;Y;Z n Zq
log.

n;m;d
Y;m;k/°D X;Y;Z n ZlZ;d ; k/;

and

log. n;m;dB D D X;Y;Z n Zp;q log. n;m;d
X;Y;n;m ; k/°D X;Y;Z n Zp;l

X;Z;n;d ; k/

log.
n;m;d°D X;Y;Z n Zq;l

Y;Z;m;d;k/;
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and consider the sequence of morphisms of complexes

A i B j Dlog. n;m;d
n Zp;q;l

X;Y;Z ; k/:

X;Y n; m// denote by s. j p;q;lBy analogy with the definition of s. j p;q
X;Y;Z n; m; d//

the simplecomplex associated to this sequence ofmorphisms. Consider the morphism

Dlog.
n;m;d
X;Y;Z; k/

ip;q;l
X;Y;Z n;m;d/

s. j p;q;l
X;Y;Z n;m; d// ;

7 .!; !; !; 0; 0; 0; 0/:

Observe that for every n; m; d, the simple of this morphism is a cochain complex.
Moreover, considering the normalized complex associated to the cubical structure

at every component of s.ip;q;l
0; ; // we obtain the cochain complex s.ip;q;l /X;Y;Z X;Y;Z

analogous to the construction of s.ip;q
X;Y /0 in Remark 5.7).

Let D
A A A;Zp;q;l

X;Y;Z
X Y Z; p C q C l/0 be the complex analogous to

DA A;Zp;q
X;Y

X Y; p C q/0, but with the cartesian product of 3 varieties. It is the

simple complex associated to the analogous 4-iterated complex see Remark 5.7).
Observe that there is a quasi-isomorphism

D
A A A;Zp;q;lX;Y;Z

X Y Z; p C q C l/0 s.ip;q;l
X;Y;Z/0 :

We define a pairing

s.ip;q
0 Ds;d

X;Y n; m//r A;Zl Z; l/0 s.ip;q;l n; m; d//rCs
X;Y;Z 0

by

a; b; c/; d/ a0;b0/ D 1/.nCm/s a a0; b a0; c a0; 1/ra b0/;

d a0; 1/r 1b b0; 1/r 1c b0/; 1/r 2d b0 :

Define analogously a pairing

A;Zp.X; p/0 s.iq;lD r;n
Y;Z m; d//s

0 X;Y;Z n;m; d//rCss.ip;q;l
0

by

a; b/ a0; b0; c0/; d0/ D 1/ns a a0; b a0; 1/ra b0; 1/r a c0/;

1/r 1b b0; 1/r 1b c0; a d0/; b d0 :

It is easy to check that these two morphisms are chain morphisms.
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Lemma 5.42. The diagram

A;Zp.X;p/0 DsD r
A;Zq Y;q/0 Dt

A;Zl Z; l/0

p;q id id A

s.ip;q
X;Y /rCs

0 D t
A;Zl Z;l/0 A;Zp.X; p/0 s.iq;lD r

Y;Z/sCt
0

s.ip;q;lX;Y;Z/rCsCt
0

5.43)

is commutative up to homotopy.

log;Zp.X n;p/0; 2;g2/ 2 DsProof. Let 1;g1/ 2 Dr log;Zq Y m; q/0;

log;Zl Z d; l/0: Then the composition of the morphisms onand 3; g3/ 2 Dt
the left side of the diagram is

1/.nCm/tCns 1 2/ 3; g1 2/ 3; 1/r 1 g2/ 3;

1/rCs 1 2/ g3/; 1/r 1 g1 g2/ 3; 1/rCs 1 g1 2/ g3;

1/s 1
1 g2/ g3/; 1/s 1 g1 g2/ g3 :

The composition of the morphisms on the right side of the diagram is

1/.nCm/tCns 1 2 3/; g1 2 3/; 1/r 1 g2 3/;

1/rCs 1 2 g3//; 1/r 1g1 g2 3/; 1/rCs 1g1 2 g3/;

1/s 1
1 g2 g3//; 1/s 1g1 g2 g3/ :

Then the homotopy for the commutativity of the diagram is given by

Hn;m;d D 1/.nCm/tCns h.!1 2 3/; h.g1 2 3/;

1/rh.!1 g2 3/; 1/rCsh.!1 2 g3//;

1/r 1h.g1 g2 3/; 1/rCs 1h.g1 2 g3/;

1/s 1h.!1 g2 g3//; 1/s 1h.g1 g2 g3/ :

Observe that it gives indeed a homotopy, since H and i commute.



Vol. 87 2012) Higher arithmetic Chow groups 585

Finally, the claim of Proposition 5.41 follows from the commutative diagram all
squares and triangles, apart from the one marked with # are strictly commutative),

A;Zp.X; p/0 DsD r
A;Zq Y; q/0 D t

A;Zl Z; l/0

id q;lp;q id

s.ip;q
X;Y/rCs

0 D t
A;Zl Z; l/0 A;Zp.X; p/0 s.i q;l# D r /sCt

Y;Z 0

s.ip;q;l /rCsCt
X;Y;Z 0

D rCs
A A;Zp;q.X Y;p Cq/0 D t

A;Zl Z; l/0 A;Zp.X;p/0 DsClDr A A;Zq;t Y Z;q Cl/0

s.ip;q;l
X;Y;Z/rCsCt

0

s.ipCq;l
0 s.ip;qCl

X Y;Z/rCsCt
X;Y Z /rCsCt

0
"

D rCsCt
A A A;Zp;q;l X Y Z;p Cq Cl/0

DrCsCt
A A;ZpCq;l X Y Z;p Cq Cl/0 D rCsCt

A A;Zp;qCl X Y Z;p Cq Cl/0

DrCsCt
A;ZpCqCl X Y Z;p Cq Cl/0:

Remark 5.44. Observe that thehomotopyconstructed in the proofof Proposition 5.41

has no component in maximal degree, that is, inD2pC2qC2l
A;ZpCqCl X Y Z; pCqCl/0.

Corollary 5.45. Let X; Y; Z be arithmetic varieties.

i) Under the canonical isomorphism X Y / Z Š X Y Z/, the external
pairing

c
CHp ; n/

c
CHq ; m/ [

c
CHpCq ; n C m/;

is associative.

ii) The internal pairing

c
CHp X; n/

c
CHq X; m/ [

c
CHpCq X; n C m/;

is associative.

Proof. It follows from 5.40)and Proposition 5.41, together withRemark5.44 and the
compatibility of the homotopies in 5.40) and Proposition 5.41. For n D m D l D 0,
the associativity follows from equality 1.27).
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Finally, we have proved the following theorem.

Theorem 5.46. Let X be an arithmetic variety over an arithmetic field K. Then

c
CH X; / WD M

p 0;n 0 c
CHp X;n/

is a commutative and associative ring with unity graded commutative with respect to
the degree n and commutative with respect to the degree p). Moreover, the morphism

c
CH X; / CH X; / of Proposition 4.4 is a ring morphism.
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