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Homotopy classes of total foliations

Masayuki Asaoka, Emmanuel Dufraine and Takeo Noda*

Abstraet. On every compact and orientable three-manifold we construct total foliations (three
codimension-one foliations that are transverse at every point). This construction can be per-
formed on any homotopy class of plane fields with vanishing Buler class.

As a corollary we obtain similar results on bi-contact structures.
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1. Introduction

1.1. Main results. Let M be an oriented closed three-dimensional manifold. We
call a triple (& i)le of smooth transversely oriented plane fields on M a total plane
field if ﬂf’zl £(p) = {0} for any p in M. If each &' is integrable, it is called a
total foliation. We say two total plane fields are homotopic if they are connected by
a continuous path in the space of smooth oriented total plane fields.

A celebrated theorem due to Wood [16] showed that any plane field on a closed
three-dimensional manifold can be continuously deformed into afoliation i its homo-
topy class. In other words, there is no homotopical obstruction to the integrability for
the three-dimensional case. The main subject of this paper is to solve the analogous
problem for total foliations. That is,

Theorem 1.1. Any total plane field on a closed three-dimensional manifold is homo-
topic to a total foliation.

In other words, there is no homotopical obstruction to the integrability for total
plane fields.

Let us remark that three-dimensional closed manifolds have their Euler char-
acteristic equal to zero, which implies the existence of transversely oriented plane

*The first and third author were partially supported by JSPS PostDoctoral Fellowships for Research Abroad.
They also are partially supported by Grant-in-Aid for Young Scientists (B) No. 19740085 and No. 19740026
from MEXT Japan.
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fields. Similarly, three-dimensional closed manifolds have vanishing second Stiefel—
Whitney class, which implies the existence of total plane fields.

Hardorp [ 10], showed that any three-dimensional oriented closed manifold admits
a total foliation. However, his construction does not allow to keep track of the
homotopy class of the constructed object.

Tamura and Sato [15], gave examples of foliations on three-dimensional manifold
which admit a transverse plane field but no transverse foliation. It implies that there
exists an obstruction to deform a total plane field into a total foliation if we fix one of
the plane fields as a given foliation.

Mitsumatsu [13], Problem 5.2.7, asked which homotopy classes of plane fields
can be realized as a transverse pair of codimension-one foliations. His question is
important from the viewpoint of bi-contact structures, which we consider in the next
paragraph. The theory of characteristic classes tells that a plane field is contained
in a total plane field if and only if its Euler class vanishes. Theorem 1.1 answers
Mitsumatsu’s question immediately.

Corollary 1.2. An oriented plane field on an oriented closed three-dimensional mani-
fold is homotopic to a foliation which is contained in a total foliation if and only if
its Euler class vanishes.

We call a pair of mutually transverse positive and negative contact structures
a bi-contact structure. Mitsumatsu [12], and Eliashberg and Thurston [7] showed
that bi-contact structures naturally correspond to a projectively Anosov flow, which
exhibits partially-hyperbolic behavior on the whole manifold.

In relation with the question above, Mitsumatsu asked which homotopy class
of plane field can be realized by contact structures in a bi-contact structure. In
Theorem 2.4.1 of [7], Eliashberg and Thurston showed that any foliation except the
product foliation {S? = 10}}pest on 8§25 ST can be Capproximated by positive
or negative contact structures. It is easy to see that any mutually transverse plane
fields are homotopic to each other and that the product foliation on S2 x S! does not
admit a transverse foliation. Hence, the following is an immediate consequence of
Eliashberg—Thurston’s theorem and Corollary 1.2.

Corollary 1.3. On any oriented closed three-dimensional manifold, any oriented
plane field with Euler class zero is homotopic to positive and negative contact struc-
tures which form a bi-contact structure.

Among the realization problems of bi-contact structures, the following is quite
natural.

Question 1.4. Let & and n be positive and negative contact structures on an oriented
three-dimensional manifold M. Suppose that they arve contained in the same homo-
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topy class of plane fields with vanishing Euler class. Can we isotope & and 0 so that
(&, ) is a bi-contact structure?

We give an answer for overtwisted contact structures.

Theorem 1.5. Ler £ and n be positive and negative overtwisted contact structures
contained in the same homaotopy class of plane fields and with Euler class zero. Then,
we can isotope & and 1 so that (€, 1) is a bi-contact structure.

The answer for tight contact structures is still unknown.

1.2. Outline of proofs. The proof of Theorem 1.1 is obtained after performing a
sequence of surgeries and gluings along so-called R-components, which are solid
tori equipped with a ‘simple’ total foliation.

Section 2 is devoted to the study of the effect of a surgery on the homotopy class of
atotal foliation. In Subsection 2.1, we review two invariants of total plane fields that
determine its homotopy class completely —the spin structure and the difference of Hopf
degree. In Subsection 2.2, we define R-components of total foliations and gluing
of two total foliations along the boundaries of R-components. In Subsections 2.3
and 2.4, we define a surgery of a total foliation along an R-component and give a
surgery formula.

Section 3 is the main part of our construction of a total foliation in any given
homotopy class. It is done by a modification of Hardorp’s construction in [10]. The
main new feature in our construction is a control of the framing of R components
by insertion of ‘plugs’ (Lemma 3.22). Insertion of plugs of another type also enables
us to control the difference of Hopf degree (Lemma 3.24). In order to obtain such
plugs, we need to construct total foliations on the three-dimensional sphere S* such
that the cores of R-components form special framed links. Hardorp’s construction
is insufficient to our purpose since the framing is a very large positive number and it
is difficult to control. Tn the first step of our construction, there are two differences
from his construction :

(1) our construction is performed on a non-trivial T 2-bundle over the circle while
Hardorp’s was on T'?;

(2) foliations in our R-components may rotate several times in some sense while
they did not in Hardorp’s.

These differences leads to a simpler construction in the succeeding steps: we can
avoid dealing with a finite covering of a total foliation on the Poincaré sphere and
with a branched double covering along the unknot. As a consequence, we can obtain
an explicit description of the framings of R-components in terms of diagrams of
braids, see Proposition 3.21.

In Subsection 3.2, we give a construction of total foliations on T2 x [0,1]. In
Subsection 3.4, we describe the framings of JR-components of a total foliation that
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is given by gluing two boundary components of T'? x [0, 1]. In Subsection 3.5, we
control the framings of JR-components and show a generalized version of Hardorp's
theorem, i.e., the existence of a total foliation with any given spin structure. The
control is done by successive replacements of an R -component with a totally foliated
solid torus which contains a twisted JR-component {‘insertion of plugs’). In Subsec-
tion 3.6, we give a control of the Hopf degree. In fact, we construct a total foliation
on S?3 that admits unknotted R-components with (4 1)- and (—1)-framings and that
has the required difference of Hopf degree with the positive total Reeb foliation. By
gluing it with a total foliation that has the required spin structure, we obtain a total
foliation in any given homotopy class of total plane fields.

Section 4 is devoted to the proof of Corollary 1.3. We show that if a total foliation
admits an unknotted R-component with (+1)-framing then any positive contact struc-
ture that is sufficiently close to one of the foliations violates the Thurston—Bennequin
inequality and therefore is overtwisted. Once it is shown, the corollary is an easy
consequence of Eliashberg’s classification of overtwisted contact structures in [6].

1.3. Acknowledgements. This paper was prepared while the first and third authors
stayed at Unité de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de
Lyon and it started when the second author was at Institut Fourier, Grenoble. They
thank the members of those institutions, especially Professor Etienne Ghys for his
warm hospitality. The authors are also grateful to an anonymous referee for many
suggestions to improve the readability of the paper.

2. Gluing and surgery of total foliations

2.1. Homotopy classes of plane fields. In the rest of the paper, all manifolds and
foliations are of class C™° and all plane fields and foliations are transversely oriented.

Fix an n-dimensional manifold X equipped with a Riemannian metric. Let Fr(X)
be the set of orthonormal frames of TX . It admits a natural topology as a subset of
the set of n-tuples of vector fields on X.

When M is a three-dimensional manifold, by taking the unit normal vectors of a
total plane field, and by applying the Gram—Schmidt orthogonalization to it, we can
define a continuous map from the set of total plane fields to Fr(M). Tt is easy to see
that it induces a bijection between homotopy classes. So, we consider Fr(M) instead
of the set of total plane fields in this subsection.

First, we review some basic facts on spin structures. We denote by SO(n) the
group of special orthogonal matrices of size #n. Let X be an n-dimensional manifold
with » = 3. We fix a triangulation of X and let X; be the i-skeleton of X for
0 =i < n. ByFr(X;), we denote the set of orthonormal frames of TX |x,. A spin
structure is a homotopy class of Fr(X ) of which each representative can be extended
to an element of Fr(X3). In particular, a frame ¢ in Fr(X) induces a spin structure on
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X in a natural way. We call it the spin structure given by the frame &. Our definition
is different from the standard one that is given by a double covering of a natural
principal SO(n)-bundle, but it is known they are equivalent if » = 3, see [11].

A manifold X equipped with spin structure 5 is called a spin manifold. If X has
a boundary dX, then s induces a spin structure 5" on 9X. We call the spin manifold
(90X, 5") the spin boundary of (X, 5).

Now, we focus our attention on spin structures on three or four-dimensional man-
ifolds. We call a four-dimensional manifeld X a 2-handiebody if it is obtained
by attaching four-dimensional 2-handles to the 4-ball B* along a framed link L in
S? = dB*. We say a 2-handlebody X is even if the framing of each component of
L is even. See the first paragraph of Subsection 2.3 for the definition of framing of
knots.

Proposition 2.1. Any even 2-handlebody admits a unique spin structure. Any closed
spin three-dimensional manifold is a spin boundary of a spin 2-handlebody.

Proof. See Section 5.6 and 5.7 of [8]. O

Let M be a three-dimensional closed manifold. We denote by C(M, SO(3)) the
set of continuous maps from M to SO(3). The space Fr(M ) of frames admits a natural
action of C(M, SO(3)) given by (¢ - F)(p) = (e'(p) - F(p));_, for & = (")},
and F € C(M,S0(3)). We define a map &: Fr(M) x Fr(M) — C(M,SO(3)) by
é =8y B(&,8ép) for (¢,8¢) € Fr(M)?. Tt is easy to check that ®(., &;) is a bijective
map between Fr(M) and C(M, SO(3)).

We denote the field Z/27 by Z,. Recall the fundamental group 1 (SO(n)) of
SO(n) is isomorphic to 7, if n = 3. Let Spin(n) be the universal covering group of
SO(n).

Definition 2.2, For &, ¢y € Fr(M), we define s(&, ) € H' (M, Z,) by

s(é,e0)([¥]m) = [, €0) o V]x € 71 (SO(3)) = Z;

for any continuous loop ¥ in M. We call the above cohomology class the difference
of spin structures of ¢ and ég.

It is easy to see that {2, €5) is well-defined and is determined by the homotopy
classes of € and é3. We can see that s(¢, £y) = 0 if and only if the restrictions of &
and € to a fixed 1-skeleton are homotopic. In particular, $(&,é¢) = 0if and only if
two frames € and é, give the same spin structure.

Lemma 2.3. If two given frames é, &y € Fr(M) satisfy s(é,é0) = O, then the map
D(e, ég) admits a lift D(é,ep): M — Spin(3).
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Froof. The map ®(¢,£,) induces a trivial map between the fundamental groups.
Hence, it admits a lift to Spin(3). O

Definition 2.4. When two frames & and € of M give the same spin structure, we
define the difference of Hopf degree H(€,é¢) by the mapping degree of ®(é, ;).

Remark that H((e')?_,, (e})?_,) coincides with the difference of Hopf degree of
non-singular vector fields €' and efj forany i = 1,2, 3, which is defined in [5]. Tt is

easy to see that the formulae

H(éy,é1) = H(—é1,—€2) = —H(é1,é2), (1
H(é1,é3) = H(é1,63) + H(éz,é3) 2)

hold if &1, &3, 83 € Fr(M) give the same spin structure, where —é = (&’ ?:1 for
€ = (")

Proposition 2.5. Two frames €, &y < Fr(M ) are homotopic to each other if and only
if they give the same spin structure and satisfy H(é, ég) = 0.

Proof. It is trivial that the former implies the latter.

Suppose the latter holds for €,éq € Fr(M). Then, we have s(¢,é¢) = 0 and
H(e,ép) = 0. Fix a structure of a CW complex on M with a unique 3-cell. Let
M3 be the 2-skeleton of M. Since Spin(3) is homeomorphic to S 3, the lift ®(&, &)
of ®(¢,¢éq) is homotopic to a map F such that F [y, is a constant map. Since the
quotient space M /M also is homeomorphic to S2, the assumption H(é,8q) = 0
implies that ¥ is homotopic to a constant map. Therefore, € is homotopicto ég. O

2.2. R-components and gluing of total foliations. In the rest of the paper, we
identify the circle S* with R/Z, and the two-dimensional torus T2 with (R/Z)?.
The sum a + b is well-defined fora € S' and b € S' or R. For @ € S! and
€1,€2 € R, we denote the subset {a +r € S! |t € [e1,e2]} by [@a +€1,a + €]
We will abuse the identification of the number ¢ € [0,1] and ¢ + Z < S! when the
meaning is clear.

Put D2(r) = {{(x,y) € R? | x2 + y? < r2  forr = O and D? = D?(1). We
denote [0, 1] x T2 by W, S x D? by Z, and the origin of R? by O. We also denote
by |a, b[ the open interval {x ¢ R | a < x < b}.

For a foliation 7 on a manifold X and a point p of X, let #(p) denote the leaf
containing p. For a diffeomorphism F from X to another manifold X', let F(F)
denote a foliation on X’ such that the leaf containing F(p)is F(F (p)). For a pair
(¥, ¥2) of mutually transverse codimension-one foliations on a three-dimensional
manifold M, let ! 1 %2 be the one-dimensional foliation {¥ () N F2(p)ipens-
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Definition 2.6. Let M be a three-dimensional manifold. We say a subset R of M
is a thick Reeb component of a foliation ¥ if R contains a Reeb component R’ and
7 |W is diffeomorphic to a product foliation {f x T?};¢[0,1] on W.

Let (¢, x, y) be the standard coordinate system of S! x R?. Take a smooth odd
function y g on [k sothat 0 < yg(x) < 1if x €]1/2,3/2[and y g(x) = 0 otherwise.
Let ®R! and R? be the foliations on S! x R? that are generated by the kernel of
dy — yr(y)dt and dx — y r(x)dt, respectively.

We denote by R! the restriction of RionZ fori = 1,2. We can take a foliation
R3 on Z so that it is a thick Reeb component and (Ri)f’zl is a total foliation. See
Figure 1.

Figure 1. Foliations R!, R2, R1., and RZ..

Definition 2.7. Let (#;)?_, be a total foliation on a three-dimensional manifold M .

We call asubset R of M ein }R—componem of (7 ?:1 if there exists a diffeomorphism
¥ Z — R suchthat ¥(R*) = Fi|g fori = 1,2,3 and the restriction of ¥ 2 on a
neighborhood of aR is diffeomorphic to {7 Tz}ze[o,l] on W. The diffeomorphism
Y is called a canonical coordinate of R. The curve C(R) = #(S! x 0) admits a

natural orientation induced from ¥ and we call it the core of R.

Remark that the isotopy class of C(R) is uniquely determined as an oriented knot
in M.
Let g T? — S! x 3D? be the map given by

pr(x, y) = (x,cos(2ry), sin(Zzy)).

We define foliations R7 and R on T2 so that @& (R}.) is the restriction of R’ on
a7 for each i = 1,2. We use the following lemma in Section 4.
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Lemma 2.8. If a smooth line field &€ on T? is sufficiently C°-close to TIR}, then
there exists a closed curve which is tangent to & and homotopic to the curve S % yq,
where Yo be the point of S represented by 0.

Proof. Put A = S'x[yg—1/4, yo-+1/4]. Ifasmooth line field £ on T2 is sufficiently
COclose to TJQEIF, then it is isotopic to dA and admits an orientation which directs
inward at dA. By the Poincaré-Bendixon theorem, there exists a closed curve in 4
which is tangent to & and isotopic to S ¢ yg. U

Let ag be the integral homology class in H (T2, 7) represented by a map
X = (x,0). Remark that each closed leaf of len is the image of a curve which
represents dg.

Definition 2.9. Let (7 ?:1 be atotal foliation on amanifold M. We call aboundary
component T of M an R-boundary if there exists a diffeomorphism ¥r: T? — T
such that y¢(R%.) is the restriction of #7 to 7 fori = 1,2, and ¥ ? is diffeomorphic
to the product foliation {r x T?};¢[0,1] on a neighborhood of 7'. For an R-boundary
component T, we define ag(T) € Hi(T,7Z) by ar(T) = (¥r)«(agr).

Remark that if R is an JR-component of a total foliation on a manifold M, then
dR is an R-boundary of both R and M\ R.

We define cut and paste operations of total foliations with R-boundary by follow-
ing the idea described in [10]. First, we show that the pair (¥ |7, #2|7) of foliations
of an R-boundary of a total foliation (#* ?:1 is determined by a (T} up to isotopy.

Lemma2.10. Let F be adiffeomorphism of T? suchthat Fy(ar) = am. Then, there
exists a diffeomorphism G which is isotopic to the identity and satisfies G([RET) =
F(RL) fori = 1,2.

Proof. Let 1, be the diffeomorphism of T2 such that 7,(x,y) = (x,—y). Then,
%y ([R}) = RET fori = 1,2 and (zy)«(ar) = ar. Hence, we may assume that F is
orientation-preserving by replacing F with I o 7;, if it is necessary.

_ Pix aninteger k. Let h be a smooth function on & x [0, 1] such that ﬁ(y +n,1)=
h(y,t)+ knforany (y,r) e R x[0,1] andn € Z, and

kn ifyefnn+(1/32)],
Wy, t) = <k(n +1) ify<[n+(1/16),n + (1/4)],
k(n+1) iftyc[n+(9/32),n+1]
forany n € Z and ¢ < [0,1]. See Figure 2. The function # induces a map #: S! x

[0,1] — S'. Remark that A(-,£): S' — S is a map of degree k.
For r € [0, 1], we define a diffeomorphism Fy ; of T2 hy

Fiei(x, y) = (x + h(y,1), ).
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Since F is orientation-preserving and Fy(ar) = ar, F is isotopic to Fy ) for some
k e 7. Hence, it is sufficient to show that there exists a diffeomorphism G of T?
which is isotopic to the identity and satisfies G(R%) = Fg (R ) fori = 1, 2.

o))

S

LR D)

0 1/32 1/16 /4 9/32

Figure 2. The map A(-, £) and the foliation Fy, (R 1) for k = 1.

Since Rp(x,y1) = S! x y1 for y; € [0,1/16] and RZ(x, y2) = S' x y3 for
y2 € [1/4,5/16], we have Fy o(R%) = RZ and Fr1(R}) = Ry. The foliations
R%« and JR% are invariant under the translation (x, y) — (x + £, ). It implies that
Fk!,(fR%) is transverse to JR% for any ¢ € [0,1]. We define an isotopy {G; }se[n,1]
by Gi(x,y) € RL(x,y) M Fr (RZ(x,y)). Then, the map Gy is the identity,
G1(R}) = Ry = Fr1(Ry), and G1(RT) = Fr1(R7). O

Proposition 2.11. Fork = 1,2, let My be a three-dimensional manifold with a torai
boundary Ty and (57;; )2, atotal foliation of My, such that Ty is an R-boundary.
Suppose that a diffeomorphism . T1 — T satisfies Yryu(ag (1)) = ar(T2). Then,
there exists a total foliation (371')13:1 on My Uy My = M, UM,/[p ~ ¥{p)| and
diffeomorphisms F1: M1 — M and Fa: My — M; such that Fy is isotopic to the
identity and Fk(57k‘) = Flly, foranvi =1,2,3and k = 1,2.

3

Proof. BylLemma2.10, we can isotope (372")i:1 so that it is compatible with (7 ?:1

on a neighborhood of T} = T3 in M,y Uy M. Il

2.3. Knotted R-componentsand surgery. Let M be an oriented three-dimensional
manifold. For a smooth link L in M, let Fr(L; M) be the set of vector fields
v: L — TM on L satisfying v(p) & T,L forany p € L. A framing of L is
a connected component of Fr(l; M). An oriented knot K is null-homologous if

and only if it admits a Seifert surface S, that is, an oriented embedded surface with
a5 =K.
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Definition 2.12. Suppose an oriented knot K admits a Seifert surface S. We call an
orientation preserving embedding 1: S'xD? — M an n-framed tubular coordinate
of K if the restriction of ¢ to ! > {(0, 0)} is an orientation preserving diffeomorphism
onto K and the algebraic intersection numiber of S and ¥ (S! x {(1,0)}) is #. The
framing represented by a vector field v € Fr(K; M) tangent to w{S! x [—1, 1] > {0})
is called an n-framing of K.

It is known that the n-framing of K does not depend on the choices of S and .

If a link I is tangent to leaves of a foliation ¥, then a vector field vy, on 1. with
vr{p) € T, % \ T, L gives a framing of L. We call it the framing given by ¥ . We
say an R-component R of a total foliation (3?")3’:1 on M is nuil-homotopic if the
core C(R) is null-homotopic. In addition, if #1 gives the n-framing of C(R), we
say that R is an n-framed null-homotopic R-component. A knot is called unknotted
if it bounds an embedded disk. We say an JR-component of a total foliation on M is
unknotted if the core is unknotted.

Suppose that a total foliation (3‘7!')?:1 on M admits an R-component R. Let
J(R)Y € H{(9R, 7.) be the homaology class represented by a meridian of R. Up to iso-
topy, there exists a unique diffeomorphism £ on dR such that Fi.(am(0R)) = ar(9R)
and Fu((R)) = p(R)+ar(dR). Wecall Mg = (M \ R U R)/F(p) ~ pthe man-
ifold obtained by the standard surgery along R. By Proposition 2.11, total foliations
(71 |M_\R)?:1 and (¥? |R);-3:1 induce a total foliation (37;7 le. We call (37‘; 3:1 the
total foliation obtained by the standard surgery along R. In [10], p. 22-24, one can
see another surgery along an JR-component, which essentially yields the same total
foliation.

Lemma 2.13. If R is nuli-homotopic and k-framed, then the above M p is a manifold
obtained by a Dehn surgery along C(R) with framing coefficient k + 1.

Proof. Since R is k-framed, A(R) = ag(dR) — ku(R) is represented by the longi-
tude of C(R) corresponding to the O-framing. The condition Fx(pt(R)) = A(R) +
(k + Dp(R) implies that the coefficient of the Dehn surgery is & + 1. O

Let (F? ?:1 be a total foliation on S* and Ry,..., Ry be its R-components
with the ny,..., g-framings. Lemma 2.13 implies that the manifold obtained by
the standard surgery along R-components Rj,..., Ry is the boundary of the four-
dimensional 2-handlebody X whose Kirby diagram is Uj-{:l C(R) with the
(n; + 1)-framing on each C(R;).

As we saw in Subsection 2.1, each total plane field on M defines a spin structure
on M. Foratotal foliation (¥%)?_,, we say aspin structure on M is given by (¥ 1)3_,
if it is given by the total plane field (T?i)le.

Let (370‘ 3:1 be atotal foliation on S * with odd-framed R-components Ry, . .. ,Rg.
Let M and (77 ?:1 denote the three-dimensional manifold and the total foliation ob-
tained by the standard surgeries on all R;’s, and X the four-dimensional 2-handlebody
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corresponding to the surgery as above. By Proposition 2.1, X admits a unique spin
structure sy .

Proposition 2.14. The restriction of sx to M = dX coincides with the one given by
(‘(f; i=1"

Proof. Let h; C X be the 2-handles corresponding to C(R;) for j = 1.....k.
Total fohatlons (#4)?_, and (¥1)7_, define a spin structure s, on a neighborhood of
S3UM = dD*UdX inX = D*U U?:l h;, where D* is the four-dimensional ball.
Since H1(S?, Z2) = 0,the sphere S admits a unique spin structure. It is known that
it extends to D*. The closure of a connected component of X \ (53 U M) is either
the ball D* or a 2-handle h;. Since they are homeomorphic to the four dimensional
ball, the spin structure on S U M can be extended to X . By the uniqueness of a spin
structure on a 2-handlebody, it completes the proof. [l

2.4. Gluing formula of the difference of Hopf invariant. For two total foliations
(7 ’)t,1 and (&' )I,1 which give the same spin structure, we denote the difference
of Hopf invariant of the corresponding orthonormal frames (see Definition 2.4) by

H{(F1) . (9)7).

Definition 2.15. The positive total Reeb foliation (J? )3 | is atotal foliation on S .
which is the union of two (—1)-framed unknotted R -components.

Remark that each fR‘+ is athick Reeb foliation and the cores of two R-components
form a positive! Hopf link under the transverse orientation of [Ri

Let TSs be an orientation reversing diffeomorphism on S3. It is known that
H((IRJr i1 rSs([R )t,l) = 1 (see e.g. Lemma 24 in [4]). By formulae (1) and
(2) on page 276, we have

H((rS?’(‘(FL))l—D(R )t—l) =] *H((?l l—l’(‘ﬂ )1_1 (3)

for any total foliation (?i)le on S3.

Let (¥ 1')3,1 and (§7)7_, be total foliations on M and S°? respectively. Sup-
pose that (#7)7_, admits a null-homotopic R-component R and (§7)?_, admits
a (—1)-framed unknotted R-component R’. Since both R and S3 \ R’ are dif-
feomorphic to S! x D?, there exists a diffeomorphism ¥: S\ R’ — R such
that ¥(ar(dR")) = ar(dR) and Yr(ptr’) = jtg. Remark that the isotopy class
of ¥ is uniquely determined. By Proposition 2.11, there exists a total foliation
(7! Ug, R’ $%)? | on M such that it coincides with (¥7)7_, on M \ R and with
(¥ ($)3_, on R up to isotopy.

1Such a Reeb foliation is called a positive Reeb folzamm The orientations given as the core of the R -
component and given by the transverse orientation of J?O are opposite on one of the cores.
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Proposition 2.16. n the above situation, we have
H(F'  Up e $)_ 1 (FF ) = HAE Y, (RDZ). 4)

Proof. First, we notice that if two frames & and ¢’ on a three-dimensional manifold
M’ gives the same spin structure, then H(é,8&") is equal to the algebraic intersec-
tion number of the submanifolds {&(p) | p € M’} and {—&'(p) | p € M'} of the
orthonormal frame bundle of M.

For convenience, fix Riemannian metrics on M and S? so that ¢ is an isometry

between S*\ R’ and R. Leté4, g, éx, &4 be the orthonormal frames induced from
(FHI_,, (897, (J’?EF 3, and (F' Ug p §")7_,, respectively. By modifying
(R:_)Szl in its isotopy class, we may assume that R’ is a (—1)-framed R -component
of (R%);_, and ¢(é=@|m) = ¢z |r. Take submanifolds A = {ég(p) | p € S*}
and A’ = {—éx(p) | p € S} of the orthonormal frame bundle of S*. Let Fr
be the map between the frame bundles on S* '\ R’ and R induced by v. Then, we
have Frr(A) = {é.(p) | p € R} and Frv(A") = {—é#(p)| p € R}. Since
(' Ur.r gi)\M—\R = ¥ |M—\R, we also have

Frg(ANA)={eu(p) | peM}N{—2z(p)| pcM}

This implies formmula (4). U

3. Construction of total foliations

3.1. Braidsin W. Let SL(2,7) denote the group of 2 > 2-integer matrices with
determinant one, and I denote the identity matrix in SL.(2, 7). Each element A of
SL(2,Z) acts on T? as a diffeomorphism.

Fixn = 1and definethe points @; = (j/n, j/n)+7Z? € T*forj =0,...,n—1.

Definition 3.1. For 4 € SL(2,Z) and n > 1, wesay I" C [0,1] x T? is a smooth
n-braid twisted by A if there exists amap y: {0,...,n — 1t % [0,1] = T? and a
permutation o on {0, ..., # — 1} such that

« =4y, () ef0,...,n—1}x[0,1]}
e y(j, YA y(j 1) foranyr € [0,1]if j £ j’,and

« y(j,&) = Qyand y(j,1 —¢) = A- Qu(jy forany j = 0,...,# — 1 and any
sufficiently small & = 0.
We call asubset I'Y = {(¢, y(j, 1)) | £ € [0,1]} the j-th string of T.
Let B,(A) be the set of all smooth n-braids twisted by A.
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We can identify Br(A) with a set of smooth maps from {0, ...,n — 1} x [0, 1] to
T2. This identification induces a topology on Bn(A). Let wo(Bn(A)) be the set of
connected components of B,(A).

For A € SL(2,Z), let ¥4 be the diffeomorphism on W given by Fq(t,w) =
(1, A-w). Wedefine 1y (t,w) = (1 —t,w), t—(t, w) = (¢/2, w), and 7. (¢, w) =
((1 4+ £)/2,w)for (r,w) e W =[0,1] x T2

Definition 3.2. Let T be a braid in B, (A).
» The inverse T ™! € By(A7 ) is defined by '™t = F,—1 o ().

e The composition [« T € By(A"-A)forT € Bp(A)and TV € B, (A"} is defined
by I % I = 7 (I) U (Fy 0 7, ().

They induce corresponding operations on mo( B,(A)). We can see that they define
a group structure on (B, (1)), which is isomorphic to the braid group of n-strings
on T2. The composition also defines a free and transitive action of (B, (1)) on

wo(By(A)). In particular, each element of mo( B, (A)) gives abijective map between
7o(Br(1)) and 7o(By(A4)).

3.2. Total foliations with braided leaves. In this subsection, we fix an integer
n = 1 and a real number 5 > 0 which is sufficiently smaller than 1/, for example,
n = (100n)"Y. Putg; = (j/m) +Z € St for j = 0,...,n — 1. Recall that
Q; =(g;,9;) € T

First, we define the standard total foliction (jffvsid)le on W = [0,1] x T2, Let
(t,x, ¥) be the standard coordinate system of W = [0, 1] T 2. Fix a smooth function
j1 on R such that 0 < ¥1(x) < 5 for x €]1/16n,1/8n[ and ¥;(x) = 0 otherwise.
Let y1 bethe function on S' givenby y1(g; +x) = y1((1/28)+x)—x1((1/2n)—x)
forany j = 0,...,n — 1 and x € [0,1/n]. See Figure 3. We define 1-forms @},

1/8n 1/8n 1787 1/8n

20 120 12n

qj 4

Figure 3. Function y1.
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w2y, and w3, on W by

Wggt, X, ) = dy — x1(p)dx,

wsztd(lsxsy) - dx _Xl(x)dys

@34(1,%, yy = di — (F1(t = 3/8) + 110 —5/8))dy.

Let ﬂid be the foliation generated by the kernel of wsitd fori = 1,2,3. See Figure 4.
Tt is easy to check that the triple (#1)2_, is a total foliation.

i=1

AW 4
DS

Figure 4. Total foliation (F,)7_, on[0,1] % [/n, (j + 1)/n]%.

Definition 3.3. Let R be an embedded solid torus in M and ¥ a foliation on M\ R.
We say a foliation Fy is obtained by a turbularization of ¥ along R if R is a thick
Reeb component of ¥, and there exists a diffeomorphism ¢ of the open manifold
M \ R which is isotopic to the identity and satisfies ¥y [apr g = (5 ).

Observe that if the restriction of ¥ to R is isotopic to the product foliation
{{pt} = D?}, then we can turbularize % along R.

Let U; be the interior of [1/4,1/3] = [¢; + (1/4n),9; + (3/4n)] = S! for
J=0,....n—1and

n—1

Wo=wH\ | JU;.
j=0
Definition 3.4. We say a foliation 5 on a subset W' of W is almost horizontal if
TFo(p) C {v e T,W' | dy(v)* < n2(dt(v)* + dx(v))}
forany p € W'.

The next proposition shows how to make almost horizontal foliations part of a
total foliation.
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Proposition 3.5. For any given almost horizontal foliation ¥ on Wo, there exists an
extension F1 of ¥ to W such that (¥', F 2, ¥2)) is a total foliation.

Proof. Put
Rf = {{(3/8) +1.q; + (1/2n) + x) | (r,x) € D*(1/8n)} < S*,
R = {{(5/8) +t,9; +(1/2n) + x) | (r,x) € D*(1/8n)} x S
for j =0,...,n — 1. Let f; be a diffeomorphism of S1 which is conjugate to the

holonomy map of # along the torus dU;. By r,, we denote the rigid rotation of

i e cmenls
MRy o B M L PR
G5 b UI2B od oo D) N 3| E— -
P/ W 70 Y

TS — T N L. o L

| 1/4 3/8 5/8 3/4 i
Figure 5. The sets Wy and Rjt.

anglea € R, ie., r,(¥) = ¥ + . By aconsequence of the Fundamental Theorem of
Herman (see e.g. [3], Corollary 8.5.3), there exist o, a;‘ € R and a diffeomorphism

gjonS!suchthat f; = (g; Ty ogj_l)ormgr forany j = 0,...,n—1. It implies that
J

we can extend ¥ to an almost horizontal foliation ¥ on W Y U;’;(l)(R; 1J Rj) such
that the holonomy map of ‘§ along the torus BR}7 is conjugate to the rigid rotation To?
forany j =0,...,n—1andg = +. Since § is almost horizontal, it is transverse to
#2 and 2. A turbularization of ¥ along all Rj-jE gives a foliation ! on W which

is transverse to both . and %, See Figure 6. ]

S
Recall that Fa(r, w) = (¢, Aw), 1 (¢, w) = (1 — ¢, w), 7—(¢, w) = (t/2, w), and

T (r,w)y=((+1)/2,w)for A € SL(2,7Z)and (t,w) € W. Let (&;,ey,e,) be the

orthonormal frame on W which corresponds to the standard coordinates (¢, x, y).

Definition 3.6. For A € SL(2, Z), let tFol(4) be the set of total foliations (¥7)7_,
on W such that

o 73 ig transverse to ;.

s F!' = #1 on aneighborhood of {0} x T2 fori = 1,2,3,

o F' = Fq(F})) on aneighborhood of {1} x T fori = 1,2,3
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A

Figure 6. Total feliation associated to an extension of #p.

We introduce some operations on total foliations in tFol(A4).

Definition 3.7. Let (3“');?’:1 and (ﬁi)f’zl be total foliations in tFel{A) and tFol(A")
respectively.
e The inverse ((F1)71)7_| € tFol(A™) is defined by (F7) ™! = Fy1 o ti(F7)
fori =1,2,3.
* The composition (¥ % ﬁi)gzl € tFol(A"A) of (?i)le and (ﬁi)gzl is defined
by (57 % §1)|[o1/2) = 7 () and (7 61 |y/.1 = (v1 0 E)(5D).

We define an important subset of tHol( 4) consisting of total foliations with braided
leaves.

Definition 3.8. For A < SL(2, Z), we denote by tFol(A, #) the subset of tFol(A)
consisting of total foliations (?i)le such that I = Uf;é(?l N FH0, Q;) is an
element of B,(A). For (7! ?:1 e tFol(A, n), we denote the connected component
of B, (A) containing the above T" by U((?i)g’zl).

For any given (5;1')?:1 < thol(A4,n) and (§i)§’:1 < tFol(A’, n), it is easy to
verify that ((57")*1)?:1 is an element of tFol(A™!, n) with U(((?i)*l)?zl) =
G((?i)f’zl)_l and (¥ *ﬁi)f’:l is an element of tFol( A’ A, n) with o ((F *gi)l?’:l) =
o((F ) * o ((§)2)).

Let (?i)le be a total foliation in tFol(A4,n). Put I'V = #1 n ¥2(0, Q;) for
J=0,...,a—1 For eachk = 1,2andeach j = 0,...,n—1, there exists a smooth
function 9]2' on I'/ such that

cos(2x6] (p))e=(p) + sin(2x 6] (p))ey(p) € TF¥(p)

for any p € I'/. We define the rotation @ ((F1)}_,, j) of % along the j-th string
by
Or((F)=r. /) = (L w]) — 070, wp),

where {(0, wé), (1, w{)} = aI'/. It does not depend on the choice of (9;.
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For any sufficiently smallé > Oand j = 0,...,# —1, there exist two maps f and
g from[-24, 28] to IR such that the holonomy of #F1M%? along T'/ is given by the map
(0, w) +(x, y)) = (L, w] +A-(f(x), g(¥N). We define the é-normalized holonomy
of F¥1M¥ 2 along j-th string by the pair (H;E((jfv1 ?:1 o), HJ‘E((%VE ?:1 , 7)) of maps
from [-2, 2] to IR given by

HIQFD,, N =671 f6x), HY(FHN_, N =61 g(8y).

We denote by Diffy([—2, 2], 0) the set of diffeomorphisms f on [—2, 2] such that
£(0) = 0and 77x) Z %} <] - 2,2L

Proposition 3.9. Forany A € SL(2,7), o € ng(B,(A)), m € Z, and any sequences
(f5)724 and ()14 in Diffo([—2, 2], 0), there exists (F )], € tFol(4,n) and § > 0
such that
< o((FH_) =0,
« O((F")}_,, j) does not depend on j and belongs to the interval [m,m + 1[,
and
s HI(FD )= fand H((F 2. j) = g forany j = 0,....n— 1.

The rest of the subsection is devoted to the proof of the proposition. We divide it
into several lemmas. Put

(U)o (1) e (3 ) e (2 ) s

They satisfy the following relations:

Aiy:I’ Axy‘Al‘Axy:Az, A*:AEI‘Als Ai:*I (6)

Lemma 3.10. The triple (Fq,, {72, Fa,, (71, Fq  (F ) is a total foliation in
tFol(Ayy - A+ Ayy) for any (F1)3_, € tFol(A). Moreover, if (¥1)3_, € tFol(A4,n),
then the above triple is in tFol(Axy - A < Axy, B).

Proof. Itis aneasy consequence ofthe identities Fyq ., (Fl)=%2and Fyq,, (#2) =
&l O
std

Let o be the connected component of B, (I) represented by the constant braid
I'o = [0,1] x {Q1...., On—1} The following lemma is an interpretation of the
construction in [10] (p. 49-50) in our setting.

Lemma 3.11. For any given do > 0 and any sequences (f; ;_:;(1) and (g; J’;;é in

Diff([—2,2],0) there exist (F')}_, & tFol(I,n) and § < (0,80) such that
o((F]_,) = oo, O1FD_ J) = Ox((F D, j) = 0, HA(FN_. j) =
ﬁ,andHJ‘?((?l3 Jy=gjforanyj =0,...,n—1

i=1’
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Proof. Take § < (0, min{do, 1}). First, we fix j« < {0,...,n — 1} and a diffeomor-
phism g < Diffa([-2,2],0) and we show the lemma for the case all f;’s and g;'s
are the identity except g;, = g. Let us modify 5‘7$t1d s0 as to have the holonomy
corresponding to g. Take a smooth map y2: St > [1/4,3/4] — S! such that

(1) y2(v,1/4 4+ ¢€) =y and y2(y,3/4 —€) = y2(y,3/4) forany y € [0, 1] and
any small € > (Q,

@) x2(y, )=y ify ¢ lg;, —28,9;, +24],

B) xalgj, +y'.3/4) = q;, + 8g(57"y") forany " < [-4.4],

) %‘(y,t) > 0 and ‘%(y,t)‘ < 757! for any (y,1).

Remark that y2(-, f) is a diffeomorphism of S for any z  [1/4, 3/4].

Put J;, = [g;, —(1/4n),q;, +(1/4n)] C Stand V;, = [1/4,3/4] = J;, = S1.
Since V;, N Int Wy © {1/4,3/4} x J;, x S!, we can define a foliation ' on Wy
such that 5701 |WO\Vj* = 57st1d and

(Fo v )0 /4x,3) = {7 a0y, 0) | (1,x7) € [1/4,3/4] < T, )

%(y,t)‘ < L forany (y,1), the

forany (x, y) € J;, % [0,1]. See Figure 7. Since

Figure 7. Foliation (F |y, ).

foliation 5701 is almost horizontal. By Proposition 3.3, there exists a total foliation
(5;1')?:1 € tFol(Z) such that # 1|y, = #} and #* = ¥}, fori = 2, 3. Since I'g is
tangentto ¥ N F 72, (?i)s’zl is contained in tFol(Z, #). The holonomy of #! N #2
along the j,-th string Fé* is

©.q5 +x.g5, + 3> (Lgi + X 52(g5. +3.3/9) for (x,y) € 6.6
Hence, HI((F9)2_,, j.) is the identity map and H)ﬁi((?" 3 Js«) — g Itiseasyto

i=1° i=1°
see that Hf_((?i 3 . /)and Hﬁ((ﬁ*‘i)?zl,j) are the identity maps for all j £ j,,
and @ 1((F)7_,, /) =02((FH}_,.j)=0forany j = 0,...,n — 1.

i=1-
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By Lemma 3.10, the total foliation (Fa4,, (72), Fa,, (FH, Fa  (F *)) is con-
tained in tFol(Z, #). It easy to verify that it satisfies the required conditions for the
case f;, = g and all the other f;’s and g;’s are the identity map. Hence, we can
obtain the required total foliation for a general sequence ( f;, g; J','.’;(l) as a composition
of the total foliations given by the above construction. U

Lemma 3.12. For any given 6 € mo(Bu(I)), there exists (F')_, € tFol(I, n)

such that o((F? 1.3:1) = o and O ((F? 3’:1,]) = ®2((3‘7i)?:1,j) = 0 for any
J=0,...,—1

Proof. Fix a smooth function « on [0, 1] such that «(t) = O fort < [0, 1/4], a(t) =
1/n for ¢t € [3/4,1], and 0 < da/di(r) = 57! forany ¢ € [0,1]. Put V; =
[0, 1] % [g; —(1/4n).q; +(1/4n)] < ST and TV (y) = {(t. q;. y +a(r)) | £ € [0,1]}
for j :O,...,n—landyESl.

First, for any given m = 0,...,n — 1, there exists (37,:1)1321 € tFal(l) such that

© I lworve = Faalwo Vi, Fp = Fiiy, and

« ["™(y)is tangent to ¥} N F2 forany y € S1.
In fact, it can be obtained by the same construction as the total foliation (F# i)f’zl in
the proof of Lemma 3.11 by replacing y,(y,#) in the definition of 3701 with y + (7).

Put$l = Fu, (F2),92 = Fu, (F),and 63 = Fu, (7). Let ((F)y"H2_,
and ((57)1)2_, be the inverses of (#,1)?_, and (§])2_, respectively. Remark that
all of them are total foliation in tFol(f) by Lemma 3.10.

We define (370%7”)?:1 < tFol(1) by

FE =W w0 w8,

om m

and put g, = U((?;m ?:1) for m = 0,...,n — 2. Then, (57;”1)3:1 is a total
foliation in tFol(7, r) and o, represents a half twist of m-th and (m + 1)-st strings.

See Figure 8.

o By i d

L

o

Figure 8. Proof of Lemma 3.12.

Let (¥ )7 and (¥} )}_| be n-times compositions (F), * -~ * F2)?_, and

(G, % <= % G0)7_ respectively. Put p, = o((F] )7_,) and 7 = o ((F]} )7_)).
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We can see that both (37;,% )?:1 and (37;;ﬂ )le are total foliations in tFol(Z, n) and
m (resp. Ty,) is represented by a braid such that the m-th string winds once in the
y-(resp. x-)direction and other strings are fixed.

It is easy to see that @ ((¥7)}_,,j) = Oforany k = 1,2,m = 0,...,n—1,
and 0 = Gy, Py T~ 1t 1s known that {o,,, g, T | m = 0,...,1n — 1} generates
wo(Bn(l)) (see e.g. [1] or [9]). Hence, we can obtain the required total foliation as

a composition of the total foliations constructed above and their inverses. Ol
Lemma 3.13. There exists (5‘/?)?11 e tFol(A1, n) satisfving

O(F ., )y =1/8, ©:((F,.j)=0 )

i=11 i=1-

forany j =0,...,n—1.

Proof. Take a smooth map ya: [0, 1] — R such that
« 0= %(x) < 1~ ! holds for any x € [0,1],

« ¥3(x) = O holds for any x € [0,1 — (9/16n)], and y3(x) = 1 holds for any
x [l —=(7/16n),1].

It induces a map y3: S' — S! of degree 1. We define a diffeomorphism G of
Wo by G(t,x,¥) = (£,x,y + yalx)) if ¢ € [3/4,1] and G{¢,x,y) = (¢, x,y)
otherwise. It is well-defined and satisfies G{F1|w,) = Flylw, fori = 2, 3. Since
G(F L |w, ) is almost horizontal, Proposition 3.5 implies that there exists an extension
% of G(¥ L |w,) to W which is transverse to ¥ 2 and ¥_3,. Remark that the constant
braid Ty is tangent to § N 7.2,

Since y3(x) — x is a map of degree 0, we can take a smooth function & on
S1:c[0,1] such that a(x, ) = 0 for (x,1) € St % [0,3/4] and x = ya(x) + a(x,1)
for (x,1) € S' % [7/8,1]. We define a diffeomorphism G of W by G(t,x,y) =
(r,x,y + a(x,1)). Remark that G o G(r,x,y) = (¢,x,y) if t € [0,3/4] and
G oG(t,x,y) = (t,41(x, y)) if r € [7/8,1]. Put #' = G(9), 7| = G(F},) for
i =23and T = G(Ty). Then, (3‘71")13’:1 is a total foliation contained in tFol(A4)
and G(I'g) is a braid in B,(A1) which is tangent to #1' 1 #2. Therefore, (¥7)7_,
an element of tFol(A;,#). See Figure 9. Since #' is almost horizontal on Wy, we
have ®((F1)3_,,j)=1/8forany j = 0,...,n — 1. By the transversality of 7!

i=1°

and 5(712, we also have @2((371" ? e f)— ®1((5‘7f > jYe]—1/2,1/2] Ttimplies

i=1 i=1

@2((3(71")3’:1,j)20f0ranyj:0,...,n71. |

Starting from the total foliation (5(71i 3’:1 in Lemma 3.13, we define a total foli-
ation (¥ 3:1 by 7} = Fa., (F7), Ff = FAxy(?ll) anid & = Fa,, (7). By
Lemma 3.10 and the third equation of (6), we have (5721 3:1 e tFol(A3). By (71, we
also have

OL(F)_1. ) =0, ©2((Fiy 7)) = —1/8. (8)

forany j =0,...,8—1.
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|/
s

G(F w1
Figure 9. Proof of Lemma 3.13.

Lemma 3.14. For any m € Z, there exists (¥7)7_, € tFol(1, n) such that

O(FDI, ) = 0((FN L, ) =m

i=1: i=1°

forany j =0,...,n—1.

Proof. Let ((#1)71)7_, be the inverse of (#)?_,. Put §' = FJ = (F})~! for
i =1,2,3 Since dy = A" - Ay, we have (§i)§’:1 € tFol(A«, n). The equations
(7) and (8), we also have @1((6")7_,, j) = 1/4 and ©,((§")7_|,j) = 1/8 for

: i=107)
any j = 0,...,n—1. Let (§; ?:1 be the k-times composition of (ﬁl)le. Since
A3 = I, we have @1((35)321,]') = 1/2 and @2((ﬁ;)?:1,j) = 1/2 for any

Jj = 0,...,n — 1. Hence, (6m)-times composition (ﬁém ;’:1 of (ﬁi)g’zl is the

required total foliation for m > 0. For m < 0, it is sufficient to take the inverse
I 3=133 i N3
(Flsm) ™ =1 of Bmpi=1- 0

Lemma 3.15. For any A € SL(2,7), there exist (F1)?_
@ ((F° S’:l,j) and @2((?i)f:1, J) does not depends on j.

€ thol(A, n) such that

Proof. 1t is an immediate consequence of Lemma 3.13 and the fact that {Ay, Ay}
generates SL(2, 7). ]

Finally, Proposition 3.9 is an immediate consequence of Lemmas 3.11,3.12,3.14,
and 3.15.

3.3. Braided knots in embedded solid tori. Let ¥ be an embedding from £ =
S1 % D? to an oriented three-dimensional manifold M. We say ¥ is a O-framed
null-homotopic embedding if Ko = ¥ (S! x {(0,0)}) is null-homotopic and ¥ is a
O-framed tubular coordinate of Ky. We also say ¥ is unknotted if Ky is unknotted.

We say asmooth link L in M is W-braided if L € y(Z) and ¥~ (L) is transverse
to the production foliation {f x D?},.¢1. Remark that any component of L is a -
braided knot.
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Definition 3.16. Let L be a yr-braided oriented knot or link. We denote by n(L; )
the cardinality of 1 —1(L) M (0 x D?). We define the (i, n)-framing of L in M by a
vector field

Ua(W(t,w)) = D¥r(cosQanr)e,(t,w) + sin(Qmnt)e, (r, w))
for (t, w) € ¥ L(L), where (e;, ex., ey }is the standard frame on S e® 8 RE,

Remark that (i, #)-framing of K may not be the n-framing (in the sense of
Definition 2.12) even if ¢ is O-framed and unknotted. See Lemma 3.18.

Let Yo be a 0-framed unknotted embedding of Z into B> defined by ¢o(t, x, ¥) =
((x + 2)cos2mt,(x + 2)sin27t, y) and P, denote the projection from R to &2
given by Py, (x, ¥,2) = (x, ¥). For any given 0-framed unknotted embedding v of
Z into M, we can take an embedding ¢ of R? into M so that ¢~ ! o ¢y = ¢y, Take a
Yr-braided link L in M. The map ¢ can be perturbed into another embedding ¢ such
that the map Py, o ¢; is a regular projection associated with ¢ L(L). See e.g. [14]
for the definition of a regular projection and a link diagram. For any component K
of L, let @1 (K; 1) be the number of positive and negative crossings in the diagram
Pyyo gol_l(K). See Figure 10. We put (K ;) = o (K; %) —o_(K; ). Remark

positive crossing (+)
(f\\ \\\

y 124 /
(1 & \ negative crossing (—)
v

\()

u Im n(K;¥) =3, oflK;9)=1-3 =—

Figure 10. A link diagram of a braided knot.

/,

that @(K;v¢r) and #(K ;) depend only on the isotopy class of K as a yr-braided
knot.

We show two lemmas, which give relations between n(K; ), @(K; ¥) and the
framing of K.
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Lemma 3.17. Let ¥ be a O-framed unknotted embedding from Z to M and K be a
W-braided knot in M. Then, w(K ;) + n(K; ) is odd.

Proof. Since K is connected, it induces a cyclic permutation on the n(K; ¥r)-points
set ¥ "1 (K)M(0xD?). Then, the signature of the permutation is (—1)*&¥)+1_ Since
the induced permutation is the product of (@ (K;¢) + @ (K ) transpositions,
its signature is also (— 1)@+ & to— (K9 1y particular, n(K; ¥) — (o (K ¥) +
w_(K;¥r)) is odd. Hence, also (K ;) + n(K;¥) is. O

Lemma 3.18. Let ¢ be a O-framed unknotted embedding from Z to M and let
K be a y-braided knot in M. Then, the (3, m)-framing of K coincides with the
(wW(K; )+ m - n(K;y))-framing of K as a null-homotopic knot in M.

Proof. Suppose that the (¥, 0)-framing of K is the no-framing. It is easy to see that
the (i, m)-framing is ng + m - n(K; ). Under the identification of () and the
standard torus ¥o(Z), the (3, 0)-framing gives the blackboard framing, that is, the
one transverse to the projection to the link diagram. By a well-known result in knot
theory (see e.g. [8], Proposition 4.5.8), it coincides with the @(K; ¥)-framing of K.
Hence, we have ng = w(K; ). O

3.4. The trefoil complement. In this subsection, we construct a total foliation on
S3 containing fR-components such that their cores form an arbitrary given link. It
will be done by using the fibration of the complement of the trefoil. Note that the
same construction can be done for other fibered knot with one-punctured torus fibers,
e.g. the figure-eight knot.

Let Ay be the matrix defined in (5) and M« be the mapping torus W/(0, w) ~
(1, A -w) of the linear map defined by Ax. By Py, , we denote the natural projection
from W to M. Since any total foliation (F° ?:1 < tFol( A4) is compatible with the
projection Ppr, at AW, we can define a total foliation (Ppg, (S(f”i))f:1 on M, such
that Par, (F W Pag, (1, w)) = Pag (FH(t, w)) foranyi = 1,2, 3 and (1, w) € W.

Since Qo = (0, 0)+Z? isafixed pointof Ax, Par, ([0, 1] O¢)is aknotin My. We
denote it by K. Fix an embedding ¥g,: Z — M, such that g, (S? < {(0,0)}) =
Ko and ¥g,(r x D?) C Pag (t x D*(1/8n)).

Proposition 3.19. For any Vg, -braided link L and m ¢ Z, there exists a total
foliation (F1)?_| on My suchthat each component of L isthe core of an R-component
and its framing determined by ¥ is the (Yg,, m)-framing.

Proof. We take a smooth function & on [0, 1] such that Dyr(e. (¢, 0, 0)) is parallel to
DPpy, (cos 8(2)e(t,0,0) + sin 8(¢)e, (r,0,0)). For m € Z, we define a vector field
Uy on W by

U (1, W) = cosQamr + 0(r))ex (. w) +sin(Qamr + 0(r))e, (1, w)
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for (t,w) € W. Then, the vector field vy, = DPps, (Us;) on My is well-defined and
the restriction of v,, to a knot K in My gives the (Yg,, m)-framing of K.

Now let { F }s¢[0,1] be an isotopy of M, so that Fy is the identity map, Fi(L) €
Bn(Ay) forsome n = 1, and Fy( Py, (1 xT?)) = Py, (r xT?)foranys € [0, 1] and
t =St Put L' = Fi(L). Since {(F5(L), Um)}sefo,1] is an isotopy between framed
knots (L, v,,) and (L', vy, ), it is sufficient to find a total foliation (¥7)?_, such that
each component of L’ is the core of an R-component and its framing determined by
1 coincides with the one represented by v,,.

Take asubset Sy of {0, ..., 1 —1} such that each component of L” contains exactly
one point of {Pu, (0, Q;) | j € Se.}. By Ha: R — R, we denote the holonomy
map of the foliation R1 (see Subsection 2.2 for the definition of R1 ). Proposition 3.9
implies that there exist n > 1, § > 0, and (§7)7_, € tFol(A,, n) which satisfy the
following properties:

. Pﬂ}i (L") is tangent to B! N €2,

. ®1((§i)f’:1,j) =m+8(1)forany j =0,...,n —1,and

« both Hf((ﬁi)le,j) and Hﬁ((‘gi)le,j) are conjugate to Hg |22 for j &
St and the identity map otherwise.

The total foliation (§* )le induces atotal foliation (¥} = P, (ﬁi))f:1 on M. For
each component K’ of L', the first and the last condition above imply that there exists
an embedding ¥gx+: Z — M, such that ¥/ (S? > {(0,0)}) = K’ and yrg(R}) =
gl lygr (2)- Since 93 is transverse to (§! N §2), 57*3|WK, (z) is diffeomorphic to the
product foliation {r x D? |t € S'}. Hence, a turbularization of #2 at ygx/(Z)
produces an R-component whose core is K’

By the second condition in the above, the framing on L’ determined by #.}
coincides with the one represented by v,,. Hence, we can obtain the required total
foliation by a turbularization along a tubular neighborhood of L'. U

Let K3 be the right-handed trefoil on S3. It is known that K3 is a fibered knot
with monodromy matrix Ay (see e.g. Section 10.1 in [14]). Hence, there exists a
diffeomorphism ¢ from My \ Ky to S* %\ K3, an embedding fga from Z to $3, and
an integer My such that ¥gs(S! = {(0,0)}) = K> and

poyrg (i, rcos(2rd), rsin(2m0))) = Yg3(0 +mut, reos(2mi), Fsin(Zat)). (9)

forany 7,8 € Stand r € [0, 1]. Note that /3 is a O-framed null-homotopic embed-

ding as ¥g3(S?! x {(1,0)}) is contained in a Seifert surface @( Ppyr, (0 {T2 Y Qg})
of K3. We define another embedding g from Z to S* by

=L
4

Volt, X, ¥) = Yy (% Y T2 cos(2me), ysz sin(zm)) .
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Then, the core ¥o(S! x {(0,0)}) bounds a disk Do = trg3(0 x D*(1/2)}. In

particular, ¥o(S! x {(0,0)}) is a meridian of K3, Since ¥o(S! = {0, —1)}) is
contained in Dy, ¥ is a O-framed unknotted embedding. See Figure 11.

¥
T x t‘[fK 3
t

Figure 11. The O-framed unknotted embedding .

Lemma 3.20. For any Yro-braided link L, L' = ¢~ (L) is Y, -braided and ¢ maps
the (Yo, n —my)-framing of L to the (Vg n)-framing of L.

Proof. By direct calculation, we have

+2 x +2 x
T;'fo(!,x,y) = @OWKO(I,J}TCOSZTE (Z 7m*[) 5 J m sin 27 (me*l))

for (¢,x,y) € Z. It implies ¢! o Yot x D?) C g, (t x D?) for any t € S1.
Hence, L' = ¢~ (L) is Y¥g,-braided for any t/¢-braided link L. The above equation
also implies that ™! maps the (g, 0)-framing of L to the (Y, , —m«)-framing of
L’. Since the map iﬁ;((} o @~ o gy preserves the orientation of £ x D?, it implies that

the ¢! maps the (v, n)-framing of L to the (W¥x,, n — my)-framing of L. O

Proposition 3.21. For any yro-braided link L, there exists a total foliation (1 ?:1
on S3 such that any connected component K of L is the core of an (w(K ;) +
n(K; Wo))-framed R-component.

Proof. The link L, = Ko U ¢~ }(L) in M, is g, -braided. By Proposition 3.19,
there exists a total foliation (¥ 3:1 on M, such that each component of L. is
the core of an R-component and the framing determined by #,! coincides with the
(Vk,, 1 — my)-framing. Let Rg be the R component of (#])?_, whose core is K.
Without loss of generality, we may assume that Ry = g, (S! x D?(¢)) for some
€ > 0. Then, agn(Rg) is represented by a curve

Co = g, ({7, e cos(2m(l —my ), esin(2a(l —my)e)) | ¢ € Sty

with a suitable orientation.
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Put F% = @(F)|gzg) fori = 1,2,3 and R} = yg3(S' x D?(e)). Then,
(¥1)3_, is atotal foliation on S* \ R} with an R-boundary dR},. By (9), we have

@(Co) = Yrga({(s, e cos(2mt), e sin(Zme)) ).

Since g3 is a O-framed embedding, we can extend (#7)7_, so that R}, is a (+1)-
framed .R-component with C(Ry) = K>. Since the framing on L, determined by
F} coincides with the (g, , 1 — my)-framing, Lemma 3.20 implies that the framing
on L determined by F! is the (v, 1)-framing. Since v is a O-framed unknotted
embedding, it gives the (@ (K ; ¥9) + n( K ; g))-framing on each component K of L
by Lemma 3.18. In particular, each component K of L is the core of an (@(K; ) +
n(K; Yrp))-framed R-component. |

3.5. Aproof of Hardorp’s theorem. First, we show that we can change the framing
of an R-component by an arbitrary even integer.

Lemma 3.22. Suppose that a total foliation (H?‘i)f’:l on S* admits a k-framed R-
component R. Then, for any integer n, there exists a total foliation (5‘7”‘)321 on 3

such that it admits a (k + 2n)-framed R-component R' with C(R’) = C(R) and
57”‘|—S3\R = 5‘7‘|—S3\Rf0ri = 1208

Proof. Let ¢ be a O-framed unknotted embedding of Z into S* and L = K; U K>
be the r-braided link in Figure 12. By Proposition 3.21, we can take a total foliation
(§7)?_, on S? which admits R-components R; and R, such that K; is the core of

Im

Figure 12. The link L for the proof of Lemma 3.22.
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R; for i = 1,2 and the framings of Ry and R; are +3 and +1, respectively. Put
M, = S3\ R;. Since L is a positive Hopf link, M is diffeomorphic to Z. Hence,
there exists a diffeomorphism ¢, : Z — M, such that K; = ¢, (S % {(0,0)})
coincides with the core of R; as oriented knots and (¢4 |sz)«(a:) = ar(dR2),
where a, is the homology class in H (97, 7Z) represented by a map ¢ +— (£,1,0).
It is easy to see that K is a ¢ -braided knot. Since K is (+3)-framed and K3 is
(+1)-framed, ¥} gives the (¢, 2)-framing of K.

The lemma for n = 0 is trivial. First, we showthe lemmaforn = 1. Letir: Z —
R be a diffeomorphism such that ¢(S! < {(0,0)}) = C(R) as oriented knots and
Yela;) = axn(dR). By Proposition 2.11, if we choose ¢ suitably in its isotopy class,
then we can obtain a total foliation (%} le on S3suchthat ¥} |g = ¥ oqoj_l ($: |ar, )
and F \m = \m fori = 1,2,3. Since v is a k-framed embedding and ¢
gives the (¢, 2)-framing of C(R1) = K1, ¥ o qo;l(Rl) is a (k + 2)-framed R-
component with C(yr o q.');l(Rl)) = C(R). By inductive construction, it gives the
proof forn = 1.

Using the fact that M_ = S?\ R, is diffeomorphic to Z, we can take a diffeo-
morphism ¢ : M, — Z such that ¢_(K») = S! = {(0,0)}! as oriented knots and
(9_)(anr(R,)) = a,. Similar to ¢, K, is ¥_-braided and ¥} gives the (¢_, —2)-
framing of K. Hence, the same construction to the above completes the proof for
n<-—l. [l

Now, we give an alternative proof of Hardorp’s theorem [10] with some extension.

Theorem 3.23. For any given closed three-dimensional manifold M equipped with
a spin structure s, there exists a total foliation (F'* )?:1 such that

@

= 5 is the spin structure given by (F1)3_,

. (57");?’:1 admits two unknotted R-components Ry and R_,
Ry is(+1)-framed and R_ is (—1)-framed, and

« R_ and R_ are contained in mutually disjoint three-dimensional balls.

Proof. Let X be a four-dimensional 2-handlebody such that 9X = M and the re-
striction of the unique spin structure on X to M is 5. Let Ly be the Kirby diagram
of X. We denote by r(K) the integer-valued framing of each component K of Lg.
Remark that all #(K) are even since X admits a spin structure. Take two unknots K
and K, which are contained in mutually disjoint three-dimensional ball in S\ Ly,
Putn(K_)=0and n(K4) = 2.

Fix an unknotted embedding g of the solid torus. Recall that any link can be
Wo-braided by Alexander’s theorem (see e.g. [2], Theorem2.1). By Proposition3.21,
there exists a total foliation (?g)le on S? such that each component K of Ly U
K_ 1) K. is contained in an R-component with («w(K; o) + n(K ; ¥o))-framing.
Lemma 3.17 implies that these JR-components are odd-framed. By Lemma 3.22, we
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can modify (5} )3:1 so that the framing of an R-component R is s(C(R)) —1. Then,
the standard surgery on Lo (not Lo U K_ 1 K. produces a total foliation (5? ?:1
on M. It is easy to see that each K1 C M is the core of a (+1)-framed unknotted
R-component of (F! le. Proposition 2.14 implies that the spin structure given by

(712, iss. O

Remark The last sentence of Paragraph 14 of Chapter 7 (p. 71) of [10] seems
incorrect. In fact, branched double covering along the unknot changes the framing
of braided knots in general. For example, Figure 13 illustrates a branched double

Figure 13. Double covering of a solid torus.

covering along the unknot K,. The box represents a tangle where the difference of
the numbers of positive and negative crossings is k. Suppose that the knot K in the
left-side of the figure has the blackboard framing, which is equal to the (k + 1)-
framing. In the right-side of the figure, which is a double covering of the left-side,
the lift K/ of the framed knot K has the blackboard framing, which is equal to the
k-framing. Hence, the knot K is isotopic to K’ as a knot, but is not isotopic to K’
as a framed knot. It is because one positive crossing in the left-side is not counted in
the right-side. The same phenomenon occurs in the setting in Chapter 7 of [10].

3.6. Proof of Theorem 1.1. First, we construct a suitable total foliation on S3. Let
(R 3:1 be the positive total Reeb foliation on S, that is, a total foliation consisting
of two (—1)-framed unknotted .R-components.

Lemma 3.24. For any integer n, there exists a total foliation ($1)3_, on S3 with
unknotted R-components Ry and R_ such that H((ﬁ,‘;)f’zl 3 (L(R!—Q—)le) =n, Ryis

(+1)-framed, R_is (—1)-framed, and R | and R_ are contained in mutually disjoint
three-dimensional balls.

Proof. First, we show the lemma for n = —1. By Theorem 3.23, there exists a
total foliation (¥J)7_, on §* with unknotted R-components R and R_ such that
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R is (+1)-framed, R_ is (—1)-framed, and they are contained in mutually disjoint

three-dimensional balls B, and B, respectively. Since S*\ R, is an unknotted
solid torus, we can take an orientation reversing diffeomorphism ¢ on S? so that
@(S*\R.) = R,. Then, S*\ R, = @(R,) is a (—1)-framed unknotted R-
component of (¢(F1))3_,.

Let (§7,)7_, be the total foliation obtained by gluing (¥7)7_, and (¢(F{));_,
along R-components R4 and @(R) as in Subsection 2.4. It admits unknotted R-
components R_ and @(R_) which are contained in mutually disjoint balls B_ and

@(B) C ¢(S*\ Ry) = R.. Then, we have

H((8 )iy (RN y) = BT )7 (FD ) + HAF ) (R

= H{(@(F))i (R + HUF D (R)IZ)
= —1,

where each equality follows from the formulas (2), (3), and (4) in Subsections 2.1
and 2.3. Since R_ and ¢(R_) have the (—1) and (41)-framings respectively, the
proof for » = —1 is completed.

Second, we show the lemma for n = —1 by induction. Suppose that there ex-
ists a total foliation (&} 3’21 which satisfies the assertion of the lemma for some
n = —1. Let R’ and R’ be (+1) and {—1)-framed unknotted R-components con-
tained in mutually disjoint balls. We construct the total foliation (5:;_1 )?:1 by gluing
(ﬁ,ﬁ)?zl and (gil)f’zl along R-components R’ and R_. By the formula (4), we
have H((ﬁ,‘;fl)?:l, (fRfi_ ?:1) = 1 — 1. Tt is easy to see that R-components R’ and
@(R ) satisfy the assertion of the lemma.

For n = 0, put (ﬁ;)?zl = (go(ﬁin_l))le. By the formula (3), we have
H{(8DH?_ |, (R, 3 )= n. Itis easy to see that (¥2)7 | is the required one. O

Now, we show the following theorem which implies Theorem 1.1.

Theorem 3.25. Let M be a closed oriented three-dimensional manifold. Any homo-
topy class of total plane fields on M can be realized by a total foliation (3(7i);_°,21 with
(+1)- and (—1)-framed unknotted R-components.

Proof. Fix a spin structure § on M. By Theorem 3.23, we can take a total foliation
(7! ?:1 on M such that it admits (+1) and (—1)-framed unknotted R-components
R, and R_, and the spin structure given by (37");7’:1 is 5. By Proposition 2.5, it is
sufficient to show that there exists a total foliation (£, )?_, on M such that it admits
(+1)- and (—1)-unknotted JR-components, the spin structure given by (#,)7_, is s,
and H((F) ?:1 , (3?")311) = n for any given integer #.

Take an integer 1. Let (ﬁ;)?zl be the total foliation on S* obtained in Lemma 3.24
for n. It admits (+1)-and (—1)-framed R-components R’ and R_ which are con-
tained in mutually disjoint balls. Let (5‘7,:1 1?:1 be the total foliation obtained by gluing
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(37")?:1 and (9;)13:1 along R-components R and R’ . Since R. is contained in
a three-dimensional ball, ()} )?:1 and (37!)?:1 give the same spin structure. By
Proposition 2.16, we obtain H(( ] ?:1 : (37")1.:1) = n. Itis easy to see that R_ and

R’ are (—1) and (+1)-framed unknotted .R-components of (F1? O

i=1

4. Bi-contact structures

First, we recall some basic definitions and results on contact topology. A plane field
£ on a three-dimensional manifold M is called a positive (resp. negative) contact
structure if it is the kernel of a 1-form & with ¢ A da > 0 (resp. ¢ A da < (). We
say a knot K in (M, £) is Legendrian if it is tangent to €. The Thurston—Bennequin
invariant th( K, £) is the integer-valued framing of a null-homologous knot K given
by &. The rotation rot(K, £) is the Euler number y(&, X, K) of & on a Seifert surface
Y relative to K.

A contact structure § on M is called overtwisted if there exists a Legendrian
unknot K such that th(K,&) = 0. We say & is tight if it is not overtwisted. It is
known that if & is tight, then any null-homologous Legendrian knot K satisfies the
Thurston—Bennequin inequality:

th(K,£) + x(X) = —[rot(K, §)],

where y(X) is the Euler number of a Seifert surface X of K.

Theorem 4.1 (Eliashberg, [6]). Let M be a three-dimensional closed manifold, any
homotopy class of plane fields on M contains exactly one positive (resp. negative)
overtwisted contact structure up to isotopy.

The following lemma gives a criterion for the overtwistedness of a contact structure
which is close to a foliation of a total foliation.

Lemma 4.2, Let (F1)?_| be a total foliation on a three-dimensional manifold M
and suppose it admits a (+1)-framed (resp. (—1)-framed) unknotted R-component
R. Then, any positive (resp. negative) contact structure which is sufficiently C%-close
to T is overtwisted.

Proof. We show the assertion for positive contact structures. The proof for negative
contact structures is obtained by reversing the orientation.

The foliation ¥ 1|3z admits a closed leaf C which is isotopic to the core of R as
an oriented knot in M. In particular, C is unknotted. The foliation #1 gives the
(+1)-framing on C.

Recall that dR is a leaf of 3. By Lemma 2.8, if a smooth plane field & is
sufficiently C%-close to 7 # !, there exists a closed curve C: in dR which is tangent
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to & N T %3 and isotopic to C in dR. The curve C¢ is unknotted in M, and hence,
it bounds a disk D¢. Since & M T 53 gives an trivialization of & on D¢, we have
rot(Ce, &) = 0.

By the transversality, ¥ ' and # % define the same framing on C, and & and ¥ 3
define the same framing on C¢. Hence, the framing on Cg¢ given by & is (+1). In
particular, th(Cg, &) = +1. It violates the Thurston—Bennequin inequality since

th(Cg, &) + 3(Dg) = 2> 0 = |rot(Cs, £). O

Now, we prove Theorem 1.5. Let M be a closed and oriented three-dimensional
manifold. Fix a pair (£, 5) of positive and negative contact structures such that they
are homotopic as plane fields and their Euler class is zero. Then, there exists a total
plane field (§7)} | on M such that & is homotopic to § and # for i = 1,2,3. By
Theorem 3.25, (§;)7_, is homotopic to a total foliation (#7)7_, on M which admits
(4+1) and (—1)-framed unknotted R-components.

By the fundamental theorem of confoliations ([7], Theorem 2.4.1) we can take a
bi-contact structure (&, n4) on M so that £, is C %-sufficiently close to 7! and #, is
CY-sufficiently close to # 2. Lemma 4.2 implies that both £, and 7. are overtwisted.
By Theorem 4.1, &, and 5. are isotopic to & and 7 as contact structures, respectively.
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