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Poisson—Furstenberg boundary of random walks on wreath
products and free metabelian groups

Anna Erschler

Abstract. We study the Poisson—Furstenberg boundary of random walks on C = A? B, where
A=7%and Bisa finitely generated group having at least 2 elements. We show that for d > 5,
for any measure on C such that its third moment is finite and the support of the measure generates
C as a group, the Poisson boundary can be identified with the limit “lamplighter” configurations
on A. This provides a partial answer to a question of Kaimanovich and Vershik [44]. Also,
for free metabelian groups Sz » on d generators, d > 5, we answer a question of Vershik [56]
and give a complete description of the Poisson—Furstenberg boundary for any non-degenerate
random walk on S » having finite third moment. Finally, we give various examples of slowly
decaying measures on wreath products with non-standard boundaries.

Mathematics Subject Classification (2010). Primary 20F69, 60B13; Secondary 43A05,
43A07, 60G50, 60J50, 30F15.

Keywords. Random walks on groups, Poisson boundary, Furstenberg boundary, lamplighter
group, free metabelian group, solvable group, amenable group, entropy criterion, conditional
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1. Introduction and formulation of main results

Let G be a finitely generated group and p be a probability measure on &. Consider
the random walk on G with transition probabilities p(x,y) = p(x~!y), starting at
the identity. We say that the random walk (G, u) is non-degenerate, if the support
of ; generates G as a semi-group. We say that the random walk is adapted, if the
support of p generates G as a group. It is clear that if the measure is symmetric,
then it is non-degenerate if and only if it is adapted. Also, these two notion coincide
for the class of centered measures on G = Z¢ (we recall that a measure /L on Z?
is called centered, if dezd gi(g) = 0). Given a probability measure @ on G we
denote by /i the measure defined by ji(g) = u(g™!) forall g € G.

Given a finite generating set § in G, we denote by [ s the word length, associated
to §. In the sequel we will usually omit the index § and we will write /g for a word
length /5 s with respect to some finite generating set §. We say that a random walk



114 A. Erschler CMH

on G has finite 7 -th first moment, if the 7 -th moment with respect to some word length
lg.s is finite, that is, deG lé,s (g)u(g) < oo. Itis clear that the finiteness of the
moment does not depend on the choice of §.

The space of onesided infinite trajectories G of the random walk (G, u) is
equipped with the probability measure P which is the image of the infinite product
measure of g under the following map from G* to G*°:

(X1, X2, X3,...) = (X1, X1 X2, X X2X3,...).

Throughout this paper, the words “with probability 17 refer to this probability on
the space of infinite trajectories. The words “with probability close to 17 mean that
for any € > 0 the event concerning the n-th step of the random walk happens with
probability at least 1 — e for any sufficiently large given n.

Poisson-Furstenberg boundary. Consider two infinite trajectories X and Y. We
say that they are equivalent if there exist N, K such that X; = Y, g foralli > N.
Consider the measurable hull of this equivalence relation in the space of infinite
trajectories. The quotient by the obtained equivalence relation is called Poisson—
Furstenberg boundary.

Equivalently, the Poisson—TFurstenberg boundary is the space of ergodic compo-
nents of the time shift in the path space G*° (for an overview of basic facts about
boundaries see [44], [38]). The Poisson—Furstenberg boundary is often also called
Poisson boundary, and its o -field 1s also called invariant o-field.

We recall that a function F: G — R is called p-harmonic, if for all g € G it
holds F(g) = ) peq F(gh)p(h). It is known that the group G admits nonconstant
positive harmonic functions with respect to some adapted measure p if and only if
the Poisson—Furstenberg boundary of the random walk is non-trivial. The boundary
can be equivalently defined in terms of bounded harmonic functions (see [24], [26],
[44]).

It is known that if the support of p generates a non-amenable group, then the
Poisson—Furstenberg boundary is non-trivial and that any amenable group G admits
a symmetric measure with the support generating G such that the boundary of ran-
dom walk is trivial [43], [44], [53]. First examples of symmetric random walks on
amenable groups with nontrivial Poisson boundary were constructed in [44], where
it was shown that a simple random walk on wreath products of Z¢, d > 3, with a
finite group (with at least two elements) has non-trivial Poisson boundary.

We recall that the wreath product of the groups A and B is a semidirect product
of Aand ) 4 B, where Aactson ) 4 B byshifts:ifa € A, f: A— B, f € ) 4B,
then f9(x) = f(a 'x),x € A. Let A B denote the wreath product.

By definition, any element of the wreath productis a pair {(a, f),a € A, f: A —
B is such that for all but finite number of a we have f(a) # ep, where ep is the
neutral element of B. We say that the support of f, denoted by supp f, is the set of
elements a such that f(a) # ep.
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Kaimanovich and Vershik have shown in [44] that for a simple random walk on
Z?, d > 3, the value of the configuration at any given point of the base A = 74
stabilizes along infinite trajectories (since the random walk on A is transient), and
this implies non-triviality of the exit boundary. In [37] and [39] (Theorem 3.6.6)
Kaimanovich has shown that a similar argument works also for measures with finite
first moment. In that papers the statement is formulated under some assumption on
A and B that are not used in the proof. For the convenience of the reader we provide
in Section 4 the proof of the lemma below. A version of this statement, when A4 is a
free group, appears in [47].

Lemmal.l. et C = A? B, p be ameasure on C having finite first moment. Suppose
that the projection of p on A defines a transient random walk. Then foralla, € Aand
P-almost every trajectory X; = (Y;, f;) (. = 1,2,...), the values f;{as) stabilize
from some time onwards, that is, fi(as) = fiy1{ax) for any sufficiently large i.

Lemma 1.1 shows that with probability 1 we can assign to each trajectory X; =
(Y1, f1), X2 = (Ya, f2),... on C the limit configuration f: A — B, for all a.
putting f(as) = lim f;(a.).

Observe that the limit configuration is the same for any two infinite trajectories
that coincide after some instant (that is, for trajectories X;, X/ are such that X; =
X/ | g for some constant K and all sufficiently large 7). Note that the space of limit
configurations carries a measure which is a projection of the measure [P on the space
of infinite trajectories. Note also that C acts on the space of limit configurations by
shifts, and that this action commutes with the action of C on infinite trajectories. A
space B with such property is called a p-boundary of the random walk (C, w). It is
known that every p-boundary is a quotient of the Poisson boundary. We denote by
g the corresponding mapping from the space of infinite trajectories G*° to B.

If we assume additionally that p is adapted, then this lemma implies that the
Poisson boundary of the random walk (C, u) is non-trivial. Indeed, assume the
contrary. Then there is a configuration £ such that the limit configuration is equal to
F with probability 1, for any trajectory of the random walk starting from the identity
element. This implies that for any x € C all trajectories starting from x have the
same limit configuration /. with probability 1. Note that for any v € supp p we
have Fy = yFyy. If support p generates C, this cannot happen.

It is known, moreover, that the boundary 1s non-trivial for every finite entropy
measure p as above such that the projection of the random walk on A is transient (see
[20], where it is proved under the assumption that ¢ is non-degenerate).

The following theorem states that for C = A B, under suitable assumptions on
A and p, the p-boundary of the limit configuration for the random walk (C, p) is
equal to the Poisson—Furstenberg boundary of (C, ).
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Theorem 1. Let (1 be an adapted measure on C = A} B, A = 72, d > 5 #B > 2.
Assume that the third moment of v is finite and that the projection of | to Z4 is
centered. Under this assumption the Poisson boundary is equal to the space of limit
configurations.

Theorem 1 holds in general, without the assumption that the projection of u to
7 is centered. If this projection is not centered, than the projected random walk on
Z has positive drift. For measures such that the projection has positive drift, the
result is due to Kaimanovich, [39], Example 3.6.7 after Theorem 3.6.6.

Theorem 1 gives an answer, ford > 5, to the question of Vershik and Kaimanovich
about the boundary of simple random walks on Z¢ ? B which goes back to [43], see
also [44]. Until now there are no known results about a complete description of the
Poisson—Furstenberg boundary of simple random walks on wreath products Z¢ ? B
or for any other symmetric random walks on these groups. There were some more
results, however, about the non-reversible case. James and Peres have shown in [32]
that the number of visits of points of the base provides a complete description of the
Poisson—Furstenberg boundary of a certain measure on Z¢ ? ZT. See more on this
in Subsection 4.1.

The complete description of the Poisson—Furstenberg boundary has been known
for the following finitely generated groups (under certain conditions on the decay of
the probability measure defining the random walk): discrete subgroups in semi-simple
Lie group (Furstenberg [27] for a particular case of an infinitely supported measure,
“Furstenberg approximation”, Ledrappier [50] for the case of discrete subgroups of
SL(d, R), Kaimanovich [40] for a general class of measures), free groups (Dynkin,
Malyutov [18] for simple random walk on standard generators, Derriennic [14] for
measures with finite support), more generally for hyperbolic groups (Ancona [1]
for measures with finite support, Kaimanovich [40] for measures of finite entropy
and with finite logarithmic moments; see also [5]), groups with infinitely many ends
(Woess [58] for finitely supported measures, [40] for more general class of measures),
the mapping class group (Kaimanovich, Masur [42]), braid groups (Farb, Masur
[23]), for wreath products of free groups with finite groups (Karlsson, Woess [47]),
Coxeter groups (follows from Karlsson, Margulis [46], see Theorem 6.1 in [45] for
an explanation). Sometimes it is easier to 1dentify the boundary for certain non-
symmetric random walks, rather than for symmetric ones. It was done for random
walks on the wreath product Z¢ ? B with a non-zero drift of the projection on Z¢
[40], for random walks on solvable Baumslag—Solitar groups with a non-zero drift of
the projection on Z [37], and, more generally, for such random walks on the group
of rational affinities [10]. Note that in the last two examples simple random walks
have trivial boundary.

The idea of the proof of Theorem 1 can be applied not only to wreath products,
but also to some other solvable groups and group extensions. In particular, we use
it in this paper to give the complete description of the Poisson boundary for free
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metabelian groups on d generators, d > 5.

Consider a group A, and assume that A = F,,,/H, where F,, is a the free group
on m generators and H is a normal subgroup of F3,. Let §;, be the free generating
set of F,. Let Cq be Fp/[H, H], where [H, H] is the subgroup of F,, generated by
all commutators [A1, ha], b1,k € H. Let J be the image of H in C4. Observe that
J is a normal subgroup of C4 and that C4/J is equal to A. In fact, it is easy to see
that C4 depends on A only.

Elements of C4 can be identified with pairs {(a, /), where a € A and f is a
finitely supported map from the edges of the oriented Cayley graph of (A, §;,) to the
integers with the following condition: f is an integer unit flow from e to a on the
oriented Cayley graph of (A4, 5,,), when a # e, and a unit flow without source and
sink when a = e. This means that for any ax € A such that a is distinct from a and
e, 0r a, = a = e (in the case a = ¢) the sum of the values of f on all incoming
edges (in a,) is equal to the sum of values of f on outgoing edges. If ¢ # « the first
sum 1s equal the second sum plus 1 for @ and the first sum is equal to the second sum
minus 1 for e = a (for more on this see e.g. [56]).

The following lemma is analogous to Lemma 1.1.

Lemma 1.2. Let A be a finitely generated group and let ju be a measure on Cyq with a
finite first moment and such that its projection on A defines a transient random walk.
Then for all edges E,. and P-almost every trajectory X; = (Y;, fi) (@ = 1,2,...),
the values f; (E.) stabilize from some time onwards, that is, fi{E.) = fi+1(Ex) for
any sufficiently large 1.

For the case of finitely supported p the statement of the lemma is proved in [56].
We prove this lemma in Section 5.

If A = Z<, then the group C, is called a free metabelian group on d generators. In
this case, following [52], we denote C4 by Sy . For background on free metabelian
groups see [52] and references therein.

Theorem 2. Let Sy 5 be the free metabelian group on d generators, d > 5, and
be an adapted measure with finite third moment on Sy », such that it is projection to
A = Z4 is centered. Then the Poisson boundary of (S4,2. 1) is equal to the space of
the Z.-valued limit configurations on the edges of the Cayley graph (A, S,,).

If the projection of u to A = Z is not centered, then the claim of Theorem 2 is
true for any finite first moment p, and the proof is analogous to that of Theorem 3.6.6
in [39].

The paper has the following structure. In the next section we describe the idea
of the proof of Theorems 1 and 2. The proof is based on the Ray Criterion of
Kaimanovich. An essential step of the proof is the construction of the ray approxi-
mation, required by this criterion. This is done in Section 2: For each n we construct



118 A. Erschler CMH

a measurable mapping ¢, (and ¢S%) from the limit configurations space to C (and
S4,2).

In Section 3 we prove auxiliary facts about random walks on the base group A.

In Section 4 we give the proof of Theorem 1 (about wreath products). We prove
that the map ¢, constructed in Section 2, satisfies the assumption of Proposition 1
(see Section 2 below), a version of Kaimanovich’s Ray Criterion.

In Section 5 we show that the ray approximation for free metabelian groups ¢S °
satisfies the assumption of Proposition 1 and we prove Theorem 2.

In Section 6 we discuss measures with slow decay and provide examples of random
walks on wreath products, where the Poisson—Furstenberg boundary is non-trivial,
and there 18 no non-trivial partition of the boundary which can be defined in terms of
finite configurations.

2. Idea of the proofs, construction of ray approximations

Idea of the proof of Theorem 1. Informally speaking, we will proceed as follows.
First, for a fixed boundary point & we want to recover some information about the
trajectory that converges to b and about the points of the group A, visited by the
projection to A of this trajectory. This set of points cannot be recovered exactly.
We will recover it “approximately”, by constructing “growing neighborhoods” of the
support of b (set U, (b) C A, a definition will be given below). This set will be in a
sense close to our trajectory. If this set is not connected, we show that we can find a
finite neighborhood U(d) which is connected. Then, given a point a € A we want
to “guess” at what mstant the projection to 4 of the infinite trajectory, converging
to b, passed not too far from a. This is easier to guess if the point a corresponds to
a center of a “cut ball”, that is, a ball with center at a of a certain radius, depending
on [4(a), that cuts our set U(h) in such a way that e4 lies in a bounded connected
component (in other words, this cut ball “separates the identity in A from infinity”).
We will show that desired “cut balls” do exist, and that moreover they can be chosen
satisfying certain additional properties. The advantage of considering the centers «
of such “cut balls” is as follows. If we assume that at some instant ¢ the projection
of the trajectory has visited a (or some other point not far from a), we could expect
that almost all time before this instant 7 the projected trajectory was in the connected
component of the identity, and soon after this instant ¢ the projected trajectory will
stay forever outside of this connected component. If this 1s the case, we want to
“guess” the instant 7 granted b and the constructed sets (depending on the support
of #). We do this by counting the cardinality of the intersection of the support of b
with the connected component of the identity (and normalizing this cardinality by
the constant Ciayp, defined in Lemma 2.1). Finally, after “guessing” the instant 7 we
can “guess” the element of the wreath product, visited at the time ¢: we consider the
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element (a, f), where a is a center of a certain “cut ball”, described above, and f is
the configuration which coincides with & in the connected component of the identity,
while it is trivial (identically ep) outside this component.

The 1dea to consider cut balls is reminiscent of the work of James and Peres, who
used cut points of the trajectory in order to describe the exchangeability boundary
of the random walk on Z¢ [32] (for more on this see Section 4.1 of our paper). In
their situation it was sufficient to observe that if we know the number of visits of all
points in Z<¢, and if some cut-point of the trajectory is visited exactly once, then we
know the instant of the visit of this cut point (summing up the number of visits of all
points visited before). The difficulty in our case 1s that we do not know these number
of visits points and we do not know even the set of visited points. Moreover, we
have already mentioned that this set (and the number of visits) cannot be recovered
in terms of b, but we need an “approximate construction”, described above.

Ray Criterion of Kaimanovich. Below we provide a version of the Ray Criterion
from [40]. Recall that a pu-boundary of a random walk 1s a quotient of the Poisson
boundary with respect to a G-invariant measurable partition.

Proposition 1 (Kaimanovich). Consider a random walk (G, 1) and assume that
B is a p-boundary of this random walk. Suppose that for any n > 1 there is a
measurable mapping ¢, : B — G such that the following holds. lake a trajectory
X = (X1, X2,...) of the random walk (G, ) and let b = wg(X), that is, b is the
corresponding point of the p-boundary B. Then, under each of the following two
assumptions A) and B), the Poisson boundary of (G, ) is equal to B.

A) For any € > O there exists N such that for any fixedn, n > N, with probability
at least 1 — ¢ it holds distg ( Xy, ¢, (b)) < en.

B) There exists a family of subsets of G, Q(g,n, €), such that for some C; > 0
andany g € G, nand € > O suchthat#Q (g, n, €) < exp(Cr€)n. We assume that for
any € > O there exists N such that for any fixed n, n > N, the element X, belongs
to O(p,(b),n,€) with probability at least 1 — €.

In [40] it was assumed that the conditions in the statement of the proposition hold
with probability 1, but the same argument proves the statement under the weaker
condition above. Note that the assumption A) of the proposition implies that there
exists a sequence n; such that distg (Xn; , ¢a; (b))/n; tends to O with probability 1
in the first case, and, analogously, under the assumption B) there exists a sequence
n; such that for instants defined by this sequence the points belong to corresponding
(O -sets with probability 1.

A} is a particular case of B), since one can consider Q (g, n, €) to be equal to the
ball with the center at g and of radius en.

The mapping ¢, as in Proposition 1 is called ray approximation. We will prove
Theorem 1 and Theorem 2 by constructing an appropriate ray approximation.
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Construction of the ray approximation for wreath products. First we recall a
simple fact about random walks on wreath products.

Lemma 2.1. Let A and B be arbitrary finitely generated groups. Consider a random
walk on C = A B defined by a measure with a finite first moment, and a trajectory
X; =(Y;, i), i =1,2,..., of this random walk. Then

# i
lim TUPP i
I

Here # denotes the cardinality of the set.

= Clamp.

The constant Cianp is studied by Gilch in [28].

Proof. Consider X; m = (Yi,m. fi.m) such that X; 1, = X; X X, n. Note that for all
i,m >0,

#supp fi+m < #supp f; + #supp 7.

Note also that #supp f; = 0 and E#supp f1 is finite, since the first moment of the
measure is finite. We see that the cardinality of the support is non-negative and sub-
additive. Therefore, the statement of the lemma follows from Kingman’s subadditive
theorem [48]. O

Now fix non-decreasing positive valued functions 1 (/) and r» (/) with (/) <
ra(l) < 1. Let b be a limit configuration for a random walk on the wreath product
C = A B. Define

Ui(b) = UM (b) = U B(a.ri(l4(a))).

a€suppbora =ey

Here and in the sequel /4 denotes a word length in A with respect to some finite
generating set of A.

Consider a minimal positive integer Cp such that the Cp-neighborhood of U (b)
is connected. If no such constant exists we put ¢, (b} = ec, and in the sequel we
assume that Cp does exist.

Let U = U (b) be the Cp-neighborhood of U,. Forany a € A put

UM (a) = U\ B(a,ra(l4(@))).

Note that eq4 € US™(a) since ro(n) < n for all n. Let U™ (a) be the connected
component of e4 in Uf™a. Let Fiamp(@) = Famp(b, @) be the cardinality of the
intersection of the support of & with U (a).

Now for each n consider all a in the support of b such that Fipp(a) < Clampn
and choose among them an element Y, for which Famp(a) is maximal. If no such a
exists, we put again ¢, (b) = ec. If several a with maximal Fi.mp(a) exist, one can
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take any of them. To make the constructed map measurable, one can enumerate once
and for all elements of the group by the natural numbers, and each time choose the
minimal element among all possible choices.

Previous steps of the construction: the sets Ux (), U(b), U™ (a), the constant
Cp and the element Y, depend on the support of b and do not depend on the values
of b. The following final step does depend not only on the support, but also on the
values of the configuration b. Consider f,%: A — B such that f,(x) = b(x) for

x € U(a) and f(x) = ey otherwise. Let fn = In Observe that £ has finite
support (as far as Y,, above does exist).
Put

¢n(b) = (Ym f_n)

Our goal is to choose functions r1 () and 7, (/) in such a way that the constructed
mappings ¢, satisfy one of two assumptions of the ray approximation criterion
(Proposition 1).

Remark. If the projected random walk has zero entropy, then the choice of Y, is
not important. This is the case under the assumption of Theorem 1, where A = Z¢,
However, even in this case it seems natural to consider Y, as defined above.

Main steps of the proof of Theorem 1 are formulated in the lemmas below. In
these lemmas (2.2-2.4) we are under the assumption of Theorem 1 and we assume
that 71 (1) = 1€, r5(1) = 1172, where 1 > €1 > 3¢3 > 0 and €1 is small enough.

Lemma 2.2. With probability close to | the constant Cy and elements a do exist. For
any € > 0, with probability close to 1, the constructed mapping ¢n(b) = (Y. f,)
satisfies the following bound on the number of the lamps in the connected component
of eyq:

Flamp(Yn) = (Clamp - 6)”-

Observe that by the construction we know also that
Flalnp(l_]n) < Clamph < (Clamp + €)n.

Lemma 2.3. Forany sufficiently large fixed n with probability close to 1 the following
holds. Consider functions r{ = ry and ry = rp/2. For the given n, the infinite
trajectory X; = (Y;, f;) (i = 1,2...) satisfies

(Clamp - E)I”l = F‘l;mp(Yn) i (Clamp + e)n.
Above the function F’ is taken with respect to r| and r5.

We will see in Section 4 that Lemma 2.2 is essentially a corollary of Lemma 2.3.
It p has finite support, (or, more generally, that o has quasi-finite support — the
support belongs to the product of Z¢ with some finite set) one can prove that with
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probability close to 1 all points of the support of the limit configuration satisfying the
property described in Lemma 2.3 lie at sublinear distance and give rise to elements
of the wreath product that lie at sublinear distance from each other. That is, for any
d > 0, e > 0 there exists € > 0 such that with probability at least 1 — € for any
sufficiently large » and for any points ¢, a” C supp b satisfying

(Clamp = €)= Framp(@"), Framp(@") = (Cramp + €)1,

it holds
distq(a’,a”) < én.

Moreover, the corresponding elements of the wreath product ¢’ = (a’, f,,f") and
"= (a", 1) satisty
distc (¢’, ¢ < én.

This allows to use criterion A) of Proposition 1.

In order to treat the general case when the support of i 1s not necessarily finite, it is
easier to apply criterion B) of Proposition 1. To assure that we can apply condition B)
we will prove the following lemma.

Lemma 2.4. There exists a family of sets Q(g, n, €) such that for some Cy > 0 and
any g € C = Z4 )} B, any n and any € > 0 one has #Q(g.n, €) < exp(Cien), and,
further, such that with probability close to 1 the following holds: For any € > 0, all
points Y, in the support of the limit configuration satisfying

(Clamp - e)n < Flamp(Yr:) < (Clamp + E)n

lie at sublinear distance from each other and the corresponding elements of the wreath
products belong to the same Q-set.

The sets Q (g, n, €) can be constructed in the following way. Take any €3, €4 such
that €4 < €3 < € and put r3(n) = n'7¢, r4(n) = n'™%4. For any g, n define
Z{g,n) to be the set containing all / such that the following holds:

(i) h and g has the same projection ¢ in Z4, h = (a, f3), g = (a. Je).

(i) fr and f, coincide outside the ball of radius r3(n) with the center at a.

(iii) The cardinality of the intersection of this ball with the support of f, is at most
rq(n).

(1iv) The sum of the lengths of the values at these elements (at points of the support
that lie inside our ball) is at most r4(n).

(Note that conditions (iii} and (iv) depend only on %, not on g.)

Now consider all elements ¢ at distance at most en from Z(g,n), and consider
the union of Z(g, n) over all such g. This union we denote by Q(g, n, €).

Central extensions. The construction of ¢S is similar to that of ¢, in the case of
wreath products. (In the notation above CE refers to “central extension”.) We define
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sets Uscp, USS,, USY, configurations f,,(a), fn, the map Fimp and ¥, € A in the
same way as for wreath products, with the only difference that in all these definitions
we consider configurations on the edges and not on the vertices of 4. Now there
is some difference in the construction of ¢SE. We cannot put ¢SE(b) = (Yu, /1)),
since (Y., /) need not be an element of our group (the condition on f;, about the
sum of values on edges adjacent to a given vertex does not need to be satisfied). The
fact that the configuration (Y, 7)) does not correspond to an element of our group
is not important. One can consider the space of all such pairs such that our group
1s a subspace of this space. One can show that the Ray Criterion (Proposition 1)
is verified even if the approximation is constructed in a larger space. But to avoid
an explanation of this we will do the following. We construct subsets of the set
of configurations corresponding to the elements of our group) Z E((Ya. fu).n)and
OC((Yu, ). 1, €). The construction of these sets is analogous to the case of wreath
products.

As before, we consider r1 (1) = I'7¢1, ro(1) = 1172, where 1 > €1 > 3¢5 > 0,
€1 is small enough. We take €3, €4 such that €4, < €3 < €5 and put r3(n) = n'7¢3,
ra(n) = ni s,

For any n and any configuration (a,, f»)) define ZE((a,, f), n) to be the set of
the configurations of the form ((a,, %, )) (this condition is analogous to the assumption
(1) in the case of wreath products) such that

(ii} b, and f, coincide outside the ball of radius 3#3(n) with the center at a,.

(iii) There exist at most r4(n) elements of the support of 4, that lie inside this
ball.

(iv) The sum of the lengths of the values at these elements (at the points of the
support that lie inside this ball) is at most r4(n ). )

Fix any € > 0 (we can choose ¢ arbitrarily small). Take any element (Y., ) of
our group in the set set Z CE((Ya, f2 ). n) (one checks that such element does exist).
Put g5 (b) = (Y, f)-

Now consider all elements of the metabelian group g at distance at most en
from some configuration of Z¥((Y!, £!),n), corresponding to an element of our
group. Consider the union of Z¥(g, n) over all such g. This union we denote by
0 (). f).n.e).

We will show that for any € > 0 with probability close to 1 the n-th step position
of our random walk belongs to the set Q (Y, £, n.¢€).

3. Auxiliary facts about random walks on A

Consider a random walk on A and let p; (v, x) be the 7 -th step transition probability
from y to x. Let

G(y,x) = p1(y, x) + p2(y, x) + p2(y, %) + -+
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be the Greenkernel of arandom walk on the group Aandlet §(x) = §(e, x). Observe
that §(e, y~'x) = (v, x) is the expected number of visits of x for a random walk
started at y. In particular, if the random walk is transient, then §(y, x} is finite for
all x, y.

The lemma below is a version of a well-known fact from Potential Theory.

Lemma 3.1 (Green function). Suppose that the random walk is transient, and that
there exist non-increasing functions Gnin and Snax such that for any x € A,

Guin (14 (X)) < G(x) < Gmax (L4 (x)).

Then for any positive integers r, N with2r < N and any ¢ € Awithls(c) = N
the random walk starting at e visits the ball B(c, r) (centered at ¢ and of radius r)
with probability at most

gmaX(N/z)/gmin (f')

Proof. Consider the probability u(z) to visit the ball at least once starting at some
point z. Put v = (I — P)a, where P is the averaging operator of the random walk
under consideration. It holds v(z) = 0 for all z outside the ball and v(z) > O for z
inside the ball.

We have

uz) = v@) + 3 9z ().

yeA
If z is outside the ball, then
u@ = Y. $ ).
y€B(e,r)

This implies that
u(e) < Guax(N/2) D v(¥),

yeB(c,r)

since for any v € B(c,r) itholds (e, ¥) < Gnax (4 (V) < Gmax(N/2).
Observe also that

u@ =1=ve)+ Y Sz Y S

y€B(e,r) yeB(e,r)

Weknow thatforall y inside theball § (¢, ¥) = G (r). Therefore, 3, cp(.. ) v(¥) =
1/6 (r), and this completes the proof of the lemma. O

Lemma 3.2 (Neighborhoods of trajectories in Z4). Let yu be an adapted measure on
A =172 d > 5, and assume that the third moment of w is finite. Take g < 1/2 and
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w < 1/2, put t(n) = n*" and assume that 1 +q < 3w. Let Y1, Y5,....Y;,... bea
trajectory of the random walk (7.4, ).

i) With probability close to 1 the distance between {Y1,Ys, ..., Y} and {Y,  (;(a)),
Yorpm+v Yatpm)+2. - - - § is greater than n?.

Indeed, even more is true.

i) Let

Uk, )y = ) B(X;.n?), Udyk.m) =) B(X:.i%)
i=k

i=1

and U2 (n) = UL (n,00). Then with probability close to 1 the sets Ub'{:g(n) and
U2 (n + t(n)) do not intersect.
iii) Let

Vidale,my = ) B(Y:, 1a(Y:)™),
i=k

Vbig(n) = V&.(1,n) and VI ,(n) = VL (n, o). Then with probability close to 1
the sets Vb%g(n) and V1 ,(n + t(n)) do not intersect.

Proof. First observe that if the measure o is not centered, then the claims of the
lemma follow from the Central Limit Theorem for this random walk. Therefore,
below in the proof we will assume that p is centered.

i) First suppose that 4 = 5.

One knows that if a centered adapted measure on Z° has a finite third moment,
then the Green function §(x) is asymptotically equivalent to 1/|x||*, where ||x|| is
the Euclidean length of x € Z>, see [55].

By the Central Limit Theorem, for any w’ < w the distance between Y, and
Yout[:(n)) 18 at least n®" with probability close to 1. Chose w’ < w and ¢’ < w’ in
such a way that 1 —2¢g + 3¢’ — 3w’ < 0. Since | + g — 3w < 0, the latter inequality
is verified whenever ¢’ is close enough to ¢ and w’ is close enough to w.

Applying Lemma 3.1 to the reflected random walk (Z¢, ji), we see that the dis-
tance between Yy, 4 [;(n)] and the beginning of the trajectory Y7, Y>,..., Y, is at least
n?" with probability at least 1 — (n9)3/(n*’/2)3. Since ¢’ < w’, this probability is
close to 1.

Among the points visited up to the instant # we now consider the following ones:
X, (14 [n2a)> Whete 1 < i < n/(1 4 [229]). Observe that with probability close to 1
any among the first n points of the trajectory lies at distance at most n? from one of
the chosen points. For each chosen point place a ball of radius 2n4 " centered at this
point. Then with probability close to 1 any point of the n?-neighborhood of the first
n points of the trajectory lies inside one of this balls.
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Therefore it suffices to estimate from above the probability that the tail {Y, [z,
Yot +1> Yatim)+2- - - - § of the trajectory has a non-empty intersection with the
unions of these balls.

By Lemma 3.1 applied to (Z ¢, 1) we see that for any of these balls the probability
that the tail has a non-empty intersection with this ball is at most (2n9’/a*")3. The
events, consisting in that the tail does notintersect one given ball, are not independent;
nevertheless we can always claim that the probability that at least one of these events
occurs is not greater than the sum of the probabilities of these events. Therefore, the
probability that the tail has a non-empty intersection with the unions of our balls is at
most 7' =22(2n4" /n*")3. Observe that n'=29(2n?' /n®")3 = p129+3¢'—3w’ Ry
our assumption on ¢’ and w’ we have 1 —2¢g + 3¢’ — 3w’ < 0, and thus n1~24+3¢'—3w
tends to 0 as n tends to co.

This completes the proof of statement 1) for d = 5. If d > 5 take the projection
of the random walk to the first k& coordinates. We know already that for the projection
of the trajectory the conclusion of the lemma is true. Since the projection does not
increase distances, we see that the conclusion 1s also true for the original trajectory
in Z¢.

ii) Take ¢’ > ¢ such that ¢" < 1/2 and 1 + ¢’ < 3w. Then ¢’, w satisfy the
assumption of the lemma, and hence from the already proven first part of the lemma
we known that with probability close to 1 the distance between {Y;,Y>,...,Y¥,}
and {Yuqr0)s Yate)+1, Yatem)+2. - - - + 18 greater than n? . Take ¥ > 1 such that
vy < q'/q. Note that

Ul in+tm))y=UL (n+1t(n),o0) =UL (n +t(n),n”)UUL (n?,0).

Observe that for i < ¥ it holds i9 < n9’, and thus with probability close to 1 the
sets UL, (n) and UL (n + t(n),n”) do not intersect. By well-known estimates on
the inner and outer radii (also called lower and upper classes) of the random walk we

know that for any € > 0 an infinite trajectory Y satisfies with probability 1 that
n1/2—e < lzd (Yn) < n1/2+e

for any sufficiently large n. Here the upper bound follows from the law of the
iterated logarithm for each of the coordinates in Z¢ (which is true for any variable
with finite variance, that is, in our notation, for any p with finite second moment,
see ¢.g. Theorem 3.52 in [9]. For the lower bound see [17] in the case of simple
random walks in Z¢, 4 > 3, and [54], [29] for random walks with finite second
moment.

This implies that the probability that Ul (n) and U (n”) = UL (n”, o) have
a non-empty intersection, is close to 0. And thus we conclude that the probability
that UL, (n) and UZ (n + 1 (n)) have a non-empty intersection is close to 0.
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ii1) By the above mentioned estimates of the inner and outer radii of the random
walk we see that for any ¢” > ¢ with probability close to 1,

V(1) C UL (n) and VEy(n + 1(n)) € Udy(n + 1 (n)).

and thus iii) follows from i1). O

4. Wreath products. Proof of Theorem 1

Proof of Lemma 1.1. We have
Xit1 = Yiy1, fiv1) = Vi, fi)(Ai, Fi) = Xi(Ai, By,
where (A;, F;} € supp jt, so that fi+1(ax) = fi{a+) F; (Y, as). Thus

PIF (Y ax) #epl =3 (@) Y (1=8(f (@™ ax)) u(x, f),

acAd (x,f)eC
where j4 is the projection of ;won A and 6(r) = 0ifr Z0Oand L if t = 0.
Therefore,

D Plfilas) # firr(an)] = Y PIF(Y; " ax) # ep]
<> @+ Y (1= @) plx. 1),

acA (x,f)eC

where §(a) = Y ;2 u5'(a) is the Green function of the projection of the random
walk on A. Here and in the sequel, 1** denotes the 7 -th convolution of . Since the
random walk is transient, §(a) < oo for all @ and also §(a) < §(eq) + 1 for all
a € A. Therefore, the expression is at most

Const ) pu(x, f) ) (1-8(f(a'an))

(x,f)eC acAd

= Const Z w(x, f)#supp f
(x,f)eC

<Const Y u(x. Nlec((x. f)) < oo,
(x.f)eC

since the first moment of w is finite. We have shown that

D PLfi(ax) # firr(a*)] < oo,

and hence for all a., we have f;(ax) # fi+1(a™) for a finite number of /’s. O
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Lemma 4.1. Let C = Z¢ ! B, d > 1, B has at least 2 elements. Consider an
adapted measure (. on C, and assume that the projection of this measure to 74 is
centered. Then there exist K > 1 and g1, g> € supp w*K such that g1 # g» and the
projection of both of these elements on Z% is the zero element egd of Z2.

Proof. The claim of the lemma is obvious, if the support of 1 generates Z¢ ? B as a
semi-group.

We know that the projection of i on Z¢ is adapted and centered, therefore there
exist K; and g € supp 1*X1 such that g has zero projection to Z¢, that is, g =
(e. f). If f(h) # ep forsome h € A, thenwecanput g, = g, g» — g>. We
have g» = (e, f2). We see that g; and g» have zero projection on Z¢. Note that
f(h) # f(h)f(h) for any h such that f(h) # ep, and this implies that g; # g2.

Therefore, it is sufficient to consider the case where /' = ep, that is, we can
assume that ¢z 4, p is in the support of K1 for some Ky > 1.

Let C* < C be the sub-semigroup generated by the support of /1, let C ™K1 < C
be the sub-semigroup generated by the supportof 1*&1 and CX1 C C be the subgroup
generated by the support of £*X1. The support of *X1 is (supp £)%!. Since pu is
adapted and C is finitely generated, there exists a finite generating set §¢ of C such that
So C supp /. This implies that the index of C X1 in C is at most (2#5¢)%1~1, and, in
particular, C X1 is a finite index subgroup of C. In particular, C X1 is not Abelian, not
all elements of 1¢*X1 commute, and this implies that C 71 is not Abelian. Therefore,
there exist &1,y € CHK1 having the same projection @ to Z< and hy # h,. Our
assumption that the projection of s is centered implies that there exists # € C K1,
such that its projection to Z¢ is equal to —a. Put g1 = hih, g2 = hah. Itis clear
that g, # g» and that these two elements have the same projection to Z <. Note that
since e € supp u*X1, the supports of £*X1¥ form an increasing sequence of sets.
Therefore, there exists N such that gy and g, belong to w* KN Cand this completes
the proof of the lemma. O

For the proof of Lemma 4.3 below we will need the following simple combinatorial
lemma.

Lemma 4.2. Fix a positive constant Kyay. Consider [ Kpan N | unordered balls put in
N + 1 ordered boxes and suppose that each configuration has equal weight. There
exist Ko, Kgn > 0, depending on Ky, such that fthe probability that the number of
non-empty boxes is not greater than KN is smaller than exp(—KoN).

For the proof of this lemma see for example Lemma 5.1 in [22].
For proving the following lemma, the assumption of centeredness is not relevant
but assumed in order to simplify the proof.
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Lemma 4.3 (Connectivity properties of the set UL' (b)). Let C = A B, A = 77,
d = 3, B has at least 2 elements. Let p be an adapted measure on C, such that the
support of its projection on A is centered. Suppose that either i) the third moment of 4
isfiniteandry (1) = 177, ey < 2/3, orii) ju has afinite supportand r1(1) > Klog(l)
for sufficiently large constant K.

A) Take an infinite trajectory X = X1, X2, X3, ... of the random walk (C, ).
LetY =Y,Y,,Y3,... beits projection on A. Let b be the limit configuration of X,
and let R be the set of points of A visited by the projection Y. With probability 1 on
the space of infinite trajectories for all but finitely many points in a, € supp b there
exists a, € R such that

. 1
distg{(ay, az) < S (la(ay)).

Moreover, P-almost surely for all but finitely many points in az € R there exists
a4 € supp b such that

) 1
disty (a3, a4) < > (la(az)).

B) With probability 1 the set U.' (b) has one infinite connected component and
finitely many finite connected component. In particular, there exists Cp > 0 such that
the Cy-neighborhood of Uy* (b) is connected.

Proof. First assume that i) holds. Since the third moment is finite and since 2 /3 —
e1 > 0, with probability 1 the trajectory makes only a finite number of random
walk’s increments Z, = (An, I},) such that the length of Z, is larger than r{(n) =
pl/3+1/2(2/3—€1)

Define the set W, "¢ by

Wi x) = ) BG. (1779,
ieN
and put
VX)) = () BOG, (4 (Y)' 7).
ieN

Observe that with probability 1 the set W,! 12:€ {X ) has one infinite connected com-
ponent and finitely many finite connected components whenever € is small enough.
Observe also that, since for any positive é and any sufficiently large #» it holds
a1 278 < 1 (¥;) < nY/2+8 the same is true for V¢ (X): for any sufficiently small
€, V4 "¢ (X) has one infinite connected component and finitely many finite connected
components almost surely.

Our goal is to show that for some ¢ > 0 with probability 1 on the space of infinite
trajectories the set U, (b) contains all but a finite number of points of V1 (X),
where b is the limit configuration of X .
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By Lemma 4.1, replacing, if necessary, 1 by a suitable convolution power, we
can choose ¢ = (e4, f.) such that £, is not the identity (there exist @ € A such that
Je{a) # ep) and assume that ¢ and ec belong to the support of ;. A convolution
power of w has finite third moment if . has finite third moment, it is finitely supported
if 14 is finitely supported, and its projection to Z¢ is centered if ;¢ has the property. A
convolution power of  1s not necessary adapted, but we needed the adaptedness of
4 only to apply Lemma 4.1, and we do not use this property in the rest of the proof.

For any finite second moment random walk on Z<, such that supp p # egd
and d > 1, the expectation of exp(— R}, ) is small or equal to exp(—Kn'/3), where R,,
is the number of distinct points visited until the instant » [16]. (In fact, the condition
that the second moment is finite is not important for the inequality above, but we do
not need this. )

This implies that there exist K1, K3 > 0 such that for any K» > 0 and for
any sufficiently large n there exist at least K, log(n) different points of 4 = Z¢
visited between instants » and n + K K> log®(n) with probability at least 1 —
exp(— K3 K5 log(n)).

With probability at least 1 — exp(— K4 K¢ log(n)) there are at least K5 K¢ log{(n)
multiplications by ¢ or e among any Kglog{(n) consecutive steps of our random
walk. Observe that for given K4, Kg and sufficiently large # it holds Kglog?(n) >
K¢ log(n), and therefore with probability at least 1 —exp(— K4 K¢ log(n)) there are at
least K5 K4 log(n) multiplications by ¢ or e between instants n and n + K7 log>(n).

Put N = [Kglog(n)] — 1, Kpay = K5 and apply Lemma 4.2, We see that with
probability at least 1 — exp(— Ko N ) there are at least K¢ N multiplications by ¢ or
e that have occurred at distinct elements of the base group A, between instants » and
n + K7 log3(n). Therefore, there exist Kg, Ko > 0 such that with probability at least
1 —exp(—Kglog(n)) there are at least K¢ log(n) multiplications by ¢ or ¢ that have
occurred at distinct elements of the base group A, in the time interval between n and
n + K71log?(n). This implies the second inequality in A) (under the assumption i)).

To prove B) observe that in view of A) we know that with probability 1 the
set U,;'(hb) contains all but a finite number of points of the projected trajectory.
Moreover, with probability 1 this set contains all but a finite number of points of
Ve /2 Finally, note that a union of balls (or any other connected sets) that contains a
connected set is connected, and this completes the proof of B ) under the assumptioni).

Now let us assume that ii) holds. Under the assumption of ii) the measure p has
finite support. This implies that for any @, € supp b there exists @, € R such that
dist4 (a1, a») is not greater than D, where D is a positive constant depending on the
support of p. This proves the first inequality in A).

Now we want to prove B) and the second inequality in A). As before, we replace
i by a suitable convolution power, so that we can assume g1, g> € supp i, where
g1 and g» have zero projection to Z<. Let S4 be the projection of the support of
to Z< . In the Cayley graph of (Z4, §4) the sets of points visited by the projection of
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the trajectory of our random walk is connected. Let ¢y € Z< be a point, visited by
the projection.

With probability 1 the set of points visited by the projection of the trajectory is
infinite. Observe that an intersection of any infinite connected set containing ag with
the ball of radius r, centered at ap, has cardinality at least r. As before, we see that
with probability at least 1 — (exp(—Ky1r)) there exists at least one point in the ball
Bg (ao, r), where a multiplication by g; or g» had happened, at some momentn > 0.
Therefore, with probability at least 1 — (exp(—K12#)) there exists at least one point
in the ball Bg, (ag, r) such that the value of b at this point is non-trivial. O

Lemma 4.4. Under the assumptions of Theorem 1 consider a point X, = (Yn, fn)
visited at the n-th step of the random walk under consideration. Let €1, €3, €3 be
such that O < €3 < 1/3 and 0 < €3 < €3. Consider the points of the support of [,
that lie inside the ball centered at Yy, and of radius n'=¢2. The following holds with
probability close to 1:

i) the number of these points is at most n'=3,

ii) the sum of the lengths (in B) of the values of f, at these points is at most n1 =3,

Proof. Replacing the defining measure p by its reflection fi, we can reduce the
problem to the situation, where the center of the ball is at e, not at x,. Consider €4
such that ez < ¢4 < €. Since the random walk has the third moment and since
ez < 1/3, we know that with probability close to 1 there are no random walk’s
increments that have the projection on the base group longer than '3, and there
are no random walk’s increments such that the corresponding configurations have
elements of length greater than »'7¢3 in their supports.

Combining this with the fact that for any € > 0 an infinite trajectory Y satisfies,
with probability 1,

n1/2—e < lzd (Yn) < n1/2+e

for any sufficiently large n, we see that with probability close to 1 all the changes of
the values of the configuration at points that lie inside our ball have occurred at the
time interval between 1 and n17¢4,

Since the first moment of the random walk on the wreath product is finite, this
implies 1) and ii). O

Lemma 4.5. Under the assumptions of Theorem 1 consider a point X, = (Y, fn)
visited at the n-th step of the random walk under consideration. Let €,, €3, €4 be
such that 1/3 > €3 > 0 and 0 < €4 < €3€3. Let b be the limiting configuration for
our infinite trajectory, and let f, be the configuration which coincides with b in the
connected component of the identity, after removing the ball of radius n'=<2 from the
set UL (b)Y and which is equal to the identity outside this connected component.
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Then with probability close to 1 the elements (Yy, fn) and (Y, f,) have the
following properties.

(iiy The functions f, and f,| coincide outside the ball of radius r3(n) = n!=3
with the center at Y,,.

(iii) The cardinality of the intersection of the supports of both f, and f,) with this
ball (B(Y,,n'7¢3)) is at most r4(n) = n'=¢4,

(iv) Moreover, the sum of the lengths (in B) of values of fu, as well as of [, at
the points of the support inside the ball B(Y,,,n'™%3) is at most r4(n) = n17¢4,

Properties (i1)—(iv) correspond to the properties mentioned after Lemma 2.4.

Proof. By 11) of Lemma 3.2 we know that with probability close to 1 the ball of
radius n(17€2)/2 separates infinity from the identity in the set U"! (b). Below we will
assume that this is the case. This implies, in particular, that f, has finite support.
From Lemma 4.4 we know already that statements (iii) and (iv) hold for f,. Let us
show that these statements hold also for f,/. As the third moment of the measure g
that defines our random walk 1s finite, the random walks does not have increments
of length greater that n'/3+¢s5_ for any €5 > 0 and for any sufficiently large n. We
combine this with the estimates on the outer and inner radii for the projections of p
and ji to Z4: for any € > 0, with probability 1 the infinite trajectories Y, ¥ satisfy

nl/z—e 2 lzd (Yn),lzd (Yn) < n1/2+e’

for any sufficiently large n. We get that the values of & inside the ball of radius
r3(n) with the center at ¥;, could be changed only between the instants n — r5(n) and
n + rs(n). Here rs(n) = n17¢ and we choose €5 in such a way that €, < €5 < €3.
This implies (iii) and (iv).

Now let us prove (ii). Take some x € Z<4, which is in the support of £, or /. and
which does not belong to the connected component of e4. Letus show that if the value
at x undergoes a modification at the instant m, thenn —n'™% < m < n + nl7¢,
Indeed, observe that with probability 1 the following holds for sufficiently large n. If
m is such that the ball of radius ! ~¢+ with the center at Y,, is not visited in the time
interval from 1 to m, then at time m our random walk is in the connected component
of e4. Moreover, all points where the value undergoes a change at time n also belong
to the connected component of e4. Analogously, if m is such that we have never
visited the ball of radius n'~¢4 with the center at Y, between instants 7 and oc, then
at the instant »n we cannot change the value in x. O

Proof of Lemma 2.3. Consider ry (1) = I17¢1, ro(I) = 17 from the assumption of
the lemma. Put ¢ = (1 —€1)/2, w = (1 — €3)/2. By the assumption of the lemma
€1 > 3e,. Therefore, 1 +¢g < 3w, and we can apply iii) of Lemma 3.2 to ¢, w and the
projection of our random walk to Z¢. We get that Voea (1) = Ui=) B(Yi, 14(Y:)*?)
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and VI (n+n2") = |72 B(Y;, 14(¥;)??) do not intersect. Then we combine

i=n+n2W

the conclusion of (i1) and (iii) of Lemma 4.5 with that of Lemma 2.1. We get that
(Clamp - 6)” < Emp(Yn) < (Clamp —+ 6)11.

We know that with probability close to 1 the ball B(Y,,r2({4(Y,))/2) separates
infinity from the identity. In this case, the connected component of the identity,
corresponding to ry = r,/2 contains the connected component of the identity, cor-
responding to r2. It implies that the function F’, taken with respect to r{ = r1 and
ry = ra/2, satisfies F,. (¥Yn) > Famp(Yn), and therefore

(Clamp — €1 < Fons (o).

By construction of F” we also know that

lamp

Famp(Yn) <1 < (Clamp + )1 O
Proof of Lemma 2.2. Consider n’ = (1 — €/)n, €’ < ¢, choose €; such that
(1 - E/)(Clamp + 62) = Clamp +¢€ and (1 - G/) (Clamp - 52) z Clamp — €,

and apply Lemma 2.3 to n” and 5. We see that there exists a sequence )_’no in A such
that for any sufficiently large n
lamp(YO) * (Clamp - E)n

Now let ¥,! be an element of the support of b, which is closest to the element ¥ 0.
By Lemma 4.3 we know that the distance between Y,! and Y0 is at most r1 (n)/2 <
r2(n)/2 with probability close to 1. This implies that the ball B(Y7, r»(n)) contains
the ball B(Yy, r2(n)/2), and hence B(Y, . r»(n)) separates the identity and infinity if
B(Yy, r2(n)/2) has this property. By Lemma 4.4 we know that the cardinality of the
intersection of the support of b with B(Yy, 3r»(n)) is smaller than € for any positive
e and any sufficiently large »n. In view of this, we conclude that for any € > 0 with
probability close to 1 the constructed element Y, satisfies

Flamp()_]nl) = (Clamp - G)n'
Here Flayp is defined with respect to the functions ry and r,. O

Proof of Lemima 2.4. We consider the family of sets @ {(g, n, €} described after Lem-
ma 2.4. We fix ¢ > 0 and consider Y, in the support of the limit configuration b
satisfying

(Cramp — €)1 < Flamp(¥,,) < (Cramp + €)11.

We want to prove that with probability close to 1 all such points lie at sublinear distance
from each other and the corresponding elements of the wreath products belong to the
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same Q. We are going to show that with probability close to 1 any Y, as above
lies at sublinear distance from Y, and that the corresponding elements of the wreath
product belong to @ (X, n, €).

First we will assume that Y, belongs to the trajectory of the projection of our
random walk to Z“: there exists N such that ¥/ = Y.

Observe that the random walk we consider is adapted and its projection to Z¢ is
transient, therefore Ciapp > 0. Take any €; > 0 and apply Lemma 3.2 and Lemma 2.3
tony = n— (€1/Clamp)nt, 12 = n and n3 = n + (€1/ Camp)n and r{{l) = 19
and r»(l) = [, where ¢/ > ¢ is such that the inequality from the formulation of
Lemma 3.2) holds also for ¢’ and w: 1 + ¢’ < 3w.

By Lemma 3.2 we know that the balls with centerat Y, , Y,,, and Y}, and of radius
La(Yn; )" (j = 1, 2 or 3) separate the identity from infinity with probability close
to 1. Therefore, with probability close to 1 these three events happen simultaneously.
Below we assume that each of the balls B(Y, - IY (Yn s }) separates the identity from
infinity, j = 1,2 and 3.

First suppose that N is such that N < ny — (€1/Clamp)tt = n(1 — 2€1/ Clamp).
Let us show that if the ball with center at the point Yy separates the identity from
infinity, then the number of elements of the support in the corresponding connected
component of the identity is less then (1 — ¢, /2)n, with probability 1 for sufficiently
large n (independent of all other assumptions). Indeed, there are two possible cases.
In the first case, this ball intersects with the corresponding ball with the center in Y, .
But the probability of this event is not greater than the probability that the random walk
visits the ball of radius r2 (14 (Y»,)) after time e1n. For any €4 > 0 with probability 1

it holds 14 (Y,) < n'/2%<4 and therefore ra (14 (an,) < ngl/2+€4)(1_62))). Taking €4
small enough, we sce that the probability that our balls have non-empty intersection
is close to 0.

The second case is when the ball has no intersection with the corresponding ball
with the center in Y,,,. Let us consider connected components after removing the ball
with the center in Y,,. There is a connected component of the identity, of infinity
and possible some more finite connected components. Our ball cannot lie in those
last mentioned components, as in this case it cannot cut the identity from infinity. By
Lemma 3.2 we know that with probability close to 1, the ball does not lie inside the
connected component of the identity e4. Therefore, we can assume that our ball lies
in the connected component of infinity.

Then the number of points in the connected component of the identity after re-
moving our ball 1s smaller than in the connected component corresponding to #.

Now take N > 13+ (el/Clamp)n = n(l —+ 261/C1amp)~

By 1ii) of Lemma 3.2 we know that the following holds with probability close to
one (where “with probability close to one” refers to n). The ball B(Yy, 4 (Yn)?)
has empty intersection with the connected component of the identity in the set,
which we get from the neighborhood under consideration by removing the ball
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B(Y,,.l4 (Ynz)qf). This implies that with probability close to 1 (referring to n)
the connected component of the identity after removing the ball B(Yy,l4(Yn)?)
is larger than the connected component of the identity, after removing the ball
B(Yn,, 14 (Ynz)qf). In this case the cardinality of the set of points of the support
of b in the first mentioned connected components is not less than the cardinality of
the intersection of the support of & with the connected component of the identity,
after removing the ball B(Y,,. [4(¥,,)? "), This shows that with probability close to
1 (again “probability close to 17 refers to #, not to N ') the number of elements of the
intersection of the support of & with the connected component of the identity after
removing the ball B(Yy, [4(Yy)?') is at least (Ciamp + €1/2)n (for all N such that
N > n(l + 261/C13mp)).

This completes the proof in the case when Y, belongs (o the trajectory of the
projection of our random walk to Z<.

Finally, observe that in view of Lemma 4.3 it is sufficient to consider the above
mentioned case: if Y, does not belong to the point of the projected trajectory, we can
consider an element ¥, closest to Y,/ in 74,

It remains to show the bound on the cardinality of the sets Q(g, n, €): we want
to show that for any g € C = Z< ) B, any n and any € > 0 one has #Q(g,n,€) <
exp(Cren). First observe that the set Z(g, n) defined in Section 2 has subexponential
cardinality, that is, log(#Z(g,n))/n — 0 when n — oo. Indeed, if B is finite, then
the cardinality of this set is at most B X273 (”)C;:f;(”), which is less than exp(Ksr3(n) +
K3log(n)rs(n)), where K», K3, K, are positive constants.

Now for an arbitrary B the cardinality of Z (g, n) is at most 25273 (”)C’:fl(”) multi-
plied by >y 4 ..n=rsy(n) [LvB(Kni), where vp (n) is the growth function of B with
respect to some generating set of this group. This sum is at most

> exp(Cyr3(n)),

ni+-tnj=r3(n)

that is, at most exp(Csr3(n)) (for some positive constants Cy and C5).

Note also that the union of a subexponential number of uniformly subexponential
sets (the cardinality of an n-th set in each family is not greater than F,,(n), where
the function Fi,i(n) satisfies log(Fms(n))/n — 0 as 1 — o0) has subexponential
cardinality, and this implies the desired upper bound on the cardinality of Q(g,n,€).

0

Lemmas 2.2 and 2.4 show that we can apply the Ray Criterion (B of Proposition 1),
and this completes the proof of the Theorem 1. O

Remark. In the theorem we have considered A = Z<. A similar argument can be
applied (under an appropriate assumption of the measure) to A of growth at least n>,
but we do not provide details here. The statement was known previously in the case
when the base is a tree (see the already mentioned result from [47]).
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4.1. Remarks about the exchangeability algebra. As we have already mentioned,
James and Peres has shown in [32] that the number of visits of points of the base
provides a complete description of the Poisson—Furstenberg boundary of a certain
measure on Z¢  Z*. The Poisson boundary of particular random walks on wreath
products of A with Z ™ is equivalent to the exchangeability boundary of the projection
random walk on A ([37]). To explain this connection we recall below the definitions
of the tail boundary and of exchangeability boundary.

Tail boundary. Let A° be the o-algebra of measurable subsets of the trajectory
space G that are determined by the coordinates Yy, Yy4+1, Ya+2 ... of the trajectory
Y. The intersection Ao = N, A is called the exit o-algebra of the random walk.
The corresponding G-space with probability measure is called the tail boundary of
the random walk.

The difference between this definition and the definition of the exit (Poisson—
Furstenberg) boundary is that here we identify trajectories that coincide after some
instant, while in the definition of the exit (Poisson—Furstenberg) boundary we identify
trajectories that coincide after some instant and after some shift in time.

For random walks on graphs the tail boundary does not need to be equal to the
Poisson boundary (see Example 2 in [8], for more on this see [41]). However, for
groups it is always the case [44].

Exchangeability boundary. Consider a random walk on A. We say that two trajecto-
ries X1, Xo,... and Yy, Ys, . .. are equivalent if there exists N such that X; = Y; for
any? > N and X1, X»,..., Xy canbe obtained by a permutationof ¥y, ¥»,..., ¥n.
We consider a measurable hull of this equivalence relation in the space of infinite
trajectories, and the corresponding quotient is called exchangeability boundary.

Note that if two infinite trajectories X and Y satisfy the condition in the definition
above, then fori > N and any a € A the number of visits of ¢ until the instant
i by the first trajectory is equal to the number of visits of this point by the second
trajectory.

And, conversely, if X and Y coincide after some time N and fori > N and any
a € A the point a is visited until the instant i the same number of times by X and
by Y, then these two infinite trajectories satisfy the condition in the definition of the
exchangeability algebra.

Consider the following random walk on 4 Z* C A Z. We walk on A and at
each visited element we add +1 in the corresponding subgroup Z. It is clear that if
A 1s a group, this random walk is a random walk in a group sense, that is, it is given
by convolutions of some probability measure on A ¢ Z. From the definitions of tail
and exchangeability boundaries it is clear that the exchangeability boundary of the
random walk on A is equal to the tail boundary of the constructed random walk on
the wreath product. If A is a group, it was already mentioned that the tail boundary
1§ equal to the Poisson boundary.
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In [32] it has been observed that the existence of infinitely many cut-points in the
base group implies that the number of visits provides the complete description of the
exchangeable o-algebra. Furthermore, one knows that for a simple random walk on a
transient group there are infinitely many cut points with probability 1. (For all groups
except finite extensions of the nilpotent group of upper-triangular 2 x 2 matrices this
is proved in [32] and for that latter group it is proved by Blachere in [6].)

Even in this special case of random walks on the wreath product Z4 ? Zt (cor-
responding to the exchangeability algebra of a random walk on Z¢), Theorem 1
provides some new information, since we consider random walks defined by proba-
bility measures that need not have a finite support. (For d > 5; for quickly decreasing
measures on Z< » Z* a similar argument works for 4 > 4 for this particular case.)

5. Free metabelian groups. Proof of Theorem 2

Proof of Lemima 1.2. The proof is analogous to the proof of Lemma 1.1, only that
we consider visits of the edges and not on the vertices. Let /uf;l ( E) be the probability
to visit the edge I~ on the 7-th step for the projection of the random walk on A and
Gedge (E) = Y72, u* (E) be the “edge Green function” of the projection of the
random walk on A. Note that §.4.. (F) is not greater then the sum of the values of the
Green function at the vertices adjacent to F, and, in particular, for some Const > 0
it holds G4 (£) < Const for all edges E. Then in the same way as in the proof of
Lemma 1.1 we observe that the sum > oo | P[fi(E«) # fi(E+)] is at most
Const Y wl(x, /) > (1=68(f(@))

(5. /)EC (T,

= Const Z pix, f)#supp f
(x, F)eCy

<Const Y plx, /Ml (x, /) < o
CNPE

Therefore f;(E+) can change its value only for a finite number of i’s O

Now we prove Theorem 2. An analog of Lemma 4.3 and Lemmas 2.3, 2.4 (where
instead of configuration on vertices we consider configurations on edges) is proved in
exactly the same way. Now, as it was already mentioned in Section 2, ¢5" is defined
as follows. Consider Q (Y. /). 1, €) (defined in the space of all configurations.)
Take any element of our group in this set {(a, £) and put SE(b) = (Y., 1)

Similarly to the wreath product case we argue that a union of exp(e’n) sets of
cardinality at most exp(e”n ) has cardinality at most exp{(¢’ 4+ €”)n), and hence the
union of Q(h,n,€), where i is in Q (g, n, €), has arbitrary small exponential growth
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if € is small enough (for fixed g). This implies that we can apply B) of Proposition |
(Ray Criterion), and completes the proof of Theorem 2. O

6. Non-standard boundaries for slowly decaying measures

Lemma 6.1. i) Let A = Z4, d > 1, #B > 2, and let B be finite. There exists a
non-degenerate finite entropy symmetric measure L on C = A B with the following
property: for any finite set V. C 74 and any fyv:V — B with probability 1 any
infinite trajectory of the random walk (C, (&) visits points, such that the restriction of
their configuration to V is equal to fy.

i1} Moreover, the measure (L can be chosen in such a way that it has finite entropy,
and the projection of p to zZ4 defines a transient random walk.

Proof. 1) Let Wp 4(c) be the subset of Z? } B consisting of all the elements of
the form (0, f), where supp f C [—c,c]?. Given a non-decreasing sequence ¢;,
0=c1 <cy <c3<---andasequenced;,i > 0,suchthat) ;. ,d; = 1, consider
the following probability measure on C':

i>0

M= fie; d; = dofro + dypuy + dajrr + -,

where j¢0 is a non-degenerate measure on Z¢ and for i > 1 the measure j; is the
uniform probability measure on Wp 4 (c;). The projection of the random walk on A
is (Z2, o).

For any ¢ and any sequence d; we can choose a rapidly growing sequence ¢;,
in such a way that the constructed measure g satisfies the first claim of the lemma.
Assume that ¢; is an increasing sequence of integers. Let pu4 be the probability
measure on R™ such that pe4(¢;) = d; and py (i) = O if there is no j such that
i = ¢;. Consider a sequence of independent random variables Z;, with distribution
#+. Observe that if the sequence ¢; grows rapidly enough, then with probability 1
there exist infinitely many 7 such that Z; > i.

Assume that g in the construction of p is chosen in such a way that for the
random walk Y;, defined by ¢, with probability 1 for sufficiently large 7 it holds that
Y, é | < i/2. (This is for example the case if (Z¢, i) is a simple random walk on
/Al

In this case infinitely many times the random walk X; = (¥;, f;) has an increment
at the instant / that comes from some g ; such that ¢; > Iza(Y;) + Dy + 1. Here
Dy is such that the ball of radius Dy /2, centered at the identity of 74, contains the
set V. Letus subdivide the space of infinite trajectories into conditional events in the
following way. We fix ¥; (the projection of the trajectory to A = Z%) and, moreover,
for each i we fix j; such that the i -th increment of the random walk comes from g, :
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this increment is an element of the set Wp 4 (cj; ), and all elements of this set have the
same probability to be an increment of our random walk, so far we have fixed j;.

Given this information on the infinite trajectory of the random walk, we observe
that after each time 7 4 1, such that ¢;, > I74(Y;) + Dy + 1, the distribution of the
values f(x), x € V is the uniform distribution on the set, isomorphic to B*. We
know that with probability 1 there are infinitely many such i’s, and this completes
the proof of the first part of the lemma.

ii) We provide a construction of 4 which is more general than the construction
given in the proof of i). For integers b, ¢ such thatb < ¢, let Wp_4(c. b) be the subset
of Z¢ ) B containing elements of the form (0, f), where supp f C [—c, c]? and
such that f(x1,x2,...,x4) = f(¥1,V2,---, ¥q) whenever xz — yg is divisible by
bfork =1,...,d. In other words, Wp_4(c, b) consists of b-periodic functions of
Wpg.4(c). Note that the cardinality of Wp 4(c.b) is #Bb7

Given non-decreasing sequences b;, ¢;, satisfying b; < ¢;, by = ¢; = 0, and
a sequence d;, i > 0, such that } .., d; = 1 consider the following probability
measure on C: -

W= fle; b d; = dopro + dipr + dapra + -+,

where s is a non-degenerate measure on Z<¢ and for i > 1 the measure ; is the
uniform probability measure on Wp 4(c;. b;).

With the same argument as in the proof of 1) we see that p satisfies the claim of
i) whenever ¢; (chosen depending on 1o and d;) grows rapidly enough and b; — oo
when i — co. Observe that the entropy of u is at most

H(p) < H(uo) + ) di log(#Wp 4 (ci. b))

i>1
< H(juo) + Y dilog(d;) +d Y di log(h,).
i>1 i>1

We see that if 1 has finite entropy, » .., d; logd; < oo. and if b; grows slowly
enough, then the entropy of u is finite.

Finally, recall that for d > 1 there exist finite entropy transient random walks on
Z4 (if d > 3 any non-degenerate random walk is transient). O

Kaimanovich has observed that there exist random walks on a wreath product,
such that the boundary i1s non-trivial, but for any point in the base the value of the
configuration at this point does not stabilize along trajectories. He constructs an
example non-symmetric random walks with these properties on Z ? Z /27, where
f(1) — f(0) stabilizes (see Proposition 1.1 in [33]). We show that there are random
walks on wreath products having non-trivial boundary, such that there is no functional
defined by a finite set which stabilizes along infinite trajectories.
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Let C = Z¢: B, B is finite and has at least 2 elements. There exist symmetric
random walks on C such that the Poisson boundary is non-trivial and such that for any
finite set V  Z< and any fy: V — B with probability 1 any infinite trajectory of
the random walk (C, ) visits points such that the restriction of their configuration to
Visequal to fy. Indeed, if 4 > 3 any non-degenerate symmetric random walk with
finite entropy has non-trivial Poisson boundary ([20]). Therefore, any non-degenerate
finite entropy symmetric measure on Z¢ ? B, d > 3, for which the conclusion of 1)
in Lemma 6.1 holds, provides such an example. For d = 1 or 2 take a measure from
ii) of 6.1. Again, as it is a finite entropy measure with a transient projection to Z¢,
the Poisson boundary is non-trivial ([20]).
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