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Poisson–Furstenberg boundary of random walks on wreath
products and free metabelian groups

Anna Erschler

Abstract. We study the Poisson–Furstenberg boundary of random walks on C D AoB, where

A D Zd and B is a finitely generated group havingat least 2 elements. We show that for d 5,
for any measureonC such that its third moment is finite and the support of themeasure generates

C as a group, the Poisson boundary can be identified with the limit“lamplighter” configurations
on A. This provides a partial answer to a question of Kaimanovich and Vershik [44]. Also,
for free metabelian groups Sd;2 on d generators, d 5, we answer a question of Vershik [56]
and give a complete description of the Poisson–Furstenberg boundary for any non-degenerate
random walk on Sd;2 having finite third moment. Finally, we give various examples of slowly
decaying measures on wreath products with non-standard boundaries.
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1. Introduction and formulation of main results

Let G be a finitely generated group and be a probability measure on G. Consider
the random walk on G with transition probabilities p.x; y/ D x 1y/, starting at

the identity. We say that the random walk G; / is non-degenerate, if the support
of generates G as a semi-group. We say that the random walk is adapted, if the
support of generates G as a group. It is clear that if the measure is symmetric,
then it is non-degenerate if and only if it is adapted. Also, these two notion coincide
for the class of centered measures on G D Zd we recall that a measure on Zd
is called centered, if Pg2Zd g g/ D 0). Given a probability measure on G we

denote by M the measure defined by M g/ D g 1/ for all g 2 G.
Given a finite generating set inG, we denote by lG; the word length, associated

to In the sequel we will usually omit the index and we will write lG for a word
length lG; with respect to some finite generating set We say that a random walk
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on G has finite i-th first moment, if the i -th moment with respect to some word length
lG; is finite, that is, Pg2G l i g/ g/ < 1. It is clear that the finiteness of theG;
moment does not depend on the choice of

The space of onesided infinite trajectories G1 of the random walk G; / is
equipped with the probability measure P which is the image of the infinite product
measure of under the following map from G1 to G1:

x1; x2;x3; : : :/ x1; x1x2;x1x2x3; : :: /:
Throughout this paper, the words “with probability 1” refer to this probability on

the space of infinite trajectories. The words “with probability close to 1” mean that
for any > 0 the event concerning the n-th step of the random walk happens with
probability at least 1 for any sufficiently large given n.

Poisson–Furstenberg boundary. Consider two infinite trajectories X and Y. We

say that they are equivalent if there exist N; K such that Xi D YiCK for all i > N.
Consider the measurable hull of this equivalence relation in the space of infinite
trajectories. The quotient by the obtained equivalence relation is called Poisson–
Furstenberg boundary.

Equivalently, the Poisson–Furstenberg boundary is the space of ergodic components

of the time shift in the path space G1 for an overview of basic facts about
boundaries see [44], [38]). The Poisson–Furstenberg boundary is often also called
Poisson boundary, and its -field is also called invariant -field.

We recall that a function F W G R is called -harmonic, if for all g 2 G it
holds F.g/ D Ph2G F.gh/ h/. It is known that the group G admits nonconstant
positive harmonic functions with respect to some adapted measure if and only if
the Poisson–Furstenberg boundary of the random walk is non-trivial. The boundary
can be equivalently defined in terms of bounded harmonic functions see [24], [26],

[44]).
It is known that if the support of generates a non-amenable group, then the

Poisson–Furstenberg boundary is non-trivial and that any amenable group G admits
a symmetric measure with the support generating G such that the boundary of
random walk is trivial [43], [44], [53]. First examples of symmetric random walks on
amenable groups with nontrivial Poisson boundary were constructed in [44], where
it was shown that a simple random walk on wreath products of Zd d 3, with a

finite group with at least two elements) has non-trivial Poisson boundary.
We recall that the wreath product of the groups A and B is a semidirect product

of A andPA B, where A acts onPA B by shifts: if a 2 A, f W A B; f 2 PA B,
then f a.x/ D f a 1x/;x 2 A. Let A o B denote the wreath product.

By definition, any element of the wreath product is a pair a; f /, a 2 A, f W A
B is such that for all but finite number of a we have f a/ ¤ eB, where eB is the
neutral element of B. We say that the support of f denoted by supp f is the set of
elements a such that f a/ ¤ eB.
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Kaimanovich and Vershik have shown in [44] that for a simple random walk on
Zd d 3, the value of the configuration at any given point of the base A D Zd
stabilizes along infinite trajectories since the random walk on A is transient), and
this implies non-triviality of the exit boundary. In [37] and [39] Theorem 3.6.6)
Kaimanovich has shown that a similar argument works also for measures with finite
first moment. In that papers the statement is formulated under some assumption on

A and B that are not used in the proof. For the convenience of the reader we provide
in Section 4 the proof of the lemma below. A version of this statement, when A is a

free group, appears in [47].

Lemma1.1. LetC D AoB, be a measureonC having finite first moment. Suppose
that the projection of onAdefinesa transient random walk. Then for all a 2 Aand
P-almost every trajectory Xi D Yi; fi/ i D 1; 2; : :: the values fi a / stabilize
from some time onwards, that is, fi a / D fiC1.a / for any sufficiently large i

Lemma 1.1 shows that with probability 1 we can assign to each trajectory X1 D
Y1; f1/; X2 D Y2; f2/; : :: on C the limit configuration f W A B, for all a

putting f a / D lim fi a /
Observe that the limit configuration is the same for any two infinite trajectories

that coincide after some instant that is, for trajectories Xi X0i are such that Xi D
X0

iCK
for some constant K and all sufficiently large i Note that the space of limit

configurations carries a measure which is a projection of the measure P on the space

of infinite trajectories. Note also that C acts on the space of limit configurations by
shifts, and that this action commutes with the action of C on infinite trajectories. A
space B with such property is called a -boundary of the random walk C; / It is
known that every -boundary is a quotient of the Poisson boundary. We denote by

B the corresponding mapping from the space of infinite trajectories G1 to B.
If we assume additionally that is adapted, then this lemma implies that the

Poisson boundary of the random walk C; / is non-trivial. Indeed, assume the
contrary. Then there is a configuration F such that the limit configuration is equal to

F with probability 1, for any trajectory of the random walk starting from the identity
element. This implies that for any x 2 C all trajectories starting from x have the
same limit configuration Fx with probability 1. Note that for any y 2 supp we
have Fx D yFxy. If support generates C, this cannot happen.

It is known, moreover, that the boundary is non-trivial for every finite entropy
measure as above such that the projection of the random walk on A is transient see

[20], where it is proved under the assumption that is non-degenerate).
The following theorem states that for C D A o B, under suitable assumptions on

A and the -boundary of the limit configuration for the random walk C; / is
equal to the Poisson–Furstenberg boundary of C; /
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Theorem 1. Let be an adapted measure on C D A o B, A D Zd d 5, #B 2.
Assume that the third moment of is finite and that the projection of to Zd is
centered. Under this assumption the Poisson boundary is equal to the space of limit
configurations.

Theorem 1 holds in general, without the assumption that the projection of to
Zd is centered. If this projection is not centered, than the projected random walk on

Zd has positive drift. For measures such that the projection has positive drift, the
result is due to Kaimanovich, [39], Example 3:6:7 after Theorem 3.6.6.

Theorem 1gives an answer, ford 5, to the question ofVershik and Kaimanovich
about the boundary of simple random walks on Zd o B which goes back to [43], see

also [44]. Until now there are no known results about a complete description of the
Poisson–Furstenberg boundary of simple random walks on wreath products Zd o B
or for any other symmetric random walks on these groups. There were some more
results, however, about the non-reversible case. James and Peres have shown in [32]
that the number of visits of points of the base provides a complete description of the
Poisson–Furstenberg boundary of a certain measure on Zd o ZC. See more on this
in Subsection 4:1.

The complete description of the Poisson–Furstenberg boundary has been known
for the following finitely generated groups under certain conditions on the decay of
theprobabilitymeasuredefining the randomwalk): discrete subgroups in semi-simple
Lie group Furstenberg [27] for a particular case of an infinitely supported measure,

“Furstenberg approximation”, Ledrappier [50] for the case of discrete subgroups of
SL.d; R/, Kaimanovich [40] for a general class of measures), free groups Dynkin,
Malyutov [18] for simple random walk on standard generators, Derriennic [14] for
measures with finite support), more generally for hyperbolic groups Ancona [1]
for measures with finite support, Kaimanovich [40] for measures of finite entropy
and with finite logarithmic moments; see also [5]), groups with infinitely many ends
Woess [58] for finitely supported measures, [40] for more general class of measures),

the mapping class group Kaimanovich, Masur [42]), braid groups Farb, Masur

[23]), for wreath products of free groups with finite groups Karlsson, Woess [47]),
Coxeter groups follows from Karlsson, Margulis [46], see Theorem 6.1 in [45] for
an explanation). Sometimes it is easier to identify the boundary for certain
nonsymmetric random walks, rather than for symmetric ones. It was done for random
walks on the wreath product Zd o B with a non-zero drift of the projection on Zd
[40], for random walks on solvable Baumslag–Solitar groups with a non-zero drift of
the projection on Z [37], and, more generally, for such random walks on the group
of rational affinities [10]. Note that in the last two examples simple random walks
have trivial boundary.

The idea of the proof of Theorem 1 can be applied not only to wreath products,
but also to some other solvable groups and group extensions. In particular, we use

it in this paper to give the complete description of the Poisson boundary for free
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metabelian groups on d generators, d 5.

Consider a group A, and assume that A D Fm=H, where Fm is a the free group
on m generators and H is a normal subgroup of Fm. Let m be the free generating
set of Fm. Let CA be Fm=OEH;H where OEH; H is the subgroup of Fm generated by
all commutators OEh1; h2 h1; h2 2 H. Let J be the image of H in CA. Observe that

J is a normal subgroup of CA and that CA=J is equal to A. In fact, it is easy to see

that CA depends on A only.
Elements of CA can be identified with pairs a; f //, where a 2 A and f is a

finitely supported map from the edges of the oriented Cayley graph of A; m/ to the
integers with the following condition: f is an integer unit flow from e to a on the
oriented Cayley graph of A; m/, when a ¤ e, and a unit flow without source and
sink when a D e. This means that for any a 2 A such that a is distinct from a and

e, or a D a D e in the case a D e) the sum of the values of f on all incoming
edges in a is equal to the sum of values of f on outgoing edges. If e ¤ a the first
sum is equal the second sum plus 1 for a and the first sum is equal to the second sum
minus 1 for e D a for more on this see e.g. [56]).

The following lemma is analogous to Lemma 1.1.

Lemma 1.2. Let A be a finitely generated group and let be a measure on CA with a
finite first moment and such that its projection on A defines a transient random walk.
Then for all edges E and P-almost every trajectory Xi D Yi; fi/ i D 1; 2;: : :

the values fi.E / stabilize from some time onwards, that is, fi.E / D fiC1.E / for
any sufficiently large i

For the case of finitely supported the statement of the lemma is proved in [56].
We prove this lemma in Section 5.

IfA D Zd then the groupCA is calleda free metabelian groupon d generators. In
this case, following [52], we denote CA by Sd;2. For background on free metabelian
groups see [52] and references therein.

Theorem 2. Let Sd;2 be the free metabelian group on d generators, d 5, and
be an adapted measure with finite third moment on Sd;2, such that it is projection to

A D Zd is centered. Then the Poisson boundary of Sd;2; / is equal to the space of
the Z-valued limit configurations on the edges of the Cayley graph A; m/.

If the projection of to A D Zd is not centered, then the claim of Theorem 2 is
true for any finite first moment and the proof is analogous to that of Theorem 3.6.6
in [39].

The paper has the following structure. In the next section we describe the idea

of the proof of Theorems 1 and 2. The proof is based on the Ray Criterion of
Kaimanovich. An essential step of the proof is the construction of the ray approximation,

required by this criterion. This is done in Section 2: For each n we construct
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a measurable mapping n and CE
n from the limit configurations space to C and

Sd;2).
In Section 3 we prove auxiliary facts about random walks on the base group A.
In Section 4 we give the proof of Theorem 1 about wreath products). We prove

that the map n, constructed in Section 2, satisfies the assumption of Proposition 1
see Section 2 below), a version of Kaimanovich’s Ray Criterion.

In Section 5 we show that the ray approximation for free metabelian groups CE
n

satisfies the assumption of Proposition 1 and we prove Theorem 2.
InSection 6wediscussmeasureswith slowdecay and provideexamples of random

walks on wreath products, where the Poisson–Furstenberg boundary is non-trivial,
and there is no non-trivial partition of the boundary which can be defined in terms of
finite configurations.

2. Idea of the proofs, construction of ray approximations

Idea of the proof of Theorem 1. Informally speaking, we will proceed as follows.
First, for a fixed boundary point b we want to recover some information about the
trajectory that converges to b and about the points of the group A, visited by the
projection to A of this trajectory. This set of points cannot be recovered exactly.
We will recover it “approximately”, by constructing “growing neighborhoods” of the
support of b set U b/ A, a definition will be given below). This set will be in a

sense close to our trajectory. If this set is not connected, we show that we can find a

finite neighborhood U.b/ which is connected. Then, given a point a 2 A we want
to “guess” at what instant the projection to A of the infinite trajectory, converging
to b, passed not too far from a. This is easier to guess if the point a corresponds to
a center of a “cut ball”, that is, a ball with center at a of a certain radius, depending
on lA.a/, that cuts our set U.b/ in such a way that eA lies in a bounded connected
component in other words, this cut ball “separates the identity in A from infinity”).
We will show that desired “cut balls” do exist, and that moreover they can be chosen

satisfying certain additional properties. The advantage of considering the centers a
of such “cut balls” is as follows. If we assume that at some instant t the projection
of the trajectory has visited a or some other point not far from a), we could expect
that almost all time before this instant t the projected trajectory was in the connected
component of the identity, and soon after this instant t the projected trajectory will
stay forever outside of this connected component. If this is the case, we want to
“guess” the instant t granted b and the constructed sets depending on the support
of b). We do this by counting the cardinality of the intersection of the support of b
with the connected component of the identity and normalizing this cardinality by
the constant Clamp, defined in Lemma 2.1). Finally, after “guessing” the instant t we
can “guess” the element of the wreath product, visited at the time t : we consider the
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element a; f /, where a is a center of a certain “cut ball”, described above, and f is
the configuration which coincides with b in the connected component of the identity,
while it is trivial identically eB) outside this component.

The idea to consider cut balls is reminiscent of the work of James and Peres, who
used cut points of the trajectory in order to describe the exchangeability boundary
of the random walk on Zd [32] for more on this see Section 4:1 of our paper). In
their situation it was sufficient to observe that if we know the number of visits of all
points in Zd and if some cut-point of the trajectory is visited exactly once, then we
know the instant of the visit of this cut point summing up the number of visits of all
points visited before). The difficulty in our case is that we do not know these number
of visits points and we do not know even the set of visited points. Moreover, we
have already mentioned that this set and the number of visits) cannot be recovered
in terms of b, but we need an “approximate construction”, described above.

Ray Criterion of Kaimanovich. Below we provide a version of the Ray Criterion
from [40]. Recall that a -boundary of a random walk is a quotient of the Poisson
boundary with respect to a G-invariant measurable partition.

Proposition 1 Kaimanovich). Consider a random walk G; / and assume that

B is a -boundary of this random walk. Suppose that for any n 1 there is a
measurable mapping n W B G such that the following holds. Take a trajectory
X D X1; X2;: : :/ of the random walk G; / and let b D B.X/, that is, b is the
corresponding point of the -boundary B. Then, under each of the following two
assumptions A) and B), the Poisson boundary of G; / is equal to B.

A) For any > 0there exists N such that for any fixed n, n > N, with probability
at least 1 it holds distG.Xn; n.b// n.

B) There exists a family of subsets of G, Q.g;n; / such that for some C1 > 0
and any g 2 G, n and > 0 such that #Q.g; n; / exp.C1 /n. We assume that for
any > 0 there exists N such that for any fixed n, n > N, the element Xn belongs
to Q. n.b/; n; / with probability at least 1

In [40] it was assumed that the conditions in the statement of the proposition hold
with probability 1, but the same argument proves the statement under the weaker
condition above. Note that the assumption A) of the proposition implies that there
exists a sequence ni such that distG.Xni; ni b//=ni tends to 0 with probability 1
in the first case, and, analogously, under the assumption B) there exists a sequence

ni such that for instants defined by this sequence the points belong to corresponding
Q-sets with probability 1.

A) is a particular case of B), since one can considerQ.g; n; / to be equal to the
ball with the center at g and of radius n.

The mapping n as in Proposition 1 is called ray approximation. We will prove
Theorem 1 and Theorem 2 by constructing an appropriate ray approximation.
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Construction of the ray approximation for wreath products. First we recall a

simple fact about random walks on wreath products.

Lemma 2.1. Let A and B be arbitrary finitely generated groups. Consider a random
walk on C D A o B defined by a measure with a finite first moment, and a trajectory
Xi D Yi; fi/, i D 1; 2; : : : of this random walk. Then

lim
#supp fi

i D Clamp:

Here # denotes the cardinality of the set.

The constant Clamp is studied by Gilch in [28].

Proof. Consider Xi;m D Yi;m;fi;m such that XiCm D Xi Xi;m. Note that for all
i;m 0,

#supp fiCm #supp fi C #supp f im:

Note also that #supp fi 0 and E#supp f1 is finite, since the first moment of the
measure is finite. We see that the cardinality of the support is non-negative and
subadditive. Therefore, the statement of the lemma follows from Kingman’s subadditive
theorem [48].

Now fix non-decreasing positive valued functions r1.l/ and r2.l/ with r1.l/ <
r2.l/ < l. Let b be a limit configuration for a random walk on the wreath product
C D A o B. Define

b/ D [U b/ D Ur1

a 2 supp b or a D eA

B.a; r1.lA.a///:

Here and in the sequel lA denotes a word length in A with respect to some finite
generating set of A.

Consider a minimal positive integer Cb such that the Cb-neighborhood of U b/
is connected. If no such constant exists we put n.b/ D eC and in the sequel we
assume that Cb does exist.

Let U D Ur1 b/ be the Cb-neighborhood of U For any a 2 A put

U cut a/ D U n B.a;r2.lA.a///:

Note that eA 2 Ucut a/ since r2.n/ < n for all n. Let Ucut.a/ be the connected
component of eA in Ucuta. Let Flamp.a/ D Flamp.b; a/ be the cardinality of the
intersection of the support of b with Ucut.a/.

Now for each n consider all a in the support of b such that Flamp.a/ Clampn
and choose among them an element xYn for which Flamp.a/ is maximal. If no such a
exists, we put again n.b/ D eC If several a with maximal Flamp.a/ exist, one can
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take any of them. To make the constructed map measurable, one can enumerate once
and for all elements of the group by the natural numbers, and each time choose the
minimal element among all possible choices.

Previous steps of the construction: the sets U b/, U.b/, Ucut a/, the constant

Cb and the element xYn depend on the support of b and do not depend on the values

of b. The following final step does depend not only on the support, but also on the
values of the configuration b. Consider f a

n W A B such that fn.x/ D b.x/ for

x 2 Ucut.a/ and f x/ D eA otherwise. Let fNn D f Yxn
n Observe that fNn has finite

support as far as xYn above does exist).
Put

n.b/ D Yxn; fNn/:

Our goal is to choose functions r1.l/ and r2.l/ in such a way that the constructed
mappings n satisfy one of two assumptions of the ray approximation criterion
Proposition 1).

Remark. If the projected random walk has zero entropy, then the choice of xYn is
not important. This is the case under the assumption of Theorem 1, where A D Zd
However, even in this case it seems natural to consider xYn as defined above.

Main steps of the proof of Theorem 1 are formulated in the lemmas below. In
these lemmas 2.2–2.4) we are under the assumption of Theorem 1 and we assume

that r1.l/ D l1 1 r2.l/ D l1 2 where 1 > 1 > 3 2 > 0 and 1 is small enough.

Lemma 2.2. With probability close to 1 the constant Cb and elements a do exist. For
any > 0, with probability close to 1, the constructed mapping n.b/ D Yxn; fNn/
satisfies the following bound on the number of the lamps in the connected component
of eA:

Flamp. xYn/ Clamp /n:

Observe that by the construction we know also that

Flamp.xYn/ Clampn Clamp C /n:

Lemma2.3. For any sufficiently large fixed n with probability close to 1 the following
holds. Consider functions r01 D r1 and r02 D r2=2. For the given n, the infinite
trajectory Xi D Yi; fi / i D 1; 2 :: : satisfies

Clamp /n F 0lamp.Yn/ Clamp C /n:

Above the function F 0 is taken with respect to r01 and r02

We will see in Section 4 that Lemma 2.2 is essentially a corollary of Lemma 2.3.

If has finite support, or, more generally, that has quasi-finite support – the
support belongs to the product of Zd with some finite set) one can prove that with
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probability close to 1 all points of the support of the limit configuration satisfying the
property described in Lemma 2.3 lie at sublinear distance and give rise to elements
of the wreath product that lie at sublinear distance from each other. That is, for any

i > 0, 2 > 0 there exists > 0 such that with probability at least 1 2 for any
sufficiently large n and for any points a0; a00 supp b satisfying

Clamp /n Flamp.a0/;Flamp.a00/ Clamp C /n;

it holds

distA.a0; a00/ in:
Moreover, the corresponding elements of the wreath product c0 D a0; f a0

n / and
c00 D a00;f a00

n / satisfy
distC c0; c00/ in:

This allows to use criterion A) of Proposition 1.
In order to treat the general case when the support of is not necessarily finite, it is

easier to apply criterion B) of Proposition 1. To assure that we can apply condition B)
we will prove the following lemma.

Lemma 2.4. There exists a family of setsQ.g;n; / such that for some C1 > 0 and
any g 2 C D Zd o B, any n and any > 0 one has #Q.g;n; / exp.C1 n/, and,
further, such that with probability close to 1 the following holds: For any > 0, all
points Y0n in the support of the limit configuration satisfying

Clamp /n Flamp.Y0n/ Clamp C /n
lieat sublinear distance from eachotherand thecorrespondingelements of thewreath
products belong to the same Q-set.

The setsQ.g;n; / can be constructed in the following way. Take any 3, 4 such

that 4 < 3 < 2 and put r3.n/ D n1 3 r4.n/ D n1 4 For any g, n define

Z.g; n/ to be the set containing all h such that the following holds:
i) h and g has the same projection a in Zd h D a;fh/, g D a; fg/.
ii) fh and fg coincide outside the ball of radius r3.n/ with the center at a.
iii) The cardinality of the intersection of this ball with the support of fh is at most

r4.n/.
iv) The sum of the lengths of the values at these elements at points of the support

that lie inside our ball) is at most r4.n/.
Note that conditions iii) and iv) depend only on h, not on g.)

Now consider all elements gP at distance at most n from Z.g; n/, and consider
the union of Z.gP; n/ over all such gP. This union we denote byQ.g; n; /
Central extensions. The construction of CE

n is similar to that of n in the case of
wreath products. In the notation above CE refers to “central extension”.) We define
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sets U CE, Ucut CE configurations fNn.a/, fNn, the map Flamp and Yxn 2 A in theCE, Ucut

same way as for wreath products, with the only difference that in all these definitions
we consider configurations on the edges and not on the vertices of A. Now there
is some difference in the construction of CE

n b/ D Yxn; fNn//,n We cannot put CE

since Yxn; fNn// need not be an element of our group the condition on fn about the
sum of values on edges adjacent to a given vertex does not need to be satisfied). The
fact that the configuration Yxn; fNn// does not correspond to an element of our group
is not important. One can consider the space of all such pairs such that our group
is a subspace of this space. One can show that the Ray Criterion Proposition 1)
is verified even if the approximation is constructed in a larger space. But to avoid
an explanation of this we will do the following. We construct subsets of the set

of configurations corresponding to the elements of our group) ZCE...Yxn; fNn//; n/ and
QCE...Yxn; fNn//;n; / Theconstructionof thesesets is analogousto the case of wreath
products.

As before, we consider r1.l/ D l1 1 r2.l/ D l1 2 where 1 > 1 > 3 2 > 0,

1 is small enough. We take 3, 4 such that 4 < 3 < 2 and put r3.n/ D n1 3

r4.n/ D n1 4

For any n and any configuration an; fn// defineZCE...an; fn//;n/ to be the set of
the configurations of the form an; hn// this condition is analogousto the assumption
i) in the case of wreath products) such that

ii) hn and fn coincide outside the ball of radius 3r3.n/ with the center at an.

iii) There exist at most r4.n/ elements of the support of hn that lie inside this
ball.

iv) The sum of the lengths of the values at these elements at the points of the
support that lie inside this ball) is at most r4.n/.

Fix any > 0 we can choose arbitrarily small). Take any element xY0n; fN0n// of
our group in the set set ZCE...Yxn; fNn//; n/ one checks that such element does exist).
Put CE

n b/ D xY0n; fN0n//.
Now consider all elements of the metabelian group gP

at distance at most n
from some configuration of ZCE...xY0n ; fN0n//; n/, corresponding to an element of our
group. Consider the union of ZCE.gP; n/ over all such gP. This union we denote by
QCE...a0n; fn//;0 n; /

We will show that for any > 0 with probability close to 1 the n-th step position
of our random walk belongs to the set QCE... xY0n; fN0n//; n; /

3. Auxiliary facts about random walks on A

Consider a random walk on A and let pi y; x/ be the i-th step transition probability
from y to x. Let

G.y;x/ D p1.y; x/ C p2.y; x/ C p2.y; x/ C
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be the Greenkernelof a randomwalk on thegroupAand let G.x/ D G.e; x/. Observe
that G.e; y 1x/ D G.y;x/ is the expected number of visits of x for a random walk
started at y. In particular, if the random walk is transient, then G.y; x/ is finite for
all x; y.

The lemma below is a version of a well-known fact from Potential Theory.

Lemma 3.1 Green function). Suppose that the random walk is transient, and that
there exist non-increasing functions Gmin and Gmax such that for any x 2 A,

Gmin.lA.x// G.x/ Gmax.lA.x//:

Then for any positive integers r; N with 2r N and any c 2 A with lA.c/ D N
the random walk starting at e visits the ball B.c; r/ centered at c and of radius r)
with probability at most

Gmax.N=2/=Gmin.r/:

Proof. Consider the probability u.z/ to visit the ball at least once starting at some
point z. Put v D I P/a, where P is the averaging operator of the random walk
under consideration. It holds v.z/ D 0 for all z outside the ball and v.z/ 0 for z
inside the ball.

We have

u.z/ D v.z/CX
y2A

G.z;y/v.y/:

If z is outside the ball, then

u.z/ D X
y2B.c;r/

G.z; y/v.y/:

This implies that

u.e/ Gmax.N=2/ X
y2B.c;r/

v.y/;

since for any y 2 B.c; r/ it holds G.e;y/ Gmax.lA.y// Gmax.N=2/.
Observe also that

u.c/ D 1 D v.c/ C X
y2B.c;r/

G.c;y/v.y/ X
y2B.c;r/

G.c; y/v.y/:

Weknowthat for all y inside the ballG.c; y/ Gmin.r/. Therefore,Py2B.c;r/ v.y/
1=G.r/, and this completes the proof of the lemma.

Lemma 3.2 Neighborhoods of trajectories in Zd Let be an adapted measure on

A D Zd d 5, and assume that the third moment of is finite. Take q < 1=2 and
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w < 1=2, put t.n/ D n2w and assume that 1Cq < 3w. Let Y1; Y2; : : : ; Yi ; : : : be a
trajectory of the random walk Zd; /

i) With probabilityclose to 1 the distance between fY1; Y2; : : : ;Yng and fYnCOEt.n/
YnCOEt.n/ C1, YnCOEt.n/ C2; : :: g is greater than nq.

Indeed, even more is true.
ii) Let

Uq
beg.n/ D

n[iD1

B.Xi; nq /; U
q
mid.k; m/ D

m[iDk

B.Yi ; iq/

and Uq
end.n/ D U q

mid.n; 1/. Then with probability close to 1 the sets U q
beg.n/ and

U q
end.n C t.n// do not intersect.

iii) Let

V
q

mid.k; m/ D
m[iDk

B.Yi; lA.Yi /2q/;

V q
beg.n/ D V q

mid.1;n/ and V q
end.n/ D V q

mid.n; 1/. Then with probability close to 1

the sets V
q

beg.n/ and V
q

end.n C t.n// do not intersect.

Proof. First observe that if the measure is not centered, then the claims of the
lemma follow from the Central Limit Theorem for this random walk. Therefore,
below in the proof we will assume that is centered.

i) First suppose that d D 5.
One knows that if a centered adapted measure on Z5 has a finite third moment,

then the Green function G.x/ is asymptotically equivalent to 1=kxk3, where kxk is
the Euclidean length of x 2 Z5, see [55].

By the Central Limit Theorem, for any w0 < w the distance between Yn and

YnCOEt.n/ is at least nw0 with probability close to 1. Chose w0 < w and q0 < w0 in
such a way that 1 2q C3q0 3w0 < 0. Since 1Cq 3w < 0, the latter inequality
is verified whenever q0 is close enough to q and w0 is close enough to w.

Applying Lemma 3.1 to the reflected random walk Zd ; M
/, we see that the

distance between YnCOEt.n/ and the beginning of the trajectory Y1; Y2; : : : ; Yn is at least

nq0 with probability at least 1 nq0/3=.nw0 2/3. Since q0 < w0, this probability is
close to 1.

Among the points visited up to the instant n we now consider the following ones:

Xi.1COEn2q / where 1 i n=.1 C OEn2q / Observe that with probability close to 1

any among the first n points of the trajectory lies at distance at most nq0 from one of
the chosen points. For each chosen point place a ball of radius 2nq0 centered at this
point. Then with probability close to 1 any point of the nq-neighborhood of the first
n points of the trajectory lies inside one of this balls.
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Therefore it suffices to estimate from above the probability that the tail fYnCOEt.n/
YnCOEt.n/ C1, YnCOEt.n/ C2; : :: g of the trajectory has a non-empty intersection with the
unions of these balls.

By Lemma 3.1 applied to Zd; / we see that for any of these balls the probability
that the tail has a non-empty intersection with this ball is at most .2nq0 nw0/3. The
events, consisting in that the taildoes not intersectone givenball, are not independent;
nevertheless we can always claim that the probability that at least one of these events
occurs is not greater than the sum of the probabilities of these events. Therefore, the
probability that the tail has a non-empty intersection with the unions of our balls is at

most n1 2q.2nq0 nw0/3. Observe that n1 2q.2nq0 nw0/3
D 8n1 2qC3q0 3w0 By

our assumption onq0 andw0 we have 1 2qC3q0 3w0 < 0, and thus n1 2qC3q0 3w0

tends to 0 as n tends to1.
This completes the proof of statement i) for d D 5. Ifd > 5 take the projection

of the random walk to the first k coordinates. We know already that for the projection
of the trajectory the conclusion of the lemma is true. Since the projection does not
increase distances, we see that the conclusion is also true for the original trajectory
in Zd

ii) Take q0 > q such that q0 < 1=2 and 1 C q0 < 3w. Then q0; w satisfy the
assumption of the lemma, and hence from the already proven first part of the lemma
we known that with probability close to 1 the distance between fY1; Y2; : : : ; Yng
and fYnCt.n/;YnCt.n/C1; YnCt.n/C2; : : : g is greater than nq0 Take y > 1 such that

y < q0=q. Note that

Uq
end.n C t.n// D U q

mid.n C t n/;1/ D U q
mid.n C t n/; ny/[U q

mid.ny; 1/:
Observe that for i ny it holds iq < nq0 and thus with probability close to 1 the
sets U q

beg.n/ and U q
mid.n C t n/; ny/ do not intersect. By well-known estimates on

the inner and outer radii also called lower and upper classes) of the random walk we
know that for any > 0 an infinite trajectory Y satisfies with probability 1 that

n1=2
lZd Y n/ n1=2C

for any sufficiently large n. Here the upper bound follows from the law of the
iterated logarithm for each of the coordinates in Zd which is true for any variable
with finite variance, that is, in our notation, for any with finite second moment,
see e.g. Theorem 3.52 in [9]. For the lower bound see [17] in the case of simple
random walks in Zd d 3, and [54], [29] for random walks with finite second

moment.

This implies that the probability that U q
beg.n/ and U q

end.ny/ D U q
mid.ny;1/ have

a non-empty intersection, is close to 0. And thus we conclude that the probability
that U q

beg.n/ and Uq
end.n C t.n// have a non-empty intersection is close to 0.
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iii) By the above mentioned estimates of the inner and outer radii of the random
walk we see that for any q0 > q with probability close to 1,

V q
beg.n/ U

q0
end.n C t.n// U

q0
beg.n/ and V q

end.n C t n//;
and thus iii) follows from ii).

4. Wreath products. Proof of Theorem 1

Proof of Lemma 1.1. We have

XiC1 D YiC1; fiC1/ D Yi;fi/.Ai; Fi / D Xi.Ai; Fi /;
where Ai;Fi/ 2 supp so that fiC1.a / D fi a /Fi.Y 1

i a / Thus

POEFi.Y 1
i a / ¤ eB DX

a2A

/i
A a/ X

x;f /2C

1 i.f a 1a // x; f /;

where A is the projection of on A and i.t/ D 0 if t ¤ 0 and 1 if t D 0.
Therefore,

X
i

POEfi a / ¤ fiC1.a / DX
i

POEFi.Y 1
i a / ¤ eB

X
a2A

G.a/ C 1/ X
x;f /2C

1 i.f a 1a // x;f /;

D1
iwhere G.a/ D P1i A a/ is the Green function of the projection of the random

walk on A. Here and in the sequel, i denotes the i-th convolution of Since the
random walk is transient, G.a/ < 1 for all a and also G.a/ G.eA/ C 1 for all
a 2 A. Therefore, the expression is at most

Const X
x;f /2C

x; f /X
a2A

1 i.f a 1a //

D Const X
x;f /2C

x; f /#supp f
Const X

x;f /2C

x; f /lC x; f // < 1;

since the first moment of is finite. We have shown that

X
i

POEfi a / ¤ fiC1.a / < 1;
and hence for all a we have fi a / ¤ fiC1.a / for a finite number of i’s.
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Lemma 4.1. Let C D Zd o B, d 1, B has at least 2 elements. Consider an
adapted measure on C, and assume that the projection of this measure to Zd is
centered. Then there exist K 1 and g1; g2 2 supp K such that g1 ¤ g2 and the
projection of both of these elements on Zd is the zero element eZd of Zd

Proof. The claim of the lemma is obvious, if the support of generates Zd o B as a

semi-group.
We know that the projection of on Zd is adapted and centered, therefore there

exist K1 and g 2 supp K1 such that g has zero projection to Zd that is, g D
e; f /. If f h/ ¤ eB for some h 2 A, then we can put g1 D g, g2 D g2. We

have g2 D e; f 2/. We see that g1 and g2 have zero projection on Zd Note that

f h/ ¤ f h/f h/ for any h such that f h/ ¤ eB, and this implies that g1 ¤ g2.
Therefore, it is sufficient to consider the case where f eB, that is, we can

assume that eZd
oB

is in the support of K1 for some K1 1.
Let CC C be the sub-semigroup generated by the support of let CC;K1 C

be the sub-semigroupgenerated by thesupportof K1 andCK1 C be thesubgroup
generated by the support of K1 The support of K1 is supp /K1 Since is
adaptedandC is finitely generated, there exists a finitegeneratingset 0 ofC such that

0 supp This implies that the index of CK1 in C is at most .2# 0/K1 1, and, in
particular, CK1 is a finite index subgroup of C. In particular, CK1 is not Abelian, not

allelements of K1 commute,and this impliesthatCC;K1 is not Abelian. Therefore,
there exist h1;h2 2 CC;K1 having the same projection a to Zd and h1 ¤ h2. Our
assumption that the projection of is centered implies that there exists h 2 CC;K1

such that its projection to Zd is equal to a. Put g1 D h1h, g2 D h2h. It is clear
that g1 ¤ g2 and that these two elements have the same projection to Zd Note that
since e 2 supp K1 the supports of K1N form an increasing sequence of sets.

Therefore, there exists N such that g1 and g2 belong to K1N and this completes
the proof of the lemma.

For theproof ofLemma4.3 belowwe will need the following simple combinatorial
lemma.

Lemma 4.2. Fix a positive constant Kball. Consider OEKballN unordered balls put in
N C 1 ordered boxes and suppose that each configuration has equal weight. There
exist K0; Kfull > 0, depending on Kball, such that f the probability that the number of
non-empty boxes is not greater than KfullN is smaller than exp. K0N/.

For the proof of this lemma see for example Lemma 5:1 in [22].
For proving the following lemma, the assumption of centeredness is not relevant

but assumed in order to simplify the proof.
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Lemma 4.3 Connectivity properties of the set U r1 b/). Let C D A o B, A D Zd
d 3, B has at least 2 elements. Let be an adapted measure on C, such that the
support of its projection on A is centered. Suppose that either i) thethird moment of
is finiteand r1.l/ l1 1 1 < 2=3, or ii) hasa finite supportand r1.l/ > K log.l/
for sufficiently large constant K.

A) Take an infinite trajectory X D X1;X2; X3; : : : of the random walk C; /
Let Y D Y1;Y2; Y3; :: : be its projection on A. Let b be the limit configuration of X,
and let R be the set of points of A visited by the projection Y With probability 1 on
the space of infinite trajectories for all but finitely many points in a1 2 supp b there
exists a2 2 R such that

distA.a1; a2/ <
1
2

r1.lA.a1//:

Moreover, P-almost surely for all but finitely many points in a3 2 R there exists

a4 2 supp b such that

distA.a3; a4/ <
1
2

r1.lA.a3//:

B) With probability 1 the set U r1 b/ has one infinite connected component and

finitely many finite connected component. In particular, there exists Cb > 0such that
the Cb-neighborhood of Ur1 b/ is connected.

Proof. First assume that i) holds. Since the third moment is finite and since 2=3

1 > 0, with probability 1 the trajectory makes only a finite number of random
walk’s increments Zn D An;Fn/ such that the length of Zn is larger than r01 n/ D
n1=3C1=2.2=3 1/.

Define the set W r1; by

W r1; X/ D [i2N

B.Yi; r1.i1=2 //;

and put

V r1; X/ D [i2N

B.Yi; r1.lA.Yi/1 //:

Observe that withprobability1 thesetW r1= 2; X/has one infiniteconnected
component and finitely many finite connected components whenever is small enough.
Observe also that, since for any positive i and any sufficiently large n it holds
n1=2 i < lA.Yi/ < n1=2Ci the same is true for V r1; X/: for any sufficiently small

V r1; X/ has one infinite connected component and finitely many finite connected
components almost surely.

Our goal is to show that for some > 0 with probability 1 on the space of infinite
trajectories the set U r1 b/ contains all but a finite number of points of V r1; X/,
where b is the limit configuration of X.
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By Lemma 4.1, replacing, if necessary, by a suitable convolution power, we
can choose c D eA; fc/ such that fc is not the identity there exist a 2 A such that

fc.a/ ¤ eB) and assume that c and eC belong to the support of A convolution
power of has finite third moment if hasfinite third moment, it is finitely supported

if is finitely supported, and its projection to Zd is centered if has the property. A
convolution power of is not necessary adapted, but we needed the adaptedness of

only to apply Lemma 4.1, and we do not use this property in the rest of the proof.
For any finite second moment random walk on Zd such that supp ¤ eZd

and d 1, the expectation of exp. Rn/ is small or equal to exp. Kn1=3/, where Rn
is the number of distinct points visited until the instant n [16]. In fact, the condition
that the second moment is finite is not important for the inequality above, but we do

not need this.)
This implies that there exist K1; K3 > 0 such that for any K2 > 0 and for

any sufficiently large n there exist at least K2 log.n/ different points of A D Zd
visited between instants n and n C K1K2 log3 n/ with probability at least 1
exp. K3K2 log.n//.

With probability at least 1 exp. K4K6 log.n// there are at least K5K6 log.n/
multiplications by c or e among any K6 log.n/ consecutive steps of our random
walk. Observe that for given K6, K8 and sufficiently large n it holds K8 log3 n/ >
K6 log.n/, and therefore with probability at least 1 exp. K4K6 log.n// there are at

least K5K6 log.n/ multiplications by c or e between instants n and n C K7 log3 n/.
Put N D OEK6 log.n/ 1, Kball D K5 and apply Lemma 4.2. We see that with

probability at least 1 exp. K0N/ there are at least KfullN multiplications by c or

e that have occurred at distinct elements of the base group A, between instants n and

nCK7 log3 n/. Therefore, there exist K8; K9 > 0such that with probability at least
1 exp. K8 log.n// there are at least K9 log.n/ multiplications by c or e that have

occurred at distinct elements of the base group A, in the time interval between n and

n C K7 log3 n/. This implies the second inequality in A) under the assumption i)).
To prove B) observe that in view of A) we know that with probability 1 the

set U r1 bb/ contains all but a finite number of points of the projected trajectory.
Moreover, with probability 1 this set contains all but a finite number of points of

V
r1=2 Finally, note that a union of balls or any other connected sets) that contains a

connected set is connected, and thiscompletes theproof of B) under theassumption i).
Now let us assume that ii) holds. Under the assumption of ii) the measure has

finite support. This implies that for any a1 2 supp b there exists a2 2 R such that

distA.a1;a2/ is not greater than D, where D is a positive constant depending on the
support of This proves the first inequality in A).

Now we want to prove B) and the second inequality in A). As before, we replace
by a suitable convolution power, so that we can assume g1; g2 2 supp where

g1 and g2 have zero projection to Zd Let A be the projection of the support of
to Zd In the Cayley graph of Zd; A/ the sets of points visited by the projection of
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the trajectory of our random walk is connected. Let a0 2 Zd be a point, visited by
the projection.

With probability 1 the set of points visited by the projection of the trajectory is
infinite. Observe that an intersection of any infinite connected set containing a0 with
the ball of radius r, centered at a0, has cardinality at least r. As before, we see that
with probability at least 1 exp. K11r// there exists at least one point in the ball

B A a0; r/, where a multiplication by g1 or g2 had happened, at some moment n 0.
Therefore, with probability at least 1 exp. K12r// there exists at least one point
in the ball B A a0; r/ such that the value of b at this point is non-trivial.

Lemma 4.4. Under the assumptions of Theorem 1 consider a point Xn D Yn; fn/
visited at the n-th step of the random walk under consideration. Let 1, 2, 3 be
such that 0 < 2 < 1=3 and 0 < 3 < 2. Consider the points of the support of fn
that lie inside the ball centered at Yn and of radius n1 2 The following holds with
probability close to 1:

i) the number of these points is at most n1 3

ii) the sum of the lengths in B) of the values of fn at these points is at most n1 3

Proof. Replacing the defining measure by its reflection M we can reduce the
problem to the situation, where the center of the ball is at e, not at xn. Consider 4

such that 3 < 4 < 2. Since the random walk has the third moment and since

3 < 1=3, we know that with probability close to 1 there are no random walk’s
increments that have the projection on the base group longer than n1 3 and there
are no random walk’s increments such that the corresponding configurations have

elements of length greater than n1 3 in their supports.

Combining this with the fact that for any > 0 an infinite trajectory Y satisfies,

with probability 1,

n1=2
lZd Y n/ n1=2C

for any sufficiently large n, we see that with probability close to 1 all the changes of
the values of the configuration at points that lie inside our ball have occurred at the
time interval between 1 and n1 4

Since the first moment of the random walk on the wreath product is finite, this
implies i) and ii).

Lemma 4.5. Under the assumptions of Theorem 1 consider a point Xn D Yn; fn/
visited at the n-th step of the random walk under consideration. Let 2, 3, 4 be
such that 1=3 > 2 > 0 and 0 < 4 < 3 2. Let b be the limiting configuration for
our infinite trajectory, and let f 0

n be the configuration which coincides with b in the
connected component of the identity, after removing the ball of radius n1 2 from the
set Ur1 b/ and which is equal to the identity outside this connected component.
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Then with probability close to 1 the elements Yn; fn/ and Yn; f 0n/ have the
following properties.

ii) The functions fn and f 0

n coincide outside the ball of radius r3.n/ D n1 3

with the center at Yn.

iii) The cardinality of the intersection of the supports of both fn and f 0

n with this
ball B.Yn; n1 3/) is at most r4.n/ D n1 4

iv) Moreover, the sum of the lengths in B) of values of fn, as well as of f 0n at
the points of the support inside the ball B.Yn; n1 3/ is at most r4.n/ D n1 4

Properties ii)–(iv) correspond to the properties mentioned after Lemma 2.4.

Proof. By ii) of Lemma 3.2 we know that with probability close to 1 the ball of
radius n.1 2/=2 separates infinity from the identity in the set Ur1 b/. Below we will
assume that this is the case. This implies, in particular, that f 0

n has finite support.
From Lemma 4.4 we know already that statements iii) and iv) hold for fn. Let us

show that these statements hold also for f 0

n As the third moment of the measure
that defines our random walk is finite, the random walks does not have increments
of length greater that n1=3C 5 for any 5 > 0 and for any sufficiently large n. We

combine this with the estimates on the outer and inner radii for the projections of
and M to Zd: for any > 0, with probability 1 the infinite trajectories Y YM satisfy

n1=2 lZd YM n/; lZd Y n/ n1=2C ;

for any sufficiently large n. We get that the values of b inside the ball of radius

r3.n/ with the center at Yn could be changed only between the instants n r5.n/ and

n C r5.n/. Here r5.n/ D n1 5 and we choose 5 in such a way that 4 < 5 < 3.

This implies iii) and iv).
Now let us prove ii). Take some x 2 Zd which is in the support of fn or f 0

n and
which does not belong to the connected component of eA. Let us showthat if the value
at x undergoes a modification at the instant m, then n n1 4 < m < nC n1 4

Indeed, observe that with probability 1 the following holds for sufficiently large n. If
m is such that the ball of radius n1 4 with the center at Yn is not visited in the time
interval from 1 to m, then at time m our random walk is in the connected component
of eA. Moreover, all points where the value undergoes a change at time n also belong
to the connected component of eA. Analogously, if m is such that we have never
visited the ball of radius n1 4 with the center at Yn between instants m and1, then
at the instant m we cannot change the value in x.

Proof of Lemma 2.3. Consider r1.l/ D l1 1 r2.l/ D l1 2 from the assumption of
the lemma. Put q D .1 1/=2, w D .1 2/=2. By the assumption of the lemma

1 > 3 2. Therefore, 1Cq < 3w, and we can apply iii) of Lemma 3.2 to q, w and the
projection of our random walk to Zd We get that V q

beg.n/ D S
n
iD1 B.Yi ; lA.Yi/2q/
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and V q
end.nCn2w/ D S1iDnCn2w B.Yi; lA.Yi /2q/ do not intersect. Then we combine

the conclusion of ii) and iii) of Lemma 4.5 with that of Lemma 2.1. We get that

Clamp /n Flamp.Yn/ Clamp C /n:

We know that with probability close to 1 the ball B.Yn; r2.lA.Yn//=2/ separates

infinity from the identity. In this case, the connected component of the identity,
corresponding to r02 D r2=2 contains the connected component of the identity,
corresponding to r2. It implies that the function F0, taken with respect to r01 D r1 and

r02 D r2=2, satisfies Fl0amp.Yn/ > Flamp.Yn/, and therefore

Clamp /n F 0lamp.Yn/:

By construction of F 0 we also know that

F 0lamp.Yn/ n Clamp C /n:

Proof of Lemma 2.2. Consider n0 D .1 0/n, 0 < choose 2 such that

.1 0/.Clamp C 2/ Clamp C and .1 0/.Clamp 2/ Clamp ;

and apply Lemma 2.3 to n0 and 2. We see that there exists a sequence xY 0
n in A such

that for any sufficiently large n

F 0lamp.xY 0
n / Clamp /n:

Now let xY 1
n be an element of the support of b, which is closest to the element xY 0

n
By Lemma 4.3 we know that the distance between xY 1

n and xY 0
n is at most r1.n/=2

r2.n/=2 with probability close to 1. This implies that the ball B.Y1;x r2.n// contains
the ball B.Y0;x r2.n/=2/, and hence B.Y1;x r2.n// separates the identity and infinity if
B.Y0;x r2.n/=2/ has this property. By Lemma 4.4 we know that the cardinality of the
intersection of the support of b with B.Y0;x 3r2.n// is smaller than n for any positive

and any sufficiently large n. In view of this, we conclude that for any > 0 with
probability close to 1 the constructed element Yx1 satisfiesn

Flamp.xY 1
n / Clamp /n:

Here Flamp is defined with respect to the functions r1 and r2.

Proof of Lemma 2.4. We consider the family of setsQ.g; n; / described after Lemma

2.4. We fix > 0 and consider Y0n in the support of the limit configuration b
satisfying

Clamp /n Flamp.Y0n/ Clamp C /n:

Wewant to provethat with probability close to 1 all such points lieatsublinear distance
from each other and the corresponding elements of the wreath products belong to the
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same Q. We are going to show that with probability close to 1 any Y0n as above
lies at sublinear distance from Yn, and that the corresponding elements of the wreath
product belong to Q.Xn; n; /

First we will assume that Y0n belongs to the trajectory of the projection of our
random walk to Zd : there exists N such that Y0n D YN

Observe that the random walk we consider is adapted and its projection to Zd is
transient, therefore Clamp > 0. Takeany 1 > 0and apply Lemma 3.2 and Lemma 2.3

to n1 D n 1=Clamp/n, n2 D n and n3 D n C 1=Clamp/n and r01 l/ D lq0

and r2.l/ D lw, where q0 > q is such that the inequality from the formulation of
Lemma 3.2) holds also for q0 and w: 1 C q0 < 3w.

By Lemma 3.2 we knowthat the ballswith center at Yn1 Yn2 and Yn3 and of radius

lA.Ynj /w j D 1, 2 or 3) separate the identity from infinity with probability close
to 1. Therefore, with probability close to 1 these three events happen simultaneously.
Below we assume that each of the balls B.Ynj ; lwA Ynj // separates the identity from
infinity, j D 1;2 and 3.

First suppose that N is such thatN < n1 1=Clamp/n D n.1 2 1=Clamp/.

Let us show that if the ball with center at the point YN separates the identity from
infinity, then the number of elements of the support in the corresponding connected
component of the identity is less then .1 1=2/n, with probability 1 for sufficiently
large n independent of all other assumptions). Indeed, there are two possible cases.

In the first case, this ball intersects with the corresponding ball with the center in Yn2
But theprobabilityof this event is not greater than the probability that the randomwalk
visits the ball of radius r2 lA.Yn2/ after time 1n. For any 4 > 0with probability 1

it holds lA.Yn2/ < n1=2C 4 and therefore r2.lA.an2/ < n.1=2C 4/.1 2//
2 /. Taking 4

small enough, we see that the probability that our balls have non-empty intersection
is close to 0.

The second case is when the ball has no intersection with the corresponding ball
with the center in Yn2 Let us consider connected components after removing the ball
with the center in Yn2 There is a connected component of the identity, of infinity
and possible some more finite connected components. Our ball cannot lie in those

last mentioned components, as in this case it cannot cut the identity from infinity. By
Lemma 3.2 we know that with probability close to 1, the ball does not lie inside the
connected component of the identity eA. Therefore, we can assume that our ball lies
in the connected component of infinity.

Then the number of points in the connected component of the identity after
removing our ball is smaller than in the connected component corresponding to n2.

Now takeN > n3 C 1=Clamp/n D n.1 C 2 1=Clamp/.

By iii) of Lemma 3.2 we know that the following holds with probability close to
one where “with probability close to one” refers to n). The ball B.YN ; lA.YN /q0/
has empty intersection with the connected component of the identity in the set,
which we get from the neighborhood under consideration by removing the ball
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B.Yn2; lA.Yn2 /q0 /. This implies that with probability close to 1 referring to n)
the connected component of the identity after removing the ball B.YN ; lA.YN /q0/
is larger than the connected component of the identity, after removing the ball

B.Yn2; lA.Yn2 /q0 /. In this case the cardinality of the set of points of the support
of b in the first mentioned connected components is not less than the cardinality of
the intersection of the support of b with the connected component of the identity,
after removing the ball B.Yn2 ; lA.Yn2/q0 /. This shows that with probability close to
1 again “probability close to 1” refers to n, not to N) the number of elements of the
intersection of the support of b with the connected component of the identity after
removing the ball B.YN ; lA.YN /q0/ is at least Clamp C 1=2/n for all N such that

N > n.1 C 2 1=Clamp/).

This completes the proof in the case when Y0n belongs to the trajectory of the
projection of our random walk to Zd

Finally, observe that in view of Lemma 4.3 it is sufficient to consider the above
mentioned case: if Y0n does not belong to the point of the projected trajectory, we can

consider an element Y 00
n closest to Y0n in Zd

It remains to show the bound on the cardinality of the sets Q.g; n; /: we want
to show that for any g 2 C D Zd o B, any n and any > 0 one has #Q.g; n; /
exp.C1 n/. First observe that the set Z.g;n/ defined in Section 2 has subexponential
cardinality, that is, log.#Z.g; n//=n 0 when n! 1. Indeed, if B is finite, then

the cardinality of this set is at most BK2r3.n/C r3.n/
nd

which is less thanexp.K3r3.n/C
K3 log.n/r3.n//, where K2, K3, K4 are positive constants.

Now for an arbitrary B the cardinality of Z.g; n/ is at most 2K2r3.n/C r3.n/
nd

multiplied

byPn1C CnjDr3.n/ …vB.Kni/, where vB.n/ is the growth function of B with
respect to some generating set of this group. This sum is at most

X
n1C CnjDr3.n/

exp.C1r3.n//;

that is, at most exp.C2r3.n// for some positive constants C1 and C2).
Note also that the union of a subexponential number of uniformly subexponential

sets the cardinality of an n-th set in each family is not greater than Fmaj.n/, where
the function Fmaj.n/ satisfies log.Fmaj.n//=n 0 as n 1) has subexponential
cardinality, and this implies the desired upper bound on the cardinality ofQ.g; n; /

Lemmas 2.2 and 2.4 showthat we canapply theRay Criterion B of Proposition 1),
and this completes the proof of the Theorem 1.

Remark. In the theorem we have considered A D Zd A similar argument can be
applied under an appropriate assumption of the measure) to A of growth at least n5,
but we do not provide details here. The statement was known previously in the case
when the base is a tree see the already mentioned result from [47]).
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4.1. Remarks about the exchangeability algebra. As we have already mentioned,
James and Peres has shown in [32] that the number of visits of points of the base

provides a complete description of the Poisson–Furstenberg boundary of a certain
measure on Zd o ZC. The Poisson boundary of particular random walks on wreath
products of A with ZC is equivalent to the exchangeability boundary of the projection
random walk on A ([37]). To explain this connection we recall below the definitions
of the tail boundary and of exchangeability boundary.

Tail boundary. Let A1n be the -algebra of measurable subsets of the trajectory
space G1 that are determined by the coordinates Yn, YnC1, YnC2 … of the trajectory
Y The intersection A1 D \nA1n is called the exit -algebra of the random walk.
The corresponding G-space with probability measure is called the tail boundary of
the random walk.

The difference between this definition and the definition of the exit Poisson–
Furstenberg) boundary is that here we identify trajectories that coincide after some
instant, while in the definition of the exit Poisson–Furstenberg) boundary we identify
trajectories that coincide after some instant and after some shift in time.

For random walks on graphs the tail boundary does not need to be equal to the
Poisson boundary see Example 2 in [8], for more on this see [41]). However, for
groups it is always the case [44].

Exchangeability boundary. Consider a randomwalk onA. Wesay that two trajectories

X1, X2; : : : and Y1, Y2; : : : are equivalent if there exists N such that Xi D Yi for
anyi > N and X1, X2; : : : ;XN can be obtained by a permutation of Y1, Y2; : : : ; YN
We consider a measurable hull of this equivalence relation in the space of infinite
trajectories, and the corresponding quotient is called exchangeability boundary.

Note that if two infinite trajectories X and Y satisfy the condition in the definition
above, then for i > N and any a 2 A the number of visits of a until the instant

i by the first trajectory is equal to the number of visits of this point by the second
trajectory.

And, conversely, if X and Y coincide after some time N and for i > N and any
a 2 A the point a is visited until the instant i the same number of times by X and

by Y then these two infinite trajectories satisfy the condition in the definition of the
exchangeability algebra.

Consider the following random walk on A o ZC A o Z. We walk on A and at

each visited element we add C1 in the corresponding subgroup Z. It is clear that if
A is a group, this random walk is a random walk in a group sense, that is, it is given
by convolutions of some probability measure on A o Z. From the definitions of tail
and exchangeability boundaries it is clear that the exchangeability boundary of the
random walk on A is equal to the tail boundary of the constructed random walk on
the wreath product. If A is a group, it was already mentioned that the tail boundary
is equal to the Poisson boundary.
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In [32] it has been observed that the existence of infinitely many cut-points in the
base group implies that the number of visits provides the complete description of the
exchangeable -algebra. Furthermore, one knows that for a simple random walk on a

transient group there are infinitely many cut points with probability 1. For all groups
except finite extensions of the nilpotent group of upper-triangular 2 2 matrices this
is proved in [32] and for that latter group it is proved by Blachère in [6].)

Even in this special case of random walks on the wreath product Zd o ZC
corresponding to the exchangeability algebra of a random walk on Zd Theorem 1
provides some new information, since we consider random walks defined by probability

measures that need not have a finite support. For d 5; for quickly decreasing
measures on Zd o ZC a similar argument works for d 4 for this particular case.)

5. Free metabelian groups. Proof of Theorem 2

Proof of Lemma 1.2. The proof is analogous to the proof of Lemma 1.1, only that
we consider visits of the edges and not on the vertices. Let i

A E/ be the probability
to visit the edge E on the i -th step for the projection of the random walk on A and

Gedge.E/ D P1iD1 i.E/ be the “edge Green function” of the projection of the
random walk on A. Note that Gedge.E/ is not greater then the sum of the values of the
Green function at the vertices adjacent to E, and, in particular, for some Const > 0
it holds Gedge.E/ < Const for all edges E. Then in the same way as in the proof of
Lemma 1.1 we observe that the sumP1iD1

POEfi.E / ¤ fi.E / is at most

Const X
x;f //2CA

x; f /// X
a is an

edge ofA

.1 i.f a///

D Const X
x;f //2CA

x; f /#supp f

Const X
x;f //2CA

x; f ///lC x; f /// < 1:

Therefore fi.E / can change its value only for a finite number of i ’s
Now we prove Theorem 2. An analog of Lemma 4.3 and Lemmas 2.3, 2.4 where

instead of configuration on vertices we consider configurations on edges) is proved in
exactly the same way. Now, as it was already mentioned in Section 2, CE

n is defined
as follows. Consider Q...Yxn; fNn//; n; / defined in the space of all configurations.)
Take any element of our group in this set a0n; f 0n// and put CE

n b/ D xY0n; fN0n//.
Similarly to the wreath product case we argue that a union of exp. 0n/ sets of

cardinality at most exp. 00n/ has cardinality at most exp.. 0 C 00/n/, and hence the
union of Q.h; n; / where h is inQ.g;n; / has arbitrary small exponential growth
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if is small enough for fixed g). This implies that we can apply B) of Proposition 1
Ray Criterion), and completes the proof of Theorem 2.

6. Non-standard boundaries for slowly decaying measures

Lemma 6.1. i) Let A D Zd d 1, #B 2, and let B be finite. There exists a
non-degenerate finite entropy symmetric measure on C D AoB with the following
property: for any finite set V Zd and any fV W V B with probability 1 any
infinite trajectory of the random walk C; / visits points, such that the restriction of
their configuration to V is equal to fV

ii) Moreover, the measure can be chosen in such a way that it has finite entropy,
and the projection of to Zd defines a transient random walk.

Proof. i) Let WB;d c/ be the subset of Zd o B consisting of all the elements of
the form .0; f /, where supp f OE c; c d Given a non-decreasing sequence ci
0 D c1 c2 c3 and a sequence di i 0, such thatPi 0 di D 1, consider
the following probability measure on C:

D ci ;di D d0 0 C d1 1 C d2 2 C ;

where 0 is a non-degenerate measure on Zd and for i 1 the measure i is the
uniform probability measure on WB;d ci /. The projection of the random walk on Zd
is Zd; 0/.

For any 0 and any sequence di we can choose a rapidly growing sequence ci
in such a way that the constructed measure satisfies the first claim of the lemma.
Assume that cj is an increasing sequence of integers. Let C

be the probability
measure on RC such that C.cj / D dj and C.i/ D 0 if there is no j such that

i D cj Consider a sequence of independent random variables Zj with distribution

C. Observe that if the sequence ci grows rapidly enough, then with probability 1
there exist infinitely many i such that Zi > i.

Assume that 0 in the construction of is chosen in such a way that for the
random walk Yi defined by 0, with probability 1 for sufficiently large i it holds that

jYi j < i=2. This is for example the case if Zd; 0/ is a simple random walk on

Zd
In this case infinitely many times the randomwalkXi D Yi; fi / has an increment

at the instant i that comes from some j such that cj > lZd Yi/ C DV C 1. Here

DV is such that the ball of radius DV 2, centered at the identity of Zd contains the
set V Let us subdivide the space of infinite trajectories into conditional events in the
following way. We fix Yi the projection of the trajectory to A D Zd and, moreover,
for each i we fix ji such that the i-th increment of the random walk comes from ji:
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this increment is an element of the set WB;d cji /, and all elements of this set have the
same probability to be an increment of our random walk, so far we have fixed ji

Given this information on the infinite trajectory of the random walk, we observe
that after each time i C 1, such that cji > lZd Yi / CDV C 1, the distribution of the
values f x/, x 2 V is the uniform distribution on the set, isomorphic to B#V. We

know that with probability 1 there are infinitely many such i’s, and this completes
the proof of the first part of the lemma.

ii) We provide a construction of which is more general than the construction
given in the proof of i). For integers b; c such that b c, let WB;d c; b/ be the subset

of Zd o B containing elements of the form .0;f /, where supp f OE c; c d and
such that f x1; x2; : : : ; xd / D f y1;y2; : : : ;yd/ whenever xk yk is divisible by
b for k D 1; : : : ; d. In other words, WB;d c; b/ consists of b-periodic functions of

WB;d c/. Note that the cardinality of WB;d c; b/ is #Bbd
Given non-decreasing sequences bi ci satisfying bi ci b1 D c1 D 0, and

a sequence di i 0, such that Pi 0 di D 1 consider the following probability
measure on C:

D ci ;bi;di D d0 0 C d1 1 C d2 2 C ;

where 0 is a non-degenerate measure on Zd and for i 1 the measure i is the
uniform probability measure on WB;d ci; bi /.

With the same argument as in the proof of i) we see that satisfies the claim of
i) whenever ci chosen depending on 0 and di grows rapidly enough and bi 1
when i 1. Observe that the entropy of is at most

H. / H. 0/ CX
i 1

di log.#WB;d ci; bi/di /

H. 0/ CX
i 1

di log.di/ CdX
i 1

di log.bi /:

We see that if 0 has finite entropy, Pi 1 di log di < 1. and if bi grows slowly
enough, then the entropy of is finite.

Finally, recall that for d 1 there exist finite entropy transient random walks on
Zd if d 3 any non-degenerate random walk is transient).

Kaimanovich has observed that there exist random walks on a wreath product,
such that the boundary is non-trivial, but for any point in the base the value of the
configuration at this point does not stabilize along trajectories. He constructs an
example non-symmetric random walks with these properties on Z o Z=2Z, where

f .1/ f .0/ stabilizes see Proposition 1.1 in [33]). We show that there are random
walkson wreathproducts having non-trivial boundary, such that there is no functional
defined by a finite set which stabilizes along infinite trajectories.
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Let C D Zd o B, B is finite and has at least 2 elements. There exist symmetric
randomwalks on C such that the Poisson boundary is non-trivial and such that for any
finite set V Zd and any fV W V B with probability 1 any infinite trajectory of
the random walk C; / visits points such that the restriction of their configuration to
V is equal to fV Indeed, if d 3 any non-degenerate symmetric random walk with
finite entropyhasnon-trivialPoisson boundary ([20]). Therefore, anynon-degenerate

finite entropy symmetric measure on Zd o B, d 3, for which the conclusion of i)
in Lemma 6.1 holds, provides such an example. For d D 1 or 2 take a measure from
ii) of 6.1. Again, as it is a finite entropy measure with a transient projection to Zd
the Poisson boundary is non-trivial ([20]).
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