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On the convergence of the modified Kihler-Ricci flow
and solitons*

D. H. Phong, Jian Song, Jacob Sturm, and Ben Weinkove

Abstract. We investigate the Kdhler—Ricci flow modified by a holomorphic vector field. We
find equivalent analytic criteria for the convergence of the flow to a Kihler—Ricci soliton. In
addition, we relate the asymptotic behavior of the scalar curvature along the flow to the lower
boundedness of the modified Mabuchi energy.
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1. Introduction

Let M be a compact Kihler manifold of complex dimension n with ¢; (M) > 0. A

Kihler-Ricci soliton on M is a Kihler metricor = Lg¢ dz7 nd z¥ inthe cohomology
class 7 ¢1 (M) together with a holomorphic vector field X such that

Ric(w) — v = Lxw, (1.1)

or R,;j — & = V; X, in coordinate notation with Xp = g,;EX‘z. Let @, be
the 1-parameter group of automorphisms of M generated by Re X. The family
of metrics 8i; (1) = @, (gz j) provides then a solution of the Kiihler—Ricci flow,
gz ; (1) = —R; ;T &k, » where the evolution in time is just by reparametrization.

It X is the zero vector field then (1.1) reduces to the Kéhler—Einstein equation.
Kihler—Ricci solitons are in many ways similar to extremal metrics, which generalize
constant scalar curvature Kédhler metrics and are characterized by the condition that
the vector field V'R is holomorphic. A classic conjecture of Yau [Y?2] asserts that
the existence of constant scalar curvature metrics in a given integral Kéhler class
should be equivalent to the stability of the polarization in the sense of geometric
invariant theory. Notions of K-stability for constant scalar curvature metrics have
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been proposed by Tian [T] and Donaldson [D2], and extended to the case of extremal
metrics by Szekelyhidi [Sz1] (see also [M]). Similarly, the existence of Kihler—Ricci
solitons is expected to be equivalent to a suitable notion of stability.

Kihler—Ricci solitons are the stationary points of the modified Kdhler—Ricci flow

glgj :—R,;j-l—g,;j-l—VjX,; (1.2)

which is the Kiéhler—Ricci flow reparametrized by the automorphisms @, generated by
Re X. Similar reparametrizations of Hamilton’s original flow [H] had been introduced
by DeTurck [DeT] to simplify the proof of the short-time existence of the flow.

The modified Kiéhler—Ricci flow appears in the work of Tian—Zhu [TZ2] as part
of their study of the Kéhler—Ricci flow assuming «a priori the presence of a Kéhler—
Ricci soliton. They make use of a Moser—Trudinger type inequality from [CTZ] to
deduce the Cheeger—Gromov convergence of the flow. (When there are no nontrivial
holomorphic vector fields, it 1s known by the work of Perelman, [TZ2], [PSSW1],
that the existence of a Kéhler-Einstein metric implies the exponential convergence
of the Kihler—Ricci flow to that metric.)

In this paper, we study the long-time behavior of the modified Kidhler—Ricci flow
without assuming the existence of a Kithler—Ricci soliton. We give analytic conditions
which are both necessary and sufficient for the convergence of the flow to a Kéhler—
Ricci soliton. These conditions are analogous to the ones given in [PSSW1] for the
convergence of the Kihler—Ricci flow. As explained in [PS1] and [PSSW1] they can
be interpreted as stability conditions in an infinite-dimensional geometric invariant
theory, where the orbits are those of the diffeomorphism group acting on the space of
almost-complex structures.! The arguments and viewpoint in this paper are parallel
to the case X = O wreated in [PSSW1]. In the proofs, we emphasize only the main
changes due to non-vanishing X.

More precisely, let M be a compact Kihler manifold with ¢; (M) > O and X a
holomorphic vector field whose imaginary part Im X induces an S action on M.
Write Kx for the space of Kihler metrics in 7w ¢ (M ) which are invariant under Im X .
Given v = 15 i/ dz/ A dz* € Ky, define the Hamiltonian fx » as the real-valued
function satisfying

ng,;j = dz0x 0, / eOX.w gyt :f " =:V.
M M

The Ricci potential f = f(w)is givenby gz — R, = 3z s [y e~ =V (we
note that in the Kihler geometry literature, f often has the opposite sign). Define
the modified Ricci potential ux,,, by

UX o = f + QX,a)-

'In [D1], Donaldson also considers an infinite-dimensional geometric invariant theory, with the group of
symplectomorphisms acting on the space of almost complex structures.
ymp Ip g P p
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If M admits a Kihler—Ricci soliton w € 7 ¢y (M) with respect to X, then w is
necessarily in Ky and ux,, = 0. Let gz, () evolve by the modified Kihler—Ricci
flow and set

2 ofxw " (1.3)

Yx(t):/ |Vux, o
M

The modified Kéhler—Riccei flow preserves the Kihler class, and can be expressed as
a flow of Kiihler potentials. Identify (modulo constants) Ky with

Px(M,wp) = {p € C®°(M) | = wy + £3dp > 0, Im X(p) = O}.

Let ¢ = (1) € Py (M, wy) be the solution of the equation

n

¢ =1og 2+ ¢+ bxo + f00), 9(0) = co. (14)
0
Then the Kihler metrics w = wy + %8&0 evolve by the modified Kihler—Ricci flow
(1.2). The initial constant co can affect the growth of ¢ for large time, and has 0
be chosen with some care. We choose it to be given by the value (2.5) described in
Section §2 below.
Our first theorem is a characterization of the convergence of the modified Kéhler—
Ricct flow, which shows in particular that if convergence occurs, it 1s always expo-
nential:

Theorem 1. let wg € Ky, wp = %glgjdzj A dz¥%, and consider the modified

Kiéhler—Ricci flow (1.2) with initial metric wo. Then the following conditions are
equivalent:

(1) The modified Kdihler—Ricci flow o (t) converges in C* to a Kihler—Ricci
soliton 8i; (00) with respect to X .

(ii) The function |R —n — V; X/ || o is integrable, i.e.,

o0
/ |R—n—V;jX/|codt < oc.
0

(iii) Let p(t ) evolve by (1.4), with initial value cq as specified in (2.5) below. Then
sup, »oll () co < oo
(iv) Let Yx (t) be defined by (1.3). Then there exist constants k, C > 0 so that
Yx(t) < Ce ™,

(v) The modified Kéihler—Ricci flow g ; (t) converges exponentially fast in C* to
a Kdhler—Ricci soliton gg; (o0) with respect to X.
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We remark that our method does not obviously extend to the case where condi-
tion (1) is weakened to sequential convergence of the flow.

A criterion for the convergence of the Kiihler—Ricci flow in terms of a uniform
bound for volume forms has been given by Pali [Pa]. Indeed, such a bound implies
immediately that ||¢| o is uniformly bounded, in view of the defining equation
log(w(t)" Jwfi) = — f(wo)— ¢+ ¢ for the Kdhler—Ricci flow and Perelman’s uniform
bound for ||@| co. A similar observation is used in the proof of (ii) implies (iii) below.

Theorem 1 relates the convergence of the flow rather to the growth of Yy (r) or
IR —n — V; X7 | co(t). Our next result addresses the behavior of these quantities
under a stability assumption. Following [TZ1], we define the modified Mabuchi
K-energy pux: Px(M,wp) — R by

1 .
@) =~ [ 9 (R=n = V,X0 ~ Xug) ol ux(®) =0,

Since R —n —V; X/ —Xu=—(A+Re X)ux ., the integrand is real and juy does
map into R. For a proof that gy (¢) is independent of choice of path in Py (M, wy),
see [TZ1].

We consider the following condition:

(Ayx) jptx is bounded from below on Py (M, wg).

In [TZ1] it is shown that (Ax) is a necessary condition for the existence of a
Kihler—Ricci1 soliton « with respect to X. Here we shall establish the following
theorem:

Theorem 2. Assume that Condition (Ayx) holds, and let wy € Kx. Then we have,
along the modified Kdahler—Ricci flow (1.2) starting at wy,

Yx(t) =0 and |R—n—V;X'|co—0, ast— oc.

Furthermore, for any p > 2, we have
Oo .
/0 ||R—n—VjXJ||€,Odt<oo.

Note that a metric w € Ky satisfies R—n—V; X/ = Oifandonlyif w is a Kihler—
Ricei soliton with respect to X. However, the convergence |[R—n—V,; X7 ||co — Ois
of course weaker than the convergence of the metrics gz ; (r) themselves to a Kdhler—
Ricci soliton. This is to be expected, since the condition (Ay ) is only a semi-stability
condition.

It was shown in [C'TZ] using the continuity method that the ‘properness’ of py ina
certain sense 1s equivalent to the existence of a Kihler—Ricci soliton. The properness
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condition can be thought of as a strong Moser—Trudinger inequality, while Condition
(Ax ) corresponds to a weaker form of the Moser—Trudinger inequality.

Associated to the modified K-energy is the modified Futaki invariant Fy (see
[TZ1]),

Ix(Z) = —/ (Zux,w) exo g,
M

defined for holomorphic vector fields Z. The modified Futaki invariant Fy is inde-
pendent of the choice of w € Kx. It follows immediately that Fxy = 0is a necessary
condition for the existence of a Kéhler—Ricct soliton in Ky

In the unmodified case, corresponding to X = 0, the condition (Ay ) reduces to
the condition (A) from [PS1] of lower boundedness of the Mabuchi K-energy. It is
then easy to show that (A4) implies that the unmodified Futaki invariant Fx—o(Z)
vanishes for all holomorphic vector fields Z € H(M, T1:"), by differentiating the
functional along the integral paths of Z. We show how to rework this argument to
prove the analogous statement when X # O (to our knowledge, this result is not in
the literature).

Propeosition 1. If (Ax) holds then Fx(Z) = 0 for all holomorphic vector fields Z.

Our third theorem shows that ( Ay ) together with an eigenvalue condition give nec-
essary and sufficient conditions for the convergence of the metrics gz g (t) themselves.
Set _
1oV

Vi

where H°(M, T '-%) is the space of holomorphic vector fields on M and we are using
the natural L? inner product induced by gz g (). This quantity was first introduced in
the context of the Kéhler—Ricci flow in [PS1]. Recall the following condition from
[PSSW1]:

A([) = iIlfVJ_HO(M’Tl,O)

(S) infrmoA(r) > O.

Theorem 3. The modified Kiihler—Ricci flow (1.2), starting at an arbitrary metric
wo € Kx, converges exponentially fast in C* to a Kahler—Ricci soliton with respect
to the holomorphic vector field X if and only if the conditions (Ax) and (S) are
satisfied.

Since condition (S) is invariant under automorphisms, a consequence of The-
orem 3 is that convergence modulo automorphisms implies full convergence, i.e.,
if g¢; {¢r) is a solution of the modified Kihler—Ricei flow starting at wy € Ky and
V(g j) converges to a Kihler—Ricci soliton with respect to X for some family of au-
tomorphisms {W;};¢[0,00) - then g¢ g (r) converges exponentially fast to a Kihler—Ricci
soliton with respect to X.
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It would be interesting to determine whether condition (.S) by itself is sufficient.

Finally we discuss in more detail the behavior of Yy (¢) which, as can be seen from
Theorem 1, is key to the convergence of the Kéhler—Ricci flow. It is convenient to
introduce a quantity Ay which is uniformly equivalent to the eigenvalue A described
above (see Lemma 4 below). Equip the spaces T1? and T1° ® (T*)%! with the
Hilbert space norms

2 Yk b 2 CRT.
IV 1l5 :/Mg,;jVJV eXept W3 :[Mglzjwﬁfwé gP X0 gy

Define the eigenvalue Ax (1) by Ax (¢) = infy | gops 1.0y ||5V||§/|| V||§, where the
notion of perpendicularity is taken with respect to the norm || - ||g. Then we have:

Theorem 4. Consider the modified Kdhler—Ricci flow (1.2) with initial metric wg €
Kyx. Then there exist C > 0 depending only on wg, and N, 5j >0,0<j <N,
depending only on n and satisfying Zjvzo 8; > 2, so that for all t > 2N,

Yx (1) < —24x (1) Yy (t) — 2 Ax (t) Fx (m(V(ux.0)))
X 4 (1.5)
+C [[me-2i)7.
Jj=0

Here WX,,,, =g/ k dpux o, and 7 is the orthogonal projection, with respect to the
norm || -||g, of the space of T 1-° vector fields onto the subspace of holomorphic vector
fields.

The main point of the estimate (1.5) is to relate the convergence of the modified
Kihler—Ricci flow to three issues, namely the vanishing of the modified Futaki in-
variant Fy; the convergence of Yy (1) to 0 as ¢+ — o¢; and the existence of a strictly
positive uniform lower bound for Ay (¢) (or equivalently, to A(¢), cf. Lemma 4).

As mentioned above, our results extend those of the paper [PSSW1] which con-
sidered the case X = 0. Accordingly, some of our proofs are brief, and we focus on
those changes due to non-vanishing X.

2. Preliminaries

In this section, we give a proof of Proposition 1, and determine an initial value cq for
the modified Kihler—Ricci flow so that ¢ is bounded.

2.1. Proof of Proposition 1. We first show that Fx(Z) = 0 for all holomorphic
vector fields Z satisfying £1, x Z = 0. Fix a Kéhler metric wg € Kx. Write W, for
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the 1-parameter family of automorphisms of M induced by Re Z. Define w; and v,
by

i -

Ulwy = w, = wy + 586‘%.
Note that ¢, € Px (M. wy) is defined only up to the addition of a constant. Also,
500y = L.z, where we are now dropping the ¢ subscript. On the other hand,
there exists a complex-valued function €7 ,, invariant under Im X, such that tzo =
—892 o- Indeed, all manifolds M with ¢;(M) > 0 are simply connected so the 9-
closed (0, 1)-form ngkjdz must be d-exact. Since 39y = d9Re 0z . We can

assume that w = Re 8z 4.
Compute

d / _ .
EMX(W) — —Re(% L IESMX,LD A aw A eHX’wCl)n_l)
2 [ g % (ia&p 4 Re(iae A 5¢)) A o]
- V M Xaw 2 2 X,Cl)
1 ) ; _
= —/ uy weewi (Aw w" + nRe(l—89Xa, A 387, A a)”_l)) (2.1)
Vil T %
1 2} n 1 Pl n
=— | uxopLreze™?0")=—= [ (ReZ)(uxn)e"™w
4 M V M
1
— VRe(FX(Z)).

To go from the 2nd to the 3rd line, we have used the fact that 1/f =0z0—11mbz,
anane( A0y o A 8Im92w Aw'l) = —nRe( Am Oz, A Iy A @™ =
—(Im X)(Im 87 ,,) ®" = 0, since Im 67 ,, is invariant under Im X .

Condition (Ay) implies from (2.1) that Re(Fx(Z)) = 0. Replacing Z by iZ
shows that Fx (Z) = 0 for all holomorphic vector fields Z invariant under Im X. If
Z is now an arbitrary holomorphic vector field and Z its average over the S orbit
we obtain Fx (Z) = Fx (Z ) = 0 as required.

2.2. Choice of initial value cg. We show how (o choose ¢¢ so that sup, [ @[ co <
o¢. This bound was proved in [TZ2] assuming the existence of a Kihler—Ricci soliton.
Here we only require the invariance of the initial metric wo under Im X .

Fix wy = £ ggj dzi A dz¥ € Kx. The Kihler—Ricci and modified Kihler—Ricci
flows are

Jd _ ~ - -
agéj(t) = _R]Ej + 8kj- gEj(O) = gl%j (2:2)

d
ag;;j(f) = _R]Ej + gk:j + VjX_a g]}j(o) - ggj’ (2.3)
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respectively. Note that if {®;};¢[0,00), Po = 1d, 18 the subgroup of automorphisms
of M generated by Re X, then the solutions to (2.2) and (2.3) are related by g g (t) =
o7 (gx j). The Kihler—Ricci flow preserves the S ! action induced by Im X and so the
Kihler forms @(z) and w(z) lie in Kx. In the sequel, we will often drop the 7. Also,
we will denote by 1, V and A the Ricci potential, covariant derivative and Laplacian
with respect o &z ;.

Next, recall Perelman’s estimates (see [ST]) for the Kihler—Ricci flow: with all
norms taken with respect to gz g (1), there exists a constant C' depending only on wg
so that

1f lco + IV F llco + 1A flco < C.

Furthermore, the diameters diamg M are uniformly bounded by a constant depend-
ing only on g, and for any p > 0, there exists ¢ > 0 depending only on @ and p such
that for all x € M and all r with 0 < r < p we have [ .\ @"(1) > ¢ 72", where
B, (x) is the geodesic ball centered at x of radius r with respect to gz ” (t) (“non-
collapsing”). Uniform bounds for the Sobolev constant have now been established
by Zhang [Zha] and Ye [Ye].

These statements make no reference to the vector field X and indeed do notrequire
the initial metric wg to be invariant under Im X. Moreover, they are all invariant under
automorphisms and hence the analogous statements hold also for the metrics gz ;.

We now describe (2.2), (2.3) in terms of potentials. Define ¢ = @(r)and ¢ = ()
by

dp w" . - -

a—w =log — + ¢ + flwo), @(0) = 2o,
t Wl

dp n

w
5, =108~ + ¢+ 0xe + flwo), ¢0)=co,

The constant ¢ is chosen to be the value (2.10) in [PSS] (see also [CT]), so that
|0;@llco < C, and the constant ¢y will be defined shortly. One can check that
@ = wy + £30¢ and @ = wy + L3 satisty (2.2) and (2.3) respectively. We need
the following well-known properties of the Hamiltonian Oy -

Lemma 1. (a) (See e.g. [FM] or [Zhul].) For all ' € Kx, we have |0x o || co =
”Hxawo ”CO'

(b) ([TZ1], p. 301) For o’ € Kx with @' = wy + %8&0’, we have Ox . =
QX,a)o I+ X((p/)-

For example, to see (a), we can apply Moser’s theorem and obtain a diffeo-
morphism W: M — M with ¥*(«') = wg and ¥Y*(Im X) = Im X. But then
AV Ox,ar = dOx,u, and V¥ 8y, .y = Ox,w, + ¢, for a constant ¢ which must vanish
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by the normalization conditions. Thus x ., fx ., have the same image in R, and (a)
is proved.

We can show now that along the modified Kihler—Ricci flow,
[ |XPebxon” < C. (2.4)
M
Indeed, from the definition of the modified Futaki invariant and of 6 ,,,

[ | X |20 = _f (X f)e® o™ — Fy(X).
M M
Hence, since Fx (X ) is independent of choice of metric, we have

[|X|269X’wa)”§[ | X||V fePxew™ + C
M M
1 1
5—[ |X|269X"”a)”—i——/ IV /2w + C,
2 m Y

and the claim follows from Perelman’s estimates and Lemma 1. Define now ¢g by

R e 1
co 1= —[ e_t[ |Vux,a,|269X*wa)" dr——f uX’a,OeGX"“Owg. (2.5)
V Jo M V Ju

To see that ¢y is finite, observe that |Vuy. | < 2(]Vf ]2+ |X?) < C +2|X|?, and
hence by Lemma 1 and (2.4), [, |Vux | 2e e 0w < C. We can now prove

Lemma 2. There exists a uniform constant C such that along the flow,
I@llco = C.

Proof. Define a(t) = % oy ge?X0 " From Lemma 1 and the fact that ¢ and ux.,

differ only by a time-dependent constant, we have % o =a— % | Viux o |2efx.0 @

Integrating this ODE (cf. the argument in [PSS]) shows that
1 o0
0<al(r) = ?/ e_(s_t)[ |VuX’w|2(s)eGX’w<S>w”(s) ds < C. (2.6)
t M

From (2.2) and (2.3) we obtain d, ¢ = &7 0d;¢ + Ox,, +m(t), for some constant m(r).
The lemma follows from the boundedness of ||9;¢||co, (2.6), and Lemma 1. O
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3. Estimates for the modified Kiihler-Ricci flow

In this section, we establish some key estimates for the modified Kithler—Ricci flow,
namely the analogue of Perelman’s estimates for the Ricci potential, the estimates for
the Laplacian of the Hamiltonian function 8y, an L?/C? Poincaré inequality, and
a smoothing lemma.

Proposition 2. Along the flow, the quantities

IVux.olco, Auxwlco, IXlco, and ||Abxollco

are uniformly bounded by a constant depending only on the initial data. Here, all
norms, covariant derivatives and Laplacians are taken with respect to the evolving
metric g . (1).

Proof. It is convenient to work with v := —¢, which differs from —uy , = —(f +
Ox ) only by a time-dependent constant, so that |Vv| = |Vux .|, |Av| = |Aux sl
First, we need the evolution of v, which can be obtained by a straightforward calcu-
lation (cf. [CTZ]),

g—?:(A—i—X)v—l—v,

3 _
$|Vu|2 = (A + X)|Vv]*> = |[VVu]* — |[VVv|® + | V]2

d _

5@ +Xw=(A+ XA+ X)v+ (A + X v+ |VVv]% (3.1)

Boundedness of || Vv||co: This is a straightforward modification of Perelman’s max-
imum principle argument for the bound of the gradient of the Ricei potential (see
[ST], Proposition 6). Since v is uniformly bounded along the flow by Lemma 2, we

may choose a constant B such that v + B > 0. Define H = ﬁ"zi, and compute,
using (3.1),
H(H —2B) 2Re(g/F0;Hozv)  |VVu|2 + |[VV)?
(A+ X —9,)H = ( )_ (g J k) | v[* + | U|'

v-+28B v+28 v+ 28
(3.2)

Fix T > 0. At a maximum point of H(x,t) for (x,¢) € M x (0, T'], the middle term
on the right side of (3.2) vanishes and the left-hand side of (3.2) is nonpositive. 1t
follows that H is uniformly bounded from above and hence so is ||Vv||co.

Boundedness of || X ||co: Since uyx , = f + Ox .. the uniform bound on |X| =
|V Ox 0| follows from the bound on |Vuy ,| = |Vv| and Perelman’s bound on |V f.
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Boundedness of || Av| co and || A8y, | co: First note that | Xv| < |X||Vv| < C by
the preceding bounds. From (3.1) we have

(A+X —9)((A+ X)) =—Av—Xv—|VVv|?
3.3
5—(Av)(1+ AU)+C, W)

n
where we have used the elementary inequality |Av|? < »n|VVv|2. Fix an arbitrary
T > 0. At a minimum point of (A + X )v on M x (0, T'] the left-hand side of (3.3) is
nonnegative and hence Av is bounded uniformly from below at this point. This gives
the lower bound of (A 4+ X)v along the flow, depending only on the initial data.

To estimate || Av||co, it suffices to prove a uniform upper bound for (A+ X )v. As

2,
in Perelman’s estimate of the scalar curvature (see [ST]), define G = A+OvHVVE

where B is chosen as in the proof of the boundedness of ||Vv| co. Compute

VG- Vu) |VVv|? 4 2|VVu|? 2BG

A+X—0 G:—2R( — :
A+ ) © v+ 2B v+ 2B (v+2B)

Since 1/(v + 2B), | Xv| and | Vv| are uniformly bounded, we have

VG -V

AL X—9 G>—2R(
(A+ )G z —2Re{ =5

) + C1|VVu|? — C3|Av| — Cs,

for uniform constants Cy, Cs, C3 > 0 with C; uniformly bounded from below away
from 0. By the maximum principle and a similar argument to the one above, we have
(A + X)v < C for some uniform constant C. This gives the estimate for Av. Notice
that A(v 4 0x ) = —Af, which is uniformly bounded by Perelman’s estimates. It
follows that Afy,,, is uniformly bounded. a

Proposition 3. Define b = b(r) = % Y ux. e~ w". Then there exists a uniform
constant C so that

luxw —bligs" < ClIVuxwlz2 |Vuxolgo-

Proof. As in the proof of Lemma 2 of [PSSW1], this follows from a Poincaré-type
inequality on Kihler manifolds (M, @) with @ in 7wc (M) (see Theorem 2.4.3 of
[F], Lemma 3.1 of [TZ2] or Lemma 2 of [PSSW1]) together with Perelman’s non-
collapsing result. O

The following is an analogue of the smoothing lemma from [PSSW1] (an adap-
tation of Bando’s smoothing lemma [B] — see also [T] and [CTZ] for related results).
It follows from (3.1) and the arguments of [PSSW1].
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Proposition 4. There exist 8, K depending only onn and Cx = Sup; e[, o0) || X [ co (1)
so that, for any ¢ with0 < & < § and any ty > 0, if

1Cex.0 = D))l co < ¢,

then
|Vux,o(to + 2)|co + (A + X)ux o (to + 2)|[co < Ke.

4. Proof of Theorem 4

We begin by deriving the following analogue for the modified flow of an identity in
[PS1],

Yy = —2||VVu||§ +[ (Xu)|Vu|?e? o™
M
—/M(R,;j — g5, — Vi XV uVFuel o @.1)
—/ (R—n—Vij)|Vu|269a)”.
M

Here uyx,, and 6y, have been denoted by just ¥ and @ for simplicity. To establish
the above identity, we use (3.1) to obtain

B | VullZ :f (A + X)|Vul?e’ 0" — |[VVu|F — | VVu|}
M
+[ |Vu|2e9w"+f IVu 2 (Xu)e? o™ (4.2)
M M

—[ IVul*(R —n — Vij)ega)”.
M

The first term on the right-hand side of (4.2) actually vanishes since by integration by
parts f,, e?w™ (A + X)n = 0 for any smooth function 5. Next, we have a formula
of Bochner-Kodaira type, if X/ is a holomorphic vector field and u is a function
invariant under Im X,

IVVu|2 = ||Wu||g+f R,;jVjuVEuegw”—[ V, X ViuViuefor. 4.3)
M M
To establish this, we note that by integration by parts,
IVVu|2 = ||Wu||§+[MR,;jvfuvkue%”
-l-/ XJVﬁV,;quugjﬁgqlger”
M

—/ X5V;iViu Vyu gjﬁgqlgega)”.
M
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Rewrite the integrands of the last two terms in the lastline as X, V5 Viu Vyug/? g4 k=
V,;(Xﬁvﬁu)vququ - (V,;Xﬁ)Vﬁquuqu and as XzV;Viu Vyug/Pgik =
V,;(vaju)vququ. But X?Vzu — X/Vu = Xu— Xu = 0, and thus we are left
with the desired formula (4.3). Putting all these identities together gives (4.1).

Once the identity (4.1 ) is available, the arguments of [PSSW1] apply to give
the proof of Theorem 4, with suitable modifications. Write 7 for the orthogonal

projection with respect to the norm || - [lg of 7% onto holomorphic vector fields.
Then

IVVu|f = Ax ()| Vu — (V|5 = Ax (1) (I V]l — [l (V20)][3).
where Ax(¢) is the eigenvalue introduced in §1. Making use of the relations

|7 (Vu) |2 = [, 7(Vu)/ 3u e 0™ = — Fy (7w Vi) we obtain the inequality

Yx (1) < =2Ax () Yy (t) — 2Ax(t) Fx (mwVu) + /M |Vu|2(Xu)ega)”

— [M(R,;j — gt — ViXpV uvuF " (4.4)
—[ (R—n— Vij)|Vu|269a)”.
M

We return to the proof of Theorem 4. First, observe that | Rg; —gz, —V; X2 =

IR —n — V;X7| ;2. This is because one side equals ||VVul|;2 and the other side
equals || Au||; 2, which are readily seen to agree by an integration by parts. Next, we
claim that the last three terms on the right-hand side of (4.4) can all be bounded by

C [[Vullz2 [l = b)Yt = 2)] o
Indeed, since 6 is bounded, we can write
‘/ (ngj —~ Bfs— VJX,;)Vju%eea)"
M
< Cl[Vullco||Vull2(|Rg; — gg; — Vi X2
< C||Vullz2 | = b}t = 2)|g0-

where the last line follows from Proposition 4. Note that if ||(x — b)(r — 2)||co > &,
for ¢ as in Proposition 4, then we can still obtain the bound

IVullcollR —n = V; X |2 < C (4 = b)(t = 2) | o

using the uniform estimates of ||Vu||co and ||Au||co. Similarly,

‘[M(R—n—vjxf)wuﬁe%" < C |Vullz2 i = B —2)] %0
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while the estimate for the remaining term, | f,, |Vu|?(X u)egw”\ 18 even easier, since
| Xu| < [X] - [Vu| = C[|(u —b){z = 2)||co.
LetO < p:=1/(n+ 1) < 1. By Propositions 3 and 4,

= B)(t =220 < € Yy (¢ — 2| (u — B)(t — 42077,
Note that the sum of the exponents on either side always match. Iterating,
_ 2
It = b)Y =220 < € ¥x(t — 27 ¥y (t — 42w = b)( — 6)755 "
8 8
<CYy(t—2)2Yx(t—4)7

v _ N
Y (= 2N) [l =) — 2N + D)2
with 3N 8, 4+ 2(1 — p)V = 2. Fix N with 2(1 — p)¥ < 1 and set § = 1. Since
the quantity ||(x — b){(t — 2(N + 1)}||co is bounded by Lemma 2, the statement of
Theorem 4 follows.

5. Proof of Theorem 2

The variation of the modified Mabuchi energy along the modified Kithler—Ricci flow
is

. 1 1
fix = _VfM |Vux,o|” o 0™ = —5 ¥x ().

Integrating in 7, we see that condition (Ay) implies: f0°° Yx(r)dt < oo. On the
other hand, from (4.2) and the uniform bounds of 8, Xux,,, R and V; X 7 we obtain
Yy < CYy. These inequalities imply (as in Section §2 of [PS1]) that Yx(r) — 0
as t — oc. Next, by the uniform bound of ||Vux .| co and Proposition 3 we have
|lux.o—bl|co — 0ast — oc. Then from Proposition 4 we see that || Auy 4 ||co — 0
ast — oo. Since Auyx,, = R—n—-V; X 7, the first part of Theorem 2 is established.
The L2 integrability of || R —n — V; X7 ||co on [0, 00) is established in the same way
as part (ii) of Theorem 1 in [PSSW1].

6. Proof of Theorem 1

It is convenient to introduce the following fifth condition:
(o) Foreachk = 0,1,2,..., there exists a finite constant 4 so that

Sup;»o l9llcx = Ax

We shall prove (0) < (iii), (0) = (1v) = (1) = (1) and (1v) = (v) = (1)= (111).
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Proof of (0) < (iii)

This is the extension to the modified Kihler—Ricci flow of the fact that a C°
estimate for the complex Monge—Ampére equation implies C ¥ estimates to all orders.
We note that in [TZ2], a different method 1s used to obtain higher order estimates,
involving a modification of the potential ¢ along the flow. We give here a direct proof
of the higher order estimates, emphasizing only new complications due to X # 0.

The first step is to show that C” estimates for ¢ imply second order estimates
for ¢. For ease of notation, we use gk to denote the original metric g ,and A for
the Laplacian with respect to this metric. As in the approach of Yau [Yl] and Aubin
[A], we apply the maximum principle to log(n + Ago) Ay, where A is a large
constant to be chosen later, but with the operator A — 9, replaced by the operator
A; + X —9;. We use the formulas obtained in [PSS] for general flows and introduce
the endomorphism

hog = &7 gzp.
Then n+ ﬁgp = Tr /, and we have (see e.g. [PSS], eq. (2.27) and subsequent bounds)

n

1 ~
(A+ X —0d;)]log Trh > —(A(logw— — @)+ XTrh) —CTrh™L
Trh wg

For the modified Kihler—Ricci flow, we have ﬁ(log % —¢)=-Trth+n— A -

A f(wo). The new term compared to the Kithler—Ricci flow is —A#, which is not yet
known to be bounded. This is the reason why the term X Tr £ was introduced, since
XTrh = X(Ap) = A — AA + (V;X™) by — V;y X™, where 6 = 6y 4,. Thus
the term — A6 cancels out, and we obtain

(A4+ X —03,)log Trh > —Cy, — C3Trh™ L,

Set A =Cs+ 1. Since Ap =n—Trh !}, and ¢, X = 0 — 6 are bounded, we
have
(A+X —3,)(log Trh— Ag) > —Cy + Trh™L.

The maximum principle applies now as usual to show that Tr /2 is uniformly bounded.
We now give the third order estimates. As in [Y1], set ¢z, = Vimdzd; ¢ and

S =gl" gSk g™ Q) kmWrsi. Again, itis convenient to work instead with the connection

Vhh™,
S = g™ gnpg (Vo Y (Vb Y, = VR,
Applying [PSS] eq. (2.48), to the modified Kéhler—Ricci flow gives
(A=3,)S = |V(VER Y> - [V(VER Y +|VRA?
+ 8"V R (V) 50 4 g7 (Vo )5V R
+ (D) + D + (1) + (IV) + (V),
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where the terms (I)—(V) are due to the modifications arising from the holomorphic
vector field X, and given explicitly by

() = V)_'Xmg,zﬁgw (Vimh h_l)ﬂﬁ(m’
) = —&" gapg " Vin Ve X P (V) i ™",
) = g™ gzpVIX (Vi B~ o (Vy e k™Y,
V) = =" 2pg"* (Vmh h™)F (¥, Vo X7,
(V) = ="V Xg" (Vinh h™F (Vb ™).
Since the first covariant derivatives of X are of order O(S %), we have

(D] + |AID[ + [(V)] = C5 S [VX].

The terms (II), (IV) involve the second covariant derivatives of X and thus
|AD| + |AV)] < C6 S + %W(Vh Y12+ S |VX| + Cr.
Putting this all together, we obtain the following estimate for the flow of S,
(A—9,)S > %W(w Y2+ [V(VAERD?P = Cs S [VX|— Co(1 4+ S). (6.1)

By the method of [Y1], we can control terms of order O(S) using the evolution
equation for Tr /. However, we will need an additional argument to deal with the
quantity S|V X| which is of the order O(S3/2). Since |X| is uniformly bounded
along the flow, we have

— 1
(A—3)|X]? = |VX]? — |X]? —8;0;60X' X/ > 5|VX|2— Cio. (6.2)

We define a constant K = 65 supps0,00) (| X | + 1) and compute the evolution
of the quantity S/(K — | X|?). Combining (6.1) and (6.2) we have

S V(Vh-hOH[2 = |[V(Vh -2 S|VX|?
(A—at)( 2)20 | |2 |)+ | |22
K —|X| 2(K —1X]%) 2(K —|X]%)
2Re(g/ ;S 51X ) 28|V|X |
(K —]X]?)? (K —]X]?)°
CegS|VX
_SSVX L+,

K—|X|?
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We will use the good first and second terms on the right-hand side of this inequality
to deal with the bad third and fifth terms. We estimate the third term as follows:

2%73;8 35| X 2| _ SIvxp (IV(Vh-h=Y]2 + [V(Vh-h~1)|?)
(K—[X[*)? — 4K—[X]?)? 2(K — X%

For the fifth term, observe that

CsS|VX| SIVX|? 5
< + LS,
K—I|X[* 7 4K - [X]?)?

Combining all of the above, we obtain

) > —C2(1 + S).

(A - 8I)(K_—|)(|2 il

But from the computation for the second order estimate, we have
1
(A — 3t)Trh > ES — C13,

and so applying the maximum principle to the quantity (S/(K — |X|?*) + 3C12 Tt h)
it follows that S/(K — |X|?) and hence S is bounded. (An alternative proof is to
show that (A — 9,)|T|2 > —B;S — B,, where Tjk = (V;h h™"Y* X" and B, B, are
constants. Combining this with the evolution of Tr /4 gives an upper bound of |T|
and hence |V X|. Thus S|V X]| is of order O(.S) and one can combine it with (6.1) to
bound S.)

In order to apply the standard parabolic estimates to obtain the higher order esti-
mates, we require a derivative bound of g y in the -direction (cf. §5.5 of [Ch], for
example). Given the estimates proved so far, it is sufficient to bound |Ric(g)|. We
compute

(A -8, + X)[Ric(g)| = {|VRic(g)|* — |V|Ric| |* + |Ric(g)|?

Ric(g )] o ]
— R " Rsr RIE + VEXP @I Ry Rgp — Ry, V; X RTEY
> —Cra(Rmf* + 1).
But from above, there exist constants Cy5, Cig with Cy5 > 0 such that
(A —93; + X)S > Cy5|Rm|? — Cys.

We then apply the maximum principle to |Ric(g)|+ C%s (C14+1)S tobound |Ric(g)|.

We have now established uniform parabolic C! estimates for 8 The higher
order estimates can be obtained in the usual way (see e.g. [L]).
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Proof of (0) = (iv) The remaining implications are all straightforward adaptations
of arguments in [PSSW1]. In particular Lemma 3 follows from §5 of [PSSW1], and
Lemma 4 from the uniform boundedness of 8x ., and the argument for Lemma 1 of
[PSSW2]:

Lemma 3. Ler W(t) be a non-negative C* function of t € [0, o0) with W(t) < Ky
satisfying the difference-differential inequality

N

W) < —2A W)+ A[[ Wt —2j)2  fort = Ky = 2N,
j=0
: : " . 1 N _
where A is a strictly positive constant, and v; > O satisfy > ijo v; = 1. Then

there exist constants C, k with k > 0 depending only on Ky, Ky, A, N, v; so that
W(t) < Ce™™*.

Lemma 4. There exist constants ¢1, ¢a > 0 depending only on the complex manifold
M and the holomorphic vector field X such that for all v € Ky,

ciA(w) < Ax(w) < c2A(@).

Lemma 5. Let Yx (¢} be given as in (1.3) for the modified Kdhler—Ricci flow. Assumne
that (a) Fx = 0; (b) Yx(r) — 0 ast — oo; and (¢) inf,;>9A(t) > 0. Then there
exists constants C, x with k > 0 so that Yx (t) < Ce ™',

Proof of Lemma 5. Theorem 4 and conditions (a)—(c), together with Lemma 4, imply
that Yy (¢ ) satisfies a difference-differential inequality exactly of the type formulated
in Lemma 3. The desired inequality follows then from Lemma 3. O

Returning to the proof of (0) = (iv), assume that (0) holds. Then there exists a
sequence f,,, — o< such that ¢(t,,) — p(o0) in C*°, for some ¢ (o0) € Px (M, wyp).
Since py is decreasing along the modified flow, it follows that for any 7, ux (¢(t)) >
p1x (p(o0)), and hence py is bounded below along the flow. This implies that the
limit metric gz F (o0 ) must be a Kiihler—Ricci soliton with respect to X (cf. the proof of
Theorem 2). By [TZ1], the condition (Ay ) is established. Next, we claim that Con-
dition (S} is also satisfied. Otherwise, let ¢(#,,) be a subsequence with A(z,) — 0.
It contains a subsequence @(t¢) such that the corresponding metrics gz ; (t¢) converge
in C*° to a Kihler—Ricci soliton g : (o0) with respect to X. In [PS1] (see p.162),
it was shown that A(#;) — A(oc) if i/ (ty) — 8i; (!~} and the dimensions of the
holomorphic vector fields of the complex structures for gz, (t¢) and g7 ; (oc) are the
same. In the present case, the complex structures of gz (t¢) and gz ; (o0) are the
same, so we do have A(fy) — A(oc0). Since A{oc) > 0 by definition, we obtain a
contradiction. Condition (S') is established.
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The existence of a Kihler—Ricci soliton with respect to X implies that (a) in
Lemma 5 holds and condition (Ay) gives (b) by Theorem 2. Since (c¢) in this Lemma
is the same as (S'), Lemma 5 applies, and (iv) is established.

Proof of (iv) = (ii) Assume that (iv) is satisfied, and thus Yy (7) is rapidly decreasing.
1

Then Proposition 3 implies ||ux ., —b| co < C e 2#FD " But Proposition 4 implies

then that ||[R — n — V; X/ ||co < C’ e~ 2@ #10% which gives (ii).

Proof of (ii) = (iii) Assume (ii). Since d; log(@" /wj) = gj";g,;j = —(R—n-—
V; X7), we obtain immediately

1

w o :
sup ol 08| = [ IR == VX o dr < C.
0

Next, from the modified Kiéhler—Ricci flow and the uniform bound for ||¢|| o (Lem-
ma 2), it follows that ||¢||co = ||¢ — log(g—g) — 0+ f(wo)|co <C.

Proof of (iv) = (v) Assume (iv). We have already seen that (iv) implies (ii), which
implies (ii1), which is equivalent to (0). Thus all metrics gz, () are uniformly equiva-
lent. The same arguments as in [PS1], show that ||ux ,||s) — O exponentially fast for
any Sobolev norm s. It follows easily from there that g, {t) converges exponentially
fast to a Kihler—Ricci soliton gz, (c0).

All the remaining implications in Theorem 1 are trivial, and the proof is complete.

7. Proof of Theorem 3

If the flow converges to a Kihler—Ricci soliton with respect to X then, by [TZ1],
Condition (Ay) is satisfied. Furthermore, as part of the proof of (0) = (iv), the
uniform boundedness of ||¢(¢)|| -« for each k implies that Condition () is satisfied.
Thus it remains only to establish the sufficiency of (Ax) and (S) for the exponential
convergence of the flow. By Proposition 1 and Theorem 2, (Ax ) implies (a) and (b)
of Lemma 5. In addition, (S) gives condition (¢). Thus we obtain the exponential
decay of Yx(z), that is, Condition (iv) of Theorem 1 is satisfied. But Theorem 1
implies then the exponential convergence of the modified Kihler—Ricci flow to a
Kihler—Ricci soliton.
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