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Formal deformations and their categorical general fibre

Daniel Huybrechts, Emanuele Macri, and Paolo Stellari

Abstract. We study the general fibre of a formal deformation over the formal disk of a projective
variety from the view point of abelian and derived categories. The abelian category of coherent
sheaves of the general fibre is constructed directly from the formal deformation and is shown to
be linear over the field of Laurent series. The various candidates for the derived category of the
general fibre are compared.

If the variety is a surface with trivial canonical bundle, we show that the derived category
of the general fibre is again a linear triangulated category with a Serre functor given by the
square of the shift functor. The paper is a companion to [9], where the results are applied to
Fourier—Mukai equivalences of K3 surfaces.
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1. Introduction

Lets: X — Spf(C|[[¢]]} be a formal deformation of a smooth complex projective va-
riety X givenby an inductive system of flat morphisms 7, : X, — Spec(C[¢]/ (" 1))
with Xo = X and isomorphisms X1 Xcpp/ent2y Spec(Clel/ (")) ~ X,
over C[t]/(t"T1). Thus, X as a ringed space is the topological space X with
Ox = lim Oy, as its structure sheaf. Interesting examples arise as formal neigh-
borhoods of an actual deformation of X over a smooth one-dimensional base, which
may be algebraic or just a complex disk.

In order to understand the generic behavior of certain classes of varieties, it
is often necessary to study the general fibre of formal deformations of the type
7 X —=Spf(CJ[t]]). If the deformation is given as the formal neighbourhood of
an algebraic deformation of X over a curve, then the usual concept of the scheme-
theoretical general fibre yields a variety defined over the function field of the curve.
For arbitrary formal deformations, e.g. obtained as formal neighborhoods of defor-
mations in non-algebraic directions, a geometric construction of the general fibre as
a rigid analytic variety is provided by the work of Raynaud [15].
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The aim of this paper is to present a categorical approach to the general fibre.
We construct the abelian category of coherent sheaves on the general fibre directly
without first passing to the rigid analytic variety representing it geometrically. This
simplifies going back and forth from sheaves on the original variety X or its formal
deformation X to sheaves on the general fibre. The passage from the abelian category
to its derived category, which plays a central role in the applications we have in mind,
i1s more difficult. Here we have to address subtle points related to Verdier quotients
of triangulated categories.

To appreciate the results of this paper, we should briefly explain the main applica-
tion we developed in [9]. For a smooth projective K3 surface X, Orlov proved in [14]
that any autoequivalence of the bounded derived category of coherent sheaves D*(X)
induces an isomorphism of the total cohomology group H*(X, Z) preserving a nat-
ural weight-2 Hodge structure and the lattice structure induced by the cup-product.
In particular, there exists a homomorphism of groups p between the group of autoe-
quivalences Aut(DP(X)) and some orthogonal group (denoted by O(H (X, Z))) of
the total cohomology group of X (see [9], [14]).

Despite this nice result, a description of the image of p had been missing for some
time. In[18], Szendrdi proposed a conjecture saying that p should send an equivalence
to an isometry in O(H (X, Z)) with the additional property that the orientation of some
4-dimensional positive definite subspace of H*(X, R} is preserved.

In [9], we gave a positive answer to this conjecture using a deformation argument
whose main steps are the following. Given a smooth projective K3 surface X, we
study a very special formal deformation of X based on its hyperkihler geometry. At
this point, we argue that the derived category of the general fibre of such a deformation,
despite being C((7 ))-linear and not C-linear, has the same basic features as the derived
category of a generic complex analytic K3 surface (i.e. a K3 surface with trivial Picard
group). The same conjecture has been solved in [8] for those surfaces. Hence, by the
special choice of the deformation, we can conclude that it holds true for X as well.

The main result of this paper (Theorem 1.1 below) establishes some of the fun-
damental properties of the derived category of the general fibre which are needed in
the above strategy.

To state precisely this result, we first define the abelian and the derived category of
the general fibre of a formal deformation 7w : X —= Spf (C[[¢]]) of X. Let Coh(X)y C
Coh(X) be the full abelian subcategory of coherent sheaves on X which are torsion
over C[[z]], i.e. the full subcategory of all sheaves £ € Coh(X') supported on some
X, forn > 0. With this definition, Coh(XX), is a Serre subcategory and the quotient
category

Coh(Xg) := Coh(X)/Coh(X),

is called the abelian category of coherent sheaves on the general fibre. Here, K
denotes the quotient ficld of C[[¢]], i.e. the field of all Laurent series. One can indeed
show that Coh(Xg ) is a K -linear abelian category.
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Next we denote by DY(X) := DP (O x-Mod) the bounded derived category of
the abelian category of O x-modules with coherent cohomology. This category has

a full triangulated subcategory
DE(X) € DP(X)
consisting of all complexes with cohomology in Coh(X)g. The Verdier quotient
D°(Xk) := DP(X)/D(X)
is the derived category of the general fibre of the formal deformation
. X —=Spf(C[[]]).

The fundamental properties of the derived category of the general fibre for smooth
projective surfaces with trivial canonical bundle are explained in the following theo-
rem which is the main result of the paper.

Theorem 1.1. Let X — Spf(C[[t]]) be a formal deformation of a smooth projective
surface X with trivial canonical bundle. The derived category of the general fibre
DP(Xx) is a K-linear triangulated category and the square of the shift functor defines
a Serre functor. Moreover, there exists an exact K-linear equivalence D°(Xg) ~

DP(Coh(Xk)).

The latter property, which is proved in Proposition 3.10, is extensively used in [9].
Both interpretations of the derived category of the general fibre, as the Verdier quotient
of triangulated categories and as the bounded derived category of the abelian category
of coherent sheaves on the general fibre, are used. E.g. in [8] all autoequivalences
(and in particular spherical twists) of D*(Coh(X)) are described for a generic (non-
projective) K3 surface X. The arguments apply as well to DP(Coh(Xg)) for X
the general fibre of a very general formal deformation of a projective K3 surface X .
More precisely, we show that, up to shift, D®(Coh(X)) contains just one spherical
object (namely the image of the structure sheaf O x, ). On the other hand, in order
to deform a given autoequivalence of DP(X) to an autoequivalence of the derived
category of the general fibre Xx we need to work with D°(X) and its quotient
DP(X k). In the end we prove that the deformation of the autoequivalence of D?(X)
to a Fourier—-Mukai equivalence ®: D°(Xg) —=D"(X}) has kernel in the abelian
category Coh((X xg X")k).

In the process of proving Theorem 1.1, we will be considering a number of related
technical results. To make the overview of the paper more complete, let us mention
a few of them which will be particularly relevant in [9]:

(A) The spaces of morphisms in quotient categories are often difficult to describe.
However, for the natural quotients Coh(X)— Coh(Xg) and D®(X) —D(Xk)
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they are simply given by the tensor product with the quotient field K, which makes
both categories K-linear (Propositions 2.3 and 2.9).

(B) One advantage of the categorical approach to the general fibre is that the
Fourier—Mukai machinery carries over easily. For example, we prove that if the

Fourier—-Mukai kemel &y of an equivalence DP(X)—>D"(X’) deforms (o a com-
plex & on the product of two formal deformations X, X' —s Spf(C][¢]]), then its

restriction Ek (o the general fibre defines again an equivalence D*(Xx ) —D"(X})
(Corollary 2.13).

We have not attempted to develop the theory in its most general form. It would
certainly be natural to study the general fibre of formal deformations over more
general formal rings from a categorical perspective. Unfortunately, in that case, the
results (e.g. the description of the space of morphisms) would not nearly be as nice
as in the simple situation of deformations over C[[z]]. But even the one-dimensional
formal deformations studied here, should be useful in other situations, although our
discussion is tailored to the application to Fourier—Mukai equivalences between K3
surfaces in [9].

The plan of the paper is as follows. In Section 2 we define the abelian and derived
categories of the general fibre of a formal deformation. We study their Hom-spaces
and, in Sections 2.3 and 2.4, we analyze the behavior of Fourier—Mukai transforms
and Fourier—Mukai equivalences when passing to the derived categories of the general
fibres.

In Section 3 we complete the proof of Theorem 1.1. As a first step, we compare
the Hom-spaces and the Euler pairing on the general and special fibres of a formal
deformation (Section 3.1). In Section 3.2 we describe the Serre functor of the general
fibre. Finally, in Section 3.4, we restrict to the case of smooth projective surfaces
with trivial canonical bundle and prove the main theorem.

Notation. Denote by R := C[[r]] the ring of power series in ¢ which is a complete
discrete valuation ring. Tts spectrum Spec(R) consists of two points: The closed
point 0 := (r) € Spec(R) with local ring R and residue field € and the generic point
(0) € Spec(R) with residue field K := C((r)), the field of Laurent series. Moreover,
we put R, := C[t]/(#"*!) with the natural surjection R —s R,, defining a closed
embedding Spec(R,) C Spec(R), which is the n-th infinitesimal neighbourhood of
0 € Spec(R). The formal scheme Spf ( R) is then described by the increasing sequence
of closed subschemes 0 = Spec(Ry) C Spec(R;) C --- C Spec(R,) C ---

Throughout we will use the following notations for the natural inclusions (m < n):

! Xy X and t(:=1y: X—— X

im’n: chﬁ' xln, in = in’n-i-l: x;«lc% x”+1, aﬂd jn — io’n: XC%' x;«l.
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2. The derived category of the general fibre

In this section we study the basic properties of the abelian category Coh(Xg) of
coherent sheaves on the general fibre and of the triangulated category DP(X k). At
the end of the section we also discuss the extension of the definition and of some
interesting basic properties of Fourier—Mukai functors in the setting of formal defor-
mations and of the derived categories of their general fibres (Corollary 2.13, see also
(B) in the introduction).

The reader not familiar with the notion of quotients of abelian categories by Serre
subcategories or with that of Verdier quotients is strongly encouraged to read the
Appendix before proceeding with this section. For the convenience of the reader we
list now the main abelian and triangulated categories which will be introduced in
course of the paper. We also indicate the precise section where they are defined.

* Ox-Mod: the abelian category of (@ x-modules (Section 2.1);
* Coh(X): the abelian category of coherent sheaves on X (Section 2.1);

* Coh(X)p: the Serre subcategory of Coh(X') consisting of sheaves supported
on some X, (Section 2.1);

* Coh(X)¢: the full additive category Coh(X') consisting of C[[7]]-flat sheaves
(Section 2.1);

* Coh({Xfg): the quotient of the category Coh(XX') by Coh(X')( (Section 2.1);

» D*(@x-Mod): the bounded derived category of the abelian category ¢ x-Mod
(Section 2.2);

« D°(Coh(X)): the bounded derived category of the abelian category Coh(X)
(Section 2.2)

e D°(X) = DP, (@x-Mod): the full triangulated subcategory of DP(¢ x.-Mod)

coh
consisting of complexes with coherent cohomology (Section 2.2);

« DY(X) = D‘éoh(x)o (Ox-Mod): the full thick triangulated subcategory of
DP(X) consisting of complexes with cohomology in Coh(X), (Section 2.2);

» D*(Xk): the Verdier quotient DP(X)/DP (X)) (Section 2.2);

* DY (Coh(X)): the full thick triangulated subcategory of D?(Coh(X)) consisting
of complexes with cohomology in Coh(X ) (Section 2.2);

* Dperr (X5 ): the full triangulated subcategory of perfect complexes on X, (Sec-
tion 2.2);

« DP(X%): the Verdier quotient D*(Coh(X))/Df(Coh(X)) (Section 2.2).
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2.1. The abelian category of the general fibre. Given a formal deformation
. X —Spf(R) of a smooth projective variety X, the abelian category of all O x-
sheaves will be denoted @ x-Mod. Any @ x;-sheaf E yields an inverse systemof O «;,, -
sheaves E, := ¢, E with Ox,,-linear transition maps E, —=im n= Em, for n > m,
inducing isomorphisms i;‘;’nEn ~ E,. Then lim E, is again an (J x-sheaf, but the
natural homomorphism £ — lim E}, is in general not an isomorphism. However, if
we restrict to coherent Ox-modules E, then indeed E ~~ lim F,,. This proves that a
coherent O 5-module is the same as an inverse system of coherent O, -sheaves E,
together with transition maps £, — i n+ En inducing isomorphisms i,’;,n Ey = Ew
(see [6, I1.9] or [11]).

By Coh{X)) C Ox-Mod we denote the full abelian subcategory of all coherent
sheaves on X and we tacitly use the equivalence of Coh(X') with the abelian category
of coherent inverse systems as just explained. The restriction to X, will be written
as

Coh(X) — Coh(X,), E+——E,.

So in particular, £y € Coh(X ) will denote the restriction of a sheaf £ € Coh(X) or
E, € Coh(X,) to the special fibre X = Xy. As we assume our formal scheme to
be smooth, any coherent sheaf on X admits locally a finite free resolution. However,
since X is not necessarily projective, locally free resolutions might not exist globally.

The category Coh(X) of coherent sheaves on the formal R-scheme X is in a
natural way an R-linear category. A coherent sheaf E € Coh(X) has support on X,
if "1 E = 0 and, as in the introduction, the subcategory consisting of all sheaves
having support on some X, is denoted by Coh(X),.

A coherent sheaf E € Coh(X) is R-flat if multiplication with 7 yields an injective
homomorphism 7: £ — E. By Coh(X); C Coh(X) we denote the full additive
subcategory of R-flat sheaves. This subcategory is clearly not abelian, but the two
subcategories

Coh(X)g, Coh(X)s C Coh(X)

define a torsion theory for the abelian category Coh(X'). More precisely, there are
no non-trivial homomorphisms from objects in Coh{X') to objects in Coh (X )¢ and
every E € Coh(X) is in a unique way an extension

0 Fio F Er 0

with Ey,, € Coh(X)y and Er € Coh(X);. Indeed, set Ey, := | Jker(t": E—E),
1.e. the R-torsion subsheaf of £. The union must stabilize, as E 1s coherent, and
E: := E/FE is R-flat. (Note that in general this torsion theory is not cotilting, i.e.
not every R-torsion sheaf is a quotient of an R-flat one.)

Let us now define the abelian category of coherent sheaves on the general fibre

Coh(Xg) := Coh(X)/Coh(X),.
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Remark 2.1. Since we divide out by a small subcategory, the quotient is a category
with Homsets. The same remark applies to all later quotient constructions and we
will henceforth ignore the issue.

The image of a sheaf £ € Coh(X) under the natural projection from Coh(X)
onto Coh(X ) is denoted Eg.

For two coherent sheaves E, E' € Coh(X) we shall write Hom(E, E’) for the
group of homomorphisms in Coh(X) and Homg (Egx, Ex) for the group of ho-
momorphisms of their images Ex, Ex in Coh(Xg). The natural homomorphisms
induced by the projection will be denoted

n: Hom(E, E')—=Homg (Ek, Ex).

By construction of the quotient, any morphism Egx — Ek in Coh{ X g ) is an equiv-

alence class of diagrams ( £ < By~ i ) with ker(sg), Coker(sp) € Coh(X)g.
The composition

(E<~—Ey—E')o(E' ~—Ej—E")

of two morphisms Ex — Ex and Ex — E'% is naturally defined by means of the
fibre product ( E <— Eo xgr E) — E”).
Also note that Coh(X); — Coh(X ) is essentially surjective, i.e. every object

F € Coh(Xg) can be lifted to an R-flat sheaf on X. Indeed, if ¥ = Eg, then
(Ef)k ~ Ex = F and, therefore, Ey is an R-flat lift of F.

Remark 2.2. As mentioned in the introduction, to the formal R-scheme X one can
associate the general fibre X g which is a rigid analytic space (see [2], [15], [16]). The
abelian category Coh (X} is in fact equivalent to the category of coherent sheaves
on X, which explains the notation.

Proposition 2.3. The abelian category Coh(Xxk) is K-linear and for all F,G €
Coh(X') the natural projection Coh(X ) — Coh(X ) induces a K-linear isomor-
phism

Hom(F,G) ® p K—Homg (Fx,Gk).

Proof. As a quotient of the R-lincar category Coh(X), the category Coh(Xg)
is also R-linear. The multiplication with ¢! is defined as follows. Let f €

® Fy—25G) with

Homg ( Fg, Gg) be a morphism represented by f: ( F

Ker(sg), Coker(sg) € Coh(X)y. Thensett 1 f: ( F Fy G ), which
is a well-defined morphism in Coh{X ). This is because the objects Ker(rso) and

180 g
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Coker(zso) are in Coh(X)y. Moreover, one has r(t ™! f) = f due to the following
commutative diagram

i

0 F,

The K -linearity of the composition is obvious.
Consider now the induced K-linear map

ng: Hom(F,G) ® g K —— Homg (Fg, Gg).

To prove the injectivity of 7k, let f € Hom(F,G) with n(f)} = nx(f) = 0.
Then there exists a commutative diagram

F/
s 0
F/ f\G,

with Ker(s), Coker(s) € Coh(X), and hence f factorizes through

i F 1 Coker(s) AN G.

Thus, if t*Coker(s) = 0 for some n > 0, then this yields (" f = f' o (t"¢) = 0. In
particular, f ® 1 € Hom(F, G) ® K is trivial.

In order to prove the surjectivity of ng, we have to show that for any f €
Homg (Fk,Gg) there exists an integer k, such that r* £ is induced by a mor-
phism F— G in Coh(X). Write f: ( F * p—Ltsc ) with t"Ker(sg) =
t"Coker (sp) = O for some positive integers m, n. Consider the exact sequence

0 — Hom(F’, G) —2= Hom(Fy, G) —~> Hom(Ker(s;), G)

which is induced by the natural projection p: Fy— F’ := im(sg) and by its kernel
i: ker(sg)— Fy. Since (t"g)oi = go (t"i) = 0, there exists a (unique) ho-
momorphism g’: F'—G such that g’ o p = ("g. This yields the commutative
diagram
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’

4

which allows one to represent t* f by ( F > 2 G ).
As F/F’ ~ Coker(sp) is annihilated by ¢™, the homomorphism ™ g": F'— G
lifts to a homomorphism g”": F —= G, i.e. g”’|p = t™g’. This yields the commuta-

tive diagram
F —
\

id

F’ Mg

\r - G.
L

F g

Hence ™17 f is represented by ( F < F -5 > G ),ie. Mt f =5(g"). O

2.2. The derived category of the general fibre. Let 7: X — Spf(R) be a formal
deformation of X and consider the bounded derived category of X defined as

DP(X) := D®, (O x-Mod),

coh

which by definition is an R-linear triangulated category.

Remark 2.4. We will always tacitly use the well-known (at least for schemes) fact
that any bounded complex with coherent cohomology on a smooth formal scheme is
perfect, i.e. locally isomorphic to a finite complex of locally free sheaves of finite type
(see e.g. [10, Corollary 5.9]). In other words Dpe:s (X) 2 DP(X). This is however
not true for X, n > 0. Indeed, e.g. for » = 1 one has Tor"R1 (Rop, Ry} = Ry for all
i > 0. So, the R;-module Ry does not admit a finite free resolution. So we will have
to work with
Dperf(xn) e Db(xn)a

the full triangulated subcategory of perfect complexes on X,.

Recall that for the noetherian scheme X, the functor

D(Coh(X,)) —=D(X,) := D" (Ox,-Mod)

coh

is an equivalence. Contrary to the case of a noetherian scheme, the natural functor

DP(Coh (X)) — DP(X) = D" (O x-Mod) 2.1

coh

is in general not an equivalence. However, (2.1) induces an equivalence between the
full subcategories of R-torsion complexes. To be more precise, let

DH(X) 1= Deynixr, (Ox-Mod) € D°(X) and  DJ(Coh(X)) C D°(Coh(X))

be the full triangulated subcategories of complexes with cohomology contained in
Coh(X)¢. Then one has:
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Proposition 2.5. i) The natural functor D®(Coh(X)o) —=DP(Coh(X)) induces an
equivalence

DP(Coh(X)g) —— DB (Coh(X)).

ii) The natural functor D®(Coh(X)o) —=D°(X) induces an equivalence
DP(Coh(%X)5) ——> DY(X).

Proof. 1) It suffices to show (see the dual version of [7, Lemma 3.6]) that for
any monomorphism f: E“— E’ in Coh(X) , with E € Coh(X), there exists
g: E' — E”, with E” € Coh(X), such that g o f is injective.

By the Artin—Rees Lemma, we know that the filtration Ey 1= E N *E is
t-stable, that is, there is some n € N such that tE; = Ep.,, whenever &k > n.
Let £ be a positive integer such that t*E = Oand let g: E'—E” := E'/t"t*E’
be the projection. The composition g o f is injective, as ker(g o f) = E,1¢ =
t*E,=t*E =0.

i1} We follow Yekutieli [19], but see also [1]. Let QCoh(X) C @ x-Mod be the
full abelian subcategory of quasi-coherent sheaves on X, i.e. of sheaves which are
locally cokernels of 056 — (931C for some index sets /, J. Then define QCoh( X'}y C
QCoh(X') as the full thick abelian subcategory of discrete quasi-coherent sheaves
(see the Appendix for the definition of thick abelian subcategory). By definition, a
sheat E on X is discrete if the natural functor I'¢(E) := lim Hom(Ox, , E)—E
18 an isomorphism.

Clearly, a coherent sheaf on X is discrete if and only if it is R-torsion, i.e.
Coh(X)y = Coh(X) N QCoh(X')y which is a thick subcategory of QCoh(X)4.
Moreovet, by [19, Proposition 3.8] every E € QCoh(X )4 is the limit of coherent
R-torsion sheaves. Thus Dléoh(X)o (QCoh(X)y) is the same as D, (QCoh(X)q).

coh

Lemma 2.6 below gives an equivalence DP(Coh(X)y) ~ D'éoh( 5, (QCOh(X0)q).

Hence we conclude the equivalence D®(Coh (X)) =~ D? , (QCoh(X),).

Finally, one applies [19, Theorem 4.8] which asserts that the natural functor
induces an equivalence of D?(QCoh(X)4) with the full triangulated subcategory
of D*(@x-Mod) of all complexes with cohomology in QCoh(X)4. (The inverse
functor 1s given by RI'y.) Adding the condition that the cohomology be coherent

proves ii). O

Lemma 2.6. Let A € B be a full thick abelian subcategory of an abelian category
B with infinite direct sums. Assume that every object of B is the direct limit of its
subobjects belonging to A and that A is noetherian (i.e. every ascending sequence
of subobjects is stationary). Then the natural functor yields an equivalence

D°(A) =D (B),
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where D]j% (B) is the full triangulated subcategory of DP(B) of complexes with coho-
mology in A.

Proof. Let f: E—s E’ be a surjection in B, with E’ € A. We need to show that
there exists a morphism g: G — E with G € + such that f o g: G — E’ is again
surjective (see e.g. [7, Lemma 3.6]).

By assumption, there exists adirect system of objects { ££; } in /A such thatlim FE; ~
E . Hence, there exists a surjection j : €, E; —>E — L',

Thenlet £} := im (B}_, E: — E — E’), which form an ascending sequence
of subobjects of E’. Since +4 is a noetherian, the sequence { £, } stabilizes, and, as j
is surjective, £; = E' for k > 0. Then set G := @Lo E; € A, for some k > 0,
and let g be the natural morphism. O

Remark 2.7. i) The equivalences of Proposition 2.5 put in one diagram read
DP(Coh(X)g) ~ D§(Coh(X)) ~ DE(X). (2.2)

ii} The categories D5(X) C DP(X) and D*(Coh(X)y) C D"(Coh(X)) can also
be described as the smallest full triangulated subcategories containing all R-torsion
coherent sheaves. Here, a sheaf £ € Coh(X,) is at the same time considered as
an object in DP(X) and D(Coh(X)). This is clear, as any bounded complex with
R-torsion cohomology can be filtered (in the triangulated sense) with quotients being
translates of such sheaves.

In the introduction we have already defined the derived category of the general
fibre DP(X k), i.e. the Verdier quotient

DP(Xk) := DP(X)/DY(X) = DLy, (Ox-Mod)/Db ), (Ox-Mod).

One can also consider the quotient D*(Coh(X))/DE(Coh(X)) which, for a lack of
a better notation, will be called

D(X%) := D(Coh(X))/DY(Coh(X)).

(For a thorough discussion of the Verdier quotient see the Appendix.)
In both cases, the quotients are triangulated and the natural projections

DY(X) — DP(Xx) and DP(Coh(X)) — DP(X%) (2.3)

are exact. The image of a complex E under any of these projections shall be de-
noted Eg.
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Remark 2.8. As Coh(X)y C Coh(X) C Ox-Mod are Serre subcategories, the
subcategories D (O x-Mod) C D(X) and DE(Coh(X)) C D*(Coh(X)) are thick.
This means that the direct summands of their objects are again contained in the

subcategories. This has the consequence that the kernel of the two projections in
(2.3) are indeed D§(X) and DS (Coh(X)) respectively.

Proposition 2.9. The triangulated category D®(X ) is K -linear and for all E, E’ €

DY(X) the natural projection DP(X) —=D(X ) induces K -linear isomorphisms
HOHlDb(x) (E, E’) ®r K s HOIl’lDb(xK) (EK, E}()

Similarly, D*(X%) is K-linear and for E, E’ € DP(Coh(X)) one has

Homypscon(x)) (£, E') ®r K —>Homps(x)(Ex. Eg).
In particular, D* (X ) and DP(X%) have finite-dimensional Hom-spaces over K.

Proof. As we work with bounded complexes, the proof of Proposition 2.3 carries
over. U

2.3. Derived functors and Fourier—Mukai transforms. First of all we prove that
the usual derived functors (tensor product, pull-back push-forward, Hom’s) are well-
defined in the geometric setting we are dealing with.

Proposition 2.10. Let f,g: X — X' be morphisms of smooth and proper formal
schemes over Spf(R) and assume | to be proper. Then the following R-linear
functors are defined:

R Homyx (—, —): DP(X)P x DP(X) —=D(X),
() &% (—): D"(X) x D°(X) —=D(X),
Lg*: DY(X)—=D"(X),
Rf.: DP(X)—=D"(X"),
RHompy ) (—, —): DP(X)*® x D?(X) —D"(R-mod),

where we denote by R-mod the abelian category of R-modules of finite rank.

Proof. Due to [17], the functors previously considered are all well-defined if we
work withunbounded derived categories of modules D(O x-Mod), D(O x/-Mod) and
D(R-Mod) (here R-Mod denotes the abelian category of R-modules). To prove the
proposition, we only have to show that, by restricting the domain to the corresponding
derived categories of bounded complexes with coherent cohomology, the images of
these functors are still the bounded derived categories of complexes with coherent
cohomology. This is clear since all complexes are perfect. O



Vol. 86 (2011) Formal deformations and their categorical general fibre 53

All the basic properties of the functors considered in the previous proposition (e.g.
commutativity, flat base change, prOJectlon formula) hold in the formal context. For
an object E € DP(X) a trace map g : E’® E— 0Oy is well-defined (see [10]).

Passing to the triangulated category D(X k) of the generic fibre, the result in
Proposition 2.10 still hold. Indeed, all the functors are R-linear and hence they
factorize through the category D°(Xk). Indeed, F € DP(X) is contained in Df(X)
if and only if t"F = 0 for n > 0. Since the functors are R-linear, the same would
hold for the image of ¥ which would therefore as well be contained in the subcategory
DY. Thus we get the following list of functors:

R Hom xx (—,—): D*(Xk)P x D*(Xkx) —=D"(Xx),
(-) ®" (—): D’(Xk) x D*(Xg) —=D"(Xk),
Lg*: D°(X}%) —=D"(Xk),
Rfi: DP(Xg) —=DP(X%).
RHompp xy(—.—): DP(X k)P x DP(X k) —DP(K-vect),

where we denote by K-vect the abelian category of finite dimensional K-vector
spaces. Of course, all the usual relations between these functors continue to hold in
D*(Xk). In particular, given an object Ex € DP(X k), its dual Ex € DP (X k) is well-
defined and Ex. k =~ Eg. Moreover, we have a frace map (g : Ex K® Ex —Oxp»
where Oy, is the image of O in D*(Xg).

Using those facts, we define Fourier—Mukai functors for formal deformations
or for the derived categories of the general fibres. Indeed, consider two smooth and
proper formal schemes X — Spf(R) and X' — Spf( R) of dimension d respectively
d’, with special fibres X respectively X’. The fibre product X xg X’ — Spf(R),
described by the inductive system X, xg, X, is again smooth and proper and its
special fibre is X x X’. The two projections shall be called ¢: X xgp X' — X and
prX xp X' —X.

Let & € DP(X x g X'). Due to the results in the previous section, one can consider
the induced Fourier—Mukai transform

®g: DP(X) —=D"(X") . E+— Rp.(¢*E QL &).

As before, g is R-linear, for & lives on the fibre product over Spf(R).

Now, for two given Fourier-Mukai transforms ®g: D°(X) —=DP(X’) and
Oy : DP(X') —DP(X") with X" a smooth and proper formal scheme over Spf(R),
the composition ¢ o $g is again a Fourier—Mukai transform with kernel ¥ x & 1=
(px.x)«(EXF ), where pay xr: X x X' x X" —= X x X" is the natural projection.

Left and right adjoint functors of a Fourier—Mukai transform ®g can be con-
structed as Fourier—Mukai transforms as follows. The left adjoint ®g, and the right
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adjoint ®g, are the Fourier—-Mukai transforms with kernel
& =6 ® prwpld’]  respectively &g := &' ® g wyd],

where d = dim(X) and d’ = dim{(X). (To adapt to this context the standard proof
that those kernels define the left and right adjoints of ® g, we actually need L.emma 3.4
which will be proved later.)

The adjunction morphisms ®g, o ®g —idpp(x) and Pg o Pg, —=idpp () are
isomorphisms if and only if the natural morphisms try : & % & — O . respectively
trx:: & x Eg —=Oa - induced by the trace morphisms are isomorphisms. Here A x
and A x denote the relative diagonals in X x g X respectively X' x g X', (Sometimes
(seee.g. [5]) the construction of the adjunction morphisms uses Grothendieck—Verdier
duality for certain embeddings, e.g. for X x g X' —= X x g X' x g X. This can easily
be replaced by an argument using relative duality over R in the sense of Lemma 3.4
for the two sides. We leave the details to the reader.)

Remark 2.11. Everything said above is also valid for the non-reduced schemes
Xn —=Spec(R,) and X, — Spec(R,) with the only difference that we have to
assume now that the Fourier-Mukai kernel &, € D*(X, xg, X) is perfect. Then
one can consider the two Rj-linear functors

dg, : DP(X,) —D(X’) and g, : Dpar(Xn) —> Dpert(X,).
Analogously, one wants to define the Fourier—Mukai transform
@z : DM(Xg) —= DP(X%)

associated to an object F € DP((X xgr X')g).

As the objects of DP(X x g X') are the same as those of D°((X x g X)k) (see
the Appendix), take & € D°(X x g X') such that Ex ~ F. Then, by the R-linearity,
the Fourier—Mukai transform ®¢ : DP(X) —=DP(X’) descends to a Fourier—Mukai
transform ® ¢ : D*(Xg) —DP(X%), i.e. one has a commutative diagram

DO(X) — £ DP(X)

e
Db(XK) ? Db(X}()
Since the objects of DP(X) and D(Xg) coincide, it is enough to check that

g (DE(X)) = DY(X’). Indeed, § € DP(X) is contained in DY (X} if and only
it t"§ = 0forn > 0. As $g is R-linear, this would imply " ®g (§) = 0 and hence
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g (9) € DY(X'). The behavior of g on the level of morphisms is determined by
Proposition 2.9. Moreover, ®# is independent of the chosen lift £. From this, it
follows that right and left adjoints of Fourier—-Mukai transforms as well as trace maps
pass to the triangulated category of the generic fibre.

2.4. Fourier-Mukai equivalences of the general fibre. Here we will show that if
the kernel of a Fourier—Mukai equivalence deforms to a complex on some finite order
deformation or even to the general fibre, then it still induces derived equivalences of
the finite order deformations or general fibres, respectively. This is certainly expected,
as ‘being an equivalence’ should be an open property and indeed the proof follows
the standard arguments.

Consider two smooth and proper formal schemes X — Spf (R) and X’ — Spf (R),
with special fibres X respectively X’. The fibre product X xg X' —=Spf(R), de-
scribed by the inductive system X, x g, X/, —> Spec(R), is again smooth and proper
and its special fibre is X x X',

Set Xoo 1= X, X, 1= X', and Rs := R (notice that Dpes(X xg X') =~
D(X xgr X)).

Proposition 2.12. Let €, € Dpur(X, Xg, X)), with n € N U {oo}, be such that
its restriction &y 1= Lj &, to the special fibre X x X' is the kernel of a Fourier—

Mukai equivalence ®g,: D°(X)—>DP(X’). Then the Fourier-Mukai transform
e, 1 Dpert(Xn) —=Dpert (X, is an equivalence.

Proof. Tt suffices to show that in both cases left and right adjoint functors are quasi-
iverse. Complete the trace morphism to a distinguished triangle

(EnlL * En Sz Oax, — G

Restricting it to the special fibre yields the distinguished triangle

(o), * 6y — Oay .

(Use that the pull-back of the trace is the trace. Also the restriction of (&,)y, yields
the kernel of the left adjoint of the restriction &.)

As by assumption ®g, : DP(X) —=DP(X") defines an equivalence, the cone §p is
trivial. Thus, G, € DP(X, xg, X!) has trivial restriction (o the special fibre X x X’
and, therefore, G, ~ 0. This shows that trx, is an isomorphism. A similar argument
proves that try is an isomorphism for the case of the right adjoint. O

Under the assumptions of the previous proposition, the same proof also yields an
equivalence ®g, : D*(X,) —=D"(X)).
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Corollary 2.13. Let & € D°(X xg X'), such that ®g,: D*(X)—>D(X’) is an

equivalence. Then the Fourier-Mukai transform ®g, : D*(Xg) —>D"(X%) is an
equivalence, where 8k denotes the image of & in DP((X x g X')g).

Proof. Indeed the inverse Fourier-Mukai functor @& := ®;': DP(X") —DP(X),
which exists due to Proposition 2.12, descends to a Fourier—Mukai transform (see
Section 2.3)

Py 1 D(Xg) —D°(Xk).

which clearly is an inverse to g, O

3. Properties of the derived category of the general fibre

In this section we conclude the proof of Theorem 1.1. However, for most of the
results it 1s enough to assume that X 1s a smooth projective variety. More precisely,
the assumption that X is a surface with trivial canonical bundle is needed for the first
time in Proposition 3.10.

In particular, we prove that D (X ) is indeed equivalent to the derived category
of Coh(X k) and we study the Serre functor of D*(X k).

3.1. Comparing Hom-spaces. Let us now consider the pull-back under the closed
embedding ¢, : X, X which is a right exact functor ¢ : Coh(X) — Coh(X,)
compatible with the R-linear respectively R, -linear structure of the two categories.
Its left derived functor

LL: . Db(X) — Dperf(xn)

takes bounded complexes to perfect complexes (see Remark 2.4). When the derived
context is clear, we will often simply write ¢ instead of L¢*. For E € D(X) one
writes

En:=0FE = LE € D*(X,).

In particular, £y denotes the restriction of a complex E on X to the special fibre X .
Clearly, E € D(X) is trivial if Eq ~ 0.

One needs to be careful with the pull-back under i, : X, X, 41, whose left
derived functor 7, : Dpert (Xn4-1) — Dpere (X)) 1s well-defined for perfect complexes
but not for bounded ones (see Remark 2.4).

Lemma 3.1. i) For E, E’ € DP(X) there exists a functorial isomorphism

RHomp(x)(E, E') ®% Ry —= RHomp,_ (x,n(LizE, L E").
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iiyForm <nand E,E’ € Dpert (Xp) there exists a functorial isomorphism

RHomyp _(x,)(E. E") ®% Ry—>RHomp, _ x,»(Lin ,E Li% ,E").

m

Proof. The proofs of 1) and i1) are identical. We just consider the first case.

Since we continue to work under the simplifying assumption that XX —= Spf(R) is
smooth and proper, the derived local Hom’s are functors R Homy : DP(X)P x
DP(X) —DP(X). Also, by definition (—) ®% R, is

LL: . Db(Spf(R)) —>Dperf(SPeC(Rn)),

the derived pull-back of the inclusion ¢, : Spec(R, )} Spec(R).
Thus the assumptions of [10, Proposition 7.1.2] are satisfied and we therefore
have a functorial isomorphism

L RHomx(E, E')—RHomx, (L E, L E"). (3.1)

Further, applying the global section functor RTx;, := RIT(X,, —): D®(X,) —
DP(Spec(R,)) to both sides, one finds

Li;RTyR¥omx(E, E") (*2) RTyx, Liy R Homx(E, E")
—> Ry, RHomx, (L E, LCE').

Together with RI" o R #fom = RHom, this proves the assertion.

Note that in (*) we used the base change formula L:; o RI'xy ~ RI'x, o L¢,
which can be easily proved by adapting the argument of [12, Section 2.4]. More
precisely, one could apply Kuznetsov’s discussion to the cartesian triangle given by
Xn = X over Spec(R, ) Spf(R). Corollary 2.23 in [12] shows that from the
flatness of 7 : X — Spf(R) one cannot only deduce the standard flat base change,
but also the above assertion (see also [7, Chapter 3, Remark 3.33]). For flat base
change in our more general context see [17]. L]

The categories D*(X ) and D?( X g ) are C-linear respectively K -linear triangulated
categories with finite-dimensional Hom-spaces. The following numerical invariants
turn out to be useful and well-behaved. For Eq, Ej; € D(X) one sets:

xo(Eo. Eg) := Y (—1)" dimc Exty (Eo. Eq)
and analogously for Ex, E} € DP(Xk):

Ak (Ex. Ex) =) (—1)" dimg Exty (Eg. Eg).

As an immediate consequence of the discussion in Section 2.2, one finds the
following two results which will be used in [9] to describe spherical and semi-rigid
objects in D (X k), when X is a smooth projective K3 surface.
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Corollary 3.2. Forany E, E' € D*(X) one has
xo(Eo, Eg) = xx(Ex. Ex).

Proof. Wehave anisomorphism R Hompxy(Eo. E()) > RHomps ) (E, E) QLC.
This follows from Lemma 3.1 1). Since R is a DVR, we have a decomposition of the
R-module

RHompp oy (E. E") >~ RHompy () (E, E)free @ RHompy () (E, E)or

in its free and torsion part. Since for a torsion R-module M one has M @ C = 0,
this yields

xo(Eo, Ej) = dime RHomppx) (Eo, Ey) = dime (RHomps(xy (E, E')gree ® C).
On the other hand, by Proposition 2.9,

dimg RHomps(x ) (Ex. Ex) = dimg (RHompp () (E, E e ® K).
This concludes the proof. O

Of course, the single Hom-spaces could be quite different on the special and on
the general fibre, but at least the standard semi-continuity result can be formulated in
our setting.

Corollary 3.3. Let E, E' € DP(X). Then
dim¢ Hom(Ey. E) > dimg Homg (Eg, Eg).
Proof. We know that
dimg Homps (x,.)(Ex. Ex) = tk g Hompe o) (E, E)frec-

The conclusion follows from Lemma 3.1. (]

3.2. Serrefunctors. Therelative canonical bundles wy, := wx, /g, of 7,0 Xy —
Spec(R,) define a coherent sheaf w, on X, the dualizing or canonical line bundle.
The name is justified by the following observation (for more general statements see

[11, [19]):

Lemma 3.4. Suppose . X — Splf(R) is a smooth proper formal scheme of relative
dimension d. Then there are functorial isomorphisms

RHome(x) (E, W [d]) — RHOHlDb(Spf(R)) (RFxE, R),
forall E € D*(X).
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Proof. Notice that wy,, is the dualizing complex in Dy (X)), that is

R HomDperf(Xn) (En, wr,[d]) — R HomDperf(Rn) (RTx, En, Ry),

for any £, € Dpers(Xn).
For any positive integer n, we have the following natural isomorphisms (using
Lemma 3.1 twice)

RHomp(x)(E, 0 [d]) ®% R, RHomp, (5, (L5 E. wr, [d])
et RHomDperf(Rn)(RFanL:E, Rn)
~ RHompsspi(r)) (RTx E. R) ®% Ry

(Notice that the last isomorphism uses again L¢; o R['x ~ RI'x, o Lty as in the
proof of Lemma 3.1.) Moreover, the resulting isomorphisms

f: Hompnx) (E, 02[d]) ®% Ry —> RHomps(spr(ry) (RTx E. R) ®% Ry

are compatible under pull-back, i.e. fui1:= fut1 ®1Le idr, = fn.

Taking the projective limits allows us to conclude the proof. More precisely, one
uses the following general argument: Suppose we are given complexes K°®, L® €
DP(R-Mod) and isomorphisms f,,: K* ®‘;§ R,—1L"* ®% R, in D*(R,-Mod) com-
patible in the above sense. Replacing K* and L® by complexes of free R-modules,
we can assume that the f, are morphisms of complexes. Again using the projectivity
of the modules K and L?, we deduce from the compatibility of f, and f,+1 the
existence of a homotopy k’: K' ® R,—L'~™' ® R, between f,, and f,41, ie.
fl—fi, =Kl + di7'K . Liftkf to h': K' ® Ryq1 —= L' ® Ryyq and
replace f,+1 by the homotopic one f,+1+ hdg +dph. With this new definition one
has f, = fn+1 as morphism of complexes homotopic to he original one. Continuing
in this way, one obtains a projective system of morphisms of complexes. The limit is

then well defined and yields an isomorphism K* — L°.
The functoriality of the constructions 1s straightforward. O

We are now ready to show that the derived category of the general fibre, which is a
K-linear category, has a Serre functor in the usual sense. The following proposition,
saying that Serre duality holds true in DP(X ), shows the advantage of working with
DY(X k). The canonical bundle of the general fibre is by definition wyx, 1= (wz)x €
Coh(Xx).

Proposition 3.5. Suppose 7: X — Spt(R) is a smooth proper formal scheme of
relative dimension d. Then the functor E+— E ® wx,.[d] is a Serre functor for the
K -linear category D*(Xg), i.e. there are natural isomorphisms

Homps(x ) (Ek. Eg) —= (Homps(x,) (Ex. Ex ® wxe[d])
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orall Ex, E), € D’(Xg), where (—=)* denotes the dual K -vector space.
K

Proof. We follow the proof of [3, Proposition 5.1.1]. Let £ € DP(X) and let Ex €
DP(X k) be its image under the natural projection. We have
HOl’l’lDb(xK) (EK, WXk [d]) e Home(x) (E, r [d]) ®r K
e Home(Spf(R)) (RFxE, R) ®Xr K
~ Homg(®;R°'Tx E[—s],R) ®r K
~ Homg(R'TxE,R)®r K
= Hompg (Hompy(x)(Ox, E), R) ®r K
e (Home(x)(0x, E) Xr K))*
~ (Hompp () (O x> Ex )™,
where the first and the last isomorphisms follow from Proposition 2.9, while the
second is Lemma 3.4, and all the others are simple consequences of the fact that R is
a DVR. Dualizing (with respect to K) we have
Homps () (Oxx» Ex) =~ (Hompp(x) (Ex . wxx [d])".
Now, let E, E’ € D*(X) and let Eg, E}, € D*(Xk) be their images. Since E and
E’ are perfect complexes, the natural map
R¥Homx(E'\ E® wy)—>=RHomx(RIomx(E, E, wy)

is an isomorphism. Indeed the statement is local and we can assume £ and E’ be
bounded complexes of free sheaves. In that case the claim is obvious.
Then one concludes by
Homps (x ) (Ex, Ex)

~ Hompey(E, E') ®r K

~ Hompp(x)(Ox, RHomx(E,E")) ®r K

>~ (Hompp ooy (R Homx (E, E'), wx[d]) @ r K)*

>~ (Hompp(xy(Ox, R Homx (R Homx (E, E'), wr[d])) ®r K)*

~ (Hompp 0y (Ox, R Homx(E', E ® wy[d])) ®p K)*

~ (Hompy(x)(E', E ® wx[d]) ®r K)*

~ (Homps(x ) (Ex. Ex ® wx[d])*,
where the first and the last isomorphisms follow from Proposition 2.9 while the third
is Lemma 3.4. The functoriality is clear. O

If X is a smooth projective surface with trivial canonical bundle, then w, is
trivial and thus wyx, is trivial as well. Therefore, in this case, the Serre functor of
DP(X k) is isomorphic to the square of the shift functor and DP(X g ) is thus a K3 (or
2-Calabi—Yau) category as claimed in Theorem 1.1.
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3.3. A technical result. Instead of taking Verdier quotients of derived categories,
one could also consider derived categories of Serre quotients of the underlying abelian
categories. Let us start with a few observations that should hold for the more general
situation of the natural projection DP(8) —DP(8B/+4) induced by the quotient of a
(non localizing) Serre subcategory 4 C B of an abelian category 8. We could not
find a good reference for the general case and since the proofs are technically easier,
we restrict to the Serre subcategory Coh(X)y € Coh(X)) with quotient Coh(X g ).
The following technical result is probably well-know in other contexts. It is the
first step towards the proof of the existence of an exact equivalence D°(Xg) =~
DP(Coh(Xg)). We include the proof here for the convenience of the reader.

Proposition 3.6. The natural exact functor ¢ : D*(Coh(X)) —D®(Coh(Xk)) in-
duces an exact equivalence

D°(X§) = D(Coh(X))/D}(Coh(X)) =>DP(Coh(Xx)).

For an abelian category A, we denote by C°(A) the abelian category of bounded
complexes of objects in A and by KP(A) the category of bounded complexes modulo
homotopy.

Lemma 3.7. The natural projection Q : DP(Coh(X)) —DP(Coh(Xg)) is essen-
tially surjective.

Proof. Let F*® be a bounded complex in the quotient category C°(Coh(Xx)), i.e.
F' = E% for some E* € Coh(X) and differentials ' € Homg (F', F'*t1) =
Hom(E?, E*T1) ® K (see Proposition 2.3).

Suppose F* = 0 for |i| > n for some n > 0. Then there exists N > 0 such
that t¥d? € Hom(E?, E'T!). Furthermore, we can choose N large enough such
that ¢V d? 1y o ¢tV d?) is trivial in Coh(X) for all i. Let E* be the complex with
objects £/ = E' and differentials d' := ¥ di. Then (N"=: EL "> F' defines

an isomorphism of complexes Q(E*)—> F*. O

Thus, in particular, in order to prove Proposition 3.6, that is, to demonstrate
that the natural functor induces an equivalence D°(X%) —>D"(Coh(Xg)), it re-
mains to show Hompp(xs) = Hompb(con(xx))- By Proposition 2.9 we already
know that Hompy (%) Homps conexy) ® K. We therefore just need to show that
DP(X%)—D"(Coh(Xk)) induces as well isomorphisms Hompp(conx)) ® K =
Homppcon(x ). This will be the content of Lemma 3.9.

In the following we shall frequently use the much easier fact that

Homescon(x)) (E1, E3) ® K >~ Homesconx ) (@ (E7), Q(E3)), (3.2)
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which is proved by the same argument as Proposition 2.3. One only has to observe
in addition that in order to lift a morphism of complexes f*: Q(ET) — Q(E3),

one first lifts all 1 £ to f7: Ei — EZ for some » > 0 and to make f* a map of
complexes on X one might have to annihilate kernel and cokernel of d%, o f? —
2

fi*1 o di . by multiplying with yet another high power of .
1

Lemma3.8. Let E}, ES € CP(Coh(X)) andleth € Homescon(xy) (ET. ES) be such
that Q (h) is a quasi-isomorphism in C°(Coh(Xk)). Then there exist two complexes
F?., F3 and two morphisms f1: F —=E?, fo: F3 — E3 inCP(Coh(X)) such that

O( f1) and Q( f>) are isomorphisms in C*(Coh(Xk)) and Q( f2) 1o Q(h)oQ(f1) =
Q(y), with y a quasi-isomorphism in C°(Coh(X)).

Proof. The proof is based on calculations similar to the ones in the proof of Lemma
3.7, we will therefore be brief. We shall outline a construction that yields a y inducing
an isomorphism in the lowest cohomology and leave the higher cohomologies to the
reader.

Up to shift, we can assume that £7, £3 and hence & are concentrated in [0, 7].
The induced maps J'(h): J'(E})—=H#'(E3) on cohomology have kernels and
cokernels in Coh(X), since Q(h) is a quasi-isomorphism in C*(Coh(X))..

In the following discussion we use the observation that for any K € Coh(X) and
n 3> 0, the sheaf 1" K is R-flat and the cokernel of the inclusion " K~ K is an
object of Coh(X)y (see Section 2.1).

We first construct a complex Z§ , € C°(Coh(X)) and amorphism f{ o: Z , —
E} such thatker(#°(h o f{ ()} is tivial. If n >> 0, then Z{  := (" E{ is R-flat and
the inclusion i{ ,: Z? 1= 1" E{“— EY is an isomorphism in Coh(X ). Then the
map of complexes

d% oi! di
0 . 0 118 1 & ;)
210 0 Z1, Ey I
f{,ol j Jz{ 0 le ild

d9 di

E E
B 0 B —— E] — I}

yields an isomorphism in C*(Coh(Xx)). As a subsheaf of the R-flat sheaf Z ‘1),0, the
kernel ker(dj,%l o i{ ) is also R-flat. Since ker(#°(h o f{ ) ker(dj%1 0 i{ )
and ker(#°(h o f10)) € Coh(X)o, this implies ker(#°(h o f1) = 0. To simplify
the notation, we assume henceforth E} = Z$ jand h = ho f{, i.e. that #°(h) is
injective.

Now we define two complexes F} and Fy ; in C°(Coh(X)) and morphisms
fio: F'o—E7 and fa0: Fy o — E7 yielding isomorphisms in CP(Coh(Xk)),
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such that there exists a morphism /A : Fio —>F2',0 with h o f1,0 = f2,0 © ho and
ker(#°(hy)) = Coker(H#°(ho)) = 0.
To this end, consider the diagram

0
0 A° Q°
lid
[ — ker(dgl) E} Q9 0
- (3.3)
B} —2 - 52
CO BO 0

with exact rows and columns. The aim is to reduce to the case where C° is R-flat.
Let D° denote the cokernel of A° — Q°. Choose n > 0 and consider the

0, where

short exact sequence 0 — Dj =" D" Do DY

D, € Coh(X)o and Dy, is R-flat, and define F, as the kernel of the composition
E{— 0%— D . By construction, the map of complexes

tor*

d. oi1,0 dj
o . 0 Eq 1 £y )
Fiy: 0 Fio E; Eq
f1.ol J lil,o lid lid
a9 dl
£y Eq
B0 B ! B

yields an isomorphism in CP(Coh(X)). Note that by construction the inclusion
A’ EY factorizes through F}; and that the inclusion ker (d )~ EY factorizes
through F 10,0' Replace ET by Ff, and & by /i o f19. Now, in the corresponding
diagram (3.3) the inclusion A° = Q° has an R-flat cokernel.

Next, consider the exact sequence (0 — Bf BY B

0
and define F, as the kernel of the composition £ —- B — B, which natu-

tor
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rally contains im(h°). As before, the map of complexes

d2 oj2.0 d}

o . 0 2 : 1 2 2
FZ,O‘ 0 FZ,O E2 E2
fo ljz,o lid lid

dy dg

.. 0 2 1 2 2

E2 0 E2 EZ EZ

yields an isomorphism in C®(Coh(Xk)) and 4 factorizes through /> o. Replace E3
by F5 , and consider the corresponding diagram (3.3). Observe that now C?is R-

flat (use the Snake Lemma). Since Coker(#°(h)) injects into C° and belongs to
Coh(X), it must be trivial, as wanted. O

In the spirit of Proposition 2.3 one can describe the homomorphisms in the derived
category of the quotient as follows.

Lemma 3.9. For all complexes E}, E5 € DP(Coh(X)) the natural exact functor Q
induces isomorphisms

Q ® K: Hompp concx) (ET, E5) ® g K —Hompp con(x o)) (C(ED), Q(E3)).

Proof. We will prove the bijectivity of O ® K in two steps.

i) Injectivity. Let /' € Homppcon(x)) (£7, £5) such that 9(f) = 0. By defini-
tion, f may be represented by

By <= Fy —= I3,

with so a quasi-isomorphism in C?(Coh(X)). Since Q(f) = 0, there exists a
commutative diagram in K®(Coh(Xk)) of the form

O(Fg)
O(ET) 3 O(E3),
5 /
Fy

with §; and # quasi-isomorphisms in C"(Coh(Xg)). By Lemma 3.7 and (3.2), we
can assume that 51, /2, and F" are in the image of Q,i.e.51 = Q(s1),h = Q(h), and
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F; = Q(F;). By Lemma 3.8 we have a commutative diagram in K*(Coh{ X))

Q(F3)
0(f2)!
Q(Fy
Q(ET) o) Q(E3),
;m /
Q(F?)
Q0f1)
Q(Fy)

with y a quasi-isomorphism in C*(Coh(X)) such that Q(y) = Q(f2)"' o Q(h) o
Q(f1). So we have a commutative diagram in K?(Coh(Xx))

Q(F3)
W %fz)
O(F3) - O(E3).

Hence, one finds k*: Q(F!) — Q(EL™') in Coh(Xk) such that
doey) ok +kodg) — Q(go fr07) =0
in Coh(X ). By Proposition 2.3, there exists N > 0 such that r¥ k= Q(k) and
dg, ok +kodp,— (N (go f2))oy) =0

in Coh(X). So (tY(g o f2)) oy = 0in K*(Coh(X)). Therefore, there is a quasi-
isomorphism y': EJ — F? in K°(Coh(X)) such that y" o (tV (g o f2)) = 0.

Then by Lemma 3.8, saying in particular that Q(f3) is an isomorphism in
C®(Coh(Xk)). and by (3.2), there exist h € Homes(con(xy (Fg. F3) and n > 0,
such that £ f> o b = id and hence ¥" o 1"tV g) = ¥ o (tN (g o f2)) o (t"h) = 0
in K*(Coh(X)). Hence y’ o (t"*N £) = 0 in D*(Coh(X)). Since y’ is a quasi-
isomorphism, this yields " TV f = 0in D*(Coh(X)).

ii) Surjectivity. Let f € Hompp(x ) (Q(ET), Q(E3)). Again by Lemma 3.7 and
(3.2) we can assume that £ is of the form

Q(s0) 0(g)

Q(E7) Q(F7) O(E3).
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Applying Lemma 3.8 to Q(so) we get a commutative diagram in C®(Coh(Xg)):

Q)
Q(sy wj
Q(ET) Q(Fg) (3.4)
Q(iy \ fy %
Q(F7) O(ET) Q(E3),

with Q(f2)" o Q(so o f1) = Q(y) and y a quasi-isomorphism, giving rise to a
morphism & € Hompb(con(x)) (F7 > E3) such that Q(«) is represented by (3.4).
If B € Hompp con(x o) (@ (FT), Q(ET)) corresponds to the diagram

ourn L gEn —1 . o).

we have f o B = 0 () and Hence f = Q(a)o g1 Applying (3.2) to O(f>)!
one finds n > 0 and g, such that " 87! = Q(g2). Thus " f = Q(a) o O(g2), as
desired. O

3.4. Back to the general fibre. In the definitions of D*(X) and D*(X%) one di-
vides by the categories D(X) and D(Coh(X)o) which, by Proposition 2.5, are
equivalent. The categories D (O x-Mod) and DP(Coh(X)) are in general not
equivalent, so neither should be their quotients DP(X%) and D*(Xx). However,
for surfaces with trivial canonical bundle the situation is slightly better.

In the sequel we will write, by abuse of notation, Q (E) = Eg where

0 D" (Coh(X))— Db(Coh(XK))
18 defined as in LLemma 3.7.

Proposition 3.10. Suppose X — Spf(R) is a smooth proper formal scheme of di-
mension. two with trivial canonical bundle, i.e. wy; ~ Ox. Then the natural exact
functor

D®(Coh (X)) —D"(X) —D"(Xk)

induces an exact equivalence

DP(Coh(Xx)) ——> DP(Coh(X))/D}(Coh(X)) ——= D"(X)/D}(X)
— DP(X%) = D"(Xg).



Vol. 86 (2011) Formal deformations and their categorical general fibre 67

Proof. The first equivalence is the content of Proposition 3.6, so only the second equi-
valence needs a proof. By the universal property of localization and Remark 2.7, the
induced functor DP(X§ ) — D*(X k) exists. Weneed to prove it to be an equivalence.

Let us first show that it is fully faithful. Using induction on cohomologies, this
would follow from

Homppx¢ ) (Ek, Fx[i]) —>Hompp(x ) (Ex, Fkli]) (3.5)

for all objects Ex, Fx € Coh(Xk) and all i € N. Here we use that the natural
K-linear functor Coh(Xg ) —=D"(X k), which by Propositions 2.3 and 2.9 is fully
faithful, identifies Coh(X g ) with the heart of a bounded ¢-structure on D®(X ) (see,
¢.g. [4, Lemma 3.2]).

In order to prove (3.5), we imitate the proof of |3, Proposition 5.2.1]. For fixed
F € Coh(X), write Exty (—, F) and Exty; (—, F) for the two contravariant §-functors
EXtEb(COh(X)) (— F)®g K and Ext]’;b(x) (—, F)Y ®pr K on Coh(X) with values in
the category of K-vector spaces. They coincide in degree zero and Ext; (—, F) is
clearly universal. Thus, it suffices to prove that also Ext7; (—, F) is universal. By
Grothendieck’s result (see [6, Theorem 1.3.A]), this would follow from Ext§ (= F)
being coeffaceable for i > 0. Recall that Ext}lr (—, F) is coeffaceable if for any
E € Coh(X), there exists an epimorphism E'—s FE in Coh(X) such that the
induced map Ext}, (E, F)—Ext}; (E', F) is zero. Clearly Ext}(—, F) is universal
and Ext}(E, F) =~ Ext},;(E, F) (use that Coh(Xk) is the heart of a bounded ¢-
structure on DP(X k) and so the extensions in the abelian category coincides with
those in the triangulated category). An easy modification of Grothendieck’s original
argument shows that it is enough to prove that Extfr 7 (=, F) is coeffaceable fori > 1.
Moreover, by Proposition 3.5, we also have Ext}, (E, F) = 0 fori > 2. Hence we
only have to show that Ext?, (—, F) is effaceable.

By Lemma 3.11, for all rational sections s of X, over R, there exists a positive
integer n such that Ext%l (MEPE, F) = 0, where M, denotes the ideal sheaf corre-
sponding to s. Then, take s and s” two disjoint rational R-sections of X and choose
n such that Ext7, (M"E, F) = Ext;,(M%E,F) = 0. Since the canonical map
MY E @ MY E— E is surjective, we conclude by setting £ := MIE @ MJE.

Finally, one shows that D®(X %) —>= DP(X k) is also essentially surjective. Indeed,
since Coh(X g ) is in the natural way a heart of 7-structures on both categories, this
follows by induction over the length of complexes and the full faithfulness proved
before. O

Lemma 3.11. Let E, F € Coh(X) and let s be a rational section of X, over R whose
ideal sheaf in Ox is My . Then there exists a positive integer n such that
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Proof. By Proposition 3.5 it suffices to show that one has Hompp ) (F, M E) ® g
K = 0forn > 0. Since Hompp sy (F, M} E) ® g K is finite dimensional over
K, it is sufficient to show that, for @ € N, there exists » > a such that the natural
inclusion Hompys 5y (F, MfE) ®r K C Hompp( o) (F, M{ E) ® g K is strict. (Use
that (M2 E)g — (M E)g is still injective.)

Pick a non-zero f € Homps(x)(F, M§ E) ® g K. After multiplying with some
power of 7, we can assume f € Hompp (o) (F, M7 E). Consider the exact sequence

0 Etor E Ef 0,

with £y € Coh(X)o and E¢ flatover R. Consider theinducedmap f: F —= M{ Es.
This is non-zero, since f is not a torsion element. It is sufficient to show that there
exists an integer » > a such that t” /' ¢ Hompp ) (F, ML Ep), forall n € N. Thus,
it G := Im(f), it is enough to show that Gg C (M?E¢)k is not contained in
M (M Er)k.

Suppose to the contrary that Gg < ((MX Ef)x. We will show that then G C
() M¥ E¢, which by the Krull Intersection Theorem would show G = 0. Indeed, if
G C MFE;, then also G € MY+ Eg, as the induced map G —> (M¥ / MFH1)E;
becomes the trivial map in Coh(X k), but E¢ is R-flat and ¢ ¢ M. a

This applies to the case of X a smooth complex projective surface with trivial
canonical bundle and proves the last part of Theorem 1.1.

Remark 3.12. It should be possible to deduce from Proposition 3.10 that for smooth

formal surfaces with trivial canonical bundle, DP(Coh(X)) —>D" (O x-Mod) =~
DP(X) is in fact an equivalence, but we shall not use this.

Appendix. Verdier quotients and Serre subcategories

This appendix collects known facts and definitions concerning quotients by Serre
subcategories and Verdier quotients which were used throughout this paper. The
main source we follow in the exposition is [13]. The reader is encouraged to look at
Chapter 2 and Appendix A of [13] for a complete and readable account. Notice that
we forget all set-theoretical issues which, in the case considered in the paper, do not
give rise to problems (see [13, Section 2.2]).

A.1l. Verdier quotients. Assume that T is a triangulated category with shift functor
2: T—=T (see [13, Chapter 1]). A full additive subcategory D 1s a triangulated
subcategory if every object isomorphic to an object in D is in D and the inclusion
functor 7 : D T is a triangulated functor with the additional requirement that, for
any D € D the isomorphism ¢p : (X (D)) — 2 (7 (D)) is the identity.
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Definition A.1. A subcategory D of T is thick if it is triangulated and contains all
direct summands of its objects.

If D is a triangulated subcategory of T one can form the Verdier quotient T/D
which is a triangulated category whose objects are the same as those of T. To define
the morphisms in T/D first consider the collection Morp of morphism f: 77 —=T1>
in T sitting in an exact triangle

T 1 T> 4 >(Ty)

with Z € D. A morphism in T/D between 77 and T, is an equivalence class of
diagrams

f
(T To—=T5)
with f € Morp. Wesay that ( ) <2— Ty —5> 75 Yand ( Ty <2— Sy 25Ty )
are equivalent if there is a third diagram ( T i By — - Th ) and morphisms

u: Zo—=Tpandv: Zo—= Sy in Morp making the following diagram commutative

T

y &
u
f

3

NS

Roughly speaking, all morphisms in Morp become invertible.

Let Q: T—T/D be the natural triangulated functor which is called the Verdier
localization. 'The kemel of Q (i.e. the full additive subcategory of T consisting of
objects mapped to zero by Q) 1s thick (see [13, Remark 2.1.7]). Hence, if D is thick,
the kernel of @ coincides with D.

T

A.2. Serre subcategories. Let A be an abelian category and let B € A be a full
abelian subcategory. We say that B 1s thick if for By, B, € B and any short exact
sequence

0— By A By —0
in A, then A belongs to B as well.
Definition A.2. A thick full subcategory B is a Serre subcategory of A if

i) Every object of A isomorphic to an object of B is in B;
i1} Every quotient or subobject in A of an object in B is in B.
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Given a Serre subcategory B of an abelian category A one can construct the
quotient A/B where the objects of A/B are the same as those of A. On the other
hand, a morphism 4; — A5 in A/B is an equivalence class of diagrams

t

(A; =—— A4 Az)

with ker(s), Coker(s) € B. The equivalence relation we mentioned has a definition
which is analogue to the one explained in Section A.1 (see [13, Section A.2]).
A key fact is the following (see [13, Lemma A.2.3]):

Lemma A.3. The category A/B is abelian. The natural functor Q. A—A/B is
exact and takes object of B to objects in A/B isomorphic to zero. Furthermore,
is universal with this property. The subcategory B C A is the full subcategory of all
objects B € A such that Q(A) is isomorphic to zero.
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