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Formal deformations and their categorical general fibre

Daniel Huybrechts, Emanuele Macrì, and Paolo Stellari

Abstract. We study the general fibre ofa formal deformation over the formal disk ofaprojective
variety from the view point of abelian and derived categories. The abelian category of coherent
sheaves of the general fibre is constructed directly from the formal deformation and is shown to
be linear over the field of Laurent series. The various candidates for the derived category of the
general fibre are compared.

If the variety is a surface with trivial canonical bundle, we show that the derived category
of the general fibre is again a linear triangulated category with a Serre functor given by the
square of the shift functor. The paper is a companion to [9], where the results are applied to
Fourier–Mukai equivalences of K3 surfaces.

Mathematics Subject Classification 2010). 18E30, 14D15.
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1. Introduction

Let W X Spf.COEOEt / be a formal deformationof a smooth complex projective
varietyX givenbyan inductivesystemof flat morphisms n WXn Spec.COEt tnC1//
with X0 D X and isomorphisms XnC1 COEt tnC2/ Spec.COEt tnC1// ' Xn
over COEt tnC1/. Thus, X as a ringed space is the topological space X with
OX WD lim OXn as its structure sheaf. Interesting examples arise as formal
neighborhoods of an actual deformation of X over a smooth one-dimensional base, which
may be algebraic or just a complex disk.

In order to understand the generic behavior of certain classes of varieties, it
is often necessary to study the general fibre of formal deformations of the type

W X Spf.COEOEt / If the deformation is given as the formal neighbourhood of
an algebraic deformation of X over a curve, then the usual concept of the
schemetheoretical general fibre yields a variety defined over the function field of the curve.
For arbitrary formal deformations, e.g. obtained as formal neighborhoods of
deformations in non-algebraic directions, a geometric construction of the general fibre as

a rigid analytic variety is provided by the work of Raynaud [15].
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The aim of this paper is to present a categorical approach to the general fibre.
We construct the abelian category of coherent sheaves on the general fibre directly
without first passing to the rigid analytic variety representing it geometrically. This
simplifies going back and forth from sheaves on the original variety X or its formal
deformationX tosheaves on the general fibre. The passage from the abelian category
to its derived category, which plays a central role in the applications we have in mind,
is more difficult. Here we have to address subtle points related to Verdier quotients
of triangulated categories.

To appreciate the results of this paper, we should briefly explain the main application

we developed in [9]. For a smooth projective K3 surface X, Orlov proved in [14]
that any autoequivalence of the bounded derived category of coherent sheaves Db.X/
induces an isomorphism of the total cohomology group H X; Z/ preserving a natural

weight-2 Hodge structure and the lattice structure induced by the cup-product.
In particular, there exists a homomorphism of groups between the group of
autoequivalences Aut.Db.X// and some orthogonal group denoted by O.Hz.X; Z//) of
the total cohomology group of X see [9], [14]).

Despite this nice result, a description of the image of had been missing for some

time. In[18], Szendröiproposed a conjecturesaying that should send anequivalence
to an isometry inO.Hz.X; Z// with the additional property that theorientation of some
4-dimensional positive definite subspace of H X; R/ is preserved.

In [9], we gave a positive answer to this conjecture using a deformation argument
whose main steps are the following. Given a smooth projective K3 surface X, we
study a very special formal deformation of X based on its hyperkähler geometry. At
this point, we argue that the derivedcategoryof the general fibre of such adeformation,
despite beingC..t//-linearand notC-linear, has thesame basic featuresas the derived
category of a generic complex analyticK3 surface i.e. aK3 surface with trivialPicard
group). The same conjecture has been solved in [8] for those surfaces. Hence, by the
special choice of the deformation, we can conclude that it holds true for X as well.

The main result of this paper Theorem 1.1 below) establishes some of the
fundamental properties of the derived category of the general fibre which are needed in
the above strategy.

To state precisely this result, we first define the abelian and the derived category of
thegeneral fibre ofa formaldeformation

W X Spf.COEOEt / ofX. LetCoh.X/0
Coh.X/ be the full abelian subcategory of coherent sheaves on X which are torsion
over COEOEt i.e. the full subcategory of all sheaves E 2 Coh.X/ supported on some

Xn, for n 0. With this definition, Coh.X/0 is a Serre subcategory and the quotient
category

Coh.XK/ WD Coh.X/=Coh.X/0
is called the abelian category of coherent sheaves on the general fibre. Here, K
denotes the quotient field of COEOEt i.e. the field of all Laurent series. One can indeed
show that Coh.XK/ is a K-linear abelian category.
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Next we denote by Db.X/ WD Dbcoh.OX-Mod/ the bounded derived category of
the abelian category of OX-modules with coherent cohomology. This category has
a full triangulated subcategory

Db0.X/ Db X/
consisting of all complexes with cohomology in Coh.X/0: The Verdier quotient

Db XK/ WD
Db X/=Db0.X/

is the derived category of the general fibre of the formal deformation

W X Spf.COEOEt /:

The fundamental properties of the derived category of the general fibre for smooth
projective surfaces with trivial canonical bundle are explained in the following theorem

which is the main result of the paper.

Theorem 1.1. LetX Spf.COEOEt / be a formal deformation of a smooth projective
surface X with trivial canonical bundle. The derived category of the general fibre
Db.XK/ is aK-linear triangulatedcategory and the square of the shift functor defines
a Serre functor. Moreover, there exists an exact K-linear equivalence Db.XK/ 'Db.Coh.XK//.

The latter property, which is proved in Proposition 3.10, is extensively used in [9].
Both interpretations of the derived category of the general fibre,as theVerdier quotient
of triangulated categories and as the bounded derived category of the abelian category
of coherent sheaves on the general fibre, are used. E.g. in [8] all autoequivalences
and in particular spherical twists) of Db.Coh.X// are described for a generic

nonprojective) K3 surface X. The arguments apply as well to Db.Coh.XK// for XK
the general fibre of a very general formal deformation of a projective K3 surface X.
More precisely, we show that, up to shift, Db.Coh.XK// contains just one spherical
object namely the image of the structure sheaf OXK On the other hand, in order
to deform a given autoequivalence of Db.X/ to an autoequivalence of the derived
category of the general fibre XK we need to work with Db.X/ and its quotient
Db.XK/. In the end we prove that the deformation of the autoequivalence of Db.X/
to a Fourier–Mukai equivalence ˆ W

Db.XK/ Db.X0K/ has kernel in the abelian
category Coh..X R X0/K/.

In the process of proving Theorem 1.1, we will be considering a number of related
technical results. To make the overview of the paper more complete, let us mention
a few of them which will be particularly relevant in [9]:

A) The spaces of morphisms in quotient categories are often difficult to describe.
However, for the natural quotients Coh.X/ Coh.XK/ and Db.X/ Db.XK/
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they are simply given by the tensor product with the quotient field K, which makes
both categories K-linear Propositions 2.3 and 2.9).

B) One advantage of the categorical approach to the general fibre is that the
Fourier–Mukai machinery carries over easily. For example, we prove that if the

Fourier–Mukai kernel E0 of an equivalence Db.X/ Db.X0/ deforms to a complex

E on the product of two formal deformations X; X0 Spf.COEOEt / then its

restriction EK to the general fibre defines again an equivalence Db.XK/ Db.X0K/
Corollary 2.13).

We have not attempted to develop the theory in its most general form. It would
certainly be natural to study the general fibre of formal deformations over more
general formal rings from a categorical perspective. Unfortunately, in that case, the
results e.g. the description of the space of morphisms) would not nearly be as nice
as in the simple situation of deformations over COEOEt But even the one-dimensional
formal deformations studied here, should be useful in other situations, although our
discussion is tailored to the application to Fourier–Mukai equivalences between K3
surfaces in [9].

The plan of the paper is as follows. In Section 2 we define the abelian and derived
categories of the general fibre of a formal deformation. We study their Hom-spaces

and, in Sections 2.3 and 2.4, we analyze the behavior of Fourier–Mukai transforms
and Fourier–Mukaiequivalences when passing to the derived categories of thegeneral
fibres.

In Section 3 we complete the proof of Theorem 1.1. As a first step, we compare
the Hom-spaces and the Euler pairing on the general and special fibres of a formal
deformation Section 3.1). In Section 3.2 we describe the Serre functor of the general
fibre. Finally, in Section 3.4, we restrict to the case of smooth projective surfaces

with trivial canonical bundle and prove the main theorem.

Notation. Denote by R WD COEOEt the ring of power series in t which is a complete
discrete valuation ring. Its spectrum Spec.R/ consists of two points: The closed
point 0 WD t/ 2 Spec.R/ with local ring R and residue field C and the generic point
.0/ 2 Spec.R/ with residue field K WD C..t //, the field of Laurent series. Moreover,
we put Rn WD COEt tnC1/ with the natural surjection R Rn defining a closed
embedding Spec.Rn/ Spec.R/, which is the n-th infinitesimal neighbourhood of
0 2 Spec.R/. The formal scheme Spf.R/ is thendescribedby the increasing sequence

of closed subschemes 0 D Spec.R0/ Spec.R1/ Spec.Rn/
Throughout we will use the following notations for the natural inclusions m < n):

nW Xn X and WD 0 W X XI

im;n W Xm Xn; in WD in;nC1 W Xn XnC1; and jn D i0;n W X Xn:
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2. The derived category of the general fibre

In this section we study the basic properties of the abelian category Coh.XK/ of
coherent sheaves on the general fibre and of the triangulated category Db.XK/. At
the end of the section we also discuss the extension of the definition and of some

interesting basic properties of Fourier–Mukai functors in the setting of formal
deformations and of the derived categories of their general fibres Corollary 2.13, see also
B) in the introduction).

The reader not familiar with the notion of quotients of abelian categories by Serre

subcategories or with that of Verdier quotients is strongly encouraged to read the
Appendix before proceeding with this section. For the convenience of the reader we
list now the main abelian and triangulated categories which will be introduced in
course of the paper. We also indicate the precise section where they are defined.

OX-Mod: the abelian category of OX-modules Section 2.1);

Coh.X/: the abelian category of coherent sheaves on X Section 2.1);

Coh.X/0: the Serre subcategory of Coh.X/ consisting of sheaves supported
on some Xn Section 2.1);

Coh.X/f : the full additive category Coh.X/ consisting of COEOEt -flat sheaves

Section 2.1);

Coh.XK/: the quotient of the category Coh.X/ by Coh.X/0 Section 2.1);

Db.OX-Mod/: the bounded derived category of the abelian category OX-Mod
Section 2.2);

Db.Coh.X//: the bounded derived category of the abelian category Coh.X/
Section 2.2)

Db.X/ D Dbcoh.OX-Mod/: the full triangulated subcategory of Db.OX-Mod/
consisting of complexes with coherent cohomology Section 2.2);

Db
0 X/ D Db

Coh.X/0 OX-Mod/: the full thick triangulated subcategory of

Db.X/ consisting of complexes with cohomology in Coh.X/0 Section 2.2);

Db.XK/: the Verdier quotient Db.X/=Db X/ Section 2.2);0

Db0 Coh.X//: the full thick triangulated subcategoryofDb.Coh.X// consisting
of complexes with cohomology in Coh.X/0 Section 2.2);

Dperf Xn/: the full triangulated subcategory of perfect complexes on Xn Section

2.2);

K/: the Verdier quotient Db.Coh.X//=DbDb.Xc 0 Coh.X// Section 2.2).
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2.1. The abelian category of the general fibre. Given a formal deformation

W X Spf.R/ of a smooth projective variety X, the abelian category of all
OXsheaveswillbe denotedOX-Mod. AnyOX-sheafE yields an inverse system ofOXn-
sheaves En WD nE with OXn-linear transition maps En im;n Em, for n > m,
inducing isomorphisms im;nEn ' Em. Then lim En is again an OX-sheaf, but the
natural homomorphism E lim En is in general not an isomorphism. However, if
we restrict to coherent OX-modules E, then indeed E ' lim En. This proves that a

coherent OX-module is the same as an inverse system of coherent OXn -sheaves En
togetherwith transition mapsEn im;n Em inducing isomorphisms im;nEn ' Em
see [6, II.9] or [11]).

By Coh.X/ OX-Mod we denote the full abelian subcategory of all coherent
sheavesonX and we tacitly use the equivalence of Coh.X/ with the abelian category
of coherent inverse systems as just explained. The restriction to Xn will be written
as

Coh.X/ Coh.Xn/; E En:

So in particular, E0 2 Coh.X/ will denote the restriction of a sheaf E 2 Coh.X/ or

En 2 Coh.Xn/ to the special fibre X D X0. As we assume our formal scheme to
be smooth, any coherent sheaf on X admits locally a finite free resolution. However,
sinceX is not necessarily projective, locally free resolutions might not exist globally.

The category Coh.X/ of coherent sheaves on the formal R-scheme X is in a

natural way an R-linear category. A coherent sheaf E 2 Coh.X/ has support on Xn
if tnC1E D 0 and, as in the introduction, the subcategory consisting of all sheaves

having support on some Xn is denoted by Coh.X/0.
A coherent sheaf E 2 Coh.X/ isR-flat if multiplication with t yieldsan injective

homomorphism t W E E. By Coh.X/f Coh.X/ we denote the full additive
subcategory of R-flat sheaves. This subcategory is clearly not abelian, but the two
subcategories

Coh.X/0; Coh.X/f Coh.X/
define a torsion theory for the abelian category Coh.X/. More precisely, there are
no non-trivial homomorphisms from objects in Coh.X/0 to objects in Coh.X/f and

every E 2 Coh.X/ is in a unique way an extension

0 Etor E Ef 0

with Etor 2 Coh.X/0 and Ef 2 Coh.X/f Indeed, set Etor WD Sker.tn W E E/,
i.e. the R-torsion subsheaf of E. The union must stabilize, as E is coherent, and

Ef WD E=Etor is R-flat. Note that in general this torsion theory is not cotilting, i.e.

not every R-torsion sheaf is a quotient of an R-flat one.)
Let us now define the abelian category of coherent sheaves on the general fibre

Coh.XK/ WD Coh.X/=Coh.X/0:
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Remark 2.1. Since we divide out by a small subcategory, the quotient is a category
with Homsets. The same remark applies to all later quotient constructions and we
will henceforth ignore the issue.

The image of a sheaf E 2 Coh.X/ under the natural projection from Coh.X/
onto Coh.XK/ is denoted EK.

For two coherent sheaves E; E0 2 Coh.X/ we shall write Hom.E; E0/ for the
group of homomorphisms in Coh.X/ and HomK.EK; E0K/ for the group of
homomorphisms of their images EK; E0K in Coh.XK/. The natural homomorphisms
induced by the projection will be denoted

W
Hom.E; E0/ HomK.EK; E0K/:

By construction of the quotient, any morphism EK E0K in Coh.XK/ is an

equivalence
s0

class of diagrams E E0
g

E0 / with ker.s0/;Coker.s0/ 2 Coh.X/0.

The composition

E E0 E0 / B E0 E00 E00 /

of two morphisms EK EK0 and EK0 EK00 is naturally defined by means of the

fibre product E E0 E0 E00 E00 /.
Also note that Coh.X/f Coh.XK/ is essentially surjective, i.e. every object

F 2 Coh.XK/ can be lifted to an R-flat sheaf on X. Indeed, if F D EK, then

Ef/K ' EK D F and, therefore, Ef is an R-flat lift of F

Remark 2.2. As mentioned in the introduction, to the formal R-scheme X one can
associate the general fibreXK which is a rigid analyticspace see [2], [15], [16]). The
abelian category Coh.XK/ is in fact equivalent to the category of coherent sheaves

on XK, which explains the notation.

Proposition 2.3. The abelian category Coh.XK/ is K-linear and for all F; G 2
Coh.X/ the natural projection Coh.X/ Coh.XK/ induces a K-linear isomorphism

Hom.F; G/ R K HomK.FK;GK/:

Proof. As a quotient of the R-linear category Coh.X/, the category Coh.XK/
is also R-linear. The multiplication with t 1 is defined as follows. Let f 2
HomK.FK; GK/ be a morphism represented by

W

s0 gf F F0 G / with
ts0

Ker.s0/; Coker.s0/ 2 Coh.X/0. Then set t 1f W F F0
g

G /, which
is a well-defined morphism in Coh.XK/. This is because the objects Ker.ts0/ and
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Coker.ts0/ are in Coh.X/0. Moreover, one has t.t 1f / D f due to the following
commutative diagram

ts0 F0

t id

tg

F G:
g

F0
s0

The K-linearity of the composition is obvious.
Consider now the induced K-linear map

K W
Hom.F;G/ R K HomK.FK; GK/:

To prove the injectivity of K, let f 2 Hom.F; G/ with f / D K.f / D 0.
Then there exists a commutative diagram

F 0

s 0

F f G;

with Ker.s/; Coker.s/ 2 Coh.X/0 and hence f factorizes through

f W F
q

Coker.s/ f 0

G:

Thus, if tnCoker.s/ D 0 for some n > 0, then this yields tnf D f 0

B tnq/ D 0. In
particular, f 1 2 Hom.F; G/ K is trivial.

In order to prove the surjectivity of K, we have to show that for any f 2
HomK.FK; GK/ there exists an integer k, such that tkf is induced by a

morphism
s0

F G in Coh.X/. Write f W F F0
g

G / with tnKer.s0/ D
tmCoker.s0/ D 0 for some positive integers m; n. Consider the exact sequence

0 Hom.F 0;G/ Bp Hom.F0; G/ Bi Hom.Ker.s0/; G/

which is induced by the natural projection pW F0 F 0

WD im.s0/ and by its kernel

i W ker.s0/ F0. Since tng/ B i D g B tni/ D 0, there exists a unique)
homomorphism g0

W F 0 G such that g0 B p D tng. This yields the commutative
diagram

s0 F0

p

tng

F G;
g0

F 0



Vol. 86 2011) Formal deformations and their categorical general fibre 49

which allows one to represent tnf by F F 0

g0

G /.
As F=F0 ' Coker.s0/ is annihilated by tm, the homomorphism tmg0

W F 0 G
lifts to a homomorphism g00

W F G, i.e. g00jF 0 D tmg0. This yields the commutative

diagram

F 0 tmg0

F G:
g00F

id

idHence tmCnf is represented by F F
g00

G /, i.e. tmCnf D g00/.

2.2. The derived category of the general fibre. Let W X Spf.R/ be a formal
deformation of X and consider the bounded derived category of X defined as

Db X/ WD
Dbcoh.OX-Mod/;

which by definition is an R-linear triangulated category.

Remark 2.4. We will always tacitly use the well-known at least for schemes) fact
that any bounded complex with coherent cohomology on a smooth formal scheme is
perfect, i.e. locally isomorphic to a finitecomplex of locally free sheaves of finite type
see e.g. [10, Corollary 5.9]). In other words Dperf X/ ' Db.X/. This is however

not true for Xn, n > 0. Indeed, e.g. for n D 1 one has ToriR1 R0;R0/ ' R0 for all

i 0. So, the R1-module R0 does not admit a finite free resolution. So we will have

to work with
Dperf Xn/ Db Xn/;

the full triangulated subcategory of perfect complexes on Xn.

Recall that for the noetherian scheme Xn the functor

Db Coh.Xn// Db Xn/ WD
Dbcoh.OXn-Mod/

is an equivalence. Contrary to the case of a noetherian scheme, the natural functor

Db.Coh.X// Db.X/ D Dbcoh.OX-Mod/ 2.1)

is in general not an equivalence. However, 2.1) induces an equivalence between the
full subcategories of R-torsion complexes. To be more precise, let

Db0.X/ WD
Db OX-Mod/ Db X/ and Db

Coh. 0.Coh.X// Db Coh.X//X/0

be the full triangulated subcategories of complexes with cohomology contained in
Coh.X/0. Then one has:



50 D. Huybrechts, E. Macrì, and P. Stellari CMH

Proposition 2.5. i) The natural functor Db.Coh.X/0/ Db.Coh.X// induces an
equivalence

Db.Coh.X/0/ Db
0 Coh.X//:

ii) The natural functor Db.Coh.X/0/ Db.X/ induces an equivalence

Db.Coh.X/0/ Db
0 X/:

Proof. i) It suffices to show see the dual version of [7, Lemma 3.6]) that for
any monomorphism f W E E0 in Coh.X/ with E 2 Coh.X/0, there exists

gW
E0 E00, with E00 2 Coh.X/0 such that g B f is injective.
By the Artin–Rees Lemma, we know that the filtration Ek WD E \ tkE0 is

t-stable, that is, there is some n 2 N such that tEk D EkC1, whenever k n.
Let ` be a positive integer such that t`E D 0 and let g W

E0 E00
WD E0=tnC`E0

be the projection. The composition g B f is injective, as ker.g B f / D EnC` D
t`En t `E D 0.

ii) We followYekutieli [19], but see also [1]. Let QCoh.X/ OX-Mod be the

full abelian subcategory of quasi-coherent sheaves on X, i.e. of sheaves which are
locally cokernels of OIX OJX for some index sets I; J. Then define QCoh.X/d

QCoh.X/ as the full thick abelian subcategory of discrete quasi-coherent sheaves

see the Appendix for the definition of thick abelian subcategory). By definition, a

sheaf E on X is discrete if the natural functor d.E/ WD limHom.OXn;E/ E
is an isomorphism.

Clearly, a coherent sheaf on X is discrete if and only if it is R-torsion, i.e.

Coh.X/0 D Coh.X/ \ QCoh.X/d which is a thick subcategory of QCoh.X/d.

Moreover, by [19, Proposition 3.8] every E 2 QCoh.X/d is the limit of coherent
R-torsion sheaves. Thus Db

Coh.X/0
QCoh.X/d/ is the same as Dbcoh.QCoh.X/d/.

Lemma 2.6 below gives an equivalence Db.Coh.X/0/ ' DbCoh.X/0 QCoh.X/d/.
Hence we conclude the equivalence Db.Coh.X/0/' Dbcoh.QCoh.X/d/.

Finally, one applies [19, Theorem 4.8] which asserts that the natural functor
induces an equivalence of Db.QCoh.X/d/ with the full triangulated subcategory
of Db.OX-Mod/ of all complexes with cohomology in QCoh.X/d. The inverse
functor is given by R d.) Adding the condition that the cohomology be coherent
proves ii).

Lemma 2.6. Let A B be a full thick abelian subcategory of an abelian category

B with infinite direct sums. Assume that every object of B is the direct limit of its
subobjects belonging to A and that A is noetherian i.e. every ascending sequence

of subobjects is stationary). Then the natural functor yields an equivalence

Db A/ DbA B/;
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where Db
A B/ is the full triangulated subcategory of Db.B/ of complexes with

cohomology in A.

Proof. Let f W E E0 be a surjection in B, with E0 2 A. We need to show that

there exists a morphism g W G E with G 2 A such that f B gW G E0 is again

surjective see e.g. [7, Lemma 3.6]).
By assumption, thereexists a direct system of objectsfEig inAsuch that lim Ei 'E. Hence, there exists a surjection j W Li Ei E E0.

Then letE0k
iD0 Ei E E0 which forman ascending sequenceWD im Lk

of subobjects of E0. Since A is a noetherian, the sequence fE0k g stabilizes, and, as j
is surjective, E0k D E0 for k 0. Then set G WD Lk

iD0 Ei 2 A, for some k 0,
and let g be the natural morphism.

Remark 2.7. i) The equivalences of Proposition 2.5 put in one diagram read

Db Coh.X/0/ ' Db0.Coh.X// ' Db0.X/: 2.2)

ii) The categories Db
0 X/ Db.X/ and Db.Coh.X/0/ Db.Coh.X// can also

be described as the smallest full triangulated subcategories containing all R-torsion
coherent sheaves. Here, a sheaf E 2 Coh.Xn/ is at the same time considered as

an object in Db.X/ and Db.Coh.X//. This is clear, as any bounded complex with
R-torsion cohomology can be filtered in the triangulated sense) with quotients being
translates of such sheaves.

In the introduction we have already defined the derived category of the general
fibre Db.XK/, i.e. the Verdier quotient

Db XK/ WD
Db X/=Db0.X/ D Dbcoh.OX-Mod/=Db

Coh.X/0 OX-Mod/:

One can also consider the quotient Db.Coh.X//=Db
0

Coh.X// which, for a lack of
a better notation, will be called

Db XcK/ WD
Db Coh.X//=Db0.Coh.X//:

For a thorough discussion of the Verdier quotient see the Appendix.)
In both cases, the quotients are triangulated and the natural projections

Db.X/ Db.XK/ and Db.Coh.X// Db.XcK/ 2.3)

are exact. The image of a complex E under any of these projections shall be
denoted EK.
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Remark 2.8. As Coh.X/0 Coh.X/ OX-Mod are Serre subcategories, the
subcategories Db

0 OX-Mod/ Db.X/ and Db
0 Coh.X// Db.Coh.X// are thick.

This means that the direct summands of their objects are again contained in the
subcategories. This has the consequence that the kernel of the two projections in
2.3) are indeed Db

0 X/ and Db
0 Coh.X// respectively.

Proposition 2.9. The triangulated category Db.XK/ is K-linear and for all E;E0 2
Db.X/ the natural projection Db.X/ Db.XK/ induces K-linear isomorphisms

HomDb.X/.E; E0/ R K HomDb.XK/.EK; E0K/:

K/ is K-linear and for E; E0 2 Db.Coh.X// one has

HomDb.Coh.X//.E;E0/ R K HomDb.Xc

Similarly, Db.Xc

K/.EK; E0K/:

In particular, Db.XK/ and Db.XcK/ have finite-dimensional Hom-spaces over K.

Proof. As we work with bounded complexes, the proof of Proposition 2.3 carries
over.

2.3. Derived functors and Fourier–Mukai transforms. First of all we prove that

the usual derived functors tensor product, pull-back push-forward, Hom’s) are
welldefined in the geometric setting we are dealing with.

Proposition 2.10. Let f; g W X X0 be morphisms of smooth and proper formal
schemes over Spf.R/ and assume f to be proper. Then the following R-linear
functors are defined:

RHomX. ; /W
Db X/op Db X/ Db X/;

/ L /W
Db X/ Db X/ Db X/;

Lg W
Db X0/ Db X/;

Rf W
Db X/ Db X0/;

RHomDb.X/. ; /W
Db X/op Db X/ Db R-mod/;

where we denote by R-mod the abelian category of R-modules of finite rank.

Proof. Due to [17], the functors previously considered are all well-defined if we
workwith unboundedderivedcategories ofmodulesD.OX-Mod/, D.OX0 -Mod/ and
D.R-Mod/ here R-Mod denotes the abelian category of R-modules). To prove the
proposition, we only have to showthat, by restricting the domain to the corresponding
derived categories of bounded complexes with coherent cohomology, the images of
these functors are still the bounded derived categories of complexes with coherent
cohomology. This is clear since all complexes are perfect.
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All the basic properties of the functors considered in theprevious proposition e.g.
commutativity, flat base change, projection formula) hold in the formal context. For
an object E 2 Db.X/ a trace map trE W E

L
E OX is well-defined see [10]).

Passing to the triangulated category Db.XK/ of the generic fibre, the result in
Proposition 2.10 still hold. Indeed, all the functors are R-linear and hence they
factorize through the category Db.XK/. Indeed, F 2 Db.X/ is contained in Db

0 X/
if and only if tnF D 0 for n 0. Since the functors are R-linear, the same would
hold for the image ofF whichwould therefore as wellbe contained in thesubcategory
Db0 Thus we get the following list of functors:

RHomXK ; / W
Db XK/op Db XK/ Db XK/;

/ L / W
Db XK/ Db XK/ Db XK/;

Lg W
Db X0K/ Db XK/;

Rf W
Db XK/ Db X0K/;

RHomDb.XK/. ; / W
Db XK/op Db XK/ Db K-vect/;

where we denote by K-vect the abelian category of finite dimensional K-vector
spaces. Of course, all the usual relations between these functors continue to hold in
Db.XK/. In particular, given anobjectEK 2 Db.XK/, itsdualEKL2

Db.XK/ is
welldefined and EKLL' EK. Moreover, we have a trace map trEK W EKL EK OXK
where OXK is the image of OX in Db.XK/.

Using those facts, we define Fourier–Mukai functors for formal deformations
or for the derived categories of the general fibres. Indeed, consider two smooth and

proper formal schemesX Spf.R/ andX0 Spf.R/of dimensiond respectively
d0, with special fibres X respectively X0. The fibre product X R X0 Spf.R/,
described by the inductive system Xn Rn X0n, is again smooth and proper and its
special fibre is X X0. The two projections shall be called q W X R X0 X and

pW X R X0 X0.
Let E 2 Db.X RX0/. Due to the results in the previous section, one can consider

the induced Fourier–Mukai transform

ˆE W
Db.X/ Db.X0/ ; E Rp q E L E/:

As before, ˆE is R-linear, for E lives on the fibre product over Spf.R/.
Now, for two given Fourier–Mukai transforms ˆE W

Db.X/ Db.X0/ and

ˆF W
Db.X0/ Db.X00/ withX00 a smooth and proper formal scheme over Spf.R/,

the compositionˆF BˆE is again a Fourier–Mukai transform with kernel F E WD

pX;X00/ E F /, where pX;X00 W X X0 X00 X X00 is the natural projection.
Left and right adjoint functors of a Fourier–Mukai transform ˆE can be

constructed as Fourier–Mukai transforms as follows. The left adjoint ˆEL and the right
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adjoint ˆER are the Fourier–Mukai transforms with kernel

EL WD E
L p pOEd 0 respectively ER WD EL

q qOEd ;

where d D dim.X/ and d0 D dim.X0/. To adapt to this context the standard proof
that those kernels define the left andright adjointsofˆE, we actuallyneed Lemma 3.4
which will be proved later.)

The adjunction morphisms ˆEL BˆE idDb.X/ and ˆE B ˆER idDb.X0/ are
isomorphisms if and only if the natural morphisms trX W EL E O X

respectively
trX0

W E ER O X induced by the trace morphisms are isomorphisms. Here X
and X0 denote the relative diagonals inX RX respectivelyX0 RX0. Sometimes
see e.g.[5]) theconstructionof the adjunctionmorphisms uses Grothendieck–Verdier

duality for certain embeddings, e.g. forX RX0 X RX0 RX. This can easily
be replaced by an argument using relative duality over R in the sense of Lemma 3.4
for the two sides. We leave the details to the reader.)

Remark 2.11. Everything said above is also valid for the non-reduced schemes

Xn Spec.Rn/ and X0n Spec.Rn/ with the only difference that we have to
assume now that the Fourier–Mukai kernel En 2 Db.Xn Rn X0n/ is perfect. Then
one can consider the two Rn-linear functors

ˆEn W
Db.Xn/ Db.X0n/ and ˆEn W

Dperf Xn/ Dperf X0n/:

Analogously, one wants to define the Fourier–Mukai transform

ˆF W
Db.XK/ Db.X0K/

associated to an object F 2 Db..X R X0/K/.
As the objects of Db.X R X0/ are the same as those of Db..X R X0/K/ see

the Appendix), take E 2 Db.X R X0/ such that EK ' F Then, by the R-linearity,
the Fourier–Mukai transform ˆE W

Db.X/ Db.X0/ descends to a Fourier–Mukai
transform ˆF W

Db.XK/ Db.X0K /, i.e. one has a commutative diagram

Db.X/
Q

ˆE Db.X0/

Q

Db.XK/ ˆF
Db.X0K /.

Since the objects of Db.X/ and Db.XK/ coincide, it is enough to check that

ˆE.Db 0 X0/. Indeed, G 2 Db.X/ is contained in Db
0 X// D Db

0 X/ if and only
if tnG D 0 for n 0. As ˆE is R-linear, this would imply tnˆE.G/ D 0 and hence
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0 X0/. The behavior of ˆF on the level of morphisms is determined byˆE.G/ 2 Db

Proposition 2.9. Moreover, ˆF is independent of the chosen lift E. From this, it
follows that right and left adjoints of Fourier–Mukai transforms as well as trace maps
pass to the triangulated category of the generic fibre.

2.4. Fourier–Mukai equivalences of the general fibre. Here we will show that if
the kernel of a Fourier–Mukai equivalence deforms to a complex on some finite order
deformation or even to the general fibre, then it still induces derived equivalences of
the finite order deformationsor general fibres, respectively. This is certainlyexpected,
as ‘being an equivalence’ should be an open property and indeed the proof follows
the standard arguments.

Consider two smoothandproper formal schemesX Spf.R/ andX0 Spf.R/,
with special fibres X respectively X0. The fibre product X R X0 Spf.R/,
describedby the inductive systemXn Rn X0n Spec.Rn/, is again smooth and proper
and its special fibre is X X0.

Set X1 WD X, X0 WD X0, and R1 WD R notice that Dperf X R X0/ 'Db.X R X0/).

Proposition 2.12. Let En 2 Dperf Xn Rn X0n /, with n 2 N [ f1g, be such that

1

its restriction E0 WD Ljn En to the special fibre X X0 is the kernel of a Fourier–

Mukai equivalence ˆE0 W
Db.X/ Db.X0/. Then the Fourier–Mukai transform

ˆEn W
Dperf Xn/ Dperf X0n/ is an equivalence.

Proof. It suffices to show that in both cases left and right adjoint functors are
quasiinverse. Complete the trace morphism to a distinguished triangle

En/L En
trXn

O Xn Gn:

Restricting it to the special fibre yields the distinguished triangle

E0/L E0
trX

O X G0:

Use that the pull-back of the trace is the trace. Also the restriction of En/L yields
the kernel of the left adjoint of the restriction E0.)

As by assumptionˆE0 W
Db.X/ Db.X0/ defines an equivalence, the cone G0 is

trivial. Thus, Gn 2 Db.Xn Rn X0n/ has trivial restriction to the special fibre X X0
and, therefore, Gn ' 0. This shows that trXn is an isomorphism. A similar argument
proves that trX0n

is an isomorphism for the case of the right adjoint.

Under the assumptions of the previous proposition, the same proof also yields an
equivalence ˆEn W

Db.Xn/ Db.X0n/.



56 D. Huybrechts, E. Macrì, and P. Stellari CMH

Corollary 2.13. Let E 2 Db.X R X0/, such that ˆE0 W Db.X/ Db.X0/ is an

equivalence. Then the Fourier–Mukai transform ˆEK W Db.XK/ Db.X0K/ is an
equivalence, where EK denotes the image of E in Db..X R X0/K/.

Proof. Indeed the inverse Fourier–Mukai functor ˆF WD ˆ 1
E W

Db.X0/ Db.X/,
which exists due to Proposition 2.12, descends to a Fourier–Mukai transform see

Section 2.3)

ˆFK W
Db X0K/ Db XK/;

which clearly is an inverse to ˆEK

3. Properties of the derived category of the general fibre

In this section we conclude the proof of Theorem 1.1. However, for most of the
results it is enough to assume that X is a smooth projective variety. More precisely,
the assumption that X is a surface with trivial canonical bundle is needed for the first
time in Proposition 3.10.

In particular, we prove that Db.XK/ is indeed equivalent to the derived category
of Coh.XK/ and we study the Serre functor of Db.XK/.

n

3.1. Comparing Hom-spaces. Let us now consider the pull-back under the closed
embedding

W Xnn X which is a right exact functor
W

Coh.X/ Coh.Xn/
compatible with the R-linear respectively Rn-linear structure of the two categories.

Its left derived functor

L n W
Db.X/ Dperf Xn/

n

takes bounded

n

complexes to perfect complexes see Remark 2.4). When the derived
context is clear, we will often simply write instead of L For E 2 Db.X/ one

writes

En WD nE D L nE 2 Db Xn/:

In particular, E0 denotes the restriction of a complex E on X to the special fibre X.
Clearly, E 2 Db.X/ is trivial if E0 ' 0.

One needs to be careful with the pull-back under in W Xn XnC1, whose left
derived functor in W

Dperf XnC1/ Dperf Xn/ is well-defined for perfect complexes
but not for bounded ones see Remark 2.4).

Lemma 3.1. i) For E; E0 2 Db.X/ there exists a functorial isomorphism

R Rn RHomDperf Xn/.L nRHomDb.X/.E;E0/ L E; L nE0/:
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ii) For m < n and E; E0 2 Dperf Xn/ there exists a functorial isomorphism

RHomDperf Xn/.E;E0/ L Rm RHomDperfRn Xm/.Lim;nE; Li nE0/:m;

Proof. The proofs of i) and ii) are identical. We just consider the first case.

Since wecontinue towork under the simplifying assumption thatX Spf.R/ is
smooth and proper, the derived local Hom’s are functors RHomX W

Db.X/op

Db.X/ Db.X/. Also, by definition / L Rn is
R

L nW
Db Spf.R// Dperf Spec.Rn//;

the derived pull-back of the inclusion n W
Spec.Rn/ Spec.R/.

Thus the assumptions of [10, Proposition 7.1.2] are satisfied and we therefore
have a functorial isomorphism

L nRHomX.E; E0/ RHomXn L nE; L nE0/: 3.1)

Further, applying the global section functor R Xn WD R Xn; / W
Db.Xn/

Db.Spec.Rn// to both sides, one finds

L nR XRHomX.E; E0/
/' R XnL nRHomX.E;E0/

R XnRHomXn L nE; L nE0/:

Together with R B RHom D RHom, this proves the assertion.
Note that in we used the base change formula L n B R X ' R Xn B L n

which can be easily proved by adapting the argument of [12, Section 2.4]. More
precisely, one could apply Kuznetsov’s discussion to the cartesian triangle given by

Xn X over Spec.Rn/ Spf.R/. Corollary 2.23 in [12] shows that from the
flatness of

W X Spf.R/ one cannot only deduce the standard flat base change,

but also the above assertion see also [7, Chapter 3, Remark 3.33]). For flat base

change in our more general context see [17].

The categoriesDb.X/andDb.XK/ areC-linear respectivelyK-linear triangulated
categories with finite-dimensional Hom-spaces. The following numerical invariants
turn out to be useful and well-behaved. For E0; E00 2 Db.X/ one sets:

0.E0; E00/ WDX. 1/i dimC ExtiX.E0; E00/
and analogously for EK;E0K 2 Db.XK/:

K.EK; E0K/ WDX. 1/i dimK ExtiK.EK; E0K /:

As an immediate consequence of the discussion in Section 2.2, one finds the
following two results which will be used in [9] to describe spherical and semi-rigid
objects in Db.XK/, when X is a smooth projective K3 surface.
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Corollary 3.2. For any E; E0 2 Db.X/ one has

0.E0; E00/ D K.EK; E0K/:

Proof. We have an isomorphismRHomDb.X/.E0;E00/ ' RHomDb.X/.E; E0/ LC.
This follows from Lemma 3.1 i). Since R is a DVR, we have a decomposition of the
R-module

RHomDb.X/.E;E0/ ' RHomDb.X/.E; E0/free ° RHomDb.X/.E; E0/tor

in its free and torsion part. Since for a torsion R-module M one has M L C D 0,
this yields

0.E0; E00/ D dimC RHomDb.X/.E0; E00/ D dimC.RHomDb.X/.E; E0/free C/:

On the other hand, by Proposition 2.9,

dimK RHomDb.XK/.EK;E0K/ D dimK.RHomDb.X/.E; E0/free K/:

This concludes the proof.

Of course, the single Hom-spaces could be quite different on the special and on
the general fibre, but at least the standard semi-continuity result can be formulated in
our setting.

Corollary 3.3. Let E; E0 2 Db.X/. Then

dimC Hom.E0; E00/ dimK HomK.EK; E0K/:

Proof. We know that

dimK HomDb.XK/.EK; E0K/ D rkRHomDb.X/.E;E0/free:

The conclusion follows from Lemma 3.1.

3.2. Serre functors. The relative canonical bundles! n WD Xn=Rn of n W Xn
Spec.Rn/ define a coherent sheaf on X, the dualizing or canonical line bundle.
The name is justified by the following observation for more general statements see

[1], [19]):

Lemma 3.4. Suppose
W X Spf.R/ is a smoothproper formal schemeof relative

dimension d. Then there are functorial isomorphisms

RHomDb.X/.E; OEd / RHomDb.Spf.R//.R XE; R/;

for all E 2 Db.X/.
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Proof. Notice that n is the dualizing complex in Dperf Xn/, that is

RHomDperf Xn/.En; n
OEd / RHomDperf.Rn/.R XnEn;Rn/;

for any En 2 Dperf Xn/.
For any positive integer n, we have the following natural isomorphisms using

Lemma 3.1 twice)

R Rn ' RHomDperf Xn/.L nRHomDb.X/.E; OEd / L E;! n
OEd /

' RHomDperf.Rn/.R XnL nE; Rn/

' RHomDb.Spf.R//.R XE; R/ L
R Rn:

Notice that the last isomorphism uses again L n B R X ' R Xn B L n as in the
proof of Lemma 3.1.) Moreover, the resulting isomorphisms

R Rn RHomDb.Spf.R//.R XE; R/ Lfn W HomDb.X/.E; OEd / L
R Rn

are compatible under pull-back, i.e. fNnC1 WD fnC1
L
R idRn D fn.

Taking the projective limits allows us to conclude the proof. More precisely, one
uses the following general argument: Suppose we are given complexes K ; L 2
Db.R-Mod/ and isomorphisms fn W K L Rn LR

L Rn in Db.Rn-Mod/
compatible

R
in the above sense. Replacing K and L by complexes of free R-modules,

we can assume that the fn are morphisms of complexes. Again using the projectivity
of the modules Ki and Li we deduce from the compatibility of fn and fnC1 the
existence of a homotopy ki W Ki Rn Li 1 Rn between fn and fNnC1, i.e.

f in fNi K C di 1
nC1 D kiC1di L ki Lift ki to hi W Ki RnC1 Li RnC1 and

replace fnC1 by the homotopic one fnC1ChdK CdLh. With this new definition one
has fn D fNnC1 as morphism of complexes homotopic to he original one. Continuing
in this way, one obtains a projective system of morphisms of complexes. The limit is

then well defined and yields an isomorphism K L
The functoriality of the constructions is straightforward.

We are now ready to show that the derived category of the general fibre, which is a

K-linear category, has a Serre functor in the usual sense. The following proposition,
saying that Serre duality holds true in Db.XK/, shows the advantage of working with
Db.XK/. Thecanonical bundleof the general fibre is by definition XK WD /K 2
Coh.XK/.

Proposition 3.5. Suppose
W X Spf.R/ is a smooth proper formal scheme of

relative dimension d. Then the functor E E XK OEd is a Serre functor for the

K-linear category Db.XK/, i.e. there are natural isomorphisms

HomDb.XK/.EK; E0K/ HomDb.XK/.E0K; EK XKOEd / ;
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for all EK; E0K 2 Db.XK/, where / denotes the dual K-vector space.

Proof. We follow the proof of [3, Proposition 5.1.1]. Let E 2 Db.X/ and let EK 2
Db.XK/ be its image under the natural projection. We have

HomDb.XK/.EK; XK OEd / ' HomDb.X/.E; OEd / R K

' HomDb.Spf.R//.R XE; R/ R K

' HomR.°sRs XEOE s ; R/ R K

' HomR.R0 XE; R/ R K

' HomR.HomDb.X/.OX; E/;R/ R K

' HomDb.X/.OX; E/ R K//

' HomDb.XK/.OXK ; EK// ;
where the first and the last isomorphisms follow from Proposition 2.9, while the
second is Lemma 3.4, and all the others are simple consequences of the fact that R is
a DVR. Dualizing with respect to K) we have

HomDb.XK/.OXK; EK/ ' HomDb.XK/.EK; XKOEd // :

Now, let E; E0 2 Db.X/ and let EK; E0K 2 Db.XK/ be their images. Since E and
E0 are perfect complexes, the natural map

RHomX.E0; E / RHomX.RHomX.E;E0/; /
is an isomorphism. Indeed the statement is local and we can assume E and E0 be
bounded complexes of free sheaves. In that case the claim is obvious.

Then one concludes by

HomDb.XK/.EK; E0K/

' HomDb.X/.E; E0/ R K

' HomDb.X/.OX; RHomX.E; E0// R K

' HomDb.X/.RHomX.E; E0/; OEd / R K/

' HomDb.X/.OX; RHomX.RHomX.E; E0/; OEd // R K/

' HomDb.X/.OX; RHomX.E0; E OEd // R K/

' HomDb.X/.E0; E OEd / R K/

' HomDb.XK/.E0K ; EK XK OEd // ;
where the first and the last isomorphisms follow from Proposition 2.9 while the third
is Lemma 3.4. The functoriality is clear.

If X is a smooth projective surface with trivial canonical bundle, then is
trivial and thus XK is trivial as well. Therefore, in this case, the Serre functor of
Db.XK/ is isomorphic to the square of the shift functor and Db.XK/ is thus a K3 or
2-Calabi–Yau) category as claimed in Theorem 1.1.
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3.3. A technical result. Instead of taking Verdier quotients of derived categories,
one could also consider derived categories of Serre quotients of theunderlying abelian
categories. Let us start with a few observations that should hold for the more general
situation of the natural projection Db.B/ Db.B=A/ induced by the quotient of a

non localizing) Serre subcategory A B of an abelian category B. We could not
find a good reference for the general case and since the proofs are technically easier,

we restrict to the Serre subcategory Coh.X/0 Coh.X/ with quotient Coh.XK/.
The following technical result is probably well-know in other contexts. It is the

first step towards the proof of the existence of an exact equivalence Db.XK/ 'Db.Coh.XK//. We include the proof here for the convenience of the reader.

Proposition 3.6. The natural exact functor QW Db.Coh.X// Db.Coh.XK//
induces an exact equivalence

Db Xc 0.Coh.X// Db Coh.XK//:K/ D Db Coh.X//=Db

For an abelian category A, we denote by Cb.A/ the abelian category of bounded
complexes of objects in A and by Kb.A/ the category of bounded complexes modulo
homotopy.

Lemma 3.7. The natural projection QW Db.Coh.X// Db.Coh.XK// is essentially

surjective.

Proof. Let F be a bounded complex in the quotient category Cb.Coh.XK//, i.e.

F i
D EiK for some Ei 2 Coh.X/ and differentials di 2 HomK.F i; F iC1/ D

Hom.Ei;EiC1/ K see Proposition 2.3).
Suppose F i

D 0 for jij > n for some n > 0. Then there exists N 0 such

that tN di 2 Hom.Ei;EiC1/. Furthermore, we can choose N large enough such

that tN diC1/ B tN di / is trivial in Coh.X/ for all i Let Ez be the complex with

objects Ezi D Ei and differentials dQi WD tNdi Then tN.n i/
W EziK F i defines

an isomorphism of complexes Q.Ez / F

Thus, in particular, in order to prove Proposition 3.6, that is, to demonstrate

K/ Db.Coh.XK//; it
remains

that the natural functor induces an equivalence Db.Xc
to show HomDb.XcK/ ' HomDb.Coh.XK//. By Proposition 2.9 we already

know that HomDb.XcK/ ' HomDb.Coh.X// K. We therefore just need to show that

Db.Xc / Db.Coh.XK// induces as well isomorphisms HomDb.Coh.X// KK 'HomDb.Coh.XK//. This will be the content of Lemma 3.9.
In the following we shall frequently use the much easier fact that

HomCb.Coh.X//.E1; E2/ K ' HomCb.Coh.XK//.Q.E1/;Q.E2//; 3.2)
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which is proved by the same argument as Proposition 2.3. One only has to observe

in addition that in order to lift a morphism of complexes f W Q.E / Q.E /,1 2
one first lifts all tnf i to fQi W Ei1 Ei2 for some n 0 and to make fQ a map of

complexes on X one might have to annihilate kernel and cokernel of di
2

B fQiE

fQiC1 B diE1
by multiplying with yet another high power of t

Lemma3.8. LetE1; E2 2 Cb.Coh.X//and let h 2 HomCb.Coh.X//.E1; E2/ besuch

that Q.h/ is a quasi-isomorphism in Cb.Coh.XK//. Then there exist two complexes

F1 ; F2 and two morphisms f1 W F1 E1 f2 W F2 E2 inCb.Coh.X// such that

Q.f1/andQ.f2/are isomorphisms inCb.Coh.XK//andQ.f2/ 1
BQ.h/BQ.f1/ D

Q. / with a quasi-isomorphism in Cb.Coh.X//.

Proof. The proof is based on calculations similar to the ones in the proof of Lemma
3.7, we will thereforebe brief. We shall outline a construction thatyields a inducing
an isomorphism in the lowest cohomology and leave the higher cohomologies to the
reader.

Up to shift, we can assume that E1 E2 and hence h are concentrated in OE0; r
The induced maps Hi h/ W Hi.E1/ Hi.E2/ on cohomology have kernels and
cokernels in Coh.X/0 since Q.h/ is a quasi-isomorphism in Cb.Coh.XK//,.

In the following discussion we use the observation that for any K 2 Coh.X/ and

n 0, the sheaf tnK is R-flat and the cokernel of the inclusion tnK K is an
object of Coh.X/0 see Section 2.1).

We firstconstruct acomplexZ1;0 2 Cb.Coh.X// and amorphism f 0

1;0 W Z1;0
E1 such that ker.H0.h B f 0

1;0// is trivial. If n 0, then Z01;0 WD tnE01 is R-flat and

the inclusion i 0

1;0 W Z01;0 WD tnE01 E01 is an isomorphism in Coh.XK/. Then the
map of complexes

Z01;0W

f 0

1;0

0 Z01;0

d0
E1 Bi

0

1;0

i 0

1;0

E11
d1
E1

id

E21

id

: : :

E1 W 0 E01
d0E1 E11

d1E1 E21 : : :

yields an isomorphism in Cb.Coh.XK//. As a subsheaf of the R-flat sheaf Z01;0 the

E1 B i 0
1;0/ is also R-flat. Since ker.H0.h B f 0

1;0// ker.d 0kernel ker.d0
E1 B i 0

1;0/
and ker.H0.h B f 0

1;0// 2 Coh.X/0, this implies ker.H0.h B f 0
1;0/ D 0. To simplify

the notation, we assume henceforth E1 D Z1;0 and h D h B f 0

1;0 i.e. that H0.h/ is
injective.

Now we define two complexes F1;0 and F2;0 in Cb.Coh.X// and morphisms

f1;0 W F1;0 E1 and f2;0 W F2;0 E2 yielding isomorphisms in Cb.Coh.XK//,
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such that there exists a morphism h0 W F1;0 F2;0 with h B f1;0 D f2;0 B h0 and

ker.H0.h0// D Coker.H0.h0// D 0.
To this end, consider the diagram

0

0 A0 Q0

id

0 ker.d0
E1/ E01

h0

Q0 0

E02
id E02

C0 B0 0

0 0

3.3)

with exact rows and columns. The aim is to reduce to the case where C0 is R-flat.
Let D0 denote the cokernel of A0 Q0. Choose n 0 and consider the

short exact sequence 0 D0 tor 0; whereflat WD tnD0 D0 D0

tor 2 Coh.X/0 and D0D0 flat is R-flat, and define F 0
1;0 as the kernel of the composition

E01 Q0 D0tor By construction, the map of complexes

F1;0 W

f1;0

0 F 0
1;0

d0
E1Bi1;0

i1;0

E11
d1E1

id

E21

id

: : :

E1 W 0 E01
d0

E1 E11
d1
E1 E21 : : :

yields an isomorphism in Cb.Coh.XK//. Note that by construction the inclusion
A0 E01 factorizes throughF 0

1;0 and that the inclusion ker.d0
E1/ E01 factorizes

1;0 Replace E1 by F1;0 and h by h B f1;0. Now, in the correspondingthrough F 0

diagram 3.3) the inclusion A0 Q0 has an R-flat cokernel.

Next, consider the exact sequence 0 B0flat B0 B0tor 0

and define F 0
2;0 as the kernel of the composition E02 B0 B0tor which natu-
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rally contains im.h0/. As before, the map of complexes

F2;0 W 0

f2;0

F0
2;0

d0
E2Bj2;0

j2;0

E12
d1

E2

id

E22

id

: : :

E2 W 0 E02
d0E2

E12
d1E2

E22 : : :

yields an isomorphism in Cb.Coh.XK// and h factorizes through f2;0. Replace E2
by F2;0 and consider the corresponding diagram 3.3). Observe that now C0 is
Rflat use the Snake Lemma). Since Coker.H0.h// injects into C0 and belongs to
Coh.X/0, it must be trivial, as wanted.

In thespirit of Proposition 2.3 one can describe thehomomorphisms in the derived
category of the quotient as follows.

Lemma 3.9. For all complexes E1; E2 2 Db.Coh.X// the natural exact functor Q
induces isomorphisms

Q KW HomDb.Coh.X//.E1; E2/ R K HomDb.Coh.XK//.Q.E1/;Q.E2//:

Proof. We will prove the bijectivity of Q K in two steps.

i) Injectivity. Let f 2 HomDb.Coh.X//.E1 ; E2/ such that Q.f / D 0. By definition,

f may be represented by

s0E1 F0
g

E2 ;

with s0 a quasi-isomorphism in Cb.Coh.X//. Since Q.f / D 0, there exists a

commutative diagram in Kb.Coh.XK// of the form

Q.F0 /
Q.s0/ Q.g/

Q.E1/ Q.E2/;

Fz1

Qs1 0

Qh

with sQ1 and hQ quasi-isomorphisms in Cb.Coh.XK//. By Lemma 3.7 and 3.2), we
can assume that sQ1; hQ, and Fz1 are in the image ofQ, i.e.

sQ1 D Q.s1/, hQ D Q.h/, and
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Fz1 D Q.F1 /. By Lemma 3.8 we have a commutative diagram in Kb.Coh.XK//

Q.F3 /
Q.f2/ 1

Q.F0 /
Q.s0/ Q.g/

Q.E1/ Q.E2/;

0

Q.F1 /
Q.s1/

Q.h/

Q.f1/

Q.F2 /
with a quasi-isomorphism in Cb.Coh.X// such that Q. / D Q.f2/ 1

B Q.h/ B

Q.f1/. So we have a commutative diagram in Kb.Coh.XK//

Q.F3 /
Q.gBf2/Q. /

Q.F2 / 0 Q.E2/:

Hence, one finds kQi
W Q.Fi2/ Q.Ei 1

2 / in Coh.XK/ such that

dQ.E2/ B
kQ C kQ B dQ.F2/ Q.g B f2 B / D 0

in Coh.XK/. By Proposition 2.3, there exists N 0 such that tN kQ D Q.k/ and

dE2 B k C k B dF2 tN g B f2// B / D 0

in Coh.X/. So tN g B f2// B D 0 in Kb.Coh.X//. Therefore, there is a
quasiisomorphism 0

W E2 F4 in Kb.Coh.X// such that 0

B tN g B f2// D 0.
Then by Lemma 3.8, saying in particular that Q.f2/ is an isomorphism in

Cb.Coh.XK//, and by 3.2), there exist h 2 HomCb.Coh.X//.F0 ; F3 / and n 0,
such that tnf2 B h D id and hence 0

B tnCNg/ D
0

B tN g B f2// B tnh/ D 0
in Kb.Coh.X//. Hence 0

B tnCNf / D 0 in Db.Coh.X//. Since 0 is a
quasiisomorphism, this yields tnCN f D 0 in Db.Coh.X//.
ii) Surjectivity. Let fQ 2 HomDb.XK/.Q.E1/; Q.E2 //. Again by Lemma 3.7 and

3.2) we can assume that fQ is of the form

Q.s0/Q.E /1 Q.F /0
Q.g/ Q.E2 /:
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Applying Lemma 3.8 to Q.s0/ we get a commutative diagram in Cb.Coh.XK//:

Q.F2 /
Q.f1/Q.s0Bf1/

Q.E1/
idQ.f2/ 1

Q.F0 /
Q.s0/ Q.g/

Q.F1 / Q.E1/ Q.E2/;

3.4)

with Q.f2/ 1
B Q.s0 B f1/ D Q. / and a quasi-isomorphism, giving rise to a

morphism 2 HomDb.Coh.X//.F1 ; E2/ such that Q. / is represented by 3.4).

If Q 2 HomDb.Coh.XK//.Q.F1 /; Q.E1// corresponds to the diagram

Q.f2/ 1
Q.F /1 Q.E /1

id Q.E1 /;

we have fQ B Q D Q. / and Hence fQ D Q. / B Q 1. Applying 3.2) to Q.f2/ 1

one finds n 0 and g, such that tn Q 1
D Q.g2/. Thus tn fQ D Q. / B Q.g2/, as

desired.

3.4. Back to the general fibre. In the definitions of Db.XK/ and Db.XcK/ one
divides by the categories Db0 X/ and Db.Coh.X/0/ which, by Proposition 2.5, are
equivalent. The categories Dbcoh.OX-Mod/ and Db.Coh.X// are in general not
equivalent, so neither should be their quotients Db.XcK/ and Db.XK/. However,
for surfaces with trivial canonical bundle the situation is slightly better.

In the sequel we will write, by abuse of notation, Q.E/ D EK where

QW
Db Coh.X// Db Coh.XK//

is defined as in Lemma 3.7.

Proposition 3.10. Suppose X Spf.R/ is a smooth proper formal scheme of
dimension two with trivial canonical bundle, i.e. ' OX. Then the natural exact
functor

Db Coh.X// Db X/ Db XK/
induces an exact equivalence

Db.Coh.XK// Db.Coh.X//=Db
0 Coh.X// Db.X/=Db

0 X/

D Db.XcK/ D Db.XK/:
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Proof. The first equivalence is the content of Proposition 3.6, so only the second
equivalence needs a proof. By the universal property of localization and Remark 2.7, the
induced functorDb.XcK/ Db.XK/ exists. We needtoprove it to bean equivalence.

Let us first show that it is fully faithful. Using induction on cohomologies, this
would follow from

K/.EK;FKOEi / HomDb.XK/.EK; FKOEi / 3.5)HomDb.Xc

for all objects EK;FK 2 Coh.XK/ and all i 2 N. Here we use that the natural

K-linear functor Coh.XK/ Db.XK/, which by Propositions 2.3 and 2.9 is fully
faithful, identifies Coh.XK/ with the heart of a bounded t-structure on Db.XK/ see,

e.g. [4, Lemma 3.2]).
In order to prove 3.5), we imitate the proof of [3, Proposition 5.2.1]. For fixed

F 2 Coh.X/, write ExtI ;F / and ExtII ; F/ for the twocontravariant i-functors
ExtDb.Coh.X//. ; F / R K and ExtDb.X/. ; F / R K on Coh.X/ with values in
the category of K-vector spaces. They coincide in degree zero and ExtI ; F / is
clearly universal. Thus, it suffices to prove that also ExtII ; F / is universal. By
Grothendieck’s result see [6, Theorem 1.3.A]), this would follow from ExtiII ; F/
being coeffaceable for i > 0. Recall that ExtiII ; F/ is coeffaceable if for any

E 2 Coh.X/, there exists an epimorphism E0 E in Coh.X/ such that the
induced map ExtiII E;F / ExtiII E0; F / is zero. Clearly ExtI ; F / is universal
and Ext1 II E;F / use that Coh.XK/ is the heart of a bounded t-I E; F / ' Ext1
structure on Db.XK/ and so the extensions in the abelian category coincides with
those in the triangulated category). An easy modification of Grothendieck’s original
argument shows that it is enough to prove that ExtiII ; F / is coeffaceable fori > 1.
Moreover, by Proposition 3.5, we also have ExtiII E; F / D 0 for i > 2. Hence we
only have to show that Ext2II ; F/ is effaceable.

By Lemma 3.11, for all rational sections s of X over R, there exists a positive
integer n such that Ext2II Mns E;F/ D 0, where Ms denotes the ideal sheaf
corresponding to s. Then, take s and s0 two disjoint rational R-sections of X and choose

n such that Ext2 s E; F/ D Ext2II Mn II Mns0E; F/ D 0. Since the canonical map

s E °MnMn s0E E is surjective, we conclude by setting E0 WD Mns E °Mns0E.
Finally, oneshows thatDb.XcK/ Db.XK/ is alsoessentiallysurjective. Indeed,

since Coh.XK/ is in the natural way a heart of t-structures on both categories, this
follows by induction over the length of complexes and the full faithfulness proved
before.

Lemma 3.11. Let E; F 2 Coh.X/ and let s be a rational section ofX over R whose
ideal sheaf in OX isMs Then there exists a positive integer n such that

Ext2Db.X/.Mn
s E;F/ R K D 0:
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Proof. By Proposition 3.5 it suffices to show that one has HomDb.X/.F; Mns E/ R
K D 0 for n 0. Since HomDb.X/.F; Mns E/ R K is finite dimensional over

K, it is sufficient to show that, for a 2 N, there exists b > a such that the natural
inclusion HomDb.X/.F; Mbs E/ R K HomDb.X/.F; Mas E/ R K is strict. Use

s E/K Mathat Mb s E/K is still injective.)
Pick a non-zero f 2 HomDb.X/.F;Mas E/ R K. After multiplying with some

power of t we can assume f 2 HomDb.X/.F; Mas E/. Consider the exact sequence

0 Etor E Ef 0;

withEtor 2 Coh.X/0 andEf flatoverR. Consider the induced map f W F Mas Ef
This is non-zero, since f is not a torsion element. It is sufficient to show that there
exists an integer b > a such that tnf … HomDb.X/.F;Mbs Ef/, for all n 2 N. Thus,

if G WD Im.f /, it is enough to show that GK Mas Ef/K is not contained in

Tk.Mks Ef/K.
Suppose to the contrary that GK T.Mks Ef/K. We will show that then G

TMks Ef which by the Krull Intersection Theorem would show G D 0. Indeed, if
s Ef then also G MkC1G Mk s Ef as the induced map G Mks MkC1s /Ef

becomes the trivial map in Coh.XK/, but Ef is R-flat and t … Ms.

This applies to the case of X a smooth complex projective surface with trivial
canonical bundle and proves the last part of Theorem 1.1.

Remark 3.12. It should be possible to deduce from Proposition 3.10 that for smooth

formal surfaces with trivial canonical bundle, Db.Coh.X// Dbcoh.OX-Mod/ 'Db.X/ is in fact an equivalence, but we shall not use this.

Appendix. Verdier quotients and Serre subcategories

This appendix collects known facts and definitions concerning quotients by Serre

subcategories and Verdier quotients which were used throughout this paper. The
main source we follow in the exposition is [13]. The reader is encouraged to look at

Chapter 2 and Appendix A of [13] for a complete and readable account. Notice that
we forget all set-theoretical issues which, in the case considered in the paper, do not
give rise to problems see [13, Section 2.2]).

A.1. Verdier quotients. Assume that T is a triangulated category with shift functor

† W
T T see [13, Chapter 1]). A full additive subcategory D is a triangulated

subcategory if every object isomorphic to an object in D is in D and the inclusion
functor i W

D T is a triangulated functor with the additional requirement that, for
any D 2 D the isomorphism D W i.†.D// † i.D// is the identity.
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Definition A.1. A subcategory D of T is thick if it is triangulated and contains all
direct summands of its objects.

If D is a triangulated subcategory of T one can form the Verdier quotient T=D
which is a triangulated category whose objects are the same as those of T. To define
the morphisms in T=D first consider the collection MorD of morphism f W T1 T2
in T sitting in an exact triangle

T1 f T2 Z † T1/

with Z 2 D. A morphism in T=D between T1 and T2 is an equivalence class of
diagrams

f
T1 T0

g
T2 /

f1with f 2 MorD. We say that T1 T0
f2g1

T2 / and T1 S0
g2

T2 /
f3are equivalent if there is a third diagram T1 Z0

g3
T2 / and morphisms

uW Z0 T0 and v W Z0 S0 in MorD making the following diagram commutative

T0

f1 g1

f3
T1 Z0

g3

u

g2
v

T2:

S0
f2

Roughly speaking, all morphisms in MorD become invertible.
Let QW T T=D be the natural triangulated functor which is called the Verdier

localization. The kernel of Q i.e. the full additive subcategory of T consisting of
objects mapped to zero by Q) is thick see [13, Remark 2.1.7]). Hence, if D is thick,
the kernel of Q coincides with D.

A.2. Serre subcategories. Let A be an abelian category and let B A be a full
abelian subcategory. We say that B is thick if for B1; B2 2 B and any short exact
sequence

0 B1 A B2 0

in A, then A belongs to B as well.

Definition A.2. A thick full subcategory B is a Serre subcategory of A if
i) Every object of A isomorphic to an object of B is in B;
ii) Every quotient or subobject in A of an object in B is in B.
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Given a Serre subcategory B of an abelian category A one can construct the
quotient A=B where the objects of A=B are the same as those of A. On the other
hand, a morphism A1 A2 in A=B is an equivalence class of diagrams

s t
A2 /A1 A0

with ker.s/; Coker.s/ 2 B. The equivalence relation we mentioned has a definition
which is analogue to the one explained in Section A.1 see [13, Section A.2]).

A key fact is the following see [13, Lemma A.2.3]):

Lemma A.3. The category A=B is abelian. The natural functor QW A A=B is
exact and takes object of B to objects in A=B isomorphic to zero. Furthermore, Q
is universal with this property. The subcategory B A is the full subcategory of all
objects B 2 A such that Q.A/ is isomorphic to zero.
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