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Some remarks on orbit sets of unimodular rows

Jean Fasel

Abstract. Let A be a d-dimensional smooth algebra over a perfect field of characteristic
not 2. Let Um,41(A4)/E;,41(A) be the set of unimodular rows of length n + 1 up to el-
ementary transformations. If n > (d + 2)/2, it carries a natural structure of group as dis-
covered by van der Kallen. If n = d > 3, we show that this group is isomorphic to a
cohomology group H? (A, GYT1). This extends a theorem of Morel, who showed that the
set Umgz41(A4)/SLg41(A) is in bijection with HZ(A,G9tyy SLgz41(A). We also extend
this theorem to the case d = 2. Using this, we compute the groups Um g 41(4)/Ez4+1(A4)
when A is a real algebra with trivial canonical bundle and such that Spec(A) is rational. We
then compute the groups Umg41(A4)/ SLg41(A4) when d is even, thus obtaining a complete
description of stably free modules of rank 4 on these algebras. We also deduce from our compu-
tations that there are no stably free non free modules of top rank over the algebraic real spheres
of dimension 3 and 7.

Mathematics Subject Classification (2010). Primary 13C10, 14C25, 14F43, 19A13, 19G38;
Secondary 14P05.

Keywords. Unimodular rows, Witt and Grothendieck—Witt groups, Milnor—Witt K-theory.

1. Introduction

Let A be a commutative noetherian ring and P, (0 be two projective A-modules which
are stably isomorphic, i.e., P & A" ~ Q & A". The question is to know in which
situations this implies P ~ Q. A celebrated theorem of Bass and Schanuel states
that this is always the case if P is of rank strictly bigger than the Krull dimension
of the ring A (see [4, Theorem 9.3], or [5, Theorem 2]). If A is an algebra over
an algebraically closed field, then Suslin showed that the result can be extended to
projective modules whose rank is equal to the dimension of the ring ([31]). In general,
this result 1s wrong as shown by the example of the tangent bundle over the algebraic
real two-sphere.

As a special case of the question, the stably free modules were extensively studied.
Let d denote the Krull dimension of A. By Bass—Schanuel’s cancellation theorem,
the study of stably free modules reduces to the case P @ A ~ A¢*!. Such modules
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correspond to unimodular rows of length d 4 1. In general, let Um,,41(A4) denote
the set of unimodular rows of length n + 1. One sees that GL.,, 11 (A) acts on the right
on this set, and so does its subgroup E,1(A) generated by elementary matrices.
It is not hard to see that a unimodular row (a1,...,dax+1) yields a free module
if and only if it is the first row of a matrix in GL,4+1(A4). This observation led
to the study of the sets Umy41(A)/Ey+1(A4) and Umy,41(A)/GL;4+1(A) (which
is the same as Um, 1(A)/SL,+1(A4)). An important step was the discovery by
Vaserstein that Umj3(A)/E3(A4) was carrying a natural structure of abelian group
under some conditions on A ([35, Theorem 5.2]). These conditions are for example
satisfied when A 1s of Krull dimension 2. Inspired by this case, van der Kallen put
a structure of abelian group on Umy,+1(A4)/E,+1(A) (under some hypothesis on A)
which coincides with the previous one when n = 2. This structure comes from the
following observation: If A = C(X) is the ring of continuous real functions on some
nice CW-complex X, then the set of maps from X to RZ+1\ {0} up to homotopy is
the cohomotopy group 7% (X). In[33], van der Kallen showed that the group law was
in some sense algebraic, thus leading to the group structure on Umy, 4 1(A)/E,41(A)
for any reasonable ring A. The problem is now to actually compute this group and
its quotient Um,, 41 (A)/ SL, +1(A4).

In his recent preprint [23], Morel showed that the group Umg 1 (A)/ SLg41(A4)
has a cohomological interpretation when A is a d -dimensional smooth algebra over a
field k. Indeed, let K ?ﬂvl be the unramified Milnor-Witt sheaf. Then a very easy com-
putation shows that H¢ (A4 T1\ {0}, K J +1) = GW(k), the Grothendieck—Witt group
of k. Any unimodular row (a1, ... ,a441) canbe seen as a morphism f : Spec(A4) —
A4F1\ 0} and one can consider the pull back £*({1))in H% (A, Kd+1) where (1)
denotes the unit in GW (k). Let # (k) be the A'-homotopy category of smooth k-
schemes. One of the main theorems in [23] states that this map induces a bijection be-
tween Homge 4 (A, AT\ (oY) and H4(A. K J +1) Furthermore, the natural action
of GLy+1(A) on Homge o) (Spec(A), AY+1\ {0}) gives an action on H9 (A4, K}™),
which reduces to an action of SLy1(A4). The quotient H4 (A4, K g 1) /SLg11(A)is
then in bijection with the set of stably free modules of rank 4. Thus the above map in-
duces a bijection Umgyq(A)/ SLy41(A) — HY(A, Kd+1)/ SLg+1(A4). For some
technical reasons, Morel has to assume that d > 3 to prove this theorem. Observe
also that if the field k is of characteristic different from 2, the group H%(A, K J +1)
coincide with the group H% (A4, G¢*1) as defined in [11, Chapter 10] (following the
original idea of [3]).

Our first goal in this paper is the following theorem (Theorem 4.9 in the text):

Theorem. et A be a smooth k-algebra of dimension d. Suppose that k is perfect.
Then the map ¢: Umy1(A)/Egy1(A) — HY(A, G4tY) is an isomorphism for
d=>3.
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This result is also true if d = 2 and the field & is not perfect of characteristic
different from 2. This will be treated in [13] using different methods. Our strategy
is the following: First we show that Umy,1(A)/Ex+1(A4) is nothing but the set of
morphisms from Spec(4) to AT\ {0} up to naive homotopy. Here we say that
two morphisms £, g: Spec(A) — A%T1\ {0} are naively homotopic if there exists a
morphism F : Spec(A[t]) — A"\ {0} whose evaluations in O and 1 are f and g
respectively. Then we show that there is an exact sequence of pointed sets

SLa(A)/En(A) — SLpy1(A)/Ep1(A4)

|

Umy 1 (4)/Ep11(A) — Umyy1(A)/ SLyy1(4) — 0.

which turns out to be an exact sequence of groups in some situations. Next we show
that the set GL.,(A)/Ex(A) is nothing else than Hom g )(Spec(A4), Sing*GL,) if
n > 3. This is one of the results of [23], but we spend some lines to explain it in
Section 4. The theorem is an obvious consequence of this fact.

Our next result extends the theorem of Morel to the case d = 2 (Theorem 4.11).

Theorem. Let A be a smooth k-algebra of dimension 2, where k is a field of char-
acteristic 0. The homomorphism ¢ induces an isomorphisimn

¢: Ums(A)/SL3(A) ~ H*(A,G?*)/SL3(A).

The idea to prove this result is to use a result of Bhatwadekar and Sridharan
relating Um3(A)/ SL3(A) with the Euler class group £(A) and the weak Euler class
group Eq(A) (see [8]). Namely, there is an exact sequence

0 — Ums(4)/ SL3(A) —> E(A) —— Eo(A) — 0.

We then use the fact that if A is of smooth of dimension 2 then £ (A) coincide with the
Chow-Witt group CH2(A) and E(A) is just the Chow group CH2(A). A comparison
of exact sequences then yields the result.

Next we compute the group H? (A, G4*1) where A is a real algebra satisfying
some extra conditions:

Theorem. Let A be a smooth R-algebra of dimension d with trivial canonical bundle.
Suppose that X = Spec(A) is rational. Then

HY(X.GV )y~ H' (X 1"y~ P Z
Ce€

where € is the set of compact connected components of X(R) (endowed with the
Euclidian topology).
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We also show that when A4 is even-dimensional, then GL 44 acts trivially on
H?(A, G4+ and we can completely compute the set of stably free modules of rank
d in that case.

Theorem. Let A be a smooth R-algebra of even dimension d with trivial canonical
bundle. Suppose that X = Spec(A)} is rational. Then the set of stably free mod-
ules of rank d is isomorphic to @ ce 7, where € is the set of compact connected
components of X(R) (endowed with the Euclidian topology).

In odd dimension, things are more complicated. If S* and S’ denote the real
algebraic spheres of dimension 3 and 7, we show that all the stably free modules of
top rank on these spheres are free.

1.1. Conventions. Throughout the article, £ will be a commutative field of char-
acteristic different from 2. All k-algebras are commutative and essentially of finite
type over k. If A is such an algebra and p is any prime ideal in A, we denote by
k(p) the residue field in p. If p is of height n, we denote by w, the k(p)-vector
space Extﬁp (k(p), Ap) (which is of dimension 1 if the ring is regular). When we

write W (k(p)), we always mean the Witt group of k (p)-vector spaces endowed with
symmetric isomorphisms for the duality Homy ) (_, @p). The Witt group W (k(p))
is a module over the classical Witt ring W(k(p)) of k(p). If {¢) denotes the class of
« € k(p)* in the classical Witt group, and £ is any element of W (k(p)), we denote
by (&) - & the product of (&) and £.

2. Unimodular rows and naive homotopies of maps

2.1. Naive homotopies. Let A be a k-algebra, where £ is a field. Forany m,n € N
such that m < n, let Umy, ,(A) be the set of surjective homomorphisms A" —
A™. Let E,(A) be the subgroup of SL,(A) generated by the elementary matrices.
This group acts (on the right) on Um,, ,(A) and we denote the set of orbits by
Umy, , (4)/E,(A4). In particular, when m = 1 we get the set of unimodular rows
under elementary transformations, and when m = n we get the set GL,, (A4)/E,(A),
which is a group when n > 3.

For any m, n as above, denote by V (m, n) the ideal of A™" (seen as the setof m xn
matrices) generated by the m x m minors. Denote by D(m, n) the open subscheme
AN V(m,n)of A™", In particular, D(1,n) = A" \ {0} and D(n,n) = GL,(k).

Let X, Y be two schemes over k. We say that two homomorphisms f,g: X — Y
are naively homotopic if there exists a morphism F: X xA' — Y suchthat F(0) = f
and F(1) = g where F(i) denotes the evaluation in i = 0,1. We consider the
equivalence relation generated by naive homotopies and we denote by Hom1 (X, Y)
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the set of equivalence classes of morphism from X to Y. If X = Spec(A), observe
thatHom (X, D(m,n)) = Um,, ,(A) and we can identify the naive homotopy classes
as follows:

Theorem 2.1. Let A be a smooth k-algebra and X = Spec(A). Then
Hom 1 (X, D(m,n)) = Umy, ,(A)/E,(A)
for any m, n.

Proof. First notice that any elementary matrix is naively homotopic to the identity.
Let L and L’ be two elements of Umy,, ,(A). Suppose that there is an element M in
Umy,, » (A[r]) such that M(0) = L and M(1) = L'. Consider the exact sequence

0 P Al 2 Al ——0

where P is the kernel of M. Notice that P is projective, and therefore it is extended
from A by [18] (or more generally [27] and [28]), i.e., P = P(0)[t]. But P(0) is
defined by the following sequence

L

0 P(0) A" Am 0.

Comparing the two (split) exact sequences

00— PO)] — Afr]" M= A[i]" ——=0

|
| v

¥
0 — P(O)[t] — A[r]" —L> A[f]" —o0,

we see that there exists an automorphism v of A[7]” such that the diagram commutes.
Observe that ¢ (0) = Id. By [37], ¥ € E,(A[r]) (here, the referee pointed out that
Vorst’s results can be greatly generalized using the work of Popescu, see [27] and
[28] again). Evaluating at #+ = 1, we get L’ = Ly (1). Thus the result is proved.

O

2.2. The group structure on Um,(A4)/E,(A). The universal weak Mennicke sym-
bol on the set Um,(A)/E, (A} is the free group WMS,, (A4) with generators wms(v)
for all v € Umy, (A) and relations

(1) wms(v) = wms(vg) for any g € E,(A4);

(ii) if (x,va,...,v,) and (1 — x, v,, ..., v,) are both unimodular, then

wms(l — x, vz, ..., 0,) wms(x,va,...,v,) = wms(x (1 — x),va,..., vs).
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Remark 2.2, The reader familiar with weak Mennicke symbols might have remarked
that this definition is different from the original one (see [33, §3.2]). However, both
definitions coincide when n > (dim(A) + 4)/2 by [34, Theorem 3.3].

By definition, there is a map wms: Um,{(A)/E,(4) — WMS,(4). In [33,
Theorem4.1], it is proven that this map is a bijection under certain conditions. In the
same papet, it is shown that WMS,, (A) is abelian in that case ([33, Theorem 3.6]).
We condense these informations in the next result:

Theorem 2.3 (van der Kallen). Let A be a commutative ring of Krull dimension
d > 2. Then the map wms: Um,(A)/E,(A) — WMS, (A) is a bijection for any
n > (d + 4)/2. Moreover, WMS,,(A) is an abelian group.

2.3. An exact sequence. For n > 1 Consider the morphism of algebraic groups
SL, — SLa41 sending a matrix M to the matrix {} 3 ). Consider also the morphism
SL,41 — A"\ {0} sending a matrix to its first row. We get a sequence

SLy — SLyyq — A"FLY\ {0

If A is a smooth k-algebra, we apply the functor Hom 41 (A, _) to this sequence to get
a sequence of pointed sets (where Umy, 41 (A)/E,+1(A) is pointed by [1,0,...,0])

SLn(A)/En(A) — SLat1 /Eas1(A) —— Umy41(A)/Eny1(A4).
This sequence of pointed sets is exact for quite general rings A:

Proposition 2.4. Let A be a commutative ring of dimension d. For n > 2, the
sequence of pointed sets

SLn(A)/En(A) — SLy41 /Ea+1(A) ——= Umy11(A4)/Ep11(4)
is exact. If moreover n = d and d > 3, then it is an exact sequence of groups.

Proof. We begin by proving the first assertion. Notice first that the sequence is
clearly a complex. Let M € SL,11(A) be such that there exists £ € E,41(A) with
ME = (! /) for some M’ € GL,(A). There is then a matrix F € E,41(4) such

* M

that FME = (} ). Now M~'FM is in E,11(A) since the latter is normal in
SL,41(A4) for n > 2 by [32]. Therefore M(M ' FM)E comes from SL,(A4) and
the sequence 1s exact.

If n = d and d > 3 the terms in the sequence are groups. Moreover, the map
SLu+1(A)Y/Epy1(A) = Umy4q(A)/Epyq(A) is a homomorphism of groups by [33,

Theorem 5.3 (i1)]. ]
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Now the cokernel of the map SL;+1(A4)/Ep41(A4) — Umy,41(A)/Eqp41(A4) is
just Um,, +1(A)/ SL,,+1(A) which is the set of isomorphism classes of stably free
modules of rank n over A. The following result is an obvious consequence of the
above proposition, but we state it for further reference.

Theorem 2.5. Let A be a commutative ring of dimension d. For any n > 2, there is
an exact sequence of pointed sets

SLa(A)/En(A) —SLu11(A)/Epy1(4)

|

Umn+1(A)/En+1(A) — Umn+1(A)/ SLn_H(A) — 0.

Ifn =d and d = 3, this is an exact sequence of groups.

3. Computations of some cohomology groups

3.1. The sheaf G. In this section, we briefly recall the definition and first properties
of the sheaf G/ (for any j € Z) defined in [10, Definition 3.25]. More precisely, we
will exhibit a flasque resolution of G, which will facilitate further computations.

If X is a regular scheme over k, consider the Gersten—Witt complex ([2, Theo-
rem 7.2], recall our conventions about W)

e P W) S P Wk(pa) e

xpEX(p) xp+leX(P+1)

Choosing a generator of w, for any x,, we obtain isomorphisms W(k(p)) —
W (k(p)). Consider the fundamental ideal /(k(p)) of even dimensional quadratic
forms in W(k(p)), and its powers I/ (k(p)) for any j € Z where I(k(p) =
W(k(p))if j < 0by convention. For any j € Z, we denote by I/ (k(p)) the image
of 17 (k(p)) under the isomorphism W(k(p)) — W (k(p)). Notice that this defi-
nition is independent of the choice of the isomorphism W(k(p)) — W (k(p)) ([11,
Lemma E.1.12]).

It turns out that the differential d respects the subgroups 17 (k(x,)) ([11, The-
orem 9.2.4] or [15, Theorem 6.4]) and therefore for any j € Z we get a complex
C(X,17):

e P PR P T k)

xpGX(p) xp+1€X(p+l)
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This complex can be seen as a flasque resolution of a sheaf 7/ on X, which is
the sheaf associated to the presheaf I/ defined on any open subset U C X by
I(U) = HY(C(U, 17)) (110, §3]).

For any x, and any n € Z, consider the group

I (e(xp)) i= 17 (ke (xp)) /1™ ke ().

It is easily seen that I”(k(xp)) = I”(k(xp))/l”‘“(k(xp)) ([11, Lemma E.1.13]).
Therefore we obtain a complex C(X, I/):

— P U L P T ) —

xpeX (P} xpp1eX Pt
which fits in an exact sequence of complexes
0—=CX, I’y —=C(X, 1) —= C(X. Iy —=0

for any j € Z (observe that if j < 0, the right hand side is trivial). If 17 is the sheaf
associated to the complex C(X, I/}, then by definition we obtain an exact sequence
of sheaves on X :

0 Jit1 17 17 0.

Now there is a complex in Milnor K-theory C(X, K JM )} ([16, Proposition 1]):

d
e P KM, k() KM (k(ipr)) —
xpeX(P) xp+1€X(P+1)

Again, this complex can be seen as a flasque resolution of a sheaf K JM on X . For any

xp and any n € N, there is a homomorphism s, : KM (k(x,)) — I"(k(x,)) defined
by mapping an elementary symbol {a1, ..., a,} to the class of the rn-fold Pfister form
{{ai,...,an)) modulo 1" 1(k(xp)) ([20 Theorem 4.1]). These homomorphisms
yield a morphlsm of complexes C(X, K My . C(X,I7)forany j € N ([11, The-

orem 10.2.6]). We can therefore take the fibre product of the complexes C(X, K }4 )
and C(X, I7) over C(X,I7) to get a complex C(X, G/)

— P Fhe) D G k) —

xpeX(P) xp+1€X(p+l)
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which is a flasque resolution of a sheaf G’ on X. Here the groups G/~ (k(x,)) are
the fibre products

G777 (k(xp)) —= I/ 77 (k(xp))

| |

KM () —= T/ 77 (k).

Notice that the group G/~ 7 (k (xp)) is also twisted by the vector space w,. When the
vector space is canonically isomorphic to k(x, )}, we drop the twiddle. By definition,
we get an exact sequence of sheaves on X

0——= [/ +1 G/ KJM 0

forany j € Z.
If A be a smooth k-algebra of dimension d, the above sequence of sheaves gives
an exact sequence

HYA, 1/t — H¥(A,G/) — H¥(A. KM) —0

for any j € N. The natural map of sheaves G/T! — /71 gives a surjective
homomorphism H? (A4, G/ 1) — H9(A4,17%1) and we get an exact sequence

HY(4,67%) —= H%(4,G/) — H¥(4, KM) —0

for any j € N. By definition, H?(A, G%) is the Chow—Witt group CH4(A) as
defined in [3] or [11, Definition 10.2.14] and H% (A, Kgl) is the Chow group CH?(A).
Putting everything together, we have:

Proposition 3.1. Let A be a smooth k-algebra of dimension d. There is an exact
sequence

HY(A, G4y — = CHY(4) —— CH?(4) — 0.
3.2. The sheaf KMYW, Firstrecall the following definition from [21, Definition 5.1]:

Definition 3.2. Let F be a field (possibly of characteristic 2). Let KMY(F) be the
(unitary, associative) Z-graded ring freely generated by the symbols [a] of degree 1
with @ € F* and a symbol 7 of degree —1 subject to the following relations:

1. [ab] = [a] + [P] + nla][b] for any a,b € F*.
2. [a][l —a] =0foranya € F* —{1}.
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3. n(n[—-1]+2)=0.
4. pla] = [a]n foranya € F*.

There is a natural homomorphism KMV (F) — KM (F) such that [a] — {a} and
7+ 0. For any n € Z there is also a natural homomorphism KMY(F) — I"(F)
such that [aq,...,a,] > (—1,a1)® - ®(—1,a,) andn — (1) € I"1(F) = W(F)
(this definition is also meaningful in characteristic 2, see [22, §2.1]). These homomor-
phisms coincide on I ( F) and therefore yield a homomorphism KMV (F) — G™(F)
for any n € Z. The expected result holds ([21, Theorem 5.3] if F' is of characteristic
different from 2, and [22, Remark 2.12] in characteristic 2):

Theorem 3.3. The homomorphism KXW (F) — G™(F) is an isomorphism.

One can also define a Gersten complex in Milnor—Witt K -theory (twisting these
groups accordingly, see [22, Remark 2.21]), and obtain a complex C(X, KJMW) for
any j € Z which coincides (under the homomorphisms of Theorem 3.3) with the
complex C(X, G/) for any smooth X over a field of characteristic different from 2.

In view of this, one has the choice to work either with the complex in Milnor—Witt
K -theory or with the complex C (X, G/). This is mostly a question of point of view.
On the one hand, Milnor—Witt K -theory appears very naturally in A!-homotopy, as
we will see below. On the other hand, the complex C(X,G/) puts more emphasis
on the Gersten—Witt complex and seems closer to higher Grothendieck—Witt groups
(also known as Hermitian K-theory). In particular, lots of concrete computations are
available. Of course this distinction is artificial, since both complexes are the same!
Atthe end, I decided to work with the complex G/ because of my personal preference
for the latter.

3.3. A useful computation. In this section, we compute the cohomology groups of
the sheaf G/ on A"+! — {0} for any j € N. For the forthcoming results, there are a
few useful facts to know:

1. The functor H? (_, G7) is contravariant on the category of smooth schemes over
k (|10, Definition 7.1]).

2. The projection p: X x A" — X induces an isomorphism
p* H(X,G') — H (X x A", G7)

forany i, j € Z ([11, Theorem 11.2.9]).

3. For any j € Z and any open subscheme ¢: U — X, with closed complement
Y = X — U, there is a long exact sequence of localization

. — HL(X,G) — HI(X,67) %> HI(U,67) %> HIF (X, GT) — -
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where H;} (X, G/) denotes the cohomology group with support on ¥ (|11,
Lemma 10.4.7]).

In particular, let U = A"+! — {0}. The groups H' (U, G7) fit in the localization
sequence

-"%HEO}(AH—H,GJ) %Hi(An—H,Gj)
—>HE(U,GJ)—>H{z$1(An+1,GJ)—>---

for any j € Z. The cohomology groups Hyy,(A"*!, G/) are by definition the
cohomology groups of the complex with only the group G/~"~1(k(q)) in degree

n+ 1, where g is the prime ideal (x1,...,Xn+1) C k[x1,...,Xn+1]. Hencek(q) = k
and wp is the k-vector space generated by the Koszul complex Kos(x1,. .., Xn41)
associated to the regular sequence (xy, ..., X,+1). Therefore H {‘0}(A”+1, G/)=0
ifi #n+ 1and H{'gl(A"H, G7Y = G/ 1(k).

Using homotopy invariance, we obtain H°(A"*!, G/) = HO(k,G') = G/ (k)
and H (A", G/) = 0if i > 0. We therefore get the following computation:
G/ (k) if i =0,
HU,GY= 10 if0<i<n,
G/ Yk) ifi =n,

where the last line is given by the isomorphism 8: H" (U, G/ ) — H{’BJ}F Lartt GgJy,
which is H°(k, G°)-linear (i.e., GW (k)-linear). Since we use it in the sequel, we
give an explicit description of d for j = n + 1.

Let B = k[xy,...,x,41] and consider the Koszul complex Kos(xs,. .., X,41)
associated to the regular sequence x,, ..., xX,41. We get an isomorphism
Vo xin g1 - B/(x2,...,xp41) = Extp(B/(x2,...,Xp41), B)

given by 1 — Kos{xz,...,x,41). Localizing at p = (x3,...,X,+1), it becomes an

isomorphism ¥y, . x, - k(x1) = Ext}gp (k(x1), Bp). Observe that x; € B; and
consider the couple (X1, (~Vxs,...x5 410 X1¥xa,.... 2,41 )) 10 the fibre product

GL(k(x)) —— I (k(x))

| |

KM (k(x1)) —— I{k(x1))/ I* (k(x1)).

It defines an element § of H" (U, G" 1) which is mapped under 9 to the generator
(as GW (k)-module) of G°(k) given by the Koszul complex Kos(x1, ..., x,+1) (see

[1, §91).
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4. The homomorphism Um,1(4)/E,+1(4) — H"(4,G"*))

4.1. The homomorphism. TLet A be a smooth k-algebra and X = Spec(A4). We
define a map
¢: Hom(X, A"T! — {0}) - H"(A,G"T)

by ¢(f) = f*(§), where f*: H*(A"*! — {0}, G"*!) — H"(A,G"*") is the
pull-back induced by f ([10, Definition 7.2]). Because of the homotopy invariance
of H"(A, G"1), we get a map

¢: Umyp11(A)/Ens1(A) — H (A, G"t1.
Theorem 4.1. Let A be a smooth k-algebra. Then the map
¢: Umy41(A)/Eny1(A) — H"(A,G"11
induces a homomorphism
®: WMS,11(4) > H" (A, G
for any n > 2.

Proof. Since H"(A, G"*1} is a group and the relation (i) in WMS,, 1 (A) is clearly
satisfied in H" (A, G™t1), it is enough to verify that relation (ii) is also satisfied. We
start with a simple computation in G (k(¢)). Using [17, Chapter I, Proposition 5.1],
we have {r,1 — ) = {1,7(t — 1)} in 1(k(¢)) because both forms represent 1 and
they have the same discriminant. Adding {—1, —1) on both sides, we get {(—1,7) +
(—1,1—=1) = {—1,¢(1 —¢)) in {(k(r)). Therefore we have an equality

€. (—L)+0-r.{(-1L1-1) =1 -0).(-1,(1-1))) (1

in G1(k(t)) (note that this is obvious in KMV (k(¢))).

Supposenow that (x, va, ..., vp41)and (1—x, va, ..., Vg1 ) areunimodular rows
in A. Observe then that (x(1 — x), v2,...,Vs+1) is also unimodular. Performing
if necessary elementary operations on this unimodular line, we can suppose that the
sequence (vs, . .., Uy41) 1S regular.

Now the pull back of & under the map f: Spec(4) — A"T! — {0} given by
(x,v2,...,V,41) 18 precisely the cycle (x, (—1, x)) supported on A/ (va, ..., v441).
Since (1 — x,v3,...,V,41) 18 also unimodular by assumption, we obtain a cycle
(1 —x,{—1,1 — x)) also supported on A/(va,...,v,+1). Because of relation 1
above, we see that the relation (ii) in WMS, +1(A4) is also satisfied in H* (4, G"*1)
and the theorem is proved. O

Applying Theorem 2.3, we get the following corollary:
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Corollary 4.2. Let A be a smooth k-algebra of dimension d. Foranyn > (d +2)/2
the map ¢: Um, 1 (A)/E,1(4) — H"(A, G" 1) is a homomorphism of groups.

There is an elementary proof of the fact that ¢ is surjective in some non trivial
situations. Let mt be any maximal ideal in A and put d = dim(A). Then there

is a regular sequence (vi,...,vg) such that A/(vy,...,vy) is a finite length A-
module and Ay /(vi,...,0g)Am = A/wm (use [9, Corollary 2.4]). The primary
decomposition of this ideal is (vy,...,vg) = m N My N --- N M, for some m;-

primary ideals M; (where m; are comaximal maximal ideals). Thus
A/(wi,...,vg) 2> A/mx A/M{x---x A/M,.

Let @« € (A/m)*. Then there exists an element @ € A such that its class modulo

(v1,...,vg)is («, 1,..., 1) under the above isomorphism. Therefore (a, vq,...,vyg)
is unimodular. Consider the Koszul complex Kos(v1, ..., vg) associated to the reg-
ular sequence (v1,...,vy). As in Section 3, we get an isomorphism

wvl,...,vd A/(U17 HEag Ud) - Eth(A/(U17 ki Ud)7 A)

defined by vy, v, (1) = Kos(vi,...,vg). Consider (a, {(—Vw,,...v; @Wuq,..v4))
in B espec(a)@ G'(A/q). By construction, it vanishes outside m and, as ¢ varies,

generates G1(A/m) because any (ab, {a¥, ..o DVoy,.. vy )) 18 equal to

(a7 (_Wvl,.“,vdaal,l’vl,...,vdn - (—b, (_I/fvl,‘..,vdy _bl,lfvl,...,vd))

in G!. We have proven:

Proposition 4.3. et A be a smooth k-algebra of dimension d. Then the homomor-
phism ¢: Umy 1 /Egy1(A) = H(A, G is surjective.

Our next goal in the next section is to show that ¢ is in fact an isomorphism when
d > 3, independently of the dimension d of the algebra. The case d = 2 will be
treated in the sequel.

4.2. The case d > 3. In this section, we will use results of Morel ([23]). We will
have to first recall some definitions and results in A ' -homotopy theory. Our reference
here will be [24]. Consider the category Sm/ & of smooth schemes over k, endowed
with the Nisnevich topology. The category of simplicial sheaves of sets on Sm/k
(in the Nisnevich topology) is endowed with a model structure ([24, Definition 1.2,
Theorem 1.4]), and we denote by F, (k) its homotopy category. If F, G are two
simplicial sheaves, we denote by Homy, x)(F, G) the set of homomorphisms in this
category.
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Let X be a smooth scheme over k and consider the simplicial sheaf Sing®(X)
defined at the level n € N by U — (X x A"){U) for any smooth scheme U. Here
A™ denotes the usual n-simplex over k, i.e., A" = Spec(k[xo....,xn]/ > xi — 1).
Observe that there is a canonical map of simplicial sheaves X — Sing®(X) (where
X is seen as a simplicially constant sheaf). If moreover X is an algebraic group, then
the above map is a map of simplicial sheaves of groups.

For any simplicial sheat F, there exists a fibrant simplicial sheaf RZ and a trivial
cofibration ' — RF. Such an association can be done functorially. If X is a smooth
scheme, then Homy, x)(X, F) = 7o (RF (X)) by definition. One of the results of
[23] is that the map of simplicial sheaves G1.,, — Sing®*GL, induces an isomorphism
GL,(A)/En(A) — Homyg, k)(A.Sing*GL,) for n > 3. The idea is to show that
the map Sing*GL, — R Sing®GL, induces for any affine smooth scheme Spec(A4) a
weak-equivalence of simplicial sets (Sing*GL,){(A) — (RSing*GL,)(A) forn = 3.
The explanation of the proof first requires a definition (see [23]).

Definition 4.4. Let F be a presheaf of simplicial sets over Sm/ k.

1) We say that F satisfies the affine B.G. property in the Nisnevich topology if for
any smooth k-algebra A, any étale A-algebra A — B and any f € A such that
A/f — B/f is an isomorphism, the diagram

F(A) —> F(B)

.

F(Ay) — F(By)

1s homotopy cartesian.

2) We say that F satisfies the A !-invariance property if for any smooth k-algebra
A the map F(A) — F(A[t]) induced by the inclusion A — AJz] is a weak
equivalence.

The following theorem is a particular case of a theorem proved by Morel. Its
proof is done in [23].

Theorem 4.5. Let k be aperfect field. Let F be a simplicial sheaf of groups on Sm/ k
(for the Nisnevich topology). Suppose that F satisfies the affine B.G. property in the
Nisnevich topology and the A'-invariance property. Then for any smooth k-algebra
A the map F(A) — RF(A) is a weak equivalence.

Corollary 4.6. Let k be a perfect field and let A be a smooth k-algebra. Then the
map of simplicial sheaves GL, — Sing* G, induces an isomorphism

GLA(A)/E,(A) — Homyge, 1) (A, Sing*GL,)

forn = 3.
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Proof. We first prove that Sing*GL,, satisfies the properties of Definition 4.4. If F
is any sheaf on Sm/k, then it is not hard to see that Sing® F is A l-invariant (see
[23]). The affine B.G. property is also proven in [23] and requires n > 3. Theo-
rem 4.5 shows then that (Sing®*GL,)(A) is weak-equivalent to (R Sing*GL,)(A).
Therefore 7o ((Sing*GL.,)(A)) >~ mo((RSing*GL,)(A). The left-hand term is just
GL,(A)/E,(A) by Theorem 2.1 and the other term is Homg, (x) (A, Sing*GL.,) by
definition. ]

Let now J¢ (k) be the Al-homotopy category of smooth schemes over k. It can
be seen as the full subcategory of A !-local objects in H#,(k) (|24, Theorem 3.2]).
It turns out that Sing*GL, is A'-local for n # 2. So Homg, 1) (4, Sing*GL,) =
Homg (A, Sing*GL,).

Consider the (pointed) map of simplicial sheaves Sing*GL, — Sing*GL,
induced by the inclusion GL, — GLy41 sending M to (} 5y ). Itis a cofibration
whose cofiber is Sing®*G1,4+1/Sing*GL,, and it is not hard to see that the latter
is isomorphic to Sing®*(Gl.,+1/GL,). Moreover, the map of simplicial sheaves
Sing®(GLy+1/GLy) — Sing® (A" \ {0}) is a weak equivalence in # (k) and the
following sequence

Sing*G1., —— Sing*G1L, | — Sing® (A" 1\ {0})

is a fibration sequence in J (k) ([23]). This is one of the ingredients of the proof of
the following theorem of Morel ([23] again):

Theorem 4.7 (F. Morel). Let A be a smooth k-algebra and let n > 3. Suppose that
A is of dimension d < n. Then the natural map

Hom g ) (4, Sing® (A" t1\ {0})) — H"(4,G"*1)

is a bijection. This induces a bijection between the set of stably free modules of rank n
and H" (A, G" 1) /GL, 4 1(A). Moreover, A acts trivially on H"(A, G"t1) and
therefore H* (A, G" 1) /GL,41(4) = H"(A,G""1)/SL,41(A).

Remark 4.8. Notice that if d < n then the set of stably free modules of rank » and
H"(A,G""1Y are both trivial.

This allows to prove the following theorem:
Theorem 4.9. Let A be a smooth k-algebra of dimension d. Suppose that k is perfect.

Then the map ¢: Umgy1(A)/Eqy1(A) — HY(A, Gt is an isomorphism for
d > 3.
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Proof. By Theorem 2.5, there is an exact sequence of groups

SL4(A)/Eg(A) —SLg41(A)/Eg41(A)

|

Umy41(A)/Eg+1(A4) — Umg41(A)/SLy41(A) —0.
Because
Sing*GLy; — Sing®*GLy; — Sing®(A4+1\ {0})
is a fibration sequence and because of Theorem 4.7, we have an exact sequence
Homge ) (A, Sing*GL ;) — Homg (A, Sing"GLy 1)

|

HY(A, G4y —— H(A, G /GLy 11 (A)

|

0.

Using the definition of ¢, as well as Corollary 4.6, we get a commutative diagram
SLy(A)/Eg(A) ——— Homgp 1) (A,Sing*GLy)
SLg+1(A)/Egy41(A) — Homye 1) (A4, Sing*GL4 1 1)

Umg1(A)/Egy1(A) ——— HY(A, G491

Umg41(A)/ SLa+1(4) — HY(A, G4 /GLy+1(A)

0 0.

The two top homomorphisms are injective with cokernel A™. We conclude by apply-
ing Theorem 4.7. O

Remark 4.10. As in the previous theorem, observe thatif n > d, then H* (A, G"*1)
and Umy, 1 1(A)/E,+1(A4) are both trivial.
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4.3. The case d = 2. We first recall some definitions. Let A be a k-algebra of
dimension d, where k is of characteristic 0. Then one can define the Euler class
group E(A) of A ([8, §4]) and the weak Euler class group Eq(A) of A ([8, §6]). In
short, E(A) is the group generated by pairs (J, wys), where J C A is an ideal of
height d such that J/J? is generated by d elements and w is an equivalent class of
surjections (A/J)¢ — J/J?, modulo relations similar to rational equivalence. The
group Eo(A) is generated by elements (J), where J is an ideal of height d as above.
There is a natural surjection £(A4) — Ey(A). If d is even, there is an exact sequence
(I8, Theorem 7.6])

Umgy1(A4)/ SLay1(A) —2> E(A) — > Eg(A) —=0

where v is defined as follows:

Let (a1,...,a441) be a unimodular row. By performing if necessary elemen-
tary operations, we can suppose that the ideal J = (a3,...,a441) 1s of height
d. Let es,...,eq.1 be abasis of (A/J)¢ and let wy: (4/J)¢ — J/J? be the
surjection defined by wys(e;) = a; for any i. Because (a1, ...,dg+1) is unimod-
ular and (az,...,aqg4+1) is of height d, a; € (A/J)* and we can define ¥ by
Ylar,....,ag+1) = (J,a1wy) in E(A). The proof that this is well defined is done
in [8, §7] and this is where we need that A contains Q.

Suppose now that A is of dimension 2. Then the above sequence is exact on the
left also, i.e., we have a short exact sequence ([8, Proposition 7.3, Proposition 7.5])

0 — Ums(A4)/ SL3(A) —> E(4) —— Eo(A) — 0.

If A is smooth over k, then ¢: Ums(A4)/E3(A) — H?(A, G?) gives a homomor-
phism SL3(A4)/E3(A4) — H?(A,G?) (after composition with the homomorphism
SL3(A)/E3(A) — Ums(A4)/E3(A)).

Theorem 4.11. Let A be a smooth k-algebra of dimension 2, where k is a field of
characteristic 0. The homomorphism ¢ induces an isomorphism

¢: Ums(A4)/SL3(A4) ~ H*(A,G?)/SL3(A).

Proof. Observe first that ¢ is surjective by Proposition 4.3. Now there are sur-
jective homomorphisms £(A) — CH2(A) and E¢(A) — CH?(A) ([11, Proposi-
tion 17.2.10]) making the following diagram commutative:

E(Ay —— Ey(A)

;]

CH2(A) — CH2(A).
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Because dim(A) = 2, the homomorphism E(A) — CH2(A) is an isomorphism ([11,
Theorem 15.3.11] and [8, Theorem 7.2]). We then get a commutative diagram:

0 ——> Umj(A)/ SL3(A) — 2> E(A) —> Eg(A) —>0

.

H2(A,G?)/SL3(A) — CH2(4) —= CH?*(4) ——> 0.

Hence there exists a homomorphism f : H*(4, G?)/ SL3(A) — Umsz(A)/ SL3(4)
such that f'¢ = Id. So ¢ is also injective. O

5. Computations for real varieties

5.1. Computation of H4 (A, G**7). From now on, A is a smooth R-algebra of
dimension d > 2 with trivial orientation, i.e., wa/g >~ A. Put X = Spec(A). First
we compute H? (X, I4+7) forany j > 0.

Propesition 5.1. Forany j = 0, we have H? (X, [477) ~ Dece Z where € is the
set of compact connected components of X{R). More precisely, choose a real point

xc for any C in € and a generator Ex.. of Extj’ (R(x¢), A). Then the generators
are the classes of the forms ({1, 1))/ - Ex.. in IV (R(xc)).

Proof. TFor j = 0, this is [11, Theorem 16.3.8]. We prove the result by induction on
j. Consider the form (1, 1) € I(R). It can be seen as an element of H°(R, I). The
multiplication by this element yields a homomorphism

{1, 1) Hé(A, 1817y > BHE(A, 14H7+1,

Now the homomorphism of sheaves 7¢T/*1 — J9%J induces a homomorphism
H(A, 171y — HA(A, 1779). 1tis easy to check that the composition of these
two homomorphism is the multiplication by 2 from H?(A, 1774} to itself. By in-
duction H% (A, 1774 is a sum of copies of Z, and therefore the multiplication by 2 is
injective. So thehomomorphism-(1,1): H¥ (A, I¢t/y — H4 (A, 197/ isinjec-
tive. But the multiplication by (1, 1) is surjective as a map from €P . ya) 17/ (R(x))
0 P,.c xar I/ TH{R(x)) because all residue fields are R or C. Therefore the multi-
plication by (1, 1) is also surjective on cohomology groups. O

Remark 5.2. If the canonical module @4, is non trivial, Proposition 5.1 is already
wrong for j = O(see [7, Corollary 6.3]). More precisely, let A be a smooth R-algebra
of dimension d and let X = Spec(A). Then H¢ (A, I¢)is a finitely generated abelian
group, with a free part corresponding to the compact connected components of X(R)
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where the canonical module is trivial and a Z/2-vector space corresponding to the
compact connected components of X(R) where the canonical module is not trivial.
This can be deduced from [ 6, Theorem 4.21].

At the moment, I do not know how to compute H(X,I1¢%17) for j > 0 for
general smooth real algebras. Further work should clarify this.

The next result is an obvious consequence of the proposition.

Corollary 5.3. Forany j > 0, we have H (X, [4+7) ~ PDeece Z/27Z and an exact
sequence of cohomology groups

00— HY(A, 1917y s H4(A, 1417y —s HY(4, 19Ty —0.

Next we exhibit some exact sequence which will be useful for the computation of
H4 (X, G9t1), We first prove a preliminary result. Let f: X ® C — X be the finite
morphism induced by the inclusion R € C. For any j > 0, it yields a morphism
fer HY(X ® C, K} +J) — HY(X, K} +]) Moreover, the natural projection gives

a homomorphism H ¢ (X, K )—>Hd(X Kd+]/2Kd+J)

Proposition 5.4. For any j > 1, the sequence

HYX ®C. KM ) > HIX KN ) — HY X KN 2K

)—=0

d+j d+j

is exdact.

Proof. Tt suffices to show that the sequence of groups

P kMR -L- P kMR

x€(XQC)) yeXx(d)

—— P KMRG)2KMREG) —0
yexX@

is exact. We have two distinct cases, depending on whether y is a complex point or a
real point. Suppose first that y is a complex point. Then there are two points x; and
x2 in (X ® C)Y4) gver y and the above sequence becomes

KM(C) @KM(C) KM(C) — KM (C)/2KM(C) —0

where £ is just the sum (which is surjective). Since j > 1, K JM (C) is 2-divisible
and therefore KM (C)/2KM(C) = 0.
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Suppose now that y is a real point. There is only a complex point over y and the
sequence becomes

KM (C)—> KM R) — KM (R)/2KM (R) — 0.

Here f. is just the transfer map given by the inclusion R C C. But K JM (R) is just the

direct sum of a 2-divisible group D generated by symbols {a,...,a;} witha; > 0
and a factor Z/2Z generated by {—1,...,—1}. Now f. is surjective on D (use
[19, Proposition 14.64]) and O on the subgroup generated by {—1, ..., —1} because
K JM (C) is 2-divisible. So the sequence is exact. O

As a corollary, we get:

Proposition 5.5. Ler X be a real smooth affine variety with trivial canonical bundle.
Then for any j = 0, the sequence

HY (X ®C, Gd+1) HYX,G9T7y — s H4(X, 191y — >0

is split exact, where the first homomorphism is induced by the finite morphism
f: X ® C — X and the second by the map of sheaves G*T/ — 19%/. More-
over, the morphism of sheaves G4ti — KM . induces an isomorphism H d(X &

J p d+jf
+

C,G%) > HY(X ® C, Kd+J)

Proof. If j = 0, thisis [11, Theorem 16.6.4] and [11, Remark 10.2.16]. We suppose
now that j > 1. Tirst observe that, since /(C) = 0, we have G/ (C) = K JM (C).
This proves the last assertion of the theorem. This also proves that the composition

HY(X ®C, Gdﬂ) HY(X, G4ty —= H4(X, [¢41))

is zero since the groups G/ (R (x)) are the fibre products of K JM (R(x))and I/ (R(x))
over 1/ (R(x)) for any x € X@), Using the definition of the corresponding sheaves,
it is not hard to see that there is a commutative diagram of sheaves whose rows are
exact

Oﬁld—iﬂ-’_l HGd—i-] HKM

d—i—“ﬁo

OH[d-i-j—i-l %]d—i-j %]_d-i-j — 50
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This yields the following commutative diagram

0—— = HYX®C,G4M)—HI X QC.K

d+J) —0

HE(X, 18 =ly — FHX, G4+ ) ——s B, B — 0

00— HY(Xx, 19t/+y — > gdx, 19t/y — > F4(x, ]9ty ——=0

|

0 0 0

where the rows are exact. A simple chase in the diagram shows that it suffices to
prove that the right column 1s exact to finish. Proposition 5.4 gives an exact sequence

Hd(X®(C,Kd) —>HY (X, KM )—>Hd(XK [2K} ) —=0.

d+j
But the homomorphisms s, of Section 3.1 yield a homomorphism

HYX KY  2K0 ) — HY (X, 1977
which is in fact an isomorphism by [36, Theorem 7.4] and [26, Theorem 4.1]. O

Next we prove that H4 (X @ C, Kdﬂ
that a real variety X is said to be rational if X ® C is birational to P¥¢.

) = 0 for some interesting algebras. Recall

Proposition 5.6. Let A be a smooth R- algebra of dimension d. Suppose that X =

Spec(A) is rational. Then H*(X ® C, Kdﬂ) = O forany j > 0.

Proof. Suppose first j = 0. Then H4(X ® C, K} = CH?(X ® C) = 0 because
X ® C is rational. Using [25, Corollary 3.4, Theorem 2.11] (see also [29] and

[30]), this shows that any maximal ideal m in A ® C is complete intersection. Let
{ay,...,a;} be an element of KJM(C) = KJM((A ® C)/m). Let (f1,..., fg)be

a regular sequence generating . Consider the symbol { f4. a1, a2, ..., a;} defined
on the residue fields of the generic points of (A ® C)/(f1,..., fa—1). It defines an
element of P, cqpec(aecy@ J+1(R(x)) whose boundary is {a1,...,a;}. O

Finally, we get:
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Theorem 5.7. Let A be a smooth R-algebra of dimension d with trivial canonical
bundle. Suppose that X = Spec(A) is rational. Then

HYX, G~ HYX 1)~ Pz
Ce€

for j = 0, where € is the set of compact connected components of X(R) (endowed
with the Euclidian topology).

Proof. The first isomorphism is clear in view of Proposition 5.5 and Proposition 5.6.
The second isomorphism is just Proposition 5.1. O

Remark 5.8. If 4 > 3 this shows that
Hom 1 (X, AYT1\ {0}) = Umgy(4)/Egq1(4)

(which is isomorphic to H¢ (X, G¢*1)) is isomorphic to the cohomotopy group
74 (X(R)). Observe that if the algebra is not rational, then the complex points may
appear making this statement incorrect.

5.2. Stably free modules. The previous section allows to understand the structure
of stably free modules over good real algebras. Before stating the result, we briefly
recall the definition of the Euler class.

Let A be a smooth k-algebra of dimension d and let P be a projective module
of rank d over A with trivial determinant. To such a module, one can associate an
Euler class ¢4 (P) in CH? (4) ([23] or [11, Chapter 13]) which satisfies the following
property (proven in [23]if d > 4,in[14]ifd = 3andin [11]ifd =2): ¢4(P) =0
if and only if P >~ O & A (the same result holds for projective modules with non
trivial determinant, but we do not use this fact here). When 4 is even, the Euler class
allows to strengthen our results:

Theorem 5.9. Let A be a smooth R-algebra of even dimension d with trivial canon-
ical bundle. Suppose that X = Spec(A) is rational. Then the set of isomorphisn
classes of stably free modules of rank d is isomorphic to @ ¢ ¢ L, where € is the set
of compact connected components of X(R) (endowed with the Euclidian topology).

Proof. By Proposition 3.1, there is an exact sequence
H4(X,G4*t"y — > CHY(X) —= CH?(X) ——= 0.

Theorem 5.7, shows that this sequence is exact on the left also.
Suppose that d > 3. Because of Theorem 4.9, we get a short exact sequence:

0 ——Umyg(4)/Eg4,(4) — CHY(X) — CHY(X) —>0
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and Umy4+1(A)/Eqg+1(4) ~ @eee Z by Theorem 5.7. Using [8, §7], we see
that the homomorphism Umg 4 (A)/Egz11(A) — CH4 (X)) associates to a stably
free module P (representing a unimodular row) its Euler class. The Euler class of
A being trivial, a unimodular row coming from GLg41(A) has therefore image
0 in CHY (X). The exact sequence above shows that GL441(A) acts trivially on
Umg41(A)/Eg4+1(A). This proves the result when d > 4.

Suppose now that d = 2. Because of Theorem 4,11, it suffices to compute
H?(A, G?*)/ SL3(A). The same argument as above shows that the action of SL3(A)
on H2(A, G?) is trivial. This concludes the proof. O

Theorem 5.10. Let A be a smooth R-algebra of even dimension d with trivial canon-
ical bundle. Suppose that X = Spec(A) is rational. Then a stably free module of
rank d over A is free if and only if its Euler class is O.

Proof. Again, the exact sequence
HY(X,G9ty — s CHY(X) —=CH?(X) —=0.

is also exact on the left by Theorem 5.7 and the map H¢ (X, G4+1) — CHY(X) in
the exact sequence of Proposition 3.1 sends a stably free module to its Euler class.
O

Remark 5.11. Observe that we heavily use the fact that A is of even dimension in
the theorem in order to identify the homomorphism H¢ (X, G4*1) — CH?(X) of
Proposition 3.1. In odd dimension, this homomorphism cannot be the Euler class,
since the Euler class of an odd dimensional stably free module is trivial. It is clear
however that the homomorphism H % (X, G4+1) — CH9 {X) is in general non trivial!
A consequence of this is that the action of SLy1(A) on Umyg, 1 (A)/Eg11(A) might
be non trivial if 4 is odd. We will see below that this is the case for the real algebraic
spheres S> and S”7.

The other hypotheses in the theorem are explained by the fact that we use Theo-
rem 5.7 in the proof of the theorem. As already said in Remark 5.2, I do not know
how to compute the groups involved when the canonical module is not trivial. If the
algebra is not rational, then the group Umy 41 (A)/Eg41(A) might contain some non
trivial subgroup generated by complex points. This subgroup will be contained in the
kernel of the Euler class, but I do not see why the corresponding modules should be
trivial. Again, this should be clarified in further work.

As an illustration of the theorem, let S¢ denote the algebraic real sphere of di-
mension d, i.e., S¢ = Spec(R[x1, ... Xgi1l/ Y xF—1).

Corollary 5.12. The set of isomorphismn classes of stably free modules of rank 2d
over S?¢ is isomorphic to Z. It is generated by the tangent bundle.
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Proof. The first statement is an obvious corollary of Theorem 5.9, since the set of real
maximal ideal is the real sphere of dimension 3. We prove next that the tangent bundle
generates H2¢(S%4 G24+1y. By Theorem 5.7, it suffices to see that it generates
H?24(§24 12d+1y Consider the complete intersection ideal a = (x1, ..., xo4) and
the symmetric isomorphism

Yy omog s Afa — Ex39(A/a, A)

defined by 1 > Kos(xy, ..., x24), where the latter is the Koszul complex associated
to the regular sequence (x1,...,X24). Since xz4+1 is invertible modulo a we can
consider the symmetric isomorphism (—1,X2411) - ¥xy,...x,, ON the finite length
module A/a.

Now we have a decomposition of the form a = m; N m_y, where m; =
(X1, s Xog,X0q211 — 1) and m_; = (x1,...,X24,%X2411 + 1). This decompo-
sition decomposes the finite length module A/a (and the symmetric isomorphism
(=L X2d41) " ¥xy,...xny)- Since x2441 = 1 modulo m; and (—1,1) = 0in I(R),
we see that

(A/C[, (—1,X2d+1) : 1;!fxl ..... xzd) - (A/m—la (_1’ _1) ‘ (fol,...,xgd)mfl)

holds in the group H24 (524, 124+1), where (Yx,. . xs, )m_, is the localization of
Wxy....xsy- The right hand term is a generator of H2¢(S2%, 124+1) by Proposi-
tion 5.1, and the left hand term is the image of the unimodular row (x1,...,X2441)
under the homomorphism

¢: Umagi1(S2) /Bag 1 (82 — H?4 (524, 124+
of Section 4.1. O

In odd dimension, the situation is a bit more complicated as illustrated by the
following result:

Proposition 5.13. All stably free modules of top rank on S3 and S7 are free.

Proof. We do the proof for S3, the case of S7 being similar. The proof of the above
corollary shows that Umy4(S?3)/E4(S?) ~ Z with generator the tangent bundle. It
is well known that the tangent bundle over S? is free and therefore its associated
unimodular row comes from GL4(S?). This shows that Um,4(S?)/GL4(S?) = 0.

O

Remark 5.14. In the proposition, we restricted to S and S7 because in those cases
the tangent bundle is actually free. In [12], we proved that all the projective modules
on S3 are free, while the analogue result on S7 seems far out of range at the moment.
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