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Prescription de la multiplicité des valeurs propres du laplacien
de Hodge-de Rham

Pierre Jammes

Résumé. Sur toute varieté compacte de dimension supérieure ou egale a 6, on prescrit le volume
et le debut du spectre du laplacien de Hodge-de Rham agissant sur les /J-formes différentielles

pour 1 < p < •*?. En particulier, on prescrit la multiplicité des premieres valeurs propres.

Abstract On any compact manifold of dimension greater than 6, we prescribe the volume and

any finite part of the spectrum of the Hodge Laplacian acting on /J-form for 1 < p < ^. In
particular, we prescribe the multiplicity of the first eigenvalues.

Classification mathématique par sujets (2010). 58J50.

Mots-clefs. Laplacien de Hodge-de Rham, formes différentielles, multiplicité de valeurs
propres.

Keywords. Hodge Laplacian, differential forms, multiplicity of eigenvalues.

1. Introduction

On sait depuis les travaux de S. Y. Cheng [Ch76] que la multiplicité de la k-ième
valeur propre du laplacien sur une surface compacte est majorée en fonction de k et
de la topologie. En dimension plus grande, Y. Colin de Verdière a montré ([CdV86],
[CdV87]) que toute rigidité disparaît et qu'on peut arbitrairement prescrire le début
du spectre, en particulier la multiplicité des valeurs propres peut être arbitrairement
grande.

Le résultat de Cheng s'étend aux opérateurs de Schrödmger sur les surfaces et
la majoration de la multiplicité a été améliorée (voir [Be80], [Na88], [HHN99]), la
meilleure estimation pour la multiplicité de la 2e valeur propre d'un opérateur de

Schrödmger sur une surface ayant été obtenue par B. Sévennec ([Sé94], [Sé02]). Ce

problème a aussi été étudié pour des opérateurs avec champ magnétique ([CdVT93],
[BCC98], [Er02]), pour lesquels la multiplicité peut être arbitrairement grande. En
dimension supérieure ou égale à 3, J. Lohkamp a amélioré les résultats de Colin de

Verdière en montrant dans [Lo96] qu'on pouvait prescrire simultanément le début du

spectre, le volume et certains invariants de courbure.
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En comparaison, les connaissances sont beaucoup plus limitées concernant les

opérateurs agissant sur les fibres vectoriels naturels. P. Guerini a montré dans [Gu04]
qu'on peut prescrire toute partie finie du spectre du laplacien de Hodge-de Rham, qui
agit sur les formes différentielles, mais en imposant aux valeurs propres prescrites
d'être simples. Un résultat semblable a été obtenu par M. Dahl pour l'opérateur de

Dirac ([Da05]). Le seul résultat connu concernant la multiplicité des valeurs propres
non nulles de ces deux opérateurs est qu'on peut construire un nombre arbitraire
de valeurs propres doubles du laplacien de Hodge-de Rham (voir [Ja09a]). On peut
consulter [Ja09b] pour une présentation générale de ces résultats.

Le but de cet article est d'étendre le théorème de Colin de Verdière aux formes
différentielles en montrant que sur toute variété compacte de dimension n > 6, on

peut construire des valeurs propres du laplacien de Hodge-de Rham de multiplicité
arbitrairement grande, et plus précisément que si on excepte les formes de degré j,
on peut prescrire arbitrairement le début du spectre, avec multiplicité.

Si (Mn, g) est une variété nemanmenne compacte orientable de dimension n, le

laplacien À^ agissant sur l'espace Q,P(M) des /7-formes différentielles est défini par
A=d8 + 8doù8 désigne la codifférentielle. Nous noterons son spectre

0 Xp,o(M, g) < Xp,i (M, g) < XP,2(M, g) <

où les valeurs propres non nulles sont répétées s'il y a multiplicité. La multiplicité
de la valeur propre nulle, si elle existe, est un invariant topologique : c'est le nombre
de Betti bp(M). Par théorie de Hodge, le spectre (Xpj(M, g))i>i est la réunion de

Qipj(M, g))i et (fip-i,i(M, g))i où

0 < fiPtl(M,g) < iiPt2(M,g) <

désigne les valeurs propres du laplacien restreint à l'espace des p-formes coexactes,
et on a en outre fXPii (M, g) ßn-p-i,i(M, g) pour tout p et i si M n'a pas de bord.
Le spectre complet du laplacien se déduit alors des fiPtt (M, g) pour p < ^-, c'est
donc à la multiplicité de ces valeurs propres qu'on va s'intéresser.

Théorème 1. Soit Mn une variété compacte connexe orientable sans bord de dimension

n > 6 et N € N*. Si on se donne un réel V > 0, une suite 0 < a\t\ < ait2 <
#1,3 < • • • < a\,N et des suites 0 < aPsi < aPii < ••• < aPtN pour 2 < p < [^j^],
alors il existe une métrique g sur M telle que

- ßp>k(M, g) apJc pour l<k<Netl<p< [^] ;
- ß[B^L]ti(M, g) > supitN aPii ;

- Vol(M, g) V.

Remarque 2. La condition ßrn-ii l(M,g) > supj)Ar ap,i permet de prescrire le

2"début du spectre en degré [^5—], les formes propres correspondantes étant exactes
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Comme dans [CdV86] et [CdV87], le principe de la démonstration consiste à faire

converger le spectre de la variété vers celui d'un espace modèle (en 1'occurence un
domaine de la variété) qui a le spectre souhaité et de conclure grâce aux propriétés
de stabilité du spectre du modèle. Pour les formes de degrés proches de ^, la
démonstration échoue en raison de l'invariance (ou la presque invariance) conforme de

la norme L2. On verra cependant que les rigidités qui apparaissent pour ces degrés
faciliteront la construction des espaces modèles. Une autre difficulté apparaît pour
les formes de degré 1, on ne pourra pas faire appel aux même espaces modèles que

pour les autres degrés. On utilisera une construction particulière qui ne permet pas
de prescrire la multiplicité de la première valeur propre et qui ne fonctionne qu'en
dimension n > 6.

Le problème suivant reste donc ouvert :

Question 3. La multiplicité des valeurs propres (X\t\ (M, g) et ßrn-i-i ^(M, g) peut-
elle être arbitrairement grande

Dans [Ja09a], on montre comment construire des exemples de variétés de dimension

n > 4 admettant des valeurs propres de multiplicité arbitrairement grande, y
compris en degré [^j-]. Leur topologie est très particulière (variétés produits), mais

ces exemples montrent qu'on n'a pas en général de borne sur la multiplicité comme
en dimension 2.

En ce qui concerne (X\t\ (M, g), on peut aussi apporter cet élément de réponse en
utilisant les même techniques que pour le théorème 1 :

Théorème 4. Si Mn une variété compacte connexe orientable sans bordde dimension
n > 5, alors il existe sur M une métrique g telle que la multiplicité de ß\ti(M, g)
soit égale à 3.

La méthode utilisée ne permet cependant pas de prescrire les autres valeurs
propres.

Le problème le plus intéressant semble être de comprendre ce qui se passe en
dimension 3. En effet, les exemples produits donnés dans [Ja09a] sont de dimension
au moins 4. L'énoncé de S. Y. Cheng pourrait s'étendre aux 1-formes coexactes en
dimension 3 :

Question 5. Sur une variété M de dimension 3, existe-t-il une borne sur la multiplicité
de ßitk(M, g) dépendant uniquement de k et de la topologie de M

Il faut noter que pour établir un tel résultat, on peut difficilement espérer adapter la

démonstration de Cheng dont les arguments sont spécifiques aux fonctions (domaines
nodaux) et à la topologie en dimension 2.
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Dans la section 2 nous montrerons, après quelques rappels techniques, qu'on peut
faire tendre le spectre d'une variété compacte pour le laplacien de Hodge-de Rham

vers le spectre d'un de ses domaines. La section 3 sera consacrée à la démonstration
des théorèmes 1 et 4.

2. Convergence du spectre d'une variété vers celui d'un domaine

2.1. Conditions de bord et cohomologie pour une variété à bord. Dans ce
paragraphe et le suivant, nous allons rappeler certains aspects techniques de la théorie

spectrale du laplacien de Hodge-de Rham auquels nous feront appel pour montrer
qu'on peut faire tendre le spectre d'une variété compacte vers celui d'un de ses

domaines (théorème 11).
Si U est un domaine à bord C1 d'une variété compacte M, on note j : dU -> U

l'injection canonique et N un champ de vecteur normal au bord. Il existe plusieurs
conditions de bord admissibles pour le laplacien de Hodge-de Rham sur U (c'est-
à-dire telles que le laplacien soit elliptique), les deux principales sont les conditions
absolues et relatives, que nous noterons respectivement (A) et (R) et qui sont définies

par
jj*(lNCO) 0, (j*(*CO) Q,

(A) < ou <

(j*(iNdo)) 0, [j*(*dû)) 0,

et

>
(j*(co) 0,

(R)
\y*(ûï) 0.

Pour la condition (A), Ker À est isomorphe à la cohomologie HP(U) et pour (R),
il est isomorphe à la cohomologie à support compact HP(U) (voir par exemple
[Ta96], ch. 5). Rappelons aussi que les cohomologies de U et U sont isomorphes
([Ta96], ch. 5, p. 375). Il est immédiat que sous la condition (R) on a j *(dco) 0. Et
comme la dualité de Hodge permute ces deux conditions de bord, (A) implique que
y*(*8û>) 0.

Nous aurons besoin d'une autre condition de bord, définie par

>
(j*(co) 0,

(D) |y*(*û>) 0.

Pour la condition (D), le noyau du laplacien est trivial (voir [An89]).
Rappelons qu'en restriction aux fonctions, la condition (A) est équivalente à la

condition de Neumann, et les conditions (R) et (D) à la condition de Dirichlet.
La décomposition de Hodge L2(APU) Imd © Ker À © Im 8 dépend de la

condition de bord choisie. Pour une forme co, elle s'écrit co d8 0 + a + 8dö où a et
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9 vérifie la condition de bord considérée, a étant dans le noyau Ker À correspondant
(cf. proposition 9.8 de [Ta96]).

Dans la suite du texte interviendra essentiellement la condition (A) (et dans une
moindre mesure la condition (D)), et nous ferons en particulier appel à la propriété
suivante :

Proposition 6. Si co est une p-forme exacte sur U, alors il existe une forme 9 €
Çïp(U) vérifiant la condition (A) et telle que co d8#. En particulier, la forme
(p 8$ vérifie j*(in(P) — 0, est orthogonale aux formes fermées et minimise la
norme L2 parmi les primitives de co.

La démonstration de ces faits (qui ne sont souvent utilisés qu'implicitement dans

la littérature) est esquissée dans [Ch79] (section 3, p. 272). Nous allons la rappeler :

Démonstration. Sia € QP(U) et ß € QP+1(U), une intégration par partie donne

(da, ß) (a, 8/?) + fsu j*(a A *ß). Pour que le terme de bord s'annule, il n'est
pas nécessaire que les deux formes a et ß vérifient l'une des conditions de bord, il
suffit par exemple que j*(*ß) 0, c'est-à-dire que ß soit tangentielle.

Si O) est une forme exacte, on a alors (co, ß) 0 pour toute forme ß tangentielle
cofermée. Dans la décomposition de Hodge pour la condition (A), la composante
cofermée de co est donc nulle même si co ne vérifie aucune condition de bord. On
a donc co d80 où 9 vérifie la condition (A) (autrement dit, l'adhérence L2 des

formes exactes vérifiant (A) contient toutes les formes exactes sur U, sans condition
de bord).

Si on pose (p 80, on a alors j*(in<P) 0> et (et,(p) (da, 9) 0 pour
toute forme a fermée. Comme deux primitives de co diffèrent par une forme fermée,
<p minimise la norme L2 parmi celles-ci. D

Nous aurons besoin de définir, outre les cohomologies HP(U) et Hq(U)
évoquées plus haut, un espace de cohomologie traduisant l'interaction entre la
cohomologie de U et celle de M. Cet espace est construit comme le quotient des formes
fermées de U par la restriction des formes fermées de M :

HP(U/M) {coe QP(U), dco 0}/{coì0, co e QP(M) etdco 0}

Comme une forme exacte de U est toujours la restriction d'une forme exacte de

M, HP(U/M) est isomorphe au quotient de HP(Ü) ~ HP(U) par l'image de

l'application naturelle HP(M) -> HP(U) définie par restriction des formes fermées
et exactes. En particulier, HP(U/M) est de dimension finie.

2.2. Caractérisation du spectre du laplacien de Hodge. Pour démontrer le théorème
de convergence au paragraphe suivant, nous utiliserons une caractérisation variation-
nelle du spectre dont le principe est dû à J. Cheeger et J. Dodziuk :
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Proposition 7 ([Do82], [Mc93]). Sur une variété compacte sans bord ou avec
condition de bord (A), on a

M12
fiPti inf sup l t-^T' à<p =û)\,

Vi o>eVi\{0) [\\<P\\2 J

où Vi parcourt l'ensemble des sous-espaces de dimension i dans l'espace des p + 1 -
formes exactes lisses.

Il faut préciser que dans le cas à bord, cette formule fournit le spectre pour la
condition (A) même si on ne suppose pas que des formes co et (p vérifient cette
condition. Cela tient essentiellement au fait démontré plus haut que l'espace L2 des

formes exactes pour la décomposition de Hodge associée à (A) contient toutes les

formes exactes sans condition de bord.
La proposition 7 permet d'estimer les valeurs propres du laplacien, mais pour les

applications à la multiplicité, et en particulier pour utiliser les techniques de Colin de

Verdière (voir lemmes 16 et 17), nous aurons besoin de contrôler à la fois les valeurs

propres et les espaces propres, nous allons donc la reformuler. Si co est une forme
exacte, alors q(co) infA<p=cù ||^||2 est une forme quadratique, c'est la norme au
carré de la primitive coexacte de co. Son spectre est l'inverse de celui du laplacien
(on peut se convaincre qu'on a aussi q(co) (A-1 co, co)). On retrouve la formule de

la proposition 7 en intervertissant le rôle de la forme quadratique et de la norme de

Hilbert :

Proposition 8. Le spectre et les espaces propres du laplacien en restriction aux
formes exactes sont ceux de la forme quadratique Q(co) ||û>||?2 relativement à la
norme \co\= inf ||^||/2.

Remarque 9. L'espace L2(AP+1M) Pi Im d (l'adhérence étant prise au sens de la

norme L2) n'est pas un espace de Hilbert car il n'est pas complet pour la norme | * |

(c'est seulement le domaine de la forme quadratique Q), mais on peut identifier son
complété à L2(APM)/Ker d, chaque forme exacte de L2(AP+1M) étant identifiée
à l'ensemble de ses primitives.

Remarque 10. On peut déduire aisément de la proposition 7 que le spectre du laplacien

est continu pour la topologie C° (cf. [Do82]). On sait aussi, d'après [BD97]
qu'on a continuité des espaces propres pour les topologies C° et L2. La formulation
de la proposition 8 permet de retrouver ce fait de manière plus directe à l'aide des

techniques de [CdV86] (voir le lemme 17 au paragraphe suivant).

2.3. Convergence spectrale. Nous allons maintenant montrer comment on peut
faire tendre le spectre du laplacien de Hodge-de Rham d'une variété compacte vers



Vol. 86 (2011) Sur la multiplicité des valeurs propres du laplacien de Hodge-de Rham 973

celui d'un domaine, généralisant ainsi au formes différentielles le théorème que
Y. Colin de Verdière a montré pour les fonctions (théorème III. 1 de [CdV86]). Pour
appliquer ce résultat, nous aurons besoin d'une certaine uniformité de la convergence,
nous reprendrons pour cela les notations de [CdV86] :

Soit Eq et E\ sont deux sous-espaces vectoriels de même dimension N d'un
espace de Hilbert, munis respectivement des formes quadratiques qo et q\. Si Eq et

Ei sont suffisamment proches, il existe une isométrie naturelle ty entre les deux (voir
la section I de [CdV86] pour les détails de la construction), on définit alors l'écart
entre qo etqi par \\qi oty—#0||. Pour deux formes quadratiques Qo et Qi sur l'espace
de Hilbert, on appellera N-écartspectral entre Qo et Q\ l'écart entre les deux formes

quadratiques restreintes à la somme des espaces propres associés aux N premières
valeurs propres. Si cet écart est petit, alors les N premières valeurs propres de Qo et
leurs espaces propres sont proches de ceux de Q i.

On veut montrer que la convergence spectrale est uniforme pour une certame
famille de spectres limites. Comme dans [CdV86] on dira donc qu'une forme quadratique

vérifie l'hypothèse (*) si ses valeurs propres vérifient

Xi < ••• < Xn < Xn + y < Xn+i < M

pour un entier N et des réels r], M > 0 fixés une fois pour toute.
Dans la suite du texte, sauf mention explicitement contraire, le spectre considéré

sur les domaines sera toujours relatif aux conditions de bord (A).

Théorème 11. Soit (Mn, g) une variété riemanienne compacte sans bord de dimension

n etU un domaine de M à bord C1. Il existe une suite de métriques (gi) sur M
conformes à g telle que

- Vo\(M,gi) -> Vol (U, g) quandi -> oo;
_ ßp,k(M,gi) -> 0 pour p < 2 et k < dp quandi -> oo;

- ßPtk+dp(M, gi) -> ßPik(U, g)pour p < ^^ etk > 1 quandi -> oo;
où dp est la dimension de HP(U/M).

En outre, si les ßPik(U,g) vérifient l'hypothèse (*) pour 1 < p < *-"~ alors

pour tout s > 0 il existe i tel que le N-écart spectral entre les laplaciens sur U et M
pour la métrique gi soit inférieur à s.

Remarque 12. Dans [Co04], B. Colbois avait posé la question de savoir si on peut
faire tendre les valeurs propres du laplacien de Hodge-de Rham vers 0 en fixant le

volume et la classe conforme. Pour p < ^-^, une réponse positive a été donnée dans

[Ja08] par une constrution similaire à celle du théorème 11 avec U — Sp x Bn~p
Le théorème 11 permet une compréhension plus générale de ce phénomène, tout en
simplifiant les démonstrations de [Ja08].

On sait que l'énoncé du théorème 11 est faux pour p [^j-], car pour ce degré,
le spectre du laplacien est uniformément minoré dans une classe conforme :
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Théorème 13 ([Ja07]). Soit Mn une variété compacte de dimension n > 3, Pour
toute classe conforme C sur M, il existe une constante K(C) > 0 telle que pour
toute métrique g E C, on a

/JLrn-l-\tl(M, g)Vo\(M, g)" > K.

On peut donc construire des contre-exemples en choissant M et U tels que
H^ 2 *(M/U) soit non trivial, ou en utilisant un domaine dont la première valeur

_2
propre est plus petite que que K • Vo\(U, g) » (c'est possible d'après [Gu04]).

Remarque 14. La constante K du théorème 13 varie continûment pour des déformations

C° de la métrique (voir [Ja07]). Cette propriété nous sera utile pour démontrer
le théorème 1.

Remarque 15. Pour l'opérateur de Dirac, il existe une rigidité conforme du même

type que celle du théorème 13 (voir [Am03]). On ne peut donc pas espérer obtenir un
résultat semblable au théorème 11 pour les spineurs.

Comme dans [CdV86], on fera appel aux deux lemmes qui suivent. Les constantes

N, M et rç qui interviennent dans les énoncés font référence à l'hypothèse (*) définie
plus haut.

Lemme 16 ([CdV86], th. 1.7). Soit Q une forme quadratique positive sur un espace
de Hilbert M dont le domaine admet la décomposition Q-orthogonale dom(<2)
3£o © Moq. Pour tout s > 0, il existe une constante C(jj, M, N, s) > 0 (grande) telle

que si Qo Q\^e0 vérifie l'hypothèse (*) et que Q(x) > C \x |2 pour tout x € Mcx»

alors Q et Qo ont un N-écart spectral inférieur à s.

Lemme 17 ([CdV86], th. 1.8). Soit (M, \ • \) un espace de Hilbert muni d'une forme
quadratique positive Q. On se donne en outre une suite de métriques \ • \n sur M et
une suite deformes quadratiques Qn de même domaine que Q telles que :

(i) il existe Ci,Ci > 0 tels que Ci\x\ < \x\n < C2 |x | pour tout x € M ;
(ii) pour tout x € dom(Q), \x\n —, \x\;
(iii) pour tout x € dom(<2), Q(x) < Qn(x) ;
(iv) pour tout x € dom(ö), Qn(x) -^ Q(x).

Si Q vérifie l'hypothèse (*), alors à partir d'un certain rang (dépendant de rj, M et
N), Q et Qn ont un N -écart spectral inférieur à s.

Remarque 18. Dans le lemme 17, on peut affaiblir l'hypothèse C\\x\ < \x\n <
C2\x\ en Ci \x\ < \x\n < C2\x\ + enQ(x)? avec sn —, 0, la démonstration restant
exactement la même. En particulier, il n'est pas nécessaire que l'espace de Hilbert
(M, |.|) soit complet pour | • |„.
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Remarque 19. Pour déduire la convergence du spectre et des espaces propres de la

convergence des formes quadratiques, on doit en principe se ramener à une norme de

Hilbert fixe. Ça ne sera pas nécessaire dans la suite car les étapes de la démonstration
où la norme varie seront traitées à l'aide du lemme 17.

Démonstration du théorème 11. En vertu de la proposition 8, il suffit de montrer
la convergence des valeurs propres et des espaces propres de la forme quadratique
Q(co) \\co\\2 relativement à la norme \co\ mfd<p=û> IMI pour les formes différentielles

exactes de degré 1 à V^-\ (les ßpj sont les valeurs propres de Q sur les formes
exactes de degré /7 + 1).

Comme dans [CdV86], onva passer par l'intermédiaire d'une famille de métriques
singulières (ge)ee]o,i] définies par ge g sur U et ge s2g sur M\U. Notons que
la forme quadratique Qe et la métrique | • |e associées à ge sont bien définies. Plus

précisément, pour une forme exacte co € Q,p+l(M), on a

Qe(co) f \co\2dvg +sn~2p-2 [ \co\2dvg
Ju " Jm\u

et

\co\2e inf / \<p\2dvg + sn~2p f \p\2dv,
à*P=<o \Ju *

JM\U
Pour s fixé, les normes induites par g et ge sont équivalentes. Il en va donc de même

pour les normes | • | et | • |e, ainsi que pour les normes d'opérateurs associées à Q
et Qe. Les résultats usuels de théorie spectrale (spectre formé d'une suite de valeurs

propres tendant vers l'infini) s'appliquent donc à la forme quadratique Qs
La démonstration se déroule entrais étapes. D'abord, on montre que pour s donné,

on peut approcher la métrique ge par une métrique lisse avec convergence du spectre.
Comme pour tout e on peut trouver une métrique lisse dont l'écart spectral avec ge
soit arbitrairement petit, il suffit de montrer que l'écart spectral entre le spectre de ge
et celui de U devient lui ausssi arbitrairement petit quand e -> 0, ce qui fait l'objet
de la suite de la démonstration. La deuxième étape consiste à décomposer l'espace
M des formes exactes en une somme Mo © Mqq à laquelle on applique le lemme 16.

Enfin, on montre la convergence du spectre de Qe restreint à Mq vers le spectre du
domaine à l'aide du lemme 17.

Étape 1. En utilisant le lemme 17, on va montrer qu'on peut approcher ge par des

métriques lisses avec convergence du volume, du spectre et des espaces propres.
Pour un s fixé, on peut approcher la fonction xu + £Xm\u Par une suite de

fonctions décroissantes (fj La suite de métriques gj ff~g tend alors vers ge, et on
note Qj et |- \j la forme quadratique et la norme hilbertienne associées. On peutvérifier
que la suite de forme quadratique Qj converge simplement vers Qe (hypothèse (iv)
du lemme 17). Comme il existe une constante C telle que ge < gj < C * ge, on a

Me < M? < C - \co \2 et Qe((ü) < Qj (co) pour toute forme exacte co (hypothèses (i)
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et (iii) du lemme). Pour appliquer le lemme 17, il reste à vérifier que l'hypothèse (ii)
est satisfaite, à savoir que | • |y converge simplement vers | • |e. Étant donné rj > 0, il
existe une forme (po telle que d(po co et \\(po\\g < \co\2 + r] (par définition de | * \e).

Comme gj converge vers ge, pour j assez grand on a aussi \\(po \\ \. < || <Po \\g + *!, et

donc \co\2 < \co\2 < \\(po\\2. < \co\2 +2n. On a donc bien \co\j -> \co\e pour tout co.

Selon le lemme 17, à e fixé, on peut donc trouver un js tel que l'écart spectral
entre QjË et Qe soit arbitrairement petit.

Étape 2. On va décomposer l'espace des (p + l)-formes exactes en une somme
Mo © Mqq à laquelle on applique le lemme 16 pour la norme | • |e et la forme
quadratique Qs.

On commence par définir le sous-espace Moo de Imd^ C L2(AP+1M) comme
l'adhérence des différentielles des formes lisses qui s'annulent sur U (les adhérences

sont au sens de la norme L2). Une telle forme va nécessairement vérifier la condition
de bord de Dirichlet sur M\U :

M00 {d<p, <p € QP(M), <p\u 0, (p\M\u vérifie (D)}.

L'espace Mq sera défini comme la somme de deux espaces M\ et M2 construits

séparément.
Soit co une (p + l)-forme exacte sur U et (p e £ïp(U) la primitive coexacte de

co fournie par la proposition 6. Si <p est un prolongement lisse de (p sur M, alors d<p

est définie à un élément de Mqq près. On peut définir alors co comme le d<p de norme
minimale pour ge. Cet infimum est bien atteint dans L2 et on peut le construire par
projection sur l'orthogonal L2 de M^. On pose alors

Mi {co, co € ÜP+1(U) exacte}.

L'espace M2 est défini à partir de l'espace de cohomologie HP(U/M). Comme

HP(U/M) est isomorphe au quotient de HP(U) par le sous-espace induit par
HP(M), il est aussi isomorphe à l'orthogonal, dans l'espace des formes harmoniques
de U (avec condition de bord absolue), des représentants harmoniques des classes de

cohomologie induites par HP(M). On peut ainsi définir un représentant harmonique
h de chaque classe [c] € HP(U/M), qui est la forme h € [c] orthogonale aux
restrictions des formes fermées de M.

On peut alors construire M2 sur le modèle de Mi. Chaque forme harmonique h

représentant une classe de HP(U/M), peut être étendue en une forme h sur M, la

forme dh étant alors définie à un élément de Mqq près. On notant co^ la forme dh qui
est L2-orthogonale à Mqq, on pose

^2 {&h, [h] € Hp(U/M)}.

Par construction, Mq M\ © M2 et Mqq sont orthogonaux pour la norme L2,
donc Q-orthogonaux. Avant d'appliquer le lemme 16 on doit encore vérifier que
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Mq © Mqq contient bien toutes les (p + 1)-formes exactes. Soit co € Q,p+l une forme
exacte. Par définition de M\, on peut écrire co coi + co', avec coi € Mi telle que
C0\jj &>i|ï/ et co'- 0. Comme co et C0\ sont exactes, co' l'est aussi. Si on pose

co' d(p, la forme ^ est définie à une forme fermée près et vérifie d(p 0 sur U,
la classe [<p] € HP(U/M) est donc bien définie. Par définition de M2 on a alors
co' ft^ + a>o, °ù C0h est l'élément de M2 associé au représentant harmonique h
de [<p] e HP(U/M), et co0 € «TÇ». On a donc bien a> € M\ © «^2 © ^00, et donc

dom(ge) Mo © ^oo-
Si on noteX^ la première valeurpropre de M \U pour la métrique g et la condition

de bord (D), on sait que pour toute forme co € M^ il existe, par définition, une forme
(p € QP(M) à support dans M\U telle que d<p o> et |M|2/||<p||2 > A^ pour
la métrique g. Pour la métrique ge, on a donc ||u>||2/||^||2 > £_2A^, et a fortiori
Qe(co)/\co\e > e~2X^>\ Si e est suffisamment petit, on peut appliquer le lemme 16.

Étape 3. On va achever la démonstration en appliquant le lemme 17 et la remarque

18 à l'espace Mq et aux familles de métriques et de formes quadratiques | • \e

et Qe. On définit la forme quadratique Q sur Mo par Q(co) fjj \co\2dvg. On doit
aussi définir une norme | • | sur Mq : pour co € M\, on note (p^ la primitive coexacte
de C0\ü donnée par la proposition 6, et pour co € M2, on note ^w le représentant
harmonique de la classe de cohomologie définie par co. On étend linéairement
l'application co —>¦ (pa et on pose M 11^»II» 1& norme || * || étant ici la norme L2 sur
les /?-formes de C/. Les espaces Mi et J<?2 sont orthogonaux pour || * ||, le noyau de

la forme quadratique Q (relativement à || • ||) est M2, et le spectre de Q sur M\ est le

spectre du domaine U pour les (p + l)-formes exactes.

On doit maintenantvérifier que les quatre hypothèses du lemme 17 sont satisfaites.

Les hypothèses (iii) et (iv) sont les plus simples à vérifier : par définition de Qe,

pour tout co € Mq, Qe(&>) tend vers Q(co) fy M2di^, c'est-à-dire la norme L2
au carré de co restreinte à U et Qe > Q pour tout s.

Passons à l'hypothèse (ii). Par définition de M\ et M2, il existe pour tout co € Mq
un prolongement (p^ de (po tel que d^tó co. On a alors

Me < fell2 -* / \$a>\2dvg \C0\2.
JU

En outre, si d(p co, alors (p et (p^ ne diffèrent que par une forme fermée de M, et
donc leur restriction à U ne diffèrent aussi que par une forme fermée. Par conséquent,
la norme de (po minore la norme sur U d&(p, et

M / \<Po)\ âvg < j \<p\ dvg < \\<p\\g
Ju Ju

On en déduit que M — Me» et donc que \co\e —>¦ \co\ pour tout co.
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L'hypothèse (i), dans sa version faible (cf. remarque 18), est la plus technique à

vérifier. On doit contrôler | * \e en fonction de | • | et Q. Pour ce faire, on fixe un élément
co € Mq et on va construire une primitive particulière dont la norme L2 majorera \co\e.

On note (p la /7-forme définie par <p <Pa) sur U, et prolongée harmonique-
ment (pour la métrique g) sur M. On a alors ||^||#1(m\[/) — C|I^|3C/II i
la constante C étant indépendante de (p (la démonstration est similaire au cas des

fonctions, cf. [Ta96], ch. 5, prop. 1.7). Par définition de Mq, la (p + l)-forme
ü>oo d(p — co est un élément de Mqq et elle est orthogonale à co. Elle vérifie donc

II^HÎ2(MW) ± Hd^l22(MW) < \\<P\\2hhm\u) et elle admet une Primitive ^oo

nulle sur U dont la norme vérifie ||^oo||2 < ll^ooP/A Si on pose (p <p — (poo,

on a alors d(p co et

II^IIl2(m\[/) < II^IIl2(m\c7) + II^ooIIl2(m\u)

ii-ii ii-ii /i (D)!/2< \m\LHM\u) + II^IIh1(mw)Mv

Comme ||<p||/7ifJLf\m ''- C\\w\atj\\ i et que la norme H^iar/H i est

Toutes les normes étant ici relative à la métrique g
Comme ||^||^i(MW) < CIIWll#i(3t/) et

elle-même contrôlée par la norme üf1 de ^ sur C/, on a finalement

H2d% <C'||^||Hi(C7), (1)
M\U

où C est une constante dépendant de g mais pas de s.

En utilisant le fait que (p est cofermée sur U (car égale à (po) et tangentielle le

long de dll, une inégalité elliptique à trace associée à l'opérateur d + 8 (voir [Ta96],
section 5.9) donne

\\<P\\hHu) < C"(\\<P\\L2(U) + l|d^||L2(f7)) C"(|û>| + g(ûï)i), (2)

la métrique considérée étant ici encore g.
Pour une métrique gg, on a |o)|2 < ||<p||?2(m + e"_2/,|l^lli2fAf\t/i' Comme

ll^llL2(t/) M et que ||^|lL2(M\t/) peut être majoré à l'aide de (1) et (2), on obtient
la majoration

Me < H2 + s"-2pC'C"2(\C0\ + ô(û>)^)2

qui permet d'appliquer la remarque 18 et le lemme 17. D

3. Prescription du spectre

Pour construire des valeurs propres multiples nous allons nous utiliser, outre théorème
de convergence spectrale 11, une propriété de transversalité vérifiée par des valeurs
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propres multiples sur des espaces modèles. Cette propriété remonte à Amol'd et a

été précisée par Y. Colin de Verdière dans [CdV88], nous allons en rappeler une
définition :

On suppose qu'on a une famille d'opérateurs (Pa)aeBk> ou " est la boule unité
de M (en pratique, Pa est le laplacien associé à une métrique ga), tels que Pq possède

une valeur propre Ao d'espace propre Eo et de multiplicité N. Pour les petites valeurs
de a, Pa possède des valeurs propres proches de Ao dont la somme des espaces propres
est de dimension N. Comme dans la définition de l'écart spectral, on identifie cette

somme à Eo et on note qa la forme quadratique associée à Pa transportée sur Eq.

Définition 20. On dit que Xq vérifie l'hypothèse de transversalité d'Amol'd si

l'application ^: a i-> qa de B dans Q.(Eq) est essentielle en 0, c'est-à-dire qu'il existe

s > 0 tel que si <E> : Bk -> &(E0) vérifie || ^ — $||oo < £, alors il existe a0 € Bk tel

que $(a0) qo-

Une propriété cruciale est que si $ provient d'une famille (P#) d'opérateurs,
alors Ao est valeur propre de P' de multiplicité N et vérifie la même propriété de

transversalité : on dit que cette valeur propre multiple est stable. Comme remarqué
dans [CdV88], on peut généraliser cette définition à une suite finie de valeur propre.

Pour démontrer les théorèmes 1 et 4, nous allons construire des domaines modèles
dont le début du spectre vérifie la propriété de stabilité pour ensuite appliquer le
théorème 11. Ces domaines seront des produits d'une sphère et d'une boule, ils
pourront donc être plongé dans n'importe quelle variété de même dimension.

La multiplicité stable sur un produit sera obtenue grâce à la formule de Künneth : si

(Mi, gi) et (M2, g2) sont deux variétés riemanniennes compactes et a; € Ci*(Mi),
i 1,2, alors on a, en identifiant chacune des formes ai à son relevé sur (M\ x
M2,gi e gi),

À(û!i A «2) Aû!i A ÛÎ2 + Oii A AûÎ2-

En particulier, si a j est une forme propre de valeur propre A; pour i 1,2, alors

«i Aû!2 est une forme propre de valeur propre Ai + A2 pour la métrique produit. Il
est clair que que si ai et «2 sont fermées, alors «i A«2 aussi. On peut vérifier que

pour la métrique produit, si ai et «2 sont cofermées (par exemple si l'une des deux
est une fonction) leur produit est aussi cofermé.

On va montrer que si l'une des deux valeurs propres est de multiplicité stable, la
valeur propre multiple obtenue sur la variété produit peut hériter de cette propriété.

Lemme 21. On suppose que ßpijcl(Mi,gi) est une valeur propre simple,

ßp2,k2 (Mi, gi) une valeurpropre de multiplicité stable N et qu 'il n 'y a pas d'autres
valeurs propres de M\ et M2 dont la somme soit ßpiiki (Mi, gì) + ßP2jC2(M2> g2)-

Alors ßPl,ki (Mi, gì) + ßP2ik2(M2, g2) est valeur propre de multiplicité stable N
sur(MixM2,gi®g2)-
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Demonstration. Si on note a une forme propre de ßPllki(Mi, gì) et E l'espace

propre de ßP2^2(M2,g2) alors, en vertu des remarques qui précèdent, a A E est un
espace propre cofermé de valeur propre ßpi^ (M\ ,gi) + ßP2ik2(M2> £2)

Supposons que ßP2tk2 (M2, gl) vérifie la propriété 20 pour la famille de métrique
g2,a et la famille de forme quadratique qa. Si la forme a est normée, le produit par
a plonge isométriquement Q(M2) dans Q(M\ x M2) en envoyant espace propre sur

espace propre, quel que soit a. En particulier, les espaces propres de (M2, g2,a) de

valeur propre proche de ßP2,k2 (Mi > gl), sont envoyé sur des espaces propres de même

multiplicité, leur valeur propre étant augmenté de ßpi>fcl(Mi, gi). L'espace a A E
vérifie donc de la propriété 20 pour la valeur propre ßpi jCl (Mi, g 1 + ßP2ik2 (Mi, £2)
et la famille de forme quadratique qa + ßpisjci (Mi, gi)| • |2. D

Nous utiliserons plusieurs fois le fait que sur une boule euclidienne de rayon s,
le noyau du laplacien pour la condition de bord (A) est trivial, sauf en degré 0 pour
lequel sa dimension est 1. Toutes les autres valeurs propres tendent vers +00 quand
e -> 0. En particulier, sur un produit riemannien M x B (e), les premières formes

propres sont les relevés des premières formes propres de M.
Les trois lemmes qui suivent ont pour but de construire les domaines modèles :

Lemme 22. Pour tous entiers N > 1, n > 3, toute suitefinie 0 < ai < CI2 < ••• <
un et toute constante C > un, il existe une métrique g sur Sn telle que ßo^ a%

pour i < N, ces valeurs propres vérifiant l'hypothèse de stabilité, ßo,N+i > C et

ßPti > C pour 1 < /7 < [2^1].

Démonstration. Le résultat sur les ßo,i découle des travaux de Colin de Verdière

(voir [CdV86] et [CdV87]), il suffit de montrer que la construction géométrique peut
se faire avec ßPt\ > C pour p > 1. Le principe de la démonstration est d'appliquer le

théorème 11 avec un domaine U dont le spectre vérifie la conclusion du lemme. Pour

appliquer l'argument de stabilité, on ne doit pas travailler avec une seule métrique sur
U mais une petite famille de métriques, un élément crucial sera alors que l'invariant
conforme qui minore le spectre en degré [^] varie continûment pour la topologie C°
(voir remarque 14), il sera donc uniformément minoré pour cette famille de métrique.

On procède par récurrence sur la dimension. En dimension 3 et 4, on procède

comme dans [CdV87] : On choisit une surface E dont le début du spectre (pour les

fonctions) est égal à a\ < CI2 < ••• < cin et vérifie l'hypothèse de stabilité, et on
choisit comme domaine U le produit riemannien de E avec un petit intervalle ]—£,£[
(en dimension 3) ou un petit disque de rayon e (en dimension 4), la métrique étant

prolongée de manière quelconque en dehors de U. Le théorème 11 et l'argument de

stabilité assure l'existence d'une métrique g telle que ßo,i #; pour i < N, et

ßo,N+i > C, et comme son volume est arbitrairement petit, le théorème 13 et la

remarque 14 assurent qu'on peut choisir g telle qu'on ait aussi //.isi > C.
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Si, par hypothèse de récurrence, le lemme est vrai en dimension n — 1, on raisonne

comme en dimension 3 et 4 en munissant S"-1 de la métrique fournie par le lemme
et en utilisant le domaine U Sn~1x]—s,s[ plongé dans Sn. Le théorème 11 donne

une métrique Sn qui a le spectre souhaité pour p < [^—] (HP(U/M) étant trivial),
et le théorème 13 assure que ßrn-i -, l > C. D

Lemme 23. Pour tous entiers N > 1, p > 2 et n > 2/7 + 3, toute suite finie
0 < öi < 02 < ••• < tfjv et toute constante C > un, il existe une métrique g
sur la variété Mn Sp+1 x Bp+2 pour n 2/7 + 3 ou Mn S"'1 x [0,1] si
n > 2/7+3, telle que ßp^i ai pour i < N, ces valeurspropres vérifiant l'hypothèse
de stabilité, ßPtN+i > C et ßQti > C pour! < q < ^, q ^ /?, le volume Vo\(M, g)
étant arbitrairement petit.

Démonstration. Remarquons d'abord qu' en prescrivant le début du spectre pour /?

0 dans le lemme 22, on a aussi prescrit les ßPj pour p n — 1 et i < N, par dualité
de Hodge. Partant de ce constat, on va encore procéder par récurrence sur n, le degré

/7 étant fixé.
Pour n 2/? + 3, il suffit de considérer M Sp+1 x Bp+2(s), la sphère Sp+1

étant munie de la métrique fournie par le lemme 22 et Bp+2(s) étant une boule de

rayon s petit.
Pour n > 2/7 + 3, la récurrence s'effectue comme dans le lemme 22 : on applique

le théorème 11 au domaine M"-1 plongé dans S"-1 et on pose Mn S"-1 x] — s, s[.

D

Lemme 24. Pour tous entiers N > 1, n > 3, toute suitefinie 0 < ai < ä2 < ä^ <
< un et toute constante C > un, il existe une métrique g sur M B3 x Sn

telle que ß\j(M,g) ai pour i < N (avec stabilité), ß\tN+i(M,g) > C et

ßPti (M, g) > C pour 2 < /? < j, le volume Vol(M, g) étant arbitrairementpetit.

Démonstration. On va une nouvelle fois utiliser le théorème 11 avec un domaine
U produit d'une sphère et d'une boule, mais avec une métrique particulière sur la
boule : selon [Gu04] (théorème 2.1), il existe une métrique gß sur B3 telle que
ßi,i(B3,gß) ax, ßi,2(B3,gB) > C et ßp,i(B3,gB) > C pour p 0,2,
le volume étant arbitrairement petit. En utilisant le lemme 22, on peut munir Sn

d'une métrique telle que ßoti(Sn) ai — a\ pour i < N — 1, ßo,N(Sn) > C et

ßp,i(Sn) > C pour /7 > 1. Le produit M S" x B3 vérifie alors ßij(M)
ßo,i(Sn) + ßi,i(B3,gB) at pour i < N, ßhN+i(M) > C et ßp,i(M) > C

pour2</?<|. D

On est maintenant en mesure de démontrer les résultats annoncés dans l'introduction.
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Demonstration du théorème 1. Pour chaque degré p, on se donne le domaine Up
fourni par le lemme 23 (ou le lemme 24 pour /7 1) dont le début du spectre en
degré p est celui qu'on veut prescrire, avec C > sup t aPii. On peut noter que dans la

démonstration du théorème 11, l'hypothèse de connexité du domaine U n'intervient
pas, la conclusion reste donc vraie en remplaçant U par un nombre fini de domaine.

On peut donc l'appliquer à la famille (Up) plongée dans M (en remarquant que
HP{{ U Up)/M) est trivial pour 1 < /? < ^^), et grâce à la stabilité du spectre de

ces domaines on conclut à l'existence d'une métrique g sur M telle que ßPtk (M, g)
ap,k pour pour l<Â;<iVetl</7< [^j-]. Comme pour les lemmes précédents,
le cas du degré p [^j-] est couvert par le théorème 13.

Pour montrer qu'on peut aussi prescrire levolume, on procède comme dans [Gu04]
et [Ja08] : on peut appliquer l'argument de stabilité au volume en le traitant comme
une valeur propre simple. Il suffit donc d'ajouter à la famille Up une boule de volume
V — ^ Yo\(Up) (en ayant choisit les volumes des Up suffisamment petits) et dont les

valeurs propres pour les /?-formes sont arbitrairement grandes (c'est possible selon

[GP95]). Le fait que le volume de cette boule vérifie l'hypothèse de transversalité

signifie simplement qu'on peut lui donner n'importe quelle valeur au voisinage de

V — £\ Vol(Up), par exemple par homothétie. D

Demonstration du théorème 4. Y. Colin de Verdière a montré que la première valeur

propre de la sphère S 2 muni de sa métrique canonique est stable ([CdV88], section 2).
On peut donc raisonner comme dans le lemme 23 : la valeur propre ßiti(S2) Qstde

multiplicité 3 stable et il suffit d'appliquer le théorème 11 au domaine S2 x Bn~2(e).
D
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