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Prescription de la multiplicité des valeurs propres du laplacien
de Hodge—de Rham

Pierre Jammes

Résumeé, Sur toute variété compacte de dimension supérieure ou égale a 6, on prescrit le volume
et le début du spectre du laplacien de Hodge—de Rham agissant sur les p-formes différentielles
pour 1 < p < Z. En particulier, on prescrit la multiplicité des premiéres valeurs propres.

Abstract. On any compact manifold of dimension greater than 6, we prescribe the volume and
n

any finite part of the spectrum of the Hodge Laplacian acting on p-form for 1 < p < 5. In
particular, we prescribe the multiplicity of the first eigenvalues.

Classification mathématique par sujets (2010). 58]50.

Mots-clefs. Laplacien de Hodge—de Rham, formes différentielles, multiplicité de valeurs pro-
pres.

Keywords. Hodge Laplacian, differential forms, multiplicity of eigenvalues.

1. Introduction

On sait depuis les travaux de S. Y. Cheng [Ch76] que la multiplicité de la k-1iéme
valeur propre du laplacien sur une surface compacte est majorée en fonction de & et
de la topologie. En dimension plus grande, Y. Colin de Verdiere a montre ([CdV86],
[CAVET]) que toute rigidite disparait et qu on peut arbitrairement prescrire le début
du spectre, en particulier la multiplicité des valeurs propres peut étre arbitrairement
grande.

Le resultat de Cheng s’étend aux operateurs de Schrodinger sur les surfaces et
la majoration de la multiplicité a été améliorée (voir [Be80], [Na88], [HHN99]), la
meilleure estimation pour la multiplicité de la 2¢ valeur propre d’un opérateur de
Schrodinger sur une surface ayant été obtenue par B. Sévennec ([S¢94], [S¢02]). Ce
probléme a aussi éte étudic pour des opérateurs avec champ magnétique ([CdVT93],
[BCCO8], [Er02]), pour lesquels la multiplicit¢ peut étre arbitrairement grande. En
dimension supérieure ou égale a 3, J. Lohkamp a amélioré les résultats de Colin de
Verdiere en montrant dans [[Lo96] qu’on pouvait prescrire simultanément le début du
spectre, le volume et certains invariants de courbure.
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En comparaison, les connaissances sont beaucoup plus limitées concernant les
operateurs agissant sur les fibrés vectoriels naturels. P. Guérini a montré dans [Gu04 |
qu’on peut prescrire toute partie finie du spectre du laplacien de Hodge—de Rham, qui
agit sur les formes différentielles, mais en imposant aux valeurs propres prescrites
d’étre simples. Un résultat semblable a été obtenu par M. Dahl pour I"opérateur de
Dirac ([Da05]). Le seul résultat connu concernant la multiplicité des valeurs propres
non nulles de ces deux opérateurs est qu’on peut construire un nombre arbitraire
de valeurs propres doubles du laplacien de Hodge—de Rham (voir [Ja0%a]). On peut
consulter [Ja09b] pour une présentation générale de ces résultats.

Le but de cet article est d’¢étendre le théoréme de Colin de Verdiere aux formes
différentielles en montrant que sur toute variété compacte de dimension # > 6, on
peut construire des valeurs propres du laplacien de Hodge—de Rham de multiplicité
arbitrairement grande, et plus précisément que si on excepte les formes de degré 7,
on peut prescrire arbitrairement le début du spectre, avec multiplicite.

Si(M?", g) est une variété riemannienne compacte orientable de dimension #n, le
laplacien A agissant sur I’espace Q2#(M ) des p-formes différentielles est défini par
A = d8 + 8d ou & désigne la codifférentielle. Nous noterons son spectre

0= )LpsO(M!g) <AP,I(M5 g) E)Lp,z(Mag) =

ou les valeurs propres non nulles sont répétées s’1l y a multiplicité. La multiplicite
de la valeur propre nulle, si elle existe, est un invariant topologique : ¢’est le nombre
de Betti b,(M ). Par théorie de Hodge, le spectre (A, (M, g));>1 est la réunion de

(Mpi(M,2)); et (up_1,;(M, g)); ou
0 < ptp (M, 8) < ftp2(M, g)<--

désigne les valeurs propres du laplacien restreint a 1"espace des p-formes coexactes,
etonaenoutre pp; (M, 2) = phn—p—1,i(M, g) pour tout p et i si M n’a pas de bord.
Le spectre complet du laplacien se déduit alors des up; (M, g) pour p < 2l ¢lest

p)
donc a la multiplicité de ces valeurs propres qu’on va s’ intéresser.

Théoréme 1. Soit M” une variété compacte connexe orientable sans bord de dimen-
sionn > 6et N € N* Sionsedonneunréel V > 0, une suite 0 < a1,) < a1z <
a13 <. < ayn etdessuites 0 < dy ) <dpy << <apy pour2 < p < [%]
alors il existe une métrigue g sur M telle que

— ppi(M,g) = apy pourl <k < Netl=<p<[53];

s .Uv[n_z_l],l(Ma g) > sup; y dpi;

— YVol(M,g)=1V.

Remarque 2. La condition sl (M, g) > sup; y dp,; permet de prescrire le

r—1
2

début du spectre en degré [£5=], les formes propres correspondantes étant exactes.
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Comme dans [CdVE&6] et [CAV8T], le principe de la démonstration consiste a faire
converger le spectre de la variéte vers celui d’un espace modele (en 1’occurence un
domaine de la variété) qui a le spectre souhait€ et de conclure grace aux propriétés
de stabilité du spectre du modéle. Pour les formes de degrés proches de 3, la dé-
monstration échoue en raison de 1’ invariance (ou la presque invariance) conforme de
la norme L2, On verra cependant que les rigidités qui apparaissent pour ces degrés
faciliteront la construction des espaces modeles. Une autre difficulté apparait pour
les formes de degré 1, on ne pourra pas faire appel aux méme espaces modeles que
pour les autres degrés. On utilisera une construction particuliére qui ne permet pas
de prescrire la multiplicité de la premiere valeur propre et qui ne fonctionne qu’en
dimension # > 6.

Le probléme suivant reste donc ouvert :

Question 3. La multiplicité des valeurs propres p1,1(M, g) et fazly (M, g) peut-
elle étre arbitrairement grande ?

Dans [Ja09a], on montre comment construire des exemples de variétés de dimen-
sion n > 4 admettant des valeurs propres de multiplicité arbitrairement grande, y
compris en degre [”2;1] Leur topologie est trés particuliere (vari€tés produits), mais
ces exemples montrent qu’on n’a pas en géncral de borne sur la multiplicité comme
en dimension 2.

En ce qui concerne 1,1 (M, g), on peut aussi apporter cet élément de réponse en
utilisant les méme techniques que pour le théoréme 1 :

Théorémed. Si M" une variété compacte connexe orientable sans bord de dimension
n > 5, alors il existe sur M une métrique g telle que la multiplicité de p11(M, g)
soit égale a 3.

La méthode utilisée ne permet cependant pas de prescrire les autres valeurs pro-
pres.

Le probleme le plus intéressant semble étre de comprendre ce qui se passe en
dimension 3. En effet, les exemples produits donnés dans [Ja09a| sont de dimension
au moins 4. L’énonce de S. Y. Cheng pourrait s’¢tendre aux 1-formes coexactes en
dimension 3 :

Question 5. Sur une variete M de dimension 3, existe-t-1l une borne sur la multiplicite
de 1 (M, g) dépendant uniquement de k et de la topologie de M ?

Tl faut noter que pour établir un tel résultat, on peut difficilement espérer adapter la
démonstration de Cheng dont les arguments sont specifiques aux fonctions (domaines
nodaux) et a la topologie en dimension 2.
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Dans la section 2 nous montrerons, apres quelques rappels techniques, qu’on peut
faire tendre le spectre d'une variéte compacte pour le laplacien de Hodge—de Rham
vers le spectre d’un de ses domaines. La section 3 sera consacrée a la démonstration
des théorémes 1 et 4.

2. Convergence du spectre d’une varieté vers celui d’un domaine

2.1. Conditions de bord et cohomologie pour une variété a bord. Dans ce para-
graphe et le suivant, nous allons rappeler certains aspects techniques de la théorie
spectrale du laplacien de Hodge—de Rham auquels nous feront appel pour montrer
qu’on peut faire tendre le spectre d’une variét¢ compacte vers celui d’un de ses do-
maines (théoréme 11).

Si U est un domaine & bord C! d’une variété compacte M, onnote j: U — U
I"injection canonique et N un champ de vecteur normal au bord. Il existe plusieurs
conditions de bord admissibles pour le laplacien de Hodge—de Rham sur I (¢ est-
a-dire telles que le laplacien soit elliptique), les deux principales sont les conditions
absolues et relatives, que nous noterons respectivement (A) et (R) et qui sont définies
par

w [0 =
J¥(ndew) =0, F*¥(xdew) = 0,

et

o i@ =0,
=) {j*(a)):().

Pour la condition (A), Ker A est isomorphe a la cohomologie H#(I7) et pour (R),
il est 1somorphe a la cohomologie a support compact Hé’(U) (voir par exemple
[Ta96]. ch. 5). Rappelons aussi que les cohomologies de U et U sont isomorphes
([Ta%96], ch. 5, p. 375). Il est immédiat que sous la condition (R) on a j *(dw) = 0. Et
comme la dualit¢ de Hodge permute ces deux conditions de bord, (A) implique que
J *(x8w) = 0.

Nous aurons besoin d’une autre condition de bord, définie par

J* (@) =0,
D) {j*(*a)) — 0.

Pour la condition (D), le noyau du laplacien est trivial (voir [An89]).

Rappelons qu’en restriction aux fonctions, la condition (A) est équivalente a la
condition de Neumann, et les conditions (R) et (ID) a la condition de Dirichlet.

La décomposition de Hodge L2(APU) = Imd @ Ker A ¢ Im 8 dépend de la
condition de bord choisie. Pour une forme @, elle s’écrite» = d6 8@ + o +8d8 ot ¢ et
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8 vérifie la condition de bord considérée, a étant dans le noyau Ker A correspondant
(ctf. proposition 9.8 de [Ta96]).

Dans la suite du texte interviendra essentiellement la condition (A) (et dans une
moindre mesure la condition (D)), et nous ferons en particulier appel a la propriété
survante :

Proposition 6. Si w est une p-forme exacte sur U, alors il existe une forme 8 <
QP(U) vérifiant la condition (A) et telle que & = d88. En particulier, la forme
@ = 88 verifie j*(\yp) = 0, est orthogonale aux formes fermées et minimise la
norme L? parmi les primitives de w.

La démonstration de ces faits (qui ne sont souvent utilisés qu’implicitement dans
la littérature) est esquissée dans [Ch79] (section 3, p. 272). Nous allons la rappeler :

Démonstration. Sia € QP(U)et B € QPTL(U), une intégration par partie donne
(da, B) = (@,88) + [5 j*(@ A %B). Pour que le terme de bord s’annule, il n’est
pas nécessaire que les deux formes & et f vérifient I'une des conditions de bord, il
suffit par exemple que j*(*xp) = 0, ¢’est-a-dire que § soit tangentielle.

S1 @ est une forme exacte, on a alors (@, ) = 0 pour toute forme 8 tangentielle
cofermee. Dans la decomposition de Hodge pour la condition (A), la composante
cofermée de w est donc nulle méme s1 @ ne vérifie aucune condition de bord. On
a donc w = d88 ou # vérifie la condition (A) (autrement dit, I’adhérence L? des
formes exactes vérifiant (A) contient toutes les formes exactes sur U, sans condition
de bord).

Sion pose ¢ = 88, on a alors j*(iye) = 0, et (a,¢) = (da,8) = 0 pour
toute forme o fermée. Comme deux primitives de @ difféerent par une forme fermee,
¢ minimise la norme L? parmi celles-ci. ]

Nous aurons besoin de définir, outre les cohomologies H?(U) et HY (U) évo-
quees plus haut, un espace de cohomologie traduisant 'interaction entre la coho-
mologie de U et celle de M. Cet espace est construit comme le quotient des formes
fermées de U par la restriction des formes fermées de M :

H?(U/M) = {w € Q?(U), do = 0}/{og, o € 2P(M) etdo = 0}

Comme une forme exacte de U est toujours la restriction d’une forme exacte de
M, HP(U/M) est isomorphe au quotient de H?(U) ~ HP(U) par I'image de
I’application naturelle H 2 (M) — H?(U) définie par restriction des formes fermées
et exactes. En particulier, H?(U /M) est de dimension finie.

2.2. Caractérisation duspectredulaplacien de Hodge. Pourdémontrer lethéoreme
de convergence au paragraphe suivant, nous utiliserons une caractérisation variation-
nelle du spectre dont le principe est di a . Cheeger et J. Dodziuk :
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Proposition 7 ([[Do82], [Mc93]). Sur une variété compacte sans bord ou avec con-
dition de bord (A), on a

. o] _
fp; = inf  sup 7 de =y,
Vi wevivioy Ll

ou V; parcourt I'ensemble des sous-espaces de dimension i dans l’espace des p + 1-
Jormes exactes lisses.

Il faut préciser que dans le cas a bord, cette formule fournit le spectre pour la
condition (A) méme s1 on ne suppose pas que des formes w et ¢ vérifient cette
condition. Cela tient essentiellement au fait démontré plus haut que I’espace L? des
formes exactes pour la décomposition de Hodge associee a (A) contient toutes les
formes exactes sans condition de bord.

La proposition 7 permet d’estimer les valeurs propres du laplacien, mais pour les
applications a la multiplicite, et en particulier pour utiliser les techniques de Colin de
Verdiere (voir lemmes 16 et 17), nous aurons besoin de contréler a la fois les valeurs
propres et les espaces propres, nous allons donc la reformuler. Si @ est une forme
exacte, alors g(w) = infgy—y |@||* est une forme quadratique, c¢’est la norme au
carreé de la primitive coexacte de @. Son spectre est ’inverse de celui du laplacien
(on peut se convaincre qu’on a aussi g(@) = (A7 '@, ®)). On retrouve la formule de
la proposition 7 en intervertissant le role de la forme quadratique et de la norme de
Hilbert :

Proposition 8. Le spectre et les espaces propres du laplacien en restriction aux
formes exactes sont ceux de la forme quadratique Q{w) = ||a)||;‘,:2 relativement a la
norme |@| = inf || ;2.

do=w

Remarque 9. I espace L2(A? 1 M) N Im d (I’adhérence étant prise au sens de la
norme L?) n’est pas un espace de Hilbert car il n’est pas complet pour la norme | - |
(c’est seulement le domaine de la forme quadratique (), mais on peut identifier son
complété a L2(APM)/Ker d, chaque forme exacte de L2(APT1 M) étant identifide
a I’ensemble de ses primitives.

Remarque 10. On peut deduire aisément de la proposition 7 que le spectre du lapla-
cien est continu pour la topologie C° (cf. [Do82]). On sait aussi, d’aprés [BD97]
qu’on a continuité des espaces propres pour les topologies C° et L?. La formulation
de la proposition 8 permet de retrouver ce fait de maniére plus directe a I'aide des
techniques de [CdV86] (voir le lemme 17 au paragraphe suivant).

2.3. Convergence spectrale. Nous allons maintenant montrer comment on peut
faire tendre le spectre du laplacien de Hodge—de Rham d’une variété compacte vers
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celui d’un domaine, généralisant ainsi au formes différentielles le théoréme que
Y. Colin de Verdiére a montré pour les fonctions (théoreme II1.1 de [CdV86]). Pour
appliquer ce résultat, nous aurons besoin d’une certaine uniformité de la convergence,
nous reprendrons pour cela les notations de [CdV86]

Soit Eg et I sont deux sous-espaces vectoriels de méme dimension N d’un
espace de Hilbert, munis respectivement des formes quadratiques gg et 1. S1 Eq et
FE| sont suffisamment proches, il existe une isométrie naturelle ¢ entre les deux (voir
la section I de [CdV86] pour les détails de la construction), on définit alors 1’écart
entre go et g1 par ||¢1 o —go||. Pour deux formes quadratiques (o et (01 sur I’espace
de Hilbert, on appellera N -écart spectral entre O et O, I’ écart entre les deux formes
quadratiques restreintes a la somme des espaces propres associes aux N premieres
valeurs propres. S1 cet écart est petit, alors les N premiéres valeurs propres de (g et
leurs espaces propres sont proches de ceux de Q1.

On veut montrer que la convergence spectrale est uniforme pour une certaine
famille de spectres limites. Comme dans [CdV86] on dira done qu’une forme quadra-
tique verifie "hypotheése () s1 ses valeurs propres vérifient

A=< AN<AN+N<AN1 =M

pour un entier N et des reels n, M > 0 fixés une fois pour toute.
Dans la suite du texte, sauf mention explicitement contraire, le spectre considére
sur les domaines sera toujours relatif aux conditions de bord (A).

Théoréeme 11. Soit (M”, g) une variété riemanienne compacte sans bord de dimen-
sion n et U un domaine de M a bord C1. Il existe une suite de métriques (g;) sur M
conformes a g telle que

— Vol(M, g;) — Yol(U, g) qguand i — oo ;

— Wpi(M, gi) — O pour p = [ng?)] etk <dpquandi — oo;

— Mpgrd,(M, 8i) = pp (U, g) pour p < [%31 etk > 1 quandi — oco;
oii d, est la dimension de H? (U /M ).

En outre, si les jp (U, g) verifient I'hypothese (x) pour 1 < p < ["2;3] alors
pour tout € > Uil existe i tel que le N-écart spectral entre les laplaciens sur U et M
pour la metrique g; soit inférieur a e.

Remarque 12. Dans [Co04], B. Colbois avait pose la question de savoir si on peut
faire tendre les valeurs propres du laplacien de Hodge—de Rham vers 0 en fixant le
volume et la classe conforme. Pour p < [n_g?»l une réponse positive a été donnée dans
[Ja08] par une constrution similaire a celle du théoréme 11 avec U =~ S% x BP"=P,
Le théoréme 11 permet une compréhension plus générale de ce phénomeéne, tout en
simplifiant les démonstrations de [ Ja08].

n—1 4
> |, car pour ce degré,

le spectre du laplacien est uniformément minoré dans une classe conforme :

On sait que 1’énoncé du théoréme 11 est faux pour p = |
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Théoréme 13 ([Ja07]). Soit M" une variété compacte de dimension n > 3, Pour
toute classe conforme C sur M, il existe une constante K(C) > 0 telle que pour
toute métrique g € C, on a

2
f[azi) 1 (M, g) Vol(M, g)7 = K.

On peut donc construire des contre-exemples en choissant M et U tels que
1 . . " : .
H [H_Z_](M /U) soit non trivial, ou en utilisant un domaine dont la premiére valeur

propre est plus petite que que K - Vol(U, g)’% (c’est possible d’apres [Gu04]).

Remarque 14. Laconstante K duthéoreme 13 varie continiment pour des déforma-
tions C° de la métrique (voir [Ja07]). Cette propriété nous sera utile pour démontrer
le théoreme 1.

Remarque 15. Pour I"opérateur de Dirac, 1l existe une rigidité conforme du méme
type que celle du théoréeme 13 (voir [AmO3]). On ne peut donc pas espérer obtenir un
résultat semblable au théoréme 11 pour les spineurs.

Comme dans [CdV8&6], on fera appel aux deux lemmes qui sutvent. [es constantes
N, M et 1 qui interviennent dans les énoncés font référence a I"hypothese () définie
plus haut.

Lemme 16 ([CdV86], th. 1. 7). Soit Q une forme quadratique positive sur un espace
de Hilbert # dont le domaine admet la décomposition Q-orthogonale dom(Q) =
Ho & Heo. Pour tout € > 0, il existe une constante C(n, M, N, £) > 0 (grande) telle
que si Qo = Q)| veérifie 'hypothese (*) et que Q(x) = C|x|* pour tout x € Heer
alors Q) et Q¢ ont un N -écart spectral inférieur a €.

Lemme 17 ([CdV86], th. 1.8). Soit (., |- |) un espace de Hilbert muni d’'une forme
quadratique positive Q. On se donne en outre une suite de métrigues | - |, sur # et
une suite de formes quadratiques (0, de méme domaine gue Q telles que :

(1) il existe C1, Cy > 0 tels que Cy|x| < |x|p < Ca|x| pour tout x € # ;

(ii) pour tout x € dom(Q), |x|, — |x|;

(i11) pour tout x < dom(Q), O(x) = Qn(x);

(iv) pour tout x € dom(Q), Q,(x) — O(x).
Si Q vérifie I 'hypothese (x), alors a partiv d’'un certain rang (dépendant de n, M et
N). Q et Q, ont un N-écart spectral inférieur a &.

Remarque 18. Dans le lemme 17, on peut affaiblir I’hypothése C; |x| < x|, <
Colx| en Cr x| < |x|p < Colx| + SRQ(X)% avec &, — 0, la démonstration restant

exactement la méme. En particulier, 1l n’est pas nécessaire que 1’espace de Hilbert
(.| - |) soit complet pour | - |5.
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Remarque 19. Pour déduire la convergence du spectre et des espaces propres de la
convergence des formes quadratiques, on doit en principe se ramener a une norme de
Hilbert fixe. Ca ne sera pas nécessaire dans la suite car les étapes de la démonstration
ou la norme varie seront traitées a I’aide du lemme 17.

Demonstration du théoreme 11. En vertu de la proposition 8, il suffit de montrer
la convergence des valeurs propres et des espaces propres de la forme quadratique
Q(w) = |@||? relativement a la norme || = infg,=e |@|| pour les formes différen-
tielles exactes dedegré 1 a [%] (les ptp, ; sont les valeurs propres de Q) sur les formes
exactes de degré p + 1).

Comme dans [CdV86], onva passer par " intermédiaire d’une famille de métriques
singulieres (ge)ec)o,1] définies par g, — g sur U et g, — g% g sur M\ U. Notons que
la forme quadratique O, et la métrique | - |, associées & g, sont bien définies. Plus
précisément, pour une forme exacte @ € 22T1(M), ona

0uw) = [ lofdug 1 [ jopdy,
U M\U

2 , 2 n—2 2
ol = inf dv, +¢ pf dv )
85 = Jof, (]U | “dv, w ¢ [dvg

Pour ¢ fixé, les normes induites par g et g, sont équivalentes. Il en va donc de méme
pour les normes |- | ¢t |- |, ainsi que pour les normes d’opérateurs associées & O
et (0. Les résultats usuels de théorie spectrale (spectre formé d’une suite de valeurs
propres tendant vers 1’infini) s’appliquent done a la forme quadratique Q. .

La démonstration se déroule en trois étapes. [D’abord, on montre que pour & donné,
on peut approcher la métrique g, par une meétrique lisse avec convergence du spectre.
Comme pour tout € on peut trouver une métrique lisse dont 1’écart spectral avec g,
soit arbitrairement petit, il suffit de montrer que 1’écart spectral entre le spectre de g,
et celui de U devient lui ausssi arbitrairement petit quand € — 0, ce qui fait I’objet
de la suite de la démonstration. La deuxiéme étape consiste a décomposer I’espace
# des formes exactes en une somme #Hp & Hoo a laquelle on applique le lemme 16.
Enfin, on montre la convergence du spectre de (J, restreint a # vers le spectre du
domaine & I'aide du lemme 17.

E’rape 1. En utilisant le lemme 17, on va montrer qu’on peut approcher g, par des
metriques lisses avec convergence du volume, du spectre et des espaces propres.

Pour un ¢ fix¢, on peut approcher la fonction yy + €xany par une suite de
tonctions décroissantes ( f; ). La suite demétriques g; = JG.2~ g tend alors vers g, eton
note Q; et |-|; la forme quadratique et la norme hilbertienne associées. On peut vérifier
que la suite de forme quadratique Q; converge simplement vers (), (hypothese (1v)
du lemme 17). Comme il existe une constante C telle que g, < g; = C - g, ona
|2 = |a)|f < C-|w|? et Q:(w) < Q; (@) pourtoute forme exacte e (hypothéses (i)



Q76 P. Jammes CMH

et (111) du lemme). Pour appliquer le lemme 17, 1l reste a vérifier que ’hypothése (i1)
est satisfaite, & savoir que | « |; converge simplement vers |- .. Etant donné n > 0, il
existe une forme ¢ telle que dgy = wet |||z, < |@|; + 1 (par définition de |- ).
Comme g; converge vers g, pour j assez grand on a aussi an0||§j < |l H:‘g’,s + 1, et
done |a)|§ < |w|? < ||goo||§j < |a>|§ + 2. On a donc bien |@|; — |@|, pour tout .

Selon le lemme 17, a € fixe, on peut donc trouver un j, tel que I’ecart spectral
entre Q;, et U, soit arbitrairement petit.

E’rape 2. On va décomposer 1’espace des (p + 1)-formes exactes en une somme
Ho & Hso a laquelle on applique le lemme 16 pour la norme | - | et la forme
quadratique Q..

On commence par définir le sous-espace Hoo de Ind? C L2(A?T1 M) comme
I’adhérence des différentielles des formes lisses qui s’annulent sur U/ (les adhérences

sont au sens de la norme L?). Une telle forme va nécessairement vérifier la condition
de bord de Dirichlet sur M\U :

Hoo = {de, ¢ € QP(M), ¢y = 0, ¢pn\p vérifie (D)}

L’espace #g sera défini comme la somme de deux espaces /7 et #5 construits
seéparement.

Soit @ une (p + 1)-forme exacte sur U et ¢ € Q2(U) la primitive coexacte de
w fournie par la proposition 6. Si ¢ est un prolongement lisse de ¢ sur M, alors dg
est définie a un élement de H o prés. On peut définir alors @ comme le d¢ de norme
minimale pour g.. Cet infimum est bien atteint dans L? et on peut le construire par
projection sur I’orthogonal L% de #s. On pose alors

H1 =6, o € QPTHU) exactel.

L’espace # est défini a partir de I’espace de cohomologie H#(U/M). Comme
HP(U/M) est isomorphe au quotient de HP(U) par le sous-espace induit par
H?(M), 1l est aussiisomorphe a I’orthogonal, dans I’espace des formes harmoniques
de U (avec condition de bord absolue), des représentants harmoniques des classes de
cohomologie induites par HZ(M ). On peut ainsi définir un représentant harmonique
h de chaque classe [¢] € HZ(U/M), qui est la forme A € [c] orthogonale aux
restrictions des formes fermées de M.

On peut alors construire #¢; sur le modele de J¢1. Chaque forme harmonique /4
représentant une classe de f1#(U/M ), peut €tre ¢tendue en une forme 4 sur M, la
forme dh étant alors définie a un élement de # o pres. On notant @y, la forme dh qui
est L2-orthogonale & #o, on pose

Hy = {@p, [h] € HP(U/M)}.

Par construction, #q = #; & #, et Ho sont orthogonaux pour la norme 1.2,
donc Q-orthogonaux. Avant d’appliquer le lemme 16 on doit encore vérifier que
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Ho @ H o contient bien toutes les (p + 1)-formes exactes. Soit @ € Q22+ une forme
exacte. Par définition de J1, on peut écrire @ — w; + @', avec w1 € J telle que

o _ f _ /1> : 2
Qg = C1g et a)|l7 = 0. Comme @ et @ sont exactes, @’ I"est aussi. S1 on pose

w’ = de, la forme ¢ est définie 4 une forme fermée prés et vérifie dg = 0 sur U,
la classe [¢] € H¥(U/M) est donc bien définie. Par définition de #; on a alors
@' = wp + g, ou wy est ’¢élément de H, associé au représentant harmonique A
de [p] € HP(U/M), et wg € Hoo. On a donc bien @ € H) & Hy & Heo, et donc
dom(Q.) = #y & Heo.

Sionnote A la premiére valeur propre de M \ I/ pour la métrique g et la condition
de bord (D), on sait que pour toute forme w € Hoo 1l existe, par définition, une forme
@ € QF(M) a support dans M\U telle que dg = o et ||w|?/||¢]* = AP pour
la métrique 2. Pour la métrique g., on a donc ||@|?/||¢|? = e 2AD), et a fortiori
O )/ ||, = e 24P, Si ¢ est suffisamment petit, on peut appliquer le lemme 16.

Erape 3. On va achever la démonstration en appliquant le lemme 17 et la remar-
que 18 a 'espace # et aux familles de métriques et de formes quadratiques | - |,
et Q.. On définit la forme quadratique Q sur J par Q(@) = fU |w[?dvg. On doit
aussi définir une norme | - | sur g : pour @ € #1, on note ¢, la primitive coexacte
de W5 donnée par la proposition 6, et pour @ € F», on note ¢, le représentant
harmonique de la classe de cohomologie définie par @. On étend linéairement 1”ap-

plication @ — ¢, et on pose |@| = ||¢w|. la norme || - | étant ici la norme L? sur
les p-formes de U. Les espaces 1 et #; sont orthogonaux pour || - ||, le noyau de
la forme quadratique Q (relativement a || - ||) est #5, et le spectre de Q sur J; est le

spectre du domaine U pour les (p + 1)-formes exactes.

On doit maintenant vérifier que les quatre hypothéses du lemme 17 sont satisfaites.

Les hypothéses (111) et (1v) sont les plus simples a vérifier : par definition de O,
pour tout @ € Hy, Q.(w) tend vers Q(w) = f, |@|2dv,, ¢’est-d-dire la norme .2
au carre de @ restreinte a U et O, > Q pour tout €.

Passons a I’hypothése (i1). Par définition de #; et #5, 1l existe pour tout @ € #;
un prolongement ¢, de ¢, tel que d¢, = @. On a alors

2 - Z ~ 2 2
o? < ||§0m||8—>fU|99m| dvg = o

En outre, s1 d¢ = @, alors ¢ et ¢, ne différent que par une forme fermée de M, et
donc leur restriction a U ne diftérent aussi que par une forme fermeée. Par consequent,
la norme de ¢, minore la norme sur U de ¢, et

w2 :f |G| 2dg ff lel*dvg < |l
U v

On en déduit que |@| < |@|z, et donc que |@|, — |@]| pour tout @.
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L’hypothése (1), dans sa version faible (cf. remarque 18), est la plus technique a
vérifier. On doit controler |- | en fonction de |- | et O. Pour ce faire, on fixe un élément
w € Jy eton va construire une primitive particuliére dont la norme L2 majorera |@|,.

On note ¢ la p-forme définie par ¢ = ¢, sur U, et prolongée harmonique-

ment (pour la métrique g) sur M. On a alors @ g1y = CHQOIBUHHZ(BU)

la constante C étant indépendante de ¢ (la démonstration est similaire au cas des
fonctions, cf. [Ta96], ch. 5, prop. 1.7). Par définition de #,, la (p + 1)-forme
Weo = d@ — @ est un €lément de F et elle est orthogonale a @. Elle vérifie donc

HwOOHLZ(M\U) Hdgﬁ”LZ(M\U) HQDHHI(M\U) et elle admet une primitive @eo

nulle sur U dont la norme vérifie ||@oo||? < ||@oo||?/A™. Sion pose ¢ = ¢ — Foo,
on aalors dg = w et

lell ezangy < 12l 2ano + 1 Pocll 2o
1/2
<10l 2wy + 18] g1y /AP
Toutes les normes étant ici relative a la métrique g.
Comme | lmang = Clopul 3 gy, o due la nome [ppol, g, et

73 o)
elle-méme contrélée par la norme H! de ¢ sur I/, on a finalement

fM v = Clgln oy, )

ou C’ est une constante dépendant de g mais pas de ¢.

En utilisant le fait que ¢ est cofermée sur U (car égale a ¢,) et tangentielle le
long de dU, une inégalité elliptique & trace associée a 1’opérateur d + 8 (voir [Ta96],
section 5.9) donne

L
el ziy = C"UellLz@y + 14¢ll2@y) = C(le] + Q(@)?), (2)

la métrique considérée étant ici encore g.
Pour une métrique g, on a |2 = Hg0||1242(U) - 8”_2P||go||i2(M\U). Comme

el 2@y = leletque e
la majoration

| L2(ar\7) Peut élre majore a I"aide de (1) et (2), on obtient

@R < |of + & 22C'C (o] + Q(@)?)?

qui permet d’appliquer la remarque 18 et le lemme 17. L]

3. Prescription du spectre

Pour construire des valeurs propres multiples nous allons nous utiliser, outre théoreme
de convergence spectrale 11, une propriété de transversalité vérifiee par des valeurs
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propres multiples sur des espaces modeles. Cette propriété remonte a Armol’d et a
¢té precisee par Y. Colin de Verdiere dans [CdVE8E|, nous allons en rappeler une
définition :

On suppose qu’on a une famille d’opérateurs (P,), . pk, ou B* est 1a boule unité
de R* (en pratique, P, est le laplacien associé a une métrique g, ). tels que Py posséde
une valeur propre Ag d’espace propre Eg et de multiplicité N. Pour les petites valeurs
dea, P, posseéde des valeurs propres proches de Ao dont la somme des espaces propres
est de dimension N. Comme dans la définition de I’écart spectral, on identifie cette
somme a FEy et on note g, la forme quadratique associce a P, transportée sur Ey.

Définition 20. On dit que Aq vérifie I’hypothese de transversalité d” Arnol’d si I’ap-
plication ¥: g — g, de B* dans @ (Eo) est essentielle en 0, ¢’est-a-dire qu’il existe
e > 0tel quesi &: B¥ — Q(Ey) vérifie | ¥ — & < &, alors il existe ag € BF tel
que ®(ao) = go.

Une propriété cruciale est que si & provient d'une famille (£)) d’opérateurs,
alors A¢ est valeur propre de P, de multiplicité N et vérifie la méme propriété de
transversalité : on dit que cette valeur propre multiple est stable. Comme remarqueé
dans [CdV88], on peut généraliser cette définition a une suite finie de valeur propre.

Pour démontrer les théorémes 1 et 4, nous allons construire des domaines modéeles
dont le début du spectre vérifie la propriété de stabilité pour ensuite appliquer le
theoreme 11. Ces domaines seront des produits d’une sphere et d’une boule, ils
pourront donc étre plongé dans n’importe quelle variet¢ de méme dimension.

Lamultiplicite stable sur un produit sera obtenue grace a laformule de Kinneth : s1
(My, g1) et (M3, g5) sont deux variétés riemanniennes compactes et &; € Q%(M;),
i = 1,2, alors on a, en identifiant chacune des formes a; a son relevé sur (M x
Mz, g1 D 22),

A(Cﬂ] A 032) = AO!I Ay + 0 A A(Xz.

En particulier, si «; est une forme propre de valeur propre A; pour i = 1,2, alors
o1 A @2 est une forme propre de valeur propre A1 + A, pour la métrique produit. 11
est clair que que si o1 et ap sont fermeées, alors @; A ®, aussi. On peut vérifier que
pour la métrique produit, s1 ¢) et o sont cofermées (par exemple s1 I'une des deux
est une fonction) leur produit est aussi coferme.

On va montrer que s1 1’une des deux valeurs propres est de multiplicit€ stable, la
valeur propre multiple obtenue sur la variéte produit peut hériter de cette propriéte.

Lemme 21. On suppose que ftp, ,(M1,g81) est une valeur propre simple,
Mp, o (M2, 82) une valeur propre de multiplicité stable N et qu’il n’y a pas d’autres
valeurs propres de My et Mz dont la somme 50it [y, g1 (M1, 81) + Hps ko (M2, 82).
Alors fhp, ky (M1, 81) + Wp, i, (M2, 82) est valeur propre de multiplicité stable N
sur (My X M3, g1 b 82)-
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Démonstration. Si on note « une forme propre de pp, 5, (M, g1) et E 'espace
propre de ftp, k, (M2, g2) alors, en vertu des remarques qui précedent, & A E estun
espace propre cofermé de valeur propre flp, 4, (M1, 81) + Mp, 1, (M2, 82).
Supposons que ftp, i, (M2, g2) vérifie la propriété 20 pour la famille de métrique
g2 .o et la famille de forme quadratique ¢,. S1 la forme o est normee, le produit par
@ plonge isométriquement $2( M) dans (M, x M,) en envoyant espace propre sur
espace propre, quel que soit . En particulier, les espaces propres de (M3, g2,4) de
valeur propre proche de i, x, (M2, 82), sont envoye sur des espaces propres de méme
multiplicité, leur valeur propre étant augmenté de fLp, z, (M1, g1). L'espace o A E
vérifie donc de la propriété 20 pour la valeur propre by, iy (M1, 1) + tp, £, (M2, g2)
et la famille de forme quadratique ¢u + fpy 4y (M1, 21)] - | O]

Nous utiliserons plusieurs fois le fait que sur une boule euclidienne de rayon ¢,
le noyau du laplacien pour la condition de bord (A) est trivial, sauf en degré O pour
lequel sa dimension est 1. Toutes les autres valeurs propres tendent vers +o¢ quand
¢ — 0. En particulier, sur un produit riemannien M < B¥(¢), les premiéres formes
propres sont les relevés des premicres formes propres de M.

Les trois lemmes qui suivent ont pour but de construire les domaines modeles :

Lemme 22. Pour tous entiers N = 1, n = 3, toute suite finie 0 < a; < ap < -+ <
ay et toute constante C > ay, il existe une métrique g sur S” telle que fLo; — a;
pour i = N, ces valeurs propres vérifiant I'hypothese de stabilité, flon+1 > C et

pp1 > C pourl < p < [”El].

Démonstration. Le résultat sur les po; découle des travaux de Colin de Verdiere
(voir [CdV86] et [CAVET]), il suffit de montrer que la construction géométrique peut
se faire avec itp,1 > C pour p = 1. Leprincipe de la démonstration est d’appliquer le
theoreme 11 avec un domaine U/ dont le spectre verifie la conclusion du lemme. Pour
appliquer I’argument de stabilité, on ne doit pas travailler avec une seule métrique sur
U mais une petite famille de métriques, un ¢lément crucial sera alors que I’invariant
conforme qui minore le spectre en degre [%] varie continiiment pour la topologie C?
(voir remarque 14), 1l sera donc uniformément minore pour cette famille de métrique.

On procede par recurrence sur la dimension. En dimension 3 et 4, on procede
comme dans [CdV87] : On choisit une surface 2 dont le début du spectre (pour les
fonctions) est €¢gal a @, < a; < -« < ay et verifie I’hypothese de stabilité, et on
choisit comme domaine U le produit riemannien de X avec un petit intervalle | — g, €]
(en dimension 3) ou un petit disque de rayon ¢ (en dimension 4), la métrique étant
prolongée de maniere quelconque en dehors de U. Le théoréme 11 et ’argument de
stabilité assure I’existence d’une métrique g telle que po,; = a; pouri < N, et
jo.n 41 > C, et comme son volume est arbitrairement petit, le theoréme 13 et la
remarque 14 assurent qu’on peut choisir g telle qu’on ait aussi 1, > C.
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S1, par hypothese de récurrence, le lemme est vrai en dimension # — 1, on raisonne
comme en dimension 3 et 4 en munissant S~ ! de la métrique fournie par le lemme
et en utilisant le domaine U = S#~1x]—e¢, e[ plongé dans S”. Le théoréme 11 donne
une métrique S” qui a le spectre souhaité pour p < [”T_?’] (H?(U/M) étant trivial),
et le théoréme 13 assure que fpusiy g > C. ]

Lemme 23. Pour tous entiers N = 1, p = 2 et n = 2p + 3, toute suite finie

0 < ay < ay < -+ < ay et toute constante C > ap, il existe une métrique g

sur la variété M* = SPTL o BPT2 pourn = 2p + 3 ou M" = S*71 < [0,1] si

n > 2p+3 telleque phy; — a; pouri < N, cesvaleurs propresverifiant I 'hypothése
71

de stabilité, prp N 11 > C et g1 > C pourl = g = 3, g # p, levolume Vol(M, g)
etant arbitraivement petit.

Démonstration. Remarquons d’abord qu’en prescrivant le début du spectre pour p =
0 dans le lemme 22, on a aussi prescrit les p,,; pour p = n—1eti < N, par dualit¢
de Hodge. Partant de ce constat, on va encore proceder par récurrence sur 7, le degré
p €tant fixé.

Pour n = 2p + 3, il suffit de considérer M = SZ11 5 BP12(¢), la sphére SZH1
étant munie de la métrique fournie par le lemme 22 et BP12(g) étant une boule de
rayon € petit.

Pour n > 2 p + 3, la récurrence s’effectue comme dans le lemme 22 : on applique
le théoréme 11 au domaine M~ ! plongé dans S"~! etonpose M"* = S" 1x]—¢, ¢].

]

Lemme 24. Pour tous entiers N = 1, n = 3, toute suite finie 0 < a1 < a, < a3 <
- < apy et toute constante C > ay, il existe une métrique g sur M — B3 x S#

telle que 1 ;(M,g) = a; pour i < N (avec stabilité), 1 n11(M,g) > C et

ip,1(M, g) > C pour 2 < p < %, le volume Vol(M, g) étant arbitrairement petit.

Deéemonstration. On va une nouvelle fois utiliser le théoreme 11 avec un domaine
U produit d’une sphére et d’une boule, mais avec une métrique particuliere sur la
boule : selon [Gu04] (théoréme 2.1), il existe une métrique gp sur B2 telle que
m1a(B3 g8) = ai p12(B>,g8) > C et up1(B? gg) > C pour p = 0,2,
le volume étant arbitrairement petit. En utilisant le lemme 22, on peut munir S”
d’une métrique telle que o ;(S”) = a; —ay pouri < N — 1, puon(S%) > C et
tp1(S™) > C pour p = 1. Le produit M = S" x B3 vérifie alors 1 ;(M)
o (S™) + 1 1(B? gp) = a; pouri < N, py v 1 (M) > C et pp (M) >
pour2 < p < 2.

O |l

On est maintenant en mesure de démontrer les résultats annoncés dans I’ introduc-
tion.
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Demonstration du théoreme 1. Pour chaque degr¢ p, on se donne le domaine U,
fourni par le lemme 23 (ou le lemme 24 pour p = 1) dont le début du spectre en
degre p est celui qu’on veut prescrire, avec C > sup,, ; @p,;. On peut noter que dans la
démonstration du théoreme 11, I’hypotheése de connexité du domaine U n’intervient
pas, la conclusion reste donc vraie en remplagant U par un nombre fini de domaine.
On peut donc I"appliquer a la famille (U,) plongée dans M (en remarquant que
HP((|JUy)/M) est trivial pour 1 < p < ”;3) et grice a la stabilité du spectre de
ces domaines on conclut al’existence d’une métrique g sur M telle que pp (M, g) =
aprpourpour l <k < Netl < p< [”;3] Comme pour les lemmes précédents,
le cas du degré p = [";1] est couvert par le théoréme 13.

Pour montrer qu’on peut aussi prescrire le volume, on procéde comme dans [Gu04]
et [Ja08] : on peut appliquer ’argument de stabiliteé au volume en le traitant comme
une valeur propre simple. Il suffit donc d’ajouter 4 la famille U, une boule de volume
V=3 5 Vol(Up) (en ayant choisit les volumes des U, suffisamment petits) et dont les
valeurs propres pour les p-formes sont arbitrairement grandes (¢’ est possible selon
[GP95]). Le fait que le volume de cette boule vérifie ’hypothese de transversalité
signifie simplement qu’on peut lui donner n importe quelle valeur au voisinage de

V — >, Vol(Up), par exemple par homothétie. O]

Demonstration du théoreme 4. Y. Colin de Verdiere a montré que la premiere valeur
propre de la sphére S muni de sa métrique canonique est stable ([CdV88], section 2).
On peut donc raisonner comme dans le lemme 23 : la valeur propre g 1(S?) est de
multiplicité 3 stable et il suffit d’appliquer le théoréme 11 au domaine S x B*2(¢).

L]
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