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Bounding the regularity of subschemes invariant under
Pfaff fields on projective spaces

Joana D. A. S. Cruz and Eduardo Esteves®

Abstract. A Pfaff field on IP}! isamap n: €23,, — £ from the sheaf of differential s-forms to an
k

invertible sheaf. The interesting ones are those arising from a Pfaff system, as they give rise to a
distribution away from their singularlocus. A subscheme X C ;! is said to be invariant under »
if 5 induces a Pfaff field 25, — £|x. We give bounds for the Castelnuovo-Mumford regularity
ofinvariant complete intersection subschernes (inore generally, arithmetically Cohen—Macaulay
subschermes) of dimension s, depending on how singular these schemes are, thus bounding the
degrees of the hypersurfaces that cut them out.

Mathematics Subject Classification (2010). 37F75, 32565, 14F10,

Keywords. Pfaff systems, projective spaces, invariant schemes, regularity.

1. Introduction

In 1891, Poincare [Po], p. 161, posed the problem of bounding a priori the degree of
the first integral of a polynomial vector field on the complex plane, when the integral
1s algebraic. The importance of such a bound 1s that it allows us to decide whether
the integral 1s algebraic or not by making purely algebraic computations.

Poincaré himself produced bounds in special cases. But no bounds have been
found in general. Actually, many obstructions to finding such bounds have been
discovered: For instance, Lins Neto [Ln] produced examples to show that a bound
cannot depend only on the degree m of the vector field and on the analytic type of its
singularities in the plane or at infinity.

The current interest in Poincaré’s problem was revived exactly a hundred years
later by Lins Neto and Cerveau [CeLn], who showed that an algebraic curve invariant
under the vector field has degree at most m + 2 if the singularities of the curve are
ordinary double points, the bound achieved only 1f the curve 1s reducible; see loc. cit.,
Theorem 1, p. 891. Since then many papers have concentrated on this related problem,

*First author supported by CAPES and FAPEMIG, Processo 428/07; second author supported by CNPg,
Processos 300004/95-8 and 470761/2006-7.
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of bounding the degrees of algebraic curves invariant under the vector field. This has
often been called the Poincaré problem. Works on this problem, allowing for more
singular curves, are [CmCr|, [Cr], |[EKI3], [dPW] and [Pe], to cite a few.

The problem has also been considered for higher dimensional spaces. One of the
firstto do so was Soares [S]. Intoday’s language, and in great generality, let P denote
the n-dimensional projective space over an algebraically closed field &k, and consider
a Pfaff field, a map n: Qi”;j —» XL from the sheaf of s-forms QS;? ez A Qﬁbg for

an integer s between 1 and » — 1 called the rank of 5, to an invertible sheaf £
Besides its rank, the unique other numerical global invariant under deformations of
nis m = deg(X) + s, the degree of n. The singular locus of n is its degeneracy
scheme S, supported on the set of points where 1 1s notsurjective. A closed subscheme
X < P! is said to be invariant under 7 if % induces a Pfaff field 2y — £[x on
X. The above terminology 1s taken from [EKI2], Section 3, to where the reader is
directed for more details.

The Pfaff field  may arise by taking determinants from a Pfaff system, which, as
defined by Jouanolou [J], pp. 136-138, is a map {2 1;{1 — & to alocally free sheaf & of

rank §. (This 1s automatic for s = 1 but a strong condition for s > 1.) A Pfaft system
may be seen as a “singular distribution,” as it gives rise to an actual distribution on
P — 5. Then subschemes of pure dimension s that are invariant under 7 are solutions
of the corresponding Pfaff system; see [EKI2], Proposition 3.2, p. 3782, for a precise
statement. Also, the degree m can be given a geometric interpretation in this case;
see Section 4.

If s = 1 then 7 is the homogenization of a polynomial vector field on C*. If
s = n — 1, through the perfect pairing QE"Q ® Q%%S — Q%}ﬁ we may view 7 as the
homogenization of a polynomial differential 1-form on €”. Tn both cases, » arises
from a distribution away from §.

Some of the statements in the literature, and all of the statements in the present
article, work in positive characteristic, under suitable assumptions. However, to
simplify the ongoing discussion, assume that k& has characteristic zero.

For s = n — 1 one may search for bounds on the degrees of hypersurfaces
invariant under . For instance, under the harmless assumption that dim(8) < »# — 2,
Brunella and Mendes [BMe] showed that an invariant reduced hypersurface with
at most normal-crossings singularities has degree at most m + 2, generalizing the
theorem by Cerveau and Lins Neto mentioned above; see loc. cit., p. 594, for a more
general statement.

For s = 1 many inequalities have been produced for the degree and the genus of
(reduced, equidimensional) curves invariant under », for instance in [CmCrG] and
[EKI1]. However, in the spirit of Poincaré’s original problem, one should look for
bounds on global invariants that could reduce to purely algebraic computations the
question of whether 7 has an invariant curve or not. The (Castelnuovo—-Mumford)
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regularity is such an invariant, as it is well-known that a subscheme X < P? is cut
out by hypersurfaces with degree at most its regularity, reg(X).

Though a good measure of the complexity of a subscheme X < P/, by the
reason explained above, the regularity is a concept of a rather arithmetic nature. At
any rate, if X 1s arithmetically Cohen—Macaulay (a.C.M.), for example a complete
intersection {see Subsection 2.2), the regularity acquires a more geometric meaning:
cut X by as many general hyperplanes as its dimension to obtain a set I' of points;
then the regularity of X is the smallest integer r such that for each P € T there 1s
a hypersurface of degree r — 1 passing through all the points of I but P. So the
regularity of I" is higher the more special the position of the points of I" is. For
instance, if X 1s generically reduced, whence I is reduced by Bertini Theorem, and
all the points of I" are on a line, then it follows from Bezout Theorem that r is the
number of points of I', the degree of X .

In [E] the second author shows that an invariant a. C. M. curve C, with at most
ordinary double points for singularities, such that § M C is finite has regularity at
most m + 2, with equality only if the curve is reducible; see loc. cit., Theorem 1, p. 3.
Since complete intersections are a.C M., and since the regularity of a hypersurface
is its degree, the statement is another generalization of Cerveau’s and Lins Neto’s
result.

Later, the second author and Kleiman showed that the inequality reg(X) <m 4 2
for an invariant a.C.M. curve (for s = 1) or invariant reduced hypersurface X < P/
(for s = n — 1) with normal-crossings singularities was a consequence of the fact
that A7(2% (1)) = 0, and that the same holds for intermediate 5. More precisely, for
any §, an invariant, reduced, a.C.M. subscheme X < P,f of pure dimension s whose
irreducible components are not contained in § has regularity bounded by m + 2 if
h*(Q2%(1)) = 0, and bounded by m + 1 if 27(Q2%) = 1; see [EKI2], Corollary 4.5,
p. 3790, and Remarks 4.6 and 4.7, p. 3791, from which the assertion can be extracted.

However, no further conditions for when A'(Q}) = 1 or A1 (Q4(1)) = 0 are
given in [EKI12]. These appear later in [EK13], by the same authors, but only for
n = 2. There a (reduced) plane curve C of degree d is considered, and it 1s shown
that if the singular locus of C has regularity ¢ bounded by d — 2 then £ (Q}) = 1
and hence d < m + 1 if C is invariant. The highly singular case is handled as well,
being shown that if C is invariantand p := ¢ —d + 2 1s positive, thend < m+1+p,
with equality if d > 2m 4 2 and § is finite; see loc. cit.,, Theorem 2.5, p. 61.

In the present article, we extend the results of [EKI3] for # > 2 and any 5. More
precisely, our Theorem 3.1 states that a connected, reduced subscheme X € P” of
pure dimension s > 0 satisfies 2°(2%) = 1 if X is a.C.M. and subcanonical, for
instance a complete intersection, and if its singular locus has regularity o bounded
by r — 2, where r 1is the regularity of X. From it follows Theorem 4.1, stating that
r < m + 1if in addition X 1s invariant and dim(S$ M X) < s. Furthermore, by our
Theorem 4.3, if X is simply a.C.M., and is invariant with dim(5 N X) < s, then
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r <m+ 1+ p, where p := max(l,0 —r + 2). Finally, Theorem 5.3 says that
r = m+ 1+ pifall the following conditions hold: s = 1 and § isfinite, X isa.C. M.,
subcanonical and invariant, r > 5ifm = lorr >mn —n +41fm > 1.

Since complete intersections are a.C. .M., subcanonical subschemes, we obtain as
a corollary that, if X < I’ is a reduced complete intersection of hypersurfaces of
degrees d1,...,dn—s, and 1s invariant under  with dim($ M X) < s, then

m+n—s8 if p < 0,

dl+"'+dn—xf .
m+n—s+p ifp>0,

wherep =0 +n—s+1—d; —- —d,_,, with ¢ denoting the regularity of the
singular locus of X; see Corollary 4.4,

The techniques we use are quite simple: basically, a detailed analysis of the long
exact sequences in cohomology of several short exact sequences of sheaves associated
to the problem.

The pervasive hypothesis of arithmetic Cohen—Macaulayness is necessary, as the
example of a sequence of smooth curves in P'? of increasing regularity but invariant
under degree-1 rank-1 Pfaff fields, presented in [E], Remark 21, p. 14, shows. What
1s not clearly necessary is the hypothesis of subcanonicalness.

The possibility that ¥ = m + 1 + pis investigated only for s = 1, because then §
is easier to understand. Then, if § has dimension 0, which is the expected dimension
and the case when 7 is general, the regularity of S is 1 if m = 1 and mn —n + 2 if
m > 1; see Proposition 5.1 and the remark thereafter. This regularity gives the bound
above which r must be for the equality ¥ = m + 1 4 p to hold. On the other hand,
for § = 2, those 5 having an invariant reduced subscheme of pure dimension s have
large singular locus; indeed, dim(5) > s — 1 by [EKI2], Corollary 4.5, p. 3790. In
particular, § does no have the expected dimension.

Section 2 collects a few results on the Castelnuovo—Mumford regularity and on
arithmetically Cohen—Macaulay subschemes. In Section 3 we give conditions for
when a subscheme X € P} of pure dimension s satisfies #°(£25) = 1. In Section 4
we prove our bounds on the regularity of closed subschemes invariant under Pfaff
fields. Finally, in Section 5 we prove that these bounds are attained, if the regularity
1s large enough, in the case of rank-1 Pfaff fields.

2. Arithmetically Cohen—Macaulay subschemes

2.1. The Castelnuovo—Mumford regularity. Fix a positive integer n. Given m €
7, we say that a coherent sheaf 7 on P! is m-regular if H* (¥ (m—1i)) = 0for each
integer { > (.

Let X € P be a closed subscheme. If X' =£ P} then the Castelnuovo-Mumford
regularity of X, or simply reguiarity, is the smallest integer m for which its sheat of
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ideals is m-regular. By definition, the regularity of P is 1. Denote the regularity of
X by reg(X).

The regularity is well-defined. In fact, let Ty denote the sheaf of ideals of X, and
consider the natural exact sequence:

0 Ix @ng Ox 0. (1)
Twisting it by m — n and taking cohomology we get the following exact sequence:
H*(Ix(m —n)) — H*(Opp(m —n)) — H*(Ox(m —n)).

The middle group is zero if and only if m > 0. If X' = P then the last group is zero,
and hence H"(Ix(m — n)) = Oonly if m = 0.

The above reasoning shows that reg(X) = 0. Furthermore, reg(X) = 0 if and
only it X = 0. Indeed, if X is empty, Iy = (9];»;3, which 1s O-regular by Serre
computation. On the other hand, if Iy is O-regular then Ty 1s globally generated,
by [Mu], p. 99. Since reg(X) £ 1, we have that X # P}, and hence Iy #£ 0. So
HO%Iy) # 0, which implies that Iy — (91}»1?, and thus X = 0.

Also,reg(X) = lifandonly if X is alinear subspace of . Indeed, ifreg(X) = 1
then Tx (1) is globally generated, which implies that X is cut out by a system of
hyperplanes. Conversely, suppose X is a linear subspace of ' Twisting (1)by 1 —§
and taking cohomology, we get the following exact sequence:

Hi—l(@wa—i)) — H7 YW 0x(1-i)) — Hi(Ix(1—-i)) — Hi(@wu—f:)).

If i > 1, the second and last groups are zero, by Serre computation, and thus
H'(Ix(l —§)) = Ofori > 1. Fori = 1 the last group is zero, and the first
map is an isomorphism. Thus H!(Ix) = 0. Soreg(X) < 1. Since X # @, it
follows that reg(X) = 1.

Proposition 2.1. Let X < P be a closed subscheme. If dim(X) = 0 then reg(X)
is the smallest nonnegative integer r such that HY(Ix(r — 1)) = 0, where Iy is the
sheaf of ideals of X.

Proof Clearly, H'(Ix(m)) = 0 for every i > n and every m & 7. Thus the
assertion follows from the definition of regularity if n = 1.
Suppose now that n > 1. We need only show that H'(Ix(r —i)) = 0 for

eachi = 2,...,nandeachr = 0. Let m € Z. Since X has dimension zero,
H*(Ox(m)) = 0 for every i = 1. On the other hand, from Serre computation,
H‘((i’p}fg (m)) =0foreachi = 1,...,n — 1. Twisting the natural exact sequence

O—>IX—>(9]I»;§—>(9X—>O (2)
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by m, and taking cohomology, we get, for each i = 2, ..., n, the exact sequence
H Y(Ox(m)) — H'(Ix(m)) — H'(Opp(m)) — H'(Ox(m)).

Ifi =2,...,n—1then onehas H' 1 (Oy(m)) = Hi(OP}‘g (m)) = 0, and therefore
Hi(Ix(m)) = 0. If i = n, since H* 1 (Ox(m)) = H*(Ox(m)) = 0 because
n > 2, we have

H"(Ix(m)) = H*(Opp(m)).

But, from Serre computation, H” (@P;Cz (m)) =0ifm = —n. Thus H*(Ix(r —n)) =
Oforeachr = 0. U]

2.2. Arithmetically Cohen—Macaulay subschemes. An equidimensional closed
subscheme X C P/ is said to be arithmetically Cohen-Macaulay (or simply a.C.M.)
if its coordinate ring is Cohen—Macaulay. Alternatively, if X has positive dimension,
X 15 a.C.M. if the restriction map

H(Opn(m)) — H(Ox(m))

is surjective and H/(Ox(m)) = O for eachm € Z and j = 1,...,dim(X) — 1.
Or, equivalently, X is a.C.M. if H/(Ix(m)) = 0 for each m € Z and j =
1,...,dim(X), where Iy is the sheaf of ideals of X Notice that it follows that
h°(Ox) = 1, and hence that X is connected.

Complete intersections are the simplest examples of a.C.M. subschemes.

Proposition 2.2. Let X C P} be a closed subscheme of pure dimensions > 0. If X

is arithmetically Cohen-Macaulay thenreg(X ) is the smallest nonnegative integer r
such that H (Ox(r —s — 1)) = 0.

Progf. Suppose first that s = #a, that is, X = /', By definition, the regularity of I/’
is 1. On the other hand, by Serre computation, H”((S']p;{z (r —n—1)) = 0ifand only
if r = 1. So, the proposition holds for s = n.

Now, assume s < 1. Let Iy denote the sheaf of ideals of X. Since X 1s a.C. M.,
H'(Ix(r —i)) = Oforeveryr € Z andeachi = 1,...,s. On the other hand,
twisting the natural short exact sequence

O%IX—}@]}»E—}@X—}O (3)

by r — i, and taking cohomology, we get the following exact sequence, for each

integer { > O

H™ N (Opp(r—i)) — H' "N (Ox (r —i)) — H'(Ix(r—i)) — H'(Opp(r —i)).
4)
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Fori =s4+72,...,n—1, since
H ™ (Ox(r —i)) = H (Opp(r —i)) = 0,

we have that H*(Ix(r —i)) = Ofor every r € 7. Also, since H”((pr (r—n)=20
forr = 0,and H* " Y(Ox(r —n)) = 0ifs < n—1,itfollowsthat H*(Ix(r —n)) = 0
forevery r = 0ifs <n —1.

So, reg(X ) is the smallest nonnegative integer 7 such that 51 (Iy (r —s —1)) =
0. But, if » > 0 then

H* (Opp(r —5 — 1) = H* N (Opn(r —5 — 1) = 0,
because 0 < s < n, by Serre computation. So, by the exactness of (4)fori = s + 1,
H(Ox(r—s—1) = HS" Y (Iy(r —s — 1))
for every integer r = 0. ]

2.3. Subcanonical subschemes. lLet X < P,,:‘ be a closed subscheme. Let @y be
the dualizing sheaf of X, that is,

wy ‘= 8){1‘5;% (@Xa@Pf(_l —n)),

where s := dim(X). If there is a € 7 such that @y =2 Oy (a), then we say that X is
a-subcanonical (or simply subcanonical). If dim(X) > 0 then 4 is unique.

Proposition 2.3. Let X € P be anarithmetically Cohen-Macaulay a-subcanonical
subscheme of pure dimensions > 0. Thena > —s —landreg(X) =a + s + 2

Proof Observe first that H%(Ox (i)) = 0if and only if i < 0. Indeed, since @x (1)
is very ample, h°(Ox(i)) > 0 for i > 0. On the other hand, if there were a nonzero
global section of @x (i) for a certain i < 0, multiplying it by —i H, for a sufficiently
general hyperplane section H C X, we would obtain a nonzero global section of @y
vanishing at A, which is absurd.

By duality, since @x(a) is the dualizing sheaf of X,

B (Ox(r —s —1)) = h%Ox(a —r +s + 1)).

So, HS(Ox(r —s — 1)) =0ifand only ifa —r + s + 1 < 0, that is, if and only if
r = a+s+2. Ttfollows now from Proposition 2.2 thatreg(X') = max(a +s + 2,0).
However, since reg(X) > 0, wehavethata +s +2 > Oandreg(X)=a +s5 + 2.

[]
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3. The singular locus of a k-scheme

Let X be an algebraic k-scheme. For each integer s = 0, denote by Q% the sheaf
of Kihler s-forms of X, that is, ij 5= /\s QL where Q)l( 1s the sheaf of Kihler
differentials of X .

Assume X is reduced, projective and of pure dimension s > 0. Let wy be
its dualizing sheaf and yx: 2§ — @y the canonical map. The map yy is con-
structed as follows. Let Xi,..., X); be the rreducible components of X with their
reduced induced subscheme structures. For each i = 1,...,m there is a natural
map y; : §2 :;(f — @y,. where @y, is Kunz’s sheaf of regular differential forms of Xj.
Also, the map 1s an 1somorphism on the smooth locus of X;; see [Ku], pp. 103-105.
Furthermore, by [Ku], Satz 2.2, p. 95, or [Lp]. Theorem 0.2B, p. 15, the sheaf @y, is
dualizing, in a natural way; so there is a natural isomorphism &; : éXz’ — ;.

The restriction map 7: Oy — @Xl & - @ Oy, induces a map 7’: wy, G- P
ay,, — @x. As T is an isomorphism on the smooth locus of X, sois 7. Then yy is,
by definition, the composition

n n m
5 5 (Vl:---:}’m) o~ (‘EI:---:&YH) 7
Qy —> Doy, Nt Dy Gedn) (N

i=1 i=1 i=1

where the first map 1s induced by restriction. All the above maps are 1somorphisms
on the smooth locus of X, and thus so 1s yx.

Let Xx be the scheme-theoretic support of the cokernel of yxy. We call Xy
the singular locus of X. Since X 1s reduced, whence generically smooth, yx is
generically an isomorphism, and hence dim(2y) < s.

The sheaf wy is torsion-free, rank-1. Indeed, it is generically isomorphic to 23,
whence has rank 1. Its torsion subsheaf 7 (wy) is supported on a subscheme of
dimension less than s, and hence H*(7 (wx)) = 0. On the other hand, the injection
T (wy) — wy corresponds by duality to a map H* (7 (wy)) — k. Since this map is
zero, so 1s the injection, that is, 7 (wy) = 0.

Since wy 1s torsion-free, and yx is generically an isomorphism, the kernel of yy
is the torsion subsheaf 7 (£2y) € Q%. Thus, we get an injection

iy
T(Q%)

Isy x @x —

(3)
If X 1s Gorenstein then wy 1s invertible, and hence (5) 1s an 1somorphism.
Theorem3.1. Let X < P]’; be aconnected, reduced, avithmetically Cohen—-Macaulay

subcanonical subscheme of pure dimension s > (0. Let iy be its singular locus. Let
ro=reg(X)ando :=reg(Xyx). Ifo =00ro <r —2then H* (%) = k.
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Proof. The assertion follows from Serre computation it § = n. Assume § < n.
Consider the injection .
IEX,X Wy — ‘T?{;fs )
X

Since X 1s reduced, both the source and target of this injection are of rank 1. So
the injection is generically an isomorphism. Since the torsion subsheat’ 7(§2%) is
supported in dimension at most s — 1, it follows that

H(Qy) = B’ (Izy x @x).
Since wy = Ox(r —s — 2) by Proposition 2.3, we must show that
HS(IEX’X(F —8— 2)) =~ k.

Seta :=r —s—2. Let Ixy and Iy be the sheaves of ideals of Xy and X in P
We claim that
H'  (Ix(a)) = k. (6)

Indeed, twisting the natural exact sequence
O—>IX—>C9P;§ — Oy — 0
by a and taking cohomology, we get the exact sequence
H'(Opp(a)) — H'(Ox(a)) — H'(Ix(a)) — H' ' (Opp(a)).
The first and last groups above are zero because s < n and r > 0, respectively. Thus
H " (Ix(a)) = H (Ox(a)).
But @y == Ox(a). So, by Serre Duality,
H'(Ox(a)) = H(Ox) =k,

where the last isomorphism follows from the connectedness of X
Now, twisting the natural exact sequence

0 IX IEX IE;(,X — 0
by a, and taking cohomology, we get the exact sequence

H (Ix(a)) — H’(Ixy (@) — H'(Iny x(a))
s+1 s+1 (7)
— i (Ix(a)) — H (Ixy(a))

Since X is a.C.M. of dimension s, the first group is zero. The last group is also zero.
Indeed, twisting the natural exact sequence

0—>IEX—>(9]P>;§—>@EX—>O
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by a and taking cohomology, we get the exact sequence
H*(Osx(a)) — H' ' (Isg(a)) — H*'(Opn(a)).

The first and last groups above are zero because dim( Xy ) < s andr > 0, respectively.
Thus H**1(Iy, (a)) = 0.

So the boundary map in (7) 1s surjective. Furthermore, since (6) holds, we have
that 7¥(Ix, x(a)) = k if and only if the boundary map is injective, which is the
case if and only if H*(Ix.(a)) = 0. But, if 0 = Othen Xy = 0, and hence
Izy = Opp; then H*(Is,(a)) = Obecause s < n. Andif r —2 > o, then
a = o —s,and thus H°(Ix,(a)) = 0. O]

Remark 3.2. The above proof establishes an equivalence:
HY(Qy) =k ifandonlyif H'(Ix,(r—s—2))=0.

It s = 1then Xy 1s finite. If X 1s a line then o = 0. Otherwise, r > 2, and it follows
from Proposition 2.1 that H(Ix, (r —3)) = O only if ¢ < r — 2. Tn other words,
the converse to Theorem 3.1 holds if s = 1.

4. Pfaff fields

Let V" beanalgebraic k-scheme. By definition, a Pfaff fieldonV isamapn: Q2 — £
of @y -modules, where £ is an invertible sheaf on V' and s 1s a positive integer. We
call s the rank of 5. Define the singular locus of 1 to be the closed subscheme S € V
defined by the sheaf of ideals Im(n @ £~1).

A closed subscheme X < V 1s said to be imvariant under 7 1f there 1s a Pfaff field
@: Qy — £L|y making the following diagram commute:

Q-7 %

L,

Q% —> 2y

where the vertical maps are the natural restrictions.

It X € V isreduced and invariant by %, then any union ¥ of components of X,
with its reduced induced subscheme structure, 1s also invariant by 5. Indeed, in this
situation, the restriction 2% |y — Q% is surjective with generically zero kernel, and
thus any map Q% |y — £|y factors through the restriction.

Assume now that V' = P and n: Qpx — £ is a nonzero Pfaff field on PP/ of

%
rank s < #. Thenm > 0, where m := deg(£) + 5. Indeed, since I’ is smooth of
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dimension n, the field 5 corresponds to a nonzero element of
Ho(Qf* @ £ @ Q) ).

So HO(QE‘%S(YH +n+1—5)) #£ 0. By [D], Theorem 1.1, p. 40, this is only possible
tfm+n+1—5>n—s, thatis, if m = 0.

We say that m 1s the degree of n. It 5 arises from a Pfaft system, that 1s, if
n = A'#n foramap n: QIIP,? — & to a locally free sheaf & of rank s, then the

degree has a geometric interpretation: Given a general linear subspace H of P of
codimension s, the degree m is the degree of the “critical” hypersurface ¥ C H
consisting of the points P ¢ A for which the tangent space Ty p of H at P and
the subspace of Tpz p given by the image of (n7'|p)* do not generate Tpp,p. More
precisely, Y 1s the degeneration scheme of the map of locally free sheaves

@ |z .8)

ngm 5 8y ® U,

where 8 1s the natural restriction. If H is general then Y is a hypersurface. That
its degree is indeed m follows by taking determinants, noticing that det Q&m =
%

@P]fg(—n ~1Danddet QL =~ Opy(—n +5 1)

Theorem4.1. Let X < P;; be aconnected, reduced, arithmetically Cohen-Macaulay
subcanonical subscheme of pure dimension s > 0 and degree d. Let Xy be the
singular locus of X. Assume the characteristic of k is 0 or does not divide d. Assume
X is invariant under a Pfaff field n: prz — £ of rank s in such a way that no

irreducible component of X is contained in the singular locus of 1. Set
g :=reg(y), r =reg(X), m: =deg(¥£)+s.

Ifo=00rc<r—2thenr <m+ 1.

Proof. By Theorem 3.1, wehave h*(£25) = 1. So, by [EKI2], Corollary 4.5, p. 3790,
since X 1s a.C M., r =5 4 deg(L) + 1, as claimed. ]

Lemma 4.2. Let X be an equidimensional, reduced, projective k-scheme. Let Y be a
union of irreducible components of X, with its reduced induced subscheme structure.
Let Xix and Xy be the singular loci of X and Y. Then XLy C Xy.

Proof. Let J# be the cokernel of yx and § that of yy. It is enough to observe that
% is a subsheaf of a quotient of # |y. If ¥ = X the assertion is trivial. So assume

Y £ X. Let Z := X — Y, again with the reduced induced subscheme structure.
From the way yy is defined, we see that yx decomposes as

3 )L
Q§—>Q“}EBQSZM>CUY€BCUZ'—>CUX, (8)
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where the first map 1s induced by restriction of forms, and the last map, A, 1s induced
from the natural restriction map Oy — @y & @z. Let 7 (wx|y) be the torsion
subsheaf of @y |y, and denote by wy, y the quotient. Restricting (8)te ¥ andremoving
torsion, we get the following composition:

B Yy ‘
¥ i)
Q¥ ly Qy wy Sag

where f is the restriction map of s-forms, and ¢ is the composition of the canonical
injection @y — wy $ wz with A and the quotient map wy — wyy. Since A is
generically an isomorphism and @y is torsion-free, ¢ is injective. Since § is surjective
and ¢ 1s injective, we get an injective map from ¥ to

wx |y
Im(yx|y) + T (ox|y)’
which is a quotient of K |y. O]

Theorem4.3. LetX < P beareduced, arithmetically Cohen-Macaulay subscheme

of pure dimension s > 0. Let Xix be the singular locus of X. Assume X is invariant

under a Pfafffieldn. Q3 — £ ofrank s in such away that no irreducible component
k

of X is contained in the singular locus of 1. Set
o :=reg(y), r =reg(X), m:=deg(£)+s.
Thenr <m + 1 4 p, where p .= max(l,c —r + 2).

Proof. Seta .= r —s — 2. Let £ be any integer such that £ = p. Since p = 1, we
have @ + £ = r —s — 1. Let H C P} be a general hyperplane. Multiplication by
(@ + 4 —r +s5 + 1)H induces an injection Ox(r — 5 — 1) — Ox(a + £). Since
H(Ox(r —s — 1)) = 0 by Proposition 2.2, and since the cokernel of the injection
is supported in dimension at most s — 1, it follows that

H*(Ox(a +£)) = 0. (9)

Let Ty and Is, be the sheaves of ideals of X and Xy in P}:. Twisting the natural
short exact sequence

O%IX—}@]}»};@ — Oy — 0
by a + £ and taking cohomology we get the exact sequence
H*(Ox(a +8) — H N (Ix(a +8) — H " (Opn(a + ).

Sincea +£ >r—s5—1> —s—1 = —n — 1, the last group is zero by Serre
computation, and thus, using (9), we get

H Y Ix(a+ £) = 0. (10)
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On the other hand, since 0 = reg(Zy) and a + p = o — s, we have
H(Is,(a +4) =0 (11)

It Y is a union of irreducible components of X, with its reduced induced sub-
scheme structure, then, since Ixy C Iy with quotient supported in dimension at
most s, Equation (10) implies that

H Y Iy(a +8) =0 (12)

Similarly, since Iy, C Iy, by Lemma 4.2, and the quotient is supported in dimen-
sion at most s — 1, Equation (11) implies

H(Iy,(a+£))=0. (13)
Twisting the short exact sequence

0> Iy — Is, — Isy ¥ — 0 (14)

by a + £, and taking cohomology, we get the exact sequence
H*(Igy (@ + ) — H*(Iny v (@ + 0) — H P (Iy (@ + 0)).
Using (12) and (13) we get that
H'(Iz, y(a+£) =0 (15)

Now, it follows from Proposition 2.2 that H*(Ox(a)) #= 0. Thus, by Serre
Duality, there is a nonzero map 7: Ox(a) — wy. If X is subcanonical, this map
is an isomorphism. At any rate, since both @y (@) and wy are torsion-free, there
1s a union ¥ of irreducible components of X, with its reduced induced subscheme
structure, such that 7 factors though an injection @y(a) — @y. This map factors
through the natural map wy — @y, vielding an injection Oy (@) — @y. Of course,
this injection induces one from Iyy . v(a)to Iy, ywy, which can be composed with
the injection Iy, ywy — Q}, where

CLEES Sl ;
T(Qy)

with 7(£25) denoting the torsion subsheaf of Q3. Since Iz, y(a) and fi‘;, are

rank-1, the cokernel of the composition Iz, y(a) — ﬁ“;r 1s supported in dimension
at most s — 1. Thus, it follows from (15) that

H* (23 (£) = 0. (16)
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Notice that £ = Opr (m —s). Since X 1s invariant under #, so is ¥. So there 1s
a Pfaff field ¢: Q3 — Oy (m — s5) making the following diagram commute:

pr;g — Opn (m—s)

|,

Q) —2 > Oyp(m—s)

where the vertical maps are the natural restrictions. The image of 7 1s by definition
I s, P2 (m — s), where S is the singular locus of 7. So, since the vertical maps are
surjective, the image of ¢ is Isnyy(m —s).

Now, since dim(S MY) < s, the map ¢ is generically surjective, and hence, since
Y is generically smooth, generically injective. In this case, the kernel of ¢ is the
torsion subsheaf T(Q%,) So ﬁ“} = Igny,y(m —s), and hence (16) implies that

H* (Zsnry(m — 5 + ) = 0. a7
Twisting the natural exact sequence
0— Isnyy — Oy — Oy — 0
by m — s + £ and taking cohomology, we get the exact sequence
H(Isnyy(m—s+80)) — H(Oy(m—s +£)) — H(Osny(m —s + £)).
Since dim(8 N Y) < s, the last group is zero. So, it follows from (17) that
H(Oy(m —s + £)) = 0. (18)

However, since there is an injection Oy (a) — @y, we have that H*(Oy(a)) £ 0.
Since (18) holds for each £ > p, we have a < m — s + p — 1, from which follows
the stated inequality. ]

Corollary 4.4. Let X < PP} be a reduced complete intersection of hypersurfaces of
degrees dy,...,d,_; for a certain positive integer 5. Let iy be the singular locus
of X. Set o .= reg(Xy) and put

p=c+n—s+1—dy——dys.

Assume the characteristic of k is O or does not divide any of the d;. Assume X is
invariant under a Pfaff field n: Qipg — £ of rank 5. Setm = deg(£) + 5. If

dim(S N X) < s, where § is the singular locus of n, then

m4+n—3s ifp =0,

di+-+dys <
! ns_{m—i—n—s—l—p if p>0.
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Proof. Since X 1s a complete intersection, and of positive dimension, X 1sa.C.M. and
connected. Also, the conormal sheaf € of X satisfies

€~ @X(dl) PR OX(dn—s)-
Thus

H—=s

I3
i 1 v e . W F—
wx = /\QP?|X®(/\‘€) w2 G, Lowwmde B — 25— T
Hence, by Proposition 2.3,
r=dy +-+dy,—n-+s+L

Apply Theorems 4.1 and 4.3 now. ]

5. Rank-1 Pfaff fields

Proposition 5.1. Let 1: Q]%»;{a — Opn(m — 1) be a rank-1 Pfaff field on T, for
n > 2. If m = 1 and the singular locus S of n is finite then

reg(S)y=nm —n + 2.

Proof. Let Igbethesheafofidealsof § andn’ := n(1—m). Thenn . QllP;g (1-m) —

@Pg has image Ig, or degeneration scheme 5. Consider the Koszul complex of #':

dn d2 l‘:I‘].
0 — Qpn(n —nm) %g(l—m)—w (19)
where dy = n’. Since § is finite, § is of the expected codimension. Since Pl is

Cohen-Macaulay, the dual to %’ is a regular section, and hence the complex above is

exact at positive level.
Let I; ;==Im(d;)for j = 1,...,n Then I} = Isand I, = Q%;g(n —nm).
Also, we can break (19) in the following short exact sequences:

0—>Ij+1—>QﬁP£(j*jm)—>jj—>0, ¥ =2 Tow 0. —1; (20)
Twisting these sequences by ¥ — 1, and taking cohomology, we get the exact sequences

H (Qpp (L)) — HI (Z;(r — 1))

_ 21
— H N0 (r - 1) — HHI(QﬁPﬁ(fj’r)) -

for j =1,...,n—1 where&;, == j—jm+r—1
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Set b := nm — n + 2. Notice that, since m > 1,
F—m= E1,1'* > 4?2,1" 2 Efn—l,r = 1 —b;

So,if r = b —1then¥é;, > m—1for j = 1,...,n— 1, with equality only if
r = b —1. Inparticular, £;, > Ofor r = b — 1, with equality only if r = & — 1. So,
from [D], Theorem 1.1, p. 40, it follows that Hj(QIJP;g (£;)) = 0 for r = b, while

HJ"H(QE;Q(EN)) =0forr>=b—1,for j =1,...,n — 1. Then, from the exact
sequences (21) we get surjections
HYIi(r - 1) — HY(L(r - 1)) — -
s = B W Ip—ilr— 1)) — H*(nlr = 1))

for r = b — 1, which are all isomorphisms for ¥ > b. Now, I,(r — 1) = Q%}? (n —

nm~+r—1). So,again by [D], Theorem 1.1, p. 40, we have that A" ( Z,,(r —1)) # 0if
r < b—1,whereas h*(Z,,(r —1)) = 0if r = b. Thenreg(S) = b by Proposition 2.1.
O]

Remark 5.2. If m = 0 and n £ 0 then S consists of a point, and thus reg(5) = 1.

Theorem 5.3. Let C < PP be a reduced, arithmetically Cohen-Macaulay, sub-
canonical subscheme of dimension 1. Let Xic be the singular locus of C. Assume C
is invariant under a rank-1 Pfaff field n: QL, — £ of degree m = 1. Set

%

o :=reg(Xc) and r:=reg(C).

Assume thatr = 5ifm = lorr =mn —n +4ifm > 1. If the singular locus of 1
is finite, thenr = m + 1 4+ p, where p .= 0 —r + 2.

Proof. Sincer = 4, wehaven > 2. Thenr = m + 4. Indeed,
am—1D)4+4=2m—-1)+d=m+(m—-2)+4=m+ 4

ifm=>1 Sop>3andr <m+ 1+ pby Theorem 4.3. In particular, o > 0. We
need only prove that r = m + 1 4 p.

Let S denote the singular locus of 7. Let Ig and Z¢ be the sheaves of ideals of
$ and C, and Ignc thatof S N C in PP Set j :=m + p — 2. Twisting the natural
short exact sequence

0 — Iy —Isnc — Isncs — 0

by j, and taking cohomology, we obtain the exact sequence

HY(Is(j)) — H'(Tsnc () — H ' (Isne,s(7)). (22)
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Since § 1s finite, the last group is zero. Furthermore, since ¥ < m + 1 + p, we have
j+lzr—2>mn—n+2.
Since reg(S) = mn — n + 2 by Proposition 5.1, also H(I5(;)) = 0. Thus
H'(Isnc(j) = 0.
Now, twist the natural short exact sequence
0— Ic —> Isnc — Zsncc — 0

by j, and take cohomology to get the exact sequence

H' (Isnc () — H'Isnc.c () — H*(Ic(j)). (23)

Since H(Isnc(j)) = 0, if we show that H'(Isncc(j)) # 0, then it follows
from the exactness of (23) that H*(Ic(j)) # 0, and hence that r > j + 3.

Since j +3 = m + p + 1, we need only show that Hl(Ing!C(j))hjé 0. Since
C is invariant under 1, and S is finite, we have that Isnc,c(m — 1) = QL where

1
QC

Y T -
T(Qe)

with ‘T(Qé) denoting the torsion subsheaf of Q}: Since C 1s subcanonical, m¢g =
Oc(r — 3) by Proposition 2.3. Furthermore, C 1s Gorenstein, whence Ix.,c wc =
ﬁé So,since j =m+p—2andr +p—2 = o, it follows that H (Isnc.c(j)) # 0
1s equivalent to

H'(Igc,c(o0—2)) £ 0. (24)

Let Ix. be the sheaf of ideals of Xi¢ in P}, Twisting the natural exact sequence
00— Te—> Iz, —> Ingec —0
by o — 2, and taking cohomology, we get the exact sequence
H'(Ic(c —-2)) — H'(Izc(0 —2)) — H'(Iscc(0-2). 25
Since ¥ > m + 4, we have
r<=m4p+l=m4+3+oc—-r<m+3+c—m—-4=0-—1.
So, since ¥ = reg(C), we have
HY(Ic(o—2)) =0.

On the other hand, since X¢ is finite and nonempty, H!(Ix. (0 — 2)) # 0 by
Proposition 2.1. So, from the exactness of (25) we get (24). L]
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