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Heegner points and p-adic L-functions for elliptic curves over
certain totally real fields
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Abstract. For an elliptic curve E over (@ satisfying suitable hypotheses, Bertolini and Darmon
have derived a formula for the Heegner point on £ in terms of the central dernivative of the two
variable p-adic L-function associated to £. In this paper, we generalize their work to the setting
of totally real fields in which p is inert. We also use this generalization to improve the results
obtained by Bertolini-Darmeon in the case of an elliptic curve defined over the field of rational
numbers.
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1. Introduction

In this paper, we give a partial generalization of the main results of Bertolini-Darmon
[4] to elliptic curves over certain totally real fields.

Let F be atotally real field, and E/F be a modular elliptic curve, i.e. associated
with a cuspidal Hilbert eigenform fz over F of parallel weight two.

Let p be a fixed odd prime. We assume that p is inert in ¥, with p = pOQp the
unique prime of F above p. Denote by Ly(s, E/F) the p-adic L-functionof E/F.
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Suppose that £ 1s split multiplicative at p. Then by the results of [26], one always
has L,(1, E/F) = 0, called the phenomenon of exceptional zero, and a formula
relating L,(1, £/ F) and the algebraic part of the L-value LA(1, E/F) is proved,
generalizing that of Greenberg—Stevens [16], [17]. We briefly recall the setup.

Let {fy } be the Hida family of parallel weights lifting fg, so in particular, fork > 2,
with & sufficiently close to 2 in the weight space, f 1s a cuspidal Hilbert eigenform
of parallel weight k, and f; = fz. One has the p-adic L-function L, (s, fi) attached
to fx. The results of [26] show that these p-adic L-functions for different weights
can be interpolated to a two-variable p-adic L-function, 1.e., there exists a p-adic
analytic function L, (s, k) of the two variables s and &, such that for k > 2 an integer,
sutficiently close to 2 in the weight space, one has L,(s,k) = Lp(s, ). Under
the assumption that £ is split multiplicative at p, L,(s, k) satisfies the functional
equation

Lp(k —s5.k) = —€gpLp(s, k),
where ¢g/p 1s the sign for the functional equation of the complex L-function
L(s,E/F).

The central critical values for the p-adic L-functions of the Hida family are given

by Lp(k/2,k). Wehave L,(k/2,k)|g—2 = 0 (exceptional zero), and

d 1 9L p(s,2) dLp(1. k)
P A P P W B T
By [26] one has the formula
al,(1,k) d .
—L —a(o, k)| LM, E/F); (D

dk kz

here a(p, k) is the Uy-eigenvalue of the form fy.

Following Bertolini—Darmon, we treat the case where the order of vanishing of
the complex L-function of E/F ats = 1 is exactly one, i.e., L(1, E/F) = 0, and
L'(1,E/F) # 0. The sign eg;r = —1, so from the functional equation, the order
of vanishing of L,(s,2) = Ly(s, E/F)ats = 1 is even, 50 a—Lp(S—Z‘S , = 0. We
also have aLp(l k) ‘k = 0 by (1.1). Thus %Lp(k/Z,k)L,c:2 = 0. One 1s thus led
to look at the second derwative of Ly(k/2,k)atk = 2.

We can now state the main result of this paper. Let O g be the Tate period of E/ Fy.
For o € Hom(F,Q,), let E9/F7 be the elliptic curve which is split multiplicative

at the prime p” of F7, whose Tate period is given by Q% and which is obtained from
E/F by conjugating with o. Let loggo/po be the formal logarithm on E'S‘/Flfr
-pO‘

Then (see Theorem 5.4 and Corollary 5.6 for the precise statements):

Theorem 1.1. Suppose that L(1, E/F) =0but L'(1, E/ F) £ 0. In the case where
[F : Q) is odd assume that E [/ F is multiplicative at some prime other than p. Then
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there exists a global point P € E(F) ® (), non-torsion, and a non-zero rational

number | € Q%, such that
d? o\ 2
mLP(k/z,k)‘k:2 :z( > logge/ps, (P )) . (12)

UeHom(F,@p)

The proof largely follows the method of Bertolini-Darmon (with the exception
that in the case F £ (@, the Shimura curves appearing in the argument are not of PEL
type, and have more than one geometric component when the strict class number of
F 1s bigger than one; see Section 4). In particular, the global point P turns out to
be the trace of a Heegner point, so the non-torsion assertion follows from Zhang’s
generalization [40] of the Gross—Zagier formula, together with the hypothesis that
L'(1,E/F)#£0.

As in [4], the extra hypothesis on the conductor of E/F, when [F : Q@] is odd,
1s forced upon us by the use of the theorems of Jacquet-Langlands, and Cerednik—
Drinfeld.

In the case where F' = (), we are able to establish Theorem 1.1 without this extra
hypothesis, thus improving the main result of Bertolini—Darmon.

Theorem 1.2. Suppose that E /() is split multiplicative at p, and satisfies
L(1,E/Q) = 0but L'(1, E/Q) £ 0. Then there is a non-zero rational number
[ € Q*and P € E(Q) ® Q non-torsion, such that

2
dk?

To do this, one considers base change to a suitable real quadratic field F, and
apply Theorem 1.1 to E/F. Suitable descent arguments allow one to obtain the
result over . See Section 6.

Finally we make some remarks about Theorem 1.1. In the case F = (Q, formula
(1.2) can be regarded as a formula for a non-torsion rational point on £, in terms of
the central derivative of the two-variable p-adic L-function of £ (by using p-adic
exponential map to invert the p-adic logarithm). However, when F £ (), (1.2)
falls short of giving such a formula, due to the cross terms involving K¢/ F?, for
o € Hom(F, @p).

The intrinsic difficulty is that, in the statement of Theorem 1.1, one considers
only the Hida family of parallel weights. In future work, we would like to obtain
such a formula, by considering Hida families of non-parallel weights. This would
involve considering mixed partial derivatives of the several variable-variable p-adic
L-function attached to the Hida family constructed in [2].

Ly(k/2,k) _— l(log gy, (P))*.
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Notation 1.3. As in the introduction, p 1s a fixed odd prime which we assume to be
inert in the totally real field F, with p the unique prime of @p above p. Denote by
d the degree of F over Q. Thus the norm of p, A p, is equal to p?. which we will
denote by ¢ in the sequel. Denote by F the set of totally positive elements of F,

A the ring of adeles of F, and by F the ring of finite adeles. We have the adelic
norms |« [ap and |- |5 on A and F respectively.

For each prime [ of F, denote by valy the normalized valuation of Fy (or more
generally on the algebraic closure of F7), whose value on the uniformizer of Op; 1s
one.

In general we will denote by N the norm operation from F to (), either over the
field itself, their completion, the adeles, or at the level of ideal (the subscripts that
occur would indicate the field extensions involved).

Denote by ¥@,cycl Gal(Q /Q) — Z; the p-adic cyclotomic character, and by

X Feyel the restriction of y cyel to Gal(@Q) /F). By class field theory, we will also
regard ¥ F cycl as a continuous Zj-valued character on ﬁX/ij = AL/ F Fooy
(here Foo, + is the archimedean connected component of A% ). The class field theory
isomorphism is normalized so that ){F,Cycl|C9f,ép is equal to N g0,

Fix algebraic closures () and p of Q and ), respectively. Denote by ord,, the
valuation on @p, normalized by the condition ord, (p) = 1. We also fix an embedding
of F} into @p. Under our assumption that p is inert in F, we have F, = de, the
unramified extension of (7, of degree d.

We fix an embedding of Q into Q@ ponce and for all in this paper. Under this embed-
ding. we can identify Hom(F, Q) with Hom(F, 0, ), which under the assumption that
pisinertin F, isequalto Hom(F,, @), sothat in particular N Fio(z) = NFyy0,(2)
forz .k,

In general, for any x € Fp, and 0: Fp — @p an embedding, we let x° < @p
denote the image of x under o.

For any number field ., denote by Dy, the absolute value of the discriminant of
L over (). If 1 1s a Hecke character of L of finite order, then by class field theory, yr
can be regarded as a character of Gal(L /L), and we denote by LY the finite abelian
extension of L cut out by ker . The conductor of ¥ 1s noted as ¢y. Regarding ¥ as
taking values in @, we denote, for h € Aut(Q), the character & o ¢ as ¢’

Finally, if ® is a group and y is a character of &, then for V' a representation of
©, we denote by V, the y-component of V.
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2. Quaternionic automorphic forms

2.1. Basic definitions. Let 1™ be an integral ideal of O . We assume throughout
the paper the following:

Condition 2.1. The ideal n™ is square-free, relatively prime to p, and such that the
number of prime ideal factors of 1~ is congruent to [F : ()] mod 2. In particular,
n = Op isallowed if [F : Q] is even.

Let B be the quaternion algebra over F, which i1s ramified exactly at all the
archimedean places, and all places dividing ™. Note that B exists by Condition 2.1
onn . Inparticular, B istotally definite, thatis, B ®F , R is isomorphic to Hamilton’s
quaternions, for all the real places v: F — K. We denote by Nrdp,r the reduced
norm from B to F.

Let B* = (B®p ﬁ)x be the group of finite adelic points of B, Given b € Bx,
and a place v of F, we will denote by b, the component of 2 at v. We will generally
identify the finite places of F with prime ideals of @, so if v corresponds to a prime [,
then we will also write &y for the corresponding component of 5.

I'ix an 1somorphism of £}, -algebras,

pr: ij — B @F Fp — M2(Fjp),

which induces an isomorphism of B and GL(F,) (here for any ring 4, we denote
by M>(A) the ring of 2 x 2 matrices with coefficients in A4).

Let ¥ = []; X be an open compact subgroup of B*. Assume that the image of
Yip under ¢y is contained in GL2(Or, ).

Let M be a Z ,-module, equipped with a left action of 1,(Xp).

Definition 2.2. An M -valued automorphic form on B> of level X is a function
®: BX -~ M
that satisfies
B(ybu) = tp(uy") - D(b) 2.1)

forally € B, b € B*,u € . Denote by S(X, M) the space of M -valued forms
of level 2.

Note that ® € S(X, M) is determined by its values on a set of representatives of
the double coset B*\ B/ X, which is finite (being both compact and discrete).
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Definition 2.3. For each embedding o: Fy — Q p» and any integer # = 0, let Sym,
be the €, vector space of homogeneous polynomials of degree # in the indeterminates
X, Y7, with coefficients in C,,. Define the right action of GL,(#,) on Sym by

(PlyNX°,Y?)
= Pa’X® +b°Y°,c°X° +d°Y°%) fory = (? 2) € GL2(Fp).

For integers k = 2, put

D= ® S},rrnffr_2

with the tensor product right-action of GL2(Fp). Define V% to be the Cp-dual of
B, with the dual left action of GL,(Fp). We call S(Z, Vi) the space of classical
automorphic forms on B of parallel weight &, and level 3.

Consider the following action of F* on S(Z, V), where given z ¢ I?X, it takes
P € S(T, V) to the form @', with ©'(b) = ®(zb) for b € B*. This action factors
through the infinite idele class group

Zp(E):=F*/FY 0% N )P

(here the superscript p refers to the removal of the component at the place p, while
the overline on F*(? 5 M X)* refers to closure).
We have a natural surjection of Z g () to the finite idele class group Clg (Z):

Zp(T) — Clp(T) = F*/FX(0F NX)

whose kernel 1s given by the image of @}ﬁp M Xp in Zr(X) (here we are following
the notation of [21], Section 3, p. 313).

From equation (2.1) and Definition 2.3, we see that the action of ™ on S(X, V%),
when restricted to the image of @jép M 2y in ZF(X), is given by X%?_,c];cl (2).
Definition 2.4. For each character  of Clp (X)), define

S(E, Vie,m) = {® € S(B, Vo), B(zb) = xgaa(2In(z) ™ B(b)

forallz € F* b c B*}.

The character # 1s called the nebentype of the form &.

It follows that we have a decomposition

S(Z, V) = B S, Vi ),
n

where 7 runs over the characters of Clg ().
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2.2. Hecke operators. Recall the definition of Hecke operators. For each prime [
at which B splits, and at which 2y 1s maximal, one can define the Hecke operators
11 as follows. Fix an isomorphism iy: By — M, (F]) such that Xy is identified as
GL2(Or ). Let my be an uniformizer of Op,, and let ky be the residue field at [. Given
a double coset decomposition:

GL2(Op,) (JBI ?) GL2(0r)= || o0a(DGL2(OR).

aeP! (k)

Define Ty on S(X, M) by the rule:

> aepl o) P0oa()) if [#p,
> aept ) Ca(l) - P(boa (D)) if I=p.

In the case of Tp, we need to assume that the action of (p(Xyp) = GL2(Op,) on M
extends to an action of the semi-group Mz (OF,) N GL2(Fp).

If [ = p (in addition to the condition that B is split at [ and >y is maximal), we
also define the operator Tty by (cf. the discussion after definition 2.3):

(Tr®)(D) = { (2.2)

Ty (b)) = ®(myh) for b € B>

(here my 1s identified as the element of F* c B*thatis equal to 7y at the place [ and
equal to one at other places). Using the fact that the classes of 7y in Clg () for all
such [ exhaust Clg(X), we see that it & € S(X, V%), then @ has a nebentype, 1.e,,
lies in one of the component S(2, Vg, n), if and only if it is an eigenvector for all the
operators 711, in which case

Tri® =) ' N IF 20,

(Here (1) := n(my), noting that % in unramified at [. Also note our convention about
X F.eyel and the global class field theory 1somorphism as in Notation 1.3.)

We next define the Hecke operators at a prime at which the level 1s not maximal.
For simplicity we do this only when the level 1s given by Iwahori subgroups.

In general if [ is a prime, m > 1, then we define the Iwahori subgroups Iy= and
Iy ym of GL,(Op, ) of level [ by

i — {(? 2) € GLy(OR), ¢ =0 mod :rrrm},

II,Im:{(? g)elrm, a—-1=0 modyrIm}.

Also put

MQ(Im;@F[) = {(? 2) = Mz(@px), c =0 mod Hrm},
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mbammx%a——{(? g)eﬂbamf&o,azl mod ]

Suppose that [ | n™, and X is a level such that [y ym C Xy C Iym forsomem = 1
(we 1dentify 2y with its image under £r). Given a double coset decomposition:

1 0 N
Iy ym (O m) Iy ym = |_| 0a (D)1 gm,

acky

define Uy on S(%, M) by the rule

2 aek; 2004 (D)) if [ p

2.3
ek, Oall) - D(bo(D) i L=p. (25

(Ur®)(b) = {

In the case of U, ([ = p), we need to assume that M has an action of the semi-group
M>(1,p™; Op,) N GL2(Fy) compatible with that of Xy,

One can take
. . 1 0
Gall) = (&ﬁf" JT[) ’

where d € OF mapstoa € k.

In the particular case where [ = p and Xy = I, the matrices 6, = G,(p) has the
following interpretation (under our assumption on p we can take the uniformizer m,
to be p): let {L(a)}aek, bethe g = p? sub-lattices of Op, &p Op, of index equal
to g, other than the lattice p(Qp, @ Op,). The matrices o, satisfy

6&(0Fp @ 0F‘p) - CQFp $p @F'p’
6@(@Fp @p 0F‘p) — L(a)'

2.3. Choice of levels. In this paper, the level ¥ is defined by the groups of units of
local Eichler orders of B. Thus let a be an ideal of OF, relatively prime to n . For
any prime [, let Ry be a local order of By satisfying the condition

Ry = the (unique) maximal order of By if [ divides n,

resp.
Ry = an Gichler order of level [Y® if [ is primeto 1 .

For [ not dividing 11—, we will assume that under the isomorphism iy : By — ML (Fp),
the image of Ry is the subring M, ([*"*; O ) of M3(Op). Thus we have i (R[") =
IIvaly(a)-

Let R = [I; Re. Then R := B ) R is an Eichler order of B of level a.
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We will denote by X(a, n7) the level given by R* for the above choices of the
local orders Ry. Also put

Yi(a, ) ={u € B(a, ), uy € 1) pya forall []a}

Note that for the level 3 (a, n™), the idele class group Clg (2 (a, ™)) is the
ray class group Clr(a) of conductor a times all the archimedean primes. Similarly
the infinite idele class group Z p(2;(a, n™)) is equal to the ray class group Z g (a)
of conductor ap®™ times all the archimedean primes (in particular independent of
n~). For the levels X(a,n™) we have Clp(X(a,n7)) = Clp(0fr) = Clr and
Zp(X(a,n7)) = Zp(Op) = Zp (here Cly = ﬁx/FJ’:@}‘, 1s the strict ideal class
group of I, with similar remark applied to Zg).

Notation 2.5. For 1 a character of Clg (o), we will write Sg(a, t, 1) for the space
S(Xq(a, ), Vg, n). If n is trivial then it is denoted as Sg(a, ).

If ® € Sp(a,1t™,n), then it is easy to check that
d(bu) = nu) " (uy' - d(b)) forallu € T(a,n7),b € B

Hereif ¥ € X(a, 1t ), and uy = (i: ZE) € I o for [ | a, then n(u) is defined to be

the value of n on the idele that 1s equal to gy at places [ dividing a, and equal to one
at the other places.

In particular for levels 3 with ¥1(a, ™) C X C X(a,n” ) we have S(X, 1) =
EB:; Si(a, ™, ), where n ranges over the characters of Clg(2).

For 2ij(a,n”) C ¥ C X(a,n ) one can also define the Hecke operators Uy
for [ |n™ acting on S(2, V), using the double coset Zyay 2y = oy Xy, with ay a
uniformizer of the maximal order Ry of By (note that Xy = Rf‘), 1.e., 1f [ |u™, then
(Ur@)(b) = P(bay).

Suppose now that X = 2i(a, n ), and that [ is a prime that divides a. Define the
trace operator

Ter_l D Sk(a, ) > Sp(fon)

as follows. Given a form @ € Sp(a, ™),

> lgt) if [ p,
>, Plegn) ifl=rp.
Here {z;} run over a set of left coset representatives of Ijn—1 modulo Ij» where

n = valg(a) (if » = 1 then In—1 is interpreted as GLo(O ). For example if [
divides a exactly (i.e., » = 1) then one can take {7, } with r indexed by P1(ky), as

{10
KO V|

T8y (@)(g) = {
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0 -1
w=1 o)

Aform @ € Sg(a, ) is said to be new at [, if

for r € &y, and

0 _
Trar_1 (®) =0.
Otherwise it 1s called old at [

2.4. Measure-valued forms. Inthissection, we define measure-valued forms. First
recall the definition of some relevant Iwasawa type algebras.

Let 1" be an ideal relatively prime to pn—. Consider thelevel ¥ = X(n™,n7).
In this case Clg(X) = Clg and Zp(X) = ZF.

Denote by G the kernel from ZF to Clg:

1 -Gy - Zp — Clgp — 1.

Then GF can be described as follows. Denote by ¢ the closure in (9}f-p of the group
of totally positive units of @ z. Then

Gr = @}?p/c.

Each of the profinite abelian groups Zr, GF is a (non-canonical) direct product
of its finite torsion part and a Z ,-free part. The Leopoldt conjecture predicts that
these have Z,-rank one, but we do not need this in the sequel.

Put

Xy = Homcts(GFaC;)

known as the (C,-points of the) weight space (in [21], Section 3, the weight space
is defined to be Homs(Z 7, C ). But as in the sequel [22], the above definition is
more natural, especially when one 1s dealing with forms of non-parallel weight).
Inside X g 1s the set of classical weights defined as follows.
For integer k& = 2, and & a finite order character of G g, the pair (k, &) defines an
element P ¢ € X p, called a classical weight, given by

P g(a) = E@) (F.epat(@) 2 = §(@) N ppy0, (@) 2 fora c Gp.
(Note that the norm map
Npp/@pi (9}2) — Z;
factors through

NFoy, GF = @}(;p/c — Z;) (2.4)
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For the purpose of this paper, it suffices to consider those weights with & trivial,
in which case we denote the weight by Pr. As we will see below, the weights Py
parametrize family of automorphic forms of parallel weight k.

Let A be the completed group algebra of Gy with coefficients in Z,:

Ar = Z,[GF].

Elements of 7 = Homu(Gp,C}) extend by continuity to algebra homomor-
phisms from Ar to C,,.
In the case F = (J, then _
Ag =27, [[Z;]].

Asusual, let A C KQ be the Iwasawa algebra:
A =T, + pZ,l.
The projection map to the one-units,
{+): Z; — 1+ pZ,,
induces the projection
KQ — A.

We denote by wp = ){F,cycl(}{p!cyd)_l, the Teichmiuller character of . As a
Hecke character its conductor 1s equal to p times the product of all the archimedean
places. We have wp = wg o N pygp.

Let AT C ©Cpllke — 2]] be the subring consisting of power series (with C,, coeffi-
cients) that are convergent in some p-adic neighbourhood of 2. We have the usual
embedding

A = AT,

k—2). (2.3)

3

la] = (k — a

here [a] is the group algebra element associated to ¢ € 1 + pZ,. The image of A
in AT is called the set of Iwasawa functions. If A is an Iwasawa function, then it
converges on the region ord,(k —2) > 1 — ﬁ. ForA € A, and k € Z, we will
denote by A(k) the evaluation of A at k. Similarly if A€ K@, then we denote by
A(k) the value A(k), where A is the image of A under the map 7&@ — A

The norm map (2.4) induces the map on the completed group algebras:

Ar — Ag (2.6)

and the weights Py factor through (2.6). (For this reason the weights Pp are also
referred to as cyclotomic weights.)
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Denote by (sz,p)’ the set of primitive elements of (9%710 = Op, @& Op,, 1¢,
elements such that at least one of the coordinates lies in @;(,p. Consider the space
of orbits X := ¢ \(@%p)’, where ¢ acts diagonally. The diagonal action of @}fp on

((9%.p)’ induces the action of Gy on X.
The space of continuous Cp-valued functions on X is equipped with the right
action of GL,((p, ), given by

(f19)(x. y) = flax + by, cx +dy) forg = (‘j 2) €GLyOp). Q7

Let Dy be the corresponding space of measures, 1.e., its continuous Cp-dual. Dy
inherits the dual action of @iﬁp and GL2(Op,): for g € Dy, and § an open compact
subset of X,

ff(x,y) d(c~,u,):[f(cx,cy) du forc&@xp,
3 S

[fa@mw=[ | flgdn forg<cLaon)
3 g-1§

The action of (9}(7;, and hence Gy on D, extends by continuity to give the structure

of a ;{p—module on Dy

Let W .= sz —40,0}. PutY := ¢ \'W, so wehave the natural inclusion X — Y.
Let D be the space of compactly supported measures on Y. £ is equipped with the
action of GL;(F}) similar to the action of GL2((F,) on Dy defined above, ie., if
pu' € D, and 8’ an open compact subset of Y, then for g’ € GL,(F), and ' a
continuous function on Y,

ffwwwm:f Fg’ d 2.8)
3/ (gf)—l S.’

(with f'|g’ being given by the same formula as (2.7)).

There is an inclusion map §: Dy — O obtained by identifying elements of Dy
as measures on Y that are supported on X . On the other hand, restriction of measures
induces the projection map p: D — Dy

Given pt € Dy, and g € M(OF,) N GL,(Fy), define

g x = p(g-s(u)).

Then it is easy to check that this defines a left action of the semi-group M2(Op,) N
GL,(Fp) extending that of GL,((@p, ) (we denote this action by * in order to distin-
guish this from the action of GL2(Fp) on D indeed * does not extend to an action
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of GL,(Fy)). Concretely, given a continuous function f on X, and S C X open
compact, element g € M2(Op,) N GL2(Fp) and p € Dy we have

ffd(g*u»):f £lg du.
3 e—1(5)NX

Hence g * p is supported on g(X) N X. In particular if g € M(Op,) N GL2(Fp),
and § C X such that g7!'S C X, then for u € Dy we have

[raseu= |  rean=[  sisan=[ 1 a s

Definition 2.6. Let s € Z,. A function f on X is said to be homogeneous with
respect to the weight character (¥ F cyal)’, it

Jex,cy) = (Xreale)) f(x, 9) = (N 0, () f(X, )

x
for any ¢ € (C’Fp.
Definition 2.7. We put
I -
@iyc i— @* ®KF AQa
and similarly

cycl,¥ . oyl
B =D ®C9<cpc§<m At

(here & is the completed tensor product over Z,). Elements of S(X, M), where
M= 5D,, i),iyd or @?CI’T, will be referred to as measure-valued forms.

As in Section 2.1 we have an action of X on S(2, D,), namely if z € I?X, then
it takes Poo € S(X, Dy) to the form &, _, where P, (D) = Duo(zb) for b € B>
This action factors through Z 7. On the subgroup G of Z g, this action is consistent
with the action of Gg C Kp on Dy ifz € F>* whose class 7 in Zp liesin G, then

Doolzb) =271 D (b) forb € B*.

Similar remarks apply to S(2, @?Cl), S(Z, @?CI’T).

Homogeneous functions with respect to the weight character { y F’Cycl)k —2 for some
k € Z, can be integrated against elements of Dy Cl, and also against the elements of
@?CI’T if k is p-adically sufficiently close to 2: suppose it = il,ml oo +5LFIU/_}», with
i € Dy, A; € K@, and k € Zp. Then if f is homogeneous of weight {){F,Cycl)kfz,
the formula

]Xf dp = ;ii(k)f)(f '
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1s well defined.

Elements of 53y give homogeneous functions of weight { ¥ F’Cycl)k—z . by linearity,
it suffices to consider P = &4, Py, a pure tensor, with P, < Sym{.ff2 for each
o: F, — Q. Then the function

Je(x,p) = of @ || P(x". »%) (2.9)
o2

)k—2 k

1s a homogeneous tunction of weight (¥ 7 cyel on X. Here a)%_ 1s interpreted as
theidentity functionifk = 2 mod p—1. Otherwise, if k is not congruent to 2 modulo
p — 1, then we take the convention that a)%_k(x) =0if(x,y) ¢c \((9}‘;13 X Op,). It
can be shown that the association P +— fp is injective.

Definition 2.8. Put X' = c\(@}f,p x pOp,) C X. Then for integer k = 2, the
specialization to weight k map 1s given by

pk: Cg)* T Vka

;LH(P%fXIfP du).

The same formula defines specialization map pg on i)iyd, and on @?CI’T if k 1s
sufficiently close to 2 p-adically. The maps py are surjective for each k = 2.
The specialization map pg respects only the action of /1 . More precisely, for

k=2 and p € Dy, oI (or DI ik is p-adically sufficiently close to 2):

i - ) = oF F)u - pe(p))  foru € I,

In particular it respects the action of I, if k =2 mod p — 1.

Recall that ¥ = Z(n",n7). Put X' = XN X(p,n ) = Z(pu",n ), ie, X
is the level obtained from X by replacing X = GL2(Op,) by Ip. Similarly put
Y] = X N X(p, 7). The specialization map pg: Dy — Vg induces

P S(E, D) — S(Z4, ). (2.10)

Similarly we have specialization maps pg « on S(Z, @?Cl), and on S(X, @?CI’T) if
& 1s sufficiently close to 2 p-adically. More precisely. If &5, € S(2, @?CI’T), then
there is a p-adic disk U C Z, around 2 such that @ := pp «(Pso) is defined for all
k € U N Z=2. This can be seen using the finiteness of the double coset Bx\gx/ 54

Hence elements of S(X, Dy), S(X, i)iyd) and S(X, @?CI’T) give rise to p-adic
families of forms. Asusual p appears in the level under specializations, corresponding
to the phenomenon of removal of the Euler factor at p. Tt is also immediate from
the definitions that the map pr . commutes with the Hecke operators 7t and Ty for
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[ } pn™ n~ (and also with the Uy with [ |t nw™). On the other hand, the action of
Ty on S(X, D) (defined because p + n™) is actually transferred to the action of U
on S(X7, V). In other words, we have the following:

Proposition 2.9. Suppose @, € S(X, Dy) with T as above. For k = 2 integer, put
Cr = pr (D). Then

pk,:k(Tp Poo) = Up Py

Without interrupting the main reasoning of the paper we refer the reader to Ap-
pendix IT for the proof.

2.5. p-adic deformations of quaternionic eigenforms. With notations as in the
previous section, note that the specialization map (for k& sufficiently close to two
p-adically)

Op.xt ST, DMy 5 5B, )

is a map of AT-modules, with the action of A € AT on Si(X/, 14) being given by
multiplication by A(k).

Let T be the free polynomial algebra over Z in the symbols {7y} for primes
[ } n* w (in particular for Tp), Uy for [[n* n~, and Tyy for [ 4 pntn~. The
algebra T acts on S(Z, @?CI’T) and S(X, V), we caution here that the symbol
T, € T acts on S(X7, V) via the operator U,. The map pf « is then a map of
T &7 AT-modules.

A form © € S(X, V) is called an eigenform if it is an eigenvector for the
action of T. In this case & has a nebentype and we denote the eigenvalue of Tj for
[} pontu, resp. Uy for [ | put u, as C([, ®). In this case the eigenvalues are
actually algebraic integers. It is called ordinary at p, if the Uy-cigenvalue i1s a p-adic
unit.

Similarly, aform ®,, € S(2, @?CI’T) is called an eigenform if it is an eigenvector
for the action of T @ AT as a AT-module, i.e, the eigenvalues are in AT (there is
a uniform radius of convergence for the whole package of eigenvalues) Denote by
C([, Buo) € AT the eigenvalue for Tt when [ } n™ v, and U if [ |t n. The form
@ is called ordinary at p if C(p, Ps) € (ATY*.

Suppose that @ € S(X, @?CI’T) 1s an eigenform. Then there is a character
oo 0N Zp with values in (AT)* such that 1By = Do (V7 1Py for [} pnt ™
(here neo(l) = Neo(my) with ry a uniformizer of Fy; the existence of 7. follows
from the density theorem of Cebotarev, which asserts that the classes of 7y in Zp
for [ } pu™ n are dense in Zy). Assume that @, is not identically zero. Let U
be a p-adic disk around 2 so that the specializations @ = pg «(Po) are defined
for k € U M 722 and not identically zero. Then the forms ®;, are eigenforms. We
claim that the nebentype of @y is given by the character nw%fk on Clg(p), where
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n = 1, 13 the character on Clg given by the image of 7, under the evaluation at 2
map A — A(2) for A € AT, Indeed, we know that in any case @z has a nebentype
character 5 on Clg (p), satistfying

Trx®r = N2 ne(l)y 1,

Hence

Noo(D)(k) = N 2 (D) fork € U N Z=2,

Tt follows that the element (N [)*=2. . (0)(k) € AT (here k is a variable) can
take only finitely many values as k ranges over U (1 ZZ2, hence must be a constant
equal to 7.0 (1)(2) = n2(0). The claim follows. In particular, when k € U N Z>?
and k = 2 mod p — 1, the nebentype of © is given by 1 = 12, and $y 1s of level
Y(puT,n) (instead of just T(ut,m™) N Xy (p, ).

We now state a version of Hida’s theory on lifting eigenform to a p-adic family,
in the style of Greenberg—Stevens [16]:

Theorem 2.10. Let ® = &, € S(Z(pu™,u"), V2) be an eigenform that is p-
ordinary, and is new at primes dividing n". Then there is an eigenform o €

S(Z(nt,n), @?CI’T) such that Py +(Poo) = 2.

Theorem 2.10 can be proved using the method of [1]and [21]. For the convenience
of the reader we give a sketch of proof in Appendix IT.

Fork € U N Z>2, the eigenform & € S(Z(nt,u) N Z1(p, n7), Vi, nw %)
corresponds to a unique normalized cuspidal Hilbert eigenform over F under the
Jacquet—Langlands’ correspondence (for the definitions regarding Hilbert modular
forms, we refer to [ 26], Section 2; here a Hilbert modular form f 1s called normalized if
the normalized Fourier coefficient C(( g, f), inthe notation of [ 26], Section 2, 1s equal
to one). More precisely, there is a unique normalized cuspidal Hilbert eigenform f}
of parallel weight k. level pn™ 11—, that is new at primes dividing n™ 1 and ordinary
at p, such that the Hecke eigenvalues of fy and ®; with respect to T coincide (again
the symbol T}, acts as the operator Uy, on i ). Remark that for normalized eigenform
fz, the eigenvalues of f with respect to the Hecke operators 7 for [ } pnt n™ (resp.
Up if [ | pnt ™) are given by the normalized Fourier coefficient C([, fz). Thus we
have C([, fz) = C([, &) for all primes [, and the nebentype of fr and &, coincide.

The family of eigenforms {f; }zcpyz=2 forms the set of specializations of a AT-
adic form fae, called the Hida family lifting f> (cf. [26], Section 4). The AT-adic form
f.. is determined by the data of its normalized Fourier coefficients C (1, o) € AT
for all ideals m of @, and is defined as follows. For [ a prime put

C([,feo) = C(I, ©0)
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and define C(1, f.) for other mt by the formal equality

| G
poe N . 1 —C([,foo) N " +n(D)"L NI
Here 7 18 the character on Z g associated to @, as above, and 7., ([) = Moo (ay) if
[}/ pn™ n, and zero otherwise. Equation (2.21) means that f. is an eigenform for
the action of Hecke operators acting on A T-adic forms of tame level n™ n—, and . has
the property that its weight & specialization is the eigenform f of parallel weight & for
k € UNZ>2. Itisordinary at p (in the sense that C(p, fae) = C(p, Poo) € (ATY),
which thus defines an algebra homomorphism of Hida’s universal ordinary Hecke
algebra of tame level n" u™ lifting 5 ([21], Section 3). We remark that in [21],
Theorem 3.6, one starts with f> and constructs f,, directly on the Hilbert modular
side independently of ®,. By loc. cit. the Hida family fy, 1s unique.

In the rest of the paper, the form & = &, to start with 1s assumed to have trivial
nebentype, so that ® € S»(pu',n ), and we only need to look at the weight k
specializations ®x of Pue, with k € U N Z2? and k = 2 mod p — 1, so that
&p € Sp(put, ).

2.6. Another description of quaternionic forms. Consider the case where 2 =
Y (a, ) for some ideal a (a will be either n* or pn"). The theorem of the norm
and the strong approximation theorem (Theorems 4.1 and 4.3 in Chapter 3 of [34])
gives a decomposition

h
B =| | B*x:B)%, (2.12)

i=1

where x; € B satisfies (x;)p = 1, and such that the reduced norms Nrdg,p(x;) €

ﬁx, fori = 1,...,h, give a complete set of representatives of the strict ideal class
group Clg of F. More precisely if y € B*, then the unique index i of (2.12) to
which y belongs 1s determined by the condition that the class of NrdB/p(yxfl) n
Clg 1s trivial (note that under our assumption that p is inert in F, the image of pr
in Clg 1s trivial).

Fori = 1,...,k define

Iy =Ti(an ) :={y e B . yr e () Ty (x); " for [ p},

) T (2.13)
Iy = Ty, 7)) = {y € Tia,07), Nrdg/p(y) € OF ).

Here Of , = Of N F{ is the group of totally positive units of @p. Note that
R, =BnNux; ﬁxi_l 1s an Eichler order of B of level a, and fg = ¥; [%]X. Ify e f‘g,
then Nrdg,p(y) € OF [%] * M FZX. Note also that if a and a’ are two ideals relatively
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prime to n~ that are equal except at the place p, then ﬁ-(a, no) = ﬁ-(a’, n) and
similarly for the I';. For the p-adic constructions we embed fi as a subgroup of B,
and hence subgroup of GL,(F}) via i. In the tollowing, we will usually omit the
explicit reference to the isomorphism ¢y.

Using (2.12), we have a bijection

h
| |Ti\B)/Z, => B\B*/Z, (2.14)
i=1

where for g € B, the class of g in ﬁ-\B;‘/ Y gets mapped to the class of x; < g in
BXB5E,

Using (2.14), we see thata form ® € Sg(a, n”) can be identified as an A-tuples of
function ¢!, ..., ¢" on GL,(Fp), by the rule: ¢*(g) = ®(x; - g). fori =1,...,h.
The functions ¢?, satisfy:

Hyguz
I - e C15)
= XFeyal2)u - 9'(g)) fory €Ty, g €Gla(fp)u € Bp,z € F~,
Similarly if ®o, € S(X(nT, 1), @?CI’T) is as in the statement of Theorem 2.10,
then it can be identified as an A-tuple ¢} ,. .. ,gi)f:o on GL2(Fy), with ¢! (g) =
B oo(x; - £). We have

Plo(vguz) = nec(z) 'uT gl (g) fory €Ty, g € GLa(Fy), u € By, z € FX.

Note that this description 1s similar to the description of automorphic forms on
GL2(AFr), in terms of vectors of Hilbert modular forms, cf. Section 2 of [26].

This description 1s more convenient for local constructions. On the other hand, the
original description as in Definition 2.2 1s more convenient for global constructions
(e.g. CM points as in Section 4).

2.7. Lattices and Bruhat-Tits tree. We can phrase the description of automorphic
forms on B> given in Section 2.6 in terms of the Bruhat—Tits tree. First consider the
level Z(a,n” ) witha = n". Let ® € Sp(n™,n"), corresponding to an A-tuple:
(¢, ..., ¢") as in the previous section. For eachi = 1,...,k, define a function C g
on the set of all lattices of Fy @ Fp as follows: given a lattice L, let g7 € GL2(Fp)
be such that L = gy (Op, & Op,), define

cei(L) = gL - 4°(gL).

By (2.15), this 1s well-defined independent of the choice of gz. It also follows from
(2.15) the following property:

coi (LY =y -cgi (L) fory € Ty(nt,w).
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In particular,
cpi{pL) = pd(k_z)c¢; (L) = qk_20¢f (L).

Similarly, suppose wetakea = pu'. If ® € Sp(p ', ), then corresponding
to the A-tuple (p!,..., "), we can define functions (cy,...,cy), where Cpi i a
function on pairs of lattices

L, C L ofindex equal to g

by the rule

cpi(l1, L) = g1 - ' (8r) (2.16)

with g1 € GLQ(Fjp), such that gL(@Fp & @Fp) = #x, gL(OFp Sp @Fp) = I,
We have

coi(YL1,7L2) =y -cyi(L1,Ly) forally € Ti(pu™, u),
coi(pL1, pLa) = ¢* ey (L1, L2).

In both cases, we denote by ¢g the vector of functions {¢ i }le.

When & = 2, the functions ¢ i (L), ¢4i (L1, L2) factor through homothety classes
of lattices and pairs of lattices respectively, hence correspond to functions on the set
of vertices 7, respectively edges &(7), of the Bruhat-Tits tree 7 of PGL2(#y) (by
an edge it 1s always understood to be oriented).

The set of even (resp. odd) vertices of the 7, noted as ‘J’B+ (resp. 7, ). 1s the setof
vertices whose distances to the class of the lattice Op, & @p, 1s an even (resp. odd)
integer. An edge will be called even (resp. odd) if its origin 1s even (resp. odd), and
we denote by &(7)7 the set of even edges (resp. £(7)™ for the set of odd edges).

On forms of weight two, the Hecke operators T3, U,, has the following interpre-
tation:

crpe(l) = ) ca(D),

Lol

copo(L1,L2) = Y ca(la, L),
ECLZ

where the first sum runs over the ¢ 4 1 sub-lattices I of L of index equal to ¢g. The
second sum runs over the sub-lattices L of L, of index equal to g, other than pl;.

Suppose that ®* € Sg(nt, n7) is an eigenvector for the Hecke operator Ty, with
eigenvalue C(p, ). Assume that $7 is ordinary at p (i.e., C(p, %) is a p-adic unit).
Let a(p, %) be the unit root of the characteristic polynomial

x2— C(p, dHx + ¢~ L. (2.17)
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Then we can define @ € Si(p ™, ) to be the form whose associated function ¢
satisfies

k=2

cop(Li1,L2) = coe(Lla) — ﬁ

Cq;#(Ll), (2.18)

which is an eigenvector for Uy with eigenvalue a(p, &), as is easily verified. We

call & the p-stabilization of ®*. It is easy to check that Trﬂfr & = (o — q};—_z)ﬂb#
(where @ = a(p, ®*)). Hence @ is old at p (in the sense of Section 2.3).

We now come back to the setting as in the introduction, namely we take a cuspidal
Hilbert eigenform f of parallel weight two, with conductor pnit . Since f is
supposed to correspond to an elliptic curve E/F, we assume that the normalized
Fourier coefficients C{1u, f) are all (rational ) integers. As fisnew at all prime dividing
n, it corresponds under the Jacquet—Langlands’ correspondence to an eigenform
® = Sy(p nT,n7), which is unique up to scalar multiples in ©C,. Since the Hecke
cigenvalues of @ are integers, we can actually choose @ so that the values taken by
@ are integers.

As p exactly divides the conductor of f, we have C(p, f)? = 1([36], Lemma 1.4.5).
In particular f and hence &® are ordinary at p. Now by Theorem 2.10, we can lift
the eigenform ® = @, to an eigenform ®, € S(X(nt, ), i)inl’T), which corre-
sponds to the Hida family fy, of cuspidal Hilbert eigenforms lifting f = f,. It U s
a p-adic disk around two such that the weight & specialization maps are defined for
k ¢ U N ZZ2, then ®; corresponds to fx under the Jacquet—Langlands’ correspon-
dence (the conductor of each f divides p n™ ™ and is divisible by n™ nn™). We only
need to look at the specializations ©f and fr, withk = 2 mod p — 1, in which case
&y € Sp(put,u).

Now since the forms f; and @ are ordinary at p, Lemma 1.4.5 of [36] implies
that f; and hence ®j, cannotbe new at p, whenk > 2, k =2 mod p—1. Fork > 2,
k=2 mod p — 1, denote by fz the unique normalized cuspidal Hilbert eigenform
of parallel weight k, conductor 1™ n, such that f; is the p-stabilization of f}f (for
the definition of p-stabilization of Hilbert modular forms see [26], equation (4.15)).
Put @i € Sp(n',n7) to be the unique eigenform on B that corresponds to fg under
the Jacquet—Langlands correspondence, and such that (2.18) 1s satisfied (although
the Jacquet—Langlands correspondence determines CIDi only up to scalar multiples,
equation (2.18) fixes the choice for @i uniquely). For notational consistency we
put ff = f,, and @ﬁ = &, (here we are using a different convention as compared
to [4], where they put fg = 0, @ﬁ = 0). As in the situation of (2.17) and (2.18),
tor £ > 2 we have C(p, @), the U, eigenvalue of Py, is equal to a(p, (I)i), and
similarly C(p,fz) = a(p, f;:) where a(p, fg) is the p-adic unit root of the Hecke
polynomial X? — C(p, f;:)X + g% (for @, and £, we put a(p, <I>§) = C(p, ©,),
a(p, 1) 1= C(p, f2)).
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We put a(p, k) := C(p, Poo) € AT (here k € U as a variable). Then we have
a(p.k) = a(p, &) = o(p.f) fork e U NZ=2, k=2 mod p—1.

2.8. Some lemmas. We maintain the notations of sections 2.6 and 2.7. Thus let
O € S(B(u',n), @?CI’T) be a measure-valued form, which corresponds, as in
Section 2.6, to an A-tuple (), ..., Q’)f:o) Let U be a p-adic neighbourhood of 2 such
that for k € U M 722, the weight k specializations @y of ®, is defined. For k = 2
mod p — 1, wehave ®; € Sp(pn',n ). Ifk > 2, then & is the p-stabilization of
@i e Sp{n™, u). Let (gb;:;, o ,gtv]‘?) and ((gbﬁ)l g (gb;j)h) be the corresponding
h-tuples of functions on GL,(F,) respectively.

Recall from Section 2.4 that & is the space of compactly supported Cp-valued
measureson ¥ = ¢\ W. Put Dol — ®KF ;{@ and DLt — povel ®A®(9<c AT,
so that the injection s: £y < I (extension by zero outside X ) induces the inj e}?:tion
s: DI . porelt we identify DI with its image in DT via the map s.
Elements of £%¥LT can be used to integrate functions on Y that are homogeneous of
weight (){F,cycl)k_2 fork e U.

Recall that we have an action of GL,(F;;) on O as in (2.8). Extend it to an action
on DT in the natural way (i.e., trivial action on the factor AT).

Definition 2.11. For a lattice L of F, © Fpy andi € 1,..., A, define the element
fri,r. € DI by

fir = gL - $5 (gL,
where g7, € GL,(F}) satisfies L = g7 (Op, & OF,).

For any compact open subset § of ¥, and homogencous function F on Y of weight
(XF!cycok_z with k € U, we have

]F dp; 1. :f Flgr d¢l (gr).
5 er s

It follows that the measure ;7 1s supported on ¢ \gL(((Q%,p)’) = ¢\L’, where

L'={ €L, ¢ pL}, the set of primitive vectors of L.
We list several lemmas, whose proofs follow exactly as in Section 2.4 of [4], so
we just give the statements.

Lemma 2.12. For any ¢ € ﬁ- (nt,u), and F a homogeneous function of weight
{){p:cyd)k_z, withk € U, we have, for 8 an open compact subset of Y, that

] (Fly™") dptigr :fF di; 1.
ys S
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Lemma 2.13. Let L, C L be asublattice of indexequal to q. Thenfork € UNL=2,

k=2 mod p—1, and F a homogeneous function of weight {){p,cycl}k_z,

/ F dupig, = a(p,@k)f F dpr,.
c\LiNL5 e\LinNL,

Lemma 2.14. With the notations of Lemma 2.13, we have, for P € By,
[ P s = ey L))
eSS %

Proposition 2.15. With the above notations,
k—2

q
m) C(qbz)i (L)(P)

f Pwu—m%%ﬁf
c\L'

2.9. Periods of forms of weight two. Let & = ®, € Sy(pnu™,n™) be as in Sec-
tion 2.7. Recall that we assume <& 1s normalized so that it takes integer values, hence
so are the functions ¢, defined by (2.16).
Ligt
pr: e\'W — PY(F,)

be the natural projection map sending (x, y) € ¢\'W to % € PY(F,). For an even
lattice L define, fori = 1,... A,

Moi = PTy(fi,L),

i.e., for any open compact ¥ C PL(F,), and continuous function % on P} (F}),

‘/‘hdﬂ’(pi:‘/‘ hopr dﬂ;‘,L
Y pr—l (#n(e VL)

(note that u; z 1s supported on ¢\ L"),

Lemma 2.16 ([4], Lemma 2.12). The measures i do not depend on the choice of
the even lattice L.

Definition 2.17. Put GLJ (F,) := {g € GL2(F,), ord, det(y) =0 mod 2}.

The group G—L;r (Fp) preserves the set of even lattices. Also note that if y <
Iy N GL;(Fp), then Nrd g, (y) = p?"u for some integer r and 1 € O% . which
implies that p "y € T;.
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Lemma 2.18 ([4], Corollary 2.14). Fori = 1,..., h, the measures Mgi are invariant
under 'y, and satisfy

fhgi (PH(Fy)) = 0. (2.19)

Let J£ = J¢p, be the rigid analytic p-adic upper half plane defined over #,.
The set of Cp-points of J is given by #(Cp) = PYCp) —PY(F,) = Cp — Fp. Tt
is equipped with the Maébius action of GLo(Fp):

a b az+b
T .
c d cz+d
Associated to the measures 44 are the rigid analytic functions f,i(z) on #(Cp).

1
fpt(2) = fp b B djtyi (0).

A direct calculation shows for any y € 17, with (‘CZ g) being the image of ¥ in
B =~ GL,(Fy), we have

foi(yz) = Nedpyp ()" ez + d)? fi (2).

Put @yi = fyi(z)dz. Then wy is invariant under the action of [, hence defines a
rigid analytic differential form on the quotient I\ #.
For 7, 72 € #(Cp), define the period integral of Coleman:

T2 )
g e log ( ) A i (t),
-£1 ¢ -/f"l(Fp) PA\i—n ?

where log), is Iwasawa’s p-adic logarithm, satisfying log,,(p) = 0. The following

relations hold:
2 T3 T3
Tl T2 Tl

vz T2
v T

T1 1

Under our assumption on the normalization of @, the measure fi,: is Z,-valued,
and we can define the multiplicative integral (for the precise definition see [12],

equation (5.8)):
% T— rg)
Wy = dit i (t).
£1 ¢ -%f"l(Fp) (t — T ¢

It satisfies the multiplicative analogue of (2.20) and (2.21). We also have the formula

2 2
f CU@I' = logpf CU@I' 4
71 1




890 C. P Mok CMH

2.10. Periods and Hida families. Let () »2¢ be the unramified quadratic extension
of Fy = Q pd. Fort e Q p2d, let T be the image of 7 under the non-trivial element

of Gal(Q 24 /Q pa).
For © € #(Qp2¢) = Qp2a — Fp, define

Ly :={(x,y) € FZ, ordy(x —1y) > 0}.

It is seen that L, is a lattice of Fp ¢ Fp. The reduction map from #(0Q)}) to 7o
(where () is the maximal unramified extension of () sends 7 to the homothety
class of L, (see [14], Section 1.3). Denote by v, € ¥y the class of L.

By direct calculation, for any y = (‘g 3) € GL2(Fp),

Eipe = 0 9L, (2225
where r = ord, ((det Yy et + d)) which implies
Uy — YVg

for any y € GL2(Fp).
An element 7 € J(Q),24) is said to be even (resp. odd) if v is even (resp. odd).

The set of even (resp. odd) elements is preserved by G—L;_)+ (Fp).
For any x € (Q}), write (x} for the projection of x to the one-units, i.c.,

x = pordp(x)é.x <X)
with {y a root of unity of order prime to p. We make a definition.

Definition 2.19. Let F be a homogeneous function on ¢ \'W of weight {¥ 7 cya}®
for some § € Z, — {0}, and § C ¢\ W an open compact subset. Assume that F is
non-zero on 5. Define

d o
1 F d ; ! e S F , § (k*z)d i : )‘ ,
[ 108y Fex, ) it = s ([P P duis, o),

where k takes values in a p-adic neighborhood of 2 . Tt is not hard to verify that the
derivative exists.

Definition 2.20. For even t € J(Q ,24), define the function Fy on ¢\'W by
Fo(%,9) 1= (N Q00 /0p (X — 7))
The function F7; is homogeneous of weight { ¥ F’Cycl>2. Note that we can also write

Fe(x, ) = (N p0, ((x —2p)(x —T9)).
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It is clear that F; isnonzeroon ¢ \L’.
Define

Li(z) = f log, Fe(x, ) djtsL. (x.y)
c\L%
4 o (2.23)
— B == i
([ Fen Fam )|

Proposition 2.21. For any y € ﬁ- we have
I¢z ('J/T) = I¢z (T)

Proof. The function {Fz(x, y)>% is homogeneous of weight (){F,Cycl}k_z. For

Y= (‘g 3) we have, with the notations of equation (2.22),

k—2
[ BT dpis,x,)
c\Lyr
k=2
= (Fyt(xsy» z d.u“i,pfny(xay)
e\piyLYy

k=2
= f\L, {(Fye|p"y)(x,¥))" 2 dpir,(x,y) (by Lemma2.12).
CALE

Now by direct computation

det y
ct +d

(Fiel V) 9) = (V00 (i ))- Filr. )

Hence

k-2
f (FyeCe, V22 dpir,. (%, 9)
c\Li

det y
ct+d

k=2 k—2
= (N@pzd/@p( ))T fcw (Fe(x, )2 dpar, (x.y).

Taking derivative at ¥k = 2 and applying Lemma 2.18, the result follows. ]

Thus the value of [, (7) depends only on the image of 7 modulo fi. By mul-

tiplying t with an element of y € I'; with Nrdp,;r(y) = p if necessary (that such
an element exists is seen by using Corollary 5.9 of [34], Chapter 3), one can always
normalize 7 to be even.

Let H'(Q 2q) C H(Q ,24) be the set of even 7’s. Tt then follows that

TAH(Qpoa) = TAH(Q 20).
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Lemma 2.22. Let L, be a sublattice of L1 of index equal to q, and let ¢ =
([L1],[L2]) € E(T) denote the corresponding edge (going from [L1] to [L2]). Then
forany T € H(Q2a),

d
log, Fo(x, ) Aty — i) = 200, 6)| _cpife)
./c\L’lﬂL’z ? * ; Y T dk =2 ?
ifa(p,®) =1, and
[ g Felwy) Aty + in) = 2mae. k)| cpr)
og, Fr(x, i, Ly + fi,Ly) = 2—0(p, cyile
3 d 2 ' dk k=2 ¢

ifa(p,®) =1

Proof Fork ¢ U MZ>?,k =2 mod p — 1, we have by Lemma 2.13,
k=2
<F‘E(xa .y)) - d()u’i,Lz = fu’i,Ll)
e\LiNLS

k=2
— (a(p.l) + 1)[\L B ) Py,
ALy AL,

The result follows from taking derivatives, and using Lemma 2.14 which gives

f 1 dpi,n, = cgile). L]
c\LiNLj

For an edge e of 7, define |e| to be O resp. 1, if e is even, resp. odd.

Lemma 2.23. Let L, L, beevenlattices of Fy, @ Fy, and vy, vy be the corresponding
vertices of T. Then

f log, Fi (%, y) d{iir, — thiss)
c\LJULS

p (2.24)

= 4—0 el
B 4dka(p’k)‘k:2 - > wlegie).

e. v
where the sum is over the oriented edges e in the path that goes from vy to vy, and
oy = a(p, P). Ifal(p, ®) = 1, then (2.24) holds without the parity condition on the

lattices.

Proof. This follows easily from Lemma 2.22, cf. the proof of Lemma 2.23 of [4].
0]
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Proposition 2.24. For even 7y, € H'(Q 24),
Id)f (7:2) B Iqbf (f])

T2 d
= log, Nszd/’Qp (j{l a)qbf) + 4Ea(p’k)‘k:2 <valy (i_

Ifa(p, ®) = 1, then the equality holds without the parity condition on 11, T2.

T2
a)d)i ) .

1

Progf. Set Lj = Ly;. We have

Ly () — L (1) = f . (19 Fo(x.3) —log, Fox.3) i,
C

1

+ f log, Foy(x. 1) dttsr, — fir1,).
ed Ll

The second term 1s handled by Lemma 2.23, together with the equality (which can
be proved as in [4], Proposition 2.15)

val, (]{rz C()¢j) = Z QJL@\C@;' (e).

1 e. v —>va

For the first term:

f\L’ (logp th(X,y)_logp F‘E](x!y)) d,u’i,Ll
b

Fe
— log 2 (xa ) d:u’ L
_/C‘\Lﬂi P F-El y (29 55 |

X —1T73)

— log, N ( )d,w,L
[\L’l p Y Q24 /Up X—11y Ly

X— 1)
= log, N ( )d,u, i
./Ill(Fp) p Y Qo0a /Up ¢

X—1y
X —10)Y

= log, No /0 j( dfhyi

2 a0 f gy x — Ty Y

™
= log, ‘N@pzd/@pf Wi -
3l
Hence the proof of the proposition. []

2.11. The ZL-invariant. We now assume, as in the introduction, that £/F is an
elliptic curve over F, with conductor n, with multiplicative reduction at p, and 1s
modular, i.e., it corresponds to a cuspidal Hilbert newform f = fg of conductor n,
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parallel weight 2, such that L(s, E/F) = L(s,fg). Assume as in Section 2.7 that
n can be written as 1 = puntu, with ® = ®g corresponds to fg under the
Jacquet—Langlands’ correspondence (normalized to take integer values).

Since £ has multiplicative reduction at p, we have, by Tate’s theory of p-adic
uniformization, a parametrization ® g, g,

Op/F,: CF/0F = E(Cp),

where O € F, = de, with ord, Qg > 0, called the Tate period of £ at the
prime p. The map ® g, is defined over () 24, i.e., equivariant with respect to the

action of Gal(Qp/@pgd) on both sides. Furthermore, if s € Gal(Q,24/Q ,¢) is the
nontrivial element, then for z € @;m:

S(OF/F,(2)) = 0pOp, (s 2), 225 )

where ap = a(p, E/F) = a(p,fg). Thus in particular, if ap = 1, 1.e., E/F 1s split
multiplicative at p, then ® g g, 1s defined over £,
Let E(Q p2a ), C E(Qp22) be the subgroup consisting of points P such that

s P =ayP.

Then it follows from (2.25) that E(Q p2¢)e, = O g/ F, (Fp).
Let gg :== N g,/q, Qr. The L-invariant of £ at p is defined as
log, 9£ log, 9£

Ly(E/F) = wl, Op fp/pm' (2.26)

(Here fp/p is the residue field degree of F, which, under our assumption that p is

inert in F, is equal to [Fyp : Qp] = [F : Q].)
By [26], Proposition 8.7,

d 1
ﬁa(p,k) = —Eﬁﬁp(E/F). (2.27)

In [26], this 18 proved by generalizing the argument of Greenberg—Stevens. Follow-
ing Section 2.7 of [4], we can give another proof, based on the theory of p-adic
uniformization of Shimura curves; for more details, see Section 4.5 below. For any
i €{1,...,h}, there exists even 7 € Jﬁ”(@pm), y € 17, and non-zero n; € Z such
that

rT
i
T

Now Propositions 2.21 and 2.24 imply that

rr d YT
log,, N@pw/@p (_7{ w¢5) + 4ﬁa(p,k)‘k2~va1p (_7{ a)¢1') = I}
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Hence by equation (2.28), since n; = 0,

d
log,, Nme/@p Or + 4ﬁa(p,k) - -val, QO = 0,

50
d o = 1logy N op /0, QF
2P T TG valp O
1log, N 1
_ L1108y ¥ Fe/Qp OF — _Z%,(E/F)
2 valy Of 2

and the claim follows.
For any Q € @;, let log, be the branch of the p-adic logarithm such that

logp(Q) =0, ie,

log, O
ord, O
Using equation (2.26) and (2.27), we can restate Proposition 2.24 as follows:

logg() = log, (1) — ordp(-)-

Corollary 2.25. For even 11, 12,

2
I¢f(fg) — I¢i(1.:1) — loggE Nszd/@p (][ Ct)qbf).
19|

Definition 2.26. Given a divisor with rational coefficients D € Div(I;\ H(Cp)) @O
ofthe form D =} 1y 7, with r € Q, 7 € I3\ H(Cp), define

Li(D) = rel ().
K
More generally let D = Z?Zl D; € @le Div(Ii\#(Cp)) @ Q. Define
h
Io(D) =Y I,i(Dy).
=

Definition 2.27. Let f € Divo(}ﬁ”(@pzd )) be a divisor of degree zero, say written
in the form

= (G—%) (2.29)

with 7., T, € %’(szd). Definefori = 1,...,hA,

Ti
£w¢f = 1‘[]( g
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It is clear that this is well defined independently of the way f is written in the
form of (2.29). For f = Z?:1 fi € @?:1 Divo(}f’(@pzd)), put

ffa)q) b= 1_[]£I Wei -

i—1

As a consequence of Corollary 2.25 and Proposition 2.21, we see that the quantity

logg, N0 24/0, (j{r wcb)

depends only the image of f in EB?:I DiVO(Fi\}{H(szd)). We can thus define, by

linearity, the quantity
logg,, ‘Nszd /Qp (‘ﬁ a)‘p)

for D € @_ Dv®(T\H'(Q,24)) ® Q.
With these definitions, we can state the following form of Corollary 2.25:

Corollary 2.28. Let D < Divo(l"i\%’(@pza)) ® Q. Then

I9(D) = log,, ‘N@pzd/@p (i‘) a)cp).

For future reference, we record the following formula. For o € Hom(F, @p) =
Hom(Fy, Qp). let E7/FJ» be the elliptic curve obtained from £/ F, by conjugating
with o. It is multiplicative at the prime p® of F¢ above p, whose Tate period 1s given

by OF%.

Proposition 2.29. For any z € F)S, we have

log, . (N Fo, 2) = Z loggg z%,
oeHom(F, Q)

Proof. This 1s a direct computation. ]

3. Interpolation of special L -values along Hida family

3.1. Rankin L-functions. In this section we recall the formalism of Rankin -
functions.

Let K/ F be a quadratic extension of F. A Hecke character yg of K is said to be
anti-cyclotomic, if g oc = WEI (here ¢ is the non-trivial element of Gal(K /F)),
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and ¥ is trivial on the image of A% in Az Given a cuspidal Hilbert newform g over

F, and an anti-cyclotomic character g over K, one defines the Rankin L-functions
L(s,g/K,¥g)asin|[41], [38].

In this paper, we consider the particular case of genus characters. An anti-
cyclotomic character g 1s called a genus character if it 1s unramified, i.e., factors
through Pic(@x ), and quadratic (namely of order dividing two). Genus characters
can be constructed in the following manner.

Let { be the quadratic Hecke character of F, that corresponds, by class field
theory, to the extension K/F. Consider quadratic Hecke characters v, ¥ of F,
whose conductors are relatively prime to each other, and such that ¥y - ¥, = L.

Itfollows from class field theory, the Hecke characters ¥; correspond to characters
of Gal(#/F). Let F¥i/F be the quadratic extension of F cut out by v;, and let
F¥1:92 be the composite of F¥1 and F¥2 over F. Then F¥1:¥2 /K is everywhere
unramified (including the archimedean places) quadratic extension.

Lett; € Gal(FYi/F) be the nontrivial element. We have

Gal(F¥1¥2/F)y = Gal(FY1/F) x Gal(F¥2 / F),

and under this decomposition Gal(F¥1-¥2/K) = {(1,1),(t;,%2)}. Let ¥x be the
quadratic character of Gal(K / K), that factors through Gal(F¥1-¥2/K), and is equal
to —1 on the nontrivial element of Gal( F¥1-¥2 / K). By class field theory, ¥ corre-
sponds to a Hecke character of K, which can be seen to be a genus character. The
bi-quadratic extension F¥1:¥2 /F is called the genus field extension corresponding
to the pair ¥, ¥,. We have F¥1:¥2 = KY& (the extension of K cut out by ¢g). If
one of 1y, ¥ 1s trivial, then F v1.92 degenerates to K.
One has

mdf vx = ¥y & ¥ (3.1)

Using (3.1), we have the factorization formula for the Rankin L-functions asso-
ciated to genus characters:

L(S’g/K’ WK) :L(Ssg’WI)‘L(SBg’W2)' (32)

In the rest of the section K/F is a CM extension.

3.2. Optimal embeddings. We maintain the notations of Section 2.3, regarding the
definite quaternion algebra B, and an Eichler order R of level a.

Definition 3.1. An optimal embedding of K into B of level a is a pair (¥, 0) <
Homp (K, B) x B* /R satisfying

U(Ox) = bR~ N W(K).
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Given an optimal embedding (W, ) of level a, define
R, := BNbRH L
Then Rp is an Eichler order of level a, and W gives an embedding of @ g into Rp.

Proposition 3.2 (‘Theorems 3.1 and 3.2 of [34]). Suppose that all primes dividing
a splits in K, while those dividing w~ are inert in K (this is known as Heegner
condition). Then optimal embeddings of level a exist.

The group B acts on the set of optimal embeddings by conjugation:

g (U, by =(g¥g ' gb). (3.3)

We denote by [¥, 2] the conjugacy class containing (W, 5). The set of conjugacy
classes of optimal embeddings of level a is noted as Embr (K, B, a).

The ideal class group Pic(g) acts simply transitively on the set of conjugacy
classes of optimal embeddings: 1dentify

Pic(Og) = K*/K*0%;
then given p € Pic(Og), we have
P10, B] = [¥7,b°] := [, U(p)b].

Write K = F(A), with A? € F being totally negative. Given ¥ € Homp (K, B),

£
let (g 3 ) be the image of W(A)in By < GL2(Fp). Define Oy € B4 by the following
formula:

1
Og = \/W ® v, Wwhere
‘ F/Q( )| oceHom{Fp,Qp) (3.4)

qu[!C’—(}{cr’ Ycr) = CO‘(XO‘)2 4+ (dcr _acr)XO‘Ycr —bU(YU)z.
Up to the choice of sign for the square root, Oy does not depend on the choice of
feur

A. For k = 2 even we denote by Q? the element of B;, obtained from Q in the
evident manner, 1.e.,

2 1\ e
o ) L8

creHom(Fp,@p)

For g € B*, we have

Ooug—1 = N pyo(Nrdg r(g)) Owlg, [3:5)
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Remark 3.3. Suppose that p is inertin K, so K, = Q) p2a . Consider the polynomial

gw,id of (3.4), with 1d the identity embedding of Fp = Q4 to @p. We have the
factorization

quia=cX?+(d - )XY —bY? = A(X —tg¥)(X — TgY), (3.6)

where A € F;, and ty, 7y € H(Q)24) are the fixed points under the action of
tp(W(K)) on H(C,). We order 7y, 7y, in such a way that

L (T(w)) (’f‘) — (’f‘) forall @ € K. (3.7)

k=2
The element Q;Z_ € By defines a function on F2, where for (x, y) € F2, we

have (in the notation of (3.6))

Nrojo, A T k=2
w;@p(w) N aa i, Ty T

Definition 3.4. Given E € Sg(a, 1t ), and an optimal embedding (V, £), define the
pairing

07 (x,y) = ( (3.8)

k=2 k=2
B[¥] = [Nrdp/p(b)| 7 BONQy” |bp).
By equation (3.5), the value E[¥] depends only on the conjugacy class [, 5].

3.3. Special value formula of Rankin L -functions. Asin Section 3.1, let ¥ be an
anti-cyclotomic character over a CM extension K of F. In this section, we state the
formula of Xue|38], that generalizes the works of Gross | 18], Hatcher [20], and Zhang
[41]. We make some simplifying assumptions. Let E € Sg(a, 117) be an eigenform,
with k > 2 even, that corresponds, under the Jacquet-Langlands correspondence, to
a Hilbert newform g of conductor m1 = an . Assume that the conductor 1t of g is
relatively prime to Dg/ g, the relative discriminant ideal of K over F. Finally we
assume that the character ¥ g 1s unramified.

Definition 3.5. Thealgebraic part of the central LL.-value L.(k /2, g/ K, g ) 1s defined

to be
, (k/2—1)2 [ Nr0 Dr/r

Lalg(k/Z,g/K, V) =ug Qm)*k—2d (g g

Lk/2,g/K.yx). (3.9)

Heretig = [ : ?X]. The Peterson inner product {g, g} is normalized as follows:
K K YF P g.8

(8.8) = (82)¢ f g? dh
A% GL2(F)\GLo(AF)
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with dh the measure on GL,(A g ) which induces the usual hyperbolic measure on
products of the Poincar¢ upper half plane, and normalized by the condition

volume of K ls, (1) = 1,

where Koo = [, 100 SO2(R), and Ia, (1) = [y Zpvarn.

v |oo

The Petersson inner product on the space of quaternionic forms Sg(a,n™) is
defined as in Section 2.2 of [4]; see also Section 18 of [19]. Let I/ C B be the
F-subspace of dimension 3 consisting of elements of reduced trace zero, with right
action of B* on U given by

u-b=>b"lub.

Define the non-degenerate B *-invariant symmetric bilinear pairing

[,;]: U xU — F,

1
[u,v] = 3 Trdp,p(uv),

where Trdg,z denotes the reduced trace of B, and v denotes the image of v under
the canonical involution of B. For 0@ F, < @, there is an isomorphism

U®reCp %Symﬁ

sending (‘CI 3 ) € U@rp,Cptotheelement e®(X9)? +(d” —a®)XY° —bo(Y?)?
(cf. equation (3.4)); this isomorphism is B{*-equivariant, where B is the subgroup

. C . tp
of B* of reduced norm one, acting on Symi via its image in By =~ GLa(Fy) (there
would be a twist by the inverse of the determinant on the right hand side, if one
considers the full action of B*). For k > 2, even, we have a natural surjection

Symk/z_1 (Symi) e Sym’;";_z,
hence we have a surjection
®,. Fp%@p(symk/z_l(U ®F.0 Cp)) = B4 sy, Symf—2 = By,
Upon dualizing, this induces the injection
Vi = ®,. qu@p(symk/}l([] ®F,6 Cp))*

(where (Sym*/2 (U @r,o Cp))* denotes the C,-dual of Sym*/2=1(U Qr.e Cp).
Now the symmetric F-bilinear pairing [-,-] on U induces the symmetric C,-
bilinear pairing [, -]¢ on U @ g ¢ C,, which can be extended to Sym >N @ F.oCp)
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by
[(ul e e uk/z—l)! (Uls LA Uk/2—1)]k,cr
= Z [1, vpnlo - - - [Mk/2—1, Voer2—1)] e
neSy/21

with Sg/21 the symmetric group on k/2 — 1 letters. The non-degenerate pairings
[, ]k,o allow us to identify Symk/2_1(U @ r.o Cp) with its dual. We still denote
by [, Jx,s the inner product induced on (Sym*/2~1(U @Fe Cp))*, and by [,-]g =
®@s |, ]k, the tensor inner product induced on @ . Fo>Dyp (Sym*/2 1 U QreCp)*.
Its restriction to Vj is still noted as [, -]¢. By construction, it is B *-invariant.

Now given E1, 82 € Sg(a,n), define

~ g 1 L g | ! o
(EBrB)= Y —[Ndyp @) b Ei0). by B2k
be BX\B*/S(amn)

where for b € B*, we denote by ey the order of the group R; /0%, with Ry =
B* M bX(a,n )b ! the Eichler order of level a determined by g (each summand
depends only on the image of & in the double coset).

We now state the main formula of [38].

Theorem 3.6 ([38], Theorem 1.2). Under the assumptions made in the beginning of
this section,

1 2

L%k /2,g/K, k) =

Y vx(pE (3.10)

pePic( (Y g)

[1]
(1]

(B, &)

El

Here the absolute value in (3.10) 1s interpreted as

Y weEw] = (Y weeEn) (Y vEan)

pePic((? k) pEPIc(( ) pePic( g

We remark that in [38], the unitary normalization of automorphic I.-function is
used, so that in loc. cit. the central L-value occurs when s = 1/2, and the Rankin
L-tunction that occurs there is the completed one:

E k —25% J—2
(2n)—2d(h‘+¥)r(s o T) L(S +——e/k, ngg).
We also note that the normalization of the Petersson inner product of Hilbert modular
forms in Definition 3.5 above 1s different from [38], namely that the factor (8%2)“J
does not occur in loc. cit.

One corollary of Xue’s formula is the following algebraicity result:
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Corollary 3.7 ([38], Proposition 3.18). The vaiue L¥(k/2,g/K,yx) lies in
(g, ¥x ), where (g, Yk ) is the number field generated by the normalized Fourier
coefficients of @ and the values of Wx. More precisely, for any h € Aut(Q)), we have

LY(k/2,8/K, yx)* = L"8(k/2,8" /K, ).

Here g" is the cuspidal Hilbert eigenform that satisfies C(g,g") = C(q, )", and
Wk = hoyx [31]

Remark 3.8. A more general special value formula, valid for more general ring class
characters g of K, was proved in the thesis of H. P. Yuan [39] (see also the recent
work of B. Howard [23]).

In the rest of the paper, we only consider the case where ¥ 1s a genus character.

3.4. p-adic interpolation. We now interpolate the algebraic part of the special
values of the Rankin L-functions, using (3.10). In the rest of the section, the level a
will be taken to be 1™, so ¥ = X{n™", ") as in Section 2.4.

We first give another description of optimal embeddings. Recall the statement of
strong approximation (2.14): for the fixed choice of elements {xi}f‘zl C Ex, with
(x;)p = 1, we have a decomposition

h
| |Ti\By /Ry = B*\B*/R"
i—=1

sending the class of an element ¢ € B, of the i-th component on the left to the double
coset on the right defined by x;¢.

Hence we can identify Emb gz (K, B, nt), the set of conjugacy classes of optimal
embeddings of level ', as a subset of elements of

h
l_l fi\(Hom@F(@K[%], Rz[%]) = B;/(Rt);)
i=1 (3.11)

125

h
|_| fi\(Hom@p(@K[%]s Ri[%]) % GL2(Fy)/ GL2(Or,)),
i=1

where R; = B M x,;ﬁx;l.

Write [W, g]; for a conjugacy class of optimal embedding, identified as an element
that belongs to the i-th component of (3.11). Pick a representative (W, g); for the
class [¥, g];. Define Ly := g(OF, & OF,). By the optimality condition, and that
(x;)p = 1, one sees that Ly is stable under the action of (,(¥(Og @ Z,)). Define
|L |, the generalized index of Ly, as |det g |%1 = gty
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In this notation, if [¥] = [¥, g];, and E corresponds to the h-tuple (£1,...,&"),
then

B2 2k k2
S[¥] = [Nrdg/r il o~ [Lw[ 7 ca(La)(Qy” ). (3.12)

In particular, the expression on the right hand side of (3.12) depends only on the class
[lII, g]l .

Remark 3.9. If p is inert in K, then Ly and L.  are homothetic. Indeed, their
homothety classes define the unique fixed point of the action of ¢, (¥(K’)) on the

Bruhat-Tits tree. Also notice that the image of 7y in fg\%(@pzd) = [\H'(Qp2a)
depends only on the class [V, g];.

Definition 3.10. Define the region Ly, C Ly as follows. If p is inert in K, then
Ly = L. While if p splits in K, then Ly admits a basis (v1, v2) consisting of
eigenvectors under the action of 1, (W (O ®Z ). Wedefine Ly, = @}(?pvl ><(9}§p 2.

TLemma 3.11.
ord, (Qw(x, y)) = ord, |Ly| for(x,y) € Ly,.

Proof. Since p = p@p is unramified in K, we can write X = F(A), with A? <
F totally negative, and ordy, A = 0. As above Ly = g(@%p). Then as in [4],

Lemma 3.7, one can show, for any o € Hom(F,, @p), that
ordy qu,o(x%, y7) = ord, det g on Ly,.

Hence on LY, one has

ord, Qu(x,y) = Z ordy qu,e(x7,y%) = Z ord, det g = ord, [Ly|.
o For>Qyp o Fpr>0p

]

Definition 3.12. We refer to the notation of Sections 2.5 and 2.7. Associated to the
Hida family fo, and optimal embedding [¥] = [¥, g]; of level n™", define the p-adic
analytic function &£ ,(fo /K, ¥, k) of the variable k € U:

k—2 k-2
£ p(Too/ K, W, k) := (| Nrdp/p xi|5) 7 f\LN<Q;f>dm,L¢,. (3.13)
C ALy

The function £,(foe /K, ¥, k) depends only on the class [W, g]; by equation (3.5).
Given a genus character g of K, define

Lot/ KoYk k) = 3 UR(0)Ep(Toc/ K. VP ).
pePic(Pg)
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We have the interpolation formula:

Theorem 3.13. Suppose that p is inert in K. Then for k ¢ U NZ>% k = 2
mod 2{p — 1),
qk—2

2
al
_W) L%k /2, /K, ¥k).

Lpfoo/ K, P, k)? = (D, <1>§>a(p,k)2(1
Fork =2 we have £,(foo/ K, ¥k ,2) = 0.

Proof. When k > 2 this follows by combining Proposition 2.15, Theorem 3.6,
Lemma 3.11 and equation (3.12). That £,/ K, ¥x.2) = 0follows from equation
(2.19). 0J

Note: The function ¥ ,(f./ K, ¥k, k) essentially interpolates the square root of
the algebraic part of the central L-values L¥8(k /2, f;:= tx) along the Hida family,
hence the name square root p-adic L-function in [4].

We need a corresponding result, when p splits in K:

Theorem 3.14. Suppose that p splitsin K. Thenif g corresponds to a pair (Y1, 2)
of Hecke characters of F, we have

Y1(p)
OS(D, f2)

andfork c UNZ>% k=2 mod 2(p — 1),

2
Eplfoc/ K, ¥k, 2)* = (D, <I>}(1 - ) L1, 6/K, ¥x) (3.14)

£p(foo/ K, Y&, k)

A (313)

4
al,
o ) L8k /2, 52/ K, ).

— (9}, 9fJa(p, 1721

Proof. The proof is the same as in [4], Theorem 3.12, again using Proposition 2.15,
Theorem 3.6, and Lemma 3.11. U]

Remark 3.15. Using themore general formula of [39] for the special values of Rankin
L-tunctions, it should be possible to construct the two-variable anti-cyclotomic p-
adic L-function, attached to the Hida family f,, and ring class characters of the CM
extension K/F. Then the function £,(f /K, ¥k , k) would just be the special value
of the two-variable p-adic I.-function, evaluated at central critical points and at the
unramified character Yg.
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Suppose now that p is inert in K. Corresponding to [¥] and the genus character
Y¥x, we form the divisor

h
Pye = ) yr(prw € DDV (Qp2a)).

pEPic( ) i=1

Here the divisor of tye lies in the /-th component, if { 1s the index of the component
of (3.11) to which [¥*] belongs.

Proposition 3.16. In the above notations, we have

1

Lyl K.Yk )|, = 510 (Py):

Proof. Suppose that iy 1s the index of the component of ((3.11) to which [¥] belongs.
From (3.13) and (3.8), we see, by comparing with (2.23), that

d |

4y me,lp,k‘ _ log, Fyy(x, ) du; ,

/K v =5 f s, 98 Feal509) 1y (5.3)
|

Similar equations hold with ¥ replaced with ¥#. The proposition thus follows by
linearity. ]

4. Heegner points on Shimura curves

4.1. Shimura curves. In this section, we define the Shimura curves that will be
used in the sequel. For more details, see [10], [40].

Fix an archimedean place vy of F. Denote by &/ F the quaternion algebra over
F, obtained from B/ F by switching the invariants at vg and p. Thus the invariants
of B and that of B are related as follows:

vy, H = mvy B = 0,
invy B = inv,, B = 1/2,

nvy, B = inv, B for v £ vg,p.

Fix an isomorphism £ @,, R = M,(IR), so that (& &,, R)* can be identified as
GL,(IR).
Let @ g be a maximal order of 8, and let R C g be an Eichler order of level

n' contained in @g. By Shimura’s theory, associated to B and the level n' is
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the Shimura curve X g(nu™), which is a proper smooth curve defined over F (not
geometrically connected in general), whose C-points (with respect to vo: F — ©C)
are given by the double coset

Xa@h)(C) = BX\(C — R) x B*/R® (4.1)

(here B> acts on € — R via B> — (B ®y, R) = GL2(R), with GL,(R) acting on
C —IR by Mabius transformation). The geometric components of X g (1 ™) are defined
over the strict Hilbert class field of F, 1.¢., the abelian extension of /' corresponding
to the strict ideal class group Clg of @F. As in (2.12), let & be the order of the
Clg. Then the geometric components are indexed by Clg, and the number of such
components is 4.

The (disconnected) Riemann surface (4.1) admits a more classical description as
follows. First, denote by £ the set of elements of 8 whose reduced norm to F is
totally positive (this is equivalent to saying that the reduced norm is positive under the
embedding vg. as B 1s ramified at other archimedean places). Let y1,..., y5 € B
be a set of representatives of

BINBYI R,
Define
Ay —= c@i M ygﬁxyi_l.

Then if b is denotes the Poincaré upper half plane, we have
h
Xg(")(C) =] |AnD. (42)
i=1

When F = @, the Shimura curve Xg(n™) is not of PEL type. To describe a
PEL Shimura curve associated to Xg(n1), we need to consider base change to an
auxiliary CM extension of F. We recall the constructions [10], [40].

Fix a auxiliary CM extension M/ F of the form M = F(./r), where r is a
negative integer. Assume that all the primes dividing n " splits in M. Extend the
embedding vo: F <— IR to an embedding of M to C by

Vo(x + ¥ /1) = vo(x) + +/rve(y) forx,y € F.

Let © = 8B @ M, and denote by V be the underlying ()-vector space D, with
the left D-action. Denote Vg := V @p R. So we can identify:

Ve = (B @r M)@g R = Mx(C) & (H or C) 1,
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where H is the set of Hamilton’s quaternions, and the projection to the first factor
corresponds to the isomorphism B @y, C =2 M2(C). Vg has a complex structure,
with multiplication by +/—1 given by right multiplication on Vg by the element

j—((_ol é),l@ﬂ,...,l@ﬂ).

It follows that the action of © on Vg i1s C-linear. It can be shown that, with respect
to this complex structure, tr{{, Vp/C) € M forall ! € ©.

Let I — [ be the involution of ® obtained by tensoring the involution of B and
the conjugation of M over F. Let G be the algebraic group over F defined by the
condition that for any F-algebra T,

GT)={ c(®®p T) suchthatll € T™}.
Define the level subgroups X C G(ﬁ ) by
B = B - B

Then by Shimura’s theory, there is a proper smooth curve X (™) defined over M,
whose set of C-points 1s given by the double coset

Xo@)(C) = GUFI\(C —R) x G(F)/Zu. (4.3)

The geometric components of X5 (n™) are defined over the Hilbert class field of M .
There is amap Xg(n™) = Xgo(n™), which is both open and closed immersion, and
defined over the Hilbert class field of M, which at the level of C-points is the natural
map from the double coset of (4.1) to that of (4.3).

One can also describe G as the group of symplectic similitudes of an alternating
form as follows.

For any invertible element § € O, which 1s symmetric, 1.¢., § = §, we can define
another involution on ®, noted as I — I*, by

I* =515
For v,w € V define
pr(v, w) = Trap (VF Trdo ar (véw™)).
Then pr is an F-valued non-degenerate alternating form, satisfying
pr{lv,w) = pr(v,l*w).

Choose a §, so that the form pg(-,-j) is positive definite on Vg, in which case the
involution I — I* is a positive involution. One can show that the algebraic group G
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defined above is isomorphic to the group of D-linear symplectic similitudes of the
form pr.

The curve Xo(n™) is a coarse moduli space for abelian varieties whose endo-
morphism algebras contain ©. More precisely, let O := O @ O, which is a
maximal order of ©, and let V7 := O 5, regarded as a lattice of V. Then X g coarsely
represents the functor ¥, which associates to a scheme S over M, the isomorphism
classes of objects [4, ¢, 9 i, C], where

* A is an abelian scheme over S of relative dimension 4[F : @], with an action
t: Op — Endg(A4) such that forany [ € O,

tr(e(l) : Lie A) = tr(l, Va /C);

« fisan (2% -class of polarizations 8 : 4 — A from A to the dual abelian scheme
A. such that for any [ € @, the associated Rosati involution takes ¢(!) to ¢(I*)
(recall that if ¢ € End(A), then the Rosati involution defined by a polarization
8 is given by ¢* := 6 1¢8, where ¢ € End(A) is the dual of ¢);

« Kk is a Xps-class of @o-linear isomorphisms « : Vz — ?(A) (where ?(A) is
the adelic Tate module of A) which is symplectlc with respect to the form
P trF/Q(u Pr)on V7 for some % € F*, and the Riemann form P4 on

T(A) induced by a polarization 8 € 8

« ( isasubgroup scheme of A, locally isomorphicto @z /™, and which is stable
and locally cyclic under the action of R induced by ¢.

In the following section we will make the abbreviation by referring to such an object

as [A, C].

4.2. CM points. Inthis section werecall the basic definitions about CM points. For
details, see [40].
As in Section 3, let K/F be a CM extension. For the rest of Section 4, assume
that the primes dividing p 1~ are inert in K, and the primes dividing n* splitin K.
Similar to Definition 3.1, an optimal embedding of K into B of level " is a pair
({I}, ¢) € Homp (K, B) x ﬁx/ﬁx, such that

UNeRe ! = @(@K).

The group B> acts on the set of such optimal embeddings by conjugation similar to
(3.3), and Pic(U k) acts on the conjugacy classes of such embeddings.

Given (U, ¢), let 7y € € —R be the fixed point under the action of (KXY C B>,
such that the induced action on the co-tangent line of € — IR is given by the character
z — z/Z. Let Pg € Xg(r)(C) be the image of (75, ¢) in the double coset (4.1).

Then Pg depends only on the conjugacy class of (¥, ¢).
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By the theory of complex multiplication one has Py € Xe(n™)(H ), where H/K
is the Hilbert class field of K. The point Py 1s called the CM point associated to
. We have the Shimura reciprocity law: identifying Gal(H/K) = Pic(@g) via the
Artin 1somorphism (the convention being that a prime g 1s mapped to the inverse of
the Frobenius at ), one has for p € Pic(Og),

(PEI)P = Pg,. ()

The moduli interpretation of Heegner points 1s as follows ([40], Section 2). First
some notations. For any M -scheme S, and [4, C] € # (), denote by End #([A4, C])
the Opr-subalgebra of Endg (A) generated by elements ¢, such that ¢g¢* € F*
(recall that ¢ — ¢™* is the Rosati involution defined by a polarization from the data
F(5)), and such that $(C) C C. Alsodenote K’ .= K @ M.

Now let x € Xg(n™}C). The image of x in Xo(n™)}(C) can be represented by
|A, C] € F(C). Then x is a Heegner point if and only if there is an isomorphism

a: K' >~ Endg([4,C]) @ Q (4.5)
over M, such that

Or ={a € K: a(a) € End#([4,C])}. (4.6)

4.3. p-adic description. We now give a p-adic description of Heegner points par-
allel to the previous section. This is based on the theorem of Cerednik—Drinfeld [6],
[71. [33].

Firstrecall that B, = B, for any place v == vp, p. We have chosen Eichler orders
R and R of level n™, of B and B respectively. Assume that for primes [ # p, the
isomorphism #y = By is chosen so that the local Eichler order Ry = R ®p, OF
of By of level n™ is mapped onto the local Eichler order Ry = R @@, O of By of
level n™.

Let X 2(n™)}(C,)*™ be the rigid analytic space associated to X g{(n™)}(C,). The
theorem of Cerednik—Drinfeld gives the p-adic analogue of the uniformization (4.2),
with D replaced by the p-adic upper half plane # over Fy.

Recall the subgroup I; = Tj(nT,n") C B defined as in (2.13). As before
identify I'; as a discrete subgroup of B;f =~ GL2(Fp). The result of Cerednik—
Drinfeld states (see Theorem 3.1 of [7] or Theorem 5.3 of [33])

h
| | Ti\7#(Cp) = Xp(mt)(Cp)™ (4.7)
i=1

Furthermore, the isomorphism is defined over () 24, 1.€., equivariant with respect

- P
to the action of Gal((Q/() 24) on both sides. There is a corresponding result for
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Xo(m™)(C,)™, which is the p-adic analogue of (4.3). In fact, in the approach
of [6], [7] the p-adic uniformization for X g(n™)(C,)* is deduced from that of
Xo@m™HCp)™

Using this description, we can relate the optimal embeddings of Section 3.2 to
Heegner points. We use the description as in Section 3.4. Thus let [¥] = [V, g]; <
Embg (K, B, n")be a conjugacy class of optimal embeddings of K to B of level n™,
identified as an element of the i-th component of (3.11). As in (3.6), let 7y, Ty €
D \FH(Qp2a) = T3\ H (Qp24) be the fixed points under the action of W(Kjy), such
that Ty satisfies (3.7). Let Py € X g ('t )}(Cp)™ be the corresponding point that lives
on the i-th component of (4.7). Using the description of p-adic uniformization as
in [6], [7], it can be shown that (see for example [3], Section 5) the image of Py in
Xo () (Cp)™ satisfies (4.5) and (4.6). Thus Py is a Heegner point, in particular,
Py € Xg(")(H), and we have the analogue of (4.4): for any p € Pic{Og) ==
Gal(H/K),

(Pg)” = Pygo.

4.4. Heegner points on elliptic curves. We refer back to Section 2.11. Thus E/F
1s a modular elliptic curve, corresponding to a weight two cuspidal Hilbert eigenform
fz, of conductorn = pn™ 1. By the Jacquet-Tanglands correspondence applied to
B, the cuspidal Hilbert eigenform fz, and hence E / F, is associated to a quaternionic
eigenform on B*. Geometrically this giveriseto parametrization of E by the Shimura
curve Xg(n™).

More precisely, let Pic® (X g(1t7))/ F be the Picard variety of X g (") /F. Note
that, since X g /F is not geometrically connected, Pic®(Xg(n™)) parametrizes di-
visors of degree zero on each geometric component, modulo the principal divisors.
Over C, we have

B
Pic®(Xg(n™))(C) = [ ] Jac(A;\b).

i=1

The quaternionic eigenform on B corresponding to fg then gives rise to the
parametrization ¢ g defined over F,

¢p: Pic’(Xg(n™) — E, (4.8)

which is equivariant with respect to the Hecke operators Ty for [ | 1t (here Tt acts
on E by multiplication by C({, fg) € Z).

Let Py be the CM point attached to the class of an optimal embedding of K to B,
and let ¥x be as in Section 3.1 a genus character of K. with K¥X the genus field
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(1.e., the extension of K cut out by ¥x ). As in the situation of Proposition 3.16, put

Py = D Ux(Pe)’ = Y Yx(p)(Pus).

pePic( k) pePic( P k)

Then Py, is a divisor on X g(u™).

In order to use the parametrization ¢ ot (4.8) to construct Heegner points on
E, we need to modify Py, to obtain a divisor of degree zero on each geometric
component of X g(ut).

Let £ € Pic(Xg)(F) ®@ (@ be the Hodge class [40]; the class & has degree one on
each geometric component, and satisfies the relation

Tk = (NI +1)E (4.9)

for [ prime to n. Let & be the i-th component of &
Suppose that ige is the index of the component of X' g (n") on which Py» lies.
Define Py, < Pic®(X2(n™)) ® Q as

Pyg = classof >~ Wx(p)(Puo —iyp).
pePic (k)

We have ﬁwK € (PicO(Xg)(K‘[’K) & @)%{. Define

Py = 0E(Pyy) € (E(KVE) @ Q)yy,

called the Heegner point attached to ¥ and g
We need the following result which follows from Zhang’s generalization of the
Gross—Zagier formula, and the work of Kolyvagin—ILogachev:

Theorem 4.1. [40], [24] Py is of infinite order if and only if L'(1, E/ K, Yrg) # 0,
in which case dim(E(K¥E) @ Q)y, = 1.

We can compute Py in another way. For any prime [ of O, denote by ¢ =
C([, fg) the normalized Fourier coefficient of fg at [. Choose [ to be relatively prime
to 1, and whose class in Clg is trivial (such [ exists by Cebotarev density theorem).
For such an [, the action of the Hecke correspondence Ty on X @{(n™) preserves the

geometric components, and 1s of degree & [ +1 on each component. In particular, it
follows from (4.9) that

Its = (NI +1)E  foreachi. (4.10)

Then by the Hecke equivariance property of the Shimura curve parametrization
¢g and (4.10), we have (here Gy = C(L, fg))

(N1 —CPyp = 9 ((NI4+1 =T Pyr) = 0 (N L+1 — T Pyy).
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Hence fix such an [, and set
i = VT L= G NN THL —~ TPy @.11)

Then Qy, € DivY(Xg(n)) ® Q, whose image in E under ¢ is B
Now suppose that the genus character g corresponds to the pair of quadratic
Hecke characters v, ¥, of F, so K¥& = F¥1.¥2 Assume that

L(1,E/F,y1)=0, LQ,E/F i) +#0. (4.12)
Using (3.2) 1t follows that

L’(I,E/F, WK) - L’(lsE/Fs wl)L(lsE/F’ w2)a

and hence it follows from Theorem 4.1 that the point Py, 1s of infinite order if and
only if L'(1, E/F,yr1) #£ 0.

By theresults of Kolyvagin—Logachev [24], the assumptionthat L({1, E/ F, vp) #
0 gives

dim(E(F¥2) @ Q)y, = 0. (4.13)
Corollary 4.2. The element Py, in (E(FY1:¥2) @ Q)y lesin (E(F¥1) @ Q)y,.
Proof. First note that, in the notation of Section 3.1,
Py, +11 Pypy
lies in
(E(F"172) @ Q)yy N(EFY) @ Q = (E(F'?) 8 Q)y,

hence is zero modulo torsion by (4.13). Onthe otherhand, since Py, < (E(FY1:¥2)g

@Q )y, we have
Hia 'PlffK = *Pyer,

hence
i 'PWK = —h 'PWK'

So modulo torsion 1 - Py, = Py, and so
1
Py = S(Pyy + 12 Pyy) € (E(FY) @ Q)yy. 2
Corollary 4.3. Let Froby be the Frobenius element at p of the extension FY1/F.

Then
FI’Obp PtffK = I!fl (D)PwK .
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4.5. Heegner points and p-adic periods. We can now relate the p-adic periods

of Section 2.9 with Heegner points. We maintain the notations of Section 4.4, and
assume (4.12) holds.

Fist we give a p-adic analytic description of the Shimura curve parametrization
(4.8).

We refer to the notations of Section 2.11. Replacing the quaternionic form & on
B> by a suitable integer multiple of ®, we may assume that the lattice of periods
defined by @, 1s contained in the lattice of Tate periods of FoNe .

Choose a Tate uniformization isomorphism

Op/r: CF/0F == E(C)).
Then over €, the Shimura curve parametrization

0E: Pic’(Xg(MNCy) = [ [Tac(Ti\#(Cp)) — E(Cp)

1
can be described as follows. Let

I3 f
D =3 D; e DiV'(Xg(n™)(Cp) = P DV (Ti\ #(Tp)).

i=1 i=1

with D; € Div?(I;\J¢(C,)). Then for each component we have by [13], Theo-
rem 2.32 (which 1s a reformulation of a theorem of Manin—Drinfeld) that

eE(D;) = ®E/Fp(]€) CU@-)-
So by additivity,

ee(D) = Zk:@)E/Fp(ﬁi w@) = ®E/Fp(ﬁ Ct)cp) (4.14)

il
(here > is the addition on E).
Given the Tate uniformization, define the maps
IOgE/Fpi E(QPZd)O!p — Fp,
logNorm g /5, 0 E(Qp2d ), — Qp
as the composition of the following maps:

—1
®E/Fp IOgQE

logE/Fp: E(QPZQ')QP — FpX/Q%’ — Fpa

O% ) e N Fo/Qp logg .
logNormpg, g, 1 E(Qp2d oy — FpX/Q% — % @;/Q% — Qp
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(recall that g = Npp/@p Q). The maps 108}2/}?,,: logNormE/Fp are homo-

morphisms (with respect to the additive structure). Note that the kernel of logg

consists exactly of the torsion elements, but this 1s not the case for logNorm g Fy- We

extend the definition of log g, and logNorm g, to E(1Q 24 )ar, ® Q) by linearity.
Applying Corollary 2.28 to the divisor Oy, of (4.11), we have

I@(QwK) = long N@pzd/@p (f CUQD)- (4.15)
Q'l,ffK

The right hand side of (4.15) can be written as

loggy N0 /2y (](Q wcb) = loggp N Fo/0p N @00 /Fo (][Q wcb)
VK VK

:lOgNOImE/F_p OF/F, N@pzd/Fv (f a)q,).
Qg

Now as in (2.25), let s be the non-trivial element of Gal(Q 24 /Fy). Then

OF/F N Q,2a/Fe (]( w@) > ®E/Fp(]( COCD) + 98k (S ][ @CP)
QWK QWK Q'WK
_®E/Fp(f CL)q;)—i-(IpS'@E/Fp(f Ct)cp).
Q'WK Q"‘VK

®E/Fp(]€2w‘r{ Ct)cp) = @E(Qyg) = Pyg

and by Corollary 4.3,

Now by (4.14)

8- PLUK — WI (D)Pi,er'
Hence

Lo(Qur) = 0845 N0 y00s0y (f, @) = (14 2y ) logNormp , Py
VK
Now we need a

Lemma 4.4. With respect to the choice of | as in (4.10), we have for any divisor
D e Div(Xg(m™)(Cy)) = @le Div([\HA(Cp)) the equality

Ip(T7D) = G lg(D).

Proof. Aslistrivial in Clg, it preserves the components I';\ # (C ) of X g (n™ }(C)p),
so by linearity, it suffice to show that for any 7 € I';\H(Cp),

I¢i (TIf) = CII¢I (7:)

whose proof is the same as Proposition 2.18 of [4]. ]
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From this lemma, we have from the definition of {0y asin (4.11) that

I9(Qyr) = To(Pyy)-
On the other hand, by Proposition 3.16, we have

1

d
ﬁxp(foo/K,WKak) k=2 - EICD(PWK)

We summarize the discussion as the following proposition (here the point Py, is
renamed as Py, ):

Proposition 4.5. Assume that L(1, E/F, 1) = 0, L(1, E/F,¥,) # 0. Then there
is a global point Py, (E(F' ) @ @)y, such that

_dF Upt1(p)
oo/ K o) = — D)

Furthermore, the point Py, is of infinite order if and only if L'(1, E/F,¥1) # 0.

logNorm g/, Py -

5. Main results

5.1. p-adic L-functions of Hilbert modular forms. In thissection, we recall some
results from [26] about p-adic L-functions of Hilbert modular forms.

First we need some notations. Let ¥ = @1, be a Hecke character of F of finite
order. Denote by sig() € {+1}%, the signature of 1, as the d -tuple (Yo(—1v oo
Thus sig(¥) = (1,...,1) if ¢ is unramified at all the infinite places. As another
example, for @p the Teichmuller character of F, one has sig(ewp) = (—1,...,—1).

In general, for w = (Wy)yjeo € {jzl}d, denote sgn(w) = ]_[v|00 w,y. We ab-
breviate sgn(sig(1r)) as sgn(v). Also denote by 7(i) the Gauss sum of ¥ ([31],
equation 3.9).

Let g be a Hilbert newform of parallel weight & > 2. Fix an embedding © — C|
Recall Shimura’s rationality result on L-values, cf. [31], Theorem 4.3 (I) and [11],
Remark (i1) on p. 1027 for every w € {il}d one can choose 27 € C™ such that,
for an integer 0 < r < kK —2 and a finite order Hecke character ¥ of ¥ with conductor
¢y, the expression

DL N e L+ 1,8,9)

alg  —
LR+ lev) = o im0 fo ' seted

(5.1)

is an algebraic number, called the algebraic part of the L-value. Furthermore, for

every h € Aut(Q /Q(g)).
LG 4+ 1,8, 9) = LU + 1,8, ¢") (5.2)
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which implies in particular that

L%(r +1,8,%) € Q(g, ¥),

where (J(g, 1) is the number field generated by the (normalized) Fourier coefficients
of g and the values of ¥. In particular, if the Fourier coefficients of g are rational
integers, and v is quadratic, then the values L¥(r + 1, g, ¥) are rational numbers.

Thus the numbers th” are serving as “transcendental factors" of the special L-

values. Notice that if ﬁg’ c C* is another set of numbers such that

s

w

@ € Q(g) foreachw € {£1}%,

then one can equally define L¥8(r + 1, g, ¥) with respect to ﬁg’ instead of £25”, and
such that equation (5.2) still holds. In what follows, we always fix a choice of the
numbers {24 to define the algebraic part of L-values.

Now suppose that g is ordinary at p. Let y be a finite order Hecke character of
F unramified outside p and the infinite places, and i a finite order Hecke character
of F unramified at the conductor of g. In [11], Theorem 1, the p-adic L-function
Lp(s, g, x¥) is constructed (with respect to a specific choice of ;7). It satisfies the
interpolation property: for0 <r <k —2,

—F N F
Lo(r + 1, 4¥) = (1“””;’(;2) £ ) (53)
—ry—1
‘ (1 L j pr(fl) ﬁ(p’g))La‘g(r +1g (xyraz ).

Here a(p,g) and f(p,g) are the p-adic unit root and non-unit root of the Hecke
polynomial

X% Clp.g@)X + ¢ Npk_l

with ¢, = 1 1f p does not divide the conductor of g, and equal to zero otherwise. We
have the convention that ¥ ¥rwz"(p) = 0 if y¥rawy" is ramified at p.

If y. ¥ are trivial, we denote the p-adic L-function as L,(s, g).

As in the previous sections, let f,, be the Hida family lifting fr = f;, with
FE a modular elliptic curve over F, whose conductor 1t can be written 1n the form
pnt n, with i~ satisfying condition 2.1. In Theorem 6.8 of [26], it was shown
that the p-adic L-functions L,(s, 1) attached to the weight k specializations f
of o for k € U N 722 (fZ 1s the newform whose p-stabilization 1s f;) can be
interpolated to a two variable p-adic I -function, 1.e., there exists a p-adic analytic
function Lp(s, k) = Lp(s, k,fx) of p-adic variables s,k with &k taking values in
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a suitable p-adic neighbourhood U of 2, such that for k& € U N Z22, one has
Ly(s,k,fo0) = Lp(s, 7). Inparticular, L,(s,2) = Ly(s,fg) := Ly(s, E/F) (let
us note that one of the technicalities of [ 26] 1s to show that one can choose the numbers
Qf‘% appropriately so that this interpolation property holds).

As a special case of (5.3), take y to be trivial, and ¢ quadratic,and r = k/2 — 1.
Then if k € U M Z2? satisfies k = 2 mod 2(p — 1), one has

Ly(k)2,k,fo0) = Lp(k/2, £, %)
(1 - E@Ne 2T 2 deeyn g, y) itk >2,  (54)

= (X(p, k)

(1 — sy L8(1, E/F, ) ifk = 2.

5.2. Proofof main results. We first need a fact about the functional equation of the
complex L-function of L(s, E/F). Leteg,;p € {+1} be the sign:

L2—5,E/F)=¢gpL(s,E/F).

For any quadratic Hecke character v, whose conductor 1s relatively prime to that
of E/F, the twisted I-function satisfies a similar functional equation:

L(z —S,E/F, W) = GE/F(W)L(S, E/F’ W)

with € /7 () € {£1} given by the expression

€g/r () = sen(¥)yr(m) - €gyF. (5.5)

Proposition 5.1. Let w € {jzl}d. In the case when nt v is the square of an ideal

(i.e., 1= = Op and v" is the square of anideal), assume that the following condition
holds:

w(p. E/F) = —sgn(w)epr- (5.6)

Then shrinking U if necessary, there exists a p-adic analytic function 1, defined on
U such that, for integers k < U M 722 withk =2 mod 2(p — 1), one has

Qplp”
M (k) = (@F, Bp 0¥ —E . (5.7)
(€7, 1)
In fact, the proof below shows that the expression
R 0"
jd T T
(€0

lies in @(f}:)x
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Proof. Let 51 be the set of quadratic Hecke characters yr; of F, unramified at the
primes dividing 11, and satisfying the following conditions:

(1) sig(y1) = w.
(2) ¥1(p) = —a(p, E/F).
(3) Yn(nt ) = —a(p, E/F)-sgn(w) - €g/p.

These conditions amount to specifying the local conditions for 11 at the archimedean
primes and at the primes dividing n. The set S; 1s non-empty. Indeed, the only point
that needs to be addressed is condition (3), in the case when ™ 11~ is the square of an
ideal. In this case, since ¥y is quadratic, one has ¥1(n™ ™) = 1, hence the reason
for assuming (5.6) to hold.

For any 1 € Si, one has, using (5.5), that € g, p (1) = 1. By the main theorem
of Friedberg—Hoffstein [15], we can pick a 1 € Sy, such that L(1, E/ F,¥r1) # 0.
Condition (2) implies that L, (s, E/F, ¢1) does not have exceptional zero at s = 1,
so Lp(1,E/F,¢1) # 0.

Now let S2 be the set of quadratic Hecke characters yro of F, with conductor
relatively prime to that of ¥r; and of m, satistying the following conditions:

(1) sig(y) = —w.
(2) Yr2(p) = —a(p, E/F).
(3) Yot ) = (D e, E/F) -sgn(w) - x5

Again S is non-empty (notice thatin the case when n™ n— isasquare,ie.n= = Op
and ' isasquare, onemusthaved = [F : @] being even by condition 2.1. Hence the
last condition is again satisfied by (5.6)). For any ¢, € S5, onehas eg;p(2) = 1.
By [15] again, we can pick a 2 € S; so that L(1, E/F,¥») # 0. Again, the
conditions specified on ¥, ensures that L,(s, E/F, ;) has no exceptional zero at
s=1andso Ly(1,E/F,¢;3) # 0.

Hence shrinking U if necessary, we may assume that the p-adic analytic functions
Lp(k/2,k,foo, Y1) and Lp(k/2,k, foo, 2 ) are non-zero on U

Let { := vy -Yr;. Thensig(¢) = (—1,...,—1). Hence ¢ cuts out a CM extension
K of F, in which p splits (since ¥r12(p) = 1), and the pair (¥, ¥2) corresponds
to a genus character ¥ g of K.

Let k € U N 722 be an integer, with ¥ = 2 mod 2(p — 1). By equation (3.2)
we have

L(k/2, 1 /K, yx) = L(k/2, 8, 91) - L(k/2, T, ¥2). (5.8)

Hence L(k/2, fz/K, 1) £ 0 for k specified as above. By Corollary 3.7, the value
L(k/2,£7/ K, ) lies in Q(f)).
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Using (5.1), we have, for j = 1,2 (noting that k /2 — 1 1s even, as p is odd):
kj2—1 d k/2
Dy k/2-11* N Cy; L(k/g,fz, V)

Qri) 2 2D (y;) o) € Q).
k

LYk /2,1, ) = (5.9)

Now by Proposition 7.1 of Appendix I, we have the following conductors and
Gauss sums identities:

DgDy® = Npjo Dxyr = Npjg cys N r/g cy,

. (5.10)
CW)TW2) = i1\ N 510 e N 0 v
Putting together (3.9), and (5.8)—(5.10), we obtain
Lk /2,1 /K, k)
erdowe
U2 A v (5.11)
= i e LR (k/2, 8 ) - LUK /2, 1, 92).
DR D ‘ ’
Q‘LU ‘LU

Equation (5.11) implies that i % (f# f#) Q(f#)
Using equation (3.14), (3.15), and (5.4) we obtain

2

K 2/ 8% pf
k/z_la(pak) <(I) ’(I)k>
K

Lok /2, 0o/ K, ¥x)* =

.dQ;U#Q =

i f‘% Lp(k/2. 8 4 Lp (/2.1 )
k!

2

. {D”)Wa(p k)2 (@, )
Qﬁﬁf#w
i4 {f;; & Lp(k/2,k, oo, Y1) Lp(k /2, K, foo, ¥2)
s Mg

(for the last equality, note that since k/2 —1 = 0 mod p — 1, one has Dngl =
{DgY*/>~1). Hence the proposition is proved, by defining
7 (k) . <DK>k/2_1$p(k/2afoo/Ka WK)z B
v ‘ uzxa(p!k)sz(k/zskafm:wl)Lp(k/zskafOO:w2).
Remark 5.2. The function 1, (k) does not depend on the choice of the characters
11, 12 made in the proof, because by (5.7), the values of 5, (k) 1s independent of

these choices for a set of values of k that accumulates to 2. The same argument also
shows that 7, = 1.
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Proposition 5.3. Let Yy, ¥rp be a pair of quadratic Hecke characters of I, which are
unramified at the primes dividing 1, and which correspond to a CM extension K/ F
and a genus character W of K. In the case where n™ ™ is the square of an idedl,
assume the condition

alp, E/F) = —sgn(y1) - €g/F- (5:12)

Then for k € U,

Epk)2, T /K, ¥r)* (5.13)
= u% (Dg ) 7 20 (p, kY gty )L pe 2,k R, 1) Lp (k /2, K, B, 112).

Proof. The computations in the proof of Proposition 5.1, show that equation (5.13)
holds fork € U NZZ?%, withk =2 mod 2(p —1)(if pisinertin K, i.e, if 1 (p) =
1r2(p), then we use Theorem 3.13 instead of Theorem 3.14 in the computation). Since
both sides of (5.13) are analytic functions of &, they must be equal. []

We now come to the main theorem. We refer to the notations of Section 4.5.

Theorem 5.4. Let Yy be a quadratic Hecke character of I, of conductor prime to
n=pu' n .Assume the following:

¥1(p) = a(p, E/F),

5.14
e/ r(Yn) = —1. &1%

Then
(1) The function Lp(k/2.k,foo, Y1) vanishes to order at least two at k = 2.
(2) There exists Py, € (E(F¥1) @ Q)y,, andl € Q, such that

2

T Lpk/2. 0 oo, Y1), = UogNorm g (Py,))*.

(3) The element Py, is of infinite order if and only if L'(1, E/F, 1) # 0.

Proof. The proof of assertion (1) in the case when ¥ istrivialand ¢ (p, E/F) = 1, is
already given in the introduction. The prooffor general ¥/, with ¢y (p) = a(p, E/F)
1s similar. Notice that assertion (1) does not require the conductor 1t to be of the form
punt o,

To prove the remaining claims, consider the set of quadratic Hecke characters
Y2 of F, of conductors relatively prime to 1 and ¢y, , that satisfies the following
conditions:

(1) sig(yr2) = —sig(¥1).
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(2) ¥2(0) = ¢ (D for [ |,
(3) Y2(l) = =D for [ [pnu.

Again by (5.5), one has €g/p(¥2) = —€g;p (Y1) = 1 for any such ;. So by
[15], we can pick a tr; such that L(1, E/F, ;) £ 0. Since t2(p) = —t1(p) =
—a(p, E/F), L,(s, E/F,r,;) does not have an exceptional zero at s = 1, so we
have L,(1, E/F, ) € Q.

Thus we are in the setting of Proposition 5.3 (notice that, in the case where n ™
1s a square, conditions (5.14) imply (5.12)). Hence (5.13) holds. Note that since
Wi1y2(p) = —1, the prime p is inert in K.

In our case L,(k/2,k, £, Y1) vanishes to order two at & = 2, while the other
functions that occur on the right hand side of (5.13) does not vanish. It follows, on
taking second derivative at k = 2, that

d2
U Msigyy) (D Lp(1, E/F, )

dkz
d* 5
= —Fk,f./K,
(K foo/ K. V) \“

d
= 2 e o/ K V)|, TP

L,k/2,k 1
p(/a 30051//1);6:2

By Proposition 4.5 (noting conditions (5.14)),

d
L0k foo/ K, Yx)| | = logNom g, (Py,)

with Py, € (E(F¥1) ®Q)y,. and is non-torsion if and only if L'(1, E/F, ¢ry) # 0.
Hence we obtain the proof, by setting

B 1
= Eu%nsig(wl)(z)Lp(laE/F’ ¥2) (5.15)

= U Nsigry) (Q)LE(L, E/F, ¥2).
It remains to see that [ € Q. Note that, by Proposition 5.1, the expression
sig(¥1) -~ —sig(¥1)
. d QfE QfE
{fe,fE)

i
lies in @, while the expression (g, @g) lies in Q, due to our normalization

condition that ® g is integer-valued. Hence ngjg(y,)(2) € @, which gives the result
since LY¥8(1, E/F, yr;) € Q. O

Note that when [F : (@] is even, then the conductor nn of E/F can always be
written in the form p " 1, for instance by taking n= = Op. If [F : Q] is odd,
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then this condition is equivalent to requiring that £ /F has multiplicative reduction
at some place other than p. In thenext section, we are going to establish Theorem 5.4
without this condition, at least when F = (.

Remark 5.5. We can be more precise about the value of I mod (Q*)%. Let § be a
quadratic Hecke character of F', with conductor relatively prime to that of 1 and 5,
and satistying the following conditions (whose existence follows again from [15]):

(1) sig(d) = sig(y1).
(2) §(Iy = yn (O for [ |u™ n.
(3) é(p) =~ ().
(4 L(1,E/F,8) # 0.
Let K /F be the CM extension cuts out by the character E = 02, and Y the

genus character of K corresponding to the pair by &, 2. Then as a consequence of
equation (3.10), we have

(Pg, @p)~" = LY, f5/K, ¥ 5) mod (Q%)% (5.16)

On the other hand, the same calculations that lead to (5.11) gives (noting that sig(6) =
sig(Y1))

L1, 15/K,¥) = (Pg, @5) " - Neigryy) (2)

i 1 y 1OI)
LU, E/F,8)- L**(1,E/F,vy2) mod (QX)".
Combining (5.15), (5.16) and (5.17), we thus obtain
[ = L1, E/F, 8 mod (QX)2 (5.18)

In the case F' = (), this gives part (4) of Theorem 5.4 of [4].

Suppose that we take ¢, to be trivial in Theorem 5.4; in particular, we have
a(p, E/F) = 1, 1.e, E 1s split multiplicative at p. Then we can give another
formulation of the statement of the theorem. Thus let O € pr be the Tate period,
4 = N Fyj0, QF, and O, be the Tate uniformization for E/Fy:

Op/r,: FfJ0E = E(Fy).

Forany 0 € Hom(F, Q) = Hom(F, Q,) = Hom(F,, Q). let F° be the totally real
field obtained by conjugating F with o, with p? the prime of ¥¢ above p. Similarly,
let E%/F° be the elliptic curve obtained by conjugating E/F with o. Then E°
is split multiplicative at p°, with Tate period Q% € (F»)™. We choose the Tate
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uniformization ® gopo_for E/ Fgg, so that the following diagram commutes (the
P
vertical arrows being the natural maps obtained by conjugating with o ):

OF/p,: Ff) QL ———— E(Fy)

| |

Oposrg, : (Fgo) /(05)" — E°(Fo).

Define logpo,pe for each o € Hom(F, Qp) using these compatible families of
-pO'

Tate uniformizations. Then given any P € E(F) C E(Fp), write
| = ®E/Fp(z) with z € pr.

Then

logNormg g, P =log,. N ro/0, 2
= Z log pe z% by Proposition 2.29
o cHom(F ()

— Z IOgEC‘/Fgg @Eo*/pga (ZU)
o cHom(F,Qp)

= Z 1()8Ec7/1?§Or (Op/F,(2))7
creHom(F,@p)

= Z IOgEor/chrcr Pcr
o cHom(F,Qp)
with P® & E°(F°),

Thus we obtain

Corollary 5.6. If'in addition to the hypothesis of Theorem 5.4, we have E/F being
split multiplicative at p, then

42 \2
mLp(k/lk,fm)‘k:z :z( > logsesrg, P ) (5.19)
ocHom(F,Qp)

forP € E(F), andl € Q™. The point Pisnon-torsion, ifandonlyif L'(1, E/F) £ 0.

6. Base change arguments

In this final section, let £ /() be an elliptic curve, which is modular by [37], [32],
[8], corresponding to a weight two elliptic eigenform fr (i.e., a Hilbert eigenform
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over (7). Let N be the conductor of E/Q) (and hence that of fg), and as in the
previous section £ /1) is multiplicative at p. We would like to establish Theorem 5.4
without assuming that £ /Q) is multiplicative at some prime other than p.

The idea is to consider the base change E/F, where F is a suitably chosen
real quadratic extension of (). Theorem 5.4 is known for E/F. Suitable descent
arguments allow us to get the statement for E/Q).

First, we would like to establish a factorization formula, relating the p-adic L-
functions of a elliptic modular form, and the p-adic L-function attached to the cor-
responding Hilbert modular form obtained by base change. The situation 1is parallel
to Proposition 5.1.

The reader may notice that most of the arguments in this section is not specific
to the ground field Q. Indeed, the only place where this is essential is the proof of
Lemma 6.1 and Proposition 6.4 below, where we make use of a non-vanishing result
of Rohrlich [28], [29] on twisted [.-values, which was proved only for the ground
field €. Tf the result of Rohrlich can be extended to general totally real fields, then
everything in this section would work without the restriction to (.

Here is the setup: let 1, ¥ be two quadratic Hecke characters of (0 (i.e., Dirichlet
characters), whose conductors ¢y, ¢y, are relatively prime to each other. and also
prime to the integer N above. Assume that sig(1) = sig(¥y2) = w € {£1}. Then
as in Section 3.1, the character 1) 2 defines a quadratic extension F of (@, which
1s real quadratic by the condition on the signatures. The pair i, Y5 corresponds to a
genus character ¥z of F. One sees that sig(¥pg) = w-1 = (w, w). In conforming
with the assumption in this paper, p will be inert in ¥, so this amounts to requiring
that 1 (p) = —¥2(p).

First recall the formalism of the base change operation. Let g be an elliptic cuspi-
dal eigenform of weight k£ > 2, of level N. To simplify the arguments, assume that k
is even, and that the character of g is trivial. Given the real quadratic extension F/(),
denote by g the base change of g from () to F, which is a cuspidal Hilbert eigenform
of parallel weight &k, known as the Doi—Naganuma lift of g (cf. [9], Section 1.7). For
simplicity we assume that the level N 1s relatively prime to the discriminant of F.

By the definition of base change we have the following relation between the L-
function of g and that of g. Denoting by & the Dirichlet character corresponding to
the real quadratic extension #/(), we have

L(S!g) — L(S!g)'L(Saga‘i:)'

This is equivalent to the following relations between the (normalized) Fourier coef-
ficients of g and g (cf. [9], p. 89). For any (rational) prime v let c(v, g) be the v-th
Fourier coefficient of g. First suppose that v + N. Let a(v, g), B(v, g) be the roots
of the characteristic polynomial

X2 _c(v,0)X +vF L



Vol. 86 (2011) Heegner points and p-adic L-functions 925

Similarly if v is a prime of F, with v } N, let a(v, g), B(v, g) be the roots of
X? - Cu, @)X + N1,
If v splitsin F ie, if v@F = vv’, then we have
(v, g) = a(v’, g) = a(v, g) (6.1)

P(v,g) = B(v',8) = B(v,8)
C(o,g) = C(v'.g) = c(v,9)

On the other hand, if v is inert in ¥, so that v := v©@F is a prime, then

a(v.g) = a(v,g)’, Plv,g) = p(v, 2)*

C(o,8) = a(v)? + B(v)? = c(v, g)* — 2051, (6.2)

One has similar relations for the Fourier coefficients for primes dividing D g or the
level N of g. Namely if v| N, then C(v,g) = C(v',g) = c(v, g) when vOp = vv’
splits, and C(v,g) = c(v, g)*> when v@r = v is inert. Finally if v ramifies in F,
then C(v, g) = c(v, g) for the prime v of F above v.

From these relations, one see in particular that Q(g) C (g).

Lemma 6.1. With the above notations, the expression
k(g) == DUy (ariy! (6.3)
lies in ((g).

Proof. Let T be the set of finite order Hecke characters y of (), that are unramified
at primes outside p (including the infinite place), in classical language, this is the set
of even Dirichlet characters with conductors a power of p. Consider the following
condition:

If & = 4, then by Proposition 2 of [30], condition (6.4) is satisfied for any y € T.
For k = 2, then by the main result of [28], [29], (6.4) is satisfied for all but finitely
many y € T. Thus pick a non-trivial ¥ € T that satisfies (6.4) (so in particular p
divides the conductor of ¥).

Let ¥ g be the Hecke character of F obtained by pulling back ¥ via the norm map

J\fp/@, Le.,
IF =XoNp.

Then we have the following identity of the complex L-functions:

L(S,g, WFXF) - L(S=g= wlj) L(S, g, wzf)
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So in particular

Ltk —1.g¥rir)=Lk—1,8.917) Lk —1,8.92%) # 0. (6.5)

Again from Proposition 7.1 of Appendix I, we have the following identities relating
the conductors and the Gauss sums:

NF1Qrze = NF0 s = 5
Drp = ¢y cy,, (6.6)
W(WrEr) ™) = Dy (@D - (2.
Making use of equations (5.1) (appliedto Lk — 1, g, Yr ¥F), Lk —1,g,%1 ) and
Lk —1,2,¢,%)), (6.5)and (6.6), we obtain by direct computation
Lalg(k - ]-5 2 WFXF)
Lalg(k - l’g’ Wlf) T Lalg(k o & sz)

with k(g) defined as in (6.3).
Since the numbers

L%k —1,g.vrir), L%k—1,g,917%) and L%k —1,8 927

are algebraic numbers, we deduce that x(g) is algebraic. To pin down its field of
definition more precisely, let 2 € Aut(Q /Q(g)) be arbitrary. Since Q(g) < Q(g),
we also have b € Aut(Q /Q(g)).

Noticing that since ¥, ¥2 and {¥F take values in {+1}, we see, by (5.2),

LU — 1, g, 913" = LUk — 1,8, yn )" # 0,
Lalg(k - 13g5 W22k) =S Lalg(k - 13g5 11”22)]2 ?é 03
L% — 1, g, vrfy) = L%k — 1,8, yrir)* #£0.

In particular, in the above computation, we could replace ¥ by 7%, and so equation
(6.7) holds with 7 replaced by 7”. We deduce

L¥%(k — 1,8, 9F ¥F)
Lie(ke —1, 8,91 3)- L3s(k — 1, ¢, Y2 %)
L%k — 1,8, Y5 i})

Lae(k —1, g,y j") - LAk — 1,8, 2 7")
B LUk — 1,8, 9rir) A
N (Lalg(k —1l.g.¥j) L3k 1,8, Iﬁzf))
= k(9)"

which implies that k(g ) € ((g), as required. O

k(g) = (6.7)

k(g) =
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Now assume that g 1s ordinary at p. For the sake of simplifying the arguments,
assume that the weight k satisfies k = 2 mod p — 1. Asin the proof of Lemma 6.1,
for any finite order Hecke character y of @, let yp := yoN /g be the corresponding
Hecke character of I

Lemma 6.2. For any finite order Hecke character y of (), unramified at places
outside p, we have

Lp(k_ 1=g’WFXF) :K(g)LP(k - lag: WIX)LP(k —1=85W2){)-

Proof. Similar to the computations leading to equation (6. 7)inthe proof of Lemma 6.1,
we have

L%k — 1, g ¥rxr) =k(g) L™k — 1, g, 1) L™k — 1,8, 92x). (6.8)

Lemma 6.2 then follows by combining equation (6.8) with equation (5.3) (applied to
Lp(k_l ' 8 WFXF): Lp(k_l v &5 1//1 X) and Lp(k_la g, 1//2X)): and the Computation
(using ¥1(p) = —y2(p) and that a(p, g) = a(p, £)*):

-
_ (1 B WFXF(P)NPk_2)
a(p,g)

(here we have used ¥ r(p) = 1, because the image of p = p@r in Pic(@F) comes
from the image of p in Pic(Z), which is trivial). Similarly,

W @B N, W) (B g)
(1- AR (- AR

(1 (e xr)y (0B (P, 8)

_( N pk—1 )

Proposition 6.3. We have the factorization formula of p-adic I -function:

Lp(s,g, vr) =x(g)Lp(s, g, ¥1) - Lp(s, g, ¥2).

Proof. The proof follows the same lines of argument of Proposition 9.3 of [26], using
Lemma 6.2 above. U

We now come back to the setting of the beginning of this section. Let fg be the
base change of fg to F. Then fg corresponds to E/F (so E/F is modular). Let
foo be the Hida family lifting fr. The Hida family f, lifting fz can be obtained
from fio by base change. More precisely we can construct the A'-adic eigenform
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f.. using formula similar to (6.1) and (6.2), i.e., for primes v of F define C(v, f)
by the following formula:

C(v,T0) = C(W, f0) = (v, foo) if vOF — v’ splits.
Ifv®p = visinertin ¥, then

c(V, foo)? —20{(vY*=2  ifv } N (here k is a variable),

C(o, fo) =
(9, foo) {C(U, )2 if v| N (in particular for v = p).

If v ramifies in F, with v the prime of ¥ above v, then

C(v,fx) = (v, foo).

One then defines C(m, f.) for other ideals by (2.11). These data defines the A T-adic
form fo, and for integers k € U M Z=? for a suitable p-adic neighbourhood U of 2,
the weight k specialization f; of . is the cuspidal Hilbert eigenform that is the base
change lift of the weight & specialization f; of f... Let fk# and fz be the newforms

attached to weight k& specializations of fo and fu (so that f]f 1s the base change lift
of fk# to F).

Proposition 6.4. Up to shrinking U, thereis a p-adic analytic function k(k), defined
on U, such that for k < U N ZZ2, withk =2 mod p — 1, one has

k(k) = k(f).

Proof With notations asinthe proof of Lemma 6.1, choosea y € T', whose conductor
is divisible by p, such that

LO,E/F, yrpxr), LQ,E/Q,¥1)) and L(O,E/Q,¢5))
are non-zero. Since p divides the conductor of ¥, we have by equation (5.3) that
Lp(1, E/Q.y13) = L™(1, E/Q, 41 J),

Lp(1,E/Q,¥27) = L1, E/Q, ¥ 7),
L,(\,E/F,¢pjir)= L1, E/F,¢pjr).

Hence up to shrinking U/, we may assume that the p-adic analytic functions
Lp(k_l,k,foo,WI), Lp(k_laksfomwf) and Lp(k_lskafoanF)

are non-zero on /. Thus, if we define

Lp(k - 1’kaf005 WF)
Ly(k =Lk, foo. W1)Lpk — Lk, foo, ¥2)’

(k)=
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then (k) is p-adic analytic on U, and Lemma 6.2 shows that, for k € U N Z=2,
withk =2 mod p —1,
(k) = k()

as required. ]

We now draw the corollary that we need:

Corollary 6.5. Fork < U, we have
Lpk/2,k S0, ¥F) = k(R)Lp(k /2, K, foo, ¥1) - Lp(k/2.k, foo,¥2).  (6.9)

Proof Propositions 6.3 and 6.4 show that this holds for integers k € U M Z2?, with
k =2 mod p — 1. Since both sides are p-adic analytic functions of k, the result
follows. 0

We are now 1n a position to extend Theorem 5.4 to the elliptic curve E/(Q, without
assuming that £/Q is multiplicative at some prime other than p. Thus we are only
assuming that N = Mp, where p does not divide M. Let 11 be a quadratic Hecke
character of {0, with conductor relatively prime to N, satisfying

Y (p) = a(p) = a(p, E/Q),
cgro(¥) = -1

Let i, be a quadratic Hecke character of (9, with conductor relatively prime to
that of ¢r1 and to N, satistying the following conditions:

(1) sig(y2) = sig(¥1).

(2) Y2(p) = —¥1(p).

(3) ra(g) = Y1 (q) for all primes g dividing M.

4) L1, E/Q, ¢2) # 0.

Note that for any ¥, satisfying (1) to (3), we have (using (5.5) again)

cero(V2) = —€g;0(n) =1,

so the existence of 7 that satisfies (1) to (4) follows again from [15]. Note that (2)
implies ¥2(p) = —a(p, £/Q), so the p-adic L-function L,(s, £ /0, v2) does not
have an exceptional zero ats = 1. So L,(1, E/Q, ) € Q.

Let F be as above the real quadratic extension of (J cut out by ¢, and ¥ the
genus character of F defined by the pair ¥y, 5.

Consider the base change E/F. We have

a(p, E/F)=a(p,E/Q)* =1=yr(p)
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On the other hand, the factorization formula for the complex L-functions,

L(s,E/F.yp) = L(s, E/Q,¥1) - L(s, E/Q, ¥2), (6.10)

together with the hypothesis that (1, E/Q, ¥5) = 0, shows that the order of van-
ishing of L(s, E/F,{¥r) at s = 1 coincides with that of L(s, E/Q), 1), which is
odd, 1.e.,

epp(¥r) =eppin) = -1

Since [F : (@] = 2 1s even, we may apply Theorem 5.4 to the p-adic L-function
Ly(k/2,k foo,¥p) to get

2
dik?
where | € Q%, and Py, € (E(F¥F) ® Q)y . is non-torsion if and only if
L'(1,E/F,vr) £ 0.
By (6.10), and the fact that L(1, E/(Q, ) = 0, we have

L'(1,E/F,yp) = L'(1, E/Q,yn)- L(1, E/Q, ¥2).

Ly(k/2,k, oo, WF) = [(logNormg g, Py )7,

Hence
L'AE/F,¥rg) 40 ifandonlyif L'(1,E/Q,vy) £ 0.
By (6.9), and the fact thatboth L ,(k/2,k, oo, W) and L (K /2, k, foo. ¥1) van-

ishes to order at least two at £k — 2, we have

42 d?
mLp(kﬁ,k,fm, WE) £ = k(2)Lp(1, E/Q, Wz)m

with £(2) € Q™ by Lemma 6.1.
Define

UVi=wk2)y ™V Ly(1,E/Q, )" =27 e(2)™ - L28(1, E/Q, ) M.

Then !’ € (0. It remains to deal with the term involving logNorm g [Fp:
Notice that, in the notations of Section 3.1, we have

Lyp(k/2k, foos 1)), _,

FYF — @wmﬁz

and thus Py, € (E(QY1%2) @ @)y . As in Corollary 4.2, the assumption that
L(1,E/(),4ry) # 0 implies, by the result of [24] (applied to E/(), so this case

already follows from earlier work of Kolyvagin), that

PI#F = (E(Qm) & @)1#1'
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Clearing out denominators, we may assume that Py, . € E(Q¥1),, without affecting
the value of { mod (Q*)?. In particular, in the notations of Section 4.5, the image

of Py in E(Qp2) lies in E(1Q,2)q(p)-
Letgg € @; be the Tate period of £/0),, and let

Op0,: CF/as == E(Cy)

be the Tate uniformization for the @) ,2-points of E/Q,, which is also the Tate uni-
formization for E/Fy. Recall from Section 2.11, that the property of the Tate uni-
formization gives E(Q,2)s, = @ g0, (1p), so in particular we have

PWF - ®E@p (Z)

with z € Q7. So in particular

logNormpg g (Py ) = log,, Np,0,(2) =2log, (2) = 210gE/@p(P¢F).
Thus to conclude, if we let
1" := 22y~ 1L31, E/Q, )" U, (6.11)
then

dZ
dk?

with P = Py, € (E(Q¥1) ® Q)y, non-torsion if and only if L'(1, E/Q, ) # 0.

Ly(k/2.k, foor ¥1)|,  =1"(l0gg;q, P)® (6.12)

Remark 6.6. In [5], equation (6.12) 1s applied to the study of the question of ratio-
nality of Stark—Heegner points. For this purpose, they need to know the value of I”
mod (Q*)?. See the discussion of Remark 5.5. These suggests that the conclusion
of remark 5.5 holds for £ /Q) even without assuming that £ /() is multiplicative at
some prime other than p. Thus for ¥, as above, we state the following conjectural
formula:

1" L L1, E/Q, y2) mod (Q)2. (613)
On the other hand, using (6.11), (6.3) and (5.18), we have

D}? Npges L1, E/F,9)

: d (0?2, (6.14
T(§) ()2 el

1" = L*(1, E/Q,¢») 2

where 6 1s a quadratic Hecke character of F, unramified at the primes dividing the
conductor of E/F, that satisfies
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(1) sig(d) = sig(¥r) = (sig(¥1), sig(¥1)),
(2) é(p) = —yr(p) = —1,
(3) (1) = ¥g(l) for any prime | = p dividing the conductor of E/F,
(4y L(1,E/F,8) # 0.
Thus in order for (6.13) to hold, we are led to

DY? Npaes L(LE/F.8) o

2 : =1 d (Q*)2. 6.15
r(é)(ﬂj}fm))z mod (87 @1

As a particular case, take ¥, to be trivial. Let F be a real quadratic extension of
@, in which p is inert, and all primes ¢ = p dividing the conductor of E /() splits
in . Let § a quadratic Hecke character of F, unramified at the primes dividing the
conductor of E /), such that

(1) sig(é) = (1,1),
(2) é(p) = —1,
(3) (1) = 1 for any prime [ # p dividing the conductor of E/ F.

Then, 1s it true that the expression

2D}J2 Npges L(1, E/F,8)
+ 32
13N,

is the square of a rational number? This would be consistent with the Birch and
Swinnerton-Dyer conjecture. For more on this, see [27]. We remark that for such é,
the restriction 4| A% 1s not trivial, so this is not a situation where Waldspurger type

results [35] can be directly applied.
Here, we are content to draw the following:

Corollary 6.7. In thesituation(6.15), suppose that E /() has multiplicative reduction
at some prime other than p, andthat L'(1, E /Q, yr) # 0(inaddition to the condition
L(1, E/Q),4r2) #£ 0, and the above hypothesis on F and §), then the expression(6.15)
is the square of a rational number.

Proof. Under the above assumption on E /() (in particular that it is multiplicative at
some prime other than p), we have by part (4) of Theorem 5.4 of [4] that

d ~2
—zLok/2.k, foosy)|,_ = llogg o, P')
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for some I € Q, with{ = L38(1, E/Q,v,) mod (Q%)?, and P’ € (E(Q¥1) ®
@)y, non-torsion {(which is the conclusion of remark 5.5 applied to £/()). On the
other hand, by equation (6.12) and (6.14), we also have

d

T lek/2k foo, ¥1)| = 1"(loggrg, P)’
with I = [ - ¢ for some ¢ € ()™ satisfying

DY* Npjges L(1,E/F.6)

: d X2
oy )

¢ =72

and P € (E(Q¥1) @ @)y, again non-torsion. The corollary thus follows from the
fact that dimgp( E(Q¥1) ® Qy, = 1. ]

To conclude we state another corollary of (6.12), which is a special case of a
conjecture of Greenberg (this is stated in [4] in the case when E /() is multiplicative
at some prime other than p):

Corollary 6.8. Suppose that E/Q is split multiplicative at p, and L'(1, E /(}) #£ 0
(so that the sign of the functional equation of the p-adic L-function Ly(s, E/()) is
+1). Then there exists a p-adic neighborhood U of 2, such that L{k /2, 17) # 0 for
keUNZ™ 2L k=2 mod p— 1.

7. Appendix I

Here we prove a result on Gauss sums that 1s used for the proof of Proposition 5.1
and Lemma 6.1.

In general, let L be a number field. For any infinite place v of L, define the
modified form of Euler’s 1" function as follows:

G (s) — 77520 (s/2) if v is real,
T 12@2r) T (s)  if v is complex.

Let § be a finite order Hecke character of L, and 4, be the local component of § at
the place v. Define

o T 0 if viscomplex, or v isreal and 6,(—1) = 1,
U1 ifvisrealand §,(—1) = —1.

Let L(s,5) be the Hecke L-function associated to §. Define the completed L-
function:

As,8) = (DL N yge)? T Gols +mu(8) Lis, 6).

v oo
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Then A(s, §) satisfies the functional equation

(5)

A(l —s,6) =
i M(8) NL/@ Cé/

~A(s,6) (7.1)

with M(68) = Zv|oo m,, (6), and 7(8) being the Gauss sum of §.
If § = 1 is trivial, then L(s, 1) is just the Dedekind zeta function {z.(s), and
A(s, 1) 1s the completed zeta function of L. In this case (7.1) reduces to the familiar

functional equation:
Al —5,1) = A(s, 1).

Now let ¥ be a number field, and ), ¥» be quadratic Hecke characters of F,
whose conductors are relatively prime to each other. Asin Section 3.1, the pair ¥q, ¥,
cuts out a quadratic extension K of F, and corresponds to a genus character g of
K. The character ¥ 1s unramified at all the finite places of K, thus ¢y, = Og. On
the other hand, let w be an infinite place of K that lies above v, then w 1s real if and
only if m, (1) = m, (,), in which case there are two real places w, w' of K above

v, with sy (Yg) = my (Ur) = my(¥1) = my(¥2). One also sees that

M(Yrg) = 2 x number of (real) places v of F such that m, (1) = m, (¥r) = —1.

Let y be a finite order Hecke character of ¥, assumed to be unramified at all the
infinite places, so that m,, (¢; ¥) = m, (). For our purpose, we will also assume that
¢y is relatively prime to ¢y, and ¢y, sothatcy, y = cy; Cp. Define yx := yoNg/r.

Proposition 7.1. The following identities hold true:

Dy = D%‘ NF/@ Cyrq Cypras

(7.2)
(g px) = iMPO-MEO-ME2) b D V20 e ().

Proof. We have the following identities:
L(S! WKXK) = L(Ss WIX)L(S! 1ﬁZ:- X):
(m 20 (s/2)) - (w~ CHDED (s + 1)/2)) = 2(27) T (s)

(the second one is the duplication identity for I" function). Hence we obtain

A(s, Yxxg)
— (Dg N/ Cux) (D% N Eigy ey N 10 ¢u,) "2 AGs, U1 )AL, Y ).

On the other hand, by comparing the functional equationsfor A(s, v xx ), A(s,¥r1x)
and A(s, ¥, ¥), we see that the function

Fy(s) = (Dx N/ cxx )2 (DF N i oy N pigp cwy N pp 217 (73)
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satisfies the functional equation
Fo(l—5)= A, - F,(s),

where

A, — MO M) M) (Y& Xx)
(1 )T(Y2x)
) (Np/ ey NEjgty, Nrjgc

172
Nk/o foz

2y1/2 (7.4)
x -

From this, one easily sees that A, and F,(s) must be identically equal to one.
Take y to be trivial. Then from (7.3) we obtain:

Dg = Dy N g ey, N rra e,
thus giving the first equation of (7.2). Now going back to general ¥, we obtain from
(7.3) again:
NE/m e = Ny
Plugging these into (7.4), and using A, = 1, we finally obtain the other identity of
(7.2). ]

It 1s then clear that (6.6) used in the proof of Lemma 6.1 follows from Proposi-
tion 7.1.

For (5.10) used in the proof of Proposition 5.1, we take y to be trivial, and K
to be a CM field. One has M(¥x) = 0, while M(y1) + M) = d = [F : Q].
Proposition 7.1 implies the claim, by noting that

(g) =1

which follows since ¢y, = Ok.

8. Appendix 11

Here we prove Proposition 2.9 and Theorem 2.10. The arguments are well-known.
We include the proofs here for the convenience of the reader.
Recall the open compact subspace X’ of X defined by

X' =c\(0%, X pOF,)

which is stable under I, (as in Section 2.4, ¢ 1s the closure in C();vp of the group of
totally positive units of @ ). Let £’ be the space of Cp-valued measures on X', with
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the evident structure of a module over A r and the action of [,,. As in the case of D,
one has maps

@’ic@{;c@’

defined in the evident manner, and allow us to define, for &' € D' and g €
M>(p; Op,) N GL(Fp),

gxp' = p(g-s' ().

One checks that this defines an action of the semigroup M3 (p; Op,) N GL2(Fy) on
D’ extending that of I,. Thus for f a function on X', and § C X’ open compact

ff d(g*uf):f Fle du.
I3 e~ 1(S)NX’

The measure g * & 1s supported on g(X') N X",
Consider the map

Dy — D' (8.1)

given by restriction of measures. This map 1s fp-equivariant.
Let X = Y(nt,n7), ¥ = Z(nt,n) N I(p,n) = Z(put,n"). Thus

E’p = [p. The restriction map (&.1) induces the [p-equivariant map

S(X, Dy) — S(X', D). (8.2)

It is clear that the specialization map (2.10) factors through (8.2).
First, we observe:

Proposition 8.1. The map (8.2) is an isomorphism.

Proof. For a € ky, denote by y, = (‘f (1)) — ((1)“1’) ((1) (1)) € GL2(Og,).
Then one can check that

Op, x O, = |_| Ya(OF, X p Or,).

aek'p

Denote X := X\ X' = ¢ \(Op X (S’iép). Then

i |_| vaX'.

aekp
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Now given &' € S(X', D), suppose for the moment that & € S(X, D,) is a
form that maps to &' under (8.2). Then for any continuous function f on X,

[ raew = [ raee+ [ fao
S RELCEDS

aEk'p

—‘/X’f dd(g) + ZfX,f”’a dP(g Vo)

aek'p

~ [ rave+ T [ i dve .

a Ek'p

[ ¢ e

Thus in general, given & € S(X/, D) define & by the following rule: for any
continuous function f on X,

[ raew=[ rav@+ T [ findo .

ﬂekp

Then one checks that & € S(X, D), and this provides the inverse to the map (8.2).
]

The isomorphism S(2, £,) — S(¥/, D) commutes with the action of the Hecke
operators Ty and 7y for [ not dividing pn™ n~ and the Ut for [ |nt n™. For the
Hecke operators at p we have:

Proposition 8.2. The isomorphism (8.2) intertwines the action of Ty on S(X, Dy)
and that of Uy on S(3/, D).

Proof. This is a direct computation. Thus let @ € S(Z, £,), and let @’ be the image
of @ under the isomorphism (8.2).

Given a continuous function f on X we have, for g € B>, the following formula
for Tp ® (equation (2.2)): by taking

Gy = (g 611) tor a € ky
1 0
Yo = | »

0
GLz(@Fp)(g 1)(}Lz(@%): | | 0aGL2(OR,).
a€ePl (k)

and

we have
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Hence

fX f dT,0(g) = fX f dowl®) * B(g0m) + 3 [X f doy * B(goy)

aEk'p

= Xff A0oe * D(g0oc) + D fff dog *x P(g0,)

aekp

(in the last equality we are using the fact that the measures 0, * $(g0) and o, *
®(go,) are supported on X’ and X respectively).

Whereas in general for ¥ < S(X/, D), and function 4 on X', we have (equation
(2.3)) that

fX;h dU,¥(g) = fX;h dép = VU(gop)

beky

= 5 Hl6y dW(goy)

—1
bekyp o3 XnX:

— Zf h|6, dU(gdp).
Xr

bekp
Here
1 0
Op = for b € k.
’ (bp p) ;
One has
OF, < pOp, = |_| 65(OF, x p Or,)
bekyp
which implies
X = |_| Gp X
beky

(In particular & LX’ o X7, explaining the last equality in the above computation.)

Now suppose that P e S(Z, Dy) corresponds to Uy (P”) under the isomorphism
(8.2). Then as we have seen in the proof of Proposition 8.1, for f a continuous
function on X,

| £ad@ = [ rave@= ¥ [ i v,

aek'p
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Now

| 7@ =% [ rion dvesn)

beky

=¥ [ sion daes)

beky

= [ f oy aean)
beky "o’

Notice that 65 = 0,75, where 75, = (}) (1)) € GL,(OF,). Hence

6!) * (I)(gob) = 0o % (I)(ggoo)'
S0 we have
fav@ =Y [ f dows Beo)
X o

beks "% (83)

= S doo * P(g0s0).
XF

Similarly we can treat the other terms:

[ #1va avu@(era = 3 [ lrass a2 (grate)

beky
= ¥ [ flvats d2(erat).
beky VX’
Now a direct computation gives
YaOb = 04y,

hence the above integral becomes

Z [X!ﬂffa?’b d®(go,ve) = Z flo, d®(goy,)

beky beky ¥ Vo X

— fmfm d9(g0,)
X

— [ dous 0g0n).
X
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The last equality holds because o, ! ()?) NX = X. So we have
| 7 a¥@= [ 1 at00)
X X
Thus we conclude that ® = T, ®. L]
Now let @, € S(X/, D’). For integer k > 2, let & = pg (P,). Then

Lemma 8.3.
Pk (Up @) = Up .

Proof. Let P € By. Then for g € B,

pa U IDP) = [ fr a2 ()

(where fp is as in equation (2.9)). On the other hand, as we saw in equation (8.3)
during the proof of Proposition 8.2,

[ a0 = X [ frion dvlteon.

aekp

Hence

Pea WD) = T [ folo 40 (e0)

ackyp
= Z (I)k(g&a)(P|6a)
ackp
= Up(Pr)(Q)(P). L

Corollary 8.4 (Proposition 2.9). Assumethat oo € S(X, Dy), and O = pr +(Poc).
Then

pk,*(Tp Poo) = Up .

Proof. Let ®_ € S(X/, D') be the image of ®, under the isomorphism (8.2). Then
by Proposition 8.2,
iz Uil

Thus using Lemma 8.3

pk,*(Tp((I)oo)) = pk,*(Up((I)go)) = Up(pk,*(bgo) = Up(q)k)' 0
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We draw another corollary of Proposition 8.1:

Corollary 8.5. The specialization map
P24 S(E, D) — S(X, 1R)

15 surjective.

Proof. By Proposition 8.1 this amounts to showing that the specialization map
prx: S(E, DN = SE', V)

1s surjective.
Let R’ be the Eichler order of B of level pn™ such that ¥’ = (R’)*. Choose a
set of representatives {4 17, € B for the double coset B\ B*/ Y/ For eachi let

R, =B Ny ﬁ’ri—l be the Eichler order of B of level p n™ determined by ¢;. Then
each of the quotient (R])*/O% __ is a finite group (recall that O% , is the group of
totally positive units of @ ). Let A; be the image of ti_l(Rg)Xri/@’;’Jr i B &
Then in general for any Z,[¥,]-module M with the action of Xy on M factors
through %y / ¢ there is a bijection of Zp-modules:

i
S\ M) = PMh
i=1
® — {P()}o

(here M 2i stands for the Z p-submodule of elements of M invariant under A;). Soit

suffices to show that the maps py: (D)2 — (V3)? are surjective fori — 1,...,n.
But the A; are finite groups, and D' is a (@ ,-vector space, so this follows from the
surjectivity of pa: D' — V5 = C,,. 0

Remark 8.6. For each & > 2 the same argument shows, by using the surjectivity of
pr . D" — Vi, that pg o S(X, D) — (¥, Vi) is surjective.

Proof of Theorem 2.10. This can be proved by the same methods as in [1] and [21]
(see also [2]), sowe just provide a sketch. Let ® € S(Z/, V) = S(Z(p,n™,n7), V3)
be an eigenform that is new at primes dividing n*. Then there is a finite extension
E/(), such that ® takes values in £. Multiplying & by scalars if necessary, we can
further assume that & takes values in ¢ = g (the ring of integers of £). Denote by
S(X', Va2, @) the @-module of forms with values in ¢, which is a finite free module
over . Similarly let Dy ¢ be the @-module of measures on X with values in @.
Then S(2, Dy @) 1s a module over Kp:@ =0Qz, Kp. The ring Kp:@ is compact,
and the Kp,@—modules Dy, and S(Z, Dy, @) are compact.
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The specialization map p; 4 sends S(X, Dy @) to S(X', V5, @). Asin [1]. Sec-
tion 3, let S(X/, V2, @) and S(X, @*!@)0 be the ordinary parts of S(X/, V2, ) and
S(2, Dy @), which i1s the maximal direct summand (as ?-module and ;’{p,@-module
respectively) over which the action of T} 1s invertible (as usual 7}, acts as U on
S(X, V5, 0)). Thus ® € S(¥/, V5, ©)°. The arguments used for the proof of Theo-
rem 5.1 of [1] (known as control type theorems) show that p2 « induces an injection

P2.4i S(Z, De )/ PyS(Z, Dy 0)° = S(T', V2, @)°

here we i1dentify the weight P, € X of Section 2.4 as the prime ideal of Kp,@
given by the kernel of P,. The compact version of Nakayama’s lemma implies that
S(Z, Dy v)? isafinite A g g-module. Inparticular & := S(Z, Dy p)° ®F o AOLO

is finite over X@,@, hence finite over Ag ‘= @ ®z, A. The argument of [1],
Lemma 1.1, shows that & is torsion free over Ag.

On the other hand, the proot of Corollary 8.5 shows that pz «: S(X, D) e
E — S(¥', V3, @) ®¢ E is surjective, so without loss of generality we may assume
that ® lies in the image of S(X, Dx o), hence in the image of S(X, Dy 0)° since ®
is ordinary. Let &, € & be such that p2 oo(PL,) = .

Let B be the prime ideal of Ag given by the kernel of the evaluation map at
k = 2. The localization ®g; is then finite and torsion-free over the discrete val-
uation ring A g, hence is finite free over Ag g. Let I be the Ay gp-subalgebra
of Enda g 5 (®g) generated by the image of the Hecke algebra T (with T as in
Section 2.5). The algebra # is finite free over A . The system of Hecke eigen-
values associated to the eigenform & then gives rise to an algebra homomorphism
h: R — E, and the kernel of 4 is a maximal ideal of R that lies over YA o . Let
7 be the normalization of the quotient of 3t by the minimal prime of ;i contained in
ker(h) (which is again a DVR). Since @ is new at primes dividing n™, the arguments
used to prove Theorem 3.6 of [21] (p. 381-383 of Joc. ¢it.) show that T 1s unramified
over Ay g (see especially the second equation on p. 383 of [21]). Fix an embedding
I/my — @p (where m ; 1s the maximal ideal of 7). Then since I is unramified
over Ag g, there is an unique way to embed I into AT extending the embedding of
Ag g Into AT (as in equation (2.5)).

As in loc. cit. there 1s a decomposition of Ag g algebras

R Orpp AT = AT x X,

where the projection R @4, ¢ AT — AT is induced by the map f — I — AT
(here J 1s just the complimentary algebra direct summand).
Leter € R Qapm AT be the idempotent corresponding to the projection onto

the AT. Under the natural pairing

ER@AC‘),EB AT x ©p — Gy RAp.p AT = © Dap AT



Vol. 86 (2011) Heegner points and p-adic L-functions 943

put @ = ;P € © B, AT. Then &, is an eigenform in & QAe At The
image of $, in S(X, @?CI’T) is then an eigenform that specializes to &. []
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