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A -adic modular symbols over totally real fields

Baskar Balasubramanyam and Matteo Longo

Abstract. We consider a Hida family of nearly ordinary cusp forms on a quatemion algebra
defined over a totally real number field. The aim of this worlk 13 to construct a cohomology class
with coefficients in a p-adic sheaf over an Iwasawa algebra that can be specialized to cohomology
classes attached to classical cusp forms in the given Hida family. Our result extends the work of
Greenberg and Stevens on modular symbols attached to ordinary Hida families when the ground
field is the field of rational numbers.

Mathematics Subject Classification (2010). 11G18, 11F41, 11F67.
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1. Introduction

Let F/() be a totally real field of degree d. We will always assume in this paper that
d > 1 because the results that we will present are generalizations of results already
known ([4]) when the base field is the field of rational numbers. Denote by 1 the
ring of integers of /. For any abelian group A, define A:=4 Rz Z where 7 is
the profinite completion of Z. For any quaternion algebra B/F let G = G ® be the
linear algebraic group over @ such that G(Q) = B™. Let G » denote the adelization
of G and denote respectively by G 7, G o and G+ the finite part, the infinite part
and the connected component of G, containing the identity. Fix a compact open
subgroup S < G such that Up(n) 2 S 2 Uj(n) for some integral ideal n of F,
where Ug(11) and U;(n) are congruence groups defined in §2.1. Let p be a rational
prime which is prime to 21t and define S(p*) := § M U(p*) for any non-negative
integer o, where U(p%) is also defined in §2.1. Fix an embedding t: Q — @p and
a finite extension K of (), containing ¢ o (') for all archimedean places p of F.
Denote by @ the ring of integers of K.

Let 1 denote the set of embeddings of F into €. Let n,v € Z[I] be fixed
weight vectors such that n + 2v = O mod 7Z¢, wherer = (1,...,1) € Z|I] and let
k:=n4+2tandw := v + k —t. Following [7], we denote by hZ’,izd(S(p“), )
the Hecke algebra over @ tor the space of p-nearly ordinary Hilbert cusp forms of
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weight (k, w) and level S(p%). In §2.3 we recall Hida’s construction of the universal
p-odinary Hecke algebra

R = lim K37 (S (%), ).
&
This Hecke algebra is universal in the sense that each nearly ordinary Hecke algebra
hz’,ﬁd(So(p“), ¢, K) acting on the K-vector space of cusp forms of weight (k, w),
level So(p%) and finite-order character €: So(p¥)/S1(p%) — C is isomorphic to a
residue algebra of R. Here So(p%) := S N Up(p*) and S1(p%) := S N Uy(p9).
More precisely, let
e 11 o x Oy XK

G = L%So(p r/S(pt)e,
and denote by W the free part of G. Then ‘R has a natural structure of K—algebra,
where A := O[[G]] is the Twasawa algebra of G and there are isomorphisms

Rp/PRp —h"(So(p™). €, K) (1)

for suitable ideals P of }i where Kp 1s the localization of R at P. See [7], Theo-
rem 2.4, or § 2.3 for details.
Let A := O[[W]| be the Iwasawa algebra of the free part W of G. Denote by
£ 1= Frac(A) the field of fractions of &£ and by £ its algebraic closure. Fix a point
0 ¢ Hom@ -algebras(ﬂ, OQE)

cont

By | 7], Theorem 2.4, the image of & is contained in a finite extension K of £. Let 7
denote the integral closure of A in K. Say that a point
L (?—algebras =
x € X(I):=Hom (Z,Qp)

cont

1s arithmetic if 1its restriction to & has kemel equal to P for some of the ideals P
appearing in (1). See [7], p. 150-152, or §2.3 for a more precise notion of arithmetic
point. A corollary of Theorem 2.4 in [7] states that points in X () correspond to
p-adic Hilbert modular forms and arithmetic points ¥ corresponds to classical p-
nearly ordinary Hilbert modular forms f, of suitable weight (k, w), level So(p®) and
character €. See [7], Corollary 2.5, for details. In particular, to any arithmetic point
# 1s associated a weight (r, v) (or (k, w)), a level So(p*) and a character €.

Remark 1.1. Note that the Iwasawa algebra A := @ [W]] of W is isomorphic to the
formal power series ring in s variables O[[X,,..., X], wheres =d + 1 + §p and
dF 1s the non-negative integer appearing in Leopoldt’s conjecture. An other way to
state [7], Corollary 2.5, isthatany f € S ,(U1(nnp®), K) has s-dimensional p-adic
deformations over ) (in the sense of [7], pp. 152-153).
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To discuss the main result of this paper, we need some technical assumptions.
Assume that B i1s unramified at all finite primes in F. Denote by Fj the adele ring
of . By the Strong Approximation Theorem, choose g; € GLo(Fy)forl <A <
h(p¥) and a suitable integer 4 (p¥) depending on & with (ga)np = (g1)oc = 1 and
such that there is the following disjoint union decomposition:

A(p)
= |1 GoerSGus.
=

If @ = 0 write i for A(1). If B is indefinite, we can assume that the g3 does not
depend upon «. Define the following arithmetic groups depending on S

(%) = g28(p*)G o+ 85" N GP (@)
TH(p*) = TH(p*)/TH(p*) N F).
Let Ip be the set of infinite places where B is unramified. If |Ig| = r, then G 18

isomorphic to GL,(R) x H4~7. Since I'*(p%) is a subgroup of G o, it is acts on
&' (8 1s the complex upper half-plane).

)

Assumption 1.2. The groups I'* := T'*(1) are torsion free forall A = 1, ..., h.

See [6], Lemma 7.1, for conditions under which Assumption 1.2 is verified. In
particular, there are infinitely many square-free integers for which TH(Ug(N)) is
torsion-free for all A. Under this assumption, for any @[F;“]-module E ., there is a
canonical isomorphism H*(I'*\&7, E) ~ H*(T*, E), where E is the coefficient
system associated to E. The technical Assumption 1.2 can probably be dispensed
with by employing the methods in [6], proof of Theorem 3.1, and [ 7], Proposition 3.1,
but we keep it to enlighten the notation and the arguments. See also §7.4 1n [3] for a
complete reference of this approach.

The aim of this work is to construct a cohomology class with coefficients in a
p-adic space that can be specialized to cohomology classes attached to cusp forms
in a Hida family. This is a generalization of a similar construction [4]. The main
difference here is that the Iwasawa algebra A in this case i1s isomorphic to a power
series ring in at least d + 1-variables over (7, while in the rational case it is just
isomorphic to a power series ring in one variable.

Remark 1.3. In 6] Hida constructs for each weight v as above an ordinary universal
Hecke algebra
Ry = by (U1(p™), 0)

such that each hn Ord(U (p%), ), where k is parallel to —2v, can be obtained as
a residue algebra of Ry. These Hecke algebras R, are endowed with a structure
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of @[[X,,..., Xs,]]-algebra. The Iwasawa algebra A considered here has d more
variables in order to unity these various Hecke algebras as v and the character € vary.

A consequence of the fact that the Iwasawa algebra considered here 1s bigger than
that in [4] is that the role played by the set of primitive vectors (Z?,)’ in [4] will be
played in this context by the p-adic space

X = NC\GLy(1p) zl{gS(p )"\ Sr

[#4

which has a greaterrank. Here NV is the standard lower unipotent subgroup of GL (1)
and C is the closure of e := S N F embedded diagonally in GL»(1p), where 1, :=
T @z ZLp. A similar p-adic space has been defined and studied in [2].

Remark 1.4. In order to justify the definition of X', we note that, in the case of [4],
there 1s a canonical bijection between the set of primitive vectors (Zi)’ and the inverse
limit lim IT'y (Np™)\I"'1(N ), so our definition of X seems to bea correct generalization
of the concept of primitive vectors used in [4]. We will clarify this point of view in
the following lines.

The action of the Hecke operators U, for prime ideals p | p on X is similar to
that considered in [2]. To describe X more precisely, for any prime ideal p | p of F,
let (‘rfJ Y denote the set of primitive vectors of 1'12), 1.e., the set of elements (x, y) € rfj
such that at least one of x and y does notbelong to p. Set (I‘i)’r = ]_[mp(r%)’. Denote

by e the closure of S M F*in v Then X can be identified via the map

y = (? 2) — ((a.b), det(y))

with é\((rﬁ)‘r x 1,,). Hence X may be viewed as an analogue of the primitive vectors
appearing in [4]. Elements of X will be denoted by ((x, ¥), 2).

Following [4], define [y to be the space of #-valued measures on X. This space
is endowed with A and A-algebra structures. Let X(5) be the Hilbert modular variety
associated to S and let Dy denote the local coetficient system on X(5) associated to

[y . We suppose from now on to the end of this section that
r=|dgl =1,

In particular, since d > 1, B is always a division algebra. Further, since we are also
assuming that B is unramified at all finite places, we have r = 0 if d is even and
r = 1ifd is odd. Finally, X(S) is always compact in this case. We define the space
of A-adic modular symbols in this context to be

W= H'(X(S), Dx) = H,(X(S), D)
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the r-th cohomology of X(S) with coefficients in Dy . It follows from Proposition 4.2
of [ 1] that this definition of A-adic modular symbols 1s consistent with the analogous
definition in [4]. The group W is endowed with a structure of A-module.

For any ring R, let L.(n, R) be the R-module of homogeneous polynomials in 2d
variables X = (Xy)gez, and ¥ = (Y, )ger of degree n, in X, ¥, Denote by y =
(? Z,) ¥ = (_dc _ab) the main involution of M3 (R) and define a right action of
GL2(R)on L(n, A), for any R-algebra A, by (P |y} X, Y) := det(y)" P((X, Y )y™),
where (X, Y )y ™ is matrix multiplication. Denote by L{n, v, A) the right representa-
tion of GL2(R) thus obtained. For any character € as above, write L(n, v, ¢, A) for
the Ag(m)-module L{n, v, A) with the action of Ag(n) twisted by ¢, that is, denoting
by | this new action: P .y = e(y) P |y for y € Ag(n).

For any arithmetic point ¥ of weight (#, v) and character ¢, define a specialization
map Ppoe: Dy — Li{n,v,¢e, K) by

o el i= [ €Y~ yX (e, 3.2),

where X the subset of X' consisting of elements ((x, y).z) such that x € 5. The
map P, induces a map on the cohomology groups which we again denote by the
same symbol

Prpe: W —= H(X(So(p*)), L(n,v,¢€, K)).

Here So( p%) is the level of the modular form f; associated to the arithmetic point &
and £(n,v, ¢, K) is the coefficient system on So(p¥) associated to L(n,v,¢). By
following [4] and [2], a corresponding control theorem for these specialization maps
is stated in Theorem 3.7 and proved in §3.7. More precisely, fix §: R — £ and an
arithmetic k: I — @p. Let Py be the kernel of 8, 1= k o 8 and K the image of 6,.
oet

Wy 1= H"(So(p%), L£(n, v, €, Ky)).

The map p, ,  extends to the localization Kp, of R at P, and one obtains a map
P W @p Rp, — W,

For any @[T (p)]-module M, let M°d denote its ordinary part, that is, the maximal
subspace of M on which the Hecke operator T'(p) acts as aunit. Let h: # —> R be
the natural map obtained by the action of Hecke operators on A-adic cusp forms. For
any arithmetic point &, let #, be the composition of # with the localization morphism
R — Rp,. For any K @p Rp,-module M, let M" denote the subset of M
consisting of those m € M such that (T(q) ® 1)m = (1 ® A (T(qg))) - m for all
prime ideals ¢ in r. If fi is a classical eigenform for an arithmetic point &, let

W/e = {¢ € We| To(q)g = aq()}
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denote the f,-eigenspace of W, where a,(g)1is the eigenvalue of the Ty(q ) operator
on f¢. Hence, p, induces a map

P (W @p Rp ) — Wi,

Theorem 1.5. Fix 8: R — Tandletk: I — @p be an arithmetic point of weight
(ne, Vi) and character €. Assume that Rp, is a regular local ving. Then the map

pet (W @a R )" [Pe(W @5 Rp)i — W/
is an isomorphism.

A more general statement taking into account the action of the complex conjuga-
tion on W and W, when r = 1 is given in Theorem 3.7.

Acknowledgments. This paper is part of the Ph.DD thesis of the first author. The first
author would like to sincerely thank his advisor Prof. F. Diamond for his help and
encouragement. Both authors would like to thank Prof. H. Darmon for suggesting
the problem and for his advice and support during their visits to McGill University.
Finally, we sincerely thank the referee for his careful reading of the manuscript and
for suggesting many valuable corrections and improvements.

2. Hida theory for totally real fields

2.1. Cusp forms over quaternion algebras. Let F be a totally real field of degree
d > 1 over () and denote by v its ring of integers. Denote by Fy the adele ring of F
and by F the ring of finite adeles. Let I denote the set of embeddings of ¥ into C.

Fix a quaternion algebra B /F which is unramified at all finite places of F, let
Ip < I be the set of archimedean places of F where B is split and denote by
r = |Ig| €1{0,...,d} its cardinality.

Let n,v € Z[I] be fixed weight vectors such that # + 2v = 0 mod Zt, where
t=(1,...,1)Ye Z[I]andletk :=n+2trandw ;= v+ k —¢. Let J C Ip and
for any 1 <= A < A(U), denote by Sk,w,J(F)“(U), B, ) the C-vector space of cusp
forms which are defined in [6], §2, and set

WD)

Sk (U, B,C) = [] Skw.s TV, B, C).
A=1

If B and B’ are quatemnion algebras over F unramified at all finite places, by [6],
Theorem 2.1, we know that then there exists an isomorphism

lU Sk,w,IB (U, Ba C) L} Sk,w,IBJ(Ua B"a <C)
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Also by [7], Theorem 2.2, there exists an 1somorphism between Sk ., 7(U, B, C) and
Stan,gg (U, B,C) for any J C Ip. These isomorphisms also commute with the
Hecke operators.

Let R be any maximal order in B. We fix an identification R=R®f= Mo(#)

where7 = r@7. For any 1deal u € v define the following open compact semigroups
of GL,(F):

Ao(m) := {(f 2) €GLy(F)NMa(®):c =0 (mod m)},

Ar(m) = {(? 2) € Ap(m) ca=1 (mod m)},
Uo(m) := {y € Ag(m) : det(yq) € v, for all prime ideals g < r},
Ur(ta) = Up(ru) M Ay (1),
U(m) := {(? 2) € Ur(m) : dy — 1 € mury for all prime ideals q | m}

Fix an ideal 1 € v, a rational prime p prime to 211 and an open compact subgroup
S € GLa(r)suchthat Ug(n) = S = Uj(n)andthe p-component S, of S is GL2(1p).
For any positive integer o, set

So(p®) = SN Ug(p™), S1(p¥) =S NU(p*), S(p¥):=SnUPp*).

Denote by T4 (p*) and T*(p¥) (respectively, I‘é(pa') and fél(p“); Ff(p“) and
I’f“(p“ )) the arithmetic groups associated as in (2) to S(p*) (respectively, So(p*);
S1(p* ).
When B = M,(F) we set
Stw(U,C) := Sg a1 (U, M3(F), C),
Sk (THUY, €)= Sgw, 1 (THU), My (F), C).

Any modular form f3 © ,S-',rc,w(I’)L (p%), C) has a Fourier expansion of the form

A@D =Y @ e,
fequb, &0
where the notation is as follows: g, is an ideal represented by the norm of g, b is
the different ideal of F/(), & > 0 if and only if, by definition, & is totally positive,
and (§-z) 1= 3 .7 0(§)z, is the scalar product. For details, see [6], Corollary 4.3,

2.2. Hecke operators. The right action on Sg 4, (S(p%), C) of the Hecke algebra
R(S(p™), Ao(nnp*)), which is by definition the free 7.-module generated by double
cosets

T(x):= S(p*)xS(p%)
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for x € Ag(np®) with multiplication defined by
D aT(x)- Y bT(y) =Y aib T(x;y;),
i j i,

can be described as follows. Fix x € Ag(np®)and 1 = A < h Letp € {1,...,h}
be such that det(x)fﬂ;l 1s trivial in the strict class group of F. Set x := ((1) tg )
Let oy be such that S(p®)xS(p*) = S(po‘)x;la;bx#,S(p“) and form the finite
disjoint coset decomposition I'; (p% o Iy (p%) = Zj Fh(p®)ay ;. where oy ; €
GL2(F) Nx3Ao(ip®)x,, ' Define

gu= ) filwa; and fIT(x):=(g1,...,8n)
J

Denote by F the composite field of all the images o (F) of F under the elements
o € [ and by 7 its ring of integers. Fix an r-algebra A4 < ©C such that for every
x € F¥and every o € I, the A-ideal x® A is generated by a single element of A4.
For any prime ideal g € v, choose a generator {g°} € A of the principal ideal g% A.
Define {q}" := [[,c7{a° 1. Write a fractional ideal mt of v as a product of prime
ideals mwu =[], ¢™@) and define {m}? = [, ({g}¥)"®) For any element x € Fx,
denote by 1, the fractional r-ideal corresponding to x and define {x}¥ 1= {m,}".
Modify the Hecke operators T'(x) € R(S(p%), Ao(rip®)) by setting

To(x) := ({det(x)}*) "' T(x).

Denote by Ag o (S(p%), A) the A-subalgebra of End (S ., (S(p%), C)) generated over
A by operators Tp(x) for x € Ag(np®). By [7], Proposition 1.1, Ag ., (S(p*%), 4) 1s
commutative.

Forany x € F andm = (my), € Z[I], set x™ = [[_; o(x)™. For any
integral ideal mt, choose A = A(m) such that 1 is equivalent to ty D in the strict ideal
class group of F and let &y € t3 0 be suchthat £y > Oand mt = & (1) D)L Define
the modified Fourier coefficients as in [6], Corollary 3.4:

Gy o NG

bv,k , B {(tlb)v}-

Now suppose that f € Sg., (S(p%),C) is an eigenform for A(S(p®¥), A) such that
C(v, f3) = 1 forall A = 1,...,4 (call such a form normalized). Then by [6],
Corollary 4.2,

Clm, f) =

ST () = Cu, f) [

The group G, 1= So(p* )1/ S(p¥)r™ acts on Sg , (S(p*), C) via the operator
a)(a;J“z“)*l T(x)for x = (f:’ g) < So(p%), where @ is the Teichmiller character
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For any prime ideal ¢ € 1, choose an element ¢ € ¥ such that g7 = § and
the [-component gy of ¢ is equal to 1 for all prime ideals [ € r, [ # g. Define
T(q) =T ((1) g)for allprimeidealsg € rand T(q,q) =T (g g) for prime ideals
G < rsuch that ¢ . By [7], Proposition 1.1, if S = Uy (n), then Ay ., (S(p®), A)
is generated over A by the operators induced from the action of Gy and To(g) for all
prime 1deals g.

If f is an eigenform for the Hecke algebra Ay ., (S(p%), 4), then its eigenval-
ues are algebraic numbers. If k& ~ ¢, then they are algebraic integers. Define
Sew(S(p*), 4) € Sk w(S(p¥), C) to be the A-module consisting of forms whose
Fourier expansion has coefficients in A. The A-module Sg ,,(S(p¥), A) is stable
under the action of Ay , (S(p%), A).

2.3. Nearly ordinary Hecke algebras. Choose an embedding ¢: Q — @p, 50 that
any algebraic number 1s equipped with a p-adic valuation. Fix a ring of integers
@ of a finite extension of the completion of ((F). After choosing an embedding
L @p < C, the T-algebra (7 satisfies the conditions of §2.2.

By Lemma 2.2 of [7], A (S(p%), @) is free of finite rank over ¢ and hence can
be decomposed as a direct sum

hiear(S(p%), 0) = BE2N(S(p™), 0) & B, (S(p%), ©)

such that the image of T(p) in the first factor, the nearly ordinary part, is a unit while
its image in the other factor 1s topologically nilpotent. For any pair of non-negative
integers B = o, the map To(x) — Tu(x) for x € Ag(np®) induces a surjective ring
homomorphism ,og : hk!w(S(p‘g), Q) = h  (S(p%), O). Define

hk,w(S(poo)s (9) = h<_mhk,w (S(pa)’ @)
and

B (S(p%), 0) = lim b BH(S(p), 0),

where the inverse limits are with respect to the maps pg . By [7], Theorem 2.3, for
any weight (K, w) there is an isomorphism Ag ,, (S(p°), @) == Ay, (S(p™), O)
which takes T(qg) to T(g) and T(q,q) to T(q,q) for all prime ideals g + p. This
isomorphism induces an isomorphism between the nearly ordinary parts

HESUS(r%), 0) = R = W3(8(p™), 0).

28,1

_ Set Sp =S 7 Sr(p*) = S(p*) N FX Zy = Srr*/SFE(p*)r’ and
Zss = LiEZd_ By [7], Lemma 2.1, the map (‘; 2) > (a;ldp,a) induces an

isomorphism Gy =~ (1/ p*)* x Z4 and hence an isomorphism

G = lim Gy S % Lo
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Since Ay, (S(p%), @) 1s an O[G,]-algebra and this algebra structure is compatible
with the maps pg, it follows that hz:%d(S(poo), M isa A= O||G]]-algebra. Write
G =~ W x G" where G®® is the torsion subgroup of G and W is torsion-free.
Note that W is well determined only up to isomorphism; fix from now on a choice
of W. Thering A := O[W] is isomorphic to the power series ring @[ X1, ..., X;]
ind < s < 2d variables. If Leopoldt’s conjecture holds, then s = d + 1. By
[7], Theorem 2.4, the nearly ordinary Hecke algebra R = hgfﬁd(S(poo), ©?)is a
torsion-free A-module of finite type.

For any finite-order character €: So(p%)/S1(p%) — Q, define characters
€3° I‘é“(p“)/ I‘f“(p“’) — C* by setting €,(y) := G(I;le/l;b). Denote by

Sk,w (SO(pa)s €, CC)

the C-subspace of S 4, (S(p¥), C) consisting of forms f = (f1...., f3) such that

forany A = 1,...,h and any y < Fé“(p“), (faly)z) = GIl(j/)f(Z). Suppose
that (? contains the values of € and set Sg ., (So(p*), €, @) := Sk (So(p¥),e,C) 1N
Sk 0 (S(p*), @). Denote by

e (So(p*), €, 9)

the (-subalgebra of End(Sg ., (So (p“), ¢, ) generated over (? by operators Tp(x)
for x € Ag(np¥). Finally define hn 1oi T (So(p¥), €, @) to be the maximal factor of
hiw(So(p*),€,0) such that the 1 1mage of To(p) is a unit in that factor. (In the
following the €3 ’s will often be simply denoted by €).

Definition 2.1. An eigenform f € S ,,(So(p%), €, C) for the Hecke algebra

hk,w(s(pw)a A)

is said to be p-nearly ordinary if the eigenvalue of To(p) is a p-adic unit.

Denote by 17} the group of totally positive units of . Define
Zy = Sery /SE(p*)r}

At Ly 152 1{@ Z,. The kernel of the natural surjection map Zo, — Zo is finite and

annihilated by a power of 2. Denote by Ycye: Zoo — Z;,( the cyclotomic character
defined by yeye(x) = x* = [[,c; 0(x) = N(x). Let¢: Z oo — O be a character
factoring through Z,. Suppose that ¢ x?;gz"’ factors through Z o, where if n + 2v =
mt with m € 7, then ){”+2“' is by definition yg.. Let

Paw,e: G r; K L sa —> BF
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be the character defined by P, (a,2) = ej{gytz"’(z)a”. Denote by the same

symbol the homomorphism A — @ induced from Pr v by extension of scalars.
The kernel of this homomorphism is a prime 1deal of 12 denoted be the same symbol
Py v.e. To simplify notation, set P := Pp .. Let Ap (respectively, Rp) denote
the localization of A (respectively, R) in P. Then Rp 1s free of finite rank over
Ap and the natural surjective morphism R — fig , (So(p%), €, @) induces by [7],
Theorem 2.4, an 1somorphism

Rp/PRp = by (So(p¥), €, K), 3)

where K := Frac() is the fraction field of (. In particular, the dimension of the
K-vector space Ay, (So(p*), €, K) does not depend on € and (£, w) and 1s equal to
the A p-rank of Rp.

Let &£ := Frac(A) be the fraction field of A and fix an algebraic closure £ of £.
Let §: R — ¥ bea A-algebra homomorphism. The image Im (&) of @ is finite over
A. Denote by 7 the integral closure of Im(&) in the fraction field X := Frac(Im(8)).
Define

X(I) = Homg _ae(I, Qp)

and denote by 4(T) the subset of k € X (I) consisting of points whose restriction
to A coincides with the restriction to A of some character Py (), 5(0),e(¢) @5 above.
Points in A(Z) are called arithmetic. In this case, set k(k) = n(k) — 2r and
wik) = k(k) +v(k)—r. Let C(k) denote the conductor of ¢ restricted to the torsion
free part W of Zm and ep the restriction of € to W. Let Z},‘gs denote the maximal
torsion subgroup of Z s and let - ng — &£ be the composite of # with the natural
map Zggs — R induced by the action of & on R. Denote by r;tors the maximal
torsion subgroup of r;(. For any k € X (1), define

0 :=Kkob: R— Q,.

By [7], Corollary 2.5, if k. € A(Z) and € restricted to r;ftors is the character x > x?®),
then 8, (T'(q)) are algebraic numbers for all prime ideals g and there exists a p-nearly
ordinary eigenform

I € Sk(x),w(;c)(UO(HC(K)),ewww—(n(x)—&—Zv(x)),@)

(unique up to multiplication by constants) such that f.|T(q) = 6.(T(q)) fx, where
@ 1s the Teichmiller character and if n(k) + 2v(k) = mt with m € Z, then
- rW+20E) . =M Conversely, if @ > 0 and f € Sew(Ui(mp¥),C)is a
p-nearly ordinary eigenform, then there exists £ € A4( 1) and 8 as above such that f
is a constant multiple of fi.
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3. A-adic modular symbols

3.1. Classical modular symbols. Fix a quaternion algebra B /F which is unram-
ified at all finite places and denote by r € {0,...,d} the number of archimedean
places where B is split. Define the modular variety associated to an open compact

subgroup U of B to be the complex variety
X(U):=UC +'\Ga/Ga.
By strong approximation,

N¢4p)
Xy~ | rrunse'.
A=1

Suppose that E is a (right or left) @ [[*(U)]-module for all A. Denote by & the
coefficient system on X(U) associated to £. Then

R(U) A(l)
H (X(U), &) = P H THUNS. &) =~ @ H THU), E).
A=1 A=1

For any @ € H'(X(U), &), write o for its projection to H’ (T*(U)\$", &).

Definition 3.1. The group of modular symbols on X(U) associated to E is the group
H (X(U), &) of cohomology with compact support.

Suppose that E is a right ) Ag (np“)r;l M G g for all A. Define an action of the
Hecke algebra R(S(p®), Ao(nip%)) by the formula

@A) T(x) = wu(oa,;2)|es,; € H (THPNS', €)
i

(same notation as in §2.2). Equivalently, identifying wj; with a d-cocycle by the
above isomorphism, 7'(x) can be defined as in [2] by the formula

@I X Yor - va) = D a5 (Vo) 1;(Va ) a, s
J

where the mappings ¢;: I'*(p%) — T'*(p%) are defined for y = T#(p¥) by the
equations 'yery ;¥ = oy rand ey ;v = £ (y)ay ;. The group of modular symbols
H (X(S(p™)), €) 1s an R(S(p¥), Aop(rp®))-module if E is.

If r = 1, the modular symbol w( f') associated to f € Sg 4 71, (S(p*), B, C) can
be described as follows. Foranyring R, let L(n, R) bethe R-module of homogeneous
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polynomials in 2r variables X = (X )gez,and Y = (¥, )oey of degree n, in X, ¥y
Recall that ¥ + y* denotes the main involution of Mz (R) and define a right action
of GLo(F) on L(n,C) by

(PIy)(X,Y) = det(y)" P((X,Y)y")

where (X, Y)y* is matrix multiplication and the usual multi-index notation is used.
Denote by L(n, v, C) the right representation of B obtained composing the above
action with the injection B> == GL,(F)". The differential form

o(f)(z) = f2)zX + Y)Y 2dz

(usual multi-index notation) satisfies the transformation formula for any y € [ (%)

(@SN EDY = e(f1)(2).

Hence, by [11], @(fy) € H"(T*(p)\H?, £(n,v, T)), where £(n,v,T) is the
coefficient system on T (p®)\$7 associated to L(n,v,C). If B = M>(F), since
/i 1sacusp form, it can be proved that w( fj, ) has compact support. Hence, we always
have

o(f) = (@(A), ..., (i) € Hy(X(S(p™), £(n,v,C)).

For any character € as above, write L(n, v, €, R) for the Ag(n)-module L(n, v, R)
with the action of Ag(m) twisted by ¢, that i1s, denoting by |, this new action:
Pley = e(y)Ply for y € Ag(n). If f; € Spw(So(p¥),€,C), then w(fy) €
H"(Fé(p“), L(n,v,¢,C)), where £(n, v, ¢, C) is the coefficient system associated
to L(n,v,¢e,C). Hence

w( f) € H&,t(X(So(Pw)), L(n,v,¢,C)).

A straightforward calculation shows that the map f — @(f) is equivariant for
the action of R(S{(p%), Ao(up®)).

3.2. A-adic modular symbols. We assume in this section that ¥ < 1, so that B is
a division algebra. Recall also that B is assumed to be unramified at all finite places
of F.

Definee = eg »= 8 AF*. Then Z, = (1,/p1,)"/e, 50 G = 15 x 15[,
where € is the closure of e in v, It follows that G =~ (v, x 1,)/€ via the map
(x,¥) — (xy,y). Embed diagonally ¢ in GL,(r,) and call C the image. Let N be

the standard lower unipotent subgroup of GL2(rp). Define the sets
X = Bp " 8y” and X i= LiEXQ,.

To describe these sets, let N, = (“C’ f;',) € GL,(rp) besuchthata,d = 1 mod p* and
¢ = 0mod p*. We have a surjective map S(p%)\S — X, Note that S(p*)\S =
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Ny \GL2 (1)), and that the kernel of the above map is Ny \ N, 7, so we have a bijection
of sets Np1r™\GL2(1p)—X,. Finally, since NC is the closure of NNy t™ in 1p, we
see that X is canonically identified with NC\GL(1,).

Let Fp = F @ Qp =[], Foand ¥ = N(FP)C\GLQ(F ), where N(F,)
is the group of lower triangular matrices with entries in /7, and diagonal entries 1.
Write 1, = ]_[p|p Tp, where 1y 1s the completion of v at p. Deﬁne (rz)' to be the set
of primitive vectors of 1'12), that is, the pairs of elements (a, b) < rf, such that at least

one of @ and & does not belong to p. Set (rﬁ)’ = ]_[p‘p(r;‘;)’. The map

- (? 2) — ((a,b), det(g))

defines a bijection between X and e\((r )’ x 1), where the action of e € & is
e ((x,y),2) = ((ex,ey),e’z).

Define 7y, to be the element in GLQ(F) whose p-component 1s (0 p) and 1s 1
outside p. Notethat 77y normalizes N(Fp) =[], /1p N(Fp ) because ((1) g )normalizes
N(Fy). Hence, it 1s possible to define an action of 7, on Y by letting 7, act on its

P-component as
N(Fyp)g = mp = N(Fp)ﬂp_lgﬂp-

Identify ¥ with E‘\((Fz)’ x F,), where (Fz)’ = {(x,y) € sz 1 xy # 0} via the
map y = ( ) — ((a, b),det(y)). Then

((x, y).2) x7p = ((X,py), 2),

where for any y = [],/, Ve, write Yy 1= [, przp Yo X D¥p. In particular, mp
does not affect the determinant of the matrix.

Let G™ be the semigroup generated by GL(r,) and my, for all divisors p of p.
Using that any element 5 € G” can be expressed as a word in terms of GL2(1r,) and
7y, and that the actions of the m,’s commute, extend the * action to G™ by letting
any 7y act through * and elements of GL2(1p) through right multiplication, so that

N(Fy)gxs = N(Fp)l_[np_c(p)gs
vl

for any N(Fp)g € Y and s € G7, where c(p) is the number of times mp appears in
the expression of 5. Since this number does not depend on the specific expression we
chose, the action of G™ on Y 1s well defined.

Let Y7 denote the smallest subset of ¥ containing X and being stable under
G”. Define Dy (respectively, [y ) to be the -module of @ -valued measures on
X (respectively, on ¥Y'). For y € G* and p € Dy, define i * ¥ by the integration
formula

[ o) * ) (@) = [ o (1% V)dp ),
Y/ Y/
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where ¢ is any Cp-valued step function on Y'. Denote by Dy N [}y the canonical

inclusion defined by extending measures by zero and by [y & [Ix the canonical
projection map. If 4 € [l and s € G7, define

poxs = p(i(p) =s).

Since by [2], Lemma 3.1, the kernel of p is stable under G™, the action is well defined.
By the choice of 13, in §2, T*(p¥) C GL2(rp) for all A. Hence, Dy is a right
O[T (p™)]-module for all A. Denote by Dy the coefficient system associated to Dy
and set
W .= H"(X(S), Dyx).

Remark 3.2. Since SO(IR) 1s compact and isomorphic to the unit circle C1 and the
T'* are discrete, the stabilizer (I‘)“)zO of any element zg € £ is a finite cyclic group.
Since the groups T'* are torsion-free, it follows that if ¥ € T'* stabilizes an element

Zp € §, then y belongs to the center of I'* and hence acts trivially on Dy. It follows
that the sheaf Dy 1s well defined.

Lemma 3.3. Let Z be a topological space that is an inverse limit of finite discrete
topological spaces Zy for o in some indexing set. Then the space of O-valued
measures on Z is isomorphic to limFns(Zy, @) where Fns(Zy, @) = 9%« is the

space of continuous () -valued functions on Z.

Proof Tf ¢ € LiEFns(ZQ,, ), then g can be written as a compatible sequence of
the form {erza Ay - X}y Let py: Z — Z4 be the natural projection map and for

gach x € Zy set Uy — pgl(x). Then this is 1somorphic to the space of ?-valued
measures on Z by the map

¢ — @ such that w(U, ) = a,. (4)
This defines a measure due to the compatibility of the sequence. ]

For each o, let py: X(S(p%)) — X(S). Let ¥y = pax@ be the direct image of
the constant sheal @ on X(S). Fix a point x € X(S) and define ¥, = Yy x to be
the fiber p, L(x) of x under p,. By Lemma 3.3, llm ¥ is the space of ?-valued

measures on the space hm Y. Now, for the double coset GL2(F)xSSeo in X(S),
there 1s a natural map

S(PENS = S(p*)p\GLa(1p) — Yo

given by
S(p*)pz — S(Pp¥)SecxzGL(F).
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This map induces a bijection from S{(p* 1™ M S S )\GL2(1p) to ¥, Hence the
inverse limit hﬁ Y, can be identified with N C\GL2(1p) which is finally identified
with X

Lemma 3.4. The sheaves Dy and h£ Fy on X(S) are isomorphic.
14

Proof Let U € X(S) be an open set. For each ¢ and w € ¥, let X, ,, C X be
the inverse image of w under the natural projection map X — Y,. Letu ¢ U,
then choose x € GL,(Fj4) such that u = SSxGL,(F). Ifs ¢ Dy(U) s a
section in Dy, we can express S(¥) = S Seo(x, w(x))GL2(F) for some p € Dy,
depending on s. In fact, since s 1s a locally constant section, this expression 1s valid
in a neighborhood U}, of #. Then define a map:

oxy 0wy = 0@ )

g — U ey, ROOXew)-

This map is independent of the choice of x since a different representative x’ of the
double coset # would yield the same measure p(x) because s is a section on X(.5).
The compatible maps ¢, then give rise to a map

¢U): DxU) — (lim F )(U).

At the level of the stalks this map is the isomorphism in (4). It follows that ¢ is an
isomorphism of sheaves. ]

Proposition 3.5. WWe have a canonical isomorphism
T r o
W = lim H' (X(S(p%)). 0).

Proof. It r = 0 the result is obvious so we can assume that ¥ = 1. We know from
Lemma 3.4 and Theorem 4.5 in [5] that there 1s a short exact sequence

0 — tm™{HX(S(p*)), @)} — W — lim H'(X(S(p*)), @) — 0.

So weneed to show that the kernel is zero. Let Hy = H(X(S(p")), @) and we know
that H, =  HY(T*(p¥), @). The action of T*(p®) on @ is trivial, so the zeroth
cohomology group is just @. Hence if @ > f, the transition map p,pg: Hy — Hg
in the inverse system {H } is just the inflation map and is given by multiplication by
[T*(p#) : T*(p®)] in the A-th component. If we fix § then the filtration given by
images of Hy in Hg, for o = B, stabilizes if p does not divide the indices above and
is a sub-filtration of @ 2 7@ O 7% --- otherwise. In the first case {H, } satisfies
the Mittag-I.effler condition and in the second case (7 1s complete under the filtration.
Hence from [5], Corollary 4.3, in the first case and [5], Proposition 4.2, in the second
case, the first derived functor of the inverse limit is O in either case. U]
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Since r;LAO(n)r)L_l NGg € GT forall A = 1,...,4, it follows that W is an
Ro(S, Ag(n)) := Oz R(S, Ag(r))-module. Let G acton X by left multiplication.
Define G’ to be the multiplicative subset of (1 X 1) /1 consisting of pairs of elements
(x, y) such that x and y are prime to p. The map (a,d) — a)(a;+2”)_1T (‘5 3)
for (a,d) € G’ considered in §2.2 is multiplicative, hence extends to an (-algebra
homomorphism @[G'] — Re (S, Ag(r)). On the other hand, G’ € G, hence @[G']
embeds naturally in A= @||G]]. Form the ;{—algebra

¥ = Ro(S, Ap(m) @oi61 A

Since the action of G’ on W extends to a continuous action of G, it follows that W
is an J#¢-module.

From the fact that hy; ;(S(p%), @) is generated over @ by T'(q) for all prime
ideals g and those operators coming from the action of Gy, it follows that there are
surjective homomorphisms of K-algebras H — hyy (S(p™), O)and X — R.

Define a subset X' of X as follows:

X=x=Ne{?5)e X |aer]. (5)
Itis easy to check that the definition does not depend on the choice of the representative
matrix used to define it and that X’ can be identified with the set &\(v; x 1, x 1)
under the above identification between X and é\((rﬁ)’ ¥ 1‘;). From now on denote
elements of X by ((x, y), z), where (x, y) is the first row of the matrix and z is its
determinant.

Let P, ; . be an arithmetic point of weight (n, v) and character ¢ factoring through
Zy. Define the specialization map pp . Dx — L(n,v,¢,0)at P by

B Pl = [ Y - X0t 3.2)
Suppose that the conductor of ¢ 1s p* for some non-negative integer &. A simple
computation shows that

Prue(p* V) = Prve(it)ey

for y € GLa(rp) N Ag(p®). Itfollows that the specialization map gp, 5  is GLo (1) 1
Ap(p¥)-equivariant. Letting K := Frac((?), thereare GL2 (1) Aq(p*)-equivariant
maps

Pnve. W — Wy o= H(X(S(P*)), L£(n,v,¢,3)).

Proposition 3.6, Let & ¢ W.
(1) For any prime ideal G of v prime to p we have

Prw, (P * T(3)) = (Pnw, (PNIT ().
(2) Pnw.e(PxT(P)) = (Pnv.(P)|To(p).
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Proof. The equivariance for the action of Hecke operators 7(q) in the first statement
1s immediate because of the GL2 (1) M Ag(p*)-equivariance of pp y,c. It remains to
check the action of T'(p). To see this, write [*# % = 1, Flagst and note that

@ = Tolp) = [T 2Y —3X)" d(® 4 )
:
= ‘/X; Zz”’e(x)(xY X)) d(z ' day )

=30 | e (Y — yX) s d(@)
X."
i3

= Pn.e(P)To(p).

This proves the second formula. (]

Note that
h
W = l_[ W4, where W4 = H'(I'*\&", Dy),
A=1
and

nU,c

h
Woue =[] Wi, where W, = H TH(p"\&", £(n.v,¢, K)).
A=1

Any element & € W will bewritten as (® ), —;,... » while any elementof w € W, 5 ¢
will be denoted as (wx)3—1.....» Define

Pibpve = Pnae(Pr) € Wriv,e' (6)

3.3. TheControl Theorem. Inthissectionwe will state and prove a control theorem
for W. We will assume throughout this section that ¥ < 1, so that B is a division
algebra; also recall that B is assumed to be unramified at all finite places.

Fix 6: R — ¥ (where £ = Frac(A)) and denote as in §2.3 by I the integral
closure of A in Im(€&). Recall the specialization map

O i=kof: R —Q,p

which corresponds to an eigenform f,. Let Py be the kernel of 8, Set

h
W= [[ W2 with W2 = BT (T NS, L(n,v,€, Ko)),
A=1
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where
K := fraction field of the image of 6.

The map 0, extends to the localization Rp, of R at P, and one can intertwine 0,
with the map p, defining
Pe: W x Rp, —> W, (7

by
S Byxra— Y pe(D2) Oel(rn).
A A

This 1s well defined because, if g belongs to the free part W of (¢ and is represented
by the matrix ('g v ) € GL2(1p), then we have for u € Dy that

Pe(g1) = P (8)Pi (1)

Since pe(@Pg,r) = pe(¢p, gr) for g € W and by continuity the same is true for any
element in A, the map (7) induces a homomorphism

Pic W N ﬂPK e Wx

which 1s Hecke-equivariant.

For any J¢-module M, let M°9 denote its ordinary part, that is, the maximal
subspace of M on which the T(p) operator acts as a unit. Let A: X — R be the
natural map obtained by the action of Hecke operators on A-adic cusp forms. For
any arithmetic point «, let 2, be the composition of # with the localization morphism
R — Rp,. Forany # @ Rp -module M, let

MM = {m e M | (T(q) @ m = (1 ® he(T(q))) - m for all prime ideals g in T}

denote the A, -eigenspace of M. If f. is a classical eigenform for an arithmetic
point £, let

WS = {p € Wy | To(a)p = ag(2)}

denote the f,-eigenspace of W, where a4(g)is the eigenvalue of the Ty(q ) operator
on f.. Hence, there is a map

Pt (W @p Rp )ie — Wi,

In the case r = 1 we also have an action of complex conjugation T on X(S{(p%)).
The action of 7 corresponds to the action on X (5 ( p¥)) deduced from the function z +—
—Z on the complex upper half-plane $ by the canonical projection & — X(S(p%))
(here z 1s the complex conjugate of z). For any module M over which 7 acts and for
each sgn € {+1}, let M*¥ denote the sgn-eigenmodule of M for the action of 7.

We are now ready to state our main theorem. We need to make the assumption that
the generators of Py areregular in Rp, or equivalently, since R p_ 1s a local ring, that
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R p, 1sregular. This conditionisa generalization of the notion of primitive eigenforms
to the nearly ordinary setting. See Remark 3.8 for a more precise discussion of this
1ssue.

Theorem 3.7 (Control Theorem). Let & € A(1) be an arithmetic point of weight
(N, V) and character €,. Assume that Rp, is a regular local ring. Then the map

P (W @4 Rp )™ [Pe(W @a Rp )™ — W
is an isomorphism. If r = 1, then for each sgn € {£ 1} we also have an isomorphism

pe: (W @4 Rp )18/ P(W @4 Rp, )it s Wies,

Remark 3.8. As mentioned before Theorem 3.7, the condition that Rp, 1s a regular
local ring 1s a suitable generalization of the concept of primitive eigenforms in the
nearly ordinary setting. To be more precise, note that, since P, 1s generated by a
regular sequencein A, then P, 1s generated by aregular sequence in X if the extension
of local rings Rp, /Ap, , . is unramified. In the case F = (), the assumption that
£ is a primitive form implies that the corresponding prime Py is unramified over
Py 0.c (recall that in the rational case one always has v — 0). Similar conditions are
also true in the case of families of Hilbert modular forms of parallel weight thanks to
[13], §12.7.7. As an alternative choice of P, one could consider the reduced Hecke
algebra R™ generated by operators 7(q) and T(q,q) for primes g } pu. Then
R Pn!vseﬂred is a local factor of a product of fields by the semisimplicity of JRred
and Hida’s control theorem. So it is a field and ﬂ‘;ﬁ 1s a regular ring. The primes
of R containing the Hecke operators dividing the tame level thus verify the property
required in Theorem 3.7.

The proof of this theorem will be given in §3.7. Before explaining the proof, we
need some preliminary results, stated in §§3.4, 3.5 and 3.6.

3.4. Freeness of W. Recall that we are assuming in this section that r =< 1, so that
B 1s a division algebra. We start by providing a different description of W. Define

Ve 1= HTX(S(P9)), K/O), Voo i= lim Vi,

V¥ = Homg(Vy, K/@), VI :=Homg(Ve, K/0),

where the direct limit is computed with respect to the projection maps X(.5( p’g ) —
X(S(p*)) tor B > a. The Hecke algebras fig ,, (So(p™), €, ) defined in §2.3 can
be equivalently introduced as 11<_mh}C w(So(p¥), €, 09), where hl  (So(p¥),€,0) is

(4
the image in Endg(H"(X(S(p*)), £(n,v, ¢, K/?)) of the algebra generated over
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(2 by the Hecke operators; the same observation holds for the ordinary parts: see [8],

§3, for details.
By Lemma 3 4,

W = H(X(S), Dx) = H'(X(S),lim #7).

Since
H'(X(S), Fo) = H (X(S), pas0) = H (X(S(p™)), 0),

there 1s an isomorphism

W = lim H' (X(S(p"), 0).

o

By Poincaré duality:
HY(X(S(p), 0) =~ H (X(S(p*)), 0).
By Pontryagin duality there is a canonical isomorphism:
Homo(H"(X(S(p*)), K/0), K/O) = H,(X(S(p")), 0),
where K := Frac(©). Since

Voo = lim H"(X(S(p)). K/0)

(14

there 1s an isomorphism

Homgg(li_}de(X(S(p“)), K/O0),K/O) ==V,

24

By composing the maps (8), (9), (10), (11), we get an 1somorphism

W =5 V.

(8)

©)

(10)

(11)

(12)

The isomorphism (12) is equivariant for the action of the Hecke operators and, if

r = 1, also for the action of the complex conjugation t.

Proposition 3.9. The group W of ordinary A-adic modular symbolsis a A-module

free of finite rank.

Proof. This follows from Proposition 3.5 and [7], Theorem 3.8, in light of (12).

]
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3.5. Description of Ker{p, )
Proposition 3.10. The kernel of pp v . is equal to PH,U,EW"M.

Proof. This result 1s Theorem 5.1 in [2], so only a sketch of the proof will be given.

Recall that a cocycle in H9(T*, Dy) is represented by the class of an element
in Hompa (F,, Dy ), where F, is a projective resolution of 7, over Z|T*] by right
T'*_modules. Let go(m) denote the characteristic functions of 7Y, for m = 0 an
integer.

We first prove that Ker(pp v ) 2 Pn,v:GW"rd. Let & = PR,U,GW"‘"‘] and write
b = (D1,..., D). Fix A and represent $, by a cocycle z as above. It follows
from [2], Lemma 6.3, that [ @™Mdz(f) =0forall f e Fi“ and all characteristic

functions go(m). Since the function
((x, ), 2) — €(x)z°(xY — yXye

appearing in the specialization map ppn v, can be written as a uniform limit of functions
@™ the inclusion follows.

Now we show that Ker(pp,v,e) < PH,UEEW"”. Let ¢ € HomfA(Fé“,DX) and
choose & such that ¢ = T'(p™)b: this is possible because 7'(p) induces an iso-
morphism on W% and, since p is a principal ideal of 1, the T'(p) operator pre-
serves each of the cohomology groups H' (T4, Dy). Set # = (1 0 ) Write

op
TAgmd — 11, I‘)“oc;LJ and y; ; '= 7™y ;. By [2], Lemma 6.1,
fX e () de(N)) = 3 fX 0 (y x ay NAB(S YD),
t
Since X, N X xay ; = Oforay  # 1 by [2]. Lemma 6.6, the above sum is equal to

[ anryiho = @i = o

From [2], Lemma 6.3, if follows that b takes values in Pp 4 Dx. Hence, b belongs to
the image of I_{"(I’)“, By wellwkin H7(T?, Dx) which, by [2], Lemma 1.2, is equal
to PpycH'(T*, Dy). O

3.6. Dimension bounds. We retain the notation and assumptions from previous
sections, so r = 1 and B is a division algebra. Let P, be an arithmetic point such that
Rp, 1s aregular local ring. Let R p, denote the localization of R at Py. Set Kp, =
Frac(Rp, ). Let V;':;ord denote the ordinary submodule of V. For any arithmetic
character Py, , . which factors through R p, , set V;;?;ln,v,é = V:c;"rd Rn Rpyp e

Proposition 3.11. The Rp, ,  -module "V:(;O;ln o is free of vank 27, Ifr = 1 then
for each sgn € {£1}, its spn-eigenmodule is free of rank one.
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Proof. Since Rp, . . is a flat extension of Ap, . and V%o is free of finite rank,
A1 *,0rd -
OO,PH,U,

If r = Odefine V = ’V:;?;in,v,é. If r = 1 then ’V:(f;in,v,e splits into the direct
sum of two submodules

say s, over A, it follows that V _ 1s free of rank 5 over Rp, , ..

pred ooV (13)

OO,Pn,v,e

such that the complex conjugation 7 acts on Vi as +; in this case, let IV denote one
of the two modules V. By [7], §4, p. 187, there 1s an isomorphism

V/Puy,eV b3 (So(p¥), €, K).

By (3), hg?ﬂ (So(p™).€, K) is free of rank one over Rp, , ./ Ppy.Rp, , .. Thus
ViPrnweV = Rpy o/ PryeRpyy e

So the R, 4 -rank of 1 1s one and the result follows. L]

Corollary 3.12. The h-eigenspace of Wy @5 Kp, has dimension at least 2" over
Kp

P

Proof. Asinthe proof of Proposition3.11, let V' := gy . ifr =0and V' 1= Vg

OO,P}Q‘U,

forsgn € {£1}if r = 1, where Vi, is defined in (13). Set
Ve =V ®rp, . Rpe-
We have an Hecke-equivariant map of finite dimensional JCp,_-vector spaces
We @ Kp, —> Vi Qnrp, Kby

If r = 1, this map 1s also equivariant for the action of complex conjugation z. Since
J is commutative if r = 0 (respectively, &[] if ¥ = 1) and the A -eigenspace
of Ve @m - K p, 18 non-trivial, being of dimension 1 over K p_, it follows that the
hi-eigenspace (respectively, the (A, sgn)-eigenspace) in We @5 K p,_ 1s non-zero
too (for this linear algebra argument, see Lemma 5.10 in [15]). This concludes the
proof in both cases. L]

3.7. Proof of the Control Theorem. Before proving Theorem 3.7, recall the fol-
lowing lemma. Let I := Ker(#) be the kernel of the canonical map b: J# — R.

Lemma 3.13. et M be an # -module and P be an ideal in A. Suppose that P is
generated by an M -regular sequence (xy, . .., x;). Then the image of the map

fa: Bxt®, (0 /1y, PM) —> Bxt®, (/1. M)

induced by the inclusion i : PM — M is equal to PExty, (¥ /I, M).
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Proof. The proof of this lemma 1s a slight modification of that of [2], Lemma 1.2,
and will be omitted. L]

Remark 3.14. In order to apply this lemma in the proof of the main theorem, we
first note that for any R p, -module M with an # -action, the Hecke eigenspace M huc
is equal to Hom g (R p,, M) and hence to Extge (R, M). Since we assume that the
generators of P, form a regular sequence in R p_, it follows that they form a regular
sequence for M = W ® Rp, since it is free over Rp, .

Proof of Theorem 3.7. The proof of the Control Theorem follows [4] and can be
described as follows. Recall that we have to show that for each primitive arithmetic
point & of weight (#(x), v(k)) and character €(x) the map

P (W @4 Rp )™ /PA(W @p Rp Y — W,

1s an 1somorphism.

Since £,(T(p)) is a unit in R, the module (W @A Rp, Y is contained in the
ordinary part Word & 4 Rp,. Since, by Proposition 3.10, word o 4 Ap, 1s a free
A p -module of finite rank, it follows that Weord & Rp, 1s a free Rp -module of
finite rank. By Proposition 3.10 and the fact that Rp, 1s free over Ap,, it follows
that the kernel of the map W4 @ 5 Rp, — Wgrd s Po(W @4 ﬂp,{)ord. This is the
same as Po(W ®a Rp, )" by Lemma 3.13 and the remark following it. Hence, we
get an injective map

(W @A Rp, Y™ /PAW @4 Rp, )k Wk,

Since fo * 1s 2"-dimensional, to prove the surjectivity of the map it suffices to
show that (W ® 4 &QPK)‘P"c has R p, -rank at least 2”. Recall that by Corollary 3.12
the he-eigenspace of Wy @z Kp, has dimension 2" over Kp, . The intersection of
this eigenspace with W @4 Rp, is a Rp, -submodule of (W @4 :Rp,c)h‘6 of rank
2" The surjectivity of the above map follows.

Finally, in the case r = 1, since the specialization map commutes with the action
of the complex conjugations, we deduce the statement on eigenspaces. ]
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