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Asymptotic concordance invariants for ergodic vector fields

Sebastian Baader

Abstract. We study the asymptotics of a family of link invariants on the orbits of a smooth
volume-preserving ergodic vector field on a compact domain of the 3-space. These invariants,
called linear saddle invariants, include many concordance invariants and generate an infinite-
dimensional vector space of link invariants. In contrast, the vector space of asymptotic linear
saddle invariants is 1-dimensional, generated by the asymptotic signature. We also determine
the asymptotic slice genus and relate it to the asymptotic signature.

Mathematics Subject Classification (2010). 57M27, 37A05.
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1. Introduction

A smooth vector field X on a domain G C R3 produces a foliation with singularities,
viaits flow lines. The closed non-singular leaves of this foliation are embedded circles
in R? and can be studied from a knot theoretical viewpoint. However, not all vector
fields have periodic orbits, not even on compact domains. In this case we can still try
to study the asymptotical knotting of flow lines. For example, it makes sense to speak
of the asymptotic linking number of pairs of orbits of a smooth volume-preserving
vector field on a homology sphere [2]. Another knot invariant, the signature, was
studied by Gambaudo and Ghys in [6]. They proved the existence of an asymptotic
signature invariant for orbits of a smooth volume-preserving vector field on a compact
domain of R? and related it to the asymptotic linking number. Recently we could
prove the existence of an asymptotic Rasmussen invariant [3]. Both the signature and
Rasmussen’s invariant are so-called concordance invariants. In this note we will study
the asymptotics for a family of invariants including many concordance invariants.

Definition. A link invariant ¢ with values in R is a linear saddle invariant, if it
satisfies the following two conditions:

i) additivity under disjoint union of links: (L, U L,) = 7(Ly) + t(L2);
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ii) if two oriented links L1, L5 are related by a saddle point move, then [7(Lq) —
(L,y)| < C¢, where C; > 0 is a constant not depending on Ly, L.

Here a saddle point move 1s a local move that acts on link diagrams as shown in
Figure 1.

> ~_

TN

Figure 1. Saddle point move.

Before stating our main result, we have to explain in which sense we want to study
asymptotic flow lines: let X be a smooth volume-preserving ergodic vector field on
a compact domain G ¢ R? with smooth boundary. We assume that X is tangent to
the boundary dG and has only isolated singularities of Morse type, i.e., singularities
corresponding to critical points of a Morse function on R3. The ergodicity of X
means that every measurable function on G which is constant on flow lines of X is
constant almost everywhere. Let x € G be a non-periodic point of the flow of X,
in particular X(x) # 0. For every T > O there is a piece of flow line starting at x
and ending at ¢x (T, x), where ¢y : R x G — G denotes the flow of X. We define a
subset K (T, x)  R? as the union of this piece of flow line and the geodesic segment
joining x and ¢y (T, x) in R3. For almost all x € G, T > 0, the subset K(T,x) is
actually an embedded circle, 1.e. a knot in R3 (see [6], [12]).

Theorem 1. Let T be a linear saddle invariant with values in R. Foralmostall x € G
the limit

1
#X. %) = Th_r)r;o ﬁr(K(T,x)) eR
exISts.

A smooth oriented cobordism between two oriented links L1, L, € R3isasmooth
oriented surface S relatively embedded in R? x [0, 1] with boundary components
39S N (R3 x {0}) = Ly and 3S N (R? x {1}) = L,. Two oriented links Ly, L»
that are locally related by a saddle point move are also related by a smooth oriented
cobordism of Euler characteristic —1. In fact, this cobordism can even be embedded in
R? as a saddle surface. Two oriented links are called concordant, if they are related by
a cobordism which is a disjoint union of cylinders. A concordance invariant is a link
mvariant which is constant on equivalence classes of concordant links. Most of the
known concordance invariants are linear saddle invariants, for example the signature
invariant and Rasmussen’s invariant. The latter was first introduced for knots [10]
and then for links [4]. The classical signature belongs to a family of link invariants



Vol. 86 (2011) Asymptotic concordance invariants for ergodic vector fields 3

called w-signatures, parametrized by the unit circle in C. The w-signatures generate
an infinite-dimensional vector space of linear saddle invariants ([7], see also [5] for a
calculation of w-signatures for periodic orbits of the Lorenz flow). Nevertheless, the
vector space of asymptotic linear saddle invariants is 1-dimensional.

Theorem 2. Let t be a linear saddle invariant with values in R. There exists a
constant o € R, independent of the vector field X, such that for almost all x € G,

(X, x) = o (X, x),
where o (X, x) is the asymptotic signature invariant.

A very special case of Theorem 2 was proved in [3]: the asymptotic Rasmussen
invariant equals twice the asymptotic signature invariant.

The slice genus g« (L) of an oriented link L € S3 = dD* is the minimal genus
among all smooth oriented connected surfaces embedded in the 4-ball D* with bound-
ary L. Unfortunately the slice genus is not a linear saddle invariant, since it is not
additive. Nevertheless, there exists an asymptotic slice genus invariant.

Theorem 3. For almost all x € G the limit
1
% X, = 1 — A~ x K . R
gu(X.x) = lim — g (K(T.x) €
exists and coincides with |0 (X, x)|.

The proots of Theorems 1 and 2 heavily rely on (and, at the same time, simplify
parts of ) Gambaudo and Ghys’ work, which we will summarize in Section 3. Section 2
contains a lemma on linear saddle invariants thatis needed in the proofs of Theorems 1,
2 and 3. In Section 4 we compute the constant ¢ of Theorem 2 for the w-signatures,
where @ € C is a root of unity. Section 5 contains the proof of Theorem 3.

2. Linear saddle invariants of torus type links

The signature invariant for links has a good asymptotic behaviour on torus links, in
the following sense [8]:

1 1
lim —o(T(n,n)) = —. (1)

n—-oo n 2
Here T'(n, n) denotes the n-component torus link of type (n, n). It is essentially
this feature that is responsible for the existence of the asymptotic signature invariant
for ergodic vector fields [6]. We will study the behaviour of any linear saddle invariant
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on a family of links { K(n,m)} parametrized by pairs of natural numbers (n, m). For
a given pair (n,m) € N x N, we introduce a link K(n,m) as the closure of the
following positive braid (see Figure 2, for n = 3, m = 4):

(Ongn_l “ e Ul)(0n+10n P 02) P (Un+m_1an+m_2 P Om).

Here o4 denotes the k-th positive standard generator of the braid group By, 1. The
link K(n,m) actually coincides with the torus link T (n, m) of type (n,m), but we
will not use this fact here.

T R . !

I

-
I L
|

Figure 2. The link K(3, 4).

Given any link invariant T with values in R, we can define a function F;: NxN —
R by evaluation on the links K{(»n,m):

Fe(n,m):= t(K(n,m)).

Lemma 1. For every linear saddle invariant t with values in R, the limit

) 1 _
lim —F.(n,m)y=17€lR
n,m—>00 NN
exists, i.e., forall € > O there exists a natural number N such that|#Ft (n,m)—1| <
€, as soonasn,m > N.

Proof. We may assume that the constant C; appearing in condition (ii) is one, since
normalization of 7 does not affect the existence of the limit in question. Further,
by replacing t(L) by (L) — #L t(0), we may assume that 7(O) = 0. Here #L
denotes the number of components of the link L and O denotes the trivial knot. We
then observe that | F; (n, m)| < nm. Indeed, the link K(»n,m) has a diagram with nm
crossings, and any connected link diagram can be transformed into a trivial knot by
applying a saddle point move at some of its crossings, as shown in Figure 3.
The function fr: N x N — R, defined by

fr(n,m) = %Ft(n,m),
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X =)o

Figure 3. Deleting a crossing by a saddle point move.

is therefore absolutely bounded: | /| < 1. We have to show that f has a limit.

Let ny,n2,m € N. There is a sequence of m saddle point moves between the
link K(nq + n,m) and the disjoint union of the two links K(rnq,m), K(ny,m), see
Figure 4, for n; = 3, ny = 2, m = 4 (the dashed line indicates the area where 4
successive saddle point moves have to be performed). Therefore

| Fr(n1 +nz,m)— Fe(ny.m) — Fe(na,m)| <m,

i.e., the restriction of F to one variable is a quasi-morphism on N (see [1] for a
detailed account on quasi-morphisms on 7). Applying the above estimate p — 1
times, we obtain

| Fe(pn,m) — pFe(n,m)| < (p — D)m < pm,

felpn.m) — foln.m)]| < l

An analogous estimate holds for the second variable:

felnqm) — felwm)| <~

The last two inequalities imply the existence of a limit for f: lete > 0, N € N,

% < e. Then, forall p,g,n.m e N, p,g,n,m > N,

| Je(p.q) — fe(n,m)| < | fe(n,m) — fo(pn,gm)| + | fo(pn,gm) — f(p.q)]

<—+—+—-+ <€ [

Remark. We could define the family of links {K(rn,m)} as closures of negative
braids, as well. The limit of Lemma 1 would thereby change its sign. Indeed, the
disjoint union of the link K(n,n) and its mirror image can be transformed into a
trivial link with » 4+ m components by a sequence of n + m saddle point moves,
hence into a trivial knot by 2n + 2m — 1 saddle point moves (this is an easy exercise).
Thus the values of any linear saddle invariant on K(»n,m) and its mirror image differ
by their signs, up to an affine error i n and m.
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Figure 4. The links K(5,4) and K(3,4) U K(2,4).

3. Proofs of Theorems 1 and 2

Gambaudo and Ghys’ proof of the existence of an asymptotic signature invariant is
actually well-adapted for any linear saddle invariant. Under the assumptions on the
vector field X, they cover the complement of the singularities of X (finitely many in
number) by a countable collection of flow boxes {F;};en. An important feature of
this collection is that the flow time of each box, i.e., the time it takes to pass through
the box, is bounded from below by a global constant A > 0. Forallx € G, T > 0,
they define a number 7; (7, x) which measures how many times the flow line starting
at x and ending at ¢y (T, x) enters the flow box ;. The following estimates are
obvious:

T
0<ni(T,x) = —.
_n(Tx)_A

Using Birkhoff’s ergodic theorem, Gambaudo and Ghys argue that for almost all
x € G the limit

1
Tlgr;o ?ni(T, x) =n;i(x) >0 (2)

exists (and is proportional to the volume of the flow box &;).

The family of flow boxes {F;} comes together with a good projection mp: R —
R? onto a plane. For every ¢ > 0, there exists a finite subset € C N such that
for almost all x € G, T > 0 large enough, the diagram 7o (K(T, x)) is regular and
has a ‘large’ and a ‘small’ part: up to an error of €72, the crossings of o (K(T, x))
arise from pairs of overcrossing flow boxes F;, ¥;, for i, j € €. At the spots of
overcrossing flow boxes (again finitely many in number, say ¢y, .. ., ¢y ), the diagram
o (K(T, x)) looks locally like a rectangular grid with n, (T, x)n; (T, x) crossings, see
the first diagram of Figure 5.
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The crucial step that allows us to prove Theorem 1 1s to split off links of type
K(n; (T, x), n; (T, x)) at every crossing ¢, (1 < k < N), by a controlled number of
saddle point moves. Here i, j € € denote the indices of the flow boxes crossing at
ck,and K(n; (T, x),n;(T, x)) denotes either a link of type K(n;(T,x),n;(T,x)) or
a mirror image thereof. This can be done by applying precisely n; (T, x) + n; (T, x)
saddle point moves at ¢k, as illustrated in Figure 5. Here again, the dashed line on
the left (resp. on the right) indicates the area where n; (resp. n;) successive saddle
point moves have to be performed.

Figure 5. Splitting off K(n;,n ;).

Altogether we need at most N (% + %) = % T saddle point moves to transform
the knot K(T, x) into a disjoint union of two links L (7, x) U Lo(7, x), where
L1(T,x) is a disjoint union of N links of type K(n;,n;) and Lo(T,x) is a link
whose crossing number is at most €72, Since every saddle point move produces
at most one new link component, the link L, (7, x) has at most %T components.
Therefore, it can be transformed into a trivial knot by %T + T2 saddle point
moves, at most. The following two estimates hold for any linear saddle invariant t
with normalization C; = 1 and 7(0) = 0:

2N

|t (K(T, x)) — t(L (T, x) U La(T, x))| < TT,

2N
|T(L1 (T, x) U La(T, x)) — t(L1(T, x))| = [t(L2(T, x)| < TT +€T?,
These two inequalities together with the equality

N

o(Ly(Tox) = 3 o(B g (T.x).n (T, )

k=1
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imply

1 4N

N
%r(K(T, x)) — ﬁkZ::l t(K(ni (T, x),n; (T, x)))| < o 1+ e

Therefore it remains to show that the limit
) 1 ~
Tlgnoo ﬁr(K(ni (T,x),n;(T,x)))

exists, forall7, j € €, foralmostall x € G. Thisis an easy consequence of Lemma 1,
the remark of the same section, and (2). The limit turns out to be £n; (x)n; (x)7.
As the proof of Theorem 1 shows, two linear saddle invariants t;, 72 with

; 1 . 1
lim —F,(n,m)=a lim —F,(n,m),
n,m—>o0 111 n,m—00 nt i

for some o € R, lead to proportional asymptotic invariants: t1(X, x) = a(X, x),
foralmostall x € G. Therefore the vector space of asymptotic linear saddle invariants
is 1-dimensional, generated by the asymptotic signature, as stated in Theorem 2.

4. Asymptotic @ -signatures

The classical signature invariant o of a link L is defined as the signature of any
symmetrized Seifert matrix V for L:

o(L) = sign(V + v,

More generally, there exists a link invariant o, forevery w € C, |w| = 1. Itis defined
as the number of positive eigenvalues minus the number of negative eigenvalues of
the hermitian matrix

(l—o)V +(1-a)VT.

All these invariants are easily seen to be linear saddle invariants. By Theorem 2,
the corresponding asymptotic invariants are multiples of the asymptotic signature
invariant. We will determine the explicit ratio o € R in case w is a root of unity.

Proposition 1. Let X be a smooth vector field on a compact domain G C R3, as in
the introduction, and let @ = ¢*™*% € C be a root of unity. For almost all x € G

0p(X,x) = (46(1 — 0))o (X, x).
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Proof. By the proof of Theorem 1 we have to show

lim izow(K(n,n)) = (46(1 —6)) lim %G(K(n,n)).
n n—o00 n

n—oo

This follows from a calculation of w-signatures for torus links which was carried out
by Gambaudo and Ghys [7]. The torus link of type (n, p), n > 2, p > 1, is defined
as the closure of the positive braid (103 ...0,-1) € By,. Let w = 2% where
8 eQ,0<8 < l,andletly € {1,2,...,n} be the unique natural number with
"’"T_l <6< %9. Proposition 5.2 of [7] immediately implies

2
00 (T(n, p) = 2pB(n + 1 = 21g) = ~Llg(ly — )| < 2n,

1
lim —o0,(T(n,n)) =26 — 467 + 267 = 26(1 — 6). (3)
n

n—0o0
As we mentioned in Section 2, the two families of links {K{(xn,m)} and {T (n,m)}
coincide. In particular, the links K(n,n) and T(n,n) are isotopic, for all n > 1.
Indeed, both links are isotopic to the closure of n parallel strands with a full twist,
see Figure 6, for n = 4. Thus the equation (3) holds for K(n,n), as well:

lim izow(K(n, n)) = 26(1 — 6). (4)
n—oo n

=

Y

Figure 6. The isotopic links K (4, 4) and T(4, 4).

For 8 = % i.e., for the classical signature o = o_1, this limit equals %, in

2 »
accordance with (1). We conclude

lim %Gw(K(n,n)) = (46(1 — 68)) lim %G(K(n,n)). O
n—oo . n—o0 n
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5. Asymptotic slice genus

The slice genus of links is difficult to determine, 1n general. In the case of positive
braid links, the slice genus was first determined by Kronheimer and Mrowka [9] (see
also[11]). Analternative method was recently given by Rasmussen ([10], Theorem4).
Their results imply the existence of the following limit:

. 1 |

lim —g.(K(n,m)) = —. (5)

nmMm—o0 1M 2

Thus Lemma 1 is true for the slice genus. However, in contrast to linear saddle
invariants, the slice genus is invariant under mirror image. Therefore the limit (5)
stays the same if we replace the links K (n,m) by their mirror images. The fact that
the slice genus is not additive under disjoint union of links forces us to adapt the
proof of Theorem 1. Thereby we are still allowed to use the second condition of
linear saddle invariants: if two oriented links L1, L; are related by a saddle point
move then

|g«(L1) — g«(L2)| = 1. (6)

In the following we keep the notation of Section 3.

First we transform the knot K(T, x) into a disjoint union of two links L (7T, x) U
L»(T, x), by a sequence of z < ziv T saddle point moves. The link Lq(7,x) U
L>(T,x) in turn can be transformed into the link L;(7, x) by a sequence of z <

VT 1 T2 saddle point moves. Thus

8 (K (T, ) — go(La (T.x))| < ST 4T

Now comes the place where we run into trouble: we cannot apply the additivity of g«
tothelink L (T, x), whichis adisjointunion of N links of type K(n(T, x), ni(T, x)).
Here we use the convention that K denotes either the link K or its mirror image. We
need the following lemma to go around the additivity.

Lemma 2. Let a, n, m be naﬁural numbers, 1 < a < n,m. There exisﬁs a natural
number b, such that the link K (n, m) can be transformed into the link K{(a,b) by a
sequence of z <m + n + % + am saddle point moves.

Proof. There exist (unique) natural numbers k, r with ¥ < a and n = ak + r. In the
following, the symbol

K51
means that the link K can be transformed into the link L by a sequence of x saddle
point moves, at most. The proof of Lemma 1 implies

K(n,m) N K (ak,m)u K(r,m) 2, K(a,km) L K(r,m),
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where y = (k — )m + (k — 1)a. By smoothing all the crossings of K (r, m), we
have _ N o
K(a,km) U K(r,m) — K(a,km).

Altogether these arrows imply
K(n,m) = K(a,b),
where b = km and
z=m+(k—1)m-+a)+rm

n
<m+—(m+a)+am
a

mn
<m+n+—-—+am O
a

We will apply Lemma 2 to the links K (n; (T, x), n ; (T, x)) and suitable natural
numbers a(7,x). Let! € € be the index for which n;(T, x) is minimal (recall
that € C N is a finite index set for flow boxes, see Section 3). Let (T, x) be the
integral part of /n; (T, x). Further let K (n; (T, x),n (T, x)) be any link component
of Li(T, x). According to Lemma 2, there exists a natural number b;, (T, x) with

K(ni(T.x).n;(T.x)) — K(a(T.x).b; (T.x)).

nin;
a

wherez < n; +n; + + an; (here we suppress the parameters 7 and x). The

number z (7, x) grows like T3, Combining this with (6), we obtain

Jim %Ig*(f(ni(ﬂ x), 1 (T, x))) — gu(K(a(T, x), by (T, x)))| = 0.

Therefore we can replace the link L1(7, x) by a disjoint union of N links of type
K(a(T. x),b;;(T,x)) with the same a(7, x) for all N components. This union can
further be transformed into one single link of type K(a(T,x),b(T,x)) by z <
Na(T, x) saddle point moves. Here 5(7, x) is a sum with signs of all b;; (7, x)).

The numbers b,; (T, x), b(T, x) grow like T3. Hence the limit
. 1
Th_r)noo ﬁa (T, x)b(T, x)
exists. From this and (5) we deduce the existence of the limit

galK(T) = lim g (R(a(T, ). b(T, x))

The last statement of Theorem 3 is obvious since

lim
T—00

1 o | = 1
lim —g.(K(n,m)) = lim —|c(K(n,m))| = —.
n,m—>00 N n.m—>00 R 2



L2

S. Baader CMH

Remark. It is tempting to ask about the asymptotic behaviour of lower order terms
for concordance invariants. However, this may seriously depend on the choice of
closing arcs for non-periodic orbits.

Acknowledgements. [ would like to thank David Cimasoni for teaching me concor-
dance invariants and for finding an adequate definition of linear saddle invariants.
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