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Comparison of dynamical degrees for semi-conjugate
meromorphic maps

Tien-Cuong Dinh and Viét-Anh Nguyén

Abstract. Let f: X — X be a dominant meromorphic map on a projective manifold X which
preserves a meromorphic fibration 7 : X — ¥ of X over a projective manifold ¥'. We establish
formulas relating the dynamical degrees of £, the dynamical degrees of f relative to the fibration
and the dynamical degrees of the map g: ¥ — Y induced by f. Applications are given.

Mathematics Subject Classification (2010). Primary 37F; Secondary 32U40, 32H50.
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1. Introduction

Let (X, wy) be a compact Kahler manifold of dimension k and let f: X — X bea
meromorphic map. We assume that f is dominant, i.e. the image of f contains an
open subset of X. Let 7: X — Y be a dominant meromorphic map from X onto
a compact Kihler manifold (¥, @y) of dimension [ < k. The fibers of & define a
fibration on X which might be singular. If f preserves this fibration, 1.e. f sends
generic fibers of & to fibers of &, it induces a dominant meromorphicmap g: ¥ — Y
such that 7w o f = g o w. In that case, we say that [ 1s semi-conjugate to g. For
simplicity, we assume that wy 1s normalized so that a)‘;, 1s a probability measure.

A natural question is how the dynamical system defined by f is similar to the
one defined by g when f is semi-conjugate to g as above. One of the first steps
towards understanding this question should be to find out the relations between some
invariants associated to f and g. In this paper, we will compare their dynamical
degrees.

Let f* .= fo---o f, ntimes, denote the iterate of order n of f. The dynamical
degree dp( f) of order p is the quantity which measures the growth of the norms of
( f")* acting on the Hodge cohomology group H ## (X, R) when s tends to infinity.
By Poincaré duality, it also measures the growth of the norms of ( f”)4 acting on
HFEPk=p(X ). If X is a projective manifold, dp( f ) represents the volume growth
of f*(V)for p-dimensional (closed complex) submanifolds V of X
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It was shown by Sibony and the first author in [6], [7] that dynamical degrees are
bi-meromorphic invariants, thatis, if f and g are bi-meromorphically conjugate, they
have the same dynamical degrees. Dynamical degrees capture important dynamical
information, in particular, in the computation of the topological entropy or in the
construction of Green currents and of measures of maximal entropy. We refer the
reader to the above references and to [8], [10], [15], [20] for more results on this
matter.

When f preservesafibrationz: X — Y asabove, the dynamicaldegree d,( f|7)
of order p of f relative to  measures the growth of ( /")* acting on the subspace
Hf;rp’Hp(X, R) of classes in H T2/ +P(X R) which can be supported by a generic
fiber of . It also measures the growth of ( /)4 acting on H,’;C_p’k_p(X,]R) and
represents the volume growth of f”(1) for p-dimensional submanifolds V of a
generic fiber of m when X is projective. Precise definitions and properties will be
given in Section 3. Here 1s our main result.

Theorem 1.1. Let X andY be projective manifolds of dimensionk and [ respectively
withk =1. Let f: X - X, g:Y > Yandn: X — Y be dominant meromorphic
maps such that w o f = g o w. Then the dynamical degrees d,(f) of [ are related
to the dynamical degrees dp(g) of g and the relative dynamical degrees dp( f |7) by
the formulas

d = d; (g)d,_;
p(f) max{O,p—k«rS?zjfmin{p,l} j(g) 52 j(f‘jr)

forO = p <k,

Note that the condition max{0, p —k + [} = j < min{p,[} is equivalent to
0<j<land0 = p—j <k 1 Itguarantees that d;(g) and d,_;(f|m) are
meaningful!. We deduce from the above result that max dp(f) = max d,(g). This
gives an affirmative answer to the problem 9.3 in Hasselblatt—Propp [12]. When X
and Y have the same dimension, generic fibers of 7 are finite and have the same
cardinality. Moreover, f defines bijections between generic fibers of . We deduce
from the proof of Theorem 1.1 the following corollary which generalizes a result in
[6], [7]. Tt was proved by Nakayama—Zhang for holomorphic maps in [14].

Corollary 1.2. Let X and Y be compact Kcihler manifolds of same dimension k. Let
X=X Y >Yandn: X — Y be dominant meromorphic maps such that
mo f = gom. Thenthe dynamical degrees of | are equal to the dynamical degrees

of g.

1We will find later analogous conditions, essentially for the same reason but also Lo avoid expressions which
always vanish, e.g. w?rl =0.
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Recall that by a theorem of Khovanskii [13], Teissier [17] and Gromov [9], the
dynamical degrees of f are log-concave, 1.e. p — logd,( f) is concave. Therefore,
there are integers p < p’ such that

1 =do(f) < <dp(f) = = dp(f) > > dp(f).

An instructive example with p £ p’ is amap f(x1,x3) = (h(x1), x2) on a product
X1 x X, of projective manifolds. A natural problem is to find dynamically interesting
examples of maps on projective manifolds. Therefore, it would be interesting to see
construction of maps with distinct consecutive dynamical degrees, 1.¢. with p = p’.
Somehow, this condition insures that there is no trivial direction in the associated
dynamical systems. We have the following useful results.

Corollary 1.3. Let f, , g be as inTheorem 1.1. Ifthe consecutive dynamical degrees
of f are distinct, then the same property holds for g andfor the consecitive dynamical
degrees of | relative to m.

The following result is obtained using the litaka fibrations of X

Corollary 1.4. Let X be a projective manifold admitting a dominant meromorphic
map with distinct consecutive dynamical degrees. Then the Kodaira dimension of X
is either equal to 0 or —o.

Note that the same result was proved for compact Kéahler surfaces by Cantat
in [3] and Gued) in [11], and for holomorphic maps on compact Kéhler manifolds
by Nakayama and Zhang in [14], [21]. We also refer to Amerik—Campana [1] and
Nakayama-Zhang [14], [22] for other invariant fibrations for which Theorem 1.1 may
be applied in order to compute dynamical degrees.

Acknowledgment. The paper was written while the second author was visiting the
Abdus Salam International Centre for Theoretical Physics in Trieste and the Korea
Institute for Advanced Study in Seoul. He wishes to express his gratitude to these
organizations.

2. Positive closed currents

The proof of our main result uses a delicate calculus on positive closed currents on
compact Kihler manifolds?. Tn this section, we prove some useful results which can
be applied to currents of integration on varieties and may have independent interest.
The reader will find in Demailly [4] and Voisin [19] the basic facts on currents and
on Kéhler geometry.

%In this paper, we only consider the strong positivity, see e.g. [8], A.2, for the terminology.
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Let (X, wy) be a compact Kéhler manifold of dimension &. Let X 2(X) denote
the cone of classes of strictly positive closed (p, p)-forms in H##(X,[R). This is an
open cone which is salient, i.e. KX#(X) N —K?(X) = {0} Ifc, ¢’ are two classes
in A2P(X,R), wewritec < ¢’ and ¢’ = ¢ when ¢/ —c is in XZ(X) U {0}.

If T is a real closed (p, p)-current, denote by {7} its class in H#P(X R). If
moreover T is positive, the mass of T is defined by ||T|| := (T, w;;_p}. We often
use the properties that || T'|| depends only on the class of T and {T} < A||T|{ef}
for some constant 4 > 0 independent of T. The following semi-regularization of
currents was proved by Sibony and the first author in [6], [7].

Proposition 2.1. Let T be a positive closed (p, p)-current on a compact Kdhler
manifold (X, wy). Then there is a sequence of smooth positive closed (p, p)-forms
Ty on X which converges weakly to a positive closed (p, p)-current T such that
T'=T,ieT —T =0, |T,|| < A|T|| and {T,} < A|T|{ws}, where A > O is
a constant independent of 1T'. Moreover, if 1" is smooth on an open set U, then for
every compact set K C U, we have T,, = 1" on K when n is large enough.

We need the following lemma.

Lemma 2.2. Let T and S be positive closed currents on X of bidegree (p, p) and
(g, q) respectively with p +q < k. Assume that T is smooth on a dense Zariski open
set U of X. Then T\y A S has a finite mass. More precisely, there is a constant
A > Oindependent of T, S and U such that

Fope
1Ty ASipll i= (Tiw A S, ox ©7) < A||T||S].

Proof. Let Ty, and K be as in Proposition 2.1. Since ||T;, A S| can be computed
cohomologically, we have

|Tix A Sikell < limiinf [T, A S| < AT leox A S| = AT S]]

This property holds for every compact subset K of U/. Therefore,
1Tz A Szl = AT NS
The lemma follows. []

Consider currents 7" and S as in Lemma 2.2. So, Ty A S)y has a finite mass.
Therefore, by Skoda’s theorem [16], its trivial extension defines a positive closed

current on X. We denote by T A S this current obtained for the maximal Zariski
open set I/ on which T is smooth (in that case 7|y is the regular part of T'). Observe
that when S has no mass on proper analytic subsets of X, the current obtained in this
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way does not change if we replace UV with another dense Zariski open set. We often
use this property in the sequence. By Lemma 2.2, we always have

1T A S| = AT IS

We will be interested in positive closed currents 7 on ¥ x P, where (Y, @y)
is a compact Kahler manifold of dimension [ and P” is the projective space of
dimension m endowed with the standard Fubini—Study form wpg. We assume that
wrs 1s normalized so that wpg is a probability measure. In practice, we will take
m:=k—{=dimX —dimY. Inorderto simplify the notation, the pull-back of wy
and awpg to ¥ x P under the canonical projections are also denoted by @y and wgs.
Consider on Y x P the Kahler form @ := wy + wps. The pull-back of a class ¢ in
H*(Y,C)or H*(P™,C) to H*(Y x P™,C) under the canonical projections is also
denoted by c.

If T 1s a positive closed (p, p)-current on ¥ x P define for max{0, p —m} <
J =min{l, p} (or equivalently, for 0 < j </ and0 < p — j <m)

a; (T) =T, a);_j A a)l’%_p”). (1)

Observe that ¢; (1) depends only on the class {7'} of T'. Denote by \ the cup-product
on Hodge cohomology groups.

Proposition 2.3. Let T be a positive closed (p, p)-current on Y < P™ as above.
Then

{Ty< 4 ¥ o (T} v ek},

max{0, p—m} =< j=<min{l, p}

where A > 0 is a constant independent of T.

Proof. By the Kunneth formula (see e.g. [19], p. 266) we have
HNY = PP, G HPNY B A (B 00

Therefore, there are classes ¢; © H”»/ (¥, R) such that

T} = > TRVR{ s

max{0, p—m}<j<min{l, p}

Let S be a smooth positive closed (I — j,I — j)-form on ¥ and S’ its canonical
pull-back to ¥ x P Recall that ¢; denotes also the pull-back of ¢; to ¥ x P™.
Since wpg 1s a probability measure on PP’?, a simple computation on bidegree gives

cgulSi=c¢ u{StuleRkl =T 5 Aals Py =0,
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So, ¢; belongs to the convex closed cone K of classes ¢ in H/Y (Y, R) with
cuc > 0fore’ e X7 (Y). Since K~/ (Y) is open and since U is non-degenerate,
K is salient, i.e. X M —JK = {0} The fact that {a)i,_f } is in the interior of K!=7(Y)

implies that ¢; v {w;f_j} = 0 only when ¢; = 0. Moreover, we have
lejll < d'e; w7} = AT, 05 Aol ™) = Ao (T)
for a fixed norm || || on H7+/(Y,R) and for some constant A’ > 0. It follows that
e = AOEj(T){CU{f}
for some constant A > 0. The result follows. L]

Proposition 2.4. Let T be a positive closed (p, p)-current on Y x P as above.
Assume that Y is a projective manifold. Then there is a sequence of smooth positive
closed (p, p)-forms T,, on Y x P™ which converges weakly to a curremt T' > T
such that o; (1) < Aow;(T') for all j, where A > O is a constant independent of T.
Moreover, if T is smooth on an open set U, then for every compact subset K of U
and every € > 0, we have Ty, = T —ew? on K when n is large enough.

Proof. We first consider the case where ¥ = P! and wy is the Fubini—Study form
normalized so that a)g, 1s a probability measure. The Kinneth formula applied to this
particular case says that 7" is cohomologous to

%, o (T} v fofs .

max{0,p—m}=<j=<min{l, p}

Since ¥ x P™ 1s homogeneous, we can regularize T using the automorphisms of
Y x P™ which are close to the identity.

More precisely, let v, be a sequence of smooth probability measures on the group
of automorphisms Aut(Y x P) of ¥ x P™ whose supports converge to the identity
id € Aut(Y x P"). Define

L, o= f w(T)dvy (7).
e Aut(Y x[P7)

Then, the T}, are smooth positive closed (p, p)-forms and converge weakly to 7. We
also have {T,} = {T} and hence o;(7,) = o;(T"). This gives the first assertion for
¥ e I,

For the second assertion, we can prove a stronger property. Let @ be a smooth
positive (p, p)-form on U such that & < T'. We do not assume that 7' is smooth nor
that @ 1s closed on /. Then

By f T (D)d vy ()
TeAut(¥ x[Pnt)
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converges uniformly to ® on K. Since &, < T,,, wehave T, = ® —ew? on K forn
large enough. With our hypothesis, T' 1s smooth on U and we can replace @ with 1.

Assume now that Y 1s a general projective manifold. We may find a finite family
of open holomorphic maps ¥;, 1 = i < s, from Y onto P such that for every
point y € Y at least one map ¥; 1s of maximal rank at y. To do this it suffices

to embed Y into a projective space and take a family of central projections. Let
II;: Y xP™ —» P! x P™ be defined by

O;(y,2z) := (V:(¥),2), (p,2) €Y xP™.

We apply the first case to the currents 7@ := (I1;)«(T).

We construct as above smooth positive closed (p, p)-forms Tn(i) on P! x pm
comverging to 7 such that {Tn(i)} = {TW}. Define Ty, := Y H;."(T,gi)). Since
the cohomology classes of Tn(i) are bounded, the classes of T} are also bounded.
Therefore, the masses of 7, are bounded. Up to extracting a subsequence, we can

assume that IT} (Tn(”)) converges and hencethe T, convergeto a positive closed current
T’ If (y,z) is apointin ¥ x P and W; has maximal rank at y, then II; defines a
local bi-holomorphic map on a neighbourhood of (y, z). In this neighbourhood, we
have

T < O (M)(T) = OFITP) < lim TN < T,

The choice of ¥; implies that 7 < 7’ on ¥ x P™. The second assertion of the
proposition is a local property. So, it is also easy to check.

It remains to prove the estimate on o;(15). Let wps denote the Fubini—Study
form of P! normalized so that cﬁl‘f—s 1s a probability measure. Since @pg 1s strictly

positive, there is a constant 4; > 0 such that (IIIi)*{a)i,_j} < Al{d}égj}. We also
have (IDL)*(E);S_") < Aga);_j for some constant Ay > 0. For simplicity, we will also
denote by wy, wpg and @rg the pull-backs of these formsto ¥ x P orto P! P™ In
particular, (H,;)*(a)i,_j A wl};nS_PJrj) and (Wi)*(w;,_j) A wITS_pJFj represent the same

form on P? x P™. Since the T,Ei) are smooth and since the following integrals can
be computed cohomologically, we have

; I—i _ : ; I—; _ :
(H;"(T,fl)),a)y J /\a);_ns p+]) s (T,fl),(q’i)*(wy J) /\@1?13 P‘H)
< ATY, Grg? Aoy B
= {106l Aoty )
g — ]
= AT, ¥} (@57 ) A ofs P
s dpdolTia s Aol

It follows that «; (H;“(Tn(i))) < Ay A>0;(T) and hence ;(T,) < Aw;(T) for some
constant 4 > 0. 0
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3. Dynamical degrees

Let m: (X,wy) — (Y,wy) be a dominant meromorphic map between compact
Kahler manifolds of dimension k and [ respectively. The map 7 is holomorphic
outside the indeterminacy set [, which 1s an analytic subset of X of codimension at
least 2. The closure I" of its graph over X \ I is an irreducible analytic subset of
dimension k of X xY . If, ty and 7y denote the projections from X x Y onto its factors,
then ty defines a bi-holomorphic map between I' \ 731 (I ) and X \ I;. The fibers of
Ty | over I have positive dimension. One canidentify 7 with 7y O(‘EX‘]")_I. ForA C
X and B C Y, define #(A4) := ty(tx)r) '(4) and 77 1(B) := ¢ (zyr) 1 (B).

The map 7 induces linear operators on currents. If @ is a smooth (p, ¢)-form
on Y, then 7 *(®) is the (p, ¢)-current defined by

(@) := (z )7y () A [T]),

where [I'] is the current of integration on I". It is not difficult to see that 7 *(®) is an
L1 form smooth outside I,. If ¥ is a smooth (p, ¢)-form on X with p,g > k — [,
then m (W) isthe (p —k + 1,9 —k + [)-current defined by

(V) = (2w (zx () A [T]).

If ® and ¥ are closed or positive, so are 7*(P) and 7+ (¥). Therefore, #* and 7«
induce linear operators on the Hodge cohomology groups of X and Y.

In general, the above operators do not extend continuously to positive closed
currents. We will use instead the strict transforms of currents 7* and 7, which
coincide with 7* and 7« on smooth positive closed forms. In this paper, we only
need these operators in the case where X and ¥ have the same dimension k.

Let U be the maximal Zariski open set in X \ I, such that w: U — #(U) 1s
locally invertible. The complement of U/ in X 1s called the critical setof mw. If T
is a positive closed (p, p)-current on Y, (7 )*(T') is well-defined and is a positive
closed (p, p)-current on U/. Proposition 2.1 allows us to show that this current has
finite mass. By Skoda’s Theorem [16], its trivial extension to X 1s a positive closed
(p, p)-current that we denote by 7°(T).

Let IV be the maximal Zariski opensetin ¥ \ w(I; ) suchthat w: z7Y(V) = Vis
anon-ramified covering. The complement of V' in Y 1s called the set of critical values
of w. If S is a positive closed (p, p)-current on X, then 74(.S) is the trivial extension
of (77 z—1(3))+(S) to Y. This is also a positive closed {p, p)-current. We will use the
properties that ||z*(T)| < A||T| and ||me(S)| = A| S| for some constant A > 0
independent of T, S, see [6], [7] for details.

Consider now a dominant meromorphic self-map f: X — X. The iterate of
order n of f is defined by f” ;= f o--- o f (n times) on a dense Zariski open set
and extends to a dominant meromorphic map on X. Definefor0 < p <k

A" = [ @) = ((F) (@d), o 7?),
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It 1s not difficult to see that
Lp(F™) = 1)y D) = ((f”)*(w;l?_p), g )-

It was shown in [6], [7] that [)Lp(f”)]l/” converges to a constant dp( /) which is the
dynamical degree of order p of f. Note that the main difficulty here 1s that in general
we do not have ( f*™)* = (f™)* o (f*)* on cohomology classes.

Let || |gr.» denote the norm of an operator acting on H?:?(X,R) with respect
to a fixed norm on that space. Since the mass of a positive closed current depends
only on its cohomology class, we deduce from the above discussion that

A7 (") = 1™ e < Ahp(S™).

for some constant 4 > 0. It follows that
; 1
dp(f) = lim (/") | 1.-

Note that we also have d,(f") = d,(f)" for n = 1. The last dynamical degree

di( f) 1s also called the topological degree of f. It is equal to the number of points
in a generic fiber of f and we have )Lk(f”)||a)§||_1 = dp (%) = de( )2

Proposition 3.1. Let T be a positive closed (p, p)-curvent and S a positive closed
(k — p,k — p)-current on X. Then

1D = AITAp(S7) and  [[(S*)e(S)] = A[ISAp(ST)

Jor some constant A > 0 independent of T', S and n. In particular, we have

lim sup | (/™) ()" < dp(f) and limsup | (/™)e(S)|'" < dp( /).

Fl—» 0 B—roO

Proof. We show the first inequality. The second one 1s proved in the same way. Let 1;
be smooth positive closed forms as in Proposition 2.1. Tt follows from the definition
of ( /™)® that any limit value of ( f*)*(T;) is larger than or equal to ( f*)*(T). So, it
is enough to bound the mass of ( f*)*(T;). Since this mass can be computed cohomo-
logically and since {77} < A||7T'|| {a);?}, we obtain that || ( f")*(T3)|| < A||T[[A,(f™)
for some constant 4 > 0. This completes the proot. ]

The above proposition can be applied to currents of integration on submanifolds
V of dimension k — p or p of X and gives a upper bound for the volume growth of
the preimage or image of V by f".

It was shown in [6], [7] that dynamical degrees are bi-meromorphic invariants, 1.e.
conjugate maps have the same dynamical degrees. This property allows us to define
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dynamical degrees for maps on singular manifolds having a kéhlerian desingulariza-
tion. We will use the same argument in order to define dynamical degrees relative to
an invariant meromorphic fibration.

Let f, g, m be as in Theorem 1.1. So, & defines a fibration and f preserves
this fibration. Let us assume first that 7 1s a holomorphic map. By the Bertini—Sard
theorem, the set Z of critical values of 7z is a proper analytic subset of Y. Therefore,
7 X\ 7 YZ) > Y \ Z defines a regular holomorphic fibration. Its fibers form a
continuous family of smooth submanifolds of dimension k — [ of X.

Let Py and P, denote the union of the critical set and the set of critical values
of f and g respectively. They contain the indeterminacy sets of f and of g. A fiber
Ly = a Yy)with y € Y \ Z is called generic if for every n > 0

(a) g"(y) and g7"(y) do not intersect Py ;
(b) For every point b in g"(y) U g~ "(y), no component of L is contained in Py.

Denote by X the set of y such that L, is generic. Observe that ¥ \ X is contained in
a finite or countable union of proper analytic subsets of ¥'. So, X is connected. We
also have g(X) = g7 1(X) = X. We will use the following lemma for v = a)‘}!, and

for v = [di()] ™" (") *(wy).

Lemma 3.2. Let Ly be a generic fiber as above. Let v be a probability measure on
Y which has no mass on proper analytic subsets of Y. Then, for 0 <= p =k — [ and
Jorn = 0, the 6 positive closed currents

Ay (MY @R AL, (@R A L], (F5 @) A x*(w)
and
(el ™2 ALY, di(g) (S Mx(@s 72 A Ly],
A (@) A a*(w)
have the same mass. In particular, their mass does not depend on y < 2.

Proof. For y € X, define

0(y) = di@) " [(f™@f ALy and  Y(y) = [(fMeley " TE AL
It is not difficult to see that these functions are continuous on 2. We have
0(y) = di( )™M (@f A LyD)wy 7

= di(g) "ok [Ly] A (S)el0f D))
It follows that

¢ = di(Q) " ral@ A (Sl DY)



Vol. 86 (2011) Comparison of dynamical degrees for semi-conjugate meromorphic maps 827

in the sense of currents on Y. Therefore, ¢ defines a closed O-current on ¥ and it
should be constant on 2.
We also deduce from the above computation that

e(7) = di (@) " (Sl Y A ILy]-

Since v has no mass on Y '\ ¥, we obtain

— k—i— ?
¢ = [e0ray =y At o],
In the same way, we prove that ¥ is constant on % and

¥ = [(F @E) A [Ly]| = [(F)*@E) A 7* ()]

It remains to check that ¢ — . Using that i is constant and #g~"*(y) = d;(g)",
we have

o= d @ | @EALD| = a3 U D) A L] = v

beg—"(y)

This completes the proof. ]

Define A, ( f"|m) the mass of the currents in Lemma 3.2. We have in particular

Ap(fhm) = [(F™)*@h) A m*(@h)].

Recall that 7 is holomorphic and then E*(wir) is smooth.

Proposition 3.3. The sequence A,(f" )" converges to a constant dp(flm). Let
T be a positive closed (p + 1, p + )-current and S a positive closed (k — p,k — p)-
current on X which are supported on a generic fiber L. Then

I D) = AT dr (@) Ap(f ") and  [(S7)e(S)I = Ay [ S Ap(f7|7)

Jor some constant Ay, > 0 independent of T and S. In particular, we have

limsup | (f")° (D" < di(g)dp(fm)

B—>00

and

limsup [|[(f™)e(S)|1" < dp(f|7).

H—>00
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Proof. Fix a generic fiber L, with y € X. We will show that

Ap(f1H ) = Ay dp(f " AR (f™ 7)

for some constant Ay > 0 and for all #,m > 0. This will imply the first assertion
because the sequence A, A,( f?|7) is sub-multiplicative.

Since Ly 15 a compact Kahler manifold, we can apply Proposition 2.1 to Ly. Let
b be a pointin X such that g7 (b) = y. Detine R := (fm).(a);;*kp ALp]). This is
a positive closed (k — p, k — p)-currenton X whichisalsoa(k -1 — p,k—1 — p)-
current on L. By Lemma 3.2, we have |[R| = Ap(f™|m). Therefore, there are
smooth positive closed (k —1 — p,k — [ — p)-forms ®; on L, which converge to

a current ® > R. Moreover, we have {©;} < A,;A,(f" |3r){co;§|_£;*p} for some
constant A, > 0, where the inequality is considered in H*(L,,R).

Let A denote therestriction of /7 to L. It defines a meromorphic map from L to
L gn(y). Since the mass of a positive closed current can be computed cohomologically,
we obtain

)Lp(fn-ﬁ-m |JT) _ H(fn).(R)H < hll—ggf Hh*(@)I)H = Ay/lp(fm ‘ﬂ)Hh*(w}?E;p)H

= A A, (S (e @ET 72 AL
— A, (™M) (7).

This implies the first assertion in the proposition. The rest is proved in the same way
using the semi-regularization result for 7" and S on Ly, see also Proposition3.1. [

We call d,( f |m) the dynamical degree of order p of f relative to m. The con-
vergence in Proposition 3.3 implies that d,( f*|7) = dp(f|7)".

Remark 3.4. Our choice of 2 simplifies the calculus on currents but several properties
above still hold for some y ¢ 2. For example, if y is a fixed point of g which is not
a critical value of 7 and if no component of Ly is contained in the critical set of f,
then dp( f'|r) = dp(fir, ). The proof is left to the reader.

The next result shows that the relative dynamical degrees are bi-meromorphic in-
variants. Consider a bi-meromorphic map 7: (X, ®g) — (X, @y ) between compact

Kahler manifolds. Define 7 := w ot and f = t™ 1o for. Then, f 1s a dominant
meromorphic map conjugateto fandmo f = g o7,

Proposition 3.5. dssume that 7w is holomorphic. Then

dp(flm) = dp(f|7)
for0<p<k-—L
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Proof. Since 7 is bi-meromorphic, r.ff*(a)ﬁ,) = Jr*(a)ﬁ,) and f* = 7 lo fPor,
we have

Ap(F|7)

(/™ (@) A 7H (@), o7
(M @) A e T N wh)

(F™ 0l@?) A wl(@s72). a* (@),

Using the semi-regularization result for 7, (a);%_l_p ), we deduce that

Ap(fM7) < A[(f") a0y Mok P m ¥ (o)

for some constant A > 0. Then, using a semi-regularization of 7, (a);}), we obtain

Lp(f7) < AU F" (0h) A wy TP m*(oh)) = A2y (f|7)

for some constant A" > 0. It follows that dp(f|5%) < dp(f|m). The converse
inequality 1s proved in the same way. ]

The last proposition allows us to define relative dynamical degrees in the general
case. Assume now that f preserves a meromorphic fibrationz: X — Y, ie mof =
gom asin Theorem 1.1. Let I' denote the closure of the graph of # in X < Y. Then
I" is an irreducible analytic set of dimension k which is bi-meromorphic to X. Let
o: X — I be a desingularization of I" which can be constructed using a blow-up
along the singularities. By Blanchard’s theorem [2], jf 1s a compact Kéhler manifold.
Then, 7 := 7x © 0 1s a bi-meromorphic map from X to X. Define also T =1Tyo0
and f := 77! o f o r. The map 7 is holomorphic and 7 © f = g o 7. Define the
dynamical degree of order p of f relative to m by

dp( f|m) = dp(f]7).

Proposition 3.5 implies that the definition does not depend on the choice of . The
following result is a consequence of a theorem by Khovanskii, Teissier and Gromov.

Proposition 3.6. The function p — logd,( f ) is concave for 0 < p <k —1. In
particulay, dp(f|lm) = 1for0 < p <k — 1.

Proof. We can assume that 7 1s holomorphic. We have to show that

dp1(f |0)dps1(f|7) = dp(f|m)%.

For this purpose, it is enough to check that
Ap 1 (f*HmVAp 1 (f|m) < Ap(f" 7).
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Observe that for non-critical values y of 77, the fibers L ; are not necessarily connected
but they contain the same number s of components. The family of these components
1s connected since X 1s connected. It defines a covering of degree s over the set of
non-critical values of 7. Let X/ denote the parameter space for the components L;,
of Ly, with y € 2. We may think of X’ as a covering of degree s over . We can then

prove as in Lemma 3.2 that the function L, > 1™ () A [L}]]] is constant on

%', Therefore, it is equal to s 71 ||( /™) *(w§) e [Ly]] and then to s~ A,(f7|x).
Let A be the restriction of f" to Ly := L} and define Ly := h(L;). Let T

denote the graph of A in L1 x Ly and 7: esT5 desingularization of I" using some
blow-up along the singularities. By Blanchard’s theorem [2], Tisa compact Kahler
manifold. Denote by 7 : r L1 and o T L.» the canonical projections. We
have h = 15 o 771, Define w; := 7} (wy) and w; = 3 (wy). We deduce from the
above discussion that

sTLAL(f7 ) = | (") (D)) = fﬁw’f” NS

If y, denotes the last integral, Gromov proved in [9] that p > log ¥, 1s concave,
1€ Vp_1Ypt+1 =< yﬁ, when @) and @, are Kahler forms. By continuity, this still
holds in our case where these forms are only smooth positive and closed. Hence,
p > logd,( f|m)is concave.

In order to deduce the second assertion of the proposition, it is enough to show
that do(f|m) = 1 and dr_;(f|7) = 1. For y generic, we have

Aol @) = di@) I LI = diey™ 3 L]l

beg="(y)

Hence, Ag( f"|7) is independent of # since #g7"(y) = d;(g)" and the mass of [Ly],
with & € 3, is independent of &. It follows that do( f|7) = 1.
We also have for y generic and & € g7 "(y)

A (S 7) = I PYe[L o]l = LI

So, the sequence Ar_;( f"|m) is bounded from below by a positive constant. There-
fore, dp_;(f|m) = 1. This completes the proof of the lemma. Note that we can
show that dy_;( f|m) is the number of points in a generic fiber of the restriction of
StoL,. ]

Consider now some examples, see also [1], [14], [21], [22].

Example 3.7. T.et X = Y x Z be the product of two compact Kihler manifolds
and w: X — Y the canonical projection. Consider f(y,z) := (g(¥), h(z)) where
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g:Y — Y and h: Z — Z arc dominant meromorphic maps. So, f is semi-
conjugate to g. The relative dynamical degree d,(f |7) is equal to dp(#). We easily
deduce from the definition of dynamical degrees that

R LS S e SR

There are more interesting examples of maps onthe product ¥ < Z. Let F beacompact
Kéhler manifold. Assumethat F is also the parameter space of a meromorphic family
of meromorphic self-maps of Z. Let t: ¥ — F be a meromorphic map. Then
S(y,2) :=(g(y), ©(¥)(z)) is ameromorphic self-map of ¥ x Z which preserves the
fibration 7. The example is also interesting when 7(y) is holomorphic for generic y
or when a Zariski open set G of F 1s a Lie group and 7 1s a morphism from & to the
group of bi-meromorphic maps of Z.

Example3.8. Let g: ¥ — Y be a dominant meromorphic map on a compact Kéhler
manifold ¥. Itinduces a meromorphic self-map f onthe projectivization X .= PTy
ofthe holomorphic tangent bundleof ¥'. The map f preserves the fibration associated
to the canonical projection from X onto Y and 1s semi-conjugate to g. This example
and some applications were considered in [ 5].

4. Proofs of the results

We first prove Theorem 1.1. Since the dynamical degrees are bi-meromorphic invari-
ants, Proposition 3.5 allows us to assume that 7 is a holomorphic map. Since X is
projective, we can construct a dominant meromorphic map v: X — P+~ Indeed,
it is enough to embed X in a projective space and choose a generic central projection
on PF, Replacing X with a desingularization of the graph of v allows to assume
that v 1s holomorphic. Consider the holomorphic map II: X — ¥ x PA—! defined
by
I[I(x) := (w(x),v(x)).

Since the chosen central projection is generic, the intersection of a generic fiber of 7
and a generic fiber of v 1s finite. Therefore, I1 is dominant.

Our proof is based on a delicate calculus on currents. If X = Y x P4~ and 7 is
the canonical projection onto Y, the proof is simpler and the properties obtained in
Section 2 can be directly applied. A rough idea is to reduce the general case to the
particular case using the map I1. In other words, we use the fact that f is, in some
sense, “semi-conjugate” to the multi-valued map IT o £ o II~! which is defined on
Y x P,

Let wps denote the Fubini—Study form on P*~!. For simplicity, the canonical
pull-back of wy and wpgto ¥ < P51 are still denoted by @y and awrs. In particular,
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[I*(wy) and 7*(wy) represent the same form on X. We consider on ¥ x P*~ the
Kéhler form @ := wy + wps. Our calculus will involve the quantities a4, ,(#) defined
forn >0,0<g<k—landg<p=<I[l+4+ghby

ag,p (1) 1= |TL(fM* T (@P) A oy 7|
= (L (/™) II*(e?), w;—Pqu p wk—l—q)
= {(f")*TT*(w?), H*(m?“q = wk—l—@))
_ ((fn)*l—[*(a)p) " ﬂ*(w;—pﬂ'), H*(wk—z—g))'
Observe that
aq,p(”) 2 ap_q(n*(fn)*n*(a)p)),

where a,_4(-) is defined in (1).
Lemma 4.1. There is a constant A > 0 independent of p, n such that

A Ap(fM7) < app(n) < Adp(f"|7)

1/n

In particular, [ap p(n)]"'" converges to dp( f |).

Proof. Since the pull-back of a smooth form under II is smooth, we have
ap,p(n) = (S ¥ (@?) A w*(oy). TH @ P))
k—I—
< A" @) A rtp), 0y ) = Adp(f7 )

for some constant A > 0. This gives the second inequality in the lemma.
Define T 1= I«(wy). Since II*(T) = wy, we have

Ap(flm) = (™ (@D A a*(@i)] < I TINT) A 7 (@)

We apply Proposition 2.1 to the current 7" on ¥ x P*~ which is an L' form smooth
on a Zariski open set. Let T; be as in that proposition with {T;} < A{w¥} for some

constant A > 0. If S .= H*(a);;_l_p), we have I1*(S) = a))',;_l_p and hence
hp(f17) < lim inf | (f7)FTT(T) A 7 @)
< A|(f")* T*@?) A 7™ (@)
= A((f") TT*?P) A 7™ (o), ok 72)

< A| (T @P) A m*(@h) A TS|
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Now, we apply again Proposition 2.1, in particular its last assertion, to the current
S whichisan L! form smooth on a Zariski open set. If S; are smooth forms satisfying
that proposition, the latter expression 1s bounded from above by

lim inf {( /") *IT*(@?) A 7 *(@y), TT*(S)))
I —>00
S{(F I (@2) An*(ey), TH@ 1 72)),
The last integral is equal to @, ,(#). The first inequality in the lemma follows. (]

Definefor 0 < p < k

by(n) = > ag. p(n).

We have the following lemma.

Lemma 4.2. The sequence b, ()" converges to dp(f).
Proof. Since IT*(@?), :rr*(a)i,_pﬂr) and TI1*(w*~/=9) are smooth on X, we have
- P} TT*( 0 * (ol P Y IT* (k14
aq.p(n) = ((f"V I (@) A a*(wy 777), T (@ )
=< A[(f") (@) = 4A,(f")

for some constant 4 > 0. We deduce that lim sup .'?)p(n)I/"I < dy(f).

It remains to check that lim inf l')p(n)lf"I > dp(f). For this purpose, we only
need to show that A,(f") < Ab,(n) for some constant A > 0. Define T =
L (f™)*II*(@?). We prove that A,(f") < |T| = bp(n) which will imply the
result.

Define S := H*(a))?). We have I1°(S) = a)j?. Therefore,

Ap(f™) = {(f") (). of 7)< {(FD TI(S), e 7).
Using a semi-regularization of S, we deduce that
(M) M@)oy 7).

Define R = H*(a)}];_p). We also have T[I*(R) = a);;_p. We obtain as above using
a semi-regularization of R that

(") < | T @P) ATINR)| < | (F T (@F) A TR 2) |
= ([T (f"Y* T (w?P), ") = | T
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k—I1+1

Now, since a)if“ = 0 and wpg = 0, we have
» I— k—1—
IT] = {T, (0y +@r)F?) 5 )3 (T, 077+ A =9y
max{0, p—I}<g<min{ p.k—I}
< > A0} = bu(n),

This completes the proof of the lemma. ]
For every n = 0and 0 < p <[ define
cp(n) = Ap(e") = (") (@D = (") (@d). wp 7).
We have the following lemma.
Lemma 4.3. There is a constant A > 0 such that
(Ml P02 2 A o), 0 2120 A 01720 < day, 4 (0)cpg(0)

forO<po<k—1, po<p=<Il+po po=q =< pandn > 0. Moreover, the above
integral vanishes when ¢ << py.

Proof. Observe that by definition of I1,
(/") T 0F 7 Aw?) = IL(F)* T@E ) A (F)* T )]
< I (™ T (@f %) A T(f ") T ().
Hence, the left hand side of the inequality in the lemma 1s smaller than or equal to
(H*(fn)*n*(a);;—q) /O\ H*(f”)*l'[*(a)q), a);?—P‘FPO A a)kflfpo)'

Define ' := [y (f")* T*(@f Aoy ? 7P and S = IL(f")* IT* (@) rak =20,
Note that 7" and S are of bidegree ({ —q + po,{ —g + po)and (k —! +¢q — po. k —
I + g — po) respectively. The quantity considered above is equal to the mass of the

measure 7" A S.
We first show thato; (1') = Owhen j <! —g+ poandaj_gz 4 ,, (1) < Acp_g(n)
for some constant 4 > 0. Since w o f" = g" o7, we have

T = L/ 7" (@29 /\w;—erpo = TLa*(g")"(wE %) A wi’_ﬁpo-
Hence,
: - - Iy k—2l4+g—po+j
o (T) = {TLem* (g™ (@l ) A wy p+po,a)Y N +q p0+j)
= (7*(g")*(wy D A ﬂ*(wif_ﬁpo), ;r*(a)i,_j) A H*(a)écs—ﬂﬂ—poﬂ))

= {z*[(g") ey DA a)%l—erpofj], H*(méCS*zI*g*POH))_
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When j < {—g+ pg, the form in the brackets has bidegree = (I + 1,7 +1) and should
vanish because dim ¥ = {. Therefore, o;(1') = Ointhatcase. When j = { —q + po,
this form defines a positive measure of mass A,_,(£"). Its cohomology class is equal
to )Lp_q(g”){a)gz}. Therefore, using a semi-regularization as above, we obtain

@—gtpo(T) 5 )Lp—q(gn)<ﬂ*(w§’)s H*(a)écs?l)) = Acp—q(n)

for some constant 4 > 0.
We deduce from Proposition 2.3 that {T"} = Cp,q(n){a);_q+p0}. Using the semi-
regularization in Proposition 2.4 for T', we obtain

(] l_
(T ASYS cpgMay TP A S| = cpg()apy,q(n).

This completes the proof of the first assertion in the lemma. For the second one, it
1s enough to observe that when g < po, we have ;(T) = 0 for every j and hence
T=0 0J

The following lemma 1s crucial in our proof.

Lemma 4.4. There exists a constant A > 0 such that for all 0 < pg = k — 1,
po<p=<l+poandalin,r =1

.
Apo,p(nr) = A7 Z 1_[ Aps_1,ps (1)Cp—ps (1),

=1

where the sum is taken over (p|,...,p)Withpo < p1 = p2 =< = p, = p and
Pr—1 fk_l—

Proof. We proceed by induction on r. Clearly, the lemma is true for r = 1. Suppose
the lemma true for r, we need to prove it for r + 1. In what follows, the constants
A; depend only on the geometry of X and Y.

Define T := IT,.(f")*I1*(w?). This is a positive closed L! form, smooth
on a dense Zariski open set. Observe that TI°TIx > id on positive closed currents
having no mass on proper analytic subsets of X. Therefore,

TOHD < (") I T ) T (?) = TL(f ") T ),

On the other hand, by Proposition 2.4, we can find a sequence of smooth positive

closed (p, p)-forms Tl.(r) converging weakly to a positive closed current T > 170
such that

apfq(Tg(r)) = Al“pfq(T(r)) < Ayag,p(nr)
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for max{0, p — I} < g < min{p,k — [} and A; > 0 a constant. By Proposition 2.3,
there 1s a constant 4> > 0 such that

(1) < A5 3 ag,p(nr){el™ ) U {wk).
max{0, p— I} <g<min{ p.k—I}

We deduce from the above discussion and Lemma 4.3 that
apo,p(n(r +1)) = (T(Hl),a}ifﬁpo A oF i po)
= lix'rigf(H*(fn)*H*(ﬂ(r))’ w;—p-h!?o e wk—l—po)

< A, Z aq,p(nr)(ﬂ*(fn)*n*(w}g—q A quS),w;_p‘f'pO . wk_g_po)

max{0, p—It=qg
<min{ p.k—I}

< A4s Z g, p(BT)apg.q(1)Cpg(1)
Po<g<min{p.k—I}

for some constant A5 > 0. Consequently, the induction hypothesis implies the result.
]

Theorem 1.1 is a consequence of the next two propositions.

Proposition 4.5. We have

dy(f) = d; (9)d,—;
PN top T cmingpy & BYp-i L 17)

for0 < p <k
Proof. Since H*(a){, A @P~7Y is a smooth form, we have for some constant 4 > 0
[ (g AP )| = Ahp(F7).

So, by definition of dynamical degrees and Lemma 4.1, it i1s enough to bound
I (f”)*l_[*(a){, A @PT)|| from below by a constant times A; (g™)ap— ; p—; (n).

Fix a constant A > 0 large enough. Using the identity m o f* = g" o w and that
H*(a)if_j A @FI=P17Y is smooth, we obtain

A T (0f A wP )|
& ((fn)*n*(a){r A wp—f), H*(w;—j A a)k—l—p—|—j))
= ("t @l) A (F TP ), a* (@l Ty A T (o* 24
= [y at @) AT A TP A T @)

= 7t @) Aok ] R (P @P ) A TP
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Observe that (g”)*(wi',) A a)i,_j is a positive measure of mass A;(g"). As in
Lemma 3.2, we show that the last expression in the previous identities is equal to
A;(g™) times the mass of the restriction of ( f™)*IT*(w?~/) A IT*(@* "7t/ ) toa
generic fiber L, of . Therefore, it 1s also equal to

2 (@M (@f), (" TP ) AT @ 7P7)) = Ai(g™ap—j.p—i (0).
This completes the proof. L]

Proposition 4.6. Ve have

dp(f) = di(g)dp—;(f|m)

max

for0 < p <k
Proof. Forevery 0 < p <k andn > 0let

). = CilRIdp—; p—_ilRH).
#() (0, p—k 1} </ <min p,l} 7()ap—j.p= (7)

Observe that for ¥ > p, in Lemma 4.4, there are at most p indices s such that
Ps—1 < ps. Moreover, the sum in that lemma contains at most (k + 1)" terms and the
sum in the definition of b,(n) contains at most p + 1 terms. We infer the following
estimate

!
by(rn) < [(p + 1)k + 1) A bo(m) -~ bp(m) [ ¢; (n)},u,p(n)r.

i=0
We deduce that
[bp(rn)]l/rn < (p + I)I/RF(k + 1)1/RA1/n[b0(n)1/n"‘bp(n)l/n]

i
[TTe@ ] npmtn
j=0

Letting s tend to infinity, we obtain using Lemma 4.2 that

/7

!
. r ..
ap (1) = [do() - (][ TT ()] timint ey /7.
j=0

Now, letting r — oo, the first two factors in the right hand side tend to 1. Therefore,
using Lemma 4.1, we obtain

d lim inf | e d:(g)dy_; .
p(f) = gglo% Mp(”) max{o,p—kﬂ?gji:mm{p,l} 1(3) r ,z(flﬂ)

This completes the proof. ]
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Proof of Corollary 1.2. When X and Y are projective, the corollary 1s a direct con-
sequence of Theorem 1.1. We only used the projectivity in Proposition 2.4 applied
to m ;= k — ! and for the existence of v: X — P*~! This is superfluous when X
and Y have the same dimension, 1.e. k = [. (]

Proof of Corollary 1.3. Let j, pbesuchthatd;(g) = max, dg(g)andd,_;(f|m) =
max, do(f|m). Wehave 0 < j <l and 0 < p — j < k — 1. By Theorem 1.1,
dp( /) 1s the maximal dynamical degree of f and dp(f) = d;(g)dp—; (f|m). We
have dp_1(f) < dp(f) < dp+1(f). Theorem 1.1 implies that

di-1(g) <dj(g) <d;j11(g) and dp j a1 (flm) <dpj(flm) < dpj1(f]|7)

The log-concavity of d,(g) and d,( f'|7) implies the result. Note that when j = 0,
or p—j = 0,k — 1, in the above inequalitics, one has to remove the expressions
which are not meaningful. ]

In the rest of the paper, we prove Corollary 1.4. Let Ky denote the canonical
lines bundle of X. Let H°(X, K%) denote the space of holomorphic sections of K%
and HO(X, Kg)* its dual space. Assume that HO(X, K% ) has positive dimension.
If x 1s a generic point in X, the family H, of sections which vanish at x is a hyper-
plane of H%(X, K}) passing through 0. So, the correspondence x > Hy defines a
meromorphic map

T X — PHYX, K})*

from X to the projectivization of H°(X, K2)* which is called an itaka fibration of
X. Let ¥, denote the image of X by n,. The Kodaira dimension of X 1s ky =
max,s dim ¥,. When H%(X, K%) = 0 for every n = 1, the Kodaira dimension of
X 18 —c0. We have the following result.

Theorem 4.7 ([14], [18]). Let f: X — X be a dominant meromorphic map. Assume
that ky = 1. Then [ preserves the Iitaka fibration m,, . X —> Y,,. Moreover, the map
g: Yy = Y, induced by f is periodic, i.e. g% = id for some integer N = 1.

Proof of Corollary 1.4. Assume in order to get a contradiction that ky = 1. Let
n > 1besuchthat! ;= dimY, = 1. Replacing f with an iterate, we can assume
that ¢ = 1d. A priori, ¥, may be singular, but we can use a blow-up and assume that
Y, is smooth. We have d;(g) = 1for 0 < j < [. This contradicts Corollary 1.3.
Note that in order to prove that d; (g) = 1, instead of Theorem 4.7, it is enough to use
the weaker result that g is induced by a linear endomorphism of P H°(X, K$H)y*. O
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