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The universal Cannon—Thurston map and the boundary of the
curve complex

Christopher J. Leininger} Mahan Mj**and Saul Schleimer***

Abstract. In genus two and higher, the fundamental group of a closed surface acts naturally
on the curve complex of the surface with one puncture. Combining ideas from previous work
of Kent-Leininger—Schleimer and Mitra, we construct a universal Cannon—Thurston map from
a subset of the circle at infinity for the closed surface group onto the boundary of the curve
complex of the once-punctured surface. Using the techniques we have developed, we also show
that the boundary of this curve complex is locally path-connected.
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1. Introduction

1.1. Statement of results. Fix a hyperbolic metric on a closed surface S of genus
at least two. This identifies the universal cover with the hyperbolic plane p: H — §.
Fix a basepoint z € S and a point Z € p~1(z). This defines an isomorphism between
the group 71(S, z) of homotopy classes of loops based at z and the group 71 (S) of
covering transformations of p: H — S.

We will also regard the basepoint z € S as a marked point on S. As such, we
write (S, z) for the surface S with the marked point z. We could also work with the
punctured surface S — {z}; however a marked point is more convenient for us.

Let €(S5) and € (S, z) denote the curve complexes of S and (S, 2), respectively,
with zero skeleta, €2(S) and €°(S, z), identified with the sets of isotopy classes of
essential simple closed curves in S and (S, z), respectively. Write I1: €(S, z) —
€(9) to denote the forgetful projection. See Section 1.2.4.

From [KI.809], the fiber over v € €°(S) is m(S )-equivariantly isomorphic to
the Bass—Serre tree Ty determined by v. The action of 71 (S) on €(S, z) comes from
the inclusion into the mapping class group Mod(.S, z) via the Birman exact sequence;
see Section 1.2.3. We define a map

$: E(S)xH = €(S5,2)

by sending {v} x H to Ty = II"1(v) C €(S, z) in a 71 (S )-equivariant fashion and
then extending over simplices using barycentric coordinates; see Section 2.2. Given
v € €28), let @, denote the restriction to H == {v} x H:

b, H — €S, 2).

Suppose that ¥ C H is a geodesic ray that eventually lies in the preimage of
some proper essential subsurface of S. We prove in Section 3 that @, (r) C €(S, z)
has finite diameter. The remaining rays define a subset A C JH (of full Lebesgue
measure); see Section 3.2. Our first result 1s the following.

Theorem 1.1 (Universal Cannon—Thurston map). For any v € €9(S), the map
Gy H — €(S, 2) has a unigque continuous w1 (S )-equivariant extension

¢, HUA — €(S,2).

The map 30 = ®y|a does not depend on v and is a quotient map onto d€(S, 2).
Given distinct points x,y € A, 0P(x) = 0®(y) if and only if x and y are ideal
endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of an
ending lamination on S.

We recall that a Cannon—Thurston map was constructed by Cannon and Thurston
[CTOT] for the fiber subgroup of the fundamental group of a closed hyperbolic 3-
manifold fibering over the circle. The construction was then extended to simply
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degenerate, bounded geometry Kleinian closed surface groups by Minsky [Min92],
and to the general simply degenerate case by the second author [Mj06]. In all these
cases, one produces a quotient map from the circle dH onto the limit set of the
Kleinian group I'. In the quotient, distinct points are identified if and only if they are
ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of
an ending lamination for I'. This is either one or two ending laminations depending
on whether the group is singly or doubly degenerate; see [M;j07].

In a similar fashion, the second author [Mit97] has constructed a Cannon—Thurston
map for any §-hyperbolic extension I" of a group G by 7;(5),

l -m(S) =T -G —1

(for a discussion of such groups see [Mos97], [FMO2]). This is a 71 (.S )-equivariant
quotient map from JH onto the Gromov boundary of I'. As above, the quotient
identifies distinct points if and only if they are ideal endpoints of a leaf (or ideal
vertices of a complementary polygon) of the lift of an ending lamination for G.

The map d® is universal in that distinct points are identified if and only if they
are the ideal endpoints of a leaf (or 1deal vertices of a complementary polygon) of the
lift of any ending lamination on S. We remark that the restriction to A is necessary
to get a reasonable quotient: the same quotient applied to the entire circle dH is a
non-Hausdorff space.

It follows from the above description of the various Cannon—Thurston maps that
the universal property of d® can also be rephrased as follows. If F: dH — 2 is any
Cannon—Thurston map as above —so, £2 1s either the limit set of a Kleinian group, or
the Gromov boundary of a hyperbolic extension I — then there exists a map

o F(A) — dC(S, 2)

so that ¢ o F|y = d®. Moreover, because 9@ identifies precisely the required
points to make this valid, one sees that any 71 (S )-equivariant quotient of A with this
universal property is actually a 71 (S )-equivariant quotient of d€(S, z).

It is a classical fact, due to Nielsen, that the action of 71 (S) on dH extends to the
entire mapping class group Mod(S, z). Tt will become apparent from the description
of A given below that this Mod(S, z) action restricts to an action on A. In fact, we
have

Theorem 1.2. The quotient map
d®: A — JdE(S,z)

is equivariant with respect to the action of Mod(S, z).
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As an application of the techniques we have developed, we also prove the follow-
ng.

Theorem 1.3. The Gromov boundary d€ (S, z) is path-connected and locally path-
connected.

We remark that A 1s noncompact and totally disconnected, so unlike the proof
of local connectivity in the Kleinian group setting, Theorem 1.3 does not follow
immediately from Theorem 1.1.

This strengthens the work of the first and third authors in [LS09] in a special
case: 1n [LS09] it was shown that the boundary of the curve complex is connected
for surfaces of genus at least 2 with any positive number of punctures and for closed
surfaces of genus atleast 4. The boundary of the complex of curves describes the space
of simply degenerate Kleinian groups as explained in [[.S09]. These results seem to
be the first ones providing some information about the topology of the boundary
of the curve complex. The question of connectivity of the boundary was posed by
Storm, and the general problem of understanding its topology was posed by Minsky
in his 2006 ICM address. Gabai [Gab09] has now given a proof of Theorem 1.3 for
all surfaces 2 for which €(2) is nontrivial, except the torus, 1-punctured torus and
4-punctured sphere, where it is known to be false.

Acknowledgements. The authors wish to thank the Mathematical Sciences Research
Institute for its hospitality during the Fall of 2007 where this work was begun. We
would also like to thank the other participants of the two programs, Kleinian Groups
and Teichmiiller Theory and Geometric Group Theory, for providing a mathematically
stimulating and lively atmosphere, and the referee for useful suggestions.

1.2. Notation and conventions

1.2.1. Laminations For a discussion of laminations, we refer the reader to [PH92|,
[CEG87], [Bon88], [Thu80, CB87].

By a lamination on S, we mean a 1-dimensional foliation of a closed subset of
S (see e.g. [PH92] and [CCO00]). We require that all our laminations be essential,
meaning that the leaves lift to quasigeodesics in the universal cover. A measured
laminationon S 1s a lamination with a transverse measure of full support. A measured
lamination on S will be denoted A with the support — the underlying lamination —
written |[A|.

If @ is an arc or curve in S and A a measured lamination, we write A(a) = [, dA
for the total variation of A along a. We say that a is transverse to A if @ 1s transverse
to every leaf of |A|. If v is the isotopy class of a simple closed curve, then we write

i(v,4) = inf A(e)
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for the intersection number of v with A, where o varies over all representatives of the
1sotopy class v.

Two measured laminations A and A1 are measure equivalent if for every isotopy
class of simple closed curve v, i(v,Aqg) = i(v,A1). Every measured lamination
1s equivalent to a unique measured geodesic lamination (with respect to the fixed
hyperbolic metric on S). This is a measured lamination A for which |A| is a geodesic
lamination.

We similarly define measured laminations on (S, z) as compactly supported mea-
sured laminations on S — {z}. In the situations that we will be considering, these
will generally not arise as geodesic laminations for a hyperbolic metric on S — {z},
though any one is measure equivalent to a measured geodesic lamination for a com-
plete hyperbolic metric on § — {z}.

The spaces of (measure classes of) measured laminations will be denoted by
ME(S) and ME(S,z). The topology on ME 1s the weakest topology for which
A = (v, A) is continuous for every simple closed curve v. Scaling the measures
defines an action of R* on ME(S) — {0} and ME(S, z) — {0}, and we denote the
quotient spaces P.ME(S) and PME(S, 2), respectively.

A particularly important subspace is the space of filling laminations which we
denote # L. These are the measure classes of measured geodesic laminations A for
which all complementary regions of its support |A| are disks (for S — {z}, there is
also a single punctured disk). The quotient of #£ by forgetting the measures will
be denoted EX and is the space of ending laminations. For notational simplicity, the
image of A € FX in €& will also be denoted by |A].

When there 1s no confusion, we will let A simultaneously represent a measured
lamination as well as the equivalence class in either ME or P ME which it determines.

Remark 1.4. Because there is a unique measured geodesic lamination in any equiv-
alence class the reader can, unless otherwise stated, consider an element of MX asa
measured geodesic lamination. In Sections 2.4 and 2.5 it will be preferable to choose a
slightly different representative for an arbitrary element of ME(S), though elements
of F£(S) will still be chosen to be measured geodesic laminations. Beginning in
Section 3, only FEL(S) and £XL(S) are relevant, and so again, measured geodesic
laminations will suffice.

1.2.2. Train tracks. Train tracks provide another useful tool for describing mea-
sured laminations. See [Thu80] and [PH92] for a detailed discussion of train tracks
and their relation to laminations. We recall some of the most relevant information.
A lamination X is carriedby atraintrack 7 if there isamap f: S — S homotopic
to the identity with (&) C t so that for every leaf £ of £ the restriction of f to £ is
an immersion (for (S, z), wereplace S hereby S —{z}). If A is ameasured lamination
carried by a train track 7, then the transverse measure defines weights on the branches
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of 7 satistying the switch condition —the sum of the weights on the incoming branches
equals the sum of the weights on the outgoing branches. Conversely, any assignment
of nonnegative weights to the branches of a train track satistying the switch condition
uniquely determines an element of MX; see [PH92], Theorem 2.7 4. Given a train
track 7 carrying A, we write T(4) to denote the train track t together with the weights
defined by A.

Proposition 1.5. Suppose that {A,}°2, U{A} C ME are all carried by the train
track 1. Then A, — A if and only if the weights on each branch of t defined by A,
converge to those defined by A.

Proof. This 1s an immediate consequence of [PH92|, Theorem 2.7.4. L]

There i1s a well-known construction of train tracks carrying a given lamination
which will be useful for us. For a careful discussion, see [PH92], Theorem 1.6.5, or
Section 4 of [Bro00]. Starting with a geodesic lamination £ one chooses ¢ > 0 very
small and constructs a foliation, transverse to &£, of the e-neighborhood N(:£). The
leaves of this foliation are arcs called ties. Taking the quotient by collapsing each tie
to a point produces a train track T on S; see Figure 1.

We can view N (X£) as being built from finitely many rectangles, each foliated by
ties, glued together along arcs of ties in the boundary of the rectangle. Inthe collapse
each rectangle R projects to a branch pg of 7. When 7 is trivalent we may assume
that T C S is contained in N (X), transverse to the foliation by ties, and the branch
B R is contained in the rectangle R.

Suppose now that A is any measured lamination with [A| C N.(X), and |A]
transverse to the ties. If R 1s a rectangle and ¢ a tie in R, then the weight on the
branch fig, defined by A, is given by A(a) = [, dA; see Figure 1.

1.2.3. Mapping class groups. Recall that we have fixed a hyperbolic structure on S
as well as a locally isometric universal covering p: H — S. We also have a basepoint
Z ¢ p~!(2) determining an isomorphism from 7;(S), the covering group of p. to
m1(S, z), the group of homotopy classes of based loops. All of this is considered
fixed for the remainder of the paper.

The mapping class group of S is the group Mod(S) = mo(Diff T(S)), where
Diff t(S) is the group of orientation preserving diffeomorphisms of S. We define
Mod(S, z) to be mo(Diff 7(S, z)), where Diff 7(S, z) is the group of orientation
preserving diffeomorphisms of S that fix z.

The evaluation map

ev: DIff 7(S) = S

given by ev( f) = f(z) defines a locally trivial principal fiber bundle

Diff (S, z) — Diff 7 (S) — S.
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Figure 1. The train track  is obtained by collapsing the ties of No(£). The lamination A defines
weights on 1. the weight on fg is A(a), where & is a tie in the rectangle R.

A theorem of Earle and Eells [EE69] says that Diffo(.S), the component containing
the identity, 1s contractible. So the long exact sequence of a fibration gives rise to
Birman’s exact sequence [Bir69], [Bir74]

1 = m(S) = Mod(S, z) = Mod(S) — 1.

We elaborate on the injection m1(S) — Mod(S, z) in Birman’s exact sequence.
Let
Diff p(S, z) = Diffo(S) N Diff (S, 2).

The long exact sequence of homotopy groups identifies 71 (S) = mo(Diff (S, 2)).
This isomorphism is induced by a homomorphism

evy: Diff p(S,2) — m1(S5)

given by evy(h) = [ev(h,)] where h;, t € [0, 1], is an isotopy from & to Idg, and
lev(h;)] 1s the based homotopy class of ev(h;) = hi(z), t € |0, 1]. To see that this is
a homomorphism, suppose £, #’ € Diff p(S, z) and h; and £k} are paths from A and
B’ respectively to Ids. Write o(¢f) = h;(z) and o'(t) = hj(z). There is a path H,
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from A o b’ to Idg given as

H — hoyp o’ fort €[0,1/2],
FTm,.,  forre(l/2,1].

Then H,(z) is the path obtained by first traversing o then ¢/, while Hy = h o ' and
H; = Ids. So, eve(h o h") = 00¢’, and evy is the required homomorphism.

Given h € Diffp(S, z), we will write o for a loop (or the homotopy class)
representing evi(h). Similarly, we will let s, denote the mapping class (or a rep-
resentative homeomorphism) determined by o € &1(S). When convenient, we will
simply identify 1 (S') with a subgroup of Mod(S, z).

1.2.4. Curve complexes. A closed curve in S is essential if it is homotopically
nontrivial in §. We will refer to a closed curve in § — {z} simply as a closed curve in
(S, z), and will say it is essential if it 1s homotopically nontrivial and nonperipheral
in S —{z}. Essential simple closed curves in (S, z) are isotopic if and only if they
are isotopic in S — {z}. We write ©%(S) and €°(S, z) to denote the sets of isotopy
classes of essential simple closed curves on S and (S, 2), respectively.

The curve complex of S is the simplicial complex €(S) with vertex set €2(S)
so that k + 1 distinct curves vg, ..., Vx span a k-simplex if and only if the isotopy
classes can be realized disjointly in S; see [Har81] and [MM99]. The curve complex
of (S, z) is denoted € (S, z) and is defined similarly. A simplex {vg, ..., V¢ in €(S)
or €(S, z) naturally determines an isotopy class of multi-curve, which is the union
of the pairwise disjoint representatives of vg, ..., Ug.

We consider €(S) and €(S, z) as geodesic metric spaces so that each simplex
1s 1sometric to a regular Euclidean simplex with all edge lengths equal to one. The
following 1s proven in [MM99].

Theorem 1.6 (Masur—Minsky). The spaces C(S) and €(S, z) are §-hyperbolic for
some § > Q.

Given a simplex v C €(S) or u C €(S,z) we will not distinguish between
this simplex and the isotopy class of multicurve it determines. Any simple closed
curve ¥ in (S, Z) can be viewed as a curve in S which we denote I1(#). This gives a
well-defined “forgetful” map

IT: €(S,z) = €(S)

which 1s simplicial.

Unless otherwise stated we assume that a multicurve v C €(5) is realized by its
geodesic representative in S (isotopy classes can be realized disjointly if and only
if the geodesic representatives are disjoint; see [CB87]). Associated to v there is an
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action of 71 (S) on a tree Ty, namely, the Bass—Serre tree for the splitting of 771 (.S)
determined by v. We will make use of the following theorem of [KLS09].

Theorem 1.7 (Kent-Leininger—Schleimer). The fiber of I1 over a point x < €(S)
is w1 (S y-equivariantly homeomorphic to the tree Ty, where v is the unique simplex
containing x in its interior L]

1.2.5. Measured laminations and the curve complex. The curve complex € natu-
rally injects into P .M sending a simplex v to the simplex of measures supported on v.
We denote the image subspace PME . We note that this bijection PMEe — €
1s not continuous in either direction. We will use the same notation for a point of
P MEe and its image in €.

In [K1a99] Klarreich proved that d€ == &£, Therefore, if we define

PMLs =PMLe UPFL
then there 1s a natural surjective map
PMEs — €

extending P.M¥ ¢ — €. The following is a consequence of Klarreich’s work
[K1a99], stated using our terminology.

Proposition 1.8 (Klarreich). The natural map P MEz — € is continuous at every
point of P FX. Moreover, a sequence {v,} C C convergesto |A| € EX if and only if
every accumulation point of {vp} in P.ME has |A| as its support.

Proof Theorem 1.4 of [K1a99] implies that if a sequence {v,, } converges in € to ||,
then every accumulation point of {v, } in PMZE has |A] as its support. We need only
verify thatif A € P¥ £ and every accumulation point A" in P.ME of a sequence {vy }
has |A| = |A’| then {v,} converges to |A| in €. For this it suffices to assume that {Un}
converges in P ME to A with || = |A].

To see this, let {X,} C 7 be any sequence in the Teichmiller space 7 for which
Up 1s the shortest curve in X;,. In particular £y,,(v,) is uniformly bounded. Since
every accumulation point of {v, } is in P ¥ X£, it follows that X, exits every compact
set and so accumulates only on P.MX in the Thurston compactification of 7.

Moreover, if A" is an accumulation point of X, in P.MX, then i (A", A") = 0 and
so [A”| = |A/| = |A| since A is filling.

Now according to Theorem 1.1 of [K1a99], the map

sys: I = €
sending X € ¥ to any shortest curve in X extends to

svs: TUPFY €
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continuously at every point of P # L. It follows that

lim v, = lim sys(X,) = |A|
—> 00 H—>00

in € and we are done. U

1.2.6. Cannon—Thurston maps. Fix X and ¥ hyperbolic metric spaces, F': ¥ —
X a continuous map, and Z C dY a subset of the Gromov boundary. A Z-Cannon—
Thurston map is a continuous extension F: ¥ U Z — X U 3X of F. That is,
Fly = F. We will simply call F a Cannon—Thurston map when the set Z is clear
from the context. We sometimes refer to the restriction dF = F|, as a Cannon—
Thurston map.

This definition 1s more general than that in [Mit98] in the sense that here we
require £ only to be continuous, whereas in [Mit98] it was demanded that ¥ be an
embedding. Also, we do not require F to be defined on all of ¥ =Y U 3Y.

To prove the existence of such a Cannon—Thurston map, we shall use the following
obvious criterion:

Lemma 1.9. Fix X and Y hyperbolic metric spaces, F: Y — X a continuous map
and Z C dY a subset. Fix a basepoint x € X. Then there is a Z-Cannon-Thurston
map F: Y UZ — X U3X if and only if for every z € Z there is a neighborhood
basis B; C Y U Z of z and a collection of uniformly quasiconvex sets Q; C X with
F(B; NY)C Q; anddx(x, Q;) > coasi — oo. Moreover,

()0 = ()20 = {F(2)}
determines F(z) uniquely. O]

Remark 1.10. For the purposes of the present work, it is more convenient to use the
more flexible definition of neighborhood basis. This is a collection of sets {B;(x)};
associated to each point x in the space with the property that a subset U/ is open if
and only if for every x € U, B;(x) C U for some j. Equivalently, the interior of
each B;(x) is required to contain x, and any open set containing x should contain
some B (x).

2. Point position

We now describe in more detail the map
& C(S)xH —€(5,2)

as promised in the introduction, and explain how this can be extended continuously

to €(S) = H.
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2.1. A bundle over H. Recall from Section 1.2.3 that Diff (S, z) = Diffs(S) N
Diff t(S, z) is the subgroup of diffeomorphisms of (S, z) isotopic to the identity
on S after forgetting z. The bundle determining the Birman exact sequence has a
subbundle obtained by restricting the evaluation map ev to Diffo(.5):

Diff (S, 7) —= Diffo(S) ——= §.

As noted before, Earle and Eells proved that Diff o(S') is contractible, and hence there
1s a unique lift

&: Diffo(S) — H

with the property that ev(Idg) = Z.

The map &V can also be described as follows. Any diffeomorphism S — S
has a lift H —» H, and the contractibility of Diffo(S) allows us to coherently lift
diffeomorphisms to obtain an injective homomorphism Diffo(S) —> Diff (H). Then
&V is the composition of this homomorphism with the evaluation map Diff (H) — H
determined by z.

Since p is a covering map, €V is also a fibration. Appealing to the long exact se-
quence of homotopy groups again, we see that the fiber over Z is precisely Diff (S, z).

We record this in the following diagram
o
p
S

Diff g (S, z) —— Diff(5) =

|

Diffo(S, z).

(D

The group Diff g(.S, 2) acts on Diffo(S) on the left by

hef =fok!

for b € Dift (S, z) and f & Diffp(S). Also recall from Section 1.2.2 that 7;(S) =
mo(Diff p(S, z)) with this isomorphism induced by a homomorphism

evy: Diff p(S,z) — m1(S).

Lemma 2.1. The lift
&v: Diffp(S) — H

is equivariant with respect 1o ev .
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Proof. We need to prove

v (& (f)) = &(f o h™)

for all f € Diffg(S) and 2 < Diff (S, z). Observe that since A(z) = z for every
h < Diff p(S, 2), ev(f) = ev(f o h=1) for every f < Diff4(S). Therefore, since &v
1s a lift of ev we have

PE() =ev(f) =ev(foh™) = p&(f o h™h)

and hence &v( /) differs from &( f o A~1) by a covering transformation o < 7{(S):

&(f oh™) = a(&F ().

The covering transformation ¢ appears to depend on both f and #. However if
H;, t €[0,1], is a path in Diff (S, z) from k = Hq to b’ = H then &(f o H, ")
is constant in ¢: this can be seen from the above description of €V as the evaluation
map on the lifted diffeomorphism group. It follows that ¢ depends only on f and
the component of Diff (.S, z) containing %. In fact, continuity of & and connectivity
of Diffo(S) implies that ¢ actually only depends on the component of Diff (S, z)
containing /, and not on f at all.

We have

o(2) = o(&(1ds)) = &(Ids o 1)y = &(h 1),

So if by, £ € [0,1], is a path in Diff(S) from A = hg to Idg = £y, then since
ev«(h) = o3, where o 1s represented by the loop £;(z), t € [0, 1], it follows that Ugl
is represented by the loop A;1(z), t € [0, 1]; see Section 1.2.3.

Now observe that & (h; 1), ¢ € [0, 1], is a lift of the loop A71(2),r € [0,1], to a
path from ¢(Z) to Z. Therefore, crh_l is 0!, and hence 0 = 03, = evy(h). ]

2.2. Anexplicit construction of ®. We are now ready to give an explicit description
of the map ¢. We will first define a map

$: €(S) x Diffo(S) — €(S, 2)

and show that this descends to amap @ : €(S)xH? — €(S, z) with = Poldx&.
Recall that for every v € ©°(S), we have realized v by its geodesic representative.
We would like to simply define

&, £)= f~'(v).

However, this is not a curve in (S, z) when f(2) lies on the geodesic v. The map we
define in the end will agree with this when f(z) is not too close to v, and it is helpful
to keep this in mind when trying to make sense of the actual definition of ©.

To carry out the construction of @, we now choose {€(0)}yeeosy C Ry sothat
N(v) = N (v), the e(v)-neighborhood of v, has the following properties:
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e N(v)= 8! x[0,1] and

« N)yNN@HYy=0itvnv = 0.
Let N°(v) denote the interior of N(v) and v* denote the boundary components of
N(v).

Given asimplex v C €(.S) with vertices {vg, . .. , V¢ } we consider the barycentric
coordinates for points in v:

(3% osv | 3 sy =lands; > 0. forall j = 0,....k}.
To define our map
$: €(S) x Diffo(S) — €(S, 2)

we first explain how to define it for (v, f) with v a vertex of €(S5). If f(z) € N°(v),
then we set

(v, f) = fH ()
as suggested above.
If f(z) € N°(v), then F~Y(w*) and f~1(v7) are nonisotopic curves in (S, z).
We will define (v, ) to be a point on the edge between these two vertices of

©(S, z), depending on the distance from f(z) to the two boundary components v "
and v~ . Specifically, set

;= d(v™, f(2))
2e(v)

where d(v", £(2)) is the distance inside N(v) from £(z) to v, and define
Ov, ) =tf TN+ 1 —0)f )

in barycentric coordinates on the edge [f_l(v+), f_l(v_)].
In general, for a point (x, /) € €(S) x Diff o(S) with x = Zj 8V €V =

{vg, ..., vt we define &D(x, /) as follows. As before, if f(z) & U; N®(v;), then
define

b(x, £) = 5 /7N w),
)
Otherwise, f(z) € N°(v;) for exactly one§ € {0,...,k}. Set

d(v;", f(2))

' T T 2e(m)

as above, and define

O(x, ) =5 (/7 O + A=) + D s Sy,
j#Fi
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The group Diff p(S, z) acts on €(S) x Dift4(S), trivially in the first factor and
as described in Section 2.1 in the second factor. Of course, sinceMDiﬂ“B(S, z7) <
Diff " (S, z) projects into Mod(S, z) it also acts on €(S, z). The map P is equivariant:
given i € Diff g(S, ), f € Diffo(S)and v avertexin €(S), provided f(z) &€ N°(v)
we have

S(h- (v, [)) = B(v, f b7
= (foh ™)' (v)
—ho /()
— - (f @)
= h- D, ).

The general situation is similar, but notationally more complicated.
Proposition 2.2. The map ® descends to a map ¢ making the following diagram

commiite

€(S) x Diffo(S)

Id‘e(s)xafl \

C(S) =< H - (S, z).

Moreover, ® is equivariant with respect to the action of w(S).

Here the action of w1(S) on €(S) x H is trivial on the first factor and the covering
group action on the second.

Proof, We suppose that &( fo) = &( f1) and must show ®(x, fo) = D(x, f1).
Appealing to diagram (1) in Section 2.1, it follows that fo = f1 o A for some
h e Diffo(S, z). We suppose that « is a simple closed curve on S and fo(z) & .

Then f1(z) = fi(h(2)) = folz) ¢ & and
d(fo(2), ) = d(fr(h(2)), o) = d(/1i(2), @).

Moreover, f; '(a) = h~1(f{ 1 (@) and since ™! is isotopic to the identity in (S, z),
it follows that f5 () and f; ! (@) are isotopic in (S, 2).

Recall that the dependence of ®(x, ) on f was only via certain isotopy classes
/o) and a single distance d(v', f(2)). Since these data are the same for £ and
f1, it follows that N _

P(x, fo) = P(x, /1)
and so @ descends to €(S) x H as required.

Lemma 2.1 implies that Ide(g) > éV is equivariant with respect to evy. Thus, since
P is equivariant, so is ©. ]
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Proposition 2.3. Given x € €(S), let v C C(S) be the simplex containing x in its
interior. Then the restriction

Oy = Slpxm: H — I 1(x)

is obtained by first projecting to T, then composing with the equivariant homeomor-
phism T, =~ I17Y(x) from Theorem 1.7.

Proof. Fix x € €(S), the simplex v = {vg,...,Vx} C €(S) containing x in its
interior, and write

k
X = ZS,;U,;
i=1
in terms of barycentric coordinates.

We note that the neighborhoods N(v;) determine a map from H to the Bass—Serre
tree T, associated to v as follows. We collapse each component U of the preimage
P~ (N (v;)) onto an interval, say [0, 1], by the projection defined as the distance to the
component of p~1 (v:) meeting U, multiplied by 1/(2¢(v;)). If we further collapse
each component of the complement of

P '(N(vo) U+ U N(vg))

to a point, the quotient space 1s precisely 715.
The map P, is constant on the fibers of the projection to Ty. Thatis, ®,: {x} x
H — IT Y(x) C €(S,z) factors through the projection to T

Py

7,

{x}x H

=%} .

Moreover, the equivariance of ® implies that
Ty = I7400

1s equivariant. According to [KLS09], the edge and vertex stabilizers in the domain
and range agree, and in fact this map 1s the homeomorphism given by Theorem 1.7,
as required. ]

2.3. A further description of € (5, z). We pause here to give a combinatorial de-
scription of €(S, z) which will be useful later, but is also of interest in its own right.
Given any simplex v < €(S), the preimage of the interior of v admits a 71 (5)-
equivariant homeomorphism

I~ (int(v)) = int(v) x Ty
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as can be seen from Theorem 1.7. As 1s well-known, the edges of T, can be labeled
by the vertices of v. Now, if ¢: v/ — v is the inclusion of a face, then there is a
m1(S)-equivariant quotient map ¢*: T, — T, obtained by collapsing all the edges
of Ty labeled by vertices not in ¢(v’) (compare [GL0O7], for example). This provides
a description of TT~!(v), the preimage of the closed simplex, as a quotient

( |_| % TU»)/N.

¢ v’—v

Here the disjoint union is taken over all faces ¢ : v* —> v and the equivalence relation
~ 1s defined by

(@ (x).1) ~ (x,¢™(1))

for every inclusion of faces ¢p: v — v’ and every x € v”, t € Ty, Said differently,
we take the product v x T, and for every face ¢p: v' — v, weglue v x T} to v/ x Ty

along ¢p(v") x Ty by ¢ 1 x ¢p*.
We can do this for all simplices, then glue them all together, providing the fol-
lowing useful description of €(S, z).

Theorem 2.4. The curve complex € (S, z) is 1 (S )-equivariantly homeomorphic to

|_| vxTv)/w.

vCE(S)

Here the disjoint union is taken over all simplices v C C(S), and the equivalence
relation is generated by

(@(x),1) ~ (x,¢™(1))

Sfor all inclusions of faces ¢ v/ —vall x e v and all t € T,. O

2.4. Extending to measured laminations. The purpose of this section 1s to modify
the above construction of & to build a map

W ML) < H — ML(S, 2)

and to prove that this is continuous at every point of #£(S) x H; see Corollary 2.10.
We do this by defining a map on ME(S) x Diffy(S), and checking that it descends
to ME(S) x H.

Before we can begin, we must specify a particular realization for each element of
ME(S) as a measured lamination. Given any element A € ME(S), we suppose A
also denotes the measured geodesic lamination representing it. We then produce an

element A measure equivalentto A by replacing all simple closed geodesic components
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ofthe support |A| with appropriately chosen foliated annuli. We now explain this more
precisely and set some notation.

Given a measured geodesic lamination A, the support |A| can be decomposed into
a finite union of pairwise disjoint minimal sublaminations; see [CB87]. Write

A = Cur(A) + Min(A),

where |Cur(A)| is the union of all simple closed geodesics in |A| and |[Min{A)| =
|A| — |Cur(A)|. We construct a measured lamination A measure equivalent to A by
taking

A= Ann(i) + Min(jn),

where Min(i) = Min(4) and Ann(i) is a measured lamination whose support is a
foliation on annular neighborhoods of |Cur(A)| defined as follows.

The sublamination Cur(A) can be further decomposed as Cur(d) = Zj Lz
where 7; v; means f; times the transverse counting measure on the simple closed
geodesic component v; of |[Cur(A)|. Then \Ann(i)| is the disjoint union U; N(v;),
with each N(v;) given the foliation by curves equidistant to v;. This foliation of
N(v;) is assigned the transverse measure which is ¢; /(2€(v;)) times the distance
between leaves, and Ann()t) is the sum of these measured laminations; see Figure 2
for a cartoon depiction of A and 8 Choosing {e(v)} sufficiently small it follows that
lAnn(A)| N [Min(A)| = 0 for all A.

For future use, if Cur(A) = }; 1;v;, then we define

T(A) = T(A) = max ;.
J

If [Cur(A)| = G weset T(A) = T(A) = 0.

For any measured geodesic lamination A, by construction we have |A| C |)AL|
Al is a subset of |): , and that each leaf of |A| is a
leaf of |i |. The difference between the total variations assigned an arc by A and A is
estimated by the following.

meaning that as subsets of S,

Lemma 2.5. Ifa is any arc transverse to |i
have

, then it is also transverse to |A| and we
@) —Ma@) = TR).

Proof The transversality statement is an immediate consequence of |A| C \i|
Since Min{A) = Min(A), we sce that

A(a) — A(a)| = |Ann(A)(a) — Cur(R)(a)|.
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Figure 2. Removing simple closed geodesics and inserting foliated annuli.

The intersection \Ann(i)| Ma 1s a union of subarcs of @, each containing an intersection
point of |Cur(A)| M a, with the possible exception of those arcs which meet the
endpoints of . If a9 C a 13 one of the subarcs which meets one of the endpoints,

then we have |Ann(i)(a0) — Cur(A)ao)| = T(A)/2. Since there are at most 2 such
arcs, the desired inequality follows. L]

The following is also useful.

Lemma 2.6. Suppose A, —> A in ME(S) with A € FE(S). Further suppose that

|An| converges in the Hausdorff topology on closed subsets of S to a set X. Then X
is a geodesic lamination containing the geodesic lamination |A|.

Proof. If |A,| = \in\ is a geodesic lamination for all #, then the fact that £ is a
geodesic lamination is well-known (see [CB87]), as is the fact that any Hausdorff
limit of {|A.|} contains |A| (compare [Thu80], Proposition 8.10.3).

Since A, — A and A € FX, it follows that no simple closed geodesic occurs
infinitely often in {|Cur(A,)|}. Further note that if {v,} is any sequence of distinct
simple closed geodesics in S, then their lengths tend to infinity and hence e (v,) — 0.
Therefore, the Hausdorff distance between |A,| and |in| tends to zero, and so the
Hausdorff limits of |A,| and |)Ann | are the same. As above, we see that X is a geodesic
lamination containing |A|. O]

Now, given any (A, f) € ME(S) x Ditfo(S), we would like to simply define
TGN = .
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As before, this does not make sense when f(z) lies on the supporting lamination |)Z |
This isremedied by first splitting open the lamination along the leaf which f(z) meets
to produce a new measured lamination A representing the measure class A (there 1s
no ambiguity about how the measure 1s split since A has no atoms — this is one benefit
of the realization A over the measured geodesic lamination A). If f(z) lies on a leaf
of |):| then the new lamination |i’| has either a bigon or annular complementary
region containing f{(z)and f ! (i) is defined to be f~! (i’). The support | F 1 ():’)|
is contained in f 1 (|)2’ ), and this containment can be proper since f_l(\i\) may
have an isolated leaf. Indeed, this happens precisely when f(z) lies on a boundary
leaf of |i|

Train tracks provide a more concrete description of U( £, A) which will be useful
in proving continuity results. Let &£ be any geodesic lamination on S and ¢ > 0
sufficiently small so that the quotient of ZYE(E{’,) by collapsing the ties defines a train

track 7 as in Section 1.2.2. Suppose that A 1s a measured lamination on S for which
|)1 | is contained in N (&£) and is transverse to the ties. If f(z) & N(£), then T( £, A)
is the lamination on (S, z) determined by the weighted train track /1 (t(i)).

If f(z) € N.(X£)then by a small perturbation of € we may assume that f(z) does
not lie on a the boundary of any rectangle and that each switch of 7 1s trivalent. Then
either f(z) is outside N (£) and we are in the situation above, or else f(z) is in
the interior of some rectangle R. Furthermore, 7 can be realized in N (£) with the
branch f g associated to R contained in R.

We modify the train track 7 at the branch S as follows. Remove an arc in the
interior of Bp leaving two subarcs ,8% and f' of Br. Insert two branches f% and
ﬁi creating a bigon containing f(z); see Figure 3. The result, denoted 7/, is a train

track on (S, f(z)).

R
; , By fi\ B
r ) Ja
Br PR

Figure 3. Modifying 7 to 7’.

If f; € Diffy(S) is an isotopy with f = fy and f;(z) € int(R) for every
t € [0,1], and 7 is constructed for f; as 7 is constructed for f (so v = 1), then
S H(z)) is (isotopic to) f1(z’) for all ¢.

The measured lamination A makes 7/ into a weighted train track /(A) on (S, f(2))
as follows. For the branches of 7’ that are the same as those of 7, the weights are
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defined as before. To define the weights on the new branches, we first consider the
tie ¢ C R that contains f(z), and write it as the union of subarcs ¢ = a* U a? with
a* Ma? = { f(z)}. We define the weights on the branches B and ﬁj’; of the bigon to

be Ala*) and A(a?), respectively, while the weights on the branches ﬁ% and p% are
both i(a) = i(a“) + ;I(ad); see Figure 4. The lamination f_l(i) is the lamination
determined by the weighted train track £~ 1{z/(A)).

. Ma*y
Ma) @)
s /S

Aa®)

Figure 4. Weights on 7/ determined by A and f(z).

The proof of the following is similar to that of Proposition 2.2 and we omut it.

Proposition 2.7. U descends to a w1 (S )-equivariant map W:

ME(S) % Diffo(S)

IdM;g(g)XE\?l \

ME(S) x H

. ME(S, 2).

]

Remark 2.8. Our construction of ¥ depends on our choice of representation of
elements in ML An alternative would be to realize each element of MX by a
measured foliation. Indeed, the hyperbolic metric determines a complex structure,
and for each element A € MZL there is a unique quadratic differential for which the
vertical foliation realizes A; see [HM79]. Our choices are more compatible with the
use of hyperbolic geometry in Sections 3 and 4.

Because of the particular way we have realized our laminations, neither the map
U nor the map ¥ need be continuous at measured laminations with nontrivial annular
component. However, this 1s the only place where continuity can break down. In
particular, we have the following.

Proposition 2.9. The map U is continuous on FEL(S) x Difto(S).
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Proof. We will show that for any sequence {(A,,, f,)}1in ML(S ) > Diffy(S) converg-
ingto (A, f) e FL(S) x Diffo(S) there is a subsequence for which {{I}(Ank, Jui )}
converges to E’()u, S). Since we will find such a subsequence for any sequence
converging to (A, f), continuity of W at (A, /) will follow.

We begin by passing to a subsequence for which the supports {|in |} converge in
the Hausdorff topology to a closed set £. It follows from Lemma 2.6, that £ is a
geodesic lamination containing |A| = |i|

Case 1. Suppose f(z) &€ £.

In this case, there is an € > 0 so that the ¢-neighborhoods of f(z) and £ are
digjoint. Since f, — f as B — o0, there exists N > Oso thatforalln > N,
fn(z) € N f(z)), and moreover, f, is isotopic to f through an isotopy f; such
that f;(z) € Ne(f(z)) for all t. Taking N even larger if necessary, we may assume
that for n > N,
we1ghted train tracks r()u) and r()u ), respectlvely Slnce )L > A it follows that
r(/ln) — f()h) as n — 00,

Since f, is isotopic to f by an 1sotopy keeping the i 1mage of z in N.( f(z)), it fol-
lows that £ 1(z) = £, '(t), up to isotopy. Therefore, f (f()h Vand £~ l(f()n )]
are isotopic and so we have convergence of weights f— (I(AR)) — f (r()n))
which implies the associated measured laminations converge

V(. fn) = YA, f)
as required. This completes the proof for Case 1.

Case 2. Suppose that f(z) € £.

We choose € > 0 sufficiently small so that the quotient of N (£) by collapsing
ties 1s a train track z, so that f(z) lies in the interior of some rectangle R of N (X)
and so that t is trivalent.

Let N > 0 be such that for all » = N, f,(2) also lies in the interior of R and
S 1s isotopic to f, by an isotopy f; with f;(z) contained in R for all . For each
n > N, the train track 7 associated to N(£) and the points f,(z) and f(z) define
tracks 7/, and 7/, respectively, with bigons as described above. Moreover, f,,1(z))
and f~!(z') are isotopic, and we simply identity the two as the same train track on
(S,2).

Since A, is converging to A as # — oo, it follows that the weighted train
tracks r():n) converge to t(i). Therefore, to prove that the weighted train tracks
f_l(t;():n)) = fn_l(r;():n)) converge to f_l(r’(/i)), it suffices to prove that the
weights assigned to f ! (Bg) and f1 (ﬁi) by in converge to the weights assigned

to these branches by A. This is sufficient because the weights on the remaining
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branches agree with weights on the corresponding branches of 7, where we already
know convergence. From this it will follow that @(An, In) — {i}()h, f)

Note that the weights on 8 g determined by the in converge to the weight defined
by A So, since the sum of the weights on f_l(ﬁ%) and f_l(ﬁfe) is precisely the
weight on S, it suffices to prove convergence for the weights of one of these, say,
)

To define the required weights, first recall that we have the tie ¢, C R with
Jn(z) € a,, and write g, as aunion of subarcs a,, = a Uag with a¥ ﬂag =2 LT
Similarly, we have atie ¢ © R witha = a¢* Ua? and a* Na® = {f(2)}. Then the
weights on f *1(,8;) determined by i r and A are given by

An(@®) and A(a"),

respectively.

Therefore, we must verify that in(a;‘) — i(a”). However, since T(in) — 0 as
k — oo, Lemma 2.5 implies that it suffices to prove A,(a) — A(a").

Fix any ¢ > 0. Since Cur(A) = 0, the measure A|, has no atoms. Thus we can
find subarcs a* and aff_ of & with

U {41 {41
a’ S a Sa, Ca

so that
Ala?)y < Aa*) < )L(a‘i) and )L(ai) — Ala") < é.

Since A, — A, it follows that we also have
lim An(at) = Ala")

and
lim A,(a*) = A(a®).

Furthermore, since @,, — @ and a* — a* in the C!-topology, we see that

firm e An(ay) = lim An(a’t) = A(a)

and
lim inf)nn(aﬁ) > lim A,(a”) = A(a?).
—00 R—00

Since lim inf Ap(a, ) < lim sup An{(a}), combining all of the above, we obtain

| limsup An(ay) — A(a™)| + | liminf A,(ak) — Ada™)| < 26.

As § was arbitrary, it follows that

lim Ap(ay) = limsupA,(ay) =liminf A,(a,) = A(a")
R—>00 - n—>00
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and this completes the prootf of Case 2. Since Cases 1 and 2 exhaust all possibilities,
this also completes the proof of the proposition. L]

Corollary 2.10. The map WV is continuous on FL(S) x H.

Proof. The map &V is a quotient map. ]

2.5. @ and ¥. The map ¥ descendsto amap PML(S) xH — PMIL(S, z) in the
obvious way. We denote this map by ¥ with the meaning determined by context.

We let We denote the restriction of W to PME ¢ (S) x H. The map We has image
PMLe(S, z).

Lemma 2.11. The following diagram commuites.

PMLe(S) x H —E PMLe(S, 2)
€(S) x H —2——¢(S, 2).
The vertical arrows here are the natural maps.

Proof. Thetwo maps are defined identically on ME e (S)asthere A = Cur(A). 0O

If we let Wz be the restriction of the map ¥ to PMZ g x H, then we have

Proposition 2.12. There is a continuous w1 (S )-equivariant extension d: €(S) %
H — €(S, z) which fits into a commutative diagram

PMLRS) x T —2 > PMLS(S, 2)

I

€(8) x H —2—= (S, 2).

Proof. Via Klarreich’s work, as discussed in Section 1.2.5, we identify d€ with &%,

Moreover, the vertical maps in the statement of the proposition send P#£(S) x H

and PFL(S, z)onto EL(S) xH and £L(S, z), respectively, using this identification.
From the construction of ¥ and the definition of 7 X, one can see that

W(FLS) x H) € FL(S,2).

Furthermore, if A, A" € ME(S) with |A| = |4’
W determines a map

,then [ (A, x)| = |[¥(A/, x)|. Thus,

E¥(S) x H — &£(S,2)
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which extends & to the required map
®: () x H — (8, 2).

Continuity follows from Proposition 1.8 and Corollary 2.10, and equivariance follows
from continuity and the equivariance of . (]

We will also need the tollowing

Proposition 2.13. Suppose {v,} C C(S), {xpt C H, and x, — x € H. If {v,}
does not accumulate on dC(S), then {®(vy, x,)} does not accumulate on 3C(S, z).

Proof. The proof is by contradiction. Suppose {P(v,, X,)} accumulates on some
lamination || € J€(S,z), and pass to a subsequence which converges to || in
C(8,z). If any curve in the sequence {v,} occurs infinitely often, then passing to a
further subsequence, we can assume v, 1s constant and equal to v. Then

| = lim ®(v,, xp) = lim $(v,x,) = &(v,x) € €(5,2).
H—>00 H—>00

This is a contradiction since || € dC€(S, z). So without loss of generality, we may
assume that all the v, are distinct.

Fix elements A, € ML(S) representing the projective classes associated to v,
via the natural bijection PMELe(S) — €(5), and as in Section 2.4, we let in be
our preferred representative. After passing to a further subsequence and rescaling if
necessary, we may assume that for some A € ME(S), we have convergence A, — A
in the space ME(S). Since vy, are all distinct, T(A,) — 0. Thus, as in the proof
of Lemma 2.6, we may pass to yet a further subsequence 1f necessary so that |/in|
converges to a geodesic lamination X

It follows from Proposition 1.8 that no sublamination of £ lies in E£(S). In
particular, removing the infinite isolated leaves of ¥, we obtain a lamination which
is disjoint from a simple closed curve v’ and contains the support of A. Choosing
¢ > 0 sufficiently small, we can assume that the train track 7 obtained from N.(X)
(as described in Section 1.2.1) contains a subtrack 7y so that (1) g 1s disjoint from
some representative o of v’ and (2) 7(A) has nonzero weights only on the branches
of To.

Now let f € Diffy(S) be such that &V( f) = x. After modifying 7 and 7o to 7
and 7/ as in Section 2.4 if necessary (that is, after a possible isotopy and insertion of
a bigon around 7(z)), it follows that for sufficiently large n, 7! (t’(ﬁun)) determines
the lamination W{(A,, x,). After passing to a further subsequence if necessary, we
can assume that 1 (r’(in)) converges to some f~1(z") ), also having nonzero
weights only on £ ~1(z}). Ttfollows that jiq, the limit of W(A,, x,), is notin FL(S, z)
since its support is disjoint from £~ !(«). Since PW(A,, x,,) € P.ME¢(S, 2), Propo-
sition 1.8 implies |ito| = ||, which is a contradiction. O]
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Lemma 2.14. For (|A|,x), (A, x") € £(S) x H, d(A|, x) = B(A|, x") if and

only if |A| = |A| and x and x' are in the same leaf of p~ ' (|A|) or in the closure of
the same complementary region of H — p~1(JA|).

Proof If x,x'liec onthesameleafof p~1(|A|) or in the closure of the same component

of H — p = B(JA], x).
Now we prove the forward direction; suppose that ®(|A[, x) = P(|A/], x"). We
must show that [A| = |A’| and x and x’ are in the same leaf of p~!(JA|) or in the

closure of the same complementary region of H — p~1(|A]).

We first apply an isotopy so that the laminations ®(|4], x) and (|A’[, x) are equal
(not just 1sotopic). Forgetting z, the laminations remain the same (though they may
have a bigon complementary region, and so are not necessarily geodesic laminations),
and hence |A| = |A/|.

Proving the statement about x and x’ is slightly more subtle. For simplicity, we
assume that x and x’ lie in components of Hl — p~'(|A|) (the general case is similar,
but the notation is more complicated). Let £ e Dlﬁo(S) be such that ev(f) = X
and ev( f') = x'. Letf and f’be litts of f and f' with f(z) =¥ 1 andf (z) =x’
(see Section 2.1). Modifying f and f” by an element of Diff 4(S, z) if necessary, we
may assume that £ ~1(|A]) = B(JA|,x) and F'1(|A]) = D(|A], x’) are equal (again,
not just isotopic).

Since /(A = /"~ , it follows that f” o f~1(|A|) = |A|. Back in H this
means £ o f~H(p7 (IAN)) = pTH(IA]). Since fo fTHx) =x". and f'o fThis
the identity on dHI, it must be that x and x’ lie in the same complementary region of
H — p~ ]

3. Universal Cannon—Thurston maps

3.1. Quasiconvex sets. For the remainder of the paper, fix a bi-infinite geodesic y
in the universal covering p: H — S for which p(y) is a filling closed geodesic in S,
by which we mean that p(y) is a closed geodesic and the complement of p(y) is a
union of disks in S. Let § € m1(S) generate the (infinite cyclic) stabilizer of y. We
will make several statements about ¥, though they will also obviously apply to any
m1(S)-translate of y.

Define

X(y) = (C(S) x )

where & is the map constructed in Section 2.2. Let H () denote the two half spaces
bounded by ¥ and define

HE(y) = &(C(S) < HE(y)).
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Recall that N(v) = Ney(v) s a small neighborhood of the geodesic represen-
tative of v € €°(S). We may assume that the €(v) are small enough to ensure that
every component ¢ C ¥ M p~L{N(v)) is essential in the strip of p~ (N (v)) that «
meets. Here, we say that arc is essential if it 1s not homotopic into the boundary
keeping the endpoints fixed.

A subset X of a geodesic metric space is called weakly convex if for any two
points of the set there exists a geodesic connecting the points contained in the set.
Observe that the image of a 1-Lipschitz retraction on any geodesic metric space is
weakly convex. In a Gromov hyperbolic space, weakly convex sets are in particular
uniformly quasi-convex.

Proposition 3.1. X(y), #F(y) are simplicial subcomplexes of €(S, z) spanned by
their vertex sets and are weakly convex.

To say that a subcomplex 2 C €(S, z) is spanned by its vertex set, we mean that
(2 is the largest subcomplex having 2@ as its vertex set.

Proof of Proposition 3.1. We describe the case of ¥(y), with J/*(y) handled by
similar arguments. First we appeal to Proposition 2.3 and Theorem 2.4 to describe
the structure of Z(y) C €(S, z). Next we prove that X(y) is spanned by its vertices
and finally we construct a simplicial retraction p: €(S, z) — X(¥). The existence
of p implies the proposition since a simplicial map is 1-Lipschitz.

For any x € int(v), £(y)NTIT71(x) = ®({x} x y), which is a bi-infinite geodesic
in the tree IT71(x) = Ty; see Proposition 2.3. One can also see this as the axis of §
in Ty (since p(y) is filling, § 1s not elliptic in 7y). We denote this axis by y, C Ty,
Recall from Section 2.3 that an inclusion of faces ¢: v' — v induces a quotient of
associated trees ¢™*: T, — T,+. Since the axis of § in T, 1s sent to the axis of 6 in T}/
by ¢*, we have ¢*(yy) = yu. Therefore, with respect to our homeomorphism with
the quotient of Theorem 2.4, we have

= ( || vxw)/~ @)

vCE(S)

where, as in Theorem 2.4, the disjoint union is over all simplices v < €(S), and the
equivalence relation is generated by

(@ (x). 1) ~ (x,¢™(1))

for all faces ¢: v — v, all x € v’ and all ¢ € y,. We also use the homeomorphism
in (2) to identify the two spaces.

We can now show that X(y) i1s spanned by its vertices. The simplices of €(S, 2)
via the homeomorphism of Theorem 2.4 are precisely the images of cells v X o in
the quotient, where v C €(S)is a simplex and o C Ty is an edge or vertex. Thus, if
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the image of v X o 1s a simplex, and we let vy, ..., vx be the vertices of v and ¢¢, £;
the vertices of ¢ (assuming, for example, that ¢ 1s an edge) then the vertices of the
simplex determined by v < o are images of (v;,#;) fori = 0,... , kand j = 0,1. If
these vertices lie in X(y), then tg,t; € ¥y, hence o C yy and the image of v X 7 lies
in £(y). It follows that Z(y) is a simplicial subcomplex of €(S, z) spanned by its
vertex set.

Next, we will define a retraction

pE(S,z) = X(y).
Let 1y : Ty — v, be the nearest point projection map. Extend this to
Py =1d Xy v xXTy = v Xy,
Observe that if ¢ v/ —> v 1s a face, then nearest-point projections commute

Nyt Ogb* = Qb*onv-

This is because a geodesic segment in T, from a point £ to y, is taken to a geodesic
segment from ¢ *(r) to y,+. From this it follows that the maps p, give a well-defined

map p.

All that remains is to verity that p is simplicial. Given a simplex which is the
image of v X ¢ in the quotient, for some v C €(S) and ¢ C T, the p-image of this
simplex is the image of py(v X ¢) = v X ny (o) in the quotient. Since 1y () is either
an edge or vertex, v x 1, (o) projects to a simplex in the quotient, as required. ]

Throughout what follows we continue to denote the axis of § in Ty, by v, C Ty
or, with respect to the homeomorphism T, 22 T 1(v), by y, = ®({v} < ).

Proposition 3.2. We have
HT(y) U I (y) = (S, 2)

and
HKE () NI (y) = X(y).

Proof. The first statement follows from the fact that H ™ (y) U H~(y) = H and that
D 1s surjective.
For the second statement, first observe that since y  HT(y), it follows that

X(y) c #(yyn #x - (y).

To prove the other inclusion, look in each of the trees ITT~!(v) == T,,. For each vertex
v € €(S), we define the half-tree

H¥(yy) i= H5(y) NI (v) = O({v} x HF (7).
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Let u € H™(y,) N H (yy) be any vertex; we will show that # € y,. We can
write ¥ = ®({v} x U) where U is a component of H — p~1(N(v)). Therefore,
UNHT(y) # Gand U N H(y) # 0. Since U is connected and y separates
H*(y) from H™(y)wehave U My +£ @ Hence ®({v} x U) = u € y, as required.

Given any simplex ¥ = {uo,...,ux} C HT(y) N # (y), by the previous
paragraph we have u; < X(y). Since X(y) is a subcomplex spanned by its vertex
set, we have ¥ C X(y) and hence

H ()N H(y) C E()
which completes the proof. ]

It will be convenient to keep the terminology in the proof of this proposition as
well. We therefore think of 7, as “bounding the half-trees” H*(y,) C T, = II~1(v).

3.2. Rays and existence of Cannon—-Thurston maps. An essential subsurface of
S 1s either a component of the complement of a geodesic multicurve in S, the annular
neighborhood N(v) of some geodesic v € €9(S), or else the entire surface S.
A point x € dH is afilling point for an essential subsurface ¥ (or simply, x fills ¥)
if
s for every geodesic ray r C H ending at x and for every v € €°(S) which
nontrivially intersects ¥, we have p(r) Nv == @ and

« there is a geodesic ray ¥ C H ending at x so that p(r) C Y.

For any r, v as in the first item observe that the ray r meets infinitely many
components of p~'(v). Observe also that every point x < dH fills exactly one
essential subsurface of .

Definition 3.3. Let A C 9H be the set of points that fill S.

Lemma 3.4. I[f x & A and r is a ray ending at x then ®({v} x r) has bounded
diameter for all v € €°(S).

Proof Since x doesnotfill S there is asimple closed geodesic v’ C S sothat p(r)Nv’
is finite. Tt follows that ®({v’} x r) has bounded diameter in TI~1(v") C (S, z).
Since ®({v’} xr)and ©({v}xr)have bounded Hausdorff distance, we are done. [

Recall that we have fixed once and for all a geodesic ¥ C H which projects to
a non-simple closed filling geodesic in S. Consider a set {y,} of pairwise disjoint
1 (S)-translates of 7y, with the property that the half spaces are nested:

HY(y)) D H (32) D -~



Vol. 86 (2011) Universal Cannon—Thurston maps T97

Since the v, are all disjoint, proper discontinuity of the action of 1 (S) on H implies
that

m ——
m H (yn) = {x}
n=1
for some x € 9H. Here the bar denotes closure in H = H U dH. We say that {y,}

nests down to x. Note that { H 7 (y,,)} is a neighborhood basis for x.

Given any x € doH, if r C H is a geodesic ray ending at x, then since p(y) is
filling, p(r) intersects p(y) infinitely often. It follows that there is a sequence {¥, |
which nest down to x.

Proposition 3.5. If {yn} is a sequence nesting down to a point x < A, then for any
choice of basepoint uy < €(S, 2),

d (o, H ¥ (yn)) — 00
Q8 R,

Proof. Recall that the curve complex and its one-skeleton are quasi-isometric
[MM99]. Thus, in what follows all distances will be computed in the 1-skeleton.
We write ug = ©(vg, y) for some vertex vg € €(S) and y € H. By discarding a fi-
nite number of initial elements of the sequence {y, } we may assumethat y € H ()
for all n, and so ug € '~ (yy) for all a.

Now, fix any R > 0. Since

HT(y) D H (y) D H (ya) Do

we must show that there exists N > 0 so that for all ¥ € # T (yn), d(uo,u) > R.

Claim 1. Tt suffices to prove that there exists N > (, so that for all
u € H(yn) NI 1(B(vo. R)),

the distance inside TIY(B(vg, R)) from ug to u is at least R.

Proof. Observe that any edge path from a point ¥ € €(S,z) to #g which meets
€(S,2) — II7Y(B(vo, R)) projects to a path which meets both €(S) — B(vo, R) and
Vo, and therefore has length at length at least R. Since I is simplicial, the length of
the path in €(S, z) is also at least R. O]

The intersection of # ¥ (y,) with each fiber ITI71(v) = Ty is a half-tree denoted
by H(y,) and bounded by ¥, » = £(y,) N II71(v). See the proof of Proposi-
tion 3.2 and comments following it.



798 C. J. Leininger, M. Mj and S. Schleimer CMH

Claim 2. For any k > 0, there exists positive integers N; < Ny < Ny < - < N
so that

:VNj,?J m }’Nj+1,n — @ (3)
forall j =1,...,k—1andallv € B(vg, R).

Proof. Theproofis by induction on k. For k = 1, the condition is vacuously satisfied
by setting N; = 1. So, we assume it is true for k& > 1, and prove it true for & + 1.
Thus, by hypothesis, we have found N1 < Ny < -+ < N so that (3) 1s true, and we
need to find Ny so that

YNy @ M YNp 10 — @ (4)

for all v € B(vg, R).
We suppose that no such Ny 1 exists and arrive at a contradiction. Observe that
the nesting
H (1) DH (122) D - ..

means thatif y, , N ¥, = @ forsome m > n, then y, , N Yp4 ;e = @forall j > 0.
Thus, since no such Ng ) exists, it must be that for every j > 0, there exists a
curve v; € B(vo, R) so that

YNew; OV YNe+jo; = 0.

Letu; € YNgw; N YN+ /,0; be avertex in the intersection. This vertex is the image
under the map @, of a component U/;  H — P 1(v;) which meets both yx, and
YN, 1 j; see Figure 5.

Figure 5. The region U; and the geodesics yn, and yn, + ; from the sequence nesting down
on x.
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Let g; € U; C H be a geodesic segment connecting a point Y, € Vg to
yj+ € YN, +j. Furthermore, we may pass to a subsequence so that the y; converge
to some point y (possibly in dH) of yu, . It follows that the sequence of geodesics
&; converge to a geodesic ray or line 7, connecting y and x.

By passing to a further subsequence, we can assume that v; limits in the Hausdor{l
topology to a geodesic lamination £, and that p(r.) does not transversely intersect &£.
Because the v; are all contained in B(vg, R). £ cannot contain an ending lamination
as a sublamination by Proposition 1.8. It follows from [CB87] that £ 1s obtained
from a lamination supported on a proper subsurface 2 by adding a finite number of
isolated leaves. Any geodesic in S which does not transversely intersect £ can only
transversely intersect d ¥ twice (when it possibly exits/enters a crown; see [CB87]).
Since p(reo) meets d2 at most twice the point x does not fill S, a contradiction. [

Now, pick an integer k > R + 1 and let Ny < N> < -+ < N be as in Claim 2.
There can be no vertices in (yn;) N E(yn; ) N I~ Y(B(vo, R)). and hence

E(yn;) N %(yw, ) NI (B(vo, R)) = 0.
Moreover, since
'}{H_(:VNl) 2 J‘{H_(J/Nz) R }e_‘_(}’Nk)

it follows from Proposition 3.2 that
X(yn;) N E(ywn;) NI (B(vo, R)) = 0 )
for alli == j between 1 and k.

Letu ¢ #(yn, )N~ 1(B(vo, R))beany pointand {ug,#y,. .., Uy = u}bethe
vertices of an edge path from i to u within II71 (B (v, R)). Wehaveug € H(YN;)
forall jandu € X" (yn,) C }€+(j/Nj) for all j. By Proposition 3.2, the edge path
must meet X(yy, ) for each j. That is, for each j, there is some i = i(j) so that
Ui(j) € SE(}/Nj). By (5), there must therefore be at least & > R + 1 vertices in the
path, and hence the length of the path 1s at least R.

Therefore, setting N = Ni, we have forallu € # T (yn) N I~ 1(B(vg, R)), the

distance inside TT~1(B(vg, R)) from ug to u is at least R. By Claim 1, this completes
the proof of the proposition. ]

We can now prove the first half of Theorem 1.1.
Theorem 3.6. For any v € €°(S), the map
$, H — €(S,2)
has a continous w1 (S )-equivariant extension to

@, HUA — €(S,2).
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Proof. Observe that @, is already defined, continuous and equivariant. All that
remains is to extend it to ®, on A by checking the criterion of Lemma 1.9 from
which continuity follows. Equivariance is a consequence of equivariance of ¢, and
continuity of @,.

Fix abasepoint#g € €(S,z). Given any x € A, let {y,} be any sequence nesting
down on x. According to Proposition 3.5, we have

d(ug, H 1 (yn)) = oo.

Moreover, by Proposition 3.1, # T (1) is weakly convex and hence uniformly quasi-
convex. Finally, observe that ©,(H " (y,)) = ®({v} x H " (yn)) C H T (ys). Since
x € A was an arbitrary point, Lemma 1.9 implies the existence of an A-Cannon—
Thurston map &,. ]

We note that, given x € A, the image ®,(x) depends only on x, not on v, and is
the unique point of intersection of the sets

m %Jr(?’n)—

We can therefore unambiguously define d®: A — 9€(S,2) by d®(x) = P, (x) for
any x ¢ A, independent of the choice of v € €2(S).

3.3. Separation

Proposition 3.7. Given distinct x,y < A, let € be the geodesic connecting them.
Then there are m1(S )-translates v and vy of Y defining half-space neighborhoods

H*(yy) and HT(yy) of x and y, respectively, with
IHF(yx) NIH T (yy) = 0
if and only if p(€) is non-simple.

Before we can give the proof of Proposition 3.7, we will need the analogue of
Proposition 3.2 for the boundaries at infinity. Recall that  was chosen to be a bi-
infinite geodesic with stabilizer {d} and p(y) a filling closed geodesic.

Proposition 3.8. I7e have

AHT(Y)UdH ™ (y) = 3€(S,2)
and

AHT(y) N AKH ™ (y) = X (y).
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Proof. This first statement in an immediate consequence of Proposition 3.2. The

second also follows from this proposition, but requires some additional argument.
Since X(y) = JFT(y) N H~(y), it easily follows that

IX(y) CaHT(y)NH ().

If |p| € aHT(y) MaH~(y), then let {ult C FHT(y)and {u,} € #H (y)be
sequences converging to |it| in €(S,z). For each n let g, be a geodesic segment
from u," to u,,. By Proposition 3.2, there is a vertex #, € g, M X(y). Therefore u,
also converges to |p|, and so |p| € dE(y), proving

AFXT ()N aFH—(y) C IE(y). L]

A theorem of Kra [Kra81] states that, since p(y) is filling on S, é is pseudo-
Anosov as an element of Mod(S,z). We let || and |p—| be the attracting and
repelling fixed points of §, respectively, in dC€(S, 2).

Recall from Proposition 2.12 that © has a continuous 7, (S )-equivariant extension

3: €(8) x H — (S, 2).

Lemma 3.9.

8%(y) = DEE(S) x ¥) U {|pl}

Proof. Continuity of ® implies $(J€(S)xy) C d%(y). Invariance of ¥ by § implies
invariance of £(y) by é so {|i+|} C dE(y), and hence

3% (y) D BIC(S) x ¥) U {|usl}.

We are left to prove the reverse inclusion. Suppose {¥#,} 1s any sequence in X(y)
with u, — |u| € 3%(y). We wish to show that || € BAE(S) % ) U {|pL|}. By
definition of X(y) there exists {(vn, Xz)} C C(S) x y with ®(v,, xp) = u, for all
n. There are two cases to consider.

Case 1. {x,} C K, for some compact arc K C y.

After passing to a subsequence if necessary x, — x € K. By Proposition2.13, we
can assume that v, accumulates on dC(S). So, after passing to a further subsequence
if necessary, we can assume that v, — |A| € d€(S). Then by continuity of d
(Proposition 2.12) we have

1l = lim (vn, 1) = S(JA,x) € BIC(S) x ).

Case 2. After passing to a subsequence x,, — x, where x 1s one of the endpoints of

v in o HL
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Note that x € A since p(y)is filling. Indeed, x is either the attracting or repelling
fixed point of 6. Without loss of generality, we assume it is the attracting fixed point.
Now suppose Y1 is any 1 (5 ) translate which nontrivially intersects y. Thus {6” (1)}
nests down on x, and hence

() #ZTE ) = () 8" (H ()
n=1

n=1

consists of the single point |4 |, the attracting fixed point of the pseudo-Anosov 4.
After passing to a further subsequence if necessary, we canassume x, < H T (5" (y1)).
Therefore, ®(v,, x,) € #7(6"(y1)). and hence

| = lim Py, xp) = [,
It— 00
completing the proof of Lemma 3.9. ]

Proof of Proposition 3.7. We fix x,y € A and € the geodesic between them. We

write Yy and ¥, to denote 71(S )-translates of y for which H*(yy) and H T (y;)
define disjoint neighborhoods of x and y, respectively. We must show that p(¢) is
simple if and only if dH *(y,) M dH *(y,) # 0 for all such y, and y;.

First, suppose p(€) is simple. The closure of p(¢) is a lamination £ [CB87].
Since x, y € A, &£ must contain some |A| € EX(S) as the sublamination obtained
by discarding isolated leaves. Therefore € is either a leaf of p~(|A|) or a diagonal
for some complementary polygon of p~L(|A|).

It follows from Lemma 2.14 that if x” € y, Ne and ¥’ € y;, Me, then B(|A], x") =

(/I\)(|)L|, y). Appealing to Lemma 3.9 we have

B # BEAL % ye) N BEIAL % )
C & (yx) N IX(yy)
C AHT(yx) N IHT(yy)

as required. In fact, it is worth noting that by Lemma 2.14, EI\)({|)L|} X €) is a single
point which lies in_aJ‘E?Jr(j/x)_ﬁ 3 T (yy) for all allowed choice of ¥y and ¥y, and is
therefore equal to @, (x) = $,(y).

Before we prove the converse, suppose y; and y; are two translates of v for which
H™T () € H (y2) and H(y;) € H(y1). Then we have

AH (1) CAK (yz) and 3K ' (y2) CAKH (y1).
Therefore, by Proposition 3.8, it follows that

AFF (1) NAFH T (y2) = 3% (y1) N IX(y2).
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Further supposethaty, = y,, so thatfixed points of §; and d, (elements generating
the stabilizers of y; and y,, respectively) are disjoint in dC(S, z). If

AHT (1) NAK T (y2) # 0

then by Proposition 3.9 there exists x1 € y and X € ¥z and |A1], |[A2] € 9C(S) for
which ®(|A1], x1) = ®(JA2], x2). According to Lemma 2.14, we have [A;| = |A;],
and x; and x> lie on the same leaf, or in the closure of the same complementary region
of |A1]. In particular, there is a bi-infinite geodesic contained in a complementary
region or leaf of p~!(|A|) which meets both y; and y».

We now proceed to the proof of the converse. Let {¥, » | and {y, , | be sequences
of 1 (S)-translates of ¥ which nest down on x and y, respectively. We suppose that

OH (Ynx) N OH ™ (yn,y) # 0

for all # > 0, and prove that p(¢) is simple on S. By the discussion in the preceding
two paragraphs there exists a sequence of laminations {|A,|} C d€(S) so that ¥y,
and yy , both meet a leaf or complementary polygon of p~!(JA,[). It follows that
there is a sequence of geodesics {€,} in H for which p(¢,) is simple on S, and
€n MYxn # 0 # €5 N yyp. The limit € of {¢, } has endpoints x and y. Also p(e) is
simple as it 13 the limit of simple geodesics [CB87]. ]

The following is now immediate from Proposition 3.7 and its proof.

Corollary 3.10. Given distinct x,y € A then d®(x) = d®(y) if and only if x and
y are ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of
P YH|A]) for some |A| € E(S). ]

3.4. Surjectivity. In this section, we prove that our map d® is surjective.
Birman—Series [BS&85] proved that the closure of the union of simple closed

geodesics
L v

vefo(s)

1s nowhere dense in S. We fix an € > 0, and assume that our chosen constants
1€(v) }yero(s) are sufficiently small so that

S— | N

ve0(S)

is €-dense. It follows that €(v) < € forall v € €9(S).
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Lemma 3.11. Suppose (v, x1), (v2, x2) € €°(S) x H with ®(v;, x;) = u; avertex
inC(S,z) fori = 1,2. Then there is a path

S =(v,x): |la,b] = CE(S) xH

such that ® o § is a geodesic from w1 to u, and X connects x1 to x, with image
contained in the 2e-neighborhood of a geodesic in H.

Progf. Foreachi = 1,2 we can find x] in the same component of H — pHN(v;)
as x; within € of x; such that x{ and x} are contained in some geodesic ¢’ which
projects to a filling closed geodesic in S (the pairs of endpoints of such geodesics
are dense in Jll < dLl). Then ®(v;, x;) = O(v;, x;) for i = 1,2. Moreover, the
geodesic from x] to x5 is within € of x1 and x,. Suppose we can find §" = (v', x’)
so that ® o %’ is a geodesic from u; to u, and x' connects x| to x} with image
contained in the e-neighborhood of a geodesic containing x; and x5. Then we can
take ¥ = (v, x) to be such that ¥ = v’ and x first runs from x; to x{, then traverses
x', and finally runs from xJ to x; (all appropriately reparameterized). This will then
provide the desired path proving the lemma.

To construct §', we suppose for the moment that {€(v)},c¢o(s) have been chosen
so that any arc of ' M p~L(N(v)) is essential. With this assumption, Proposition 3.1
applied to ' implies that (') 1s weakly convex. Now connect %, and u, by a
geodesic edge path within X(y") with vertex set {¥1 = w1, w2, W3, ..., W = Uz}

Let v; = I(w;). We observe that forevery i = 1,...,k,

O~ (w;) N (E(S) < ¥) = {ui} x o

where o; is an arc of ' N(H — p~1(N(v;))) and is in particular connected. Tt follows
from the construction of & that the edges [w;, w; 1], fori = 1,...,k —1 are images
of paths in €(S) x ¥’ which we denote @; = (b;, ¢;). Explicitly, if v; = v; 1, then
b; is constant and equal to v; = v; 41, and ¢; traverses an arc of ¥’ N p~ " (N(v;)). If
Vi # Vi1, then b; traverses the edge [v;, v;41] and ¢; is constant.

We can now define &' = (v, x’) as follows.

(1) Begin by holding v’ constant equal to u; = w; and let x’ traverse from x| to
the initial point of ¢; inside &; C y’.
(2) Next, traverse a;.

(3) After that, hold v’ constant again and let x’ traverse from the terminal point of
¢ to the initial point of ¢; inside a, C .

(4) We can continue in this way, fori = 2,...,k — 2 traversing ¢;, then holding
v’ constant and letting x’ go from the terminal point of ¢; to the initial point of
Cif1 inside i1 < )/f.
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(5) We complete the path by traversing ax_, then holding v’ constant and letting
x’ traverse the path from the terminal point of ¢x_ to x5 inside o C ',

By construction, the projection of this path ® o §’ onto the first coordinate is the
geodesic from 1 to #, that we started with (although 1t stops and 1s constant at each
of the vertices for some interval in the domain of the parametrization). Moreover, x’
is contained in y’ and connects x| to x5, so therefore stays within a distance zero of
the geodesic from x] to x5, as required.

The proof so far was carried out under the assumption that for every v € €%(S5),
every arc of ¥’ M N(v) enters and exits the component of N(v) which it meets in
different boundary components. If'this is not true, then first shrink all € (v) to numbers
€'(v) < €(v) so that it is true, construct the path as above, and call it §” = (v”, x").
Note thatthe numbers {¢' (v} }, ceo(s) determine anew map ®’: C(S)xH — (S, z),
and & o §” is a geodesic. With respect to the original map ®, v” is almost good
enough for our purposes. The only problem is that ® o ¥” may now no longer be a
geodesic: If there is some interval in the domain in which v” is constant equal to v
and x” enters and exits a component p~1(N(v)) from the same side, then ® 05" will
divert from being a geodesic by running (less than half way) into an edge of IT™!(v)
and running back out. We modify §” to the desired path ¢', by pushing x” outside
of p~H(N(v)) whenever this happens, thus changing it by at most (v) < ¢. The
resulting path ¥’ has v’ = v” and x’ still connects x] to x} and stays within € of ’,
as required. L]

Surjectivity of 9 requires that every point of d€(S, z) is the limit of $,(r) for
some v € €%(S) and some ray r C H ending at a point of A. The following much
weaker conclusion is easier to arrive at, and will be used in the proof of surjectivity.

Lemma 3.12. For any v € €2(S), 3€(S,z) C ®,(H).

Proof. First, note that since 71(S) < Mod(S, z) is a normal, infinite subgroup, its
limit set in P ME(S, z) (inthe sense of [MP89])is all of PMI(S, 2). Inparticular, the
closure of any 7 (S)-equivariant embedding H C (S, z) in the Thurston compact-
ification of Teichmiiller space meets the boundary P ME(S, 2) in all of PME(S, 2).
In particular, for any i € P# £, there is a sequence of points x, € H limiting to u.

The systole map sys: T7(S,z) — €(S, z) restricts to a m(S)-equivariant map
from H to ©(S, z), which is therefore a bounded distance from ®,. Again appealing
to Klarreich’s work [K1a99], it follows that sys extends continuously to PFX(S, z),
and hence sys(x,) — || € ££(S,z) = 9€(S, z). Therefore ®,(x,) — |it|. Since
i was arbitrary, every point of d€(S, z) is a limit of a sequence in ®,(H), and we
are done. L]

Given an arbitrary sequence {x, } in H, we need to prove the following.
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Proposition 3.13. If lim x,, = x € dH — A, then ©,(x,) does not converge to a
H—>O0
point of 9C(S, z).

One case of this proposition requires a difterent proof, and we deal with this now.

Lemma 3.14. [f {x, } and x are as in Proposition 3.13 and x is the endpoint of a lift
of a closed geodesic on S, then ©,(x,) does not converge to a point of 9C(S, z)

Proof. Under the hypothesis of the lemma, there is an element # € 71(S) with x
as the attracting fixed point. Moreover, because x ¢ A, the geodesic representative
of this element of 71 (S) does not fill . Therefore, the associated mapping class is
reducible (see [Kra&1]).

Let ¥o be a m1(S)-translate of y such that yq separates x from the repelling
fixed point of n. Then {1"(y0)} nests down on x. It follows that after passing to a
subsequence (which we continue to denote {x,}) we have

xp € HY (" (v0)) = 7" (H " (y0)).

Appealing to the 1 (S)-equivariance of ® we have
Dy (xn) = (v, x5) € H (0" (v0)) = 1" (H T (y0))-

Suppose now that &, (x,) converges to some element || € 9C(S, z). It follows
that

ul e () 7T (o).

n=1

However, any such || is invariant under 7 and since 7 is a reducible mapping class
it fixes no point of d€(S, z). This contradiction implies ©,(x,) does not converge
to any |p| € d€(S, z), as required. O

Proof of Proposition 3.13. Recall that ©,(x) = ®(v, x). Suppose, contrary to the
conclusion of the proposition, that

lim ®(v,x,) = |p| € €L(S,2) = ICE(S, 2).

We begin by finding another sequence which also converges to || to which we can
apply the techniques developed so far. Since x ¢ A the surface Y filled by x is
strictly contained in S. By Lemma 3.14 we may assume that ¥ 1s not an annulus.
Let r C H be a ray ending at x so that r is contained in a component Y of U
and so that p(r) fills ¥
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We pass to a subsequence (which we continue to denote {x, }) with the property
that for every & > 0, the geodesic segment f; connecting X,z to X411 passes within
some fixed distance, say distance 1, of r and so that furthermore

Br Y + 0.

Now fix any k > 0 and let ® o §%: [ag, b] — €(S,z) be a geodesic from
B(v, xo1) to D(v, Xap41) where §% = (v, x¥) is given by Lemma 3.11. The path
x¥ connects x5 to X2k +1 and has image within 2¢ of a geodesic in H which must
also pass within a uniformly bounded distance of r (in fact, it passes within a distance
1 + 2e).

Choosing the subsequence {x,} carefully, we may assume that i spends a very
long time in ¥. Doing this ensures that the image of x* nontrivially intersects Y.
Let 1y € [ag, bg] be any time where x* meets Y. Then set

e =xF@) e Y and  vp = v (1) € €O(S)
(recall that x* is constant when v*
vy 18 indeed a vertex).

Observe that since ® o §%([ag, br]) is a geodesic from ®(v, xo1) to B(v, Xap 1),
the sequence {® o §¥ (1)} = {D(vk, yx)} also converges to |ut|. Let us write uy =
P (v, Yi)- B
_ Next, for each & > 0 let fr € Diffo(S) be such that &V(fz) = yr € Y. Since
Y is a single component of p~!(Y'), we may assume that any two f; and f differ
by an 1sotopy fixing the complement of the interior of Y. That 1s, there 1s a path
Jfi € Diffp(S) for ¢ € [1, 00) such that yp = &v( f;) for all positive integers k&, and
s0 that

1s not, so we can assume that 7 is chosen so that

Jils—v = fils-r¥

forall f € [1, c0).
Let X = f;1(Y) and consider the punctured surfaces

Yo=Y —{A@@)} ad X°=X-{z}=f (")
We will be interested in the set of subsurface projections
{mxe (ug)} C T(X°)

where €'(X°) is the arc complex of X°; see [MMOO]. We consider the incomplete
metric on X ° for which f;: X° — Y° is an isometry where Y ° is given the induced
path metric inside of 5.

Claim. The length of some arc of nxo(uy) tends to infinity.
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Here, length means infimum of lengths over the isotopy class of an arc. The claim
implies that there are infinitely many arcs in the set {@x= (1 )} which is impossible
if gz — |u|. Thus, to complete the proof of the proposition, it suffices to prove the
claim.

Proof of Claim. So, to prove that the length of some arc tends to infinity, first sup-
pose that {wy(vr)} contains an infinite set. Then there are arcs oy C 7y (vg)
with £y (o) — oo, Now fk_l((xk) is an arc of myo(uy) and on(fk_l(ak)) =
Lyo( f1 fk_l (a)). However, fi fk_l is the identity outside the interior of Y, in partic-
ular it 1s the identity on the boundary of ¥ and isotopic (forgetting z) to the identity
in Y. So, we have

Lyo(fifi (@) > Ly (o) — 0

and hence there 1s an arc of mwyo () with length tending to infinity as required.

We may now suppose that there are only finitely many arcs in the set {my (vr)}. By
passing to a further subsequence if necessary, we may assume that 7wy (vg ) is constant
and equal to a union of finitely many arcs in ¥. We fix attention on one arc, call it .
Again, we see that fk_l (a)1s an arc of wxo (¥ ) and £y (fk_l (@) =2y ( N fk_l (a))
with f1 ;! equal to the identity outside the interior of ¥ for all .

Writing #; = f, f{"1, we are required to prove that £yo (hf,;l(o:)) tends to infinity
as k — oo. Observe that ky is the identity on S and h; is the identity outside the
interior of ¥ for all r € [1, 00). We can lift £, to h; so that A, is the identity in [
It follows from the definition of &V that Az(€V( f1)) = yr. Thus, h; is essentially
pushing the point y = év( f}) € ¥ along the ray 7 (at least, ﬁk(y) = yy comes back
to within a uniformly bounded distance to r for every positive integer k, though it
is not hard to see that we can choose f; so that A, always stays a bounded distance
from r).

Now %, !(a) can be described as applying the isotopy h; backward to a. There-
fore, if we let @* be the last arc of p~! (@) intersected by the path ﬁ;(y) fort € [1,k%],
then we can drag &% backward using the isotopy ﬁ; as f runs from k back to 1, and
the result ﬁ;l(&k ) projects down by p to h;l(a); see Figure 6. Moreover, observe
that £yo (h;l(o:)) is at least the sum of the distances from y to the two boundary
components of Y containing the end points of @,

Finally, since x fills ¥, the distance from y to the boundary components of ¥
containing the endpoints of &* must be tending to infinity as & —> oo; otherwise,
we would find that r 1s asymptotic to one of the boundary components of Y which
because x fills ¥ would imply Y 1s an annulus, and this 1s a contradiction. This
implies £ye (h;l(a)) tends to infinity as & — oo. This proves the claim, and so
completes the proot of the proposition. L]

We can now prove one of the main technical pieces of Theorem 1.1.
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Figure 6. On the left:  inside Y (the complement of the shaded region), the path B (v) as it
goes through y; = g (y) and the arc &% . On the right: dragging &% back by h;l .

Theorem 3.15. The map
dd: A — 9€(S,2)

is surjective.

Proof Let || € d€(S, z) be an arbitrary point. According to Lemma 3.12 there
exists a sequence {x,} C H with

lim @y(x,) = |
R—00

By passing to a subsequence, we may assume that {x,,} converges to a point x € J[L
It follows from Proposition 3.13 that x € A. Then, by Theorem 3.6

] = lim By (xn) = By(x) = ID(x).

Since || € d€(S, z) was an arbitrary point, it follows that d®(4) = 9€(S, z), and
d® is surjective. O]

3.5. Neighborhood bases. In this section we find neighborhood bases for points of
9 C (S, z). To do this, we must distinguish between two types of points of A. We say
a point x € A is simple if there exists a ray r in H ending at x for which p(r) is
simple. Otherwise x is not simple. Equivalently, a point x € A is simple if and only
if there is a lamination |[A| € EX(S) such that x is the ideal endpoint of a leaf (or
ideal vertex of a complementary polygon) of p~ '(|A]).
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Lemma 3.16. If x € A is not simple and {y, } are m\(S)-translates of y which nest
down to x, then {05 T (y)} is a neighborhood basis for 3®(x).

Proof. By Proposition 3.5 the distance of # ™ (y,) to any fixed basepoint in (S, z)

tends to infinity as # — oo. It follows that the visual diameter of # 1 (y,,) measured
from any base point also tends to zero. Thus, for any neighborhood U of d®(x) in
dC(S,z), there exists N > Osothatforalla = N, K " (y,) C U.

We must prove d®(x) is in int(dH T(y,)) for all #. We already know that

(a7 * (7n) = {0D(x)}

and in particular, 3®(x) € d# T (yy) for all n. Therefore, it suffices to prove that for
any n, there exists m > n so that

83€+(3’m) = int(af}e—’—(?’n))-

It follows from Proposition 3.8 and the fact that 9.4 () 1s a closed subset of
dC (S, z) that

IH T (yn) — 9X(yn) = 9C(S,2) — K (y) C Int(IH " (yn))-
For any m > n, we also know
AT (Ym) C 3HT (yn)-
Thus, if we can find m > n so that
IX(yn) M IX(Ym) = 0,
then appealing to Proposition 3.8 again, it will follow that
AH T (Ym) C AH T (yn) — & (yn) C int(3H T (¥n)),

as required.
If forall m > n we have dX(V,, ) NOX(y,) # 0, then a similar proof'to that given
for Proposition 3.7 shows that x 1s a simple point which 1s a contradiction. (]

The above lemma gives a neighborhood basis for d®(x) when x € A not a simple
point. The next lemma describes a neighborhood basis d®(x), where x is a simple
point.

Suppose X, X2 are endpoints of a nonboundary leaf of p~(JA|) or x1,..., Xx
are points of a complementary polygon of some p~(|A|) for some |A| € EX(S).
We treat both cases simultaneously referring to these points as xi,..., X;. From
Corollary 3.10, d®(x;) = -+ = d®(x), and the dP-image of any simple point has
this form.
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Lemma 3.17. If xy, ..., xx are as above, and {y1 4}, ..., {Vkn} are sequences of
m (S)-translates of y with {y;n} nesting downto x; foreach j = 1,...,k, then

T (1) U= UK T (ve,0)}
is a neighborhood basis for 0®(x1) = - = 3 (xg).

o0
n=1

Proof. Let || = 0P(x1) = --- = d®(x). As in the proof of the previous lemma,
the sets in the proposed neighborhood basis have visual diameter tending to zero as
n — o0,

Since || € dH T (y; ) for all j and 1, we clearly have

] € X T (y1,0) U- - UDH ™ (v )

for all n. Thus, we are required to show that |u| is an interior point of this set.
This is equivalent to saying that for any sequence { |, |} C dC(S, z) converging
to ||, and every positive integer #, there exists M > O so thatforallm > M,

|aum| & 83€+(V1,rz) L) s L) 8%4_(]/)'6,?1)- (6)

So, let {|um|} C 9C(S,z) be a sequence converging to || and n a positive
integer. Choose any sequence {ymt C A so that d®(y,) = |m| (such a sequence
exists by surjectivity of d@). We wish to show that any accumulation point of { y,, } is
one of the points x1,...,xz. For then, we can find an M > Osothat forallm > M

ym € H (y1a) Us- UH (Ven)

and hence (6) holds.
To this end, we pass to a subsequence so that y,, — x € dH. Choosing se-
quences converging to yy, for all m and applying a diagonal argument, we see that

there is a sequence {¢,, } C H with lim ¢, = x and lim ®,(g,,) = |@|. From
HI— 00 —00
Proposition 3.13 we deduce that x € A.

Now, if x € {x1,..., Xt} then we are done. Suppose not. Then the geodesic
¢; from x to x; has p(¢;) non-simple for all j. Proposition 3.7 guarantees 71 (.S )-
translates Yx, Y1i.n,- - .. Yk.n of ¥ defining neighborhoods

HY (o), H (1), H ()
of x,xy,..., xg, respectively for which

AHF () N 0+ () = 0
forall j =1,...,k. Since 0@ 1s continuous, we have
il = Iim |y | = lm dP(y,) = 00 (x) € 3H T (yy).
Hi—>00 Hi—> 00

This is impossible since || € dH T (y; ) forall j = 1,...,k. Therefore, x = x;
for some j, and the proof is complete. ]
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We are now ready to prove

Theorem 1.1 (Universal Cannon—Thurston map). For any v € C€%(S), the map
Gy H — €(S, 2) has a unigque continuous m1(S)-equivariant extension

o, HUA — ©(S,2).

The map d® = ®, |, does not depend on v and is a quotient map onto 9€(S, ).
Given distinct points x,y € A, 9®(x) = dQ(y) if and only if x and y are ideal
endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of an
ending lamination on S.

Proof. By Theorem 3.6, Corollary 3.10 and Theorem 3.15 all that remains 1s to prove
that & is a quotient map. To see this, we need only show that E C d€(S,z) is
closed if and only if F = d®~1(E) is closed. Since d® is continuous, it follows that
if E 1s closed, then F 1s closed.

Now, suppose that F 1s closed. To show that £ is closed, we let |u,| — |u1|
with {|jtn|} C F and we must check that || € E. By Lemmas 3.16 and 3.17, after
passing to a subsequence if necessary, there is a sequence {y, } nesting down on some
point x € 3® 1(|u|) with |ptn| € 3H " (yn). Let x, € d® (|n]) C F be such
that x,, € dH "(yy). Itfollows that x, — x, sosince F is closed, x € F. Therefore,
|| = 9®(x) € E, as required. Thus, E is closed, and 0@ is a quotient map. O]

3.6. Mod(S, z)-equivariance. We now prove

Theorem 1.2. The guotient map
d®: A — JE(S,z)

constructed in Theorem 1.1 is equivariant with respect to the action of Mod(S, z).

Proof. It suffices to prove

IB(p(x)) = ¢(IP(x)).

for every ¢ € Mod(S, z) and a dense set of points x € A.

Let y” C H be a geodesic for which p(y’) is a filling closed geodesic in S and let
6’ € m1(S) be the generator of the infinite cyclic stabilizer of ¥’ Let x € A denote
the attracting fixed point of §’. As previously discussed, according to Kra [Kra81], &’
represents a pseudo-Anosov mapping class in Mod(S, z), and the 7y (S)-equivariance
of d® implies d®(x) is the attracting fixed point for 6" in 3€(S, z).

Now, given any ¢ € Mod(S, z), note that ¢(x) is the attracting fixed point of
pod o lin A, and ¢p(d®(x)) is the attracting fixed point for ¢ 0§’ o ¢! in
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dC(S,z). Appealing to the m;(S)-equivariance again, we sec that d® must take
¢ (x)to @¢(dP(x)). Thatis

ID(P(x)) = $(3P(x)).

Since the set of endpoints of such geodesics is dense in A, this completes the proof.

O]

4. Local path-connectivity

The following, together with Lemma 3.17 will prove Theorem 1.3.
Lemma 4.1. 3%V (y) is path-connected.

Proof. Fixany |A| € EL(S). According to Proposition 2.12, ® is continuous, 50 we
have a path-connected subset

O{[A} < HY(y)) C 3#H(y).

Now let [p| € 34T (y) be any point. We will construct a path in 3.4 7 (y)
connecting a point of B({|A |3 x HT(y)) to |t]. This will suffice to prove the lemma.

According to Theorem 1.1 there exists x € A so that dP(x) = |u|. Let
r:[0,1) — HT(y) be aray with

lim r(z) = x.

i—1

Let {yn} be a sequence of m(S)-translates of ¥ which nest down on x. We
assume, as we may, that y; = y. Therefore, there 1s a sequence 11 < f5 < --- with
limy—seetn = 1 and

r(Itw, 1)) € H ™ (vn)
and hence again by Proposition 2.12

BRI} < 7 ([tns 1)) € BEIAL} x HT (yn)) C 35 ().

Recall that, by definition, d®(x) is the unique point of intersection
o0
n=1

and hence

lim SIAL r()) = |-
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Therefore, we can extend R (7)) = @(|)n|, r(t)) to a continuous map
Ry [0,1] — 3}5.7—'_()/)

with R3(0) < (/I\)({|)L|} x HT(y)) and Rj3 /(1) = |p| This is the required path
completing the proof. (]

We now prove

Theorem 1.3. The Gromov boundary dC(S, z2) is path-connected and locally path-
connected.

Proof. FromLemma4.1, we see that every set of the form 8.7+ () is path-connected
for any m1(S)-translate yg of y. According to Lemmas 3.16 and 3.17 there is a basis
for the topology consisting of these sets (and finite unions of these sets which all
share a point); this proves local path-connectivity. Path-connectivity follows from
Lemma 4.1 and Proposition 3 .8. ]
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