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The universal Cannon—Thurston map and the boundary of the
curve complex

Christopher J. Leininger* Mahan Mj**and Saul Schleimer***

Abstract In genus two and higher, the fundamental group of a closed surface acts naturally
on the curve complex of the surface with one puncture. Combining ideas from previous work
of Kent-Leimnger-Schleimer and Mitra, we construct a universal Cannon-Thurston map from
a subset of the circle at infinity for the closed surface group onto the boundary of the curve
complex of the once-punctured surface. Using the techniques we have developed, we also show
that the boundary of this curve complex is locally path-connected.
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1. Introduction

1.1. Statement of results. Fix a hyperbolic metric on a closed surface S of genus
at least two. This identifies the universal cover with the hyperbolic plane p : H -> S.

Fix a basepoint z € S and a point z € p~1(z). This defines an isomorphism between
the group Jt\ (S,z) ofhomotopy classes of loops based at z and the group 7t\ (S) of
covering transformations of p : H -> S.

We will also regard the basepoint z € S as a marked point on 5. As such, we
write (5, z) for the surface 5 with the marked point z. We could also work with the

punctured surface S — {z}; however a marked point is more convenient for us.

Let 'C(S) and *€(S, z) denote the curve complexes of S and (S, z), respectively,
with zero skeleta, ~€°(S) and ~€°(S,z), identified with the sets of isotopy classes of
essential simple closed curves in S and (S,z), respectively. Write II : ¥^{S,z) ->
~€(S) to denote the forgetful projection. See Section 1.2.4.

From [KLS09], the fiber over v € ^°(5) is 7Ti(5')-equivanantly isomorphic to
the Bass-Serre tree Tv determined by v. The action of Jt\ (S) on *€(S, z) comes from
the inclusion into the mapping class group Mod(£, z) via the Birman exact sequence,
see Section 1.2.3. We define a map

<È>: Ç(S)xi^Ç(S,z)
by sending {v} x H to Tv II-1 (v) C ~€(S,z) in a 7Ti(5')-equivariant fashion and
then extending over simplices using barycentric coordinates; see Section 2.2. Given
v e *€0(S), let $„ denote the restriction to I ^ {d} x H:

<Ëv H-^(S,z).
Suppose that r C H is a geodesic ray that eventually lies in the preimage of

some proper essential subsurface of S. We prove in Section 3 that ^>v(r) C *€{S,z)
has finite diameter. The remaining rays define a subset A C 3H (of full Lebesgue
measure); see Section 3.2. Our first result is the following.

Theorem 1.1 (Universal Cannon-Thurston map). For any v € ^(S), the map
On : H —>¦ "€(S, z) has a unique continuous it\ (S)-equivariant extension

®v: IuA^ë(S,z).
The map 3$ <&v |a does not depend on v and is a quotient map onto d~€(S,z).
Given distinct points x,y € A, 3$(x) d<&(y) ifand only ifx and y are ideal
endpoints ofa leaf (or ideal vertices ofa complementary polygon) of the lift ofan
ending lamination on S.

We recall that a Cannon-Thurston map was constructed by Cannon and Thurston
[CT07] for the fiber subgroup of the fundamental group of a closed hyperbolic 3-

mamfold fibenng over the circle. The construction was then extended to simply
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degenerate, bounded geometry Kleinian closed surface groups by Minsky [Mm92],
and to the general simply degenerate case by the second author [Mj06]. In all these

cases, one produces a quotient map from the circle 3HI onto the limit set of the

Kleinian group I\ In the quotient, distinct points are identified ifand only if they are
ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of the lift of
an ending lamination for T. This is either one or two ending laminations depending
on whether the group is singly or doubly degenerate; see [Mj07].

In a similar fashion, the second author [Mit97] has constructed a Cannon-Thurston

map for any <5-hyperbolic extension T of a group G by 7ti(S),

1 -^JTi(S)^T -^G -^1

(for a discussion of such groups see [Mos97], [FM02]). This is a 7Ti(5')-equivariant
quotient map from 3HI onto the Gromov boundary of T. As above, the quotient
identifies distinct points if and only if they are ideal endpoints of a leaf (or ideal
vertices of a complementary polygon) of the lift of an ending lamination for G.

The map 3<É> is universal in that distinct points are identified if and only if they
are the ideal endpoints of a leaf (or ideal vertices of a complementary polygon) of the

lift of any ending lamination on S. We remark that the restriction to A is necessary
to get a reasonable quotient: the same quotient applied to the entire circle 3H is a

non-Hausdorff space.
It follows from the above description of the various Cannon-Thurston maps that

the universal property of 3$ can also be rephrased as follows. IfF : 3HI -> Ci is any
Cannon-Thurston map as above - so, Q is either the limit set of a Kleinian group, or
the Gromov boundary of a hyperbolic extension T - then there exists a map

4>F: F(A)^d'€(S,z)

so that (}>p o F\& 3$. Moreover, because 3$ identifies precisely the required
points to make this valid, one sees that any Jt\ (S)-equivanant quotient of A with this
universal property is actually a Jt\ (5)-equivanant quotient of d'€(S,z).

It is a classical fact, due to Nielsen, that the action of Jt\ (S) on 3H extends to the

entire mapping class group Mod(S, z). It will become apparent from the description
of A given below that this Mod(5, z) action restricts to an action on A. In fact, we
have

Theorem 1.2. The quotient map

3<E>: A^3^(5,z)
is equivaliant with respect to the action ofisAod(S,z).
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As an application of the techniques we have developed, we also prove the following.

Theorem 1.3. The Gromov boundary d'€(S,z) is path-connected and locally path-
connected.

We remark that A is noncompact and totally disconnected, so unlike the proof
of local connectivity in the Kleinian group setting, Theorem 1.3 does not follow
immediately from Theorem 1.1.

This strengthens the work of the first and third authors in [LS09] in a special
case: in [LS09] it was shown that the boundary of the curve complex is connected

for surfaces ofgenus at least 2 with any positive number ofpunctures and for closed
surfaces ofgenus at least 4. The boundary of the complex ofcurves describes the space
of simply degenerate Kleinian groups as explained in [LS09]. These results seem to
be the first ones providing some information about the topology of the boundary
of the curve complex. The question of connectivity of the boundary was posed by
Storm, and the general problem ofunderstanding its topology was posed by Mmsky
in his 2006 ICM address. Gabai [Gab09] has now given a proof of Theorem 1.3 for
all surfaces E for which ^(S) is nontrivial, except the torus, 1-punctured torus and

4-punctured sphere, where it is known to be false.

Acknowledgements. The authors wish to thank the Mathematical Sciences Research
Institute for its hospitality during the Fall of 2007 where this work was begun. We
would also like to thank the other participants of the two programs, Kleinian Groups
and Teichmüller Theory and Geometric Group Theory, for providing a mathematically
stimulating and lively atmosphere, and the referee for useful suggestions.

1.2. Notation and conventions

1.2.1. Laminations For a discussion of laminations, we refer the reader to [PH92],
[CEG87], [Bon88], [Thu80, CB87].

By a lamination on S, we mean a 1-dimensional foliation of a closed subset of
S (see e.g. [PH92] and [CC00]). We require that all our laminations be essential,

meaning that the leaves lift to quasigeodesics in the universal cover. A measured
lamination on S is a laminationwith a transverse measure offull support. A measured

lamination on S will be denoted À with the support - the underlying lamination -
written |A|.

If a is an arc or curve in S and A a measured lamination, we write X(a) fa dX
for the total variation of A along a. We say that a is transverse to X if a is transverse
to every leaf of |A |. If v is the isotopy class of a simple closed curve, then we write

i(v,X) inf X(a)
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for the intersection number oft; with A, where a varies over all representatives of the

isotopy class v.

Two measured laminations Ao and Ai are measure equivalent if for every isotopy
class of simple closed curve v, ì(v,Xq) i(v,X\). Every measured lamination
is equivalent to a unique measured geodesic lamination (with respect to the fixed
hyperbolic metric on S). This is a measured lamination A for which |A| is a geodesic
lamination.

We similarly define measured laminations on (S, z) as compactly supported
measured laminations on S — {z}. In the situations that we will be considering, these

will generally not arise as geodesic laminations for a hyperbolic metric on S — {z},
though any one is measure equivalent to a measured geodesic lamination for a complete

hyperbolic metric on S — {z}.
The spaces of (measure classes of) measured laminations will be denoted by

MX(S) and MX(S,z). The topology on MX is the weakest topology for which
A i-> i(v,X) is continuous for every simple closed curve v. Scaling the measures
defines an action of M+ on MX(S) — {0} and MX(S,z) — {0}, and we denote the

quotient spaces FMX(S) and PMX(S, z), respectively.
A particularly important subspace is the space of'filling laminations which we

denote 3?X. These are the measure classes of measured geodesic laminations A for
which all complementary regions of its support |A| are disks (for S — {z}, there is

also a single punctured disk). The quotient of 3?X by forgetting the measures will
be denoted 8X and is the space ofending laminations. For notational simplicity, the

image of A € &X in 8X will also be denoted by |A|.

When there is no confusion, we will let A simultaneously represent a measured
lamination as well as the equivalence class in either MX or PMX which itdetermines.

Remark 1.4. Because there is a unique measured geodesic lamination in any
equivalence class the reader can, unless otherwise stated, consider an element of MX as a

measured geodesic lamination. In Sections 2.4 and 2.5 it will be preferable to choose a

slightly different representative for an arbitrary element of MX(S), though elements

of 3?X(S) will still be chosen to be measured geodesic laminations. Beginning in
Section 3, only 3?X(S) and 8X(S) are relevant, and so again, measured geodesic
laminations will suffice.

1.2.2. Train tracks. Train tracks provide another useful tool for describing
measured laminations. See [Thu80] and [PH92] for a detailed discussion of tram tracks
and their relation to laminations. We recall some of the most relevant information.

A lamination X is carriedby a train track t if there is a map / : S -> S homotopic
to the identity with f(X) C t so that for every leaf I of X the restriction of/ to I is

an immersion (for (S, z), we replace S here by S — {z }). IfA is a measured lamination
carried by a train track t, then the transverse measure defines weights on the branches
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ofx satisfying the switch condition -the sum of the weights on the incoming branches

equals the sum of the weights on the outgoing branches. Conversely, any assignment
ofnonnegative weights to the branches of a train track satisfying the switch condition
uniquely determines an element of MX; see [PH92], Theorem 2.7.4. Given a train
track x carrying A, we write r(A) to denote the train track x together with the weights
defined by A.

Proposition 1.5. Suppose that {Xn}'^=1 U {A} C MX are all carried by the train
track x. Then Xn -> A ifand only if the weights on each branch ofx defined by Xn

converge to those defined by X.

Proof. This is an immediate consequence of [PH92], Theorem 2.7.4. D

There is a well-known construction of tram tracks carrying a given lamination
which will be useful for us. For a careful discussion, see [PH92], Theorem 1.6.5, or
Section 4 of [BroOO]. Starting with a geodesic lamination X one chooses € > 0 very
small and constructs a foliation, transverse to X, of the € -neighborhood N€(X). The
leaves of this foliation are arcs called ties. Taking the quotient by collapsing each tie
to a point produces a train track x on S ; see Figure 1.

We can view N€(X) as being built from finitely many rectangles, each foliated by
ties, glued together along arcs of ties in the boundary of the rectangle. In the collapse
each rectangle R projects to a branch ßn of x. When x is trivalent we may assume
that x C S is contained in N€(X), transverse to the foliation by ties, and the branch

ßR is contained in the rectangle R.

Suppose now that A is any measured lamination with |A| C N€(X), and |A|

transverse to the ties. If R is a rectangle and a a tie in R, then the weight on the
branch ßR, defined by A, is given by X(a) fa dX; see Figure 1.

1.2.3. Mapping class groups. Recall that we have fixed a hyperbolic structure on S

as well as a locally isometric universal covering p : HI -> S. We also have a basepoint
z € p~l{z) determining an isomorphism from 7ti(S), the covering group of p, to

jti(S,z), the group of homotopy classes of based loops. All of this is considered
fixed for the remainder of the paper.

The mapping class group of S is the group Mod(5) 7To(Diff+(5')), where

Diff+(5) is the group of orientation preserving diffeomorphisms of S. We define

Mod(S,z) to be jVq(Diff+ (S,z)), where Diff+(5,z) is the group of orientation

preserving diffeomorphisms of S that fix z.
The evaluation map

ev: Diff+(5)^5
given by ev(/) f(z) defines a locally trivial principal fiber bundle

Diff+(5,z) ^Diff+(5) -> S.
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NAX)

ßR

Uà)

Figure 1. The train track t is obtained by collapsing the ties ofN€ (£). The lamination A defines

weights on t: the weight on ßn is X(a), where a is a tie in the rectangle R.

A theorem of Earle and Eells [EE69] says that Diffo(5), the component containing
the identity, is contractible. So the long exact sequence of a fibration gives rise to
Birman's exact sequence [Bir69], [Bir74]

1 -> 7ti(S) -> Mod(S,z) -> Mod(S) -> 1.

Let
We elaborate on the injection 7t\(S) -> Mod(5, z) in Birman's exact sequence.

Diff5(5,z) Diff0(S) n Diff+(S,z).

The long exact sequence of homotopy groups identifies Jti(S) jro(Diffe(S,.z)).
This isomorphism is induced by a homomorphism

ev*: Diffb(S,z) -> jt^S)

given by ev*(A) [ev(ht)] where ht, t € [0,1], is an isotopy from h to Ids, and

[ev(Ä*)] is the based homotopy class of ev(ht) ht(z), t € [0,1]. To see that this is

a homomorphism, suppose h,hr € Diffß(S, z) and ht and h't are paths from h and
h' respectively to Ids. Write a(t) ht(z) and (x'(t) h't(z). There is a path /7*
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from h o h' to Ids given as

_
ih2tohf fort e [0,1/2],

' ~ \h2t-i for? € [1/2,1].

Then Ht(z) is the path obtained by first traversing a then a', while Hq h oh! and

H\ Ids. So, ev*(A o h') ao-', and ev* is the required homomorphism.
Given h € Diffß(S,z), we will write o^ for a loop (or the homotopy class)

representing ev*(/z). Similarly, we will let ha denote the mapping class (or a

representative homeomorphism) determined by a € 7ti(S). When convenient, we will
simply identify 7t\(S) with a subgroup of M.od(S, z).

1.2.4. Curve complexes. A closed curve in S is essential if it is homotopically
nontrivial in S. We will refer to a closed curve in S — {z} simply as a closed curve in
(S,z), and will say it is essential if it is homotopically nontrivial and nonpenpheral
in S — {z}. Essential simple closed curves in (S, z) are isotopie if and only if they
are isotopie in S — {z}. We write ~€°(S) and ~€°(S,z) to denote the sets of isotopy
classes of essential simple closed curves on S and (S, z), respectively.

The curve complex of S is the simplicial complex ~€(S) with vertex set ~€°(S)
so that k + 1 distinct curves Vq v^ span a k-simplex if and only if the isotopy
classes can be realized disjointly in S; see [Har81] and [MM99]. The curve complex
of (S, z) is denoted ^(5, z) and is defined similarly. A simplex {vo,..., v^} in 'C(S)
or ^(5, z) naturally determines an isotopy class of multi-curve, which is the union
of the pairwise disjoint representatives of Vo, ¦ ¦ ¦, v^.

We consider 'C(S) and ¥^{S,z) as geodesic metric spaces so that each simplex
is isometric to a regular Euclidean simplex with all edge lengths equal to one. The

following is proven in [MM99].

Theorem 1.6 (Masur-Mmsky). The spaces 'C(S) and ¥^{S,z) are S-hyperbolicfor
some 8 > 0.

Given a simplex v C 'C(S) or u C *€{S,z) we will not distinguish between
this simplex and the isotopy class of multicurve it determines. Any simple closed

curve u in (S, z) can be viewed as a curve in S which we denote H(u). This gives a

well-defined "forgetful" map

il: '€(S,z)^'€(S)

which is simplicial.
Unless otherwise stated we assume that a multicurve v C ^(5) is realized by its

geodesic representative in S (isotopy classes can be realized disjointly if and only
if the geodesic representatives are disjoint; see [CB87]). Associated to v there is an
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action of Tti(S) on a tree Tv, namely, the Bass-Serre tree for the splitting of 7ti(S)
determined by v. We will make use of the following theorem of [KLS09].

Theorem 1.7 (Kent-Lemmger-Schleimer). The fiber ofTI over a point x € X?(S)

is Jt\{S)-equivariantly homeomorphic to the tree Tv, where v is the unique simplex
containing x in its interior. D

1.2.5. Measured laminations and the curve complex. The curve complex X? naturally

injects into P MX sending a simplex v to the simplex ofmeasures supported on v.
We denote the image subspace PjKXç. We note that this bijection PjKXç -> X?

is not continuous in either direction. We will use the same notation for a point of
'PMX'ç and its image in X?.

In [Kla99] Klarreich proved that d'C 8X. Therefore, ifwe define

FMX^ FMX-c U FFX

then there is a natural surjective map

FMX^ -> "ë

extending ¥MX^ -> X?. The following is a consequence of Klarreich's work
[Kla99], stated using our terminology.

Proposition 1.8 (Klarreich). The natural map P MX-g -> X? is continuous at every
point ofPS^X. Moreover, a sequence {vn} C X? converges to \X | € 8X ifand only if
every accumulation point of{vn} in ~PMX has \X\ as its support.

Proof. Theorem 1.4 of [Kla99] implies that if a sequence {vn} converges in X? to |A |,

then every accumulation point of {vn} in PMX has |A | as its support. We need only
verify that if A € ~P3?X and every accumulation point A' in ~PMX of a sequence {vn}
has |A| |A'| then {vn} converges to |A| in X?. For this it suffices to assume that {vn}
converges in ~PMX to X' with |A'| |A|.

To see this, let {Xn} C T be any sequence in the Teichmüller space T for which

vn is the shortest curve in Xn. In particular ixn(vn) is uniformly bounded. Since

every accumulation point of {vn} is in ~P3?X, it follows that Xn exits every compact
set and so accumulates only on PMX in the Thurston compactification of T.

Moreover, ifA" is an accumulation point of Xn in PMX, then i (X", X') 0 and

so \X"\ |A'| |A| since A is filling.
Now according to Theorem 1.1 of [Kla99], the map

sys : T —>¦ X?

sending X € T to any shortest curve in X extends to

sys: T U FFX -> XÎ
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continuously at every point ofPS^X. It follows that

lim vn lim sys(X„) |A|
n—>oo n—>oo

in X? and we are done. D

1.2.6. Cannon—Thurston maps. Fix X and Y hyperbolic metric spaces, F : Y —>

X a continuous map, and Z C dY a subset of the Gromov boundary. A Z-Cannon-
Thurston map is a continuous extension i7: Y U Z -> X U dX of i7. That is,

F\y -F. We will simply call F a Cannon-Thurston map when the set Z is clear
from the context. We sometimes refer to the restriction dF F\z as a Cannon-
Thurston map.

This definition is more general than that in [Mit98] in the sense that here we

require F only to be continuous, whereas in [Mit98] it was demanded that F be an
embedding. Also, we do not require F to be defined on all of Y Y U dY.

To prove the existence ofsuch a Cannon-Thurston map, we shall use the following
obvious criterion:

Lemma 1.9. Fix X and Y hyperbolic metric spaces, F : Y -> X a continuous map
and Z C dY a subset. Fix a basepoint x € X. Then there is a Z-Cannon—Thurston

map F : FUZ^-IU dX ifand only iffor every z € Z there is a neighborhood
basis Bi C Y U Z ofz and a collection ofuniformly quasiconvex sets Qi C X with
F(ßi fi Y) C Qi anddx(x, Qi) -> oo as i -> oo. Moreover,

r\Qî C\dQî {F(z)}
i i

determines F(z) uniquely. D

Remark 1.10. For the purposes of the present work, it is more convenient to use the

more flexible definition of neighborhood basis. This is a collection of sets {Bj(x)}j
associated to each point x in the space with the property that a subset U is open if
and only if for every x € U, Bj(x) C U for some j. Equivalently, the interior of
each Bj(x) is required to contain x, and any open set containing x should contain

some Bj(x).

2. Point position

We now describe in more detail the map

<È>: Ç(S)xi^Ç(S,z)
as promised in the introduction, and explain how this can be extended continuously
to XÏ(S) x H.
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2.1. A bundle over H. Recall from Section 1.2.3 that DiffB(S,z) Diff0(S) n
Diff+(S,z) is the subgroup of diffeomorphisms of (S,z) isotopie to the identity
on S after forgetting z. The bundle determining the Birman exact sequence has a

subbundle obtained by restricting the evaluation map ev to Diffo(5):

DiffB(S,z) ¦Diffo(S) + S.

As noted before, Earle and Eells proved that Diffo(S) is contractible, and hence there
is a unique lift

ev: Diff0(S)^H
with the property that ev(Ids) z.

The map ev can also be described as follows. Any diffeomorphism S ^ S

has a lift H —>¦ H, and the contractibility of Diffo (S) allows us to coherently lift
diffeomorphisms to obtain an injective homomorphism Diffo(£) -> Diff(H). Then

ev is the composition of this homomorphism with the evaluation map Diff(H) -> HI

determined by z.
Since p is a covering map, ev is also a fibration. Appealing to the long exact

sequence ofhomotopy groups again, we see that the fiber over z is precisely Diffo (S, z).
We record this in the following diagram

(1)

DiffB(S,z) Diffo(S) >S

Diffo(S, z).

The group Diff^ (5, z) acts on Diffo (S) on the left by

h-f foh~1

for h € Diffb(S,z) and / € Diff0(S). Also recall from Section 1.2.2 that jti(S) ^
jtq(Diffb(S,z)) with this isomorphism induced by a homomorphism

ev*: DiffB(S,z) -+ 7ti(S).

Lemma 2.1. The lift
ev: Diffo (S)

is equivaliant with respect to ev*.
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Proof. We need to prove

^*(h)(êv(f)) êv(foh-1)

for all / € Diffo(S) and h € Diffb(S,z). Observe that since h(z) z for every
h € Diffus,.z), ev(/) ev(/ o h~l) for every / € Diffo(S). Therefore, since év
is a lift of ev we have

/>(w(/)) ev(/) ev(/ o h~l) p(Sv(f o A"1))

and hence ev(/) differs from ev(/ o A-1) by a covering transformation a € jti(.S'):

év(/oA-1) o-(év(/)).

The covering transformation a appears to depend on both / and h. However if
Ht, t e [0,1], is a path in DiffB(S, z) from h H0 to h' Hi then ev(/ o H~l)
is constant in t : this can be seen from the above description of év as the evaluation

map on the lifted drffeomorphism group. It follows that a depends only on / and
the component ofDiffb (S, z) containing h. In fact, continuity ofev and connectivity
of Diff0(5) implies that a actually only depends on the component of Diffb (S, z)
containing h, and not on / at all.

We have

o(z) o-(ev(Ids)) ev(Ids 0^) ev(A_1).

So if ht, t € [0,1], is a path in Diff0(S) from h Hq to Ids — h\, then since

ev*(A) o/j where o^ is represented by the loop ht(z), t € [0,1], it follows that o^1
is represented by the loop hj1 (z), t € [0,1]; see Section 1.2.3.

—1\ * r- \(\ 11 4^ « K-T+ ^^+u^ i^>^>« u — 1.Now observe that ev(ht L), t e [0,1], is a lift of the loop ht L(z), t e [0,1], to a

hpath from (t(z) to z. Therefore, oh
1 is o 1, and hence a o^ ev*(ft). D

2.2. An explicit construction of <I>. We are now ready to give an explicit description
of the map $. We will first define a map

$ : £(S) x Diff0(5) -> ^(5, z)

and show that this descends to a map $ : t(5)xH2 ->- £ (£, z) with $ $ oldx ev.
Recall that for every i; € ^°(5), we have realized v by its geodesic representative.

We would like to simply define

$(v,f) f-\v).
However, this is not a curve in (S, z) when f(z) lies on the geodesic v. The map we
define in the end will agree with this when f(z) is not too close to v, and it is helpful
to keep this in mind when trying to make sense of the actual definition of $.

To carry out the construction of $, we now choose {^(v)}ve^ors\ cl+so that

N(v) N€(v)(v), the é(^-neighborhood of v, has the following properties:
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• N(v)ç^ S1 x [0,1] and

• N(v)C\N(vr) Qifv C\v' 0

Let N°(v) denote the interior of N(v) and v denote the boundary components of
N(v)

Given a simplex v C 'C(S) with vertices {vq, - - - v^} we consider the barycentric
coordinates for points m v

{T%=qSjVj I E?=o^ =land5y > 0, for all j 0,...,k}

To define our map

$ -€(S)xDiff0(S)^-€(S,z)

we first explain how to define it for (v, f) with v a vertex of ^(5) If f(z) ^ N°(v),
then we set

®(v,f) r1(v)
as suggested above

If f(z) <E N°(v), then f~1(v+) and f~1(v~) are nomsotopic curves in (S,z)
We will define <È>(v, /) to be a point on the edge between these two vertices of
"€(S,z), depending on the distance from f(z) to the two boundary components v +

and v~ Specifically, set

d(v + ,f(z))
2€(V)

'

where d(v +, f(z)) is the distance inside N(v) from f(z) to v+, and define

<S>(v,f) tf-\v+) + (l-t)f-\v-)
in barycentric coordinates on the edge [f~l(v+), f~l(v~)\

In general, for a point (x, f) <E ^(5) x Diff0(5) with x *£,, sjvj ^ v

{vo,... Vjç) we define 0(x, /) as follows As before, if /(z) ^ Uy N°(Vj), then
define

Otherwise, f(z) e_ 7V°(Ui) for exactly one i e_ {0,... ,k] Set

t_d(v + ,f(z))
2€(vl)

as above, and define

*(*, /) st (tf-\v+) + (1 -t)f-\v-)) + E^/"1^)-
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The group Diffb(S, z) acts on X?(S) x Diffq(S), trivially in the first factor and

as described in Section 2.1 in the second factor. Of course, since Diffb(S, z) <
Diff+ (S, z) projects into Mod(£, z) it also acts on X?(S, z). The map $ is equivanant:

given h € Diffb(S,z), f € Diff0(£) and v avertex in ^(S), provided f(z) g N°(v)
we have

®(h*(v,f)) ®(v,foh-1)
(foh-iri(v)
hof-\v)
A* CT100)

h.$(yj).
The general situation is similar, but notationally more complicated.

Proposition 2.2. The map <E> descends to a map <3? making the following diagram
commute

^(S)xDiffo(S)
IdiS(S)Xev

¦€(S) ^(S,z).

Moreover, <É> is equivariant with respect to the action ofit\ (S).

Here the action ofJt\ (S) on X?(S) x HI is trivial on the first factor and the covering
group action on the second.

Proof. We suppose that Sv(fo) ev(/i) and must show $(x, /o) $(x, f\).
Appealing to diagram (1) in Section 2.1, it follows that fo fi°h for some

h € Diffo(iS,z). We suppose that a is a simple closed curve on S and fo{z) ^ a.
Then fi(z) f\{h{z)) /0(z) g a and

d(Mz),a) d(Mh(z)),a) d(Mz),a).

Moreover, f^1 (a) h~l (/j-1 (a)) and since A-1 is isotopie to the identity in (£, z),
it follows that 7q_1 (a) and /j-1 (a) are isotopie in (S, z).

Recall that the dependence of 4>(x, f) on / was only via certain isotopy classes

/_1(a) and a single distance d(v+, f(z)). Since these data are the same for /o and

fi, it follows that

<Kx,/o) $(*,/i)
and so $ descends to X?(S) x HI as required.

Lemma 2.1 implies that Idç(s) x év is equivariant with respect to ev*. Thus, since

$ is equivariant, so is <É>. D
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Proposition 2.3. Given x € X?(S), let v C X?(S) be the simplex containing x in its
interior. Then the restriction

*x <E>l{x}xH:H^n-1(x)

is obtained byfirstprojecting to Tv, then composing with the equivariant homeomor-

phism Tv H~1(x)from Theorem 1.7.

Proof. Fix x € X?(S), the simplex v {vq, v^} C X?(S) containing x in its

interior, and write
k

x y^,sjVi

in terms ofbarycentric coordinates.
We note that the neighborhoods N(Vi) determine a map from HI to the Bass-Serre

tree Tv associated to v as follows. We collapse each component U of the preimage
p~1(N(Vi onto an interval, say [0,1], by the projection defined as the distance to the

component of/7-1(v^) meeting U, multiplied by 1/(2é(i;;)). Ifwe further collapse
each component of the complement of

,-i (N(v0)U---UN(vk))

to a point, the quotient space is precisely Tv.
The map $x is constant on the fibers of the projection to Tv. That is, $x : {x} x

HI -> n_1(x) C ^C{S,z) factors through the projection to Tv

{x} x H > TT1 (x)

VIoreover, the equivariance of $ implies that

Tv -> n_1(x)

is equivariant. According to [KLS09], the edge and vertex stabilizers in the domain
and range agree, and in fact this map is the homeomorphism given by Theorem 1.7,

as required. D

2.3. A further description of€(S, z). We pause here to give a combinatorial
description of€(S, z) which will be useful later, but is also of interest in its own right.
Given any simplex v C X?(S), the preimage of the interior of v admits a jt^S)-
equivariant homeomorphism

n_1(int(v)) ^int(v)xr„
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as can be seen from Theorem 17. As is well-known, the edges of Tv can be labeled

by the vertices of v. Now, if 0 : v' -> v is the inclusion of a face, then there is a

7ti(S)-equivariant quotient map (p* : Tv -> 7^/ obtained by collapsing all the edges

of Tj, labeled by vertices not in $(i/) (compare [GL07], for example). This provides
a description of II-1 (v), the preimage of the closed simplex, as a quotient

[J </x7V)/~.

Here the disjoint union is taken over all faces <f>: v' -> v and the equivalence relation

~ is defined by

(0(x),O~(*,**(O)
for every inclusion of faces 0 : v" -> i/ and every x € i/', t € 7V. Said differently,
we take the product v x Tv and for every face 0 : i/ -> v, we glue v x Tv to vr x Tv/

along 0(î/) x Tv by 0_1 x <f>*.

We can do this for all s impliees, then glue them all together, providing the
following useful description of X?(S, z).

Theorem 2.4. The curve complex X?(S, z) is Jt\ (S)-equivariantly homeomorphic to

U »xr.)/~.
iice(s)

Here the disjoint union is taken over all simplices v C X?(S), and the equivalence
relation is generated by

(0(x),O~(*,**(O)

for all inclusions offaces (f> : v' -> v all x € v' and all t € Tv. D

2.4. Extending to measured laminations. The purpose of this section is to modify
the above construction of $ to build a map

\F: MX(S)xU^MX(S,z)

and to prove that this is continuous at every point of 3?X(S) x H; see Corollary 2.10.

We do this by defining a map on MX(S) x Diffo(5), and checking that it descends

to MX(S) xl.
Before we can begin, we must specify a particular realization for each element of

MX(S) as a measured lamination. Given any element X € MX(S), we suppose X

also denotes the measured geodesic lamination representing it. We then produce an

elementA measure equivalent to X by replacing all simple closed geodesic components
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ofthe support | X | with appropriately chosen foliated annuii. We now explain this more
precisely and set some notation.

Given a measured geodesic lamination X, the support |A| can be decomposed into
a finite union ofpairwise disjoint minimal sublammations; see [CB87]. Write

X Cur(A) + Min(A),

where |Cur(A)| is the union of all simple closed geodesies in |A| and |Mm(A)|
|A| — |Cur(A) |. We construct a measured lamination A measure equivalent to À by
taking

A Ann(A) + Min(A),

where Min(A) Mm(A) and Ann(A) is a measured lamination whose support is a

foliation on annular neighborhoods of |Cur(A)| defined as follows.
The subìamination Cur(A) can be further decomposed as Cur(A) ^ • tj Vj,

where tjVj means tj times the transverse counting measure on the simple closed

geodesic component Vj of |Cur(A)|. Then |Ann(A)| is the disjoint union UjN(vj),
with each N(vj given the foliation by curves equidistant to Vj. This foliation of
N(vj) is assigned the transverse measure which is tj/(2€(vj)) times the distance

between leaves, and Ann(A) is the sum of these measured laminations; see Figure 2

for a cartoon depiction of A and A. Choosing {€ (v)} sufficiently small it follows that

|Ann(A)| n |Min(A)| 0 for all A.

For future use, ifCur(A) ^ • tj Vj, then we define

T(X) T(X) max tj.j

If |Cur(A)| 0 we set T(X) T(X) 0.

For any measured geodesic lamination A, by construction we have |A| C |A|,

meaning that as subsets of S, \X\ is a subset of |A|, and that each leaf of |A| is a

leaf of |A |. The difference between the total variations assigned an arc by A and A is

estimated by the following.

Lemma 2.5. Ifa is any arc transverse to \X\, then it is also transverse to \X\ and we
have

\X{a)-X{a)\ <T(X).

Proof. The transversality statement is an immediate consequence of |A | C |A|.

Since Mm(A) Vim (A), we see that

\X(a) - X(a)\ |Ann(A)(tf) - Cur(A)(tf)|.
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Figure 2. Removing simple closed geodesies and inserting foliated annuii.

The intersection [Ann(A) | C\a is a union ofsubarcs ofa, each containing an intersection

point of |Cur(A)| Pi a, with the possible exception of those arcs which meet the

endpoints of a. If aç, C a is one of the subarcs which meets one of the endpoints,
then we have |Ann(A)(#o) — Cur(A)(#o)| S T(X)/2. Since there are at most 2 such

arcs, the desired inequality follows. D

The following is also useful.

Lemma 2.6. Suppose Xn -> A in MX(S) with X € 3?X(S). Further suppose that

\Xn\ converges in the H'ausdorff'topology on closed subsets ofS to a set X. Then X
is a geodesic lamination containing the geodesic lamination \X\.

Proof. If |AB| |A„| is a geodesic lamination for all n, then the fact that X is a

geodesic lamination is well-known (see [CB87]), as is the fact that any Hausdorff
limit of {|A„|} contains |A| (compare [Thu80], Proposition 8.10.3).

Since A„ -> A and A € 3?X, it follows that no simple closed geodesic occurs
infinitely often in {|Cur(A„)|}. Further note that if {vn} is any sequence of distinct
simple closed geodesies in S, then their lengths tend to infinity and hence €(yn) -> 0.

Therefore, the Hausdorff distance between |AB| and |AB| tends to zero, and so the

Hausdorff limits of |A„ | and |A„ | are the same. As above, we see that X is a geodesic
lamination containing |A |. D

Now, given any (A, /) € MX(S) x Diffo (S), we would like to simply define

y(x,f) ri(x).
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As before, this does not make sense when f(z) lies on the supporting lamination |A |.

This is remedied by first splitting open the lamination along the leafwhich f(z) meets

to produce a new measured lamination X' representing the measure class A (there is

no ambiguity about how the measure is split since A has no atoms - this is one benefit

of the realization A over the measured geodesic lamination A). If f(z) lies on a leaf
of |A|, then the new lamination |A'| has either a bigon or annular complementary

region containing f(z) and /_1(A) is defined to be /_1 (A'). The support |/-1(^/)l
is contained in /_1(|A'|), and this containment can be proper since /_1(l^l) may
have an isolated leaf. Indeed, this happens precisely when f(z) lies on a boundary
leaf of |A|.

Train tracks provide a more concrete description of ^(/, A) which will be useful
in proving continuity results. Let X be any geodesic lamination on S and € > 0

sufficiently small so that the quotient of N€(X) by collapsing the ties defines a train
track x as in Section 1.2.2. Suppose that A is a measured lamination on S for which
|A | is contained in N€(X) and is transverse to the ties. If f(z) ^ N€(X), then \F(/, A)
is the lamination on (£, z) determined by the weighted train track /_1 (t(A)).

If f(z) € N€(X) then by a small perturbation of € we may assume that f(z) does

not lie on a the boundary ofany rectangle and that each switch of x is trivalent. Then
either f(z) is outside N€(X) and we are in the situation above, or else f(z) is in
the interior of some rectangle R Furthermore, x can be realized in N€(X) with the

branch ßR associated to R contained in R.

We modify the train track x at the branch ßR as follows. Remove an arc in the

interior of ßR leaving two subarcs ßR and ßrR of ßR. Insert two branches ßR and

ß R creating a bigon containing f(z); see Figure 3. The result, denoted x', is a train
track on (S, f(z)).

R

}
ah

ßi /»i

/
Figure 3. Modifying t to x1

If ft € Diffo(iS') is an isotopy with f fo and ft(z) € int(i?) for every
t € [0,1], and x't is constructed for ft as x is constructed for / (so x' x'0), then

frl(t't) is (isotopie to) f~l (xr) for all t.
The measured lamination A makes x' into a weighted tram track x'{X) on (S, f(z))

as follows. For the branches of x' that are the same as those of x, the weights are
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defined as before. To define the weights on the new branches, we first consider the

tie a C R that contains f(z), and write it as the union of subarcs a au U a with
au Pi ad {/(z)}. We define the weights on the branches ßR and ßR of the bigon to

be X(au) and X(a respectively, while the weights on the branches ßR and ßrR are

both X(a) X(au) + X{ad); see Figure 4. The lamination /_1(A) is the lamination
determined by the weighted train track f~l{x'(X)).

R

/(*)'

au

ad

X(au)
Uà) Uà)

X(aa)

Figure 4. Weights on %' determined by A and f(z).

The proof of the following is similar to that of Proposition 2.2 and we omit it.

Proposition 2.7. \^ descends to a Tt\(S)-equivariant map à>:

MX(S)xDÌRq(S)

I<Uf.£(S)Xêv

MX(S) x H *- MX(S, z).

D

Remark 2.8. Our construction of ^ depends on our choice of representation of
elements in MX. An alternative would be to realize each element of MX by a

measured foliation. Indeed, the hyperbolic metric determines a complex structure,
and for each element A € MX there is a unique quadratic differential for which the

vertical foliation realizes A; see [HM79]. Our choices are more compatible with the

use ofhyperbolic geometry in Sections 3 and 4.

Because of the particular way we have realized our laminations, neither the map
^ nor the map ^ need be continuous at measured laminations with nontrivial annular

component. However, this is the only place where continuity can break down. In

particular, we have the following.

Proposition 2.9. The map ty is continuous on 3?X(S) x Diffo(5).



Vol. 86(2011) Universal Cannon-Thurston maps 789

Proof. We will show that for any sequence {(A„, fn)} in MX(S xDiffo (S) converging

to (A, /) € 3?X(S) x Diffo(S) there is a subsequence for which {ty(Xnk, fn/ç)}

converges to ^(A, /). Since we will find such a subsequence for any sequence
converging to (A, /), continuity of ^ at (A, /) will follow.

We begin by passing to a subsequence for which the supports {|A„ |} converge in
the Hausdorff topology to a closed set X. It follows from Lemma 2.6, that X is a

geodesic lamination containing |A| |A|.

Case 1. Suppose f(z) ^ X.

In this case, there is an € > 0 so that the € -neighborhoods of f(z) and X are

disjoint. Since fn -> f as n -> oo, there exists N > 0 so that for all n > N,
fn(z) € N€(f(z)), and moreover, fn is isotopie to / through an isotopy ft such
that ft (z) € N€(f(z)) for all t. Taking N even larger ifnecessary, we may assume

that for n > N, |A„| C N€(X). Therefore, for all n > N, X and Xn determine

weighted train tracks x(X) and x(Xn), respectively. Since Xn —>- X, it follows that

^(A«) —>• t(A) as n -> oo.
Since fn is isotopie to / by an isotopy keeping the image ofz in N€(f(z)), it

follows that /_1 (x) f~1(x), up to isotopy. Therefore, f~x (x(Xn)) and /n-1(T(An))
are isotopie and so we have convergence of weights f~l(x(Xn)) -> /_1(t(A))
which implies the associated measured laminations converge

$(AB,/B)->$(A,/)

as required. This completes the proof for Case 1.

Case 2. Suppose that /(z) € X.

We choose e > 0 sufficiently small so that the quotient of N€(X) by collapsing
ties is a train track x, so that f(z) lies in the interior of some rectangle R of N€(X)
and so that x is trivalent.

Let N > 0 be such that for all n > JV, fn(z) also lies in the interior of R and

/ is isotopie to fn by an isotopy ft with /^ (z) contained in i? for all t. For each

n > N, the train track r associated to N€(X) and the points fn(z) and /(z) define
tracks x'n and r', respectively, with bigons as described above. Moreover, /„"H1^)
and /_1(V) are isotopie, and we simply identify the two as the same train track on
(S,z).

Since AB is converging to A as n -> oo, it follows that the weighted tram
tracks x(Xn) converge to x(X). Therefore, to prove that the weighted train tracks

/-1(rn(^n)) fri'1 (rn(^n)) converge to /_1(t'(A)), it suffices to prove that the

weights assigned to f~l (ßR) and f~l(ßR) by Xn converge to the weights assigned

to these branches by A. This is sufficient because the weights on the remaining
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branches agree with weights on the corresponding branches of x, where we already
know convergence. From this it will follow that ^(A^, fn) -> \^(A, /).

Note that the weights on ßR determined by the A„ converge to the weight defined

by A. So, since the sum of the weights on f~1(ßR) and f~1(ßR) is precisely the

weight on ßR, it suffices to prove convergence for the weights of one of these, say,

f-'ißl).
To define the required weights, first recall that we have the tie an C R with

/„(z) € an, and write an as a union ofsubarcs an a%Uad withö^ C\ad {/„(z)}.
Similarly, we have a tie a C R with a au U ad and au Pi ad {/(z)}. Then the

weights on f~l(ßR) determined by A„ and A are given by

Xn(al) and X(au),

respectively.

Therefore, we must verify that Xn(a™) -> A(aM). However, since T(Xn) —>- 0 as

/: -> oo, Lemma 2.5 implies that it suffices to prove Xn(a™) -> A(öM).
Fix any <5 > 0. Since Cur(A) 0, the measure X\a has no atoms. Thus we can

find subarcs au and au, of a with

a" ç au ç al ca
so that

A(aü) < X(au) < A(fl^) and A(^) - X(au_) < 6.

Since Xn -> A, it follows that we also have

lim Xn(al) X(al)
n—>oo ' '

and

lim Xn{au_) X{au_).
n—>oo

Furthermore, since an —> a and a™ -> tf" in the C1-topology, we see that

lim sup A„ (ö") < lim Xn{aV) X{a\)

and

liminf A„(û") > lim À„(a") A(û").
«—»-OO B—>00

Since liminfXn{aìr\) < lim sup A«(a^), combining all of the above, we obtain

I limsupA„«)-A(ûM)| + I liminfXn{aun) -X(au)I < 2<5.

As (5 was arbitrary, it follows that

lim A„(aJJ) limsupAR(a^) liminfAB(a^) A(aM)
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and this completes the proofof Case 2. Since Cases 1 and 2 exhaust all possibilities,
this also completes the proof of the proposition. D

Corollary 2.10. The map \F is continuous on 3?X(S) x EL

Proof. The map ev is a quotient map. D

2.5. 4> and *. The map \F descends to a map FMX(S) x H -> FMX(S, z) in the
obvious way. We denote this map by ^ with the meaning determined by context.

We let ty-c denote the restriction of \F to PMX-c (S)xH. The map \Fç has image

FMX^(S,z).

Lemma 2.11. The following diagram commutes:

FMX-e{S) x H-^ FMX^(S,z)

-e(s) x e —-—> -c(s,z).

The vertical arrows here are the natural maps.

Proof. The two maps are defined identically on MX-q (S) as there A Cur(A). D

Ifwe let ^g be the restriction of the map ^ to FMX^ x H, then we have

Proposition 2.12. There is a continuous Jt\{S)-equivariant extension $: ~€(S) x
H -> X?(S ,z) whichfits into a commutative diagram

FMX^(S) x H-^ FMX^(S,z)

C(5)xH ^ £(S, z).

Proof. Via Klarreich's work, as discussed in Section 1.2.5, we identify d'C with 8X.
Moreover, the vertical maps in the statement of the proposition send FïFX(S) x H
and FFX(S, z) onto 8X(S) xH and 8X(S,z), respectively, using this identification.

From the construction of ^ and the definition of 3?X, one can see that

*P(S)xH)c^(S,2).
Furthermore, ifA, A' € MX(S)with |A| |A'|, then |¥(À,x)| |¥(À',x)|. Thus,

^ determines a map
8X(S)x1I^8X(S>z)
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which extends $ to the required map

$: XÏ(S)xlI^XÏ(S,z).

Continuity follows from Proposition 1.8 and Corollary 2.10, and equivariance follows
from continuity and the equivariance of O. D

We will also need the following

Proposition 2.13. Suppose {vn} C X?(S), {xn} C EL and xn -> x € EL If{vn}
does not accumulate on dX?(S), then {^>(vn, xn)} does not accumulate on d~€(S, z).

Proof. The proof is by contradiction. Suppose {<&(yn,xn)} accumulates on some
lamination \(x\ € dX?(S,z), and pass to a subsequence which converges to \fi\ in
X?(S,z). If any curve in the sequence {vn} occurs infinitely often, then passing to a

further subsequence, we can assume vn is constant and equal to v. Then

\fi\ lim &(v„,xn)= lim $(v,xn) $(v,x) € ^£(S,z).
n—>oo n—>oo

This is a contradiction since \(x\ € &€{S, z). So without loss of generality, we may
assume that all the vn are distinct.

Fix elements Xn € MX(S) representing the projective classes associated to vn

via the natural bijection FMX-ç(S) -> 'C(S), and as in Section 2.4, we let Xn be

our preferred representative. After passing to a further subsequence and rescaling if
necessary, we may assume that for some A € MX(S), we have convergence A„ -> A

in the space MX(S). Since vn are all distinct, T(Xn) -> 0. Thus, as in the proof
of Lemma 2.6, we may pass to yet a further subsequence if necessary so that |A„|
converges to a geodesic lamination X.

It follows from Proposition 1.8 that no sublamination of X lies in 8X(S). In
particular, removing the infinite isolated leaves of X, we obtain a lamination which
is disjoint from a simple closed curve v' and contains the support of A. Choosing
€ > 0 sufficiently small, we can assume that the train track x obtained from N€{X)
(as described in Section 1.2.1) contains a subtrack Xq so that (1) Xq is disjoint from
some representative a of v' and (2) r(A) has nonzero weights only on the branches
Of T0.

Now let / € Diffo(iS') be such that ev(/) x. After modifying x and Xq to x'
and Xq as in Section 2.4 ifnecessary (that is, after a possible isotopy and insertion of
a bigon around /(z)), it follows that for sufficiently large n, f~l{x'(Xn)) determines
the lamination ty(Xn,xn). After passing to a further subsequence if necessary, we
can assume that f~l{x'(Xn)) converges to some f~1(xr)(fio), also having nonzero
weights only on f~l(x'Q). It follows that//.o, the limit of ty(Xn, xn), is not in 3?X(S,z)
since its support is disjoint from f~1(a). Since P\F(A„, xn) € FMX^(S, z), Proposition

1.8 implies \(Xq\ \fi\, which is a contradiction. D
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Lemma 2.14. For (\X\,x),(\X'\,x') € 8X(S)x7ä, $(|A|,x) <S>(\X'\,x') ij
only if\X\ |A'| andx and x' are in the same leafofp~l(\X|) or in the closure of
the same complementary region of H — /?—x(|A |).

Proof. Ifx, x' lie on the same leafofp~l (|A |) or in the closure of the same component
of H — p~l (|A |), then it is straightforward to see that $(|A |, x) $(|A |, x').

Now we prove the forward direction; suppose that $(|A|, x) $(|A'|, x'). We

must show that |A| |A'| and x and x' are in the same leaf of /?_1(|A|) or in the
closure of the same complementary region of H — /?-1(|A|).

We first apply an isotopy so that the laminations $(|A |, x) and $(|A' |, x') are equal
(not just isotopie). Forgetting z, the laminations remain the same (though they may
have a bigon complementary region, and so are not necessarily geodesic laminations),
and hence |A| |A'|.

Proving the statement about x and x' is slightly more subtle. For simplicity, we
assume that x and x' lie in components ofH — p~l (|A |) (the general case is similar,
but the notation is more complicated). Let /, /' € Diffo(S) be such that ev(/) x
and ev(/') x'. Let / and /' be lifts of / and /' with /(z) x and f'(z) x'
(see Section 2.1). Modifying / and /' by an element ofDiffo (S, z) ifnecessary, we
may assume that/-1 (|A |) $(|A|,x) and/'_1(|A|) $(|A|,x') are equal (again,
not just isotopie).

Since/-1 (IA |) f'~x (|A |), it follows that /' of~x{\X\) |A|. Back in H this
means /' o f~l(p~l(\X\)) p~l(\X\). Since /' o f~l(x) x', and f'of~l is

the identity on 3H, it must be that x and x' lie in the same complementary region of
H —/?_1(|A|), as required. D

3. Universal Cannon—Thurston maps

3.1. Quasiconvex sets. For the remainder of the paper, fix a bi-infinite geodesic y
in the universal covering p : H —>¦ S for which p(y) is afilling closed geodesic in S,

by which we mean that p(y) is a closed geodesic and the complement of p(y) is a

union of disks in S. Let 8 € Tti(S) generate the (infinite cyclic) stabilizer of y. We

will make several statements about y, though they will also obviously apply to any

jt\ (S)-translate of y.
Define

X(y) fc(£(S) x y)

where $ is the map constructed in Section 2.2. Let H (y) denote the two halfspaces
bounded by y and define

M±(y) $(e(S)xH±(y)).
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Recall that N(v) N€(v)(v) is a small neighborhood of the geodesic representative

oft; € X?°(S). We may assume that the €(v) are small enough to ensure that

every component a C y 0. p~1(N(v)) is essential in the strip of p~1(N(v)) that a
meets. Here, we say that arc is essential if it is not homotopic into the boundary
keeping the endpoints fixed.

A subset X of a geodesic metric space is called weakly convex if for any two
points of the set there exists a geodesic connecting the points contained in the set.

Observe that the image of a 1-Lipschitz retraction on any geodesic metric space is

weakly convex. In a Gromov hyperbolic space, weakly convex sets are in particular
uniformly quasi -convex.

Proposition 3.1. £(y), M (y) are simplicial subcomplexes ofC{S,z) spanned by
their vertex sets and are weakly convex.

To say that a subcomplex Q, C ^(5, z) is spanned by its vertex set, we mean that
Q is the largest subcomplex having Q (°' as its vertex set.

ProofofProposition 3.1. We describe the case of £(y), with $!±(y) handled by
similar arguments. First we appeal to Proposition 2.3 and Theorem 2.4 to describe
the structure ofX(y) C ^(£, z). Next we prove that X(y) is spanned by its vertices
and finally we construct a simplicial retraction p: ^(£,z) -> £(y). The existence

of p implies the proposition since a simplicial map is 1-Lipschitz.
For any x € int(i;), dc(y) fl II-1 (x) $({x} x y), which is a bi-infinite geodesic

in the tree II-1 (x) Tv; see Proposition 2.3. One can also see this as the axis of 8

in Tv (since p(y) is filling, 8 is not elliptic in Tv). We denote this axis by yv C Tv.
Recall from Section 2.3 that an inclusion of faces 0 : v' -> v induces a quotient of
associated trees 0* : Tv —>- Tv>. Since the axis of 8 in Tv is sent to the axis of 8 in Tv/

by (}>*, we have 4>*{yv) Yv'- Therefore, with respect to our homeomorphism with
the quotient of Theorem 2.4, we have

£(y)=( U vxYv)/~ (2)
iice(s)

where, as in Theorem 2.4, the disjoint union is over all s impliees v C X?(S), and the

equivalence relation is generated by

(4>(x),t)~(x,<f>*(t))

for all faces 0 : v' —>¦ v, all x € v' and all t € yv. We also use the homeomorphism
in (2) to identify the two spaces.

We can now show that £(y) is spanned by its vertices. The simplices of€(S,z)
via the homeomorphism of Theorem 2.4 are precisely the images of cells DXffin
the quotient, where v C X?(S) is a simplex and a C Tv is an edge or vertex. Thus, if
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the image of v x a is a simplex, and we let Vq, v^ be the vertices of v and to,t\
the vertices of a (assuming, for example, that a is an edge) then the vertices of the

simplex determined byuxff are images of (vl, t} for i 0,... k and j 0,1 If
these vertices lie in 3£(y), then to,ti € Yv, hence o C yv and the image of v x a lies

in £(y) It follows that 3L(y) is a simplicial subcomplex of '€(S,z) spanned by its

vertex set

Next, we will define a retraction

p X?(S,z)^X(y).

Let rjv Tv -> yv be the nearest point projection map Extend this to

pv id x i]v v x Tv -> v x yv.

Observe that if (p v' -> v is a face, then nearest-point projections commute

Vv' o(j}* (j)* oTfv.

This is because a geodesic segment in Tv from a point t to yv is taken to a geodesic

segment from <f>*(t) to yv/ From this it follows that the maps pv give a well-defined

map p
All that remains is to verify that p is simplicial Given a simplex which is the

image of v x a in the quotient, for some v C G(S) and a C Tv, the p-image of this

simplex is the image of pv(v x a) v x J]v(a) m the quotient Since J]v(a) is either
an edge or vertex, v xr\v (a) projects to a simplex in the quotient, as required D

Throughout what follows we continue to denote the axis of <5 in Tv by yv C Tv

or, with respect to the homeomorphism Tv U~l(v), by yv ^({v} x y)

Proposition 3.2. We have

M + (y)yjM-(y) 'e(S,z)

M + (y)nM-(y) X(y).

Proof. The first statement follows from the fact that H + (y) U H~(y) H and that
O is surjective

For the second statement, first observe that since y C H (y), it follows that

X(y)c M + (y)nM-(y).
To prove the other inclusion, look in each of the trees IT-1 (v) Tv For each vertex
v (z G(S), we define the half-tree

h^yv) ^±(y) n n-1^) *({«} x H+(y)).
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Let u € H + (yv) n H~(yv) be any vertex, we will show that u € yv We can
write u <§({v} x TJ) where U is a component of H — p~1(N(v)) Therefore,
U n H + (y) =£ 0 and U fl H~(y) =£ 0 Since t/ is connected and y separates
H + (y) from H~(y) we have t/ fly =^ 0 Hence 0({t;} x t/) u e yv as required

Given any simplex u {uq, u^} C M + (y) H Jf~(y), by the previous
paragraph we have u} € £(y) Since 3£(y) is a subcomplex spanned by its vertex
set, we have u C 3£(y) and hence

Jf + (y)nJf-(y)c^(y)
which completes the proof D

It will be convenient to keep the terminology in the proof of this proposition as

well We therefore think of yv as "bounding the half-trees" H±(yv) C Tv Tl~l(v)

3.2. Rays and existence of Cannon—Thurston maps. An essential subsurface of
S is either a component of the complement of a geodesic multicurve in S, the annular

neighborhood N(v) of some geodesic v € "€°(S), or else the entire surface S

A point x € 9H is afilhngpoint for an essential subsurface Y (or simply, xfills Y)
if

" for every geodesic ray r C H ending at x and for every v € ~C°(S) which
nontnvially intersects Y, we have p(r) D v 7^ 0 and

" there is a geodesic ray rei ending at x so that p(r) C Y

For any r, v as in the first item observe that the ray r meets infinitely many
components of p~l(v) Observe also that every point x € 9H fills exactly one
essential subsurface of S

Definition 3.3. Let A C 9H be the set of points that fill S

Lemma 3.4. If x ^ A and r is a ray ending at x then ^({v} x r) has bounded
diameterfor all v <e X?°(S).

Proof. S incex does not fill iS there is a simple closed geodesic u' C S so that p(r) Civ'

is finite It follows that 0({t/} x r) has bounded diameter in U~1(y') C '€{S,z)
Since 0({t/}xr) and €>({u}xr) have bounded Hausdorff distance, we are done D

Recall that we have fixed once and for all a geodesic y C H which projects to

a non-simple closed filling geodesic in S Consider a set {yn} of pairwise disjoint
it\ (S )-translates of y, with the property that the half spaces are nested

H + (Yl)DH + (y2)D---.
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Since the yn are all disjoint, proper discontinuity of the action of it\{S) on H implies
that

fi H+{yn) {x}
n=\

for some x € 9H. Here the bar denotes closure in H H U 9H. We say that {y„}
nests down to x. Note that {H+(yn)} is a neighborhood basis for x.

Given any x € 9H, if r C H is a geodesic ray ending at x, then since p(y) is

filling, p(r) intersects p(y) infinitely often. It follows that there is a sequence {yn}
which nest down to x.

Proposition 3.5. If{yn} is a sequence nesting down to a point x € A, thenfor any
choice ofbasepoint Uq € ^(£,z),

d(uo,X+(yn)) -> oo

as n -> oo.

Proof. Recall that the curve complex and its one-skeleton are quasi-isometric
[MM99]. Thus, in what follows all distances will be computed in the 1-skeleton.
We write Uq ^>(vq, y) for some vertex Vq € X?(S) and y € H. By discarding a
finite number of initial elements of the sequence {yn} we may assume that y € H~(yn)
for all n, and somo€ M~(yn) for all n.

Now, fix any R > 0. Since

^+(y1)D^+(y2)D^+(y3)D---

we must show that there exists N > 0 so that for all u € ^+(yAr), d(uo,u) > i?.

Claim 1. It suffices to prove that there exists N > 0, so that for all

w € X+(yN) n n_1(5(v0, -R)),

the distance inside II-1 (B(vq, R)) from Uq to w is at least R.

Proof. Observe that any edge path from a point u € ^(5,z) to Uq which meets

'C(S,z)-U~1(B(vo,R)) projects to a path which meets both 'C(S) - B(v0, R) and

Vo, and therefore has length at length at least R. Since II is simplicial, the length of
the path in X?(S, z) is also at least R. D

The intersection of M+(yn) with each fiber II-1 (v) Tv is a half-tree denoted

by H+(yntV) and bounded by y„5„ %(yn) fl II-1 (v). See the proof of Proposition

3.2 and comments following it.
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Claim 2. For any k > 0, there exists positive integers Ni < N2 < N3 < ••• < Nk
so that

YNj,v nyjv/+1)» 0 (3)

for ail y 1,... ,k - 1 and ail v € 5(v0, R).

Proof The proof is by induction on k. For A: 1, the condition is vacuously satisfied

by setting Ni 1. So, we assume it is true for k > 1, and prove it true for k + 1.

Thus, by hypothesis, we have found Ni < N2 < < Nk so that (3) is true, and we
need to find Nk+i so that

YNkiv nyNk+liV 0 (4)

for all v € B(v0,R).
We suppose that no such Nk+i exists and arrive at a contradiction. Observe that

the nesting

H+(Yi,v)DH+(y2tV)D...

means that ifyniV f~l ymiV 0 for some m > n, then y„5„ n Ym+j,v 0 f°r all j > 0.

Thus, since no such Nk+i exists, it must be that for every y > 0, there exists a

curve Vj € B{vq, R)so that

YNk,vj n yjvt+J>; 7e 0-

Let My € YN/cv,- n yN/c+j,v,- be a vertex in the intersection. This vertex is the image
under the map $„. of a component Uj C H — p~l(Vj) which meets both y^k and

YNfc+j', see Figure 5.

yjv*+y

w*

Figure 5. The region C// and the geodesies y^rfc and yjvfc_|__/ from the sequence nesting down

onx.
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Let gj C Uj C H be a geodesic segment connecting a point yJ € y^k to

yt € YNk+j. Furthermore, we may pass to a subsequence so that the y~ converge
to some point y (possibly in 9H) of YN/c- It follows that the sequence of geodesies

gj converge to a geodesic ray or line r^ connecting y and x.
By passing to a further subsequence, we can assume that Vj limits in the Hausdorff

topology to a geodesic lamination X, and that p(foo) does not transversely intersect X.
Because the Vj are all contained in B(vo, R), X cannot contain an ending lamination
as a sublammation by Proposition 1.8. It follows from [CB87] that X is obtained
from a lamination supported on a proper subsurface E by adding a finite number of
isolated leaves. Any geodesic in S which does not transversely intersect X can only
transversely intersect 9 E twice (when it possibly exits/enters a crown; see [CB87]).
Since p(roo) meets 9E at most twice the point x does not fill S, a contradiction. D

Now, pick an integer k > R + 1 and let Ni < N2 < ••• < Nk be as in Claim 2.

tices in %(ynj) H %(ynj+1) H II-1(i?(t;o

x(yNj) n %(yNj+1) n ir^vo,*))
There can be no vertices in £(yjv.-) H 26(yj\r.+1) H II 1(B(vq, R)), and hence

Moreover, since

M+{yNl) D M+{yN2) D---D M+(yNk)

it follows from Proposition 3.2 that

2(ynj) n 2(YNt) n ir^vo,*)) 0 (5)

for all î ^ y between 1 and k.
Let w € ^+(yjvÄ.)nlI_1(5(i;o, i?)) be any pointand{uo,Ui,... ,um w} be the

vertices ofan edge path from Uq to u within II-1 (B(vq ,R)). We have Uq € 3£~(ynj
for all y* and u € ^+(YNk) C ^+(YNj) for all y*. By Proposition 3.2, the edge path
must meet 26(/#,-) for each y. That is, for each j, there is some i ;(y) so that

ui(j) € %(Yn,-)- By (5), there must therefore be at least k > R + 1 vertices in the

path, and hence the length of the path is at least R.

Therefore, setting N Nk, we have for all u e M+(yn) C\ II_1(5(t;o, R)), the
distance inside II-1 (B(vq R)) from Uq to u is at least R. By Claim 1, this completes
the proof of the proposition. D

We can now prove the first half ofTheorem 1.1.

Theorem 3.6. For any v € X?°(S), the map

§v: H^^(5,z)
has a continuous Tti (S)-equivariant extension to

®v: IUA^ë(S,z).
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Proof Observe that $„ is already defined, continuous and equivariant. All that

remains is to extend it to <&v on A by checking the criterion of Lemma 1.9 from
which continuity follows. Equivariance is a consequence of equivariance of <&v and

continuity of <&v.

Fix a basepoint Uq € XÏ{S, z). Given any x € A, let {yn} be any sequence nesting
down on x. According to Proposition 3.5, we have

d(uo,M+(yn)) -> oo.

Moreover, by Proposition 3.1, M+{yn) is weakly convex and hence uniformly quasi-
convex. Finally, observe that <$v(H+(yn)) ^>({v] x H+(yn)) C X+(yn). Since

x € A was an arbitrary point, Lemma 1.9 implies the existence of an A-Cannon-
Thurston map $„. D

We note that, given x € A, the image ^>v(x) depends only on x, not on v, and is

the unique point of intersection of the sets

C)X+(yn).

We can therefore unambiguously define 9$: A -> dX?(S,z) by 9$(x) $v(x) for
any x € A, independent of the choice of v € X?°(S).

3.3. Separation

Proposition 3.7. Given distinct x, y € A, let € be the geodesic connecting them.

Then there are 7ti(S)-translates yx and yy ofy defining half-space neighborhoods

H+(yx) and H+(yy)ofx and y, respectively, with

dM+(yx) n dM+(yy) 0

ifand only ifp(c) is non-simple.

Before we can give the proof of Proposition 3.7, we will need the analogue of
Proposition 3.2 for the boundaries at infinity. Recall that y was chosen to be a bi-
mfinite geodesic with stabilizer {8} and p(y) a filling closed geodesic.

Proposition 3.8. We have

dM+{y) U dM~{y) d*e{S,z)

dM+(y) n dM~(y) 926(y).
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Proof. This first statement in an immediate consequence of Proposition 3.2. The
second also follows from this proposition, but requires some additional argument.
Since 26(y) M+{y) n M~{y), it easily follows that

926(y) c dM+{y) n M~{y).

If \{i\ e dM+{y) n dM~{y), then let {u+} C M+{y) and {u~} e M~{y) be

sequences converging to |//.| in ^(£,z). For each n let gn be a geodesic segment
from u„ to w~. By Proposition 3.2, there is a vertex un € g« Pi £(y). Therefore w„
also converges to |//.|, and so |//.| € d%(y), proving

dM+{y) n dM~{y) c 926(y). D

A theorem of Kra [Kra81] states that, since p(y) is filling on S, 8 is pseudo-
Anosov as an element of Mod(£,z). We let \fi+\ and \fi-\ be the attracting and

repelling fixed points of 8, respectively, in dX?(S,z).
Recall from Proposition 2.12 that $ has a continuous Jti (£)-equivariant extension

$: ê(S)xH^t(S,4
Lemma 3.9.

9£(y) 3>(9^(S)xy)U{|^±|}

Proof. Continuity of $ implies <3>(dX?(S)xy) C d%(y). Invariance ofy by 8 implies
invariance ofX(y) by 8 so {|/^±|} C d%(y), and hence

a£(y)D$(9^(S)xy)U{|^±|}.

We are left to prove the reverse inclusion. Suppose {un} is any sequence in £(y)
with un -> \/i\ € 926(y). We wish to show that \/i\ € $(9^(5) x y) U {|//.±|}. By
definition of dc(y) there exists {(ü«,xn)} C 'C(S) x y with $(i;R,x„) un for all
n. There are two cases to consider.

Case 1. {xn} C K, for some compact arc Key.
After passing to a subsequence ifnecessary xn -> x € ^T. By Proposition 2.13, we

can assume that u„ accumulates on dX?(S). So, after passing to a further subsequence

if necessary, we can assume that vn -> |A| € 9^(5). Then by continuity of <£>

(Proposition 2.12) we have

\fi\= lim $(y„,x„) $(|A|,x)€ $(3£(S)xy).

Case 2. After passing to a subsequence xB -> x, where x is one of the endpoints of
y in 9H.
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Note that x € A since p(y) is filling. Indeed, x is either the attracting or repelling
fixed point of 8. Without loss ofgenerality, we assume it is the attracting fixed point.
Now suppose yi is any Jti (S) translate which nontrivially intersects y. Thus {<$" (yi )}
nests down on x, and hence

fi M+{8n{yi)) p| 8»{M+{yi))
n=\ n=\

consists of the single point |/x+|, the attracting fixed point of the pseudo-Anosov 8.

After passing to a further subsequence ifnecessary, we can assume xn € H+(8n (yi ))•
Therefore, $(i;„,x„) € ^+(<5"(yi)), and hence

\fi\ lim $(vtt,x„) 1/2+1,
n—>oo

completing the proof ofLemma 3.9. D

ProofofProposition 3.7. We fix x, y € A and € the geodesic between them. We

write yx and yy to denote 7Ti(5')-translates of y for which H+(yx) and H+{yy)
define disjoint neighborhoods of x and y, respectively. We must show that p(e) is

simple if and only ifdM+(yx) fl dM+(yy) ^ 0 for all such yx and yy.
First, suppose p(c) is simple. The closure of p(e) is a lamination X [CB87].

Since x, y € A, X must contain some |A| € 8X(S) as the sublamination obtained

by discarding isolated leaves. Therefore € is either a leaf of/?_1(|A|) or a diagonal
for some complementary polygon of/?_1(|A|).

It follows from Lemma 2.14 that ifx' € yx C\ € and y ' € yy fi é, then $(|A |, x')
^(1^1 > y')- Appealing to Lemma 3.9 we have

0 ^ H{\X\}xyx)n$({\X\}xyy)
C 3%)n3ï(7,)
C dM+{yx)ndM+{yy)

as required. In fact, it is worth noting that by Lemma 2.14, $({|A|} x €) is a single
point which lies in dM+{yx) Pi dM+{yy) for all allowed choice of yx and y-y, and is
therefore equal to $v(x) Ov(_y).

Before we prove the converse, suppose yi and y2 are two translates of y for which
H+(yi) C H~(y2) and fl"+(y2) C H~(yi)- Then we have

BJe+(Yi) C 3«^~(y2) and 9^+(y2) C 9^_(yi).

Therefore, by Proposition 3.8, it follows that

dJe+(Yi) n 9^+(y2) 926(yO n 926(y2).
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Further suppose that yi ^ y2, so that fixed points of<5i and 82 (elements generating
the stabilizers of yi and y2, respectively) are disjoint in dX?(S, z). If

9^+(yi) n dX+(y2) ^ 0

then by Proposition 3.9 there exists Xi € yi and x2 € y2 and |Ai |, |A2| € dX?(S) for
which $(|Ai|,Xi) $(|A2|,x2). According to Lemma 2.14, we have |Ai| |A2|,
and Xi and x2 lie on the same leaf, or in the closure ofthe same complementary region
of |Ai |. In particular, there is a bi-infinite geodesic contained in a complementary

region or leaf of p~1(\Xi |) which meets both yi and y2.
We now proceed to the proof of the converse. Let {yniX } and {yn,y } be sequences

of^1(5)-translates of y which nest down on x and y, respectively. We suppose that

d^+(yn,x) n dje-(Yn,y) ï 0

for all n > 0, and prove that p(e) is simple on S. By the discussion in the preceding
two paragraphs there exists a sequence of laminations {|A„ |} C dX?(S) so that yXi„
and yyin both meet a leaf or complementary polygon of p~1(\Xn |). It follows that
there is a sequence of geodesies {€n} in H for which p(€n) is simple on S, and

£n H yx,n 7^ 0 7^ f„ n yyi„. The limit € of {€„} has endpoints x and y. Also p(c) is

simple as it is the limit of simple geodesies [CB87]. D

The following is now immediate from Proposition 3.7 and its proof.

Corollary 3.10. Given distinct x, y € A then 90(x) d<&(y) ifand only ifx and

y are ideal endpoints of a leaf (or ideal vertices ofa complementary polygon) of
p~l(\X\) for some \X\ € 9^(5). D

3.4. Surjectivity. In this section, we prove that our map 9$ is surjective.
Birman-Séries [BS85] proved that the closure of the union of simple closed

geodesies

ve^°(S)

is nowhere dense in S. We fix an € > 0, and assume that our chosen constants

{6(i;)}„eço(5) are sufficiently small so that

S- [J N(y)
veV°(S)

is € -dense. It follows that €(v) < € for all v e^iS).
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Lemma 3.11. Suppose {v\,x{), {v2,x2) € X?°(S) x IS with <&(Vi,Xi) Wj avertex
inX?(S, z)for i 1,2. Then there is a path

~§ (v,x): [a,b] ^'€(S)xIS

such that $ o~§ is a geodesic from Ui to u2 and x connects Xi to x2 with image
contained in the 2c -neighborhood ofa geodesic in EL

Proof. For each i 1,2 we can find xi in the same component of H — p~1 (N°(vt
as Xj withm € of X; such that x[ and x'2 are contained in some geodesic y' which
projects to a filling closed geodesic in S (the pairs of endpoints of such geodesies
are dense in 9H x 9H). Then <&(Vi,Xi) ^>(Vi,xi) fori 1,2. Moreover, the

geodesic from x[ to x'2 is within € of Xi and x2. Suppose we can find *§' (v', x')
so that $ o ii' is a geodesic from Ui to w2 and x' connects x\ to x^ with image
contained in the € -neighborhood of a geodesic containing x[ and x'2. Then we can
take $ (v, x) to be such that v v' and x first runs from Xi to x[, then traverses

x', and finally runs from x'2 to x2 (all appropriately reparameterized). This will then

provide the desired path proving the lemma.

To construct *§', we suppose for the moment that {^(v)}j,ee0(S) have been chosen

so that any arc of y' 0. p~1(N(v)) is essential. With this assumption, Proposition 3.1

applied to y' implies that £(y') is weakly convex. Now connect Ui and u2 by a

geodesic edge path within 2E(y') with vertex set {ui W\, if2, IU3,..., Wk u2}.
Let Vi U(Wi). We observe that for every i 1,..., k,

,-1 (wi)n(€(S)xyf) {vi}xai

where at is an arc of y' Pi (H — p~l (N(vt and is in particular connected. It follows
from the construction of $ that the edges [u>i, W;+i], for i 1,..., k — 1 are images
of paths in X?(S) x y' which we denote ai (bt, Ct). Explicitly, if Vt Uf+i, then
èj is constant and equal to Uj Uf+i, and Cj traverses an arc of y' Pi p~l (N(vf)). If
Vj y^ Uf+i, then èj traverses the edge [Vi, Uj+i] and Cj is constant.

We can now define W (v', x') as follows.

(1) Begin by holding v' constant equal to Ui lui and let x' traverse from x^ to
the initial point of Ci inside ct\ C y'.

(2) Next, traverse a\.

(3) After that, hold v' constant again and let x' traverse from the terminal point of
C\ to the initial point of c2 inside a2 C y'.

(4) We can continue in this way, for i 2,... ,k — 2 traversing at, then holding
v' constant and letting x' go from the terminal point of Cj to the initial point of
ct+i inside «j+i C y'.
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(5) We complete the path by traversing ak-i, then holding v' constant and letting
x' traverse the path from the terminal point ofck-i to x2 inside otk C y'.

By construction, the projection of this path $ o *§' onto the first coordinate is the

geodesic from u i tou2 that we started with (although it stops and is constant at each

of the vertices for some interval in the domain of the parametnzation). Moreover, x'
is contained in y' and connects x[ to x'2, so therefore stays within a distance zero of
the geodesic from Xj to x'2, as required.

The proof so far was carried out under the assumption that for every v € X?°(S),

every arc of y' Pi N(v) enters and exits the component of N(y) which it meets in
different boundary components. Ifthis is not true, then first shrink all € (v) to numbers

€r(v) < €(v) so that it is true, construct the path as above, and call it it" (v", x").
Note that the numbers {é'(i;)}„eço(5) determine a new map $': ~C(S)xIS -> ^(S,z),
and $' o ~§" is a geodesic. With respect to the original map $, v" is almost good
enough for our purposes. The only problem is that $ o *§" may now no longer be a

geodesic: If there is some interval in the domain in which v" is constant equal to v
and x" enters and exits a component p~l(N(v)) from the same side, then $ o $" will
divert from being a geodesic by running (less than halfway) into an edge of II-1 (v)
and running back out. We modify *§" to the desired path "§', by pushing x" outside

of p~l(N(y)) whenever this happens, thus changing it by at most €(v) < €. The

resulting path *§' has v' v" and x' still connects x[ to x'2 and stays within € of y',
as required. D

Surjectivity of 9$ requires that every point of dX?(S,z) is the limit of ^>v(r) for
some v € X?°(S) and some ray r C H ending at a point of A. The following much
weaker conclusion is easier to arrive at, and will be used in the proof of surjectivity.

Lemma 3.12. For any v e ^(S), d^C{S,z) C *„(H).

Proof. First, note that since 7t\(S) < Mod(5,z) is a normal, infinite subgroup, its
limit set in PMX(S, z) (in the sense of [MP89]) is all ofFMX(S,z). In particular, the
closure ofany Jti (5)-equivariant embedding H C T(S, z) in the Thurston compact-
ification ofTeichmüller space meets the boundary FMX(S, z) in all ofFMX(S,z).
In particular, for any //. € FfiX, there is a sequence ofpoints xn € H limiting to //..

The systole map sys: T(S,z) -> ^(5,z) restricts to a 7Ti(5')-equivariant map
from H to X?(S, z), which is therefore a bounded distance from <&v. Again appealing
to Klarreich's work [Kla99], it follows that sys extends continuously to F3?X(S, z),
and hence sys(x„) —^ \fx\ € 8X(S,z) ^ d¥H(S,z). Therefore $v(x„) —^ \fx\. Since

//. was arbitrary, every point of dX?(S,z) is a limit of a sequence in $„(EI), and we
are done. D

Given an arbitrary sequence {xn} in H, we need to prove the following.
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Proposition 3.13. If lim xn x € 9H — A, then 3>v(xn) does not converge to a
n—*x>

point ofdX?(S,z).

One case of this proposition requires a different proof, and we deal with this now.

Lemma 3.14. If{xn} andx are as in Proposition 3.13 and x is the endpoint ofa lift
ofa closed geodesic on S, then ^>v(xn) does not converge to a point ofdX?(S,z)

Proof. Under the hypothesis of the lemma, there is an element r\ € Tti(S) with x
as the attracting fixed point. Moreover, because x $ A, the geodesic representative
of this element of 7ti(S) does not fill S. Therefore, the associated mapping class is

reducible (see [Kra81]).
Let Yq be a 7Ti(5')-translate of y such that Yq separates x from the repelling

fixed point of r\. Then (rç"(yo)} nests down on x. It follows that after passing to a

subsequence (which we continue to denote {x„}) we have

xn e H+(r}"(y0)) r}n(H+(y0)).

Appealing to the Jti (S)-equivariance of $ we have

$„(*») $(v,xK) € Je+(rf(yo)) Vn(^+(Yo)).

Suppose now that ^>y(xn) converges to some element \fi\ € dX?(S,z). It follows
that

\fi\ € H ^(^+(yo)).
n=\

However, any such \(x\ is invariant under rj and since rj is a reducible mapping class

it fixes no point of dX?(S ,z). This contradiction implies $„(x„) does not converge
to any \(x\ € dX?(S,z), as required. D

ProofofProposition 3.13. Recall that <&v(x) $(i;,x). Suppose, contrary to the

conclusion of the proposition, that

lim $(t;,x„) \fi\ e 8X(S,z) ^ d*e{S,z).
n—>oo

We begin by finding another sequence which also converges to \(x\ to which we can
apply the techniques developed so far. Since x $ A the surface Y filled by x is

strictly contained in S. By Lemma 3.14 we may assume that Y is not an annulus.

Let r C H be a ray ending at x so that r is contained in a component Y of p~l (Y)
and so that p(r) fills Y.
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We pass to a subsequence (which we continue to denote {x„ }) with the property
that for every k > 0, the geodesic segment ßk connecting x2k to x2k+i passes within
some fixed distance, say distance 1, of r and so that furthermore

ßk n Y ^ 0.

Now fix any k > 0 and let $ o ~§k : [ak,bk] -> ~C(S,z) be a geodesic from
<&(v,x2k) to $(i;, x2^+i) where ~§k (v*, x*) is given by Lemma 3.11. The path
x connects x2k to x2k+i and has image within 2c of a geodesic in H which must
also pass within a uniformly bounded distance ofr (in fact, it passes within a distance
1 + 2€).

Choosing the subsequence {xn} carefully, we may assume that ßk spends a very
long time in Y Doing this ensures that the image of x nontrivially intersects Y.
Let tk € [#£> bk] be any time where x meets Y. Then set

yk xk(tk)ef and vk vk(tk) € -€°(S)

(recall that x is constant when v is not, so we can assume that tk is chosen so that

Vk is indeed a vertex).
Observe that since $ o~§k([ak, bk\) is a geodesic from <&(v, x2k) to <&(v, x2k+{),

the sequence {$ o 1? (tk)} {$(i;^, y^)} also converges to \fi\. Let us write Uk
*(Vjfc,^Jfc).

Next, for each k > 0 let fk € Diffo(5) be such that ev(y>) y^ € F. Since

F is a single component of p~l(Y), we may assume that any two fj and y> differ
by an isotopy fixing the complement of the interior of Y. That is, there is a path

ft € Diffo(S) for € [1, oo) such that yk êv(fk) f°r all positive integers k, and

so that

fl\s-Y ft\s-Y
for all t € [l,oo).

Let X /j-1 (Y) and consider the punctured surfaces

Y° Y-{fi(z)} and 1° X - {z} /f1^0).
We will be interested in the set of subsurface projections

tar°(w*)} c ^'(1°)

where ^'(-^°) is the arc complex of X°; see [MM00]. We consider the incomplete
metric on X° for which f\ : X° -> y° is an isometry where F° is given the induced

path metric inside of S.

Claim. The length ofsome arc ofjtx°(ßk) tends to infinity.
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Here, length means infimum of lengths over the isotopy class of an arc. The claim
implies that there are infinitely many arcs in the set {jtx°(uk)} which is impossible
if Uk —> \ß\- Thus, to complete the proof of the proposition, it suffices to prove the

claim.

ProofofClaim. So, to prove that the length of some arc tends to infinity, first
suppose that {jty(vk)} contains an infinite set. Then there are arcs otk C 7ty(vk)
with ly((Xk) "^ °°- Now ffcl(oik) is an arc of 7tx°(uk) and £x°(fk~1((Xk)) —

^F° (f\fkl(aky)- However, f\ f^1 is the identity outside the interior ofY, in particular

it is the identity on the boundary of Y and isotopie (forgetting z) to the identity
in Y. So, we have

and hence there is an arc of 7tx°(uk) with length tending to infinity as required.
We may now suppose that there are only finitely many arcs in the set {jty (vk)}- By

passing to a further subsequence ifnecessary, we may assume that Jty (vk) is constant
and equal to a union of finitely many arcs in Y. We fix attention on one arc, call it a.
Again, we see that f^1 (a) is an arc of itx° (uk) and lx° (fk~X (a)) — ^Y° (f\ 7^_1 (<*))

with fiff-1 equal to the identity outside the interior of Y for all t.

Writing ht ftfi~l, we are required to prove that ^y°(h71(a)) tends to infinity
as k —> oo. Observe that hi is the identity on S and ht is the identity outside the

interior of Y for all t € [1, oo). We can lift ht to ht so that hi is the identity in EL

It follows from the definition of ev that hk(Sv(fi)) yk- Thus, ht is essentially
pushing the point y év(/i) € Y along the ray r (at least, hk(y) yk comes back
to within a uniformly bounded distance to r for every positive integer k, though it
is not hard to see that we can choose ft so that ht always stays a bounded distance
from r).

Now hJ1 (a) can be described as applying the isotopy ht backward to a. Therefore,

ifwe let äk be the last arc ofp~l (a) intersected by the path ht (y) for t € [1, k],
then we can drag ä backward using the isotopy ht as t runs from k back to 1, and

the result h71(ä projects down by p to hT1 (a); see Figure 6. Moreover, observe

that lyo(hTl(a)) is at least the sum of the distances from y to the two boundary

components of Y containing the end points of ä
Finally, since x fills Y, the distance from y to the boundary components of Y

containing the endpoints of or must be tending to infinity as k -> oo; otherwise,
we would find that r is asymptotic to one of the boundary components of Y which
because x fills Y would imply Y is an annulus, and this is a contradiction. This
implies lyo(h^.l(a.)) tends to infinity as k —>• oo. This proves the claim, and so

completes the proof of the proposition. D

We can now prove one of the main technical pieces of Theorem 1.1.
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yk.

00

Figure 6. On the left: r inside Y (the complement of the shaded region), the path ht(y) as it
goes through y^ h^(y) and the arc otk. On the right: dragging àk back by hzl.

Theorem 3.15. The

is surjective.

d'€(S,z)

Proof. Let \(x\ € dX?(S,z) be an arbitrary point. According to Lemma 3.12 there

exists a sequence {x„} C H with

lim $v(x„) \fi\.
n—>oo

By passing to a subsequence, we may assume that {x„} converges to a point x € 9EL

It follows from Proposition 3.13 that x € A. Then, by Theorem 3.6

1/21 lim *„(*„) Ö„(x) 9$(x).
B—>00

Since |//.| € 9^(5, z) was an arbitrary point, it follows that 90(A) dX?(S,z), and
90 is surjective. D

3.5. Neighborhood bases. In this section we find neighborhood bases for points of
dX?(S,z). To do this, we must distinguish between two types of points of A. We say
a point x € A is simple if there exists a ray r in H ending at x for which p(r) is

simple. Otherwise x is not simple. Equivalently, a point x € A is simple if and only
if there is a lamination |A | € 8X(S) such that x is the ideal endpoint of a leaf (or
ideal vertex of a complementary polygon) of/?_1(|A|).
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Lemma 3.16. Ifx € A is not simple and {yn} are Jti(S)-translates ofy which nest
down to x, then {dM+(yn)} is a neighborhood basisfor 90(x).

Proof. By Proposition 3.5 the distance of M+(yn) to any fixed basepoint in X?(S, z)
tends to infinity as n -> oo. It follows that the visual diameter of M+(yn) measured

from any base point also tends to zero. Thus, for any neighborhood U of 90(x) in

^(S^), there exists N > 0 so that for all n> N,dM+(yn) cU.
We must prove 90(x) is in int(dM+(yn)) for all n. We already know that

Ç\dM+(yn) {d<S>(x)}

and in particular, 90(x) € dM+(yn) for all n. Therefore, it suffices to prove that for
any n, there exists m > n so that

dM+(ym) C mt(9^+(y„)).

It follows from Proposition 3.8 and the fact that dM~(yn) is a closed subset of
3£(S, z) that

dM+(yn) - dX(yn) d-€(S,z) - d^~(yn) c int(9^+(y„)).

For any m > n, we also know

dM+(ym) C dM+(yn).

Thus, ifwe can find m > n so that

d£(y„) n dX(ym) 0,

then appealing to Proposition 3.8 again, it will follow that

dM+(ym) C dM+(yn) - ddc(yn) C int(9^+(y„)),

as required.
If for all m > n we have d%(ym) Pi d%(yn) ^ 0, then a similar proof to that given

for Proposition 3.7 shows that x is a simple point which is a contradiction. D

The above lemma gives a neighborhood basis for 9 O(x) when x € A not a simple
point. The next lemma describes a neighborhood basis 90(x), where x is a simple
point.

Suppose Xi, x2 are endpoints of a nonboundary leaf of /?-1(|A|) or Xi,..., Xk
are points of a complementary polygon of some /?-1(|A|) for some |A| € 8X(S).
We treat both cases simultaneously referring to these points as Xi,..., x^. From
Corollary 3.10, 90(xi) * * * 90(x^), and the 90-image of any simple point has

this form.
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Lemma 3.17. Ifx\,..., Xk are as above, and {yi,«},..., {yk,n} are sequences of
jti (S)-translates ofy with {yj,n } nesting down to X/ for each j 1,..., k, then

{dX+(yhn)U ••• U dX+^n)}^
is a neighborhood basisfor 90(xi) • • • 90(x^).

Proof. Let \(x\ 90(xi) ••• 90(x^). As in the proof of the previous lemma,
the sets in the proposed neighborhood basis have visual diameter tending to zero as

n -> oo.
Since \(x\ € dM+(yj!n) for all j and n, we clearly have

|^|€9^+(yi,„)U...U9^ + (y^„)
for all n. Thus, we are required to show that \(x\ is an interior point of this set.

This is equivalent to saying that for any sequence {\fim 1} C dX?(S, z) converging
to \(x |, and every positive integer n, there exists M > 0 so that for all m > M,

\fim\ €9^+(y1)B)U...U9^+(yM). (6)

So, let {|/U.m|} C dX?(S,z) be a sequence converging to \(x\ and n a positive
integer. Choose any sequence {ym} C A so that 90(ym) \(xm | (such a sequence
exists by surjectivity of 90). We wish to show that any accumulation point of {ym } is

one of the points Xi,..., x^. For then, we can find an M > 0 so that for all m > M

ymeH+(yi!n)U---UH+(yk,n)
and hence (6) holds.

To this end, we pass to a subsequence so that ym —> x € 9H. Choosing
sequences converging to ym for all m and applying a diagonal argument, we see that
there is a sequence {qm} C H with lim qm x and lim ^>v(qm) \fi\. From

m—>oo m—>oo

Proposition 3.13 we deduce that x € A.
Now, if x € {xi,... ,Xk} then we are done. Suppose not. Then the geodesic

€j from x to Xj has p(€j) non-simple for all j. Proposition 3.7 guarantees 7ti(S)-
translates yx, yis„,..., y^s„ of y defining neighborhoods

H+(Yx),H+(Yi.n),...,H+(Yk.«)

of x, Xi,..., Xk, respectively for which

dx+(yx) n dJe+(Yj.n) 0

for all y 1,..., k. Since 90 is continuous, we have

\fi\= lim \fim\= lim 90(ym) 90(x) € d<K+(yx).
m—>oo m—>oo

This is impossible since \(x\ € S^+(Yj,n) f°r all y 1,... ,k. Therefore, x Xy

for some j, and the proof is complete. D
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We are now ready to prove

Theorem 1.1 (Universal Cannon-Thurston map). For any v € X?°(S), the map
On : H -> X?(S, z) has a unique continuous iti (S)-equivariant extension

*„: HUA^Ç(S,4
The map 90 0„ |a does not depend on v and is a quotient map onto d~€(S,z).
Given distinct points x,y € A, 90 (x) 90(y) ifand only ifx and y are ideal
endpoints ofa leaf (or ideal vertices ofa complementary polygon) of the lift ofan
ending lamination on S.

Proof. By Theorem 3.6, Corollary 3.10 and Theorem 3.15 all that remains is to prove
that 90 is a quotient map. To see this, we need only show that E C dX?(S,z) is

closed ifand only ifF 90_1(iì) is closed. Since 90 is continuous, it follows that

if E is closed, then F is closed.

Now, suppose that F is closed. To show that E is closed, we let \fin\ -> \ß\
with {\fin |} C E and we must check that |//.| € E. By Lemmas 3.16 and 3.17, after
passing to a subsequence ifnecessary, there is a sequence {y„} nesting down on some

point x € 90_1(|//.|) with \/in\ € dX+(yn). Let x„ € 90_1(|//.„|) C F be such

thatx« € dH+(yn). It follows thatx„ -> x, so since F is closed, x € F. Therefore,
\fx\ 90(x) € E, as required. Thus, E is closed, and 90 is a quotient map. D

3.6. Mod(5, z)~equivariance. We now prove

Theorem 1.2. The quotient map

90: A^9^(S,z)
constructed in Theorem 11 is equivariant with respect to the action ofisAod(S,z).

Proof. It suffices to prove

90(^(x)) 0(9O(x)).

for every 0 € Mod(£, z) and a dense set of points x € A.
Let y' C H be a geodesic for which p(y') is a filling closed geodesic in S and let

8' € 7ti(S) be the generator of the infinite cyclic stabilizer of y'. Let x € A denote

the attracting fixed point of 8'. As previously discussed, according to Kra [Kra81], 8'

represents a pseudo-Anosov mapping class inMod(5, z), and the Jti (5)-equivariance
of 90 implies 90(x) is the attracting fixed point for 8' in dX?(S,z).

Now, given any 0 € Mod(5,z), note that 4>(x) is the attracting fixed point of
<fi o 8' o (p~l in A, and $>(90(x)) is the attracting fixed point for <fi o 8' o <p~l m
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dX?(S,z). Appealing to the 7Ti(5')-equivanance again, we see that 90 must take

<j)(x) to <j)(d0(x)). That is

90(^(x)) 0(9O(x)).

Since the set of endpoints of such geodesies is dense in A, this completes the proof.
D

4. Local path-connectivity

The following, together with Lemma 3.17 will prove Theorem 1.3.

Lemma 4.1. dM+(y) is path-connected

Proof. Fix any |A | € 8X(S). According to Proposition 2.12, O is continuous, so we
have a path-connected subset

0({|A|} x H+(y)) c dM+(y).

Now let |/u.| € dM+(y) be any point. We will construct a path in dM+(y)
connecting a point of 0({|A |} x H+(y)) to \(x\. This will suffice to prove the lemma.

According to Theorem 1.1 there exists x € A so that 90(x) \(x\. Let
r : [0,1) -> H+(y) be a ray with

lim r(t) x.

Let {yn} be a sequence of 7Ti(5')-translates of y which nest down on x. We

assume, as we may, that yi y. Therefore, there is a sequence ti < t2 < ••• with
lmiR-xx, tn 1 and

r([tn,l))cH+(yn)
and hence again by Proposition 2.12

0({|A|} x r([tn,l)) c 0({|A|} x H+(yn)) c dM+(yn).

Recall that, by definition, 90(x) is the unique point of intersection

fi dX+(yn),
n=\

and hence

lim O(|A|,r(0) \fi\.
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Therefore, we can extend R\x\(t) 0(|A|, r(t)) to a continuous map

%,: [0,1] ^dM+(y)

with R\\\(0) € 0({|A|} x H+(y)) and Ä|a|(1) I A11- This is the required path
completing the proof. D

We now prove
Theorem 1.3. The Gromov boundary dX?(S,z) is path-connected and locally path-
connected.

Proof. From Lemma 4.1, we see that every set ofthe form 9M+(yq is path-connected

for any 7Ti(5')-translate yo of y. According to Lemmas 3.16 and 3.17 there is a basis

for the topology consisting of these sets (and finite unions of these sets which all
share a point); this proves local path-connectivity. Path-connectivity follows from
Lemma 4.1 and Proposition 3.8. D
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