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The braided Ptolemy—Thompson group is asynchronously
combable

Louis Funar and Christophe Kapoudjian

Abstract. The braided Ptolemy-Thompson group T* is an extension of the Thompson group
T by the full braid group 5., on infinitely many strands and both of them can be viewed as
mapping class groups of certain infinite planar surfaces. The main result of this article is that
T™ (and in particular T') is asynchronously combable. The result is new already for the group
7. 'The method of proof is inspired by Lee Mosher’s proof of automaticity of mapping class

groups.
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1. Introduction

1.1. Statements and results. The Thompson groups 7" and V' were the first ex-
amples of finitely presented infinite simple groups. We refer to [9] for a survey
concerning their classical properties. An algebraic relation between T" and the braid
groups has been discovered in an article due to P. Greenberg and V. Sergiescu ([21]).
Since then, several works ([6], [7], [10], [11], [14], [ 15], [ 16], [28]) have contributed
to improve our understanding of the links between Thompson groups and mapping
class groups of surfaces — including braid groups.

The group V is a sophisticated stabilization of the finite permutation groups, and as
such, it might be thought of as a group of infinite permutations. There is a well-known
relation between permutations and braids, in which one replaces transpositions by the
usual braid generators. Similarly, replacing permutations by braids in the definition of
the Thompson group V' has led independently M. Brin and P. Dehornoy to introduce
the braided Thompson group BV ([6], [7], [10], [11]). However, BV is not related
to the group of Greenberg—Sergiescu constructed and studied in [21], but rather to
our universal mapping class group in genus zero (cf. [14]).

The group T* of the present paper instead, is an extension of the Thompson group
T by the stable braid group B, and may be considered a “simplified” version of
the group of Greenberg—Sergiescu. The group T has received a lot of attention since
E. Ghys and V. Sergiescu ([20]) proved that it embeds in the diffeomorphism group
of the circle and it can be viewed as a sort of discrete analogue of the latter. The
group T* has been introduced in [15] as a mapping class group of an infinite surface
obtained as follows. Consider first the planar surface obtained by thickening the
regular binary tree, with one puncture for each edge of the tree. The mapping classes
of orientation-preserving homeomorphisms of this punctured surface, which induce
a tree isomorphism outside a bounded domain, form the group T*. Our main result
in [15] is that 7™ is finitely presented and has solvable word problem.

The aim of the present paper is to show that 7* has strong finiteness properties.
Although it was known that one can generate the Thompson groups using automata
([22]), very little was known about the geometry of their Cayley graph. Recently,
D. Farley proved ([13]) that Thompson groups (and more generally picture groups,
see [25]) act properly by isometries on CAT'(0) cubical complexes (and hence are a-'I-
menable), and V. Guba (see [23], [24]) computed that the smallest Thompson group
F has quadratic Dehn function while T and V have polynomial Dehn functions.
It is known that automatic groups have quadratic Dehn functions on one side and
Niblo and Reeves ([32]) proved that any group acting properly discontinuously and
cocompactly on a CAT(0) cube complex is automatic. One might therefore wonder
whether Thompson groups are automatic.

We approach this problem from the perspective of the mapping class groups, since
one can view T and T™* as mapping class groups of a surface of infinite type. One
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of the far reaching results in this respect is the Lee Mosher theorem ([31]) stating
that mapping class of finite surfaces are automatic. Our main result shows that, when
shifting to infinite surfaces, a slightly weaker result still holds true, namely:

Theorem 1.1. The group T™ is asynchronously combable.
In particular, in the course of the proof we prove also that:
Corollary 1.2, The Thompson group T is asynchronously combable.

The proof is greatly inspired by the methods of L. Mosher. The mapping class
group is embedded into the Ptolemy groupoid of some triangulation of the surface,
as defined by L. Mosher and R. Penner. It suffices then to provide combings for the
latter.

In our case the corresponding Ptolemy groupoid is, fortunately, the groupoid of
flips on triangulations of the hyperbolic plane, which is closely related to the group
T'. For this reason, T is sometimes called the Ptolemy-Thompson group. The first
difficulty consists in dealing with the fact that the surface under consideration is non-
compact. Thus we have to get extra control on the action of T on triangulations
and in particular to consider a finite set of generators of T instead of the set of all
flips that was used by Mosher for compact surfaces. The second difficulty is that
we need to modify the Mosher algorithm in order to obtain the boundedness of the
combing. Finally, shifting from T to 7™ amounts to considering triangulations of the
hyperbolic plane whose edges are punctured. The same procedure works also in this
situation, but we need another ingredient to get an explicit control on the braiding,
which reminds us the geometric solution of the word problem for braid groups.

Acknowledgements. The authors are indebted to Vlad Sergiescu and Bert Wiest
for comments and useful discussions, and to the referee for suggestions and correc-
tions improving the readability. The first author was partially supported by the ANR
Repsurf: ANR-06-BLAN-0311.

1.2. The Ptolemy-Thompson group T and its braided version 7*. The smallest
Thompson group F is the group of dyadic piecewise affine homeomorphisms of the
interval i.e. the pieccewise linear homeomorphisms of [0, 1] which are differentiable
outside finitely many dyadic numbers, with derivatives powers of 2. Shifting from
the interval [0, 1] to the circle S! = [0,1]/{0 ~ 1} one obtains in the same way
the larger Ptolemy—Thompson group 7. Specifically, T' consists of those piecewise
linear homeomorphisms of S which map images of dyadic numbers onto images of
dyadic numbers, are differentiable outside finitely many images of dyadic numbers,
and have derivatives only powers of 2.

It is customary (see [9]) to describe elements of F (and T') by means of pairs
of dyadic partitions of the interval (respectively of S1), or equivalently by pairs of
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rooted binary trees (respectively with a marked leaf). However, it is more convenient
for us to have an alternative description of T as a group of equivalence classes of
almost automorphisms of an infinite unrooted binary tree.

Recall from [14] that an almost automorphism (or piecewise tree automorphism) of
some infinite binary tree 7 is given by a combinatorial isomorphism 7\ 75 — 7 4\ 73
between the complements of two finite binary subtrees 7o, 71 C 7. A finite binary
tree 1s a finite subtree of 7" whose internal vertices are all 3-valent. lts terminal vertices
(or 1-valent vertices) are called leaves. Two almost automorphisms are equivalent
if they coincide on a common finite tree complement. The equivalence classes form
naturally a group.

Let henceforth 7 denote the infinite binary tree endowed with a fixed embedding
in the plane. This planar embedding induces an extra structure on J which is a cyclic
orientation of the edges around each vertex (usually called a fat or ribbon graph
structure). Then the group of equivalence classes of those almost automorphisms
of 7 which preserve the fat graph structure is actually isomorphic to the Ptolemy—
Thompson group 7. We can see then that 7' is generated by the classes of two almost
automorphisms &, f of the binary tree pictured below, where

(1) B stands for the order 3 rotation around a vertex and thus it is a global automor-
phism;

(2) @ is the order 4 rotation around an edge midpoint. The finite binary trees ¥p and
71 are the subtrees contained in the figured disk.
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The subgroup of T generated by {a?, 8} is isomorphic to PSL(2, Z) and its in-
duced action on 7 is that of the modular group on its Bass—Serre tree.

This picture suggests another approach to 7', as a group of mapping classes of
homeomorphisms of infinite surfaces (see [28] and [14]). The surfaces below will
be oriented and all homeomorphisms considered in the sequel will be orientation-
preserving, unless the opposite is explicitly stated.

Definition 1.1. The ribbon tree D is the planar surface obtained by thickening in the
plane the infinite binary tree. We denote by D* the punctured ribbon tree which is
D deprived of infinitely many points called punctures, namely one puncture for the
midpoint of each edge of the tree 7 C D.

Definition 1.2. A rigid structure on D is a decomposition into hexagons by means
of a family of arcs with endpoints on the boundary of D. It is assumed that these
arcs are pairwise non-homotopic in D, by homotopies keeping the boundary points
on the boundary of D.

A rigid structure on D* is a decomposition into punctured hexagons by means of
a family of arcs through the punctures, whose endpoints are on the boundary of D. It
is assumed that these arcs are pairwise non-homotopic in £, by homotopies keeping
the boundary points on the boundary of D. There exist canonical rigid structures on
D™ and D in which arcs are segments transversal to the edges, as drawn in Figure 1.

L4

j OIS

) oy

/\

Figure 1. D™ and its canonical rigid structure.

A planar subsurface of D (respectively D™) is admissible if it is a finite union of
hexagons coming from the canonical rigid structure. The frontier of an admissible
surface is the union of the arcs contained in the boundary.

Definition 1.3. et ¢ be ahomeomorphism of D*. One says that ¢ is asymptotically
rigid if the following conditions are fulfilled:

« There exists an admissible subsurface X C D* suchthat ¢(X)isalso admissible.
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« The complement D™ — X is a union of # infinite surfaces. Then the restriction
¢: D*—X — D* —@(X)is rigid, meaning that it respects the rigid structures
in the complements of the compact admissible subsurfaces i.e. it maps the
hexagons into hexagons. Such a non-empty surface X is called a support for ¢.

One denotes by T* the group of asymptotically rigid homeomorphisms of D* modulo
isotopy through homeomorphisms which preserve the boundary of D*.

One introduces in the same way the group of asymptotically rigid homeomor-
phisms (modulo isotopy) of the ribbon tree D).

Remark 1.3. There exists a cyclic order on the frontier arcs of an admissible subsur-
face induced by the planarity. An asymptotically rigid homeomorphism necessarily
preserves the cyclic order of the frontier for any admissible subsurface. In particular
one can identify 7" with the group of asymptotically rigid homeomorphisms modulo
isotopy of the ribbon tree D (cf. [28] and [14]).

Further T* is the analogue of T for the punctured disk. It is not hard to see (see
[15]) that one has an exact sequence

1 % By~ T" = T~

where B, denotes the infinite braid group on the punctures of D™*.

Using the previously defined almost automorphisms one can obtain natural map-
ping classes generators of T'. Specifically, consider the following mapping classes of
asymptotically rigid homeomorphisms:

« A support of the element 8 is the central hexagon, which will be referred as the
support of B in the sequel. Further 8 acts as the counterclockwise rotation of
order three whose axis is vertical and which permutes the three branches of the
ribbon tree issued from the hexagon.

1 4

0 3
3 2 }j

* A support of @ is the union of two adjacent hexagons, one of them being the
support of # from above, which will be referred as the support of « below.
Then o rotates counterclockwise the support of angle %, by permuting the four
branches of the ribbon tree issued from the support.
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Observe that « and B are the same elements of 7" as the almost automorphisms denoted
by the same letters.

Lochak and Schneps ([29]) proved that the group 7" has the following presentation
with generators & and f and relations:

[Bop.a?fafo’] =1,
[Bap, o’ Ba?fapa’fa’] =1,
(Ba)® = 1.

Remark 1.4. If one sets A = Ba?, B = %0 and C = B2 then one obtains the
generators A, B, C of the group T', considered in [9]. Then the two commutativity
relations above are equivalent to

[AB71, A7'BA| =1, [AB7!, A2B4?| =1.

The presentation of 7" in terms of the generators A, B, C consists of the two relations
above with four more relations to be added:

c3=1, € —=BA'CB,
CA=(A1CB)Y:, (A4 'CBYA 'BA) = B(42CB?).

We proved in [15] that T¥ is generated by two suitable lifts of the elements @ and
B of T, it is finitely presented and has solvable word problem.

1.3. Preliminaries on combings. We will follow below the terminology introduced
by Bridson in [1], [4], [5], in particular we allow very general combings. We refer
the reader to [12] for a thorough introduction to the subject.

Let G be a finitely generated group with a finite generating set S, such that S is
closed with respect to the inverse, and C(G, S) be the corresponding Cayley graph.
This graph is endowed with the word metric in which the distance d(g, g’) between
the vertices associated to the elements ¢ and g’ of G is the minimal length of a word
in the generators S representing the element g~ g’ of G.

A combing of the group G with generating set S is a map which associates to
any element ¢ € G a path o, in the Cayley graph associated to S from 1 to g.
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In other words o, is a word in the free group generated by S that represents the
element ¢ in G. We can also represent 0, (?) as a combing path in C(G, ) that joins
the identity element to g, moving at each step to a neighboring vertex and which
becomes eventually stationary at g. Denote by |0, | the length of the path o, i.e. the
smallest ¢ for which o, (¢) becomes stationary.

Definition 1.4. The combing o of the group G is synchronously bounded if it satisfies
the synchronous fellow traveler property defined as follows. This means that there
exists K such that the combing paths o, and o, of any two elements g, g’ at distance
d(g, g’) = 1 are at most distance K far apart at each step, i.c.,

d(og(t),05(t)) < K foranyre R,.

A group & having a synchronously bounded combing is called synchronously com-
bable.

In particular, combings furnish normal forms for group elements. The existence
of combings with special properties (like the fellow traveler property) has important
consequences for the geometry of the group (see [1], [4]).

We will introduce also a slightly weaker condition (after Bridson and Gersten) as
follows:

Definition 1.5, The combing o of the group G is asynchronously bounded if it satisfies
the asynchronous fellow traveler property below. This means that there exists K such
that for any two elements g, g" at distance d(g, g’) = 1 there exist waystotravel along
the combing paths 0, and o, at possibly different speeds so that corresponding points
are at most distance K far apart. Thus, there exists continuous increasing functions
@(t) and ¢’(¢) going from zero to infinity such that

d(0g (1)), 0,(¢"(1))) < K foranyr eR..

A group & having an asynchronously bounded combing is called asynchronously
combable.

The asynchronously bounded combing o has a departure function D: Ry — R
if, forall r > 0, g € G and 0 < s5,¢ = |og|, the assumption |s — ¢| > D(r) implies
that d{og(s),04(t)) > r.

Remark 1.5. There are known examples of asynchronously combable groups with
a departure function: asynchronously automatic groups (see [12]), the fundamental
group of a Haken 3-manifold ([4]), or of a geometric 3-manifold ([5]), semi-direct
products of Z" by Z ([4]). Gersten ([18]) proved that such groups are of type FP3
and announced that they should actually be FP.. Recall that a group G is FP, if
there is a projective Z[G]-resolution of Z which is finitely generated in dimensions
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at most n (see [17], Chapter 8 for a thorough discussion on this topic). Notice that
there exist asynchronously combable groups (with departure function) which are not
asynchronously automatic, for instance the Sol and Nil geometry groups of closed
3-manifolds (see [3]); in particular, they are not automatic.

2. The Thompson group 7T is asynchronously combable

2.1. The Ptolemy groupoid and 7. Our results from [15] came out from the in-
terpretation of the group 7', and its braided version 1%, as mapping class groups of
infinite surfaces. In this sequel we will bring forth another perspective, by turning
back to Penner’s original approach ([33], [34]) of the Ptolemy groupoid acting on
triangulations of surfaces. When the surface is the hyperbolic plane H? Penner ob-
tained what is now called the universal Ptolemy groupoid Pt. For any two objects
of this groupoid there is a natural bijection between the sets of morphisms having
themn as the source objects. The identification of morphisms makes any two of them
composable, thus turning the groupoid into a group. This way one recovers the
Ptolemy-Thompson group 7.

Let us recall a few definitions which will be needed in the sequel. More details
can be found in [33], [34].

By an (ideal) triangulation of H? one means a countable locally finite set of
geodesics whose complementary regions are triangles. lts vertices are the asymptotes
of the geodesics in the circle at infinity and its edges are the geodesics (also called
ideal arcs).

Our favorite example is the Farey triangulation, defined as follows. Consider the
base ideal triangle having vertices at 1, —1, V—1esS go in the unit disk model of H?
and let G be the group of isometries of H? generated by the hyperbolic reflections in
the sides of the triangle. The orbits of the sides of this triangle by the group G form
the Farey triangulation tp.

We will only consider those ideal triangulations of the hyperbolic plane H? having
vertices at the rational points of the boundary circle and coinciding with the Farey
tessellation for all but finitely many triangles. These will be called Farey-type trian-
gulations. Observe that we can realize any combinatorial type of triangulation of H?
by a Farey-type triangulation.

A triangulation 7 is marked if one fixes a distinguished oriented edge (abbreviated
d.o.e.) d of it. The standard marking of the Farey triangulation 7o is the oriented
edge ayp joining —1 to 1.

We define next amarked tessellation of IT? to be an equivalence class of marked tri-
angulations of IT? with respect to the action of the (direct) isometry group PSL(2, R).
Since the action of PSL(2,[R) is 3-transitive each tessellation can be uniquely rep-
resented by its associated canonical marked triangulation containing the basic ideal



716 L. Funar and C. Kapoudjian CMH

triangle and whose d.o.e. is dp. The marked tessellation is of Farey-type if its canon-
ical marked triangulation has the same vertices as the Farey triangulation. Unless
explicitly stated otherwise all tessellations considered in the sequel will be Farey-
type tessellations. In particular, the ideal triangulations have the same vertices as g
and coincide with g for all but finitely many ideal triangles.

Definition 2.1. The objects of the (universal) Ftolemy groupoid Pt are marked tes-
sellations. The morphisms are ordered pair of marked triangulations (71, @1) and
(12, a2), up to a common PSL(2, R) transformation.

We consider now some particular elements of the Ptolemy groupoid, called flips.
Let y be an edge (i.e. an ideal arc) of the triangulation 7 (unlabeled for the moment).
Then y is a diagonal of aunique quadrilateral @ C . Let ¥* be the other diagonal of
Q. The triangulation (z — {y }) U<{y™*}, obtained from t by removing y and replacing
itby y* is said to be the result of applying the flip on the edge y. We denote by F, this
flip. This definition extends to marked triangulations without modifications when y
is not the d.o.e., by keeping the same d.o.e. When y is the d.o.e. we give the flipped
triangulation the d.o.e. y* with the orientation which makes the frame {y, y*} (in this
order) positively oriented.

It is proved in [33] that flips generate the Ptolemy groupoid i.e. any element of
Pt is a composition of flips.

Further, there is a natural way to turn the Ptolemy groupeid into a group.

« Vertices of a (marked) triangulation are labeled by () L oo using the inductive
Farey method:

— start with 0/1 and 1/0 = oo associated to the startpoint and the endpoint of
the d.o.e.;

— then, in the upper plane, once two vertices are already labeled by a/b,¢c/d €
(). then the third vertex of the triangulation is labeled (a + ¢)/(D + d);

- in the lower plane use a symmetry.

« BEdges of a marked triangulation inherit a canonical labeling by @ — {—1,1}:
let f be an edge of 7, v(f) be the vertex opposite to f inthe triangle A C 7
containing the edge f, and which lies in that component of H? — e without the
d.o.e.;

The correspondence between vertices and edges induces abijective characteristic
map Q,: Q@ —{—-1,1} = .
Notice also that there is a natural correspondence between a marked triangulation
and the flip F,,(7) which sends ¥ to ¥* and is the identity for all other edges.
Remark that if (77, a1) and (72, @») are marked tessellations then there exists a
unique map f between their vertices sending triangles to triangles and preserving the

chigts, Lhett f 8 @y = e
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The role played by Q1 is to allow flips to be indexed by the rationals and not on
edges of 7.

Definition 2.2. Let Tess be the set of marked tessellations (of Farey-type). Define
the action of the free monoid generated by () — {—1,1} on Tess as follows:

g-(r,a) = Qc(q)z,a) forqge Q@ —{-1,1}, (zr,a) € Tess.

We say that two elements of the free monoid are equivalent if the two actions on
Tess coincide. Then the induced composition law on equivalence classes is a monoid
structure for which each element has an inverse. This makes it a group, which is
called the Ptolemy group 7' (see [33] for more details).

In particular it makes sense to speak of flips in the present case and thus flips
generate the Ptolemy group that we denote also PT, in order to emphasize that is the
group of flips.

The notation 7' for the Ptolemy group is not misleading because this group is
isomorphic to the Thompson group T" and for this reason, we preferred to call it the
Ptolemy—Thompson group.

Given two marked tessellations (71, 1) and (72, @2) the combinatorial isomor-
phism f: 71 — 72 from above provides a map between the vertices of the triangu-
lations, which are identified with P1(Q) < S1.. This map extends continuously to
a homeomorphism of S, which is piecewise-PSL(2, Z). This establishes an iso-
morphism between the Ptolemy group and the group of piecewise-PSL(2, #) home-
omorphisms of the circle.

An explicit isomorphism with the group 7' in the form introduced above was
provided by Lochak and Schneps (see [29]). The isomorphism sends ¢ to the flip
F,, of (g, dp) and B to the element ((g, do), (70, @1)) of the Ptolemy group, where
d is the oriented edge in the base triangle of the Farey triangulation 7 next to dg.

Let us explain now some details concerning the identification of the Ptolemy
groupoid appearing in Lochak—Schneps’ picture with that considered by the present
authors (see also in [14], [28]). Lochak and Schneps defined two generators of PT,
which are the two local moves below:

* The fundamental flip, which is the flip ¥ = F, onthe d.o.e. e.

* The rotation R which preserves the triangulation but moves the given d.o.e. e in
the clockwise direction to the next edge (adjacent to e) of the triangle sitting on
the left of the d.o.e. and containing the d.o.e. as an edge.

We wish to emphasize that these two moves are local. All other edges of the triangu-
lation are kept pointwise fixed. It is not so difficult to show that the two local moves
above generate the group PT', because an arbitrary flip can be obtained by conjugat-

ing the fundamental flip F by a composition of rotations R and orientation-reversals
F? of the d.o.e.
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There exists another way to look at the group P71, which makes the identifica-
tion with T manifest. An element of P71 is specified by a couple of two labeled
triangulations (A, A”) as above. We associate a homeomorphism of the closed disk
H? obtained by compactifying the open disk model of the hyperbolic plane, which
is subject to the following requirements:

* The homeomorphism is piecewise linear with respect to the triangulations A
and A’. This means that it sends each triangle of A onto some triangle of A’ by
a transformation from PS1.(2, 7).

« The homeomorphism sends the d.o.e. of A onto the d.o.e. of A’ with the corre-
sponding orientation.

The homeomorphism is then uniquely determined by the two conditions above and
it is an element of PPSL(2,7Z). It is also determined by its restriction to the
boundary, when PPSL(2,7Z) is viewed as a subgroup of Homeo, (S!). Denote
by ®: PPSL(2,7Z) — PT the inverse correspondence. Recall that PPSL(2, Z) is
isomorphic to the group T'. For instance we identify a mapping class defined by an
element x of T from the previous section with the element of PPSL(2, Z) that has
the same action as x on the triangulation of H? in which boundary circles of D are
crushed onto the vertices of the Farey triangulation. Using this identification between

T and PPSL(2,7) we can state:

Lemma 2.1. The map P is the unique anti-isomorphism between T and PT deter-
mined by the formulas
P(x)=F, P(B)=R

where a, B are the generators of T from the previous section.

Proof. The local moves can act far way by means of conjugacies. One associates to
the local move x the element ®(x) € T. If we want to compute the action of $(y - x)
we compute first the action of ®(x) and then we have to act by some transformation A
whichhas the same effect as ®( ) had on the initial triangulation. Butthe triangulation
has been changed by means of ®(x). This means that the transformation A is therefore
equal to ®(x)P(y)P(x~1). This implies that ®(y - x) = () P(y)P(x " HP(x) =
S(x)B(y). n

Remark 2.2. This correspondence will be essential below. It enables us to express
arbitrary flips on atriangulation in terms of the local moves F and R. Since the moves
are local, small words will lead to small differences in the triangulations. Eventually,
we can translate (by means of the canonical anti-isomorphism which reverse the order
of letters in a word) any word in the generators R and F into an element of the group T,
viewed as a word in the standard generators & and 8. It is more difficult to understand
the properties of a combing in terms of the action of & and B on triangulations since
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the action is not local, and thus a short word might have a quite large effect on the
combinatorics of the triangulation.

2.2. Mosher’s normal form for elements of T on infinitely many flips. Mosher
proved that mapping class groups of finite surfaces are automatic ([31]). One might
expect then that mapping class groups of infinite surfaces share also some properties
closed to the automaticity, but suitably weakened by the infiniteness assumption.

The aim of this section is to define a first natural combing for 1" derived from
Mosher’s normal form. Unfortunately, this combing is unbounded. We will show
next that it can be modified so that the new combing is asynchronously bounded.

Mosher’s proof of automaticity consists of embedding the mapping class group in
the corresponding Ptolemy groupoid and derive normal forms (leading to combings)
for the latter. The way to derive normal forms is however valid for all kind of surfaces,
without restriction of their — possibly infinite — topology. The alphabet used by the
automatic structure is based on the set of combinatorial types of flips. The only point
where the finiteness was used by Mosher is when one observes that the number of
different combinatorial flips on a triangulated surface (with fixed number of vertices)
is finite, provided that the surface is finite. Thus, the same proof does not apply to the
case of T, since there are infinitely many combinatorially distinct flips. Nevertheless,
we already remarked that we can express an arbitrary flip on the infinite triangulation
as a composition of the two elements /' and R. This observation will enable us to
rewrite the Mosher combing in the Ptolemy group (which uses all flips as generators)
as a new combing which uses only the two generators F and R. We will call it the
Mosher-type combing of T'. Recall that this is equivalent to having a combing in our
favorite generators o and §.

Let us recall the normal forms for elements of 7', in terms of flips. Choose a base
triangulation g, fixed once for all, for instance the Farey triangulation. Choose a
total ordering on the edges of the triangulation 7p, say €1, €2,€3,...,sothate; = e
is the d.o.e., and choose an arbitrary orientation on each edge. The combing might
depend on the particular choice we made. Given an element { € PT we represent it
as the couple of labeled triangulations (zp, 7). These two triangulations are identical
outside some finite polygon, on which the restriction of the two triangulations are

different. The minimal connected polygon with this property is called the support

of £. Let us denote by rf; and 7/ the restrictions of the two triangulations to the

finite polygon. Then v/ is obtained from r}J; by removing several disjoint edges, say

g1 =¢j < g2=¢j, < < gL = e}, from tp and replacing them by another &k
disjoint ideal arcs (which do not belong to tp) having the same set of endpoints.

As it is well known any two triangulations of a polygon could be obtained one
from another by means of several flips. Moreover, if the polygon had » vertices and
thus it is partitioned into (# — 2) triangles then the minimal number of flips needed to
transform one triangulation into another one is 2n — 10, and this estimation is sharp
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for large n, as it was proved by Sleator, Tarjan and Thurston (see [36]). Notice that
in our case the size of the polygon is not a priori bounded since there exist elements
of T for which the support might be arbitrarily large.

Further we construct a series of flips followed by a relabeling move, the sequence
being uniquely determined by the given element (tp, t). The edges g1.22,..., 8%
are called the uncombed edges (in this order). Consider the first one, namely g;. We
define a prong of a triangulation to be a germ of the angle determined by two edges
of the triangulation which are incident, thus having a common vertex. We say that an
oriented ideal arc g belongs to some prong of the triangulation 77 if the start point
of g is the vertex of the prong and g is locally contained in the prong.

R ) i
f*
N

Start with ¢ = g4 and recall that g has been given an orientation. Pick up the
unique prong of 77 to which g belongs. This prong is determined by the two edges
fLand £, sitting on the left and respectively on the right of g. Therefore there
exists another edge —say f* — of 7/ joining the two endpoints of fL and £ &, other
than the vertex of the prong and forming a triangle 77 with the prong edges. Further
there exists another triangle 7 of t/ which shares the edge f* with 7}, but whose
interior is disjoint from 77, and thus it lies in the opposite half-plane determined by
f*. Itisclear that g intersects f* in one point.

The first step in combing is to use the flip on the edge f™*, which replaces f* by
the other diagonal f™** in the quadrilateral 77 U 7", If g was precisely the diagonal
S of Ty U TY then we succeeded in combing it, since it will belong to the new
triangulation 71, obtained by flipping. We will restart our procedure for g = g, and
so on. Otherwise, it means that g is still uncombed in the new triangulation. The
former prong determined by the arcs % and £% is now split into the union of two
prongs because we added one more arc, namely f** which shares the same vertex.
Then g will belong to precisely one of the two new prongs, either to that determined
by & and f**, or to that determined by f® and f**. We change the notations for
the arcs of the new prong to which g belongs so that the edge of the left is sz and
the edge of the right is sz. Then we restart the algorithm used above for f; = f.
Namely, consider the triangle 7> determined by the two edges sz and sz and the
edge f,' connecting their endpoints, and next the opposite triangle T,°. Use the flip
on the edge f¥, and continue this way.

The lemma Combing terminates Section 2.5 of [31] tells us that after finitely many
steps we obtain a triangulation for which g is combed. We continue then by using

Ff*

g
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the same procedure in combing g, and then g3 and so on, until all g; (for j < k) are
combed. At the end we need to relabel the d.o.e. in order to bring it to the d.o.e. of
7p. The sequence of flips and corresponding triangulations T — 71 — 2 =+« —
Iy — Tp — tp (the last move being arelabelling) is called the Mosher normal form
of the element { of T'.

As already mentioned before this normal form is not convenient for us as it states,
since there are infinitely many distinct combinatorial flips. We can overcome this
difficulty by translating in the simplest possible way Mosher’s normal form into a
word in & and R. In this case the flip /' cannot be applied but on the d.o.e. We assume
that the d.o.e. e; of 7 belongs to the polygon associated to 77 and the same for 7p.
This can be realized by enlarging the size of the support.

In order to apply a flip to the triangulation 77 we notice that we have first to move
the d.o.e. from its initial position onto the edge which we want to be flipped. Let us
assume for the moment that it is always possible to do this in a canonical way. Let
7 be an arbitrary unlabeled triangulation (finite or not) and e, f two oriented edges.
We define the transfer T, r(7) as being the (unique) element of 7" which sends the
labeled triangulation (z, e) into the labeled triangulation (z, f).

The normal form obtained above for { can be read now in the following way:

(1) Locatethe firstedge to be flipped, namely f;*, of v/ . Usethe transfer Iy 7 (z)
in order to move the d.o.e. from e; to f{*.

(2) Use the flip F', which will be located at f;* and thus it will act exactly as the
flip considered in the Mosher normal form.

(3) The new d.o.e.is the image F( f;*) of the former d.o.e. with the d.o.e. orientation
induced by the flip. Locate the new edge to be flipped, say f,*. Use the transfer
* * % f
Tfl =f2 (Ffl (‘E ))
(4) Continue until all uncombed edges are combed.

(5) If all edges were combed, then in order to bring the d.o.e. at its right place
eventually use the transfer Tfﬁ,e(ng, (- (Ffl* (rf)) e )

2.3. Writing Mosher’s normal form as two-generator words. We will explain
now how any transfer can be written canonicaily as a word in the two letters F and
R, corresponding to the respective generators of 7. This procedure will be called
then the transiation of Mosher’s normal form. In fact, the transfer moves preserve
the combinatorics of the triangulation, and thus they can be identified (by means
of the anti-isomorphism ® ! encountered above) with automorphisms of the dual
tree. Using this identification each transfer T, r(r) corresponds to the element of the
modular group PSL(2, Z) whose action on the binary tree sends the edge dual to e to
the edge dual to f. Now, it is well known that PSL(2, Z) has an automatic structure
and thus any element can be given a normal form in the standard generators. However,
one can do this in an explicit elementary way. In fact the subgroup PSL(2,Z) of T
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is actually the (sub)group generated by the elements a? and 8. Furthermore, since
we have PSL(2,7) = Z /27 x Z /37, it follows that any element of PSL(2, Z) can
be uniquely written as a word

Bea?flg? .l pem+l

where €9, €,,.1 €{0,1,2},and €1,€5,...,€6, € {1,2}.

Moreover, the factors ¢; can be effectively computed. There exists a completely
analogous description in terms of the triangulations and the moves FZ and R. We will
explain this in the dual setting (since anyway the final result can be easily recorded
as a word in @ and 8). The ideal arcs e and f correspond to the edges of the dual
binary tree Tree(t) of the triangulation 7. Recall that all edges of 7 have been given
an orientation. This induces a co-orientation of the edges of Tree(t), namely a unit
vector orthogonal to each edge of Tree(7). One might choose a natural co-orientation
for Tree(7) by asking it to turn clockwisely in the standard planar embedding of the
binary tree, in which case the formulas are simpler. However, it would be preferable
to do the computations in the general situation. Moreover, Tree(7) is a rooted tree,
whose root is the vertex of Tree(t) sitting in the right of the edge dual to the d.o.e.
e = e. In order to fix it we used the co-orientation. Moreover, for any edge g of
the tree and chosen vertex v of g it makes sense to speak about the two other edges
incident to g at v, which are: one at the left of g and the other one at the right of
g. This follows from the natural circular order around each vertex inherited from the
embedding of the dual tree in the plane. If ¢ and f are — not necessarily distinct —
edges incident at some vertex, we set:

0 ife=f,
e(e, f)= 1 if f is onthe left of e,
2 otherwise.

Furthermore, if we identify a? and 8 with elements of PSL(2, Z) which act as planar
tree automorphisms, it makes sense to look at the image of the co-orientation of an
edge e by means of the element £ € PSL(2, Z). For instance o2
of the d.o.e.

reverts the orientation

Let then y = (A1, h2, ..., hg) be the unique geodesic in Tree(7) which joins the
root (which is an endpoint of ) to f. It might happen that either i, = e or £ # e,
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but in any case we have always h, = f. We claim now that
O NT,, 1 (2)) = B0?pra? ... piaq?

where

€0 —€le, h1), €1 =e(hi, ha), ..., €g = €lhy. )
and

0 if f has the co-orientation induced from e,
1 otherwise.

Remark that the intermediary co-orientations of £; do not influence the normal form.

Remark 2.3. If the triangulated subpolygon of the Farey triangulation is connected
then it is actually a convex polygon in the plane. In particular, if e, f are edges of
some of its triangulations and /; are edges dual to a geodesic joining the two dual
edges, then all A; are contained in the respective subpolygon. Thus, in the process
of combing uncombed edges we can realize all flips and transfers within the given,
fixed polygon.

Definition 2.3. The Mosher-type combing (or normal form) for elements of T is
defined as follows. For each { = (tp, 1) € T we choose the restricted triangulations

rﬁ: , 7/ so that the associated polygon is the smallest connected polygon containing
all uncombed arcs of 7 and both d.o.e.’s. Notice that this is uniquely determined.

The normal form of { € T is then the sequence

oM = [Ty, () B, Tpo g3 (Fpa (O, Fy oo F Ty o(Fp (o (Fpa (7)) )]

in which each transfer is translated as a canonical word in R and /. We might
eventually use © in order to uncover the word in @ and 8.

Recall that Mosher’s combing of the mapping class group is asynchronously
bounded in the case when the surface is finite. This follows from the fact that, given
two elements {, { at distance one in the Cayley graph of the respective Ptolemy
groupoid, then one can write

M M e’ St ot e
UC = WoZ) W ZWp ... ZpWWy, UE = WohW1Z2Wo ... ZpWy

where z;, w; are words in the generators, such that:

(1) First, the size of the subwords on which the combings do not agree are uniformly
bounded:

lw;i |, || = K foralli < p.
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(2) Second, for all m, the distance between the corresponding prefix elements
which are represented by the prefix words cré‘.M (m) = Woz W1 22W; .. . Z,, and

oM (m) = Woz1W122Ws . . . Zm 18 uniformly bounded, when these elements are

considered in the Cayley graph of the Ptolemy groupoid. Actually, the two prefix
elements are always at distance one, because they differ by precisely one flip.

Let us analyze what happens in the infinite case, when the Ptolemy group is 7. We
rewrite the combing in the two-generator free group and thus we have to rewrite
also the flip relating the two prefix elements above. Since there are flips which are
arbitrarily far away, we will need arbitrary long words in R and F, and thus the
Mosher-type combing is not asynchronously bounded. Notice however, that the first
part of the assertion above is still true in this case. This follows from the fact that Z, ¢
are at distance one in the two-generator Cayley graph if they differ by a fundamental
flip or by a rotation move R. In the second case the combing paths are the same
except for the first few moves which realize the first transfer.

2.4. Modifying the Mosher-type combing in order to get asynchronous bound-
edness. We turn back to the original description of the Mosher combing of T in
terms of the infinitely many flips of the triangulation. Any element { = (zp, 7) of T
was brought to its normal form

Fo, Fp, ..., F

en:

P

where F,. are flips and P is the last relabelling move. We will first define the
new combing — denoted o — in the usual generators R and F for each flip F, and
then concatenate the combings according to the pattern of the Mosher normal form
above. Recall that the Mosher-type combing defined above for the flip Fr was the
simplest possible (actually geodesic): we used the transfer of the d.o.e. eto f, further
the fundamental flip F, and then we transferred the d.o.e. F(f) back to its initial
position e. This time we will be more careful about the way we will achieve the
flip Fy.

Consider the element E of T at distance 1 from {. Let us assume that E = FL.
Then ¢ = (1p,7), where T = F1 is the triangulation with the d.o.e. F(e) = e*.

The failure of the boundedness for the Mosher-type combing above is a conse-
quence of the fact that the distance between T, _(7) and T+ ¢(7) grows linearly with
the distance d(e, f) between the edges ¢ and f.

We want to define a path P(z, Fr(r)) joining 7 to Fr(z) such that the asyn-
chronous distance between the paths P(t, Fr(t)) and P(7, Fr(7)) is uniformly
bounded, independently on the position of f.

Let us denote by Qr the quadrilateral determined by the edge f, which has f
and f* as diagonals. We have two distinct cases to analyze: either f is disjoint from

Q, or f belongsto Q,.
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(1) Assume that f is disjoint from Q@ = Q.. Consider the chain of triangles
joining e to f, which is dual of the geodesic joining e to f in the dual tree. Denote
their union by Z(e, f) C t.

Lemma 2.4. There exists a sequence of labeled triangulations t, with d.o.e. e, and
a sequence of polygons Z, C Z(e, f) such that the following holds:

(1) Forall n we have ey, epy1 € Zy.
(2) We have Q C Z, for all n.

(3) Thenumber of vertices of Zy is uniformly bounded by K. We will see that K = 7
suffices.

(4) Forn large enough £, = Q U Wy, where Wy, and Q¢ have a common edge.

Froof. Consider thus the triangulated polygon A = Z(e, f) — O U Q, which can
be seen as a chain of triangles joining the edges ¢’ € Q (adjacentto e) and ' € QO
(adjacentto f). This chain of triangles is dual to a geodesic in the binary dual tree and
thus it contains the minimal number of possible triangles. This polygon is embedded
in the plane and it makes sense to speak about the left vertex a, of ¢’ and the right
vertex by of e’. If we start traveling in the clockwise direction along the boundary of 4
and starting at ¢ then we will encounter, in this order, the vertices a», . . . , &5, the last
one being a vertex of f’. Further if we travel in the counterclockwise direction from
by we will encounter the vertices by, ba, . .., by, the last point being the other vertex of
f'. Ifs,t < 2 then there is nothing to prove. Assume thatr > 3, the other case being
symmetric. Consider the points &1, b5, b3 and the smallest triangulated subpolygon
B C A containing these three vertices. It is understood that the triangulation of B
is the restriction of that from A and the adjective smallest means that it contains the
minimum number of triangles. Notice that edges of the triangulation of A cannot join
two vertices on the same side, since otherwise the subpolygon they would determine
(part of the boundary and this edge) could be removed from A, thus contradicting the
minimality of the chain A.

Assume that B has the vertices aq,da, ..., a, from the left side and &, b5, b3
from the right side.

If m = 3 then there exists a subpolygon W) containing @, », of height at most 3.
This means a subpolygon containing three consecutive points on the same side, say
by, by, by, and at most two vertices consecutive vertices on the other side say a1, d,.
If m < 2 this is obvious. Suppose now that m > 3.

Since B has m + 3 vertices one needs m diagonals in order to triangulate 5.
Let us denote by m; the number of diagonals having b; as endpoint. We have then
my + my +msy = m. [f m; > 2 then the diagonals exiting #; should arrive at ¢», a»
and thus the quadrilateral @y a,a3b1 has the claimed property. Suppose m; = 1; if
mo = 1 thenthe diagonals are a, by, a2b,, asb; and the subpolygon is ay azasbaby. If
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my = 1 thenms > 1 and thus there exists the diagonal @53 and thus the subpolygon
aya,bab, by verifies the claim.

A
g b 3
left side a3 ¢= by right side
a2
a1 5 bl
e
Q

Consider next the polygon Z; = Q U W;. Remark that Z; has at most 7 vertices.
We can use flips and transfers inside Z; (notice that the d.o.e. lays within Q C Z;)
in order to change the triangulation so that the three consecutive points on one side of
W, form now a triangle. We suppose that the d.o.e. is brought back into its position.

A A
dyq b3 g 53
a3 ¢ — E’z a3 E’z
az ::Z::“I'IG as y
ai 0 b al 1
Z1

Denote by 7, the new triangulation. The chain of triangles Z,(e, f) which joins e
to f within 7, has one triangle less, because we can exclude the triangle b5, 55;
actually one of the paths a;,az,...,as or by, by, ..., by becomes one unit shorter.
Continue the same procedure with the polygon A2 = Za(e, f) — Q U Qf, and
define inductively the polygons Wa, Z, = O U W, and so on, until we obtain a
polygon Wy that contains both @15 and a,b,. This proves the claim. L]

Let us define now the combing of the flip Fy, as follows. Lemma 2.4 shows that
there exist the subpolygons Z,, constructed as above so that eventually Z, = QUW,
where Wy, and Oy have a common edge. We will use the sequence Z; in order to
jointhe d.o.e. e to f. However instead of going straight away from e to f along the
shortest path we will consider the sequence 1, of triangulations that makes eventually
the edges e and f to become close to each other. At each step, we consider only those
flips or rotations which can be realized inside the respective Z; and that changes ;
into 7; 1. Finally we obtain a triangulation containing Z,. We will say that we
modified the triangulation in order to make the transfer T, ¢ short. Now, the polygon
Zy U Qf contains both ) and (¢ and has at most 9 vertices. Therefore we can
realize the flip Fy within Z, U (¢, by using the transfer 7, ¢ within the 9-vertices
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polygon, followed by the fundamental flip ¥ and then by the inverse transfer Tet}.
The effect on the triangulation was precisely that of Fy.

Next, after the flip F was performed, we use the the same procedure by means
of the subpolygons Z, and the inverse sequence of associated triangulations in order
to move backwards through triangulations and finally reconstruct the original trian-
gulation within the polygon Z(e, /), without touching anymore to Q. Eventually,
we obtain a triangulation corresponding to Frz.

Definition 2.4. The path P(z, Fr7)consisting of transformations (flips and rotations)
between triangulations that join 7 to Frt is the combing o, of Fy.

Remark 2.5. There is some freedom in choosing the way to transform the triangu-
lations within each Z,,. However, this does not influence the boundedness properties
of the combing. We can easily find canonical representatives, since there are finitely
many choices.

Lemma 2.6. Assumethatt = Frudifferby aflip F and f is an edge disjoint from Q.
Then the combing paths P(t, Frt) and P(T, Fr (7)) stay at bounded asynchronous
distance in the standard two generators Cayley graph of T'.

Proof. We have the sequences Zp, Zn as above. Then Qer = Qe = O, and thus
Ly Z D @ for all n. Further, for n large enough we have W,, = W is a pentagon
containing both an edge of O and an edge of Q.

Now, for any # the polygon Z, U 7, is connected and has at most 8 vertices, since
both lay in the same half space determined by the common edge e’ and thus have one
more common vertex. This means that one can pass from (5, ex) to (7, €5 ) by using
only flips and transfers taking place in the finite polygon Z, | Zl and thus they are
at bounded distance. Dor instance their distance is smaller than the diameter of the
graph of transformations of a 8-vertices polygon (using # and R) which is smaller
than 30. [

(2) The second case to be considered is when f is a nearby edge, namely an edge

of 0.

Definition 2.5. If /' € O then oF, is the Mosher-type combing of Fy in the two-

: M
generators, 1.e. UFf ;

We are able now to define the combing of a general element of 7. Let us consider
¢ € T, which is written in Mosher’s normal form in terms of arbitrary flips as a
sequence Fp, Fy,, ..., Fy, followed by arelabelling move P bringing the d.o.e. at
its place.
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We consider that the d.o.e. is at position e and we replace each flip F, in the
sequence above by its combing P(tj,Ffj 7;), where 7,41 = Fr.7;. The doe.
remains at the same place e, except when f; — e in which case is transformed
accordingly. At the end we obtain the triangulation tp with some place for the d.o.e.
which is then transferred by means of the Mosher-type combing of the transfer onto
its standard location.

2.5. The combing of T is asynchronously bounded. The proof follows now the
same lines as Mosher’s proof. Consider { and { two elements at distance one. We
have either { = F{or { = R¢.

Proposition 2.7. The combing defined above for T is asynchronously bounded, and
we can take the constant K = 30.

Proof. We have either E = F¢or E = R{. It suffices to analyze the first case, the
second case being simpler and resulting by the same argument. Let us consider the
Mosher normal forms

Ffl,Ffz,...,an,P and, respectively, ﬁfl,ﬁfz,...,ﬁ}n,ﬁ.

From [31], Section 2.5, this combing is asynchronously bounded if we consider all
flips as generators, and morecover the combing sequences Ffj and FZ coincide at
those positions corresponding to flips outside the quadrilateral Q. Notice that our
F is located at the d.o.e. while [31] deals with the general case of the flip which
can be outside the d.o.e. Therefore the idea of the proof is very simple: the points
in the Mosher combing corresponding to the flips which are located at edges of ¢
are at bounded distance from each other; this distance is measured by composing a
few flips, which are themselves flips on edges uniformly closer to the d.o.e. Thus
after transforming them into paths in the two generator Cayley graph these points
will be only a bounded amount apart. The points corresponding to flips on edges
which are far from the d.o.e. could be very far away in the Mosher-type combing, but
these points come from identical sequences of flips and each flip has been combed
now using the paths P(z, Fr7). Lemma 2.4 shows that these points will remain
also a finite amount apart. Eventually, we have to see what happens when using the
relabelling moves P, P. It suffices to observe that the d.o.e. of T will remain always
closed-by to the d.o.e. of 7, and actually in the same quadrilateral. This means that
the last transfer of d.o.e. leads to two normal forms which are very closed to each
other. This will prove the claim.

It suffices thus to see what happens with Mosher-type combing when we meet
nearby edges to be flipped.

Let f,* be the first edge to be flipped and ¢ = e; be the d.o.e. We have to compare
1., i (rfl ) and Tg(,), f (z/). An alternative way is to look at the dual tree. Recall
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that ideal arcs of the triangulation yield edges of the dual tree. We have to compare
the two geodesics ¥ and ¥ which join the left endpoints of the edges e and respectively
B(e) to some endpoint of f;*. But the left endpoints of e and f(e) coincide and thus
y = ¥. Thus the transfer are given by identical words except possibly for the first
three letters. _

The next case is when { = «{. Then the differences between the normal forms
can propagate to all other transfers and not just to the first one. Another difficulty is
that the dual trees are different. We set 7 = Tree(7) and 7; for the dual tree after
f steps. We define a step to be the action of a block of several consecutive letters
of the normal form. The precise control on the size of blocks will be given below.
We set also 7 = Tree(wt) and then 7; for the dual tree after ¢ steps. The steps in
the two cases are not necessary correlated. Instead, we would rather want a certain
correlation between the trees 7; and 7, for any «.

The trees 7~ and 7~ are identical except for the image of the support 2 of the move
«, which is made of the edge e and its four adjacentedges. Wehave 7 = 7 -2 Ua 2,
where 2 is replaced by its image by & (i.e. a rotation of angle %). We would like to

define the steps in such a way that any moment ¢ we have S‘tl = T; —2; Ua;, where
2i; is combinatorially isomorphic to 2. We call %; the singular locus at step ¢ and
denote Eﬁ}dt = a ;. Moreover we have a natural combinatorial isomorphism between
the two trees, outside their respective singular loci. Let e; denotes the central edge
of ¥, and &, for %,.

In order to get control on the differences between the normal forms in the two
cases we have to understand what happens if we have to use transfers or flips which
touch the singular locus. In fact, any transfer between two edges lying in the same
connected component of ¥; — X; has a counterpart as a transfer in Ty given by
the same word.

As we saw previously the transfer between two edges is determined by the geo-
desic joining the two edges. We have then to understand what happens when such
a geodesic penetrates in the singular locus. We have also to consider the case when
we encounter a flip on an edge from the singular locus. There are a few cases to
consider:

(1) If the geodesic enters and exit the singular locus. Let y = (h1,ha, ..., hy),
and respectively ¥ = (hl, hg, e g) be the two corresponding geodesics Wthh
join two edges f and g which are correspondmg to each other and both lay outside
the singular locus. It followsthaty —y N X; = ¥ —% N ff and the only differences
can be seen at the level of the singular loci. According to the formula for the transfer
we can write then

—

Tf,g(frf) = Z1W1Zg, Tf,g(frf) = 7,W1 2

where the words wg, W] record the transformations needed to transfer one edge to
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another within the singular locus. The longest such word is o?fa?B?a? and thus
[wi ], |w1] < 9.

(2) If the geodesic enters the singular locus and does not exit, or a geodesic starts
[from the singular locus and exits. This means that we have a transfer from an edge
outside the singular locus to an edge of the singular locus.

If this transfer is the final operation and the normal form is achieved for {, then
the normal form of { is obtained by flipping the edge ;.

Otherwise we did not reach yet the normal form in neither of the two configura-
tions. Thus the transfer is followed by a flip on some edge in the singular locus. We
have two subcases:

(a) The flip acts on some edge | of the singular locus incident but different from to

e, int? and different from é; in t/. Recall that we flip an edge in order to comb
an uncombed ideal arc g which belongs to one of the two prongs determined by
that edge. However, the ideal arc g to be combed should belong to the prong
opposite to the edge e;. In fact, if g belonged to the prong containing e; then g
would intersect (in the other picture, that of 7/) first the edge &;. Thus the first
flip in the process of combing g would be the flip on the edge é;, contradicting
our assumptions.

The possible situations are drawn below. We use now (for a better intuition) the
picture on the triangulation rather than on the dual.

=i

Let us analyze the first case, the third one being symmetric. The normal form
reduction of ©/ takes the following form and then it continues by combing the
ideal arc g along the edge 4. The d.o.e. is marked by a little square. We set
further Ery1 — €¢ and EI—H = E;.
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(b)

On the other hand the normal form reduction for fﬁ? takes the form below and
then continues by combing the arc g along the edge A:

g g )

Qr+1

Here one used the fundamental flip F; and this way the singular locus has been
changed. Denote by é; 1 the other edge in the pentagon as in the figure above
and set i}_;: for the quadrilateral with diagonal €; ;. It is obvious that X; 44
and i}—;:f correspond to each other by means of a flip on the edge ¢, and they
form the singular loci of the respective couple of triangulations.

In both situations the normal form reductions are identical for now on. This
means that there are subwords u of the combing o and # of the combing of 0F
so that, we can read off the strings which might be different from the picture
above (recall that the local moves strings should be read in reverse order):

u=znwizz, U=z1122,
w; = RFR, w; = R*F3R?*F*R.
Thus the subwords # and # are identical except for an extra string of length 8
in u.
A similar computation shows that in the second case we have the previous

transformation finish the combing of g, and thus we have to look at the next
ideal arc to be combed.

The flip is on the edge e;. The picture are similar to those from above. We skip
the details.

This ends the proof of the proposition. ]

Remark 2.8. The distance between the words formed by the first 7 letters in the
combing of { and { is bounded by a function linear in ¢. In fact each time that we are
crossing the singular locus (by example in a transfer) the distance may have a jump
by some k < 9, and the number of such crossing can grow linearly with the length
of the word.

3. Combing the braided Thompson group

3.1.

Generators for 7*. Itis known (see [15]) that the group T is also generated

by two elements that correspond to o and 8 above.
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Specifically, we consider the following elements of T

* Asupport of the element B} is the central hexagon. Further § acts as the coun-
terclockwise rotation of order three whose axis is vertical and which permutes
cyclically the punctures.

= A support of a} is the union of two adjacent hexagons, one of them being the
support of f7 from above. Then a} rotates counterclockwise the support of
angle Z-, by keeping fixed the central puncture.

LA Ve f

o )

It is proved in [15] that 7" is generated by oy and £}.

3.2. Normal forms for elements 7' *. The purpose of this section is to find a comb-
ing for 7" using the generators oy, 5. The main novelty consists in using methods
typical for mapping class groups that generalize first to 7 and then to T*. The main
result of this section is

Theorem 3.1. The group T™ is asynchronously combable with departure function.
From [18] we obtain that
Corollary 3.2. The group T* is FP3 and it has solvable word problem.

Remark 3.3. It is claimed in [ 18] that asynchronously combable groups with depar-
ture function are actually P, but the proof has not yet appeared in print. Another
approach to the property P is Farley’s proof of the finiteness for what he called
braided (maybe better designed as permutation) picture groups. The group 7™ is a
more general kind of picture group, where the role of permutations is now taken by
the braid groups. Brin and Meier announced that this approach might lead to the
proof of property FP3 for the Brin—Dehornoy braided Thompson group.
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3.3. The punctured Ptolemy groupoid T'*. In this section we will explain which
are the modifications necessary for adapting the previous proof for T to the case of
the group 7.

The first observation is that we can view 7™ as a group of flip transformation
on certain generalized triangulations of the punctured hyperbolic plane, that will be
called punctured triangulations or decompositions. Specifically, let us consider the
Farey tessellation tp of the hyperbolic plane (in the disk model) and assume that we
puncture each ideal arc at its midpoint. We will obtain now a triangulation whose
edges are ideal arcs constrained to pass through the punctures, as below:

We consider now that the punctures are fixed once for all. Then there is a set of moves
which transform one such punctured triangulation into another one of the same type
modelled on the transformations F' and R. We have the flip F,, on the punctured edge
1 and the rotation R which changes the d.o.e. by moving it counterclockwise in the

(punctured) triangle sitting to its left:

NN N2

Despite the similarities with the description of 7" the fact that the punctured are fixed
forces now the ideal arcs to be distorted and they cannot be realized anymore as
geodesics in the hyperbolic plane. For example, here is (RF)’, where F is the
fundamental flip (on the d.o.e.):

@ (RF)S @

We have then an immediate lemma:
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Lemma 3.4. The punctured Ptolemy groupoid, which is the groupoid generated by
flips on punctured triangulations is anti-isomorphic to the group T™, by means of the
anti-isomorphism ®(ap) = F, ®(Bp) = R.

Proof. Any flip can be realized as a composition of moves ¥ and R. ]

Remark 3.5. Each punctured arc of our triangulation splits into two half-arcs sep-
arated by a puncture. This way our punctured triangulations can be viewed as a
hexagonal decomposition of the plane, each hexagon having three vertices at infinity
and three more vertices among punctures. The decomposition could be refined to
a triangulation by adding three extra edges in each hexagon, for instance the edges
connecting pairwise the vertices at infinity. One can further consider the group gen-
erated by all flips in the refined triangulation, which is the Prolemy groupoid of the
punctured surface. Notice that this group contains the punctured Ptolemy groupoid
PT* defined above, as a proper subgroup.

The next task is to find normal forms in the punctured Ptolemy groupoid. Let us
analyze what happens when using Mosher’s combing algorithm in the mapping class
group of the punctured surface. First, a flipped arc should avoid all but one punctures
and thus it may not be represented by a geodesic in the hyperbolic plane or a straight
segment in the flat plane.

This problem arose also in the case of the usual Ptolemy groupoid associated
to an ideal triangulation of a finite genus punctured surface. The solution given
by Mosher in that case is to consider only #ight triangulations. Recall that two
arcs are tight (with respect to each other) if they do not contain subarcs bounding
a bigon i.e. an embedded 2-disk. Two triangulations are tight if all their respec-
tive arcs are tight. Notice that we can pull triangulations tight and any flip can be
realized as a flip between tight triangulations (see [31], Section 2.5); thus the algo-
rithm leading to normal forms works for the usual Ptolemy groupoid of the punctured
surface.

However, our decomposition is not a genuine triangulation of the punctured sur-
face (but rather a hexagon decomposition). In this respect, the tightness of arcs is
not concerning only the half-arcs going from one puncture to a point at infinity (as it
would be the case when dealing with the Ptolemy groupoid of the punctured surface),
but rather the entire arc. In fact, there exist triangulations having all their half-arcs
tight although they are not tight. The flips which aimed at combing these arcs using
Mosher’s algorithm might not decrease the number of intersections points with the
crossed arcs and thus the combing algorithm does not termminate. Here is a typical
case of auncombed arc for which the use of a flip move is not suitable:
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In order to circumvent this difficulty we have to introduce some additional moves.
We consider the braid twists 0,y which are elements of T™ that are braiding (counter-
clockwise) the punctures sitting on the adjacent edges e and f. If e is the d.o.e. then
we can express O, ¢ as an explicit word in F and R, which depends on the relative
position of f and e. However, in the next sections o, ¢ is simply a new letter in the
alphabet. We want to find now an intermediary normal form of elements of T using
F, R and the braid generators as well. Eventually, we will translate the obtained
normal forms as words in the two generators R and F alone.

3.4. Nonstraight arcs, conjugate punctures and untangling braids

Straight arcs with respect to a given triangulation. Let (73, 7¥) be an element
of T*. Thus z* coincides with the standard decomposition zz for all, but finitely
many arcs. Consider an ideal arc ¥ which belongs to ¥, but not to 7. Our aim is to
comb 75 by means of flips and braid twists in order to transform it into a triangulation
incorporating the arc y. There are two situations. First, when y is isotopic in the disk
D (thus disregarding the punctures) to an arc of 73 but there is no such isotopy which
fixes the punctures (or, alternatively they are not isotopic in D™). In this case we say
that y is combed but it is not straight. This type of arcs should be straightened. The
second possibility is that y is not isotopic in D to an arc of tz and thus it has first
to be combed and next to be straightened. We will give below an algorithm which
combs and straighten a given arc.

Before to proceed, let us define properly what we mean by straight edge. We
will work below with the flat planar model, but everything can be reformulated in the
hyperbolic model. The triangulation tz can be realized as a punctured triangulation of
the disk, with vertices on the boundary circle (at infinity) called cusps and punctures
in the interior of the disk. We assume that all edges are straight segments in the plane.
Moreover, each edge is punctured at one point which is located at the intersection
of the respective edge with the other diagonal of the unique quadrilateral to which
the edge belongs. Let now t* be an arbitrary triangulation which coincides with
7 outside some finite polygon P. An edge of t* is straight if it is isotopic (in the
punctured disk) to a straight segment (therefore keeping fixed the punctures). There
is a similar notion which is defined using only combinatorial terms in the case of
arcs inside a quadrilateral. Let T" be a triangle and y be a tight arc emerging from a
vertex of it. We say that v |¢ is combinatorially straight (or 7y is straight within T')
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if ¢ intersects once more the boundary along the edge opposite to the vertex from

which it emerges. Thus the different combinatorial models which might occur are
those from below:

e

' [

nonstraight straight

Let now consider now a quadrilateral () consisting of two adjacent triangles and ¥ be
atight arc which emerges from one vertex v of it. Let g denotes the unique puncture
inside Q. Let v* denote the vertex of Q opposite to v; then, the arc vv™* punctured
at g splits O into two triangles 7% and TR, We say that Yo is combinatorially
straight (or v is straight within Q) if ¥ is straight with respect to both 7% and T ®.
This implies that ¥ N Q is contained either and 7% or else in T®. Typical examples
of straight and nonstraight arcs are drawn below:

nonstraight straight

Actually, as it can be seen an arc is combinatorially straight within a triangle or a
quadrilateral if it can be isotoped by keeping its endpoints fixed to a line segment.

We consider from now on that all triangulations are isotoped so that their respective
half-arcs are tight.

Conjugate punctures along an arc. Recall that each edge e of atriangulation has a
puncture p. associated to it. If the triangulation is fixed then the puncture determines
the edge.

Consider now a tight arc ¥ emerging from the vertex v (opposite to the edge eg)
which crosses — in this order — the edges €1, €2, . .., €;; before ending in the vertex v’
(opposite to the edge ¢,,1). Notice that the edge ¢; are not necessarily distinct. In
order to determine completely the isotopy class of the arc in the punctured plane one
has to specify where sits the intersection point y M e; with respect to the puncture
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Pe; . There are three possibilities, namely that the puncture be on the left side, on the
right side or on the arc. We decide that the respective puncture is on the left side of ¢
if this is so for an observer traveling along ¥ in the direction given by the orientation
of ¥. We record this information by writing down p;r} . Similarly, when the puncture

is on the right, we record this by writing p gfr_ . The superscript L, R will be denoted
e(pe T ) and called the exponent of the j-th puncture. Notice that the same puncture
might be encountered several times with different exponents.

Extra caution is needed for the situation in which the arc pass through the puncture
P = Pe;; this happens only once and only for one puncture, because the arcs we are
interested in come from edges of punctured triangulations. We record this by adding
an asterix * to the letter p.,. Moreover, the exponent €(pe;, ) can take now three
values, namely from {L, R, 0}. Let ; be an arbitrary small € perturbation of the
arc y which is transversal to the arc ¢;, is tight and avoids the puncture. Then we
define €(pe;, ¥) = €(Pe;, y+) for small ¢ if this is well-defined and €(pe;,y) = 0
otherwise. We can give more convenient ways to compute the exponent.

Lemma 3.6. (1) I[fe = vw and p, is the first puncture encountered by v which
emerges at v then €(pe,y) is L if the frame (pew, V) is positively oriented and R
otherwise. Similarly if p is the last puncture encountered by y.

(2) Suppose that the local model of y is that of a local maximum at p and thus
the tangent vector Yy, points in the direction of pw or else in the direction of pv. We
consider that yp is a positive multiple of pw. Then €(pe,y) = L if y lies locally
on the left of the edge vw (oriented as such) and €(p,,y) = R otherwise. If y, is a
positive multiple of pv then the values of the exponent are interchanged.

(3) Eventually in all other cases y crosses transversely the edge e and cannot be
reduced by isotopy to one of the previous two situations, and we set €(p.,v) = 0.

Proof. In the first two cases there are natural tight smooth perturbations giving the
claimed values, while in the latter there both values could be reached by suitable
perturbations. O

If the exponent of a puncture is 0 we say that it is an inert puncture. The arcs we
are interested in come from edges of punctured triangulations and so they contain
precisely one puncture. The word w(y) = vpel pe? ... pe™v’ where all €; € {L, R}
(excepting for one j for which ¢; = 0) determines completely the isotopy class of
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the arc y. Moreover, we will also say that p(e;) are the punctures that the arc y
encounters. Furthermore, we define pz(y) as the k-th puncture encountered by .

Definition 3.1. Let p = pi(y) and ¢ = p;(y) be two punctures encountered by
y. We assume that none of them 1s an inert puncture. Then p and g are conjugate
along y if the subword of w(y) starting at pgz and ending at p:j has the form

ijpsjii ij, where €; = €41 =+~ =¢€;_1 #¢; € {L, R}. In other words the
punctures p;(¥), ..., pj—1(y) stay on the same side with respect to y while the next

puncture is the first one to stay on the opposite side. If one puncture, say g, stays on
¥ then we add an extra condition, as follows. We ask that ¢ is the last puncture with
exponent different from that of p which is encountered by y.

Consider now two punctures p = p;(y) and ¢ = p;(y) conjugated along y.
Notice that it might happen that the punctures p; are not distinct.

Lemma 3.7. If y is tight then w(y) does not contain neither subwords of the form
P p8 with € £ 8, nor subwords of the form p€ p€ p©.

Proof. A subword of the form p¢ p3 corresponds to a subarc which is not tight and
could be simplified by means of some isotopy. Further, an subarc corresponding to
pe pc p turns at least 2 around the puncture and its winding number with respect to
pis atleast 2. However the winding number of the entire arc should be less than 7.

pEpepc ppt

Since the arc has no self-intersections it should wrap around the puncture and then
unwrap in the opposite direction. In particular it cannot be tight. ]

Remark 3.8. One may find however duplicates p€ p€, as it can be see in the picture
above.

Untangling braid terms. It is known (see [15]) that 7" is an extension of T by the
braid group on infinitely many strands, i.e. we have the exact sequence

1By = T T <= 1.

Here B is the group of braids on finitely many punctures of D*, i.e. the ascending
union of all braid groups U>2 , B(D7) of finite support.
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There is a natural system of generators for B, which was originally considered
by Sergiescu ([35]) and then studied by Birman, Ko and Lee ([2]). For any two
punctures associated to adjacent edges e and f we associate the braid 0,5 € B
which braids counter-clockwisely the two punctures and interchange them. Actually
it suffices to consider only those pairs (e, f) associated to a maximal tree in the graph
of adjacency of punctures.

Consider now the reduced sequence w, () associated to ¥, namely the sequence
2i(y) pi+1(y), ..., p;(y) obtained from w(y) by omitting the duplicates i.e. we
delete pr11(y) from the sequence if pr(y) = pr11(y). The consecutive elements
in the reduced sequence w, () are still adjacent punctures, lying on adjacent edges of
the triangulation. Suppose that pr () lies on the edge e;. We define the untangling
braid, or the untangling braid factor Cp, by means of the formula

. i e —E
Cpq _ Uejej+1 ej 112" O—ejflej

. 1 ife; = R,

|1 ife =L
3.5. The existence of conjugate punctures along admissible nonstraight arcs.
Let now ¥ be a tight arc which belongs to the punctured triangulation z* but not to
7p. An arc y with the property that there exists a punctured triangulation containing
it will be called admissible. As we shall see below, not all arcs are admissible.
Our algorithm will work only for admissible arcs. Furthermore there exists a finite

polygon P C 7 which contains all edges from t* — 7.

Assume that ¥ is uncombed. We wish to apply the Mosher algorithm in order
to simplify the arc by means of flips. We locate the prong and vertex v from which

1 emerged and denote by T the triangle determined by that prong. There are two
possibilities: either y is combinatorially straight with respect to T° or not.

where we put

(1) If y|r is straight then y intersects the edge f opposite to the vertex v. Set 7"
for the other triangle of the triangulations sharing the edge f with T and denote
by O the quadrilateral 7 U T*. The arc vv™* splits Q into two triangles, say 7
and TR (the superseripts with their obvious meaning).

(@) If y|Q is straight then we use the flip on the edge f, as in Mosher’s algo-
rithm. Thus f is transformed into the edge vv™ (with some orientation)
and in the new triangulation y intersects precisely one triangle 75 among
TL and TR By hypothesis v |1, is again straight, and thus we can con-
tinue the procedure, as developed below, with 73 playing now the role of

T,

(b) If y|Q is not straight, then let T» € {T%, TR} be the triangle containing
the prong to which y belongs. Then y|r, is not straight. Notice that y
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might exit 7> and enter next the other triangle. However we are now in
position to apply the algorithm for the case when ¥ is not straight with
respect to its first triangle it meets.

(2) The case when |7 is not straight is more involved and it will be developed
below.

We will consider below a way for untangling arcs which eventually straighten arcs.
The procedure is based on the following key proposition:

Proposition 3.9. There is a puncture g = pr(y) (among those encountered by )
which is conjugate to p = p1(y) along .

Remark 3.10. It might happen that p = ¢, but in this case k > 3.

Proof. Suppose that y emerges from the vertex v of the prong with edges £/ and
f®. By symmetry we can consider that p1(y) = p(f*). Thus y exits the prong, it
crosses the edge f* and goes on the upper halfplane determined by f%. Here the
halfplane containing the prong was called the lower halfplane and the complementary
halfplane the upper halfplane.

The proof of this main technical result is given in the next two subsections and
consists of a detailed analysis of all cases involved.

We say that the arc y is monotone if it has no conjugate punctures. Moreover the
arc is L-monotone if it leaves all punctures that it encounters on its left side, except
for the puncture that it contains.

Notice that each edge has its endpoints at infinity, or alternatively, on the circle
at infinity. In particular any edge will separate the plane into two halfplanes. If the
edge e is given an orientation then it makes sense to consider the halfplanes H eL , H eR
which are respectively on the left (or right) of the edge e.

3.5.1. The first intersection point between y and fZ is different from p( f 1)

L. The arc y returns on the lower halfplane

Suppose next that ¥ crosses again f% in order to arrive in the lower half-plane,
leaving all punctures that encounters on its left side. Let yg denote the subarc of ¥
travelling in the upper half-plane. We will show that these assumptions will lead us
to a contradiction.

The puncture p(y) is different from p(f%). Thus y intersects the edge f% in
a point sitting at the right of the puncture p1(y) = p(f*), travels around the upper
halfplane and returns back intersecting again the edge £ in a point still different
from the puncture pq(y). Let the edge fL have the vertices v and w.
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The arc Yo has the endpoints on the edge L and after connecting them by a line
segment we obtain a circle in the plane. This circle bounds a disk that we call D. We
will use the following well-known lemma going back to the proof of Jordan’s planar
domain theorem:

Lemma 3.11. Let x be apoint inthe plane, which does not belong tothe boundary 0D
and |xa be a half-line issued from x which is transverse to dD. To each intersection
point y € [xa M dD, we associate the number €(y) € {—1, 1} which represents the
local algebraic intersection number between [xa (whose orientation points towards
a) and aD. Then

| Y e|efoiy

ye[xandD

Moreover, this value is independent on the choice of the half-line [xa. Furthermore,
the claim holds true when x € aD.

Proof. Actually the sumis Oif x & D and 1,if x € D. When x € dD we deform
slightly x off @¢. Then the value for x is the same as that associated to the perturbed
point. ]

Lemma 3.12. Consider now a triangle T made of ideal arcs which has non-empty
intersection with the curve yo. Then the homeomorphism type of the pair (T, T M yp)
belongs to one of the following patterns

Proof. Let us see the consequences of Lemma 3.11 when applied to a half-arc deter-
mined by the puncture p(e) of some edge e which is crossed by 9. Assume that the
half-arc is crossed at least once by ¥g. Assume furthermore that p, does not belong
to ¥o. According to our hypothesis all crossing points should leave the puncture p,
on their left. This implies that the local algebraic intersection number at a crossing
point between o and the half-arc (oriented towards the vertex at infinity) has always
the same value, and in our particular situation where p, is on its left side, it should
be positive. Now, the lemma above implies that we must have only one crossing
point between the half-arc and yg, since otherwise their sum would be greater than 1.
Moreover, if there is a crossing point between one half-arc of the edge ¢ and yq then
we should have at least one intersection point between yo and the other half-arc of
e issued from the puncture p(e). This follows from the second part of the lemma
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above. In particular, we obtained that any edge is crossed twice, each half-arc being
crossed precisely once.

Another possibility to take into account is when p. belongs to yo. Assume that
the arc e is not tangent to Y. If some half-arc determined by p, is crossed at least
twice by yo then deform slightly p. towards the vertex at infinity. We will obtain a
point for which the half-line which it determines has algebraic intersection at least 2,
by the same argument as above. This contradicts the lemma. Thus each half-arc
can be crossed by yg at most once more. We claim that only one half-arc among
them can have nontrivial intersection with 4. Assume the contrary, namely that both
half-arcs pea and p.d intersect yo. We have that the algebraic intersection number
of yo and one half-arc (oriented towards infinity) is positive. Thus the local algebraic
intersection number of Yy and pea should be negative at p., otherwise their sum
being at least 2. Thus the frame (p.a,y,,) is negatively oriented. Similarly, the
frame (peb, yp,) should be negatively oriented, which is impossible because these
two frames have opposite orientations. This shows that the arc y intersects each edge
precisely twice, with the possibility that one intersection point be the puncture.

There is one more possibility, when the arc y, is tangent at the puncture p, to
the edge e. The argument above shows that in addition to what we already saw g
can intersect once more each half-arc p.a and p.b when p, is a tangency point. The
local model is that from below:

Consider now a triangle T that yq intersects. There are only finitely many pos-
sibilities for yo M T, so that any edge is crossed precisely twice and there are no
self-intersections, and these are precisely those pictured above. ]

We are able now to formulate the following result which explains the form of the
curve yo. Let I' be a finite subtree of the tree of the triangulation 7, having the
puncture pi as one of its leaves. If there is a tangency puncture between Y, and an
edge then consider that in the dual graph we add edges between the punctures of the
respective triangle and remove the associated Y graph. Construct the planar regular
neighborhood N(I') of T" and consider its boundary dN(T").

Lemma 3.13 (Disk lemma). The curve yq is the intersection of ON(I") with the
upper-half plane determined by FY which is N(y) minus a small cap around p.

Proof. Remark that the arc yo might pass through a puncture. Each model above
(and its images under the 7 /37 symmetries) can appear within 5. Moreover, we
can now obtain yq using this Lego toolkit by gluing up triangles with the models
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inside, which have matching boundaries. The arcs that we obtain are described as in
the statement. ]

We are able now to finish the proof of the proposition in the case under scrutiny.
In fact, we obtained that the arc ¥, (hence y) comes back crossing again fL in one
point which belongs to the half-edge vp. If the crossing point is not the puncture,
then y should enter the domain determined by vp and the first part of arc sitting in the
lower half-plane. This domain does not contain any other vertex of the triangulation,
and thus y has to exit the domain in order to abut to some vertex (different from v).
But ¥ cannot cross itself and ¥ cannot cross the edge vw again since all edges are
crossed twice. This is a contradiction.

The arc y return on L and hits it at py. Another possibility left is that the
second intersection point between the arc ¥ and the edge fI coincides with the the
puncture p.

« If the arc ¥ enters the lower half-plane then we get a contradiction by the same
argument that we used above.

« Otherwise, the arc ¥ is tangent at £% at p and goes up in the upper half-plane.
There are again two possibilities:

— The orientations of the two tangent arcs are compatible. Then the arc Yo
should cross once more the segment pw and thus the puncture p will be
on its right side.

— The two tangent arcs point in opposite directions, which we suppose to be
the case from now on.

We denote by y; the subarc of ¥ issued from the puncture p and lying in the upper
half-plane. Let fL be the edge of the triangle uvw sitting in the upper half-plane.
We have several possibilities, as could be seen from the picture below:
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Y 3

Y

(1) If the arc y; crosses first the edge ww. Since y; is disjoint from yp it should
cross vw leaving the puncture on its right side.

(2) If y1 goes straight to the vertex . We shall see below that in this case the arc ¥
cannot be admissible.

(3) Otherwise y; crosses first the edge uv.

(a) If y1 crosses again the edge uv, then the same argument which was used
for the edge fL applies. Thus y; returns on u#v by intersecting it in a
point of the half-arc containing v. This time y; should avoid the puncture.
Further, y; is now forced to reach the vertex v (which is a contradiction)
or else to enter the region N(I") containing no vertex, either. Once more
the arguments above show that y; should turn back and cross pw and thus
p 1s on its right side.

(b) Eventually, if y; reaches a vertex in the left upper half-plane determined
by uv then we will see that ¥ cannot be admissible.

In order to deal with these cases we will open a parenthesis in the proof in order to
state an intermediary result, before resuming.

The admissibility lemma. The technical result below will be used several times in
the sequel.

Lemma 3.14 (Admissibility lemma). Let « and 8 be two admissible oriented arcs
(coming from possibly different triangulations) with the same endpoints. Let denote
by X(a, B) the set of those punctures which are on the left hand side of a but on the
right hand side of B. Similarly for X(8, a). Then the number of elements of X(a, B)

is the same as the number of elements of X(B, ).

Proof. Since «, f# are admissible there exist punctured triangulations 77, 7; containing
thermn. Moreover, these triangulations are identical outside some polygon P, where
they coincide with tz. Thus there exists an element { of T* which sends z;* with the
d.o.e. & onto 7} with the d.o.e. 8. This means that there exist triangulated polygons
P; which are subpolygons of 7; such that 7y — Py is rigid homeomorphic to 7o — P».
We can choose P; large enough in order to contain P in its interior. The arc «
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(respectively B) splits P; (respectively P;) into its left part PlL (and P;_,L ) and its
right side PIR (and PIR). Let us order circularly the edges of PIL as di,dy,..., 4,0
and those of P{J asby,ba, ... by, B. Since 11 — Py and 1) — P arerigid equivalent
and the arcs @ and B correspond to each other, it follows that the edges @; and b;
should correspond to each other by means of this rigid homeomorphism. Further,
there are no vertices at infinity in the interior of P; and thus the only possibility to
arrange the convex polygons P; in the plane is as in the picture below (where PjR are
drawn in dotted lines), namely: @, is surrounded by the edges b1,b2, ..., bi; by 41
is surrounded by the edges a3, a3, ..., a;, etc. In particular, there exists a polygon
P1 N P, which is admissible (and thus embedded into 7z) which has the following
edges in the left hand side of the arcs «, 8: a1, bi; 41,85, +1,..., bg. In particular
one finds as many edges from P as edges from P,, and it might happen that some
edges of Py N P, are common to both if some a; equals some ;.

PL = a1asa3a4as0

P2L = b1 bob3bsbsbep

The polygon Q = P; M P, is split by & into two parts. Let Oy be the part of the
polygon Py M P, sitting on the left of o and similarly (). Thus (0, and Qg have in
common all edges but the arcs @, 8. The common part of their boundaries is made of
r edges from P; and r edges from P> (some edges might possibly belong to both).
Recall further that the element { € 7™ should send homeomorphically PlL onto
P2L , by sending boundary edges to boundary edges and the arc & onto . Inparticular,
the number of punctures into PIL should be equal to the number of punctures in P2L.
Moreover, each polygon with r-vertices should contain 1 —2 boundary punctures and
n — 3 interior punctures. Since O, and (J g contain as many edges from PlL as edges
from P;_:L we find that the union of all polygons from PlL — (4 contains the same
number of punctures as the union of all polygons from P{J — Qp. In fact all these
polygons are admissible subpolygons of 73 and their total number of edges is the
same in both cases. As a consequence, the number of punctures within {, coincides
with the number of punctures in Qg. This implies the statement of the lemma. ]
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Remark 3.15. It is useful to be more precise concerning the points which are on the
left of @ and the right hand side of 8. The (oriented) arc y has endpoints which are
vertices at infinity. These endpoints determine an arc of circle lying at the left of y.
The union of this arc at infinity with y is a circle bounding the disk D% (y). The
complementary disk is D®(y) sitting on the right of y. A point is said to be at the

left of & and at the right of g if it belongs to D¥(a) — DR(B).

End of the proof when the arc y return on f* and hits it at p;. We are able
now to finish the proof in the cases enumerated above. Namely, the arc ¥ is made
of two pieces, one being ¥y which crosses £ and goes in the upper plane then hits
fL at the puncture p: then the second piece y; emerges into the left upper half-plane
determined by ¥ v abutting to some vertex z there (which might be #). Our claim is
that

Lemma 3.16. [f v, is L-monotone then y cannot be admissible.

Proof. 'The main tool is the admissibility Lemma 3.14. The first step is to construct an
admissible arc d joining v to z. Consider the dual graph associated to the triangulation
and next the geodesic joining the (vertex dual to the) triangle opposite to ¥vw and
having the edge #v in common with it, to the closest triangle having z among its
vertices. Passing again to the dual, the union of triangles corresponding to vertices of
this geodesic is the polygon M (v, z). This is the smallest polygon made of adjacent
triangles joining v and z. We can realize M(v, z) as a convex polygon in the plane
which is triangulated by means of several diagonal edges. Moreover the line segment
vZ has to intersect all diagonal edges, since one could get rid of any triangle disjoint
from this line segment, which would contradict the minimality.

One can use iteratively flips within the polygon M(v, z) in order to weakly comb
zv, which means that we find an arcjoining v and z which remains within the polygon.
There are several possibilities, by making inductively the diagonal edges to turn from
v closer and closer to the vertex z. We are constrained to deal only with arcs passing
through the puncture of the quadrilateral. Thus the final arc that we obtain is neither
canonical nor the line segment, but it will be convenient for our purposes. We denote
any such arc by vZ.

We will show that there cannot be any puncture which sits at the left of vZ and
at the right of the arc y; N M(v, z). The arc y; enters M(v, z) throughout the right
half-arc of the edge vu. Moreover, y; should cross all diagonal edges of M(v,z)
since their endpoints are on the circle at infinity and they separate v from z. Also v
cannot hit any other puncture since ¥ already contains p.

Lemma 3.17. The arc v hits every diagonal edge e precisely once.
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Proof. Assume that y; hits e once at ¢ and then returns and intersects ¢ again. We
claim that any further intersection point of y; with some edge f already crossed by
¥1 should be closer to the puncture py than the previous hit. In particular y; should
cross again € (since € separates v from z) and it will cross it by entering throughout
the segment p.g. Now, the subarc of y; between the first and the second hit of e
union with a small segment on e will bound a disk which is disjoint from z. Thus
the arc 1 cannot escape this disk (by the Disk lemma 3.13) and thus cannot reach z,
which is false.

o [

Moreover, if ¥, hits any diagonal edge e precisely once then the puncture p,
belongs to DL (y,). This happens thus for all punctures from the interior of M (v, z).
Now, we will consider the punctures from DZ(8) which are not interior points of
M(v, 2). Such a point cannot be in D®(y;) unless y; crosses one boundary edge f
of M(v, z) located at the left of §. Since z isin M(v, z), the arc ¥ should cross again
f. The arguments above show that ¥ crosses once more f on the other half-arc.
The lemma above implies that, in order to reach z the arc yy should either cross itself
or else cross again f. But when crossing f again the arc will enter again a disk and
by the Disk Lemma 3.13 it cannot escape anymore. This proves that y; cannot cross
the left part of the boundary of M (v, z) and thus the set of punctures in the left of 6
and the right of y; is empty. H

We return now to the arc y which contains the extra piece y5. We saw that g
contains at its left at least one more puncture out of p. Moreover, all punctures from
the lower half plane determined by uv are from D®(§). This implies that X(y, §)
has at least one element, while X (6, v) is empty. This contradicts the admissibility
lemma. This proves therefore the claim in the case under consideration.

IL.The arc y remains in the upper half-plane

From now on we will consider the situation when ¥ remains in the upper half plane
and therefore reaches a vertex z in the upper half-plane, which might coincide with
the other vertex w of the edge f%. There are again two possibilities for z: either
z lies within the right upper half-plane determined by uw or else in the left upper
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half-plane determined by ¥ v, the point ¥ inclusively. The second case is very similar
to the last part above.

Assume that z belongs to the right upper half-plane determined by #w. Then
either ¥ crosses first ww or else uv, or it goes towards u.

If v crosses uv then it has to return back and cross ¥ v again in order to arrive at
z. The Disk lemma 3.13 shows that ¥ cannot escape from the left upper half-plane.

If v goes to ¥ then the admissibility Lemma 3.14 shows that the arc is not admis-
sible.

Thus y crosses uw. If y crosses again #w then the disk argument shows that it
cannot escape towards a vertex. Hence y has only one intersection point with uw.

Let now M(v, z) be the polygon with the smallest number of triangles which join
v to z. We already saw above that it should exist an admissible arc ¢ joining v to z
and lying within M (v, z). We can be more precise, as follows:

Lemma 3.18. There exists an admissible arc § joining v to z within M(v, z) such
that the number of punctures encountered by & which are on its right side is equal
to N — 1, where N is computed as follows. Let us consider the two vertices of the
dual graph associated to the triangle wvw and the triangle T, containing z within
M(v, z). Join the two vertices by a geodesic in the binary tree. Then N denotes the
number of times the geodesic has to turn left at some intermediary vertex. Here we
assume that the first segment of the geodesic issued at wvw turns right, because the
next triangle is adjacent to uw.

Proof. We will change the triangulation of the polygon M(v,z) in order to con-
nect v to z. Remark that M(v,z) can be seen as a convex polygon in the plane.
Let denote the vertices of M(v,z) in clockwise order v, ¥ = Uy, ¥4y,..., Uk, Z,
Wi, Wm—1,..., W1 — w. The vertices u; will be called upper vertices and the ver-
tices w; lower vertices. We will change inductively the diagonal edges by means of
flips aiming at combing the segment vz. This means that we will adjoin step by step
all intermediary diagonals v, ..., vug and intercalate among them vwa, ..., Viwy,.
The new diagonals obtained by flipping will be not touched on the next steps and
will be called new arcs. At the end we will get the triangulation containing all vu;,
vw; and vz. There is only one issue to care about: when the diagonal arc vu; has
been adjoined by means of a flip into some former diagonal edge u; wy, the new arc
vu; was constrained to pass through the puncture of the diagonal u;wy crossed at
the previous step. Thus the location of the puncture associated to such a diagonal arc
is determined by the time when the new diagonal arc is adjoined.

Now, a flip on ¥ 1w will transform it into either v; or else into v w,, depending
on whether w, was adjacent to ¥, or else 1, to w,. If the former case happen then
the puncture py,w, will be said to be an upper puncture, otherwise it will be called a
lower puncture. In general, upper punctures will belong to upper diagonals v#; and
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lower punctures to lower diagonals vw;. Assume that at some step we get an upper
puncture on some arc vi; after flipping the former diagonal edge #;wy. All new
arcs which will be adjoined at the next steps, namely vu; with/ > j 4+ 1 and vwy
with { > k + 1 will cross the former edge u;wg, and they should leave that upper
puncture on their left side. This is so because otherwise they would cross the arc vi;
just adjoined. Similarly, lower punctures will remain always to the right of the new
arcs.

Uy u
i1 3 Uy

Uk

W
w3

w1 wa

At the end of our combing we will have then a number of & upper punctures associated
to the upper diagonal arcs v#; and also a number of m lower punctures associated
to the lower diagonal arcs vw;. Thus the number of punctures encountered by vz
which rest on its right side is m. Eventually the value of m can be easily checked to
be that claimed by recurrence on the number of triangles involved in M(v, z). [

Corollary 3.19. [fd(z,w) = r > 1 then there exists an admissible arc § joining v
to z within M(v, z) such that the number of punctures encountered by § which are
on its right side is at least r — 1.

Proof. 'This follows from the fact that N = d{(z,w), because there exists a path
wiwz ... wyzjoining w to z of length V. Notice that in general the distance d(z, w)
might be smaller than N computed above, because there might exist a shorter path
using upper vertices. [

Now the arguments are similar to those from the case when y returns to the lower
halfplane. If v C M(v, z) then observe that any diagonal edge should be crossed
precisely once, otherwise we can find a disk containing the arc and by the Disk lemma
3.13 the arc would not escape from it. This implies that there is no puncture in the
interior of M(v, z) which lies in D®(y). There exists only one puncture which is
on . Further, the puncture p = p,., should belong to DL(y). The admissibility
lemma implies that the arc ¥ is not admissible as soon as N > 1, which is implied
by d(z,w) = 1. The same argument shows this is the case also when y, crosses
boundary edges of M(v, z) on the right. On the other hand if ¥ crosses a boundary
edge at the left of § then the Disk lemma 3.13 will lead us to a contradiction.
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There is one more case left, namely when z = w. In this case the arguments above
break down. However, we can take § = vw. Further, it should not exist any other
puncture encountered by y on its right side and thus y is isotopic to the following

Lo
2

4

' o

This means by definition that the puncture g (lying on y) is conjugate to p.

3.5.2. The first intersection point between y and f % is p(f ). Assume that
there are no conjugate points along . We also suppose that ¥ is tight and thus there
are no superfluous tangencies. Then y should be L.-monotone. In fact, any point
which lives on the right side of y is conjugate to p = p1(y), by definition. Further
the arc y~! which is ¥ with the reverse orientation should be R-monotone. Assume
that there is at least one puncture that is encountered by y out of p. Then accordingto
the Part I of the proof of Proposition 3.9 that puncture should be conjugate to another
puncture along ¥~ ! and this would contradict the fact that ¥~ is monotone. Thus y
cannot meet any other puncture and thus the arc is isotopic eitherto £ or else to the
arc below:

However it can be easily seen that this arc is not admissible by means of the admis-
sibility lemma. This establishes the claim. ]

3.6. Simplifying arcs by combing and straightening tight arcs

3.6.1. Combing admissible arcs. Denote by L(y) the length of ¥, namely the total
number of punctures encountered by y.

Lemma 3.20. Recall that p1(y) and pr(y) are conjugate along y. Then the arc
Y1 = Cpyompu (¥ has length L(y1) < L(y).



Vol. 86 (2011)  The braided Ptolemy-Thompson group is asynchronously combable 751

Proof. Suppose that y emerges from the vertex v of the prong with edges f L and
fR. By symmetry we can consider that p1(y) = p(f%) and thus y crosses fF
and goes on the upper plane determined by f%. There are a number of punctures
encountered by ¥ and left on its left side until it reaches py on its right side.

Lemma 3.21. Thepuncture py belongstothe upper half plane or it coincides with p;.

Proof. Otherwise y crosses again /% in order to arrive in the lower half-plane, leaving
all punctures encountered on its left side. If the new crossing point is on the right
of the previous crossing point then y is not tight, as already observed in the proof of
Lemma 3.9. If the second cross point lies on the segment vp; then the arc y unwraps
around p; but it has to unwrap and exit the same way, and thus it cannot be tight.
The remaining possibilities are that y crosses again % leaving p, an the right hand
side, or else that pg is on the upper half-plane. H

We can now verify that the untangling transformation C,, ,, permutes the punc-
tures by bringing pr on the position of py and translates each other p; onto the
next p; 1. Further, the image of the arc ¥ by means of the untangling braid has the
following shape:

.Pk—l
P2 . i n
v P1 0 bE v N Pr—1

b d fL Pk fL

Thus y; avoids the prong determined by £Z and F& and belongs to the prong sitting
on its left side (having /¥ as edge). All punctures py but p; are still encountered
by y1. Moreover, the mapping class Cp, p, can be represented by a homeomorphism
whose support 1s contained in a neighborhood of the graph of vertices p; and edges
Pj Pj+1. Inparticular, the arc y1 does not intersect any other edge of the triangulation
which was not previously crossed by y, because each p; corresponds to an edge and
the segment p; p; 41 lies in the interior of a triangle. This proves that y; encounters
precisely the punctures located at pa2, p2,-.., Pt,... and avoids pj. This proves that

L{y1) < L{y). ]

The arc y; is then simpler that y. If y; is not yet straight with respect to its
first triangle that it meets then we apply again Lemma 3.9 and use the associated
untangling transformation in order to obtain the arc ¥,. We continue this way by
defining recurrently the arcs yy, 11 obtained by untangling ¥4,.

Lemma 3.22. After finitely many steps the arc ym is straight within the first triangle
that it meets.
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Proof. At any step the length L(yy41) < L(Vm). In particular for m large enough
L(y,) = 1. This means that v, does not encounter any other punctures but the
puncture that it contains. This puncture could belong to the opposite side of the
vertex v, or else on a side of the prong containing ¥5,. The arc y continues after the
puncture and reaches a vertex without crossing any other edge. This implies that the
arc goes straight to the opposite vertex or else goes along one half-arc in an edge.
Summing up, the arc ¥ has one of the shapes pictured in the figure below, namely:
vpv*, vgt, vpz,vpt, vgz, vgw. The first two arcs are straight.

v

We claim that none of the remaining arcs is admissible. Let us concentrate on the arc
vpz. Since zpf is an edge of the triangulation obtained so far 7%, it is an admissible
arc. Recall that the arc ¥ was an admissible arc within the finite polygon P with the
property that all arcs outside P belongto t5. All flips and untangling transformations
used up now are supported in P, which means thatthey do not touch any arc outside P.
If vpz were an arc of some triangulation, this means that it is an arc of the triangulation
obtained from t* by means of some flips and untangling transforms which aimed at
combing it. Thus vpz would be an arc of a triangulation 7* which differs from 73
only within the polygon P. It makes sense therefore to consider the element of T*
which sends 7* with the d.o.e. zpt onto the triangulation * with the d.o.e. zpv.

Recall now that elements of T are mapping classes of homeomorphisms supported
in some finite polygon, which in this case is P. Further, any ideal arc 7 divides
the compactified plane into two disks D(n)™ and D(n)~, each disk intersecting the
polygon P inside a disk. Further a homeomorphism of P sending one ideal arc
into another one should send D(zpr)™ M P onto D(zpv)* M P and punctures onto
punctures. This is a contradiction because the number of punctures of D(zpt)" N P
is at least one unit greater than the number of punctures inside D(zpv) " N P since the
former disk should contain the puncture g. This shows that zpv cannot be admissible.
The same argument works for the other arcs. The only possibility for v, is to be either
an edge vgt or a diagonal vpv™, and thus is straight. ]

3.6.2. Straightening combed arcs. Let us consider the case when the arc ¥ is
combed but it is not isotopic to the corresponding arc xy determined by its endpoints
x,yint}.
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Suppose that ¥ belongs to a prong (01 contained in the triangle 77.

(1) If |7y is not straight, then use the procedure from the previous section and find
an untangling braid term that makes it straight.

(2) If y|T1 is straight then,
(a) If 77 is one of the two triangles containing xy then y is isotopic to x y.

(b) Otherwise let f7 be the edge opposite to the prong Q0 to which y belongs.
Assume that we do a flip on f1, which changes the base triangulation but
will not be recorded in the combing word. The effect of the flip is to split
the prong (01 into two prongs of the new triangulation. We assume that O,
is the new prong to which y belongs and 75 is the triangle that it contains
it. Then we iterate the procedure above.

(3) The procedure stops when ¥ has been straightened and is isotopicto xy.

The word associated to the straightening procedure is the product of all untangling
terms used. This is an element of B since y is already combed.

3.7. Complements on straightening arcs. There is also a global straightening pro-
cedure which works for any subarc (not only initial ones) of a given arc and for combed
arcs as well. Suppose that y has the endpoints ¥(0) and y(1) which determine the
line segment [y] = y(0)y(1) which we call the shadow of y. If y is combed then
its shadow is an edge of 7. If we are looking only to a subarc of ¥ which has to be
straightened we will compare it with its shadow.

Recall that v is oriented. It makes then sense to consider L(y) which is the set of
punctures which are to the right of y but to the left of [y], and similarly R(y) which
is the set of punctures which are to the left of y but to the right of [y]. In order to
define them properly let us consider the disks D T(y) and D~ (y) bounded by y and
arcs of the boundary of P. Note also by DT ([y]) and D~ ([y]) the respective disks
in the case of [y]. We assume that the positive disks lie on the left of the arc. Then
R(y) is the set of punctures contained within D (y) — D ([y]) and L{y) the set of
those from D~ (y) — D " ([y]). Notice that the punctures of ¥ and [y] may be distinct.
The punctures of L(y) U R{y) will be labeled L and R respectively.

Remark that there exists a homeomorphism of the punctured polygon P* which
sends ¥ onto [y]. This implies that L(y) has the same cardinality as R(y).
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Then the arc ¥ can be seen as intersecting the ideal arcs in order (disregarding the
position of the ideal arcs in the plane) some arcs might being crossed twice:

S

» 4 y /

/ I

The punctures on crossed arcs which do not belong to L(y) U R(y) will be called
remote punctures.

The main idea of the simplification procedure is that once we have two consecutive
connected regions, one from DT (y) — D™ ([y]) and the next one from D (y) —
D™ ([y]), we are able to simplify the arc y. In our simplification the line segment [y|
will be made curvilinear, but we ignore this in our drawings.

Here is a sample: consider a pair of punctures having different labels which are
closest to each other, thus the arc ¥ does not meet but inert arcs in between. Assume
that the first puncture is labeled R and the second L. One might assume that the inert
punctures are far away in the plane. Consider the segment joining the two points and
asmall neighborhood of it, and further the braid twist which moves the two punctures
clockwisely by interchanging them. The effect of this move is as follows:

T ol | |
/,.7;/.}2 j LT ¥

’ o
Y T Y2

-H—__,_,,—-/

In order to express the braid twist as a product of braid generators of B one has to
take care of the position of the inert punctures in the edges crossed by the segment
relating the two punctures to be interchanged. If the left puncture is on the edge e
and the right one on the edge f let e1,e2. ..., e, be the edges which are intersected
by the arc . Since e and f are the closest possible then this sequence is made of
distinct edges. We set then

g — U‘;i (7;1‘1,32 . U.«gvl_lepggvlfgep_lep .. Oerer0eeq -
Notice that the edges e; and e; | are adjacent edges of the triangulation 3. The
untangling factor C, ¢ willreduce the number of punctures in the two adjacentregions
with different labels.
We continue to use inductive untangling terms for all punctures from L sitting
on the left of the puncture which switched from L to R. These have as effect the
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translation of that puncture on the leftmost side, where it becomes inert. In particular
the arc ¥ becomes straight on the first quadrilateral that meets. Further we continue
the same procedure for the next pair of punctures having different labels until one
regions is empty. Remark that the procedure we describe is not canonical, other ways
to switch the punctures might equally being used.

Let consider further the triangles 15, 74, ... crossed by the arc y, which are not
necessarily distinct. Let also denote by ¢ = ¢ep, €1, e2,... the edges crossed by the
arc v in the order. The arc ¥ can cross once an edge ey at its midpoint puncture, in
the case when the puncture associated to y is the same as the puncture on ey . All
the other intersections between y and the edges ¢; are different from the punctures,
and thus it makes sense to say that y intersects ¢; to the left or to the right. Further
¥ crosses en both to the left and to the right.

Assume that y goes to the left and it is nonstraight. Let ¢; be the first edge so that
y intersects ¢; to its right. According to our convention such a point exists always,
but it might be the midpoint puncture of y. We say that the punctures of e and of
J = e; are conjugate along y. Let 0,7 be the braiding of the punctures of e and f
along the arc y. We wish to exchange these two punctures by means of a braiding.

Let Sgf = Cee1Copes - - Cej_lf' We call S,r the first untangling braid of the
arc . By modifying the arc y by means of an untangling braid we obtain an arc for
which the cardinal of I.(y) was decreased by one unit. Moreover, we have:

Lemma 3.23. Let y' = S.ry be the image after the braid untangling. Then y' is
straight with respect to e.

Proof. 1f y' were nonstraight then this would mean that the first puncture near which 3’
passed (namely the central puncture of the first quadrilateral Q which ' intersects)
would be in L{y) U R(y). But we chose the untangling braid so that the central
puncture in the first quadrilateral becomes remote. This implies the claim. H

In particular, if the arc ¥ were not straight then we use first the braid untangling
and further perform the flip like in Mosher’s algorithm. We continue then with the
same procedure until the arc is combed. When the arc is combed then we have to
check whether it is straight. If not, then let us restart the straightening procedure once
again and this time we use only untangling braid terms until we get stacked.

Lemma 3.24. If v is a combed arc which admits no untangling braids then y is
straight.

Proof. This means that the sets L(y) and R(y) are empty, and thus we can use an
isotopy keeping fixed the punctures which transforms y into its shadow line segment.

[
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This means that eventually we transformed the arc ¢ into an arc which belongs
to 5.
B

3.8. Rectification of punctured triangulations. In the process of combing an arc
we have to use flips which change the base (punctured) triangulation. In meantime
the untangling braid factors do not affect the reference triangulation but only the arc
to be straightened. However, suitable sequences of flips could lead to edges which
are tangled. We would like to keep the reference triangulations as simple as possible
in the process of combing in order to prevent them to have their edges too distorted.
The way to do this is to rectify from time to time the triangulation. Notice that there is
no analogous transformation in the case of the group 7', since in that case the flipof a
geodesic triangulation is still a geodesic triangulation, as two vertices define uniquely
the segment joining them. In the punctured case we have to specify for any edge the
corresponding puncture which belongs to it.

Let us give an example. It may happen that in the combing process we can obtain
two different combinatorics of punctured triangulations of the pentagon, by choosing
different locations for the interior punctures, as follows:

We have then to choose one triangulation which is allowed to appear in the combing
process and discard the other one.

Specifically, for each triangulation v (without punctures) we will choose a lift of
it as a punctured triangulation ¥, which will be called admissible. If 7 is supported
in the polygon P (thus it coincides with the Farey triangulation outside P ) then we
assume that 74 has also the support in P. Moreover, we will ask that if P C O
and 7p|p = tp then té lp = t;. Eventually, we can choose the set of admissible
triangulations 7* so that all of them can be obtained from each other by using flips
or some braid.

It 1s convenient to choose the set of admissible triangulations of a pentagon as

T AOOE S

Assume now that in the combing process at some step we modified the basic
punctured triangulation by a sequence at flips and get §* which is not anymore ad-
missible. Then there exists an unique admissible punctured triangulation ©* which
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defines the same subjacent triangulation as §* after dropping the punctures. There
exists then an unique braid element in B, which transforms ¢* into ™. We call it the
rectification (or correction) factor and denote it Cor p where P is the finite support
of the triangulation. For example, in the picture above the braid which interchanges
counter-clockwisely the punctures 1 and 2 is the correction factor sending the left
side pentagon into the right side pentagon.

We will assume that after any flip we will look at the newly obtained triangulation.
If this is admissible then we continue the straightening and combing. Otherwise, then
we insert the correction factor which transform the intermediate triangulation into an
admissible punctured triangulation.

3.9. The combing of T * is asynchronously bounded

Rewriting the raw combing into the two-generator alphabet. We proceed now in
the same way as we did in the case of the group T'. Let { € T™ be an element which
is presented in the form of a couple of punctured triangulations (7, 74«). The arcs
from 74 coincide with those from 7z outside some finite punctured polygon P. We
have an order on the finite set of arcs y;, ..., ¥y of 7, which belong to P, and each
arc is oriented.

We start to comb and straight the arc y;. We record all transformations needed,
namely the flips and the untangling braid terms, whose composition is X ;. Notice
that these transformations do not affect the complementary of the support polygon
P. One y, is simplified and thus transformed into an arc X (1) of 7 we look upon
the image of 2 under the transformation X;.

Use next the combing and straightening procedure for X(y,). Recall that arcs
are disjoint and thus all elements used in combing and straightening (flips and braids)
X (y,) are supported in the complement of X (), in particular they do not alter
this arc. If the composition of these elements is X5 then X5 o X (1) = X1(y1) and
X2 0 X1(y2) belongs to 7.

Further continue the same procedure for all arcs in P. Notice that an arc ¥ which
belonged initially to 7 will be left unchanged. This stops when all arcs from P and
thus all arcs from 7* have been simplified to arcs in 7.

The combing of ¢ records the concatenation of sequences of flips, braid untan-
glings and correction factors used in X1, X5, ..., Xn in order to transform 7, into
7. This raw combing of T uses the infinite alphabet of all flips and all braid twists
Oe7,— where e and f are adjacent edges — from a suitable set of generators of Bu.
Notice that the braid terms C,, are canonically written as products of braid twists.

The second step consists of translating the raw combing into a combing based on
the alphabet {@}, B !, which is the generator system for 7*. One possibility is to
use the normal forms determined in [14] for the braid elements as words in a; , ﬁ;

Another way to translate this is as follows. Recall that the generator o, ¢ can be



758 L. Funar and C. Kapoudjian CMH

expressed in a very simple form, according to the results from [15]. In fact, it can
be verified that the braid generator ogy] associated to the edge joining the punctures
numbered 0 and 2 of the support of a} can be written as

Olo2] — (5}3 Cﬁ; )5-

Tn other words, if f is assumed to be the d.o.e. then o, is either (FR)® or (RF)?,
depending on the relative position of e with respect to f (to its left side of to its right
side, respectively).

Transfers for T*. Further, in order to get the word associated to the composition
of two braids one needs to insert transfers, as we did when we translated the combing
of T in the two-generator alphabet (see Section 2.4). Thus, when replacing in the
product 0,50y, each braid generator by the corresponding word in F, R we have to
insert in between the transfer T, ¢ (also expressed as a word in F and R). It suffices
to find explicit formulas for the transfers T¢,. However, the same formulas that we
used in Section 3.4. for defining the transfer Ty, as a word in o, § can be used now
for the transfer TJ};, as a word in a, f%. This is a consequence of the following
splitting result:

Lemma 3.25. The surjection T* — T splits over PSL(2, Z) and thus we have a
natural embedding PSL(2,Z) C T™.

Proof. Since a;z is of order two and B} is of order 3 in 7™ and their free amalgam
(051‘32) * (B3 ) (which is PSL(2,Z)) embeds into 7', then it will be also embedded in
T*, because T ™ surjects onto T'. Thus we also have anatural embedding of PSL(2, Z)
into T™ given by o} and f5. ]

This procedure defines a combing for the group T* which uses the alphabet
ap, Br.
pPp

T * is asynchronously combable. We need to prove that the combing of 7* defined
above is asynchronously bounded. Actually the proof given in Section 2.5 for T' can
be adapted to T* with minor modifications. Since the form of the transfers is the
same for T* and T, it suffices to look upon the way that the untangling braid and
correction factors intervene in the combings.

Recall that we have to compare the path combings associated to nearby elements
of T* and thus to elements that differ from each other by a factor «}. Elements of
T* are associated to triangulations. We have thus to make comparison between the
combings simplifying the triangulations t* and @ t* in order to arrive at the same base
triangulation t3. Notice that this is the same to consider the pair of triangulations
(tp, Ts) and (a1 75, T*). But this is the same as writing the simplification procedure
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for a given triangulation * with respect to two base triangulations v and F -1 3.
The advantage is that we can immediately see that the untangling braid factors needed
are almost the same in the two cases and they depend mostly on the topology of the
arc in the complementary of the punctures.

We have then to understand the following situation: we have a sequences of arcs
Y = V1, VY2, ..., YN that have to be straightened and combed with respect first to r’é,
and second to F ! 7p. Then we have to compare the two combings and see whether
they are at bounded asynchronous distance. We will analyze first the case of one
arc y and observe that after straightening and combing it, then the situation for the
next arc ¥, is similar, namely we will have to comb/straighten ¥, with respect to
two base triangulations that differ from each other by a flip. Notice that these new
base triangulations have changed in meantime (several edges have been flipped in
meantime and some braid corrections applied).

Let thus concentrate on the case where we deal with one arc . Going back to
the proof concerning 7" we see that we shall understand what happens when the arc
y enters the quadrilateral Q, (of 73) having the edge e as a diagonal, where e is the
d.o.e. Then y is issued from the vertex of a pentagon P containing (/.. Moreover,
the other triangulation F~! 75 corresponds to choosing the d.o.e. e*.

The pentagon P contains two punctures in its interior, say p and g. The arc y
could first encircle the two punctures p and ¢ a number of times and then exit along
one side. Since the mapping class group of the twice punctured pentagon is £ it
follows that in the interior of P there is an unique configuration possible, namely:

Then one of the punctures p and g is conjugate to the first puncture that y meets and
thus the first untangling braid factor is J;Cq for some k. Thus we have to express this
braid factor using the two possibilities for the d.o.e., namely e and e*. Using one base
triangulation we have ,, = (FR)® while in the other one it reads 0,, = (RF)°.
This means that the two words which describe the respective untangling braids are
(FR)>* andrespectively F~1(FR)>* F, which are at bounded asynchronous distance
for any k.

After untangling the arc ¥ we obtain an arc that encircles once either one, or both
or else none of the two interior punctures and then exits along one side. Notice that
the arc ¥ might return and run across P again. There are several cases to be taken
into account (up to symmetry and the choice of the exit half-arc), as follows:
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Remark that the cases 7-9 are obtained by a braiding from 1-3 and this braiding is
the untangling factor in both situations, so that it suffices to check 1-6.

If the arc y does not intersect neither e nor e*, or both of them, then the untangling
factors and corrections factors should be the same in both configurations.

Let us analyze these cases one by one. We will describe the simplification proce-
dure with respect to 7} and then F 17} at each step.

(1) (a) Assume that the arc y exits the pentagon P after passing near the puncture
1 then encounters the punctures 2, 3,...,m, and finally the puncture r which
is conjugate to p. We suppose for the moment that ¥ does not return to the
pentagon P. The straightening algorithm then for y with respect to 73 runs at
follows. The first edge met by ¥ is ¢, and this cannot be flipped. We compute
the untangling braid C,, which is the product of consecutive braid generators
OrmOmm—1 - - 02101, Untangle y in order to be able to flip ¢, and do the flip.
The next edge 1s e; the edge containing 1 and we continue.

NCA7

(b) If we deal with the d.o.e. e* then the straightening process is different. The
first edge to be combed is ¢, but the second one is ¢4 instead of e; which comes
in third. Moreover, the first puncture conjugate to p is not anymore r but g. We
have then to untangle the arc y by using C,,; and then we can flip the first edge
met by ¥. The next edge to be flipped is ;. Moreover the puncture p (which is
now located where g lived before) is conjugate to the same r as in the previous
situation. We use then the untangling factor Cp; and then flip the edge e,. We
obtained two triangulations on the pentagon P, that obtained in the figure above
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and the present one. We assumed that the former is admissible and so our present
triangulation is not admissible and it has to be corrected by a factor Corp. The

correction factor is actually the braid generator Uq_rl in this case.

The output of the two simplification procedures is almost the same in the two
situations, namely the two final diagrams differ by only one flip on the edge Fe,
located within the pentagon P. In particular the procedure will be from now on
the same in both situations. Since we supposed that the arc does not enter again
P then we get asynchronous boundedness on the second part.

The only trouble we had in the first part is that the puncture r might be far away,
and thus we have to understand the distance between the combings when using
the untangling procedure. However, the untangling factors are the same except
for their last terms, and they are products of braid generators.

In order to apply a braid generator, say o,,, we have to use the transfer of the
d.o.e. ¢ to the position &, then insert the classical braid generator (RF)> (or
(FR)?) and further come back using the inverse transfer T, .. But the same
procedure was used for dealing with flips instead of braids when we described
the choice of transfer making far away flips be at asynchronous bounded distance
in the two situations.

Recall that each untangling factor Cp,4 is a product of several copies of the
standard braid generator o,y = (RF )® with the transfers Tt,. Moreover, the
transfers used for the punctured case coincide with those for the group T'. Thus,
the two combings of nearby elements are obtained from the combings in 7" by
inserting finitely many elements (RF)°. In particular, since the combing of T
is asynchronously bounded and we insert only elements of bounded length we
obtain combing paths at asynchronously bounded distance.

The second problem that we might encounter is that the arc y might return
within P before reaching the first puncture conjugate to p. According to our
disk lemma then y will renter the edge e; on the other side of the puncture e;.
However, each new entrance in P will contribute to the first untangling factor
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(2)

(3)
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by a braid element which interchanges two punctures inside the pentagon. The
words which describe the braid elements with respect to the two triangulations
are conjugate to each other by a factor F. Therefore there is no problem in
keeping them at asynchronous bounded distance.

For the remaining cases we will just picture the simplification steps within the

pentagon P, until the moment from where the reductions are the same in both
situations.

(a) Here is the first simplification for 2:

ST : : —1_%.
(b) The simplification with respect to F~ * 73:

Cpq

iy

In the case 3 the arc ¥ does not intersect neither e nor e*. The simplifications
will be therefore identical in the two situations.

(4) The case 4. We assume that g is conjugate to some puncture s.

(a) Here is the first simplification for 4:
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where ¢ is the puncture conjugate to p at the fifth stage.

. . . . _1 4
(b) The simplification with respect to F'™" z3:

Remark that at the third step the puncture g is conjugate to the same puncture ¢
which appeared above.

(5) The case 5.
(a) Here is the first simplification for 5:

(b) The simplification with respect to F~! 15

F,

TN VA

Remark that p is conjugate to the same puncture r that appeared above.

(6) Lastsimplification for 6: (a) The first situation is below:
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e : : S5
(b) The simplification with respect to F* 75:

g/

This analysis shows that the combing that we defined is asynchronously bounded,
as claimed.

3.10. The departure function. The combing that we defined has not a departure
function. In fact, let us assume that the Mosher combing consists of two flips which are
located on nearby edges f1, f>, which are far away from the d.o.e. e. Our procedure
amounted to translate the sequence Fy,, Fy, into T, 7, F, Tfl* e Lo for F, sz*’e.
However, if f1 and f, are nearby edges then the transfers T, i and T, y, are paths
having in common a large part of their initial segments. Furthermore, the modified
transfers will also be kept at finite distance one from the other along this initial
segment. This will contradict the departure function condition since one finds a long
path having the shape of a back and forth path in the Cayley graph.

This is however the only accident that might occur. In fact let us assume that
whenever we have two consecutive transfers Ty, 7, ¢, in the translation of Mosher’s
combing then we simplify it. This means that we consider the geodesics joining e to
f1 and respectively f; and drop their common part. We obtain then a word which
is actually the representative of Ty, ¢, and whose terms of the form aa~! have been
cancelled. The combing so obtained is called the reduced combing of 7.

Proposition 3.26. The reduced combing is still asynchronously combable and more-
over it has a departure function.

Proof. The reduced combing just cancelled the terms of the form aa~' and so the
asynchronous combability is preserved.
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We claim first that if 7; and 1 agree outside the ball B(r) of radius r (of the dual
tree) and their d.o.e. lay within B(r) then any time that 7;,..., &, ..., T; appears as
a chain in the combing of some element of 7" then any intermediary triangulation
p should agree with 7; outside the ball of radius r. Since there are finitely many
triangulations of the polygon with 3 - 2" sides (corresponding to the ball B(r) by
duality) we find that the length of such a chain is bounded by a function on r. In
particular if the length of such a chain is bigger than that function then z; should
be distinct outside the ball of radius r. However if we want to modify the standard
triangulation by means of an element of 7" written as a word w in «, § then the newly
obtained triangulation coincide with the former outside the ball of radius |w| + 1,
where |w| denotes the length of the word w. In particular the element (71, 72) € T
should have length at least ¥ — 1 and so the elements (z, 7;) and (7, t;) are at distance
r—1 far apart in the Cayley graph. This will prove therefore that the reduced combing
of 7" has a departure function.

The proof of our claim is at follows. Each chain in a combing is made of transfers
and flips. If there exists a transfer going outside the ball of radius B(r) then either
there exists a flip at the end of the transfer or else there exists a transfer going back.
However any time that we used a flip, this is done for combing, and thus the edge
remains flipped until the combing terminates. Thus 7, should contain the edge flipped
outside B(r) which is a contradiction. The other possibility was to have a transfer
that goes out of B(r) and then enters again B(r), but this is impossible since the ball
in the tree are convex with respect to the (modified) transfers. This means that two
edges e, f lying inside B(r) are joined by a modified transfer which does not affect
the complementary of B(r). The last possibility is that we have a composition of
two transfers that go outside the ball and then come back. This is impossible since
then we should have a common part in the two transfers, but our reduction procedure
cancelled such terms.

The claim holds true also for punctured triangulations, when dealing with the
group T*. However it does not imply directly the existence of the departure function
since the number of punctured triangulations of a given polygon is infinite. In mean-
time our hypothesis should be stronger. The punctured triangulations are not only
agreeing outside B(r) but also inside the ball B(r) they do not differ too much from
each other, in order to be close in the Cayley graph. This means that one obtains 7,
from 7; by means of a sequence of abstract combings and a braid action, where the
braid is viewed as an element of T* of bounded length (say N) as a word in a™®, *.
Since the number of abstract triangulations of the polygon with 3 - 27 sides is finite
and the length of the braid is less than N we find that the length of a chain joining 7;
to 7, in a combing process is bounded in terms of ¥, N. ]
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