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The Khovanov width of twisted links and closed 3-braids

Adam Lowrance

Abstract. Khovanov homology is a bigraded Z-module that categorifies the Jones polynomial.
The support of Khovanov homology lies on a finite number of slope two lines with respect
to the bigrading. The Khovanov width is essentially the largest horizontal distance between
two such lines. We show that it is possible to generate infinite families of links with the same
Khovanov width from link diagrams satisfying certain conditions. Consequently, we compute
the Khovanov width for all closed 3-braids.
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1. Introduction

Let L S3 be an oriented link. The Khovanov homology of L, denoted Kh.L/, was

introduced by Mikhail Khovanov in [13], and is a bigraded Z-module with homological

grading i and polynomial or Jones) grading j so that Kh.L/ D Li;j Khi;j L/.
The graded Euler characteristic of Kh.L/ is the unnormalized Jones polynomial:

q C q 1/VL.q2/ DX
i;j

1/irank Khi;j L/qj :

The support of Kh.L/ lies on a finite number of slope 2 lines with respect to the
bigrading. Therefore, it is convenient to define the i-grading by i D j 2i so that
Kh.L/ D Li Khi L/. Also, either all the i-gradings of Kh.L/ are odd, or they all
are even. Let imin be the minimum i-grading where Kh.L/ is nontrivial and imax
be the maximum i-grading where Kh.L/ is nontrivial. Then Kh.L/ is said to be

OEimin; imax -thick, and the Khovanov width of L is defined as

wKh.L/ D
1

2
imax imin/ C 1:

In this paper, we show the following:
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If a crossing in a link diagram is width-preserving defined in Section 3), then

it can be replaced with an alternating rational tangle and the Khovanov width
does not change Theorem 3.4).
We compute the Khovanov width of all closed 3-braids Theorem 4.10).
We determine the Turaev genus of all closed 3-braids, up to an additive error of
at most 1.
We show that for closed 3-braids the Khovanov width and odd Khovanov width
are equal Corollary 5.5).

The paper is organized as follows. In Section 2, we review some properties of
Khovanov homology. In Section 3, wedescribe the behaviorof Khovanov widthwhen
a crossing is replaced by an alternating rational tangle. In Section 4, the Khovanov
width of any closed 3-braid is computed. Finally, in Section 5weshowthat Khovanov
width and odd Khovanov width for closed 3-braids are equal.

Acknowledgements. I wish to thank Scott Baldridge, Oliver Dasbach, Mikhail
Khovanov, and Peter Ozsváth for many helpful conversations. A portion of the work for
this article was done while the author was visiting Columbia University in the Fall of
2008. He thanks the department of mathematics for their hospitality.

2. Khovanov homology background

In this section, we give background material on Khovanov homology. If D is a

diagram for L, then denote the Khovanov homology of L by either Kh.L/ or Kh.D/.
Similarly, let wKh.L/ and wKh.D/ equivalently denote the Khovanov width of L. If
F is a field, then let Kh.LI F / denote Khovanov homology with coefficients in the
field F and wKh.LI F/ denote the width of Kh.LI F /.

Let L1 and L2 be oriented links, and let C be a component of L1. Denote by l
the linking number of C with its complement L1 C. Let L01 be the link L1 with
the orientation of C reversed. Denote the mirror image of L1 by SL1 and the disjoint
union of L1 and L2 by L1tL2. The following proposition was proved by Khovanov
in [13].

Proposition 2.1 Khovanov). For i;j 2 Z there are isomorphisms

Khi;j L01/ Š KhiC2l;jC2l L1/;
Khi;j SL1IQ/ Š Kh i; j L1IQ/

Tor.Khi;j SL1// Š Tor.Kh1 i; j L1//;
and

Khi;j L1 t L2/ Š Lk;m2Z.
Khk;m L1/ Khi k;j m L2//

Lk;m2Z
TorZ1 Khk;m L1/;Khi kC1;j m L2//:
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Let D be a diagram for L1 and D0 be the diagram D with the component C
reversed. Denote the number of negative crossings in D by neg.D/, where the sign

of a crossing is as in Figure 1. Set s D neg.D/ neg.D0/. Then Proposition 2.1
implies

Khi D0/ Š KhiCs D/;
and

Khi SL1IQ/ Š Kh i L1IQ/:
In [14], Khovanov introduced the reduced Khovanov homology. For a knot K,

this theory is denoted Kh.K/. For links of more than one component, the reduced
Khovanov homology depends on a choice of a marked component, and hence is
denoted Kh.L; C/, where C is the marked component of L. Similar to the unreduced
version, Kh.L; C/ is a bigraded Z-module with homological grading i and Jones

grading j so that Kh.L;C/ D Li;j Kh
i;j L; C/. The graded Euler characteristic

of Kh.L; C/ is the ordinary Jones polynomial:

VL.q2/ DXi;j
1/i rank Kh

i;j L; C/qj :

As with Khovanov homology, if Qimin is the minimum i-grading where Kh.L;C/ is
nontrivial and Qimax is the maximum i-grading where Kh.L; C/ is nontrivial, then we
say that Kh.L; C/ is OE Qimin; Qimax -thick. The reduced Khovanov width is defined as

Kh.L/ D
1w 2

Qimax Qimin/ C 1.
Asaeda and Przytycki [2] show that there is a long exact sequence relating reduced

and unreduced Khovanov homology.

Theorem 2.2 Asaeda–Przytycki). There is a long exact sequence relating the
reduced and unreduced versions of Khovanov homology:

Khi;jC1 Khi;j 1
L;C/ Khi;j L/ KhiC1;jC1L; C/ L;C/!

Corollary2.3. LetLbe a link with marked componentC. Then Kh.L/ isOEimin; imax -

thick ifand only if Kh.L;C/ isOEiminC1; imax 1 -thick. HencewKh.L/ 1 D wKh.L/.

Proof. The long exact sequence of Theorem 2.2 can be rewritten with respect to the

i-grading as

Kh iC1 Khi 1
L; C/ Khi L/ Khi 1

L;C/ L;C/! :

Suppose Kh.L/ is OEimin; imax -thick. Therefore Khi L; C/ D 0 fori > imax C1 and

for i < imin 1.
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Suppose Kh imaxC1 L; C/ is nontrivial. Then for some i and j where j 2i D
imax C1, the group Khi;j L; C/ is nontrivial. By repeatedly applying the long exact

sequence of Theorem 2.2, one sees that Kh iCk;jC2k L;C/ is nontrivial for all k 0.

However, the group KhimaxC1 L; C/ is finitely generated. Hence KhimaxC1 L; C/ is

trivial. Similarly, one can show that Kh
imin 1

L; C/ is also trivial.

The long exact sequence also implies that Kh
imax 1

L;C/ and KhiminC1 L;C/
are nontrivial. Thus Kh.L; C/ is OEimin C 1; imax 1 -thick.

Suppose Kh.L; C/ is OEimin C 1; imax 1 -thick. Similar to the case above, if
either Khimin.L/ or Khimax.L/ are trivial, then one can show that Kh iminC1 L; C/ or

Kh
imax 1

L;C/ respectively are infinitely generated. Hence Kh.L/ is OEimin; imax -

thick.

Corollary 2.3 implies that if C and C0 are two components of L, then Kh.L;C/
is OE Qimin; Qimax -thick if and only if Kh.L;C0/ is OE Qimin; Qimax -thick. Hence, the notation

Kh.L/ is unambiguous.w

D D Dv DhC

Figure 1. The links in an oriented resolution. DC is a positive crossing, and D is a negative
crossing.

LetDC, D Dv andDh beplanardiagrams of links that agree outside a neighborhood

of a distinguished crossing x as in Figure 1. Define e D neg.Dh/ neg.DC/.
There are long exact sequences relating the Khovanov homology of each of these

links. Khovanov [13] implicitly describes these sequences, and Viro [26] explicitly

states both sequences. The graded versions are taken from Rasmussen [20] and

Manolescu–Ozsváth [16].

Theorem 2.4 Khovanov). There are long exact sequences

Khi e 1;j 3e 2 Dh/ Khi;j DC/ Khi;j 1 Dv/
Khi e;j 3e 2 Dh/
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and

Khi;jC1 Dv/ Khi;j D / Khi eC1;j 3eC2 Dh/
KhiC1;jC1 Dv/ :

Whenonly the i D j 2i grading is considered, the long exact sequences become

Khi e Dh/
f i e

C Khi DC/
giC Khi 1 Dv/

hi 1
C Khi e 2 Dh/

and

KhiC1 Dv/ f iC1
Khi D /

gi
Khi e Dh/

hi e
Khi 1 Dv/ :

There are versions of these long exact sequences where Khovanov homology is
replaced with reduced Khovanov homology. In the reduced sequences, the gradings
are identical to the unreduced sequences.

LetD, D0 andD1 be link diagrams differing only in a neighborhood of a crossing

x of D as in Figure 2) with associated link types L, L0 and L1 respectively. The set

Q of quasi-alternating links is the smallest set of links such that

The unknot is in Q.

If the link L has a diagram with a crossing x such that

1) both of the links, L0 and L1 are in Q,

2) det.L/ D det.L0/ C det.L1/;
then L is in Q. We will say that D is quasi-alternating at x.

D D0 D1

Figure 2. The links in an unoriented resolution.

In[15],Lee showed thatalternating links have reduced Khovanov width 1. Theset

of alternating links is a proper subset of the set of quasi-alternating links. Manolescu
and Ozsváth [16] use the long exact sequences for reduced Khovanov homology to
show that the same result holds for quasi-alternating links.

Theorem 2.5 Manolescu–Ozsváth). Let L be a quasi-alternating link. Then Kh.L/
is supported entirely in i-grading L/, where L/ denotes the signature of the
link.
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Theorem 2.5 together with Corollary 2.3 imply that if L is quasi-alternating, then

Kh.L/ is OE L/ 1; L/ C 1 -thick and wKh.L/ D 2.

Theorem 2.4 directly implies the following corollary:

Corollary 2.6. Let DC, D Dv and Dh be as in Figure 1. Suppose Kh.Dv/ is
OEvmin; vmax -thick and Kh.Dh/ is OEhmin; hmax -thick. Then Kh.DC/ is OEiCmin; iCmax -

thick, and Kh.D / is OEimin; imax -thick where

iCmin D
8
<̂

ˆ

minfvmin C 1;hmin C eg if vmin ¤ hmin C e C 1,

vmin C 1 if vmin D hmin C e C 1 and hvmin

:
C

is surjective,

vmin 1 if vmin D hmin C e C 1 and hvmin

C
is not surjective,

iCmax D
8
<̂

:̂

maxfvmax C 1;hmax C eg if vmin ¤ hmax C e C 1,

vmax 1 if vmax D hmax C e C 1 and hvmax

C
is injective,

vmax C 1 if vmax D hmax C e C 1 and hvmax

C
is not injective,

imin D
8
<̂

:̂
minfvmin 1;hmin C eg if vmin ¤ hmin C e 1,

vmin C 1 if vmin D hmin C e 1 and hvmin is surjective,

vmin 1 if vmin D hmin C e 1 and hvmin is not surjective,

and

imax D
8
<̂

:̂

maxfvmax 1; hmax C eg if vmax ¤ hmax C e 1,

vmax 1 if vmax D hmax C e 1 and hvmax

C
is injective,

vmax C 1 if vmax D hmax C e 1 and hvmax

C
is not injective.

3. Twisted links

3.1. Khovanov widthof twisted links. Let D C.a1; : : : ; am/ be a rational tangle,
and let D be a link diagram with a distinguished crossing x. Suppose that near the
crossing x, the arcs of D forming x are line segments in the plane whose slopes are
either 1 or 1. Define D twisted at x by to be the diagram obtained by removing

x and inserting such that a neighborhood of the rightmost crossing or topmost
crossing of in D looks exactly like a neighborhood of x in D. The resulting link
diagram is denoted D See Figure 3.

The main result of this section, Theorem 3.4, is a generalization of a proposition
proved by Champanerkar and Kofman in [8].

Proposition 3.1 Champanerkar–Kofman). Let D be a link diagram with crossing

x, and let be an alternating rational tangle such that D is twisted at x by If D
is quasi-alternating at x, then D is quasi-alternating at each crossing of
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D C.2; 3; 4/ C. 4/

D.2;3;4/ DC. 4/

Figure 3. The diagram D twisted by C.2;3;4/ and C. 4/.

Let D be a diagram with crossing x. Resolve D at the crossing x to obtain
diagramsDv andDh. Suppose Kh.Dv/ is OEvmin; vmax -thick and Kh.Dh/ is OEhmin; hmax -

thick. As before, set e D neg.Dh/ neg.DC/, where DC is the same diagram as D
except if the crossing x in D is negative, then it is changed to positive in DC. The
diagram D is said to be width-preserving at x if either of the following conditions
hold.

If x is a positive crossing in D, then both vmin ¤ hmin C e C 1 and vmax ¤
hmax C e C 1.

If x is a negative crossing in D, then both vmin ¤ hmin C e 1 and vmax ¤
hmax C e 1.

Proposition 3.2. Let D be a link diagram with crossing x. If D is quasi-alternating
at x, then D is width-preserving at x.

Proof. Suppose D is quasi-alternating at x. Let Dv and Dh be the two resolutions
of D at x. Since D is quasi-alternating at x, it follows that Dv and Dh are also
quasi-alternating. Theorem 2.5 implies that Kh.D/, Kh.Dv/ and Kh.Dh/ are each

supported entirely in one i-grading. Suppose Kh.Dv/ is supported in i-grading

v and Kh.Dh/ is supported in i-grading h. Corollary 2.2 implies that Kh.Dv/ is
OEv 1; vC1 -thick and Kh.Dh/ is OEh 1; hC1 -thick. Let e D neg.Dh/ neg.DC/
where DC is the same diagram as D except if x is negative in D, then it is changed
to positive in DC. Since det.D/ D det.Dv/ Cdet.Dh/, it follows that the nontrivial
parts of Kh.D/, Kh.Dv/ and Kh.Dh/ lie in three consecutive spots in the long exact
sequence of Theorem 2.4 such that Kh.Dv/ and Kh.Dh/ are not adjacent. Therefore,
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if x is positive, then v D h C e 1, and if x is negative, then v D h C e C 1. The
result follows directly.

Lemma 3.3. Let D be an oriented link diagram with crossing x, and let be an

alternating rational tangle with exactly two crossings x0 and x1. Let D be D
twisted at x by If D is width-preserving at x, then for any orientation, D is
width-preserving at x0 and x1. Moreover, wKh.D/ D wKh.D /

Proof. There are two ways to twist D at c, either horizontally or vertically. Let

1 D C.2/ and 2 D C. 2/. For each case, it is only necessary to prove the result
for one choice of orientations on D and D Proposition 2.1 implies the result for all
other choices of orientations on D and D

Let Dv and Dh be the diagrams obtained by resolving D at x, and let Div and Dih
be the diagrams obtained by resolving D at the crossing xi for i D 0;1. Suppose

Kh.Dv/ and Kh.Dh/ are OEvmin; vmax -thick and OEhmin; hmax -thick respectively. Let
e D neg.Dh/ neg.DC/ where DC is the same diagram as D except if the crossing

x is negative inD, then it ischanged to positive inDC. Similarly set ei D neg.Dih/
neg.Di

C/ where Di
C

is the same diagram as D except if the crossing xi is negative

in D then it is changed to positive in DC.
Suppose x is positive. Choose the orientation on D 1 given in Figure 4. Also,

v and D0Figure 4 shows the resolutions D0 h

x1

x0

v D0D Dv Dh DC.2/ D0 h

Figure 4. The resolutions for x positive and D C.2/.

Observe that xi is positive inD 1 for i D 0; 1. Corollary 2.6 implies that Kh.D/ is
OE ; -thick where D minfvminC1; hminCeg and D maxfvmaxC1; hmaxCeg. The
diagrams Div and D represent the same link, and the diagrams Dh and Dih represent

the same link. Therefore, Kh.Div/ is OE ; -thick and Kh.Dih/ is OEhmin; hmax -thick.
The diagramDih is the same as the diagramDh exceptDi

h
has one additional negative

Reidemeister I twist, and hence neg.Dih/ D neg.Dh/ C1. Since the diagramsD and

Div are identical, neg.D/ D neg.Div/. Thus ei D eC1. SinceD iswidth-preserving,
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it follows that vmin ¤ hmin C e C 1 and vmax ¤ hmax C e C 1. Therefore,

hmin C ei C 1 D hmin C e C 2 ¤ ;

and

hmax C ei C 1 D hmax C e C 2 ¤ :

Hence D 1
is width-preserving at xi Also, Corollary 2.6 implies that Kh.D 1/ is

OE C 1; C 1 -thick, and thus wKh.D/ D wKh.D 1 /.
The possible orientations ofD 2 depend on whether thestrands forming the crossing

x are in the same component of D or different components of D. Suppose they
are in the same component. Choose the orientation on D 2

given in Figure 5. Also,
Figure 5 shows the resolutions D0v and D0h

x1 x0

v D0D Dv Dh DC. 2/ D0
h

Figure 5. The resolutions for x positive, D C. 2/, and with the depicted strands of D in the
same component.

Observe that xi is positive in D 2 for i D 0; 1. With suitably chosen orientations,
we have

neg.Dv/ D neg.D/ D neg.D i
h/; 3.1)

and

neg.D i
C/ D neg.Dh/: 3.2)

The diagram Div is the same as Dv except Div has one component reversed and
an additional positive Reidemeister I twist. Therefore, Proposition 2.1 implies that
Kh.Div/ is OEvmin e; vmax e -thick. Also, equations 3.1 and 3.2 imply that ei D

e. The diagram Dih is identical to D. Therefore, Kh.Dih/ is OE ; -thick where

D minfvmin C 1; hmin C eg and D maxfvmax C 1; hmax C eg. Since D is
widthpreserving at x, we have vmin ¤ hmin C e C 1 and vmax ¤ hmax C e C 1. Therefore,

CeiC1 D minfvminC1; hminCeg eC1 D minfvmin eC2;hminC1g ¤ vmin e;

and

CeiC1 D maxfvmaxC1;hmaxCeg eC1 D maxfvmax eC2; hmaxC1g ¤ vmax e:

ThusD 2 is width-preserving at xi Moreover, Corollary 2.6 implies that Kh.D 2/ is
OE e; e -thick, and hence wKh.D/ D wKh.D 2/. Suppose the strands forming
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the crossing x are in different components of the link. Choose the orientation on D 2
given in Figure 6. Also, Figure 6 shows the resolutions D0v and D0h Observe that xi
is a negative crossing in D 2 for i D 0; 1. Orient Dih so that it represents the same
oriented link as Dv. With a suitably chosen orientation on Dh, we have

neg.D/ D neg.Dv/ D neg.D i
h/; 3.3)

and

neg.Dh/ C 1 D neg.D i
C/ D neg.D iv/: 3.4)

Equations3.3 and 3.4 imply that ei D e 1. The diagramDiv is thesameasDexcept

x1 x0

v D0D Dv Dh DC. 2/ D0
h

Figure 6. The resolutions for x positive, D C. 2/, and with the depicted strands of D in
different components.

Div has one component reversed. Equations 3.3 and 3.4 along with Proposition 2.1
imply that Kh.Div/ is OE e 1; e 1 -thick where D minfvminC1; hminCeg
and D maxfvmax C 1; hmax C eg. Since Di and Dv represent the same oriented

h
link, it follows that Kh.Dih/ is OEvmin; vmax -thick. Since D is width-preserving at x,
we have vmin ¤ hmin C e C 1 and vmax ¤ hmax C e C 1. Therefore,

e 1 D minfvmin e;hmin 1g ¤ vmin e 2 D vmin C ei 1;

and

e 1 D maxfvmax e;hmax 1g ¤ vmax e 2 D vmax C ei 1:

Thus D 2
is width-preserving at xi Moreover, Corollary 2.6 implies that Kh.D 2/

is OE e 1; e 1 -thick, and hence wKh.D/ D wKh.D 2/,
The case where x is a negative crossing in D is proved similarly.

Theorem 3.4. Let D be a link diagram with crossing x, be an alternating rational
tangle, and D be the diagram D twisted at x by If D is width-preserving at x,
then wKh.D/ D wKh.D /

Proof. Let D C.a1; : : :; am/. Since isalternating, either ai > 0for all i or ai < 0

for all i Suppose ai > 0for all i Beginning with the diagramD and the crossing x,
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one canalternate twisting thediagram byC.2/and C. 2/. Replacing the appropriate
crossings m times results in the diagram D 0 where 0 D C.2; 1; : : : ; 1/. Lemma 3.3
implies that each crossing in D 0 is width-preserving, and wKh.D/ D wKh.D 0 /.

Replace crossings corresponding to the m-th term in 0 by C.2/ until the resulting
diagram is obtained by twistingD byC.2; 1; : :: ; 1; am/ at x. Next, replace crossings
corresponding to the m 1/-st term in C.2; 1; : :: ; 1; am/ with C. 2/ until the
resultingdiagram is obtained by twistingD byC.2; 1; : : : ; 1; am 1; am/at x. Continue
replacing crossings in the tangle by either C.2/ or C. 2/ until the resulting diagram
is obtained by twisting D by C.a1; : : : ; am/ at x. Since at each step, the only tangles
used are C.2/ and C. 2/, Lemma 3.3 implies that wKh.D/ D wKh.D / The case

where each ai < 0 is proved similarly.

C 1) C 2) C 2,1) C 2,1,1) C 2,1,2)

C 2,3,4)

C 2) C 2) C 2)

C (-2) C (-2)

C(-2)

C 2) C 2)

C 2,1,3) C 2,1,4) C 2,2,4)

Figure 7. The inductive process of Theorem 3.4. At each step, the circled crossing is replaced
with either C.2/ or C. 2/.

Remark3.5. Watson [27] proves thatwKh.D / isboundedbywKh.Dv/andwKh.Dh/.
By assuming that D is width-preserving at x, we are able to strengthen the result and

calculate wKh.D /
Suppose D is an oriented diagram with crossing x. If D is twisted at x by

n D C.n/ as in Figure 8, then the assumptions of Theorem 3.4 can be relaxed and

a slightly stronger result holds. The following technical result is needed to compute
the Khovanov width of closed 3-braids.

Proposition 3.6. Suppose D is an oriented diagram with crossing x. Suppose D is
twisted at x by n D C.n/ as in Figure 8. Let Dv and Dh be the two resolutions of

D at x. Suppose Kh.Dv/ is OEvmin; vmax -thick and Kh.Dh/ is OEhmin; hmax -thick. Let

D minfvmin 1; hmin C eg and D maxfvmax 1; hmax C eg.

1) Let n > 0. Suppose that vmin ¤ hmin C e C 1. If vmax D hmax C e C 1, then
suppose that there exist integers i and j such that j 2i D vmax, Khi;j Dv/
is nontrivial, and Khk;l Dh/ is trivial for all k whenever l j 3e 1. Then

Kh.D n/ is OEn C C; n C C -thick.
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2) Let n < 0. Suppose that vmax ¤ hmax C e 1. If vmin D hmin C e 1, then
suppose that there exist integers i and j such that j 2i D vmin, Khi;j Dv/ is
nontrivial, and Khk;l Dh/ is trivial for all k whenever l j 3e 1. Then
Kh.D n/ is OEn C ; n C -thick.

} }n n

DC DC.n/ D DC. n/

Figure 8. For n > 0, twist DC by C.n/ and twist D by C. n/. Then choose the above
orientations for DC.n/ and DC. n/.

Proof. Let n > 0. Since D is twisted at x by n as in Figure 8, it follows that x is
a positive crossing. If both vmin ¤ hmin C e C 1 and vmax ¤ hmax C e C 1, then D
is width-preserving at x. It follows from the proof of Theorem 3.4 that Kh.D n/ is
OEn C C; n C C -thick.

Suppose vmin ¤ hmin CeC1 and vmax D hmax CeC1. Thus there exist integers

i and j such that j 2i D vmax, Khi;j Dv/ is nontrivial, and Khk;l Dh/ is trivial
for all k and for all l j 3e 1. Since vmin ¤ hmin C e C 1, it follows that the
minimum i-grading where Kh.D n/ is nontrivial is n C C. We show, by induction
on n, that Khi;jCn D n/ Š Khi;j Dv/. This implies that the maximum i-grading
supporting Kh.D n/ is n C C.

If n D 1, then the long exact sequence of Theorem 2.4 looks like

0 Khi;jC1 D/ Khi;j Dv/ Khi e;j 3e 1 Dh/! :

By hypothesis, Khi e;j 3e 1 Dh/ is trivial, and hence Khi;jC1 D/ Š Khi;j Dv/.
Suppose, by way of induction, that Khi;jCn D n/ Š Khi;j Dv/. Resolve D nC1

at any crossing in
nC1

to obtain diagrams D0v and D0h Let enC1 D neg.D0h /
neg.D nC1/. Since neg.D0h/ D neg.Dh/ Cn and neg.D nC1/ D neg.D/, it follows
that enC1 D e Cn. Observe that D0v and D n are the same diagram, and D0h and Dh
are diagrams for the same link. Hence the long exact sequence of Theorem 2.4 looks
like

0 Khi;jCnC1 D nC1/ Khi;jCn D n/ Khi e n;j 3e 3n 1 Dh/! :
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Since j 3e 3n 1 j 3e 1, it follows that Khi e n;j 3e 3n 1 Dh/ is trivial.
Thus Khi;jCnC1 D nC1/ Š Khi;jCn D n/ Š Khi;j Dv/. Therefore Kh.D n/ is
OEn C C; n C C -thick.

The case where n < 0 is proved in a similar fashion using the second sequence

from Theorem 2.4.

3.2. The Turaev genus of twisted links. Each link diagram D has an associated
Turaev surface†D. Let be the plane graphassociated toD. Regard as embedded

inR2 sitting insideR3. Outside theneighborhoods of the vertices of is acollectionof
arcs in the plane. Replace each arc by a band that is perpendicular to the plane. In the
neighborhoodsof the vertices, place a saddleso that thecirclesobtained fromchoosing
a 0-resolution at each crossing lie above the plane and so that the circles obtained
from choosing a 1-resolution at each crossing lie below the plane see Figure 9). The

0

1

1

0

Figure 9. In a neighborhood of each crossing, insert a saddle so that the boundary above the
plane corresponds to the 0 resolution and the boundary below the plane corresponds to the 1
resolution.

resulting surface has a boundary of disjoint circles, with circles corresponding to
the all 0-resolution above the plane and circles corresponding to the all 1-resolution
below the plane. For each boundary circle, insert a disk to obtain a closed surface†D
known as the Turaev surface cf. [24]). The genus of this surface is denoted g.†D/,
and can be calculated by the formula

g.†D/ D
2 s0.D/ s1.D/ C c.D/

2
;

where c.D/ is the number of crossings in D and s0.D/ and s1.D/ are the number
of circles appearing in the all 0 and all 1 resolutions of D respectively. The Turaev
genus of a link is defined as

gT L/ D minfg.†D/ j D is a diagram for Lg:
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The Turaev genus of a link L is a measure of how far L is away from being
alternating. Specifically, Dasbach et. al. [10] prove the following proposition.

Proposition 3.7 Dasbach–Futer–Kalfagianni–Lin–Stoltzfus). A link has Turaev
genus 0 if and only if it is alternating.

Also, theTuraevgenus ofLgives abound on the Khovanov width ofL. Manturov
[17] and Champanerkar–Kofman–Stoltzfus [9] prove the following inequality.

Proposition 3.8 Manturov, Champanerkar–Kofman–Stoltzfus). Let L be a link.
Then

wKh.L/ 2 gT L/:

The following proposition is implicit in Champanerkar and Kofman [8], but not
explicitly proven.

Proposition 3.9. LetD be a link diagram with crossing x, and let be an alternating
rational tangle such that D is twisted by at x. Then g.†D / D g.†D/.

Proof. Suppose D C.a1; : : : ; am/, where sign.ai/ D sign.aj / for all i and j Let
a D P

m
iD1 jai j. The all 0-resolution of D is the same as the all 0-resolution of D

except D has an additional k circles. Similarly, the all 1-resolution of D is the
same as the all 1-resolution of D except D has an additional l circles. Since is
alternating, it follows that k Cl D a 1. Also, c.D / D c.D/ Ca 1. Therefore,

g.†D/ D
2 s0.D/ s1.D/ C c.D/

2

D
2 s0.D / C s1.D / a 1// C c.D / a 1/

2

D
2 s0.D / s1.D / C c.D /

2

D g.†D /:

In the case whereD is the closure of a braid, there is a particularly nice version of
Proposition 3.9. Let w D w. 1; 1

1 ; : : : ; n 1; 1
n 1 / 2 Bn be a word in the braid

group, and let D be the link diagram obtained from taking the closure of w. Suppose
w0 is word in Bn obtained by replacing i in w with k

i wherek > 0 or by replacing
1

i in w with k
i where k < 0. Let D0 be the link diagram obtained by taking the

braid closure of w0.

Corollary 3.10. Let D and D0 be link diagrams obtained from the closures of the
braids w and w0 respectively. Then g.†D/ D g.†D0 /.
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4. Applications to 3-braids

Closed 3-braids are a rich class of links in which computation of invariants are
possible. In [3], Birman and Menasco classify the link types of closed 3-braids. Several
papers Schreier [21], Murasugi [18], and Garside [11]) give algorithms to determine

when two 3-braids are conjugate in B3. In this paper, we will be interested in
Murasugi’s solution to the conjugacy problem.

4.1. Torus links. Let T.p; q/denote the p; q/ torus link. In this subsection, we will
determine the Turaev genus and Khovanov width of T .3; q/. Turner [25] and Stošić
[23] give formulas for the rational Khovanov homology of T .3; q/. The following
theorem specifies the support of Kh.T .3;q/IQ/ for q 3. If q 3, one can
deduce the support from this theorem and the fact that T .3; q/ is the mirror of
T .3;q/.

Theorem 4.1 Stošić, Turner). Suppose n 1.

1) The group Kh.T .3; 3n/IQ/ is OE4n 3;6n 1 -thick. Thus

wKh.T .3; 3n/IQ/ D n C 2:

2) The group Kh.T .3; 3n C 1/IQ/ is OE4n 1; 6n C 1 -thick. Thus

wKh.T .3; 3n C 1/IQ/ D n C 2:

3) The group Kh.T .3; 3n C 2/IQ/ is OE4n C 1;6n C 3 -thick. Thus

wKh.T .3; 3n C 2/IQ/ D n C 2:

The following lemma gives several normal forms for braids in B3 whose closures
are torus links. We will use these normal forms to compute the Turaev genus of a

.3; q/ torus link as well as the Turaev genus of many closed 3-braids.

Lemma 4.2. Let B3 be the braid group on three strands. Then for any n > 1, we
have

1 2/3 D
2
1 2

2
1 2;

1 2/4 D
2
1 2

3
1 2 1;

1 2/5 D
3
1 2

3
1 2

2
1 ;

1 2/3n
D

3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2;

1 2/3nC1 D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC2

1 2 1;
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and

1 2/3nC2 D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 1

3
1 2 nC1

1 :

Proof. Observe

1 2/3 D 1 2 1 2 1 2

D
2
1 2

2
1 2;

1 2/4 D
2
1 2

2
1 2 1 2

D 1
2
2 1

3
2 1;

and

1 2/5 D 1 2 1 2 1 2 1 2 1 2

D 1 2 1
2
2 1 2 1 2 1

D
2
1 2 1 2

2
1 2

2
1

D
3
1 2

3
1 2

2
1:

The braid relation directly implies the following two relations:

k
1 2 1 D 2 1

k
2 ;

and

1 2
k
1 D

k
2 1 2;

fork > 0. These relations will be used to prove the last three equations in the lemma.
For n > 1, we prove that

1 2/3n
D

3
1 2

4
1 2 :: : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2

by induction. Let n D 2. Then

1 2/6 D 1 2 1 2 1 2 1 2 1 2 1 2

D
2
1 2 1 2 1 2 1 2

2
1 2

D
3
1 2

3
1 2

3
1 2:

Suppose, by way of induction, that

1 2/3n
D

3
1 2

4
1 2 : : :

4
1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2:
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Then

1 2/3.nC1/ D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2 1 2 1 2 1 2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …n 2

3
1 2 nC1

1 2 1
2
2 1

2
2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC3

1 2
2
1

2
2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 1 2 1 nC2 2

2 1 2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 1 2

2
1 2 nC2

1 2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

4
1 2

3
1 2 nC2

1 2:

Hence, for all n > 1,

1 2/3n
D

3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2: 4.1)

Equation 4.1 implies

1 2/3nC1 D
3
1 2

4
1 2 :: : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC1

1 2 1 2

D
3
1 2

4
1 2 :: : 4

1 2

„ ƒ‚ …
n 2

3
1 2 nC2

1 2 1:

Furthermore,

1 2/3nC2 D
3
1 2

4
1 2 : : :

4
1 2

„ ƒ‚ …
n 2

3
1 2 nC2

1 2 1 1 2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

3
1 2 1 2 1 nC1

2 1 2

D
3
1 2

4
1 2 : : : 4

1 2

„ ƒ‚ …
n 2

1 2 nC13
1 2 1 2

2
1

D
3
1 2

4
1 2 : : :

4
1 2

„ ƒ‚ …
n 2

4
1 2

3
1 2 nC1

1 :

Abe and Kishimoto [1] have independently calculated the Turaev genus for the

.3; q/ torus links. We givediagrams in closed braid form that minimize Turaev genus,

while they have a different approach.
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Proposition 4.3. Suppose q > 0. The Turaev genus of T .3; q/ and T .3; q/ is

bq=3c.

Proof. Let D be the diagram obtained by taking the closure of the normal form for

1 2/q given in Lemma 4.2. Thus D is a diagram for T .3; q/ and is the closure of
a braid in the form

a1
1

b1
2 : : : as

1
bs
2

asC1
1 ;

wheres D bq=3cC1, both ai > 0and bi > 0for all1 i s, and asC1 0. LetD0
be the diagram obtained by taking the closure of the braid 1 2/s. Corollary 3.10

implies that g.†D/ D g.†D0/. Since c.D0/ D 2bq=3c C 2; s0.D0/ D 3 and

s1.D0/ D 1, it follows that g.†D0/ D bq=3c. Proposition 3.8 and Theorem 4.1
imply that the Turaev genus of T .3; q/ is greater than or equal to bq=3c. Therefore,

gT T.3; q// D bq=3c. The genera of the Turaev surfaces for a diagram and its mirror
are equal, and hence gT T .3; q// D bq=3c.

The next corollary follows directly fromTheorem 4.1, Proposition4.3, and Proposition

3.8.

Corollary 4.4. Suppose n 1.

1) The group Kh.T .3; 3n// is OE4n 3;6n 1 -thick and the group
Kh.T .3; 3n// is OE 6n C 1; 4n C 3 -thick. Therefore

wKh.T .3;3n// D wKh.T .3; 3n// D n C 2:

2) The group Kh.T .3; 3n C 1// is OE4n 1; 6n C 1 -thick and the group
Kh.T .3; 3n 1/ is OE 6n 1; 4n C 1 -thick. Therefore

wKh.T .3; 3n C 1// D wKh.T .3; 3n 1/ D n C 2:

3) The group Kh.T .3; 3n C 2// is OE4n C 1; 6n C 3 -thick and the group
Kh.T .3; 3n 2// is OE 6n 3; 4n 1 -thick. Therefore

wKh.T .3; 3n C 2// D wKh.T .3; 3n 2// D n C 2:

4.2. Khovanov width of 3-braids. In this subsection, we determine the Khovanov
width of closed 3-braids based upon Murasugi’s classification of closed 3-braids up

to conjugation. In [18], Murasugi proves the following:

Theorem 4.5 Murasugi). Let w 2 B3 be a braid on three strands, and let h D
1 2/3 be a full twist. Let n 2 Z. Then w is conjugate to exactly one of the

following:
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1
q1

2 :: : ps
1

qs
2 where pi qi and s are positive integers.1) hn p1

2) hn m
2 where m 2 Z.

1
1

2 ; where m 2 f 1; 2; 3g.3) hn m

Let L be a closed 3-braid. Theorem 4.5 says, in effect, that L is the closure of a

braid of the form hnA. For n ¤ 0, we say that L has cancellation if the braid word
for A contains a "

i for i D 1 or 2, where sign."/ ¤ sign.n/. Besides two infinite
family of braids, we prove that wKh.L/ D jnj C 2 if there is no cancellation and

wKh.L/ D jnj C 1 if there is cancellation.
The following several propositions establish the support of Kh.L/. The proofs

require the computation of Khovanov homology for a few specific links. We
represent the rational Khovanov homology as a Poincaré polynomial P.L/, a Laurent
polynomial in the variables q and t such that the coefficient of qi tj is the rank of
Khi;j LIQ/. One can find these computations in KnotInfo [6]. Additionally, if L
is a torus .3; q/ torus link, then Turner [25] computes P.L/. The only link used

in a proof below that is not a .3; q/ torus link is L.6; n; 1/ in Thistlethwaite’s link
table. The Khovanov homology of L.6; n; 1/ can be determined from Lee’s result
on the Khovanov homology of alternating links [15] and the long exact sequences of
Theorem 2.4.

Proposition 4.6. Suppose n > 0 and k 0. Let D be the closure of the braid

1 2/3n k
1

1
2 and let D0 be the closure of 1 2/ 3n

1
k

2 Then Kh.D/ is
OE4n C k 2; 6n C k 2 -thick and Kh.D0/ is OE 6n k C 2; 4n k C 2 -thick.

Proof. Observe that 1 2/3n k
1

1
2 D 1 2/3n 1 kC1

1 for n > 0. Let DC be the
closure of the braid 1 2/3n 1 1. Resolve the crossing given by the last 1 to obtain
two link diagrams Dv and Dh. Then Dv is a diagram for T .3; 3n 1/, and Dh is a

diagram for the unknot. By Corollary 4.4, Kh.Dv/ is OE4n 3;6n 3 -thick. Since

Dh is the unknot, Kh.Dh/ is OE 1;1 -thick. Recall that e D neg.Dh/ neg.DC/. The
diagram Dh has 4n 1 negative crossings, while the diagram DC has no negative
crossings. Thus e D 4n 1.

If n ¤ 2, then DC is width-preserving. If n D 2, then the Poincaré polynomial
of DC D T .3; 5/ is

P.T .3; 5// Dq
7
Cq

9
Cq

11 t2
Cq

15 t3
Cq

13t4
Cq

15t4
Cq

17 t5
Cq

17t6
Cq

19 t5
Cq

21t7:

Therefore, Kh0;9 Dv/ is nontrivial. Moreover, Khi;j Dh/ D 0 for all i if j
9 3e 1 D 13. Therefore, for n > 0, Proposition 3.6 implies that Kh.D/ is
OE4n C k 2; 6n C k 2 -thick. The proof for D0 is similar.

Proposition 4.7. Let D be the closure of the braid 1 2/3n a1
1

b1
2 :: : ak

1
bk

2

where each ai; bi > 0. Let a D P
k
iD1 ai and b D P

k
iD1

bi. If n > 0, then Kh.D/
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is OE4nCa b 1; 6nCa b 1 -thick. If n < 0, then Kh.D/ is OE6nCa b C1;
4n C a b C 1 -thick. Hence, if n ¤ 0, then wKh.D/ D jnj C 1.

Proof. Supposen > 0. Weproceedby inductionon b. Suppose b D 1. LetD1 be the
closure of the braid 1 2/3n a

1
1

2 Proposition 4.6 states that Kh.D1/ is supported
in the band OE4nCa 2; 6nCa 2 Since 2/31 is in the center of B3, it follows
that D1 represents the same link as D01 the closure of 2/3n a1 1 a a1

1 1 2 1

1
q1

2 : : :If Db is the closure of the braid 1 2/3n p1 pj
1

qj
2 where each

pi; qi > 0,
P

j
iD1 pi D a and

P
j
iD1

qi D b, then by way of induction, suppose

Kh.Db/ is OE4n C a b 1; 6n C a b 1 -thick. Let DbC1 be the closure

of the braid 1 2/3n p0

1
1

q0

1 p0

l
1

q0

2 : : : l where p0;q0 > 0, l
2 i i PiD1

p0i D a, and

iD1
q0i D b C 1.

Resolve DbC1 at the crossing corresponding to the last 1P
l

2 to obtain diagrams

Dv and Dh. The diagram DbC1 is the closure of a 3-braid consisting of n full twists,
followed by an alternating 3-braid. There is a simple closed curve in the plane whose
interior is the alternating 3-braid piece of DbC1. After resolving DbC1, the interior
of the simple closed curve contains pieces of Dv and Dh. Call the pieces of DbC1,
Dv, and Dh contained in the interior of this simple closed curve the alternating parts

of DbC1, Dv, and Dh respectively.
By the inductive hypothesis, Kh.Dv/ is OE4n C a b 1; 6n C a b 1 -thick.

Let m be the number of negative crossings in the alternating part of Dh, which has a

total of aCb crossings. Also, Dh is a non-alternating diagram for an alternating link
L. Hence, Theorem 2.5 implies that Kh.L/ is OE L/ 1; L/ C 1 -thick. One
can calculate the signature of an alternating link from any alternating diagram by a

result of Gordon and Litherland [12]. Color the regions of the alternating diagram in
a checkerboard fashion so that near each crossing it looks like Figure 10.

Figure 10. Color the alternating diagram in a checkerboard fashion such that a neighborhood
of each crossing appears as above.

Then the signature is given by

L/ D #.black regions/ # positive crossings/ 1:

There is anotherdiagram representingLthat has bC2 black regions and aCb m
positivecrossings see Figure 11). Therefore, L/ D m aC3,andhenceKh.D0h/ is
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OEa m 4;a m 2 -thick. Since there are4n negativecrossing in the full twistpartof
Dh and m negative crossings in the alternating part of Dh, it follows that neg.Dh/ D

p 0
d 0 0 0

4n C m. Let DC be the closure of the braid
p d

1 2/3n 1 1 : :: l lC1 2.1 2 1 2
Then neg.DC/ D b, and thus e D neg.Dh/ neg.DC/ D 4n C m b. For n > 0,

4n C a b 1 ¤ a m 4/ C .4n C m b/ 1

and

6n C a b 1 ¤ a m 2/ C .4n C m b/ 1:

Therefore, Theorem2.6 implies thatKh.DbC1/ is OE4nCa b 2; 6nCa b 2 -thick.
The proof for n < 0 is similar.

Figure 11. The closure of the braid 1 2/3 2
1

3
2

3
1

1
2 together with its resolution and an

alternating diagram of its resolution. There are 5 black regions and 2 negative crossings in the
alternating diagram.

Proposition 4.8. Let D be the closure of the braid 1 2/3n m
2

1) If n > 0 and m 0, then Kh.D/ is OE4n C m 3; 6n C m 1 -thick and

wKh.D/ D n C 2.

2) If n < 0 and m 0, then Kh.D/ is OE6n C m C 1;4n C m C 3 -thick and

wKh.D/ D n C 2.
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3) If n D 1 andm < 3, then Kh.D/ is OEm C 3; m C 7 -thick and wKh.D/ D 3:

4) If n D 1 and m > 3, then Kh.D/ is OEm 7; m 3 -thick and wKh.D/ D 3:

5) If both n D 1 and 3 m < 0 or both n > 1 and m < 0, then Kh.D/ is
OE4n C m 1; 6n C m 1 -thick and wKh.D/ D n C 1.

6) If both n D 1 and 0 < m 3 or both n < 1 and m > 0, then Kh.D/ is
OE6n C m C 1; 4n C m C 1 -thick and wKh.D/ D n C 1.

Proof. We prove statements 1), 3), and 5). Statements 2), 4), and 6) are proved
similarly.

1) Suppose n > 0 and m 0. Let DC be the closure of the braid 1 2/3n 2.

Resolve DC at the crossing corresponding to the last 2 to obtain diagrams Dv and

Dh. ThenDv is a diagram for T .3; 3n/. By Corollary4.4, Kh.Dv/ is OE4n 3; 6n 1 -

thick. Also, Dh is the two component unlink, and hence Kh.Dh/ is OE 2; 2 -thick.
The diagram Dh has 4n negative crossings, and the diagram DC has no negative
crossings. Thus e D 4n.

Observe that 4n 3 ¤ 2 C e C 1 and 6n 1 D 2 C e C 1 when n D 2. If
n D 2, then Dv is T .3; 6/, and

P.T .3; 6// D q9
C q 11

C q13t2
C q17t3

C q15t4
C q 17 t4

C q19t 5
C q

19 t6
C q21t 7

C q 21t8
C q23t 7

C 3q23t8
C 2q25 t8

:

Therefore Kh0;11 Dv/ is nontrivial. Also, Khi;j Dh/ D 0 for all i if j 11 3e

1 D 14. Hence, Theorem 3.6 implies that Kh.D/ is OE4nCm 3;6nCm 1 -thick.
3) Suppose n D 1 andm < 3. Let D be the closure of 1 2/3 5

2 Resolve

D at the crossing corresponding to the last 1
2 to obtain diagrams Dv and Dh.

The diagram Dh is a diagram for the two component unlink, and hence Kh.Dh/ is
OE 2; 2 -thick. The diagramDv is a diagram for the link L.6;n; 1/ in Thistlethwaite’s
link table see Figure 12).

Figure 12. A transformation of the closure of 1 2/3 4
2 into L.6;n; 1/.

The Poincaré polynomial for L.6; n;1/ is given by

P.L.6; n; 1// D 2q 1
C 3q C q3

C qt C q5 t2
C q7t4 C q9t4:
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Therefore Kh.Dv/ is OE 1; 3 -thick. Both of the diagrams Dh and DC have 4
negative crossings. Thus e D 0. Since 1 ¤ 2 C e 1 and 3 ¤ 2 C e 1,
Theorem 3.6 implies that Kh.D/ is OEm C 3; m C 7 -thick.

5) If n D 1 and 3 m < 0, then Baldwin [4] has shown that D is
quasialternating. Therefore, Theorem 2.5 implies that Kh.D/ is OE L/ 1; L/ C1 -

thick, where L is the link type of D. A straightforward calculation of signature gives
the desired result.

Supposen > 1andm < 0. Observe that 1 2/3n 1
2 D 1 2/3n 1 1. LetDC

be the closure of the braid 1 2/3n 1 1. Resolve DC at the crossing corresponding
to the last 1 to obtain diagrams Dv and Dh. Since Dv is a diagram for T .3;3n 1/,
it follows that Kh.Dv/ is OE4n 3; 6n 3 -thick. Since Dh is a diagram for the
unknot, it follows that Kh.Dh/ is OE 1;1 -thick. The diagram Dh has 4n 1 negative
crossings, and Dv has no negative crossings. Thus e D 4n 1.

If n D 2, then 6n 3 D 1 C e C 1, and the long exact sequence of Theorem 2.4
looks like

0 Kh0;10
DC/ Kh0;9 Dv/ Kh 7; 13

Dh/! :

Since Kh 7; 13 Dh/ D 0 and Kh0;9 Dv/ is nontrivial, it follows that Kh0;10
DC/

is nontrivial. Since 4n 3 ¤ 1 C e C 1 and 6n 3 ¤ 1 C e C 1 for n > 2,
Corollary 2.6 implies that Kh.DC/ is OE4n 2; 6n 2 -thick.

Let D be the closure of 1 2/3n 1
1 1

2 Resolve D at the crossing given
by the last 1

2 to obtain diagrams Dv and Dh. The diagram Dv is the closure of
the braid 1 2/3n 1 1, and hence Kh.Dv/ is OE4n 2; 6n 2 -thick. The link Dh
is a diagram for the two component unlink, and thus Kh.Dh/ is OE 2; 2 -thick. The
diagram Dh has 4n 1 negative crossings, and DC has no negative crossings. Thus
e D 4n 1.

For n > 1, we have 4n 2 ¤ 2 C e 1 and 6n 2 ¤ 2 C e 1. Therefore,
Theorem 3.6 implies that Kh.D/ is OE4n C m 1; 6n C m 1 -thick.

Proposition 4.9. Let D be the closure of the braid 1 2/3n m
1

1
2 where m 2

f 1; 2; 3g.
1) Ifn > 0, then Kh.D/ is OE4nCm 2; 6nCm 2 -thick, and wKh.D/ D nC1.
2) If n < 0, then Kh.D/ is OE6n C m;4n C m C 2 -thick, and wKh.D/ D n C 2.

Proof. 1) Suppose n > 0. If m D 1, then D is a diagram for T .3; 3n 1/, and

the result follows.
Let m D 2. Then, up to conjugation in B3, we have

1 2/3n 2
1

1
2 D 1 2/3n 1 1

1

D 2 1/3n 2
2

D 1 2/3n 2 1:
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If D0 is the closure of the braid 1 2/3n 2 1, then D and D0 represent the same

link. Resolve D0 at the crossing corresponding to the final 1 to obtain diagrams Dv
and Dh. Then Dv is a diagram for T .3; 3n 2/, and Dh is a diagram for the unknot.
Hence Kh.Dv/ is OE4n 5;6n 5 -thick, and Kh.Dh/ is OE 1;1 -thick. The diagram

Dh has 4n 3 negative crossings, and the diagram D0 has none. Thus e D 4n 3.
Observe that 4n 5 ¤ 1 C e C 1, and 6n 5 D 1 C e C 1 when n D 2. If

n D 2, the long exact sequence of Theorem 2.4 looks like

0 Kh0;8 D0/ Kh0;7 Dv/ Kh 5; 9

Dh/!
Since Kh 5; 9 Dh/ D 0 and Kh0;7 Lv/ is nontrivial, it follows that Kh0;8 L/ is
nontrivial. Hence Theorem 2.6 implies that Kh.D0/ is OE4n 4; 6n 4 -thick.

Let m D 3. Then, up to conjugation in B3, we have

1 2/3n 3
1

1
2 D 1 2/3n 1 2

1

D 2 1/3n 3
2 1 2

1
1

D 1 2/3n 2:

Hence D is a diagram for T .3;3n 2/, and the result follows.
2) Let n < 0. If m D 1, then D is a diagram for T .3; 3n 1/, and the result

follows.
Letm D 2. ThenD is the closure of 1 2/3n 1 1

1 ResolveD at the crossing
corresponding to the last 1

1 to obtain diagrams Dv and Dh. Then Dv is a diagram
for T .3;3n 1/, and hence Kh.Dv/ isOE6n 1; 4nC1 -thick. Also, Dh isa diagram for
the unknot,and hence Kh.Dh/ is OE 1;1 -thick. ThediagramDh has 2n 1 negative
crossings, and the diagram DC has 6n C 2 negative crossings. Thus e D 4n 1.

Observe that 4n C 1 ¤ 1 C e 1, and 6n 1 D 1 C e 1 if n D 1. If
n D 1, the long exact sequence of Theorem 2.4 looks like

Kh5;9 Dh/ Kh0; 7 Dv/ Kh0; 8 D/ 0:

Since Kh5;9 Dh/ D 0 and Kh0; 7 Dv/ is nontrivial, it follows that Kh0; 8 D/ is
nontrivial. Thus Kh.D/ is OE6n 2; 4n -thick.

Let m D 3. Then, up to conjugacy in B3, we have

1 2/3n 3
1

1
2 D 1 2/3n 1

1
1

2
2

1

D 1 2/3n 2:

In this case D is a diagram for T .3; 3n 2/, and the result follows.

We collect the results of Propositions 4.7, 4.8 and 4.9 into one theorem giving the
Khovanov width of closed 3-braids.
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Theorem 4.10. Let L be a closed 3-braid of the form hnA, as in Theorem 4.5, where

h D 1 2/3 and n ¤ 0. Then

wKh.L/ D
8
<̂

:̂

jnj C 2 if L has no cancellation or if L is the

closure of h 1 m
2 where m > 3,

jnj C 1 otherwise.

Remark 4.11. If n D 0, then L is a possibly split) alternating link, and thus wKh.L/
can be deduced from Theorem 2.5 and Proposition 2.1.

In [4], Baldwin classifies quasi-alternating closed 3-braids.

Proposition 4.12. Let L be a closed 3-braid and let h D 1 2/3.

If L is the closure of the braid hn a1
1

b2
2 : : : ak

1
bk

2 where each ai;bi > 0,
then L is quasi-alternating if and only if n 2 f 1; 0; 1g.

If L is the closure of the braid hn m
2 then L is quasi-alternating if and only if

either n D 1 and m 2 f 1; 2; 3g or n D 1 and m 2 f1; 2; 3g.

If L is the closure of the braid hn m
1

1
2 where m 2 f 1; 2; 3g, then L is

quasi-alternating if and only if n 2 f0; 1g.

Using the spectral sequence from reduced Khovanov homology of a link to the
Heegaard Floer homology of the branched double cover of that link, Baldwin [4]
shows the following corollary. This corollary is also a consequence of Theorem 4.10
and Proposition 4.12.

Corollary 4.13 Baldwin). Let L be a closed 3-braid. Then L is quasi-alternating
if and only if wKh.L/ D 1.

Remark 4.14. Shumakovitch has used his computer package KhoHo [22] to show
that the 946 and 10140 knots both closed 4-braids) have reduced Khovanov width 1,
but they are not quasi-alternating. One can use either of these knots to generate

infinite families of counterexamples to Corollary 4.13 for braids with index greater
than 3.

4.3. Turaev genus of closed 3-braids. Combining Lemma 4.2 with Corollary 3.10
gives a useful tool to compute the Turaev genus of closed 3-braids. By using the
lower bound given by Proposition 3.8, the Turaev genus of closed 3-braids can be
calculated up to a maximum additive error of at most 1.

1
b1

2 :: : akProposition 4.15. Let L be the link type closure of 1 2/3n a1
1

bk
2

where each ai;bi > 0 and n ¤ 0. Then jnj 1 gT L/ jnj.



700 A. Lowrance CMH

Proof. Suppose n > 0. We have

1
b1

2 : : :
ak
1

bk
2 D 1 2/3n 1 a1C11 2/3n a1

2 : : : ak
1

bkC1
1

b1
2 :

If bk > 1, let D be the closure of the braid 1 2/n. 1
1

2 /k and if bk D 1, let

D be the closure of the braid 1 2/n. 1
1

2 /k 1. By applying the normal form of
Lemma 4.2 to 1 2/3n 1 and then using Corollary 3.10, it follows that gT L/
gT D/. Astraightforwardcalculation shows thatgT D/ D n. SincewKh.L/ D nC1
and wKh.L/ 2 gT L/, we have n 1 gT L/. The case wheren < 0is similar.

Proposition 4.16. Let L be the link type of the closure of 1 2/3n m
2 where n ¤ 0.

1) If L has no cancellation, then gT L/ D jnj.
2) If L has cancellation and jnj > 1, then jnj 1 gT L/ jnj.
3) If either both n D 1 and 3 m < 0 or both n D 1 and 0 < m 3, then

gT L/ D 0.

4) If either both n D 1 andm < 3 or both n D 1 andm > 3. Then gT L/ D 1.

Proof. 1) If L has no cancellation, then either both n > 0 and m 0 or n < 0
and m 0. Corollary 3.10 implies that gT L/ gT T .3;3n// D jnj. Since

wKh.L/ D jnj C 2, it follows that gT L/ D jnj.
2) Suppose that L has cancellation and n > 1. Then m < 0 and

2 D 1 2/3n 1
1 mC1/1 2/3n m

2 :

If m < 1, let D be the closure of 1 2/n 1
1

2 and if m D 1, let D be the
closure 1 2/n. Lemma 4.2 and Corollary 3.10 imply that gT L/ g.†D/. A
straightforward calculation shows that g.†D/ D n. Since wKh.L/ D n C 1, it
follows that n 1 gT L/. The case where n < 1 and m > 0 is similar.

3) Suppose n D 1 and 3 m < 0. As noted in Baldwin’s paper [4], we have

1 2/3 m
2 D 1

2
2 1

2
2

m
2 :

By canceling the m
2 with the final 2

2 one obtains a diagram for L with 5 crossings

or less. Therefore L is alternating and gT L/ D 0. The case where n D 1 and

0 < m 3 is similar.
4) Suppose n D 1 and m < 3. Then L can be represented by the closure of

2 1 mC2
2 Let D be the closure of the braid 1 2 1

1
2 By Corollary 3.10, we1

2

have gT L/ g.†D/, and a straightforward calculation shows that g.†D/ D 1.
Since wKh.L/ D 3, it follows that gT L/ D 1. The case where n D 1 and m > 3
is similar.
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Proposition 4.17. Let L be the link type of the closure of 1 2/3n m
1

1
2 where

m 2 f 1; 2; 3g. If n > 0, then gT L/ D n 1 and if n < 0, then gT L/ D jnj.

Proof. Letn > 0. Using the forms in the proof of Proposition 4.9 and the reductions
of Lemma 4.2 and Corollary 3.10, one sees that gT L/ g.†D/ where D is the
closure of 1 2/n. A straightforward calculation shows that g.†D/ D n 1. Since

wKh.L/ D n C 1, it follows that gT L/ D n 1.
Let n < 0. Using the forms in the proof of Proposition 4.9 and the reductions

of Lemma 4.2 and Corollary 3.10, one sees that gT L/ g.†D0/ where D0 is the
closure of 1 2/nC1. A straightforward calculation shows that g.†D0/ D jnj. Since

wKh.L/ D jnj C 2, it follows that gT L/ D jnj.

The previous results of this section are summarized in the following corollary.

Corollary 4.18. Let L be a closed 3-braid. Then

0 gT L/ wKh.L/ 2/ 1:

Remark 4.19. Both the lower bound and upper bound of the above inequality are
achieved by closed 3-braids. For example, the links in Proposition 4.17 achieve the
lower bound while the links in Proposition 4.16 part 4) achieve the upper bound.
There are also closed 3-braids see Proposition 4.15) where it is unknown whether
the lower bound or upper bound is achieved.

5. Applications to odd Khovanov homology

In [19], Ozsváth, Rasmussen and Szabó introduced odd Khovanov homology, a knot
homology that is closely related to Khovanov homology. Odd Khovanov homology,
denoted Khodd.L/, is a bigraded Z-module whose graded Euler characteristic is the
unnormalized Jones polynomial.

5.1. A spanning tree model for odd Khovanov homology. Champanerkar and

Kofman [7] and independentlyWehrli [28] developed a spanning tree model for
Khovanov homology. In this subsection, we show that the similarities between Khovanov
homology and odd Khovanov homology imply that odd Khovanov homology also
has a spanning tree model.

LetD be a link diagramand let X be the set of crossings ofD. Suppose C.D/; @/

is the hypercube of resolutions complex from [13] and [5] that generates Khovanov
homology, and suppose Codd.D/;@odd/ is the hypercube of resolutions complex from
[19] that generates odd Khovanov homology. A vertex in the hypercube is a function

I W X f0; 1g. For each vertex I one obtainsa one-manifoldDI be smoothing each
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crossing of D according to I Both chain complexes are constructed by associating
certain Z-modules to each of the one-manifolds DI

Number the crossings of D from 1 to jXj arbitrarily. One can obtain the vertices
of the hypercube as the leaves of a binary tree. The root of this tree is the diagram
D. The children of a vertex v at level i are obtained by smoothing the i th crossing
of v into either a 0-resolution or a 1-resolution. See Figure 13.

1 2 3

Figure 13. Binary tree whose leaves are the vertices of the hypercube.

Modify the binary tree as follows. If either of the children of a vertex v is
disconnected, then the vertex v becomes a leaf and all its descendants are deleted.
See Figure 14. The leaves of the modified binary trees are twisted unknots, i.e. they
are unknots that can be trivialized using only Reidemeister I moves. Also, the leaves

are inone-to-one correspondencewith thespanning trees of either checkerboard graph
associated toD. The details of this correspondence are described in Champarnerkar–
Kofman [7] and Wehrli [28]. Denote the set of spanning trees by T.D/, and the
diagram associated to a tree T 2 T.D/ by DT

Let U denote diagram of the unknot with no crossings. The Khovanov complex
of the disjoint union of k copies of U is given by

C.U k/ D A k;

where A is the bigraded module defined by A0; 1 D A0;1 D Z and Ai;j D 0 for
i; j / ¤ .0; 1/. For any bigraded object M, define grading shifts OEm and fng by
MOEn fng/i;j WD Mi m:j n.

In [28], Wehrli gives the following spanning tree model for Khovanov homology.
Champanerkar and Kofman prove an analogous result in [7].
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1 2 3

Figure 14. The modified binary tree whose leaves are in correspondence to spanning trees of
the checkerboard graph of D.

Proposition 5.1 Wehrli). Let D be a connected link diagram. Then there is a

decomposition C.D/ D A° B, where B is contractible and A as a module is given
by

A D M
T2T.D/

AOEf D; DT / fg.D;DT /g;

for functions f and g depending on D and DT

Let D, D0 and D1 be as in Figure 2. The spanning tree model for Khovanov
homology is a consequence of

1) the bigraded Z-module structure of C.D/,
2) the fact that C.D/ is isomorphic to the mapping cone of w W C.D0/ C.D1/,

for some map w, and

3) the structure of the complex under Reidemeister I moves, which is specified by

C. / Š C. /f 1g° B1; C. / Š C. /OE1 f2g°B2;

for contractible complexes B1 and B2.

As bigraded Z-modules C.D/ and Codd.D/ are isomorphic. Furthermore, from
the proof of invariance under Reidemeister I moves in [19], one can see that 2) and

3) also hold for odd Khovanov homology. Therefore odd Khovanov homology also
has a spanning tree model.

Proposition 5.2. Let D be a connected link diagram. Then there is a decomposition

Codd.D/ D A ° B, where B is contractible and A as a module is given by

A D M
T2T.D/

AOEf D; DT / fg.D;DT /g;

for functions f and g, which are the same as in Proposition 5.1.
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Proposition 3.8 is a consequence of the bigraded Z-module structure of the spanning

tree complex for Khovanov homology. Since odd Khovanov homology has a

spanning tree complex with the same bigraded Z-module structure, there is an analogous

Turaev genus bound on the odd Khovanov width of a link L, denoted wKhodd L/.

Proposition 5.3. Let L be a link. Then

wKhodd L/ 2 gT L/:

5.2. The odd Khovanov width of closed 3-braids. There is a close relationship
between Khovanov homology and odd Khovanov homology. Ozsváth, Rasmussen,

and Szabó [19] have shown that

Kh.LIZ2/ Š Khodd.LIZ2/;
and that odd Khovanov homology satisfies long exact sequences identical to the
sequences in Theorem 2.4. These similarities, along with the Turaev genus bound
given in Proposition 5.3, imply the following result.

Theorem 5.4. Let L be a closed 3-braid. Then Kh.L/ is OEimin; imax -thick if and only
if Khodd.L/ is OEimin; imax -thick.

Proof. LetL0 be a link that is thebase case foroneof the inductions in Propositions 4.6
through 4.9. Then L0 is either a .3; q/ torus link or the link L.6; n; 1/, and

wKh.L0IQ/ D wKhodd L0/ D gT L0/ C 2: 5.1)

Suppose Khi L0IQ/ is nontrivial. Then Khi L0IZ2/ is also nontrivial. Since

odd.L0IZ2/ is nontrivial. Therefore,Kh.LIZ2/ Š Khodd.LIZ2/, it follows that Khi
odd.L0/ is nontrivial. Then Equation 5.1 impliesKhi

gT L0/ C 2 D wKh.L0IQ/ wKhodd L0/ gT L0/ C 2:

Thus Kh.L0/ is OEi0min; i0max -thick if and only if Kh0.L0/ is OEi0min; i0max -thick.
The proofs of Propositions 4.6 through 4.9 rely only on the Khovanov homology

of the base case and the long exact sequences of Theorem 2.4. Therefore, Propositions

4.6 through 4.9 hold for odd Khovanov homology, and this implies the result.

Corollary 5.5. Let L be a closed 3-braid. Then

wKh.L/ D wKhodd L/:

Note that Corollary 5.5 is not true for the closure of n-braids where n > 3. The
examples from Remark 4.14 have wKhodd L/ > 2. These examples can be used to
generate infinite families of examples of closed n-braids where odd Khovanov width
and Khovanov width are different for n > 3.
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