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The Khovanov width of twisted links and closed 3-braids

Adam Lowrance

Abstract. Khovanov homology is a bigraded Z-module that categorifies the Jones polynomial.
The support of Khovanov homology lies on a finite number of slope two lines with respect
to the bigrading. The Khovanov width is essentially the largest horizontal distance between
two such lines. We show that it is possible to generate infinite families of links with the same

Khovanov width from link diagrams satisfying certain conditions. Consequently, we compute
the Khovanov width for all closed 3-braids.

Mathematics Subject Classification (2010). 57M25, 57TM27.

Keywords. Khovanov homology, homological width, Turaev genus, Turaev surface, quasi-
alternating.

1. Introduction

Let L C S3be an oriented link. The Khovanov homology of L, denoted Kh(L), was
introduced by Mikhail Khovanov in [13], and is a bigraded Z-module with homolog-
ical grading ¢ and polynomial (or Jones) grading j so that Kh(L) = @i,j Kh?/(L).
The graded Euler characteristic of Kh(L) is the unnormalized Jones polynomial:

(¢ + ¢ HVilg®) = Y (~1)rank Kh™/ (L)g/.
)

The support of Kh(l.) lies on a finite number of slope 2 lines with respect to the
bigrading. Therefore, it is convenient to define the §-grading by § = j — 2§ so that
Kh(L) = & Kha(L). Also, either all the é-gradings of Kh(L) are odd, or they all
are even. Let dpip be the minimum §-grading where Kh(L) is nontrivial and dpax
be the maximum §-grading where Kh(L) is nontrivial. Then Kh(L) is said to be
[Omin, Ormax| -thick, and the Khovanov width of L is defined as

1
win(L) = 5 (Grax — i) + 1.

In this paper, we show the following:
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« If acrossing in a link diagram is width-preserving (defined in Section 3), then
it can be replaced with an alternating rational tangle and the Khovanov width
does not change (Theorem 3.4).

* We compute the Khovanov width of all closed 3-braids (Theorem 4.10).

* We determine the Turaev genus of all closed 3-braids, up to an additive error of
at most 1.

* We show that for closed 3-braids the Khovanov width and odd Khovanov width
are equal (Corollary 5.5).

The paper is organized as follows. In Section 2, we review some properties of
Khovanov homology. In Section 3, we describe the behavior of Khovanov width when
a crossing is replaced by an alternating rational tangle. In Section 4, the Khovanov
width of any closed 3-braid is computed. Finally, in Section 5 we show that Khovanov
width and odd Khovanov width for closed 3-braids are equal.

Acknowledgements. I wish to thank Scott Baldridge, Oliver Dasbach, Mikhail Kho-
vanov, and Peter Ozsvéth for many helpful conversations. A portion of the work for
this article was done while the author was visiting Columbia University in the Fall of
2008. He thanks the department of mathematics for their hospitality.

2. Khovanov homology background

In this section, we give background material on Khovanov homology. If D is a
diagram for L, then denote the Khovanov homology of L by either Kh(L) or Kh(D).
Similarly, let wgn(L) and wgn (D) equivalently denote the Khovanov width of L. If
[ is a field, then let Kh(ZL;[F) denote Khovanov homology with coefficients in the
field [, and wgn (L ; ) denote the width of Kh(/L;[F).

Let L., and L, be oriented links, and let C be a component of L;. Denote by [
the linking number of C with its complement I.; — C. Let L] be the link L; with
the orientation of C reversed. Denote the mirror image of I.; by L and the disjoint
unionof Iy and L., by Ly U L;. The following proposition was proved by Khovanov
in [13].

Proposition 2.1 (Khovanov). Fori, j € 7 there are isomorphisms
Khi (L)) = Khi+2£’j+2l(L1),
Kh™/ (L1; @) = Kh /(L1 Q)
Tor(Kh™/ (L)) = Tor(Kh' ™7/ (L)),
and
Ki'™/ (L1 U L2) = @ ez (KW (L1) © Kh' 5 7"(L))
By ez Tor] (KRF" (L), KRTHFLI7(Ly)).



Vol. 86 (2011) The Khovanov width of twisted links and closed 3-braids 677

Let D be a diagram for L; and D' be the diagram D with the component C
reversed. Denote the number of negative crossings in D by neg( D), where the sign
of a crossing is as in Figure 1. Sets = neg(D) — neg(D’). Then Proposition 2.1
implies

Kh®(D’) = Kh® (D),
and

Kh®(L1; @) = Kh *(Ly; Q).

In [14], Khovanov introduced the reduced Khovanov homology. For a knot K,
this theory is denoted fh(K ). For links of more than one component, the reduced
Khovanov homology depends on a choice of a marked component, and hence is
denoted ﬁl(L, C), where C is the marked component of L. Similar to the unreduced
version, KT](L C) is a bigraded Z- module with homological grading i and Jones

grading J so that Kh(L Cl— @ Kh" (L C). The graded Euler characteristic
of Kh(L, C) is the ordinary Jones polynomlal.

V(g = 3 (~1yrank Kh'™/ (L, O’
L

As with Khovanov homology, if Smin is the minimum - -grading where Kh(L C)is
nontrivial and max is the maximum §-grading where Kh(L C) is nontrivial, then we
say that Kh(L C)is [Smm, ImX] thick. The reduced Khovanov width is defined as
wg (L) = 3 L (Smax — Omin) + 1.

Asaeda and Przytycki [2] show that there is a long exact sequence relating reduced
and unreduced Khovanov homology.

Theorem 2.2 (Asacda—Przytycki). There is a long exact sequence relating the re-
duced and unreduced versions of Khovanov homology:

Ij—‘,—l i+1,7+1

(L,C) — KhiJ (L) - Kh"” (L, C) = Kh (L,C) —>

Corollary 2.3. Let L be alink withmarked component C. Then Kh(L) is [min, Smax]-
thickifand only if Kh(L, C) is [Spin +1, S max —1]-thick. Hence win(L)—1 = wg(L).

Proof. 'The long exact sequence of Theorem 2.2 can be rewritten with respect to the
o-grading as

. —~— §— —~ §—
oKL T, 0 > K@) > KR (L, 0) > Kh (L, C) —

~ §
Suppose Kh(L) is [6min» dmax]-thick. Therefore Kh (L, C) = 0foré > dmax + 1 and
for é << 6y — 1.
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"‘“"amax 1 i A
Suppose Kh - (L, C) is nontrivial. Then for some ¢ and j where j — 2i =

Smax + 1, the group Kh™’ (L, C)is nontrivial. By repeatedly applying the long exact
k,j+2k
sequence of Theorem 2. 2 one sees that KhHr A (L, C)is nontrivial forall k > 0.

max Smax .
However, the group Kh H(L C)is ﬁmtely generated. Hence Kh i (L.C)is

trivial. Similarly, one can show that Kh - (L () is also trivial.

The long exact sequence also implies that Kh nex 1(L C) and Kh mmH(L, C)
are nontrivial. Thus Kh(L C)i8 [6min + 1, dmax — 1]-thick.
Suppose Kh(L C)is [6min + 1, 0max — 1]-thick. Similar to the case above, if

either Kho=in(L) or Khi»= (L) are trivial, then one can show that Kh ek (L,C)or

Smax
Kh 1(L, C) respectively are infinitely generated. Hence Kh(l) iS [0min, Smax]-

thick. ]

Corollary 2.3 implies that if C and C’ are two components of L, then Kh(L C)
i8 [Smin, Omax]-thick if and only if Kh(L C')is [Smm, dmax|-thick. Henece, the notation
Wegy, (L) is unambiguous.

A X OC X

Figure 1. The links in an oriented resolution. D | is a positive crossing, and D is a negative
crossing.

Let D4, D_, Dy and Dy, be planar diagrams of links that agree outside aneighbor-
hood of a distinguished crossing x as in Figure 1. Define e = neg(Dy) — neg(D ).
There are long exact sequences relating the Khovanov homology of each of these
links. Khovanov [13] implicitly describes these sequences, and Viro [26] explic-
itly states both sequences. The graded versions are taken from Rasmussen [20] and
Manolescu—-Ozsvath [16].

Theorem 2.4 (Khovanov). There are long exact sequences

o —KhimebiT3em2(py s Kh (D) — Kh'~1(D,)

— Kh'™/ ¥ 2(Dy — .-
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and

<o« — Kh"H(Dy) — Kh™/(D_) — Kh' 1/ 73¢42( D)

— Kt Y(D)y — ..

Whenonlythe 6 = j—2i gradingis considered, the long exact sequences become
5 L . W e e
oo —> Kh79(Dy) —— Kh®(Dy) — Kh° 7 (Dy) ——= Kh* ™ 74(Dy) —> -~
and

fi g8 pé—e
S Kh5+1(DU) o M th?(D_) b ¥ th?fe(Dk) e I Khﬁfl(Dv) N

There are versions of these long exact sequences where Khovanov homology is re-
placed with reduced Khovanov homology. In the reduced sequences, the gradings
are identical to the unreduced sequences.

Let D, Dg and D; be link diagrams differing only in a neighborhood of a crossing
x of D (as in Figure 2) with associated link types L, Lo and L respectively. The set
Q of quasi-alternating links is the smallest set of links such that

« The unknot is in Q.

» If the link I has a diagram with a crossing x such that
(1) both of the links, Lo and L are in Q,
(2) det(L) = det(Lg) + det(L,),

then L is in Q. We will say that D is quasi-alternating at x.

XX

0 Dy
Figure 2. The links in an unoriented resolution.

In[15], Lee showed that alternating links have reduced Khovanov width 1. The set
of alternating links is a proper subset of the set of quasi-alternating links. Manolescu
and Ozsvath [16] use the long exact sequences for reduced Khovanov homology to
show that the same result holds for quasi-alternating links.

Theorem 2.5 (Manolescu—Ozsvath). Let L be a quasi-aiternating link. Then Iﬁl(L)

is supported entirely in §-grading —o (L), where o (L) denotes the signature of the
link.
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Theorem 2.5 together with Corollary 2.3 imply that if L is quasi-alternating, then
Kh(L)is [-o(L) —1,—c(L) + 1]-thick and wg,(L) = 2.

Theorem 2.4 directly implies the following corollary:

Corollary 2.6. Let D, D_, D, and Dj, be as in Figure 1. Suppose Kh(D,) is
[Vmin, Umax]-thick and Kh(D}) is [Bmin, Amax]-thick. Then Kh(Dy) is [61 .81 -
thick, and Kh(D_) is [8_;., 6. |-thick , where

mjn{vmin + 1: hmin + 8} iifvmin 75 hmin ol 1:

51"1;11 = 3 Vmin + 1 if Vmin = hmin + e+ 1 and hi’“‘h is surjective,
Vmin — 1 if Vpin = Bpin + e+ 1 and hi‘“’h is not surjective,

max{vmax 3 1:hmax T e} iI.fvmin 75 hmax +e+ 1,

S = § Wi 1 if Vmax = hmax + € + 1 and hi™ is injective,
N | if Vmax = Pmax + 2+ 1 and hljrmx is not injective,
l'l']ill{ Umin — 15 hmin + 8} 'if Vmin # hmin + @i 1;

8 min = 3 Umin + 1 if Vmin = Amin + € — 1 and h¥= {5 surjective,
Umin — 1 if Vmin = hmin + € — 1 and hV™ is not surjective,

and
max{vmax_lshmax+e} JIfvmax 7’£ hmax+e_1,

Briee =2 BB — if Vmax = Mmax + € — 1 and hE™ is injective,

VUmax + 1 if Vmax = hmax + € — 1 and b is not injective.

3. Twisted links

3.1. Khovanov width of twistedlinks. l.ett = C(ay,..., a,)bearational tangle,
and let D be a link diagram with a distinguished crossing x. Suppose that near the
crossing x, the arcs of D forming x are line segments in the plane whose slopes are
either 1 or —1. Define D twisted at x by t to be the diagram obtained by removing
x and inserting 7 such that a neighborhood of the rightmost crossing or topmost
crossing of 7 in D; looks exactly like a neighborhood of x in D. The resulting link
diagram is denoted D,. See Figure 3.

The main result of this section, Theorem 3.4, is a generalization of a proposition
proved by Champanerkar and Kofman in [&].

Proposition 3.1 (Champanerkar—Kofman). Let D be a link diagram with crossing
X, and let T be an alternating rational tangle such that D is twisted at x by ©. If D
is quasi-alternating at x, then Dy is quasi-alternating at each crossing of t.
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D C(2,3,4) C(—4)

)
)

D 3a Degy

Figure 3. The diagram D twisted by C(2,3, 4) and C(—4).

Let D be a diagram with crossing x. Resolve D at the crossing x to obtain dia-
grams Dy and Djy,. Suppose Kh(Dy) 18 [Vmin, Vmax]-thick and Kh(Dp,) 18 [Amin, #max]-
thick. As before, set e = neg(Dy) —neg(D ), where D is the same diagram as D
except if the crossing x in D is negative, then it is changed to positive in D . The
diagram D is said to be width-preserving at x if either of the following conditions
hold.

« If x is a positive crossing in D, then both Yy 7 Amin + € + 1 and vy £
hoax +2 + 1.

« If x is a negative crossing in D, then both Vmin & Amin + € — 1 and Vpax #
Apax +€ — 1.

Proposition 3.2. Let D be a link diagram with crossing x. If D is quasi-alternating
at x, then D is width-preserving at X.

Froof. Suppose D is quasi-alternating at x. Let D, and Dj, be the two resolutions
of D at x. Since D is quasi-alternating at x, it follows that I, and D are also
quasi-alternating. Theorem 2.5 implies that fh(D), fh(Dv) and @(Dh) are each
supported entirely in one §-grading. Suppose fh(Dv) is supported in é-grading
v and fh(Dh) is supported in é-grading 4. Corollary 2.2 implies that Kh(D,) is
[v—1,v 4 1]-thick and Kh(Dp) is [A — 1, A + 1]-thick. Lete = neg(Dy) —neg(D )
where D is the same diagram as D except if x is negative in D, then it is changed
to positive in D . Since det(D) = det(D,) + det(Dy), it follows that the nontrivial
parts of Iﬁl(D), fh(Dv) and fh(Dh) lie in three consecutive spots in the long exact
sequence of Theorem 2.4 such that fh(DU) and fh(Dk) are not adjacent. Therefore,
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if x is positive, then v = # + e — 1, and if x is negative, then v = s + ¢ + 1. The
result follows directly. ]

Lemma 3.3. Let D be an oriented link diagram with crossing x, and let T be an
alternating rational tangle with exactly two crossings xo and x1. Let Dy be D
twisted at x by ©. If D is width-preserving at x, then for any orientation, Dy is
width-preserving at xo and x1. Moreover, wgn(D) = wgn(D:).

Proof. There are two ways to twist D at ¢, either horizontally or vertically. Let
71 = C(2) and 7, = C(-2). For each case, it is only necessary to prove the result
for one choice of orientations on D and D. Proposition 2.1 implies the result for all
other choices of orientations on D and D,.

Let D, and Dy, be the diagrams obtained by resolving D at x, and let D! and D}'Z
be the diagrams obtained by resolving D, at the crossing x; for i = 0, 1. Suppose
Kh(D,) and Kh(D},) are [Vmin, Vmax]-thick and [Amin, #max]-thick respectively. Let
e = neg(Dyp) —neg( D4 ) where D is the same diagram as D except if the crossing
X 1s negative in D, then it is changed to positive in D, . Similarly sete; = neg(Dﬁl) s
neg(Dﬂr) where Di is the same diagram as D except if the crossing x; is negative
in Dy, then it is changed to positive in D .

Suppose x is positive. Choose the orientation on D, given in Figure 4. Also,
Figure 4 shows the resolutions Dg and Dg.

X xR LS

Dc D

Figure 4. The resolutions for x positive and T = C(2).

Observe that x; is positive in Dy, fori = 0, 1. Corollary 2.6 implies that Kh(D ) is
[, B]-thick where @ = min{vp,+1, App+etand f = max{vma+1. Amax+€}. The
diagrams D,f), and D represent the same link, and the diagrams Dy and D;; represent
the same link. Therefore, Kh(D}) is [, 8]-thick and Kh(D}) is [Ayin, Amax]-thick.
The diagram D is the same as the diagram D, except D} has one additional negative
Reidemeister [ twist, and hence neg(D}) = neg(Dy) + 1. Since the diagrams D and
D} are identical, neg(D) — neg(D;). Thuse; = e+ 1. Since D is width-preserving,
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it follows that Vin 7 Amin + € + 1 and Vpax 7 Amax + € + 1. Therefore,
Amin +€ 4+ 1 =hmin+e+2 # a,

and

Hence D, is width-preserving at x;. Also, Corollary 2.6 implies that Kh(Dy, ) is
¢ + 1, 8 + 1]-thick, and thus wgn(D) = wrn(D )

'The possible orientations of D, depend on whether the strands forming the cross-
ing x are in the same component of D or different components of D. Suppose they
are in the same component. Choose the orientation on Dy, given in Figure 5. Also,
Figure 5 shows the resolutions Dy and D).

A0 X X pC X

Dezy D}

Figure 5. The resolutions for x positive, T = C(—2), and with the depicted strands of D in the
same component.

Observe that x; is positive in Dy, fori = 0, 1. With suitably chosen orientations,
we have _
neg(Dy) = neg(D) = neg(D}), (3.1)

and _
neg( D] ) = neg(Dy). (3.2)

The diagram D! is the same as D, except D! has one component reversed and
an additional positive Reidemeister I twist. Therefore, Proposition 2.1 implies that
Kh(D!) is [Uyin — €, Vmax — €]-thick. Also, equations 3.1 and 3.2 imply that e; =
—e. The diagram D}'; is identical to D. Therefore, Kh(D}l) is [or, B]-thick where
o = Min{Vpin + 1, Amin + €} and B = max{vmax + 1, Amax + €} Since D is width-
preserving at x, we have Vmin 7 Amin + € + 1 and Vmax 7 Amax + € + 1. Therefore,

a+e;+1 =min{vmin+ 1, Amin+e}—e+1 = min{vmin—€+2, Amin+1} 7 Umin—e,
and
Btei-tl = max{vper+ 1, Apaxte}—e41 = max{upm—e+2pn +1} & Vipn—e-

Thus D, is width-preserving at x;. Moreover, Corollary 2.6 implies that Kh(D, ) is
¢ — e, 8 — e]-thick, and hence wg, (D) = wgn( Dy, ). Suppose the strands forming
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the crossing x are in different components of the link. Choose the orientation on Dy,
given in Figure 6. Also, Figure 6 shows the resolutions Dg and Dg. Observe that x;

is a negative crossing in Dy, fori = 0, 1. Orient D;; so that it represents the same
oriented link as D,. With a suitably chosen orientation on Dy, we have

neg(D) = neg(D,) = neg(D}), (3.3)

and
neg(Dy) +1 = neg(Di) = neg(Df},). (3.4)

Equations 3.3 and 3.4 imply thate; = —e—1. The diagram D! isthe same as D except

DI G

Dcy DO

Figure 6. The resolutions for x positive, T = C(—2), and with the depicted strands of D in
different components.

D;':, has one component reversed. Equations 3.3 and 3.4 along with Proposition 2.1
imply that Kh(D? ) is [@ —e —1, 8 —e — 1]-thick where @ = min{vmy + 1, Arnn + €}
and f = max{vmax + 1, hmax + e}. Since D’“' and Dy represent the same oriented
link, it follows that Kh(D ) 18 [V Dol thlck Since D is width-preserving at x,
we have Umin # Amin + € + 1 and Vpmax # Amax + € + 1. Therefore,

¢ —e—1=min{Vmin—€ Amin — 1} 7 Vmin —€ —2 = Umin + & — 1,
and
B — | = matilam —£, Bame— L} & Puan— 8 —2 = U b€ — 1.

Thus D, is width-preserving at x;. Moreover, Corollary 2.6 implies that Kh(D,)
is [@ —e — 1, B — e — 1]-thick, and hence wgn(D) = wxn( Dz, ),
The case where x is a negative crossing in [} is proved similarly. ]

Theorem 3.4. Let D be a link diagram with crossing x, T be an alternating rational
tangle, and Dy be the diagram D twisted at x by ©. If D is width-preserving at x,
then wgn(D) = wgn(Dz).

Proof. Lett = C(ay,...,a;,). Since tis alternating, eithera; > Oforalli ora; < 0
for all i. Suppose a; > Ofor alli. Beginning with the diagram I and the crossing x,
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one can alternate twisting the diagram by C(2) and C(—2). Replacing the appropriate
crossings m times results in the diagram D, where t' = C(2,1,...,1). Lemma?3.3
implies that each crossing in D, is width-preserving, and wgn(D) = wgn( D).
Replace crossings corresponding to the m-th termin £’ by C(2) until the resulting
diagramis obtained by twisting D by C(2,1,...,1,a,,) at x. Next, replace crossings
corresponding to the (m — 1)-stterm in C(2,1,...,1, @) with C(—2) until the re-
sulting diagram is obtained by twisting D by C(2.1,...,1,d,,_1, &) at x. Continue
replacing crossings in the tangle by either C(2) or C(—2) until the resulting diagram
is obtained by twisting D by C(a,,. .., a,,) at x. Since at each step, the only tangles
used are C(2) and C(—2), Lemma 3.3 implies that wgn (D) = wgn(D). The case
where each a; < 0 is proved similarly. ]

\‘ ce) \{/\/ ce=2) éﬁ\/ ce) @/ c) T /
o < 0N 22 N a5 e A
cely ce) crly CeaLly C2.1.2)
@, xf/) | e QK / C(—z)\@k\%/ c(=2) \@k\b\/
Dogh = Bhoool =phoocd == oo,
C2,13) C14) C22.4) CR34)

Figure 7. The inductive process of Theorem 3.4. At each step, the circled crossing is replaced
with either C(2) or C(—2).

Remark 3.5. Watson [27] proves that wgn (D¢ ) is bounded by wgn( Dy ) and wgn( Dy, ).
By assuming that D is width-preserving at x, we are able to strengthen the result and
calculate wxn(D+).

Suppose D is an oriented diagram with crossing x. If D is twisted at x by
7, = C(n) as in Figure &, then the assumptions of Theorem 3.4 can be relaxed and
a slightly stronger result holds. The following technical result is needed to compute
the Khovanov width of closed 3-braids.

Proposition 3.6. Suppose D is an oriented diagram with crossing x. Suppose D is
twisted at x by T, = C(n) as in Figure 8. Let Dy and Dy, be the two resolutions of
D ar x. Suppose Kh(Dy) is [Vmin, Vmax|-thick and Kh(Dyp,) is [Amin, Amax]-thick. Let
0r = Min{Vpin = 1, Apin + €} and B = max{vpa + 1, Anax + €1
(1) Let n > 0. Suppose that Vmin 7 hmin + € + 1. If Vmax = Amax + € + 1, then
suppose that there exist integers i and J such that j —2i = Ve, K™ (D)
is nontrivial, and th’l(Dh) is trivial for all k wheneverl < j —3e — 1. Then
Kh(D.,)is [n +ay.n + B]-thick
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(2) Let n < 0. Suppose that Vmax 7 hmax + € — L. If Vmin = hmin + € — 1, then
suppose that there exist integers i and j such that j — 2i = Vi, Kh'/ (Dy) is
nontrivial, and th’l(Dk) is trivial for all k whenever { > j — 3e — 1. Then
Kh(D:,) is [n + a_,n + B_|-thick.

KA XA

Figure 8. For n > 0, twist D4 by C(n) and twist D_ by C(—n). Then choose the above
orientations for Dc g,y and Doy,

Proof. Let n > 0. Since D is twisted at x by 7, as in Figure 8, it follows that x is
a positive crossing. If both Viyin # Amin + € + 1 and Vyax # Amax + € + 1, then D
is width-preserving at x. Tt follows from the proof of Theorem 3.4 that Kh(Dy,) is
[n +a.,n+ f,]-thick

Suppose Vmin 7 Amin + € + 1 and Vpax = Amax + € + 1. Thus there exist integers
i and j such that j — 2i = v, Kh™/(D,) is nontrivial, and Kh*¥(D},) is trivial
for all k and for all ! < j — 3e — 1. Since Vyin & Amin + € + 1, it follows that the
minimum §-grading where Kh( D, ) is nontrivial is # + a4. We show, by induction
on n, that Kh’/** (D, ) =~ Kh'/(D,). This implies that the maximum §-grading
supporting Kh(Dy, ) is n + f4.

If n = 1, then the long exact sequence of Theorem 2.4 looks like

0 — Kh"/*1(D) — Kh™/ (Dy) — Kh' ™/ 77 1(Dp) —> -

By hypothesis, Kh' =/ =3¢=1(D}) is trivial, and hence Kh'/ T1(D) == Kh**/(D,).
Suppose, by way of induction, that Kh'/ **(D,,) = Kh™/ (D,). Resolve Do
at any crossing in 7,41 to obtain diagrams D, and D;. Let e, 1 = neg(D}) —
neg( Dy, ;). Since neg(D;) = neg(Dy) + » and neg(D-, ;) = neg(D), it follows
that e, 11 = e + n. Observe that D] and D, are the same diagram, and D} and Dy,

are diagrams for the same link. Hence the long exact sequence of Theorem 2.4 looks
like

0 KW (D, ) — Kb H7(D,,) KW e mi3e 171D,y o

Tl
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Since j —3e—3n—1 < j —3e—1, it follows that Kh*~*~"/ =3¢~ 1( D} is trivial.
Thus Kh’”H”Jrl(Dth) ~ Kh*/ (D, ) = Kh*/(D,). Therefore Kh(D, ) is
[ + a8+ By]-thick,

The case where n < 0 is proved in a similar fashion using the second sequence
from Theorem 2.4. ]

3.2. The Turaev genus of twisted links. Each link diagram D has an associated
Turaev surface 2 p. Let I” be the plane graph associated to D. Regard I” as embedded
in R? sitting inside R*. Qutside the neighborhoods of the vertices of I" is acollection of
arcs in the plane. Replace each arc by a band that is perpendicular to the plane. In the
neighborhoods of the vertices, place asaddle so that the circles obtained from choosing
a O-resolution at each crossing lie above the plane and so that the circles obtained
from choosing a 1-resolution at each crossing lie below the plane (see Figure 9). The

1

Figure 9. In a neighborhood of each cressing, insert a saddle so that the boundary above the
plane corresponds to the 0 resolution and the boundary below the plane corresponds to the 1
resolution.

resulting surface has a boundary of disjoint circles, with circles corresponding to
the all O-resolution above the plane and circles corresponding to the all 1-resolution
below the plane. For each boundary circle, insert a disk to obtain a closed surface X p
known as the Turaev surface (cf. [24]). The genus of this surface is denoted g(Xp),
and can be calculated by the formula

2 —50(D) —51(D) + ¢(D)

g(Xp) = 2

where c¢(D) is the number of crossings in D and so(D) and s,(D) are the number
of circles appearing in the all 0 and all 1 resolutions of D respectively. The Turaev
genus of a link is defined as

gr(Ll) = min{g(Xp) | D is a diagram for L}.
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The Turaev genus of a link L is a measure of how far L is away from being
alternating. Specifically, Dasbach et. al. [10] prove the following proposition.

Proposition 3.7 (Dasbach—Futer—Kalfagianni—Lin—Stoltzfus). A link has Turaev
genus O if and only if it is alternating.

Also, the Turaev genus of L gives a bound on the Khovanov width of L. Manturov
[17] and Champanerkar—Kofman—Stoltzfus [9] prove the following inequality.

Proposition 3.8 (Manturov, Champanerkar—Kofman—Stoltzfus). Let L be a link.
Then

wrn(L) —2 < gr(L).

The following proposition is implicit in Champanerkar and Kofman [8], but not
explicitly proven.

Proposition 3.9. et D be a link diagram with crossing x, and let T be an alternating
rational tangle such that D is twisted by T at x. Then g(Xp.) = g(Zp).

Proof. Suppose t = C(a1,...,am), where sign(a; ) = sign{(a; ) for all i and j. Let
i = Z;":l |a; |. The all O-resolution of D is the same as the all O-resolution of D,
except D; has an additional k circles. Similarly, the all 1-resolution of D is the
same as the all 1-resolution of Dy, except D; has an additional / circles. Since 7 is
alternating, it follows thatk +1 = a — 1. Also, c(D;) = c¢(D) + a — 1. Therefore,

2 —59(D) —s51(D) + (D)

8(¥p) =

2
_ 2—(o(D)+s1(Dg)—(a—=1))+c(Dy)—(a—1)
)
. 24— SO(Dt) - Sl(Dt) £ % C(D‘E)
B 2
= g(¥p,). []

In the case where D is the closure of abraid, there is a particularly nice version of
Proposition 3.9. Let w = w(oy, crfl, con 0.2 U;_ll) € B, be a word in the braid
group, and let D be the link diagram obtained from taking the closure of w. Suppose
w’ is word in B, obtained by replacing o; in w with o*f where k£ > 0 or by replacing

o ! in w with crf where k < 0. Let D’ be the link diagram obtained by taking the

1
braid closure of w’.

Corollary 3.10. Let D and D' be link diagrams obtained from the closures of the
braids w and w’ respectively. Then g(Xp) = g(Xp:).



Vol. 86 (2011) The Khovanov width of twisted links and closed 3-braids 689
4. Applications to 3-braids

Closed 3-braids are a rich class of links in which computation of invariants are pos-
sible. In [3], Birman and Menasco classify the link types of closed 3-braids. Several
papers (Schreier [21], Murasugi [18], and Garside [11]) give algorithms to deter-
mine when two 3-braids are conjugate in B3. In this paper, we will be interested in
Murasugi’s solution to the conjugacy problem.

4.1. Toruslinks. Let7'(p, g) denote the (p, g)torus link. In this subsection, we will
determine the Turaev genus and Khovanov width of T'(3, ¢). Turner [25] and Sto§ié
[23] give formulas for the rational Khovanov homology of T(3, ¢). The following
theorem specifies the support of Kh(7'(3,¢); Q) for¢ = 3. If ¢ = —3, one can
deduce the support from this theorem and the fact that 7(3, —¢) is the mirror of

7(3,q).

Theorem 4.1 (Stosic, Turner). Suppose n > 1.
(1) The group Kh(T(3,3n); Q) is [4n — 3,6n — 1]-thick. Thus

wrn(7'(3,3n), Q) = n + 2.
(2) The group Kh(T'(3,3n + 1); Q) is [4n — 1,6n + 1]-thick. Thus
win(T (3,38 +1); Q) =n+ 2.
(3) The group Kh(T'(3,3n + 2); W) is [4n + 1, 68 + 3|-thick. Thus
wrn(T (3,3 +2); Q) =n+ 2.

The following lemma gives several normal forms for braids in B3 whose closures
are torus links. We will use these normal forms to compute the Turaev genus of a
(3, ¢ ) torus link as well as the Turaev genus of many closed 3-braids.

Lemma 4.2. let B3 be the braid group on three strands. Then for any n > 1, we
have

('-7102)3 = 671202(712(72,

4 2 3
(0102)" = 0102010207,

5 3.3 2
(0102)° = 0] 0,0{0207,
3n 3 4 4 3 _n+1
(0102)™" = 0{0,0{0,2...0[0,07020] " 03,
—————
n—2
3nt1 3 4 4 3 +2
(0102) 02071,

- It
— re—

n—2
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and
3n+2 _ 3 4 4 3 ntl
(0102) = 07]020,02...0702070207 .
——— —
n—1

Proof. Observe

(0102)° = 010201020102

2 2
— Ul U2U1 62,

(o102)* = 012020120201 0
= 0”10‘220‘10”30‘1,
and
(0102)° = 01020102010201020102
= 0102010220102010201
= 012(7201(72012(72(712

_ .3 3 2

The braid relation directly implies the following two relations:

k k
01 0201 = 020105,

and

k k
010207 = 05,0102,

for k > 0. These relations will be used to prove the last three equations in the lemma.
For n > 1, we prove that

3n __ 3 4 4 3 _n+l
(0102)°" = 0{020702...0{020{0201 " 02
——
n—2

by induction. Let # = 2. Then

6 _
(0102)° = 01020102010201020102010;
= (7120201020’10’20102(71202

= 0‘130‘20‘130”20‘130”2.

Suppose, by way of induction, that

3n 3 4 4 T R |
(0102)"" = 0{020{0,...0]020{020] " 03.
—

n—2
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Then

3n+1) _ 3 4 4 3 n41
) ( )—01020102...0102010201 02010201020102

S —— e ——
n—2
_ .3 4 4 3 n
e — r——
n—2
.3 4 4 3 n+3 2 2
S —.. ret—
n—2

(0102

Hoy01050103

= 07050105 ... 0t0, 0005010507 o]
———
n—2
= 0"130”2 O‘fO’g o O‘fO‘g 0”130”20“10”20”120“20”{24_2
— —
n—2
TR 4 4 4 3 nt2
—
n—2

20103

T2
Js.

Hence, forallan > 1,

3n 3 4 4 B oML
)" = 07020[02...0[0,07050] " 03, 4.1)

e —— e —
n—2

(o102

Equation 4.1 implies
3n+1 3 4 4 3+l
) = 0{020{0,...01020]020] " 020103
e ———
n—2

. . 4 4 3 n+2
o ——. ——
n—2

(0102
02071,

Furthermore,

BHA2L, a3 4 4 3 n42
) =01020702...0/0201020, 02010102

n—2
= (71302 Uf'cfz 5 o U?Uz U?Ugglgz(flgg—i_lgldg
n—2
= 0‘130‘2 0”;1'0‘2 v o O”?O‘z 0‘50”20‘10‘20‘120‘20‘{14_1
n—2
= ojoy0l0y... 0l oy ol op0)0n0 L O
n—2

(o102

Abe and Kishimoto [1] have independently calculated the Turaev genus for the
(3, ¢) torus links. We give diagrams in closed braid form that minimize Turaev genus,
while they have a different approach.
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Proposition 4.3. Suppose g > 0. The Turaev genus of T(3,q) and T(3,—q) is
Lg/3].

Proof. Let D be the diagram obtained by taking the closure of the normal form for
(0102)9 given in Lemma 4.2. Thus D is a diagram for T(3, ¢) and is the closure of
a braid in the form ;
&a 5 bs a 1
oo LN e e AR

]

wheres = |¢/3]+1,botha; > Oand b; > Oforalll <i <s,andas11 = 0. Let D’
be the diagram obtained by taking the closure of the braid (5,6,)°. Corollary 3.10
implies that g(Xp) = g(Xp/). Since ¢(D') = 2|g/3| + 2,5(D’) = 3 and
s1(D") = 1, it follows that g(Xp) = |¢/3|. Proposition 3.8 and Theorem 4.1
imply that the Turaev genus of 7°(3, ¢) is greater than or equal to |¢/3]. Therefore,
g7 (T(3,9)) = |¢/3]. The genera of the Turaev surfaces for a diagram and its mirror
are equal, and hence g7 (7T(3,—qg)) = |g/3]. n

The next corollary follows directly from Theorem 4.1, Proposition 4.3, and Propo-
sition 3.8.

Corollary 4.4, Suppose n = 1.

(1) The group Kh(T'(3,3n)) is [4n — 3,6n — l|-thick and the group
Kh(7(3,—3mn)) is [-6n + 1, —4n + 3|-thick. Therefore

win(T(3,3n)) = wn(T(3, —3n)) = n + 2.

(2) The group Kh(T(3,3n + 1)) is [4n — 1,6n 4+ 1]|-thick and the group
Kh(7'(3,—3n — 1) is [-6n — 1, —4n + 1]|-thick. Therefore

Wgn{T (3,38 + 1)) = wn(T' (3,38 —1) =n + 2.

(3) The group Kh(T'(3,3n + 2)) is [4n + 1,6n + 3|-thick and the group
Kh(7(3,—3n —2)) is [-6n — 3, —4n — 1]-thick. Therefore

Win(1'(3,38 +2)) = wgn(T'(3, —3n —2)) =n + 2.

4.2. Khovanov width of 3-braids. In this subsection, we determine the Khovanov
width of closed 3-braids based upon Murasugi’s classification of closed 3-braids up
to conjugation. In [18], Murasugi proves the following:

Theorem 4.5 (Murasugi). Let w € Bs be a braid on three strands, and let h =
(0102)° be a full twist. Let n € Z. Then w is conjugate to exactly one of the
Jfollowing:
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(1) h"ofloy .. 0T 05 where p;, g; and s are positive integers.
(2) Aol where m € Z.
(3) h”cr’lncrz_l , where m < {—1,—2, —3}.

Let L be a closed 3-braid. Theorem 4.5 says, in effect, that L is the closure of a
braid of the form A® A. For n = 0, we say that I has cancellation if the braid word
for A contains a o) for i = 1 or 2, where sign(e) # sign(n). Besides two infinite
family of braids, we prove that wgn(L) = |n| + 2 if there is no cancellation and
wgh(L) = |n| + 1 if there is cancellation.

The following several propositions establish the support of Kh(ZL). The proofs
require the computation of Khovanov homology for a few specific links. We rep-
resent the rational Khovanov homology as a Poincaré polynomial P(L), a Laurent
polynomial in the variables ¢ and ¢ such that the coefficient of ¢t/ is the rank of
Kh®/(L; @). One can find these computations in KnotInfo [6]. Additionally, if L
is a torus (3, ¢) torus link, then Turner [25] computes P(L). The only link used
in a proof below that is not a (3, g) torus link is L(6,»,1) in Thistlethwaite’s link
table. The Khovanov homology of L(6,#, 1) can be determined from Lee’s result

on the Khovanov homology of alternating links [15] and the long exact sequences of
Theorem 2.4.

Proposition 4.6. Suppose n > 0 and k = 0. Let D be the closure of the braid
(o1 62)3”6{‘76{1, and let D' be the closure of (0102) "oy cr,;k. Then Kh(D) is
[4n + &k —2,6n + k — 2]-thickand Kh(D") is [-6n —k + 2, —4n — k + 2]-thick.

Proof. Observe that (0”1(72)3”0{“(72_1 = (o1 02)3”_10{‘7+1 forn > 0. Let D be the
closure of the braid (o70,) 1o;. Resolve the crossing given by the last o7 to obtain
two link diagrams Dy and Djp. Then D, is a diagram for 7'(3,3s — 1), and Dy, is a
diagram for the unknot. By Corollary 4.4, Kh(D,) is [4n — 3, 6n — 3]-thick. Since
Dy istheunknot, Kh(Dy)is [ -1, 1]-thick. Recall thate = neg(Dy)—neg(Dy). The
diagram Dp has 4n — 1 negative crossings, while the diagram D has no negative
crossings. Thus e = 4n — 1.

If n £ 2, then D is width-preserving. If # = 2, then the Poincaré polynomial
of D, =T(3,5)is

P(T(3,5)):q7+q9—|—ql152—|—q15f3+q1354+q15f4+q17f5+q17f6+q19f5—|—q21f7.

Therefore, Kh®?(D,) is nontrivial. Moreover, Kh*/ (D) = 0 for all i if j <
9 — 3¢ —1 = —13. Therefore, for n > 0, Proposition 3.6 implies that Kh(D) is
[4n + k — 2, 6n + k — 2]-thick. The proof for D’ is similar. ]

Proposition 4.7. Let D be the closure of the braid (0102)*"0% 05 %t .. 0% o7 %%,

where each a;,b; > 0. Leta — Zf:l a; and b — Zle b;. If n > 0, then Kh(D)
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is[4n+a—b—1,6n+a—b—1]thick. Ifn < 0, then Kh(D) is [6n +a—b + 1,
d4n + a — b + 1]-thick. Hence, if n =£ 0, then win(D) = |n| + 1.

Proof. Suppose n > 0. We proceed by induction on b. Suppose b = 1. Let D be the
closure of the braid (5102)*" 0% 05 1. Proposition 4.6 states that Kh(D1) is supported
in the band [4n +a —2, 61 + a — 2]. Since (07073)? is in the center of Bs, it follows

that Dy represents the same link as D/, the closure of (0y02)*"0( o5 1o,

If Dy is the closure of the braid (0102)¥ 010, I ...Ulpj Uz_gj where each

pi,gi > 0, 25:1 pi = a and Zle g; = b, then by way of induction, suppose
Kh(Dp)is [4n +a — b — 1,6n + a — b — 1]-thick. Let Dy, be the closure

ry 4 p; _—4;
of the braid (0102)*"0, o, *...07 0, !

Y g =b4+1.

Resolve Dy at the crossing corresponding to the last o ! to obtain diagrams
Dy and Dy, The diagram Dy is the closure of a 3-braid consisting of # full twists,
followed by an alternating 3-braid. There is a simple closed curve in the plane whose
interior is the alternating 3-braid piece of Dp ;. Alter resolving Dy, the interior
of the simple closed curve contains pieces of Dy and Dy,. Call the pieces of Dy 1,
Dy, and Dy contained in the interior of this simple closed curve the alternating parts
of Dpyq, Dy, and Dy, respectively.

By the inductive hypothesis, Kh(Dy)is [4n +a — b —1,6n + a — b — 1]-thick.
Let m be the number of negative crossings in the alternating part of Dy, which has a
total of @ + b crossings. Also, Dy, is a non-alternating diagram for an alternating link
L. Hence, Theorem 2.5 implies that Kh(L) is [-o(L) — 1, —o (L) + 1]-thick. One
can calculate the signature of an alternating link from any alternating diagram by a
result of Gordon and Litherland [12]. Color the regions of the alternating diagram in
a checkerboard fashion so that near each crossing it looks like Figure 10.

N\
N

Figure 10. Color the alternating diagram in a checkerboard fashion such that a neighborhood
of each crossing appears as above.

, where p, g/ > 0, Zgzl p; = a, and

Then the signature is given by
o (L) = #(black regions) — #(positive crossings) — 1.

There is another diagram representing L that has £ 42 black regions and a +b—m
positive crossings (see Figure 11). Therefore,0(L) = m—a+3,andhence Kh(D) ) is
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[a—m—4, a—m —2]-thick. Since there are 41 negative crossingin the full twist part of

Dy, and m negative crossings in the alternating part of Dy, it follows that neg(Dy) =

. { —df ¢
4n + m. Let Dy be the closure of the braid (0102)3”Uf)102 ! ...Uf)" o, | oo

Then neg(D ) = b, and thus e = neg(Dy) —neg(Dy)=4n +m —b. Forn > 0,
dn+a—-b—-1#(@a-m—-4)+@Gn+m-—->5)—1
and

bn+a—-b—1#(—-—m—-2)+@n+m—>0)—1.

Therefore, Theorem 2.6 implies that Kh(Dp 1) is [4n+a—b—2, 6n +a—Db—2]-thick.
The proof for n < 0 is similar. ]

S
e

S

/

v
/

ara

|

-

|
\//\/'\7/\, 4

O

Figure 11. The closure of the braid (o 02)3012053an51 together with its resolution and an

alternating diagram of its resolution. There are 5 black regions and 2 negative crossings in the
alternating diagram.

Proposition 4.8. Let D be the closure of the braid (0102)*" o',
(D Ifn > 0andm = 0, then Kh(D) is [4n +m — 3,6n + m — 1]-thick and
wgn(D) =n + 2.
(2) If n < O and m < 0, then Kh(D) is [6n + m + 1,4n + m + 3]-thick and
wgn(D) = —n 4+ 2.



696 A. Lowrance CMH

(3) Ifn = 1 and m < =3, then Kh(D) is [m + 3, m + 7|-thick and wgn(D) = 3.

@ Ifn = —1 and m > 3, then Kh(D) is [m — 7, m — 3]-thick and wgn(D) = 3.

(5) Ifbothn = 1land =3 < m < Qorbothn > 1 and m < 0, then Kh(D) is
[4n +m — 1,68 + m — 1]-thick and wgn(D) = n + 1.

(6) Ifbothn = —1 and 0 < m < 3orbothn < —1 and m > 0, then Kh(D) is
[6n +m + 1,4n + m —+ 1]-thick and wgn(D) = —n + 1.

Proof. We prove statements (1), (3), and (5). Statements (2), (4), and (6) are proved
similarly.

(1) Suppose #» > 0 and m > 0. Let D be the closure of the braid (o1072)*"05.
Resolve D at the crossing corresponding to the last o3 to obtain diagrams D, and
Dy,. Then Dy isadiagram for T(3, 3n). By Corollary 4.4, Kh(Dy ) is [4n—3,6n—1]-
thick. Also, Dy, is the two component unlink, and hence Kh(Dy) is [—2, 2]-thick.
The diagram Dj has 4n negative crossings, and the diagram Dy has no negative
crossings. Thus e = 4n.

Observethat 4n —3 £ -2 +e+landbn—1=2+e+ 1 whenn = 2. If
n = 2,then D, is T(3,6), and

PTG, 6) = q° 1 g't + g3 ¢ g% | g'5c* | g17r
g5 gt g2 T g2 L 23T 3288 | 0258,
Therefore Kh®!!(D,) is nontrivial. Also, Kh*/ (D) = Oforalliif j <11 —3e —
1 = —14. Hence, Theorem 3.6 implies that Kh(D ) is [4n -+ m — 3, 68 + m — 1]-thick.
(3) Suppose n = 1 and m < —3. Let D_ be the closure of (¢,0,)%0; 7. Resolve
D_ at the crossing corresponding to the last o3 ! to obtain diagrams D, and Dj,.

The diagram Dy, is a diagram for the two component unlink, and hence Kh(Dj,) is
[—2, 2]-thick. The diagram D, is a diagram for the link L(6, n, 1) in Thistlethwaite’s

link table (see Figure 12).
( m (
L.

P

Figure 12. A transformation of the closure of (0102)302_4 into L(6,n, 1).

f _—

=
=

The Poincaré polynomial for L(6,#n, 1) is given by
PLG,n, 1) =21 4+3¢+q>+gt +¢°t2+ q"t* + 4°¢t4.
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Therefore Kh(Dy) is [—1, 3]-thick. Both of the diagrams Dy and D, have 4
negative crossings. Thus e = 0. Since —1 £ -2 4+e—land3 # 2+4+e —1,
Theorem 3.6 implies that Kh(D) is [m + 3, m + 7]-thick.

(5)If » = 1 and —3 < m < 0, then Baldwin [4] has shown that D is quasi-
alternating. Therefore, Theorem 2.5 implies that Kh(D) is [-o(L)—1,—o (L) + 1]-
thick, where L is the link type of D. A straightforward calculation of signature gives
the desired result.

Suppose n > 1 and m < 0. Observe that (0102)* 05! = (0102)*"1o1. Let Dy
be the closure of the braid (010,)**10;. Resolve D at the crossing corresponding
to the last g1 to obtain diagrams Dy and Dy, Since Dy is a diagram for 7'(3,3n — 1),
it follows that Kh(D,) is [4n — 3, 6n — 3|-thick. Since Dj is a diagram for the
unknot, it follows that Kh(Dp) is [—1, 1]-thick. The diagram Dy, has 4n — 1 negative
crossings, and D, has no negative crossings. Thus e = 4n — 1.

Ifn=2,then6n —3 =1+ e + 1, and the long exact sequence of Theorem 2.4
looks like

0 — Kh®'%(Dy) - Kh®(D,) = Kh 77 3(Dy) > -+ .

Since Kh " 13(Dy) = 0 and Kh®?(D,) is nontrivial, it follows that Kh®1°(D_)
is nontrivial. Sinced4n —3 £ —1 +e+landbn —3 #F 1 +e+1forn > 2,
Corollary 2.6 implies that Kh(D ) is [4n — 2, 6n — 2]-thick.

Let D_ be the closure of (0102)*" o105 1. Resolve D_ at the crossing given
by the last 02_1 to obtain diagrams D, and Dp. The diagram D, is the closure of
the braid (0102)*" 101, and hence Kh(D,) is [4n — 2, 6n — 2]-thick. The link D),
is a diagram for the two component unlink, and thus Kh(Dy) is [-2, 2]-thick. The
diagram Dy, has 4n — 1 negative crossings, and D, has no negative crossings. Thus
gi=rdn.— L.

Forn > 1,wehavedn —2 #* —2 +e —1land 6n —2 # 2 + ¢ — 1. Therefore,
Theorem 3.6 implies that Kh(D) is [4n +m — 1,68 + m — 1]-thick. n

Proposition 4.9. Let D be the closure of the braid (o1 02)3”0{”02_ 1 where m €
{—~1,-2, -3}
(1) Ifn > 0, then Kh(D) is [4n +m — 2, 6n + m — 2]-thick, and wgn(D) = n + 1.
(2) Ifn <0, then Kh(D) is [6n + m,4n + m + 2]-thick, and wgn(D) = —n + 2.

Proof. (1) Suppose s > 0. If m = —1, then D is a diagram for 7'(3,3n — 1), and
the result follows.
Let m = —2. Then, up to conjugation in B3, we have

)3?2—1 —1

(Ulgz)snfffszfl = (0102 0,

= (0201)*" %0

= (0102)”" %0y.
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If D’ is the closure of the braid (0702)>"* 201, then D and D’ represent the same
link. Resolve D’ at the crossing corresponding to the final oy to obtain diagrams D,
and Dy. Then D, is a diagram for T (3, 3n — 2), and Dy, is a diagram for the unknot.
Hence Kh(Dy) is [4n — 5, 6n — 5]-thick, and Kh(Dy,) is [—1, 1]-thick. The diagram
Dy, has 4n — 3 negative crossings, and the diagram D' has none. Thus e = 4n — 3.

Observe thatd4n —5 % —1 +e+1,and6n —5=1+¢e + 1 whenn = 2. If
n = 2, the long exact sequence of Theorem 2.4 looks like

0 — Kh®¥(D') — Kh®7(Dy) — Kh™>72(Dy) — <

Since Kh™>2(Dy) = 0 and Kh®7(L,) is nontrivial, it follows that Kh®¥(1) is
nontrivial. Hence Theorem 2.6 implies that Kh(D') is [4n — 4, 6n — 4]-thick.
Let m = —3. Then, up to conjugation in B3, we have

3 3n—1 -2

(0102)* 0105 = (0102)" oy

= (ffol)?’R_?’szf1szjl_1

— (O‘l 0,2)33’:—2_

Hence D is a diagram for T(3, 3n — 2), and the result follows.

(2) Letn < 0. If m = —1, then D is a diagram for 7'(3,3n — 1), and the result
follows.

Letm = —2. Then D is the closure of (0102)>* 1o !. Resolve D at the crossing
corresponding to the last o ! to obtain diagrams D, and Dj,. Then D, is a diagram
for T(3, 3n—1),andhence Kh(D, ) is [6#—1, 4n +1]-thick. Also, Dy, is adiagram for
the unknot, and hence Kh( D) is [—1, 1]-thick. The diagram Dy has —2n —1 negative
crossings, and the diagram D_ has —6#n + 2 negative crossings. Thus e = 4n — 1.

Observe that4n +1 % 1 +e—1,andb6n —1 = -1 +e—1ifn = —1. If
n = —1, the long exact sequence of Theorem 2.4 looks like

o+ = Kh®*(Dy) — Ku® (D) - Kh®3¥(D) — 0.

Since Kh>?(D;) = 0 and Kh® 7(D,) is nontrivial, it follows that Kh® ¥(D) is
nontrivial. Thus Kh(D) is [6# — 2, 4n]-thick.

Let m = —3. Then, up to conjugacy in B3, we have
— (Ul 0,2)312—2'
In this case D is a diagram for 7'(3, 3n — 2), and the result follows. ]

We collect the results of Propositions 4.7, 4.8 and 4.9 into one theorem giving the
Khovanov width of closed 3-braids.
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Theorem 4.10. Let L be a closed 3-braid of the form h"™ A, as in Theorem 4.5, where
h = (0102)° and n # 0. Then

\n| 4+ 2 if L has no cancellation or if L is the
win(L) = closure of K107 where m > 3,

|n| + 1 otherwise.

Remark 4.11. If n = 0, then L is a (possibly split) alternating link, and thus wxgp (1)
can be deduced from Theorem 2.5 and Proposition 2.1.

In [4], Baldwin classifies quasi-alternating closed 3-braids.

Proposition 4.12. Let 1. be a closed 3-braid and let h = (0102)>.

« If L isthe closure of the braid h" o{" %—bz .. crfkcr;bk, where each a;, b; > 0,
then L is quasi-alternating if and only if n € {—1,0,1}.

« If L is the closure of the braid h" o}, then L is quasi-alternating if and only if
eithern = landm € {—1,—-2,-3torn=—1andm < {1,2,3}.

» If L is the closure of the braid h”cri"cr{l, where m € {—1,—2, =3}, then L is
quasi-alternating if and only if n € {0,1}.

Using the spectral sequence from reduced Khovanov homology of a link to the
Heegaard Floer homology of the branched double cover of that link, Baldwin [4]
shows the following corollary. This corollary is also a consequence of Theorem 4.10
and Proposition 4.12.

Corollary 4.13 (Baldwin). Let L be a closed 3-braid. Then L is quasi-alternating
ifand only if wg (L) = 1.

Remark 4.14. Shumakovitch has used his computer package KhoHo [22] to show
that the 94¢ and 10140 knots (both closed 4-braids) have reduced Khovanov width 1,
but they are not quasi-alternating. One can use either of these knots to generate

infinite families of counterexamples to Corollary 4.13 for braids with index greater
than 3.

4.3. Turaev genus of closed 3-braids. Combining Lemma 4.2 with Corollary 3.10
gives a useful tool to compute the Turaev genus of closed 3-braids. By using the
lower bound given by Proposition 3.8, the Turaev genus of closed 3-braids can be
calculated up to a maximum additive error of at most 1.

by b

Proposition 4.15. Let L be the link type closure of (0102)*" 01 05
where each a; by > 0andn #£ 0. Then |n| — 1 < gr(L) = |n|.

ap _—
20170,
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Proof. Suppose n > 0. We have

b = 1 & —br+1
)Srz 1 )3n lo,fl‘i‘ 1___0,62»‘\:Cr k-‘r'

(6102)0%1 65 % .. 6% 55 % = (010, 05 %o
If b > 1, let D be the closure of the braid (7,5,)" (0} J;_,_l)k and if by = 1, let
D be the closure of the braid (o,02)" (0, U{l)k_l. By applying the normal form of
Lemma 4.2 to (0,02)** ! and then using Corollary 3.10, it follows that gr(L) <
g7 (D). Astraightforward calculation shows that g7 (D) = n. Since wgn(L) = n+1
and win(L)—2 < gr(L),wehave n —1 < gy (L). The case where n < 0 is similar.

[

Proposition 4.16. Let L be the link type of the closure of (01 02)3”65”, where n = 0.
(1) If L has no cancellation, then g7 (1) = |n|.
(2) If L has cancellation and |n| > 1, then |n| — 1 < gr(L) < |n|.
(3) lfeitherbothn = 1 and =3 <m < Qorbothn = =1 and 0 < m = 3, then
gr(L)=0.
(4) Ifeitherbothn = landm < —3orbothn = —l andm > 3. Then gr(L) = 1.

Proof. (1) If L has no cancellation, then either bothn > Oandm = Oorn < O
and m < 0. Corollary 3.10 implies that gr(L) < g7 (T7(3,3n)) = |n|. Since
wgn(L) = |n| + 2, it follows that gr (L) = |n|.
(2) Suppose that L has cancellation and # > 1. Then m < 0 and
(0,10,2)3.?20,5!1 - (0,10,2)31'2—10,10,55‘14—1).

If m < —1, let D be the closure of (01(72)”0102_1, and if m — —1, let D be the
closure (0102)". Lemma 4.2 and Corollary 3.10 imply that gr(L) < g(Zp). A
straightforward calculation shows that g(Xp) = n. Since wgn(L) = n + 1, it

follows that n — 1 =< g7(L). The case where # < —1 and m > 0 is similar.
(3) Suppose n = 1 and —3 < m < 0. As noted in Baldwin’s paper [4], we have

(0102)° 0 = oy030,0307.
By canceling the 0}’ with the final Uf, one obtains a diagram for L with 5 crossings
or less. Therefore L is alternating and gy (L) = 0. The case where n = —1 and
0 < m < 3 1is similar.

(4) Suppose n = 1 and m < —3. Then L can be represented by the closure of
a1 022(71 JE” 2 Let D be the closure of the braid o1 0“2(71(72_1. By Corollary 3.10, we
have gr(L) < g(Xp), and a straightforward calculation shows that g(Xp) = 1.
Since wgn(L) = 3, it follows that g7 (L) = 1. The case where n = —1 and m > 3

is similar. U]
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Proposition 4.17. Let L be the link type of the closure of (0102)*" 0oy ! where
me{—1,-2,-3LIfn>0thengr(L)=n—1andifn <0, then gr(L) = |n|.

Proof. Let n > 0. Using the forms in the proof of Proposition 4.9 and the reductions
of Lemma 4.2 and Corollary 3.10, one sees that g7 (L) < g(Xp) where D is the
closure of (010,)". A straightforward calculation shows that g(Xp) = n — 1. Since
wgnh(L) = n + 1, it follows that g7 (L) = n — 1.

Let n < 0. Using the forms in the proof of Proposition 4.9 and the reductions
of Lemma 4.2 and Corollary 3.10, one sees that g7(L) < g(Xp/) where D’ is the
closure of (o10,)* 1. A straightforward calculation shows that g(X p/) = |n|. Since
wrn(L) = |8| + 2, it follows that g7 (L) = |n /. ]

The previous results of this section are summarized in the following corollary.
Corollary 4.18. /et I be a closed 3-braid. Then
0=gr(Ll)—(wkn(L)—-2) = 1.

Remark 4.19. Both the lower bound and upper bound of the above inequality are
achieved by closed 3-braids. For example, the links in Proposition 4.17 achieve the
lower bound while the links in Proposition 4.16 part (4) achieve the upper bound.
There are also closed 3-braids (see Proposition 4.15) where it is unknown whether
the lower bound or upper bound is achieved.

5. Applications to odd Khovanov homology

In [19], Ozsvath, Rasmussen and Szabé introduced odd Khovanov homology, a knot
homology that is closely related to Khovanov homology. Odd Khovanov homology,
denoted Khggg( 1), is a bigraded 7 -module whose graded Euler characteristic is the
unnormalized Jones polynomial.

5.1. A spanning tree model for odd Khovanov homology. Champanerkar and
Kofman [7] and independently Wehrli [28] developed a spanning tree model for Kho-
vanov homology. In this subsection, we show that the similarities between Khovanov
homology and odd Khovanov homology imply that odd Khovanov homology also
has a spanning tree model.

Let D be alink diagram and let X be the set of crossings of D. Suppose (C(D), d)
is the hypercube of resolutions complex from [13] and [5] that generates Khovanov
homology, and suppose (Cuqq( D), dogq) is the hypercube of resolutions complex from
[19] that generates odd Khovanov homology. A vertex in the hypercube is a function
I : X — {0,1}. Foreach vertex I, one obtains a one-manifold Dy be smoothing each
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crossing of D according to . Both chain complexes are constructed by associating
certain Z-modules to each of the one-manifolds D;j.

Number the crossings of D from 1 to |X| arbitrarily. One can obtain the vertices
of the hypercube as the leaves of a binary tree. The root of this tree is the diagram
D. The children of a vertex v at level i are obtained by smoothing the ith crossing
of v into either a O-resolution or a 1-resolution. See Figure 13.

g %

~ L R,
OB G N O
SN SN S

08 53R 5B DR IR

Figure 13. Binary tree whose leaves are the vertices of the hypercube.

Modify the binary tree as follows. If either of the children of a vertex v is
disconnected, then the vertex v becomes a leaf and all its descendants are deleted.
See Figure 14. The leaves of the modified binary trees are twisted unknots, i.e. they
are unknots that can be trivialized using only Reidemeister I moves. Also, the leaves
are in one-to-one correspondence with the spanning trees of either checkerboard graph
associated to . The details of this correspondence are described in Champarnerkar—
Kofman [7] and Wehrli [28]. Denote the set of spanning trees by T(D), and the
diagram associated to atree T € T(D) by Dr.

Let U denote diagram of the unknot with no crossings. The Khovanov complex
of the disjoint union of & copies of U is given by

C(Uk) o A@ka

where A is the bigraded module defined by A% ! = A% = 7 and A%/ = 0 for
(i, j) # (0, £1). For any bigraded object M, define grading shifts [m] and {n} by
(M[nJin})s = Mi=mi=n,

In [28], Wehrli gives the following spanning tree model for Khovanov homology.
Champanerkar and Kofman prove an analogous result in [7].
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1 \/\iz 3
Figure 14. The modified binary tree whose leaves are in correspondence to spanning trees of
the checkerboard graph of D.

Proposition 5.1 (Wehrli). Let D be a connected link diagram. Then there is a
decomposition C(D) = A @ B, where B is contractible and A as a module is given

by

TeT(D)
for functions f and g depending on D and Dr.

Let D, Dg and D; be as in Figure 2. The spanning tree model for Khovanov
homology is a consequence of

(1) the bigraded Z-module structure of C(D),

(2) the fact that C(D) is isomorphic to the mapping cone of w : C(Dg) — C(D),
for some map w, and

(3) the structure of the complex under Reidemeister [ moves, which is specified by
C(P) = CO){~1}1® B1, C0) = CO)[1]{2} & By,

for contractible complexes B and B5.

As bigraded Z-modules C(D) and Cyyq( D) are isomorphic. Furthermore, from
the proof of invariance under Reidemeister I moves in [19], one can see that (2) and
(3) also hold for odd Khovanov homology. Therefore odd Khovanov homology also
has a spanning tree model.

Proposition 5.2. Let D be a connected link diagram. Then there is a decomposition
Coa(D) = A @ B, where B is contractible and A as a module is given by

A= P ALf(D, Dr)ig(D, Dr)},
TeT(D)

for functions f and g, which are the same as in Proposition 5.1.
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Proposition 3.8 is a consequence of the bigraded Z-module structure of the span-
ning tree complex for Khovanov homology. Since odd Khovanov homology has a
spanning tree complex with the same bigraded #-module structure, there is an analo-
gous Turaev genus bound on the odd Khovanov width of alink L, denoted wgn,.,(L)-

Proposition 5.3. Let L be alink. Then
thodd(L) — 7 = gT(L)

5.2. The odd Khovanov width of closed 3-braids. There is a close relationship
between Khovanov homology and odd Khovanov homology. Ozsvath, Rasmussen,
and Szab6 [19] have shown that

Kh(L; Z,) = Khoga(L; Z3),

and that odd Khovanov homology satisfies long exact sequences identical to the
sequences in Theorem 2.4. These similarities, along with the Turaev genus bound
given in Proposition 5.3, imply the following result.

Theorem 5.4. Let L be aclosed 3-braid. Then Kh(L) is [diin, Smax]-thick if and only

Proof. Let L’ be alink that is the base case for one of the inductions in Propositions 4.6
through 4.9. Then L' is either a (3, ¢) torus link or the link L(6, n, 1), and

win(L'; Q) = Wk, (L) = gr(L') +2. 3.1

Suppose Kh? (L’; @) is nontrivial. Then KhS(L’; Z3) is also nontrivial. Since
Kh{L;7Z3) = Khega(L; Z2), it follows that thdd(L’; Z2) is nontrivial. Therefore,
thdd(L’ ) is nontrivial. Then Equation 5.1 implies

gr(L) +2 = win(L"; Q) < Wkn,ey (L) < gr(L") +2.
Thus Kh(L') is [8] ;. 6] ]-thick if and only if Kh'(L’) is [8],,, &/ . ]-thick.

min* min?
The proofs of Propositions 4.6 through 4.9 rely only on the Khovanov homology
of the base case and the long exact sequences of Theorem 2.4. Therefore, Proposi-
tions 4.6 through 4.9 hold for odd Khovanov homology, and this implies the result.

[

Corollary 5.5. Let L be a closed 3-braid. Then
th(L) = thodd(L).

Note that Corollary 5.5 is not true for the closure of #-braids where # > 3. The
examples from Remark 4.14 have wgy, (L) > 2. These examples can be used to
generate infinite families of examples of closed #n-braids where odd Khovanov width
and Khovanov width are different for n > 3.
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