Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 86 (2011)

Artikel: Complete constant mean curvature surfaces in homogeneous spaces
Autor: Espinar, José M. / Rosenberg, Harold

DOl: https://doi.org/10.5169/seals-283464

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-283464
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 86 (2011), 650-674 Commentarii Mathematici Helvetici
DOI 104171/CME/237 © Swiss Mathematical Society

Complete constant mean curvature surfaces in homogeneous
spaces

José M. Espinar*and Harold Rosenberg

Abstract. In this paper we classify complete surfaces of constant mean curvature whose Gauss-
ian curvature does not change sign in a simply connected homogeneous manifold with a 4-
dimensional isometry group.

Mathematics Subject Classification (2010). 53A10, 53C21.
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1. Introduction

In 1966, T. Klotz and R. Ossermann showed the following:

Theorem ([KO]). A complete H-surface in R? whose Gaussian curvature K does
not change sign is either a sphere, a minimal surface, or a right circular cylinder.

The above result was extended to S* by D. Hoffman [H], and to [T by R. Tribuzy
[T] with an extra hypothesis if K is non-positive. The additional hypothesis says that,
when K < 0,onehas H>— K —1 > 0.

In recent years, the study of H -surfaces in product spaces and, more generally, in
a homogeneous three-manifold with a 4-dimensional isometry group is quite active
(see [AR], [AR2], [CoR], [ER], [FM], [FM2], [DH] and references therein).

The aim of this paper is to extend the above theorem to homogeneous spaces with
a4-dimensional isometry group. These homogeneous spaces are denoted by E(x, t),
where & and v are constant and & — 47? # 0. They can be classified as M2 (k) x R
if T = 0, with M?(k) = S%(k) if £ > 0 (S%(«) the sphere of curvature &), and
M2(k) = H?(k) if £ < 0 (H?*(x) the hyperbolic plane of curvature «). If 7 is not
equal to zero, E(k, 7) is a Berger sphere if £ > 0, a Heisenberg space if £« = 0 (of

*The author is partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J. An-
dalucia Grants POS-FQM- 01642 and FQM325.
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bundle curvature 1), and the universal cover of PSL(2,R) if ¥ < 0. Henceforth we
will suppose k is plus or minus one or zero.

The paper is organized as follows. In Section 2, we establish the definitions and
necessary equations for an H -surface. We also state here two classification results for
H-surfaces. We prove them in Section 5 and Section 6 for the sake of completeness.

Section 3 is devoted to the classification of H -surfaces with non-negative Gaussian
curvature,

Theorem 3.1. Let 3 C E(k, 1) be a complete H-surface with K = 0. Then, X
is either a rotational sphere (in particular, 4H? + k > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H on M? (k).

In Section 4 we continue with the classification of 7 -surfaces with non-positive
Gaussian curvature.

Theorem 4.1. Let X C E(«, t) be a complete H-surface with K < 0 and H? +
72 — |k — 412| > 0. Then, X is a complete vertical cylinder over a complete curve
of geodesic curvature 2H on M2 (k).

The above theorem is not true without the inequality; for example, any complete
minimal surface in H? x R that is not a vertical cylinder.

In the Appendix, we give a result, which we think is of independent interest,
concerning differential operators on a Riemannian surface X of the form A + g,
acting on C?(X)-functions, where A is the Laplacian with respect to the Riemannian
metric on ¥ and g € C%(X).

2. The geometry of surfaces in homogeneous spaces

Henceforth E(k, 7) denotes a complete simply connected homogeneous three-mani-
fold with 4-dimensional isometry group. Such a three-manifold can be classified
in terms of a pair of real numbers («, 7) satisfying ¥ — 472 # 0. In fact, these
manifolds are Riemannian submersions over a complete simply-connected surface
M2(«k) of constant curvature «, 7: (i, 7) — M?2(k), and translations along the
fibers are isometries, therefore they generate a Killing field &, called the vertical field.
Moreover, 7 is the real number such that Vy & = X A £ for all vector fields X on the
manifold. Here, V is the Levi-Civita connection of the manifold and A is the cross
product.

Let 3 be a complete H-surface immersed in E(k, r). By passing to a 2-sheeted
covering space of 2, we can assume X is orientable. Let N be a unit normal to .
In terms of a conformal parameter z of X, the first, (-, ), and second, /7, fundamental
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forms are given by

() = Aldz|?
I =pdz? + AH|dz|* + pdz?,

where pdz? = (—Vy, N,d;)dz? is the Hopf differential of .
Setv = (N, &)and T = & — v N, ie., v is the normal component of the vertical
field &, called the angle function, and T is the tangent component of the vertical field.
First we state the following necessary equations on X which were obtained in

[FM].

(2.1)

Lemma 2.1. Given an immersed surface & C E(k, t), the following equations are

satisfied.:
K = K, F1* 4 (& —Az2)?, (2.2)
Ps = % (H, + (k —41%) v A), (2.3)
A
A; = = (H +it)v, (2.4)
vz_—(H—it)A—%pA, 2.5)
1
A7 = 240 -5, (2.6)
Az
Az:TA+pu, 2.7

where A = {(§,0,), K, the extrinsic curvature and K the Gauss curvature of X.

For an immersed H-surface 3 C E(«, 7) there is a globally defined quadratic

differential, called the Abresch—Rosenberg differential, which in these coordinates is
given by (see [ARZ]):

Qdz? = QH +it)p—(k — 494> dz?,

following the notation above.
It is not hard to verify this quadratic differential is holomorphic on an H -surface
using (2.3) and (2.4),

Theorem 2.1 ([AR], [AR2]). O dz? is a holomorphic quadratic differential on any
H-surface in F(k, 7).

Associated to the Abresch—Rosenberg differential we define the smooth function
g: 2 — |0, +00) given by

49
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By means of Theorem 2.1, ¢ either has isolated zeroes or vanishes identically. Note
that ¢ does not depend on the conformal parameter z, hence g is globally defined
on X.

We continue this section establishing some formulae relating the angle function,
g and the Gaussian curvature.

Lemma 2.2. Let 3 be an H -surface immersed in Bk, ). Then the following equa-
tions are satisfied:

AH? -k —(k —4rp?

vo|? MH?-K

+ (k — 4791 —vH) — :

(o= 4L~V ——1—
Av = —(4H? +27% + (k — 42%)(1 — vz) —=2K.)v. (2.9)

Moreover, away from the isolated zeroes of g, we have
Alng = 4K. (2.10)
Proof. From (2.5)
4\pl?4|? 2(H+it) = 2(H —Ir
‘Uz|2 — |p|)L2| | +(H2+‘L'2)|A|2+ ( )L )pA2 ( A )ﬁA2,

and taking into account that

QP =4(H? + ) [p* + (k= 47| A* — (k — 429 (2(H + it)pA®
+2(H —it)pA?),

we obtain, using also (2.6), that

A4
v = (H? + AP + (H? — KA + (e — 49120

+4(1Taﬂ+r2)|p|2 jop
k—412 ) A (K — 412)A

where we have used that 4|p|? = A2(H? — K,) and « — 472 #£ 0. Thus

Kk — 472
IVv)* = \Vz|2 QH?~ K, + v ~v*) (1 —v?)?
H2+r)
4 —— )(H? — K,) —
N (1{4 ( Ke) fc—412’

and finally, re-ordering in terms of H? — K, we obtain the first expression.
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Next, by differentiating (2.5) with respect to Z and using (2.7), (2.4) and (2.3),
one gets

2 H2 2
vz = —(k —dtHv AP — Z|pl2v — le.
A 2
Then, from (2.6),
A 8 |p|
vz =~ (e — 40— + ~BL pa 1),
thus
4
Ay = TVez == ((c — 411 —vD) + 2(H? — K) + 2(H? + ) v.
Finally,
4 2
Alng = Aln |/€2| = —2AlnA = 4K,

where we have used that Q dz? is holomorphic and the expression of the Gaussian
curvature in terms of a conformal parameter. ]

Remark 2.1. Note that (2.9) is nothing but the Jacobi equation for the Jacobi field v.
Next, we recall a definition in these homogeneous spaces.

Definition 2.1. We say that ¥ C E(x, ) is a vertical cylinder over a if ¥ = 7~ (a),
where @ is a curve on M?(«).

It is not hard to verify that if & is a complete curve of geodesic curvature 2H on
M?(x), then ¥ = 7~ !(a) is complete and has constant mean curvature 2. Moreover,
these cylinders are characterized by v = 0.

We now state two results about the classification of H -surfaces. They will be
used in Sections 3 and 4, but we prove them in Section 5 and Section 6 for the sake of
clarity. The first one concerns H -surfaces for which the angle function is constant.
However, we need to introduce a family of surfaces that appear in the classification.

Definition 2.2. Denote by S ; a family of complete I -surfaces in E(x, 1),k < 0,
satisfying for any X € S ;:

« 4H? 1k <.

« g vanishes identically on ¥ € 5, ., i.e., X is invariant by a one parameter family
of isometries.

« 0 < v? <1 isconstant along X.

« K, =—1?and K = (k —41t?)v? < 0 are constants along 3.
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An anonymous referee indicated to us the preprint “Hypersurfaces with a parallel
higher fundamental form” by S. Verpoort who observed that we mistakenly omitted
the surfaces S, ; in a first draft of this paper.

Theorem 2.2. Let ¥ C E(«, 1) be a complete H -surface with constant angle func-

tion. Then X is either a vertical cylinder over a complete curve of curvature 2H on
MZ2(k), a sliceinI?* xR or S? xR, or T € Serwithk < 0.

Remark 2.2. Theorem 2.2 improves Lemma 2.3 in [ER] for surfaces in IT? x R.

Of special interest for us are those H -surfaces for which the Abresch—Rosenberg
differential is constant.

Theorem 2.3. Let 3 C E(k, t) be a complete H -surface with q constant.

« [fq =0, then X is invariant by a one-parameter group of isometries of E(k, 1),
and if H = 0= 1, then X is a slice in H? xR or S x R.

Moreover, the Gauss curvature of these examples is as follows.

- If4H? +k > 0, then K = 0, and they are rotationally invariant spheres.

- If4H? -k = 0andv = 0, then K = 0 and T is either a vertical plane
in Nils, or a vertical cylinder over a horocycle in H? x B or PSL(2, C).

— There exists a point with negative Gauss curvature in the remaining cases.

« Ifg £ 0on X, then X is a vertical cylinder over a complete curve of curvature

2H on M?(x).

3. Complete H-surfaces ¥ with X > {

Here we prove

Theorem 3.1. Let 3 C E(«, 1) be a complete H-surface with K = 0. Then, X
is either a rotational sphere (in particular, 4H? + k& > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H on M?(x).

Proof. The proof goes as follows: First, we prove that X is a topological sphere
or a complete non-compact parabolic surface. We show that when the surface is a
topological sphere then it is a rotational sphere. If % is a complete non-compact
parabolic surface, we prove that it is a vertical cylinder by means of Theorem 2.3.

Since K = 0 and X is complete, Lemma 5 in [KO] implies that 3 is either a
sphere or non-compact and parabolic.
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If X is a sphere, then it is a rotational example (see [AR2] or [AR]). Thus, we can
assume that 2 is non-compact and parabolic.

We can assume that ¢ does not vanish identically in 2. If g does vanish, then X
is either a vertical cylinder over a straight line in Nils or a vertical cylinder over a
horocycle in H? x R or M Note that we have used here that K = 0 and
Theorem 2.3.

On the one hand, from the Gauss equation (2.2)

0<K=K,+1°+&—4tW? <K, + 1% + [k — 477,

hence
o 8. w P 4 22T — 7 (3.1)

On the other hand, using the very definition of Q dz?, (3.1) and the inequality
&1 + &2]% < 2(|&1]? + |£]?) for &1, &, € C, we obtain

g _ 208 2 240p 22414
5: PE; S4(H —‘rf))bz —|—(K—4’E)T
Kk —412)?
= 4 + Y - K+ £ vy
—4 232
< 4(H? + %) (H? - K.) + %
—4 232
§4(H2—|-7:2)(H2—|-r2—|—|K—4r2|)—l—¥.

So, from (2.10), Alng = 4K > 0 and In g is a bounded subharmonic function
on a non-compact parabolic surface X and since the value —co is allowed at isolated
points (see [AS]), g is a positive constant (recall that we are assuming that ¢ does not
vanish identically). Therefore, Theorem 2.3 gives the result. [

4. Complete H -surfaces X with K <

Theorem 4.1. Let 2 C E(«x, 1) be a complete H-surface with K < 0 and H? +

7% — |k — 47%| > 0. Then, T is a complete vertical cylinder over a complete curve

of geodesic curvature 2H on M? (k).

Proof. We divide the proof into two cases, x — 472 < 0 and k — 472 > 0.

Case k — 412 < 0: On the one hand, since K < 0, we have

Hz—Ke2H2+t2+(!c—4r2)v22H2+K—37:2,
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from the Gauss equation (2.2). Therefore, from (2.8) and ¥ — 472 < 0, we obtain:

g > 4(H? + tH(H? - K.) + (k — 4791 —1v?)

K — 41°

'(H2+12+H2—Ke+ (1—v2))
= (H? — K )(4H? + 41 + (k — 429)(1 —v?))
+(H? + ) — 451 —vH) + ﬂ(l — P

>(H? 4+ 1% + (k — 41’2)1)2)(4[1’2 + 472 + (k — 472)(1 — vz))
(x —472%)?

1_22;
Lo

— (H2 - 32)(fc - 4t2)(1 — u2) -

note that the last inequality holds since 4 H? + 412 +(k—472)(1—v?) = 4H? +x > 0.
4H? + k > 0 follows from

O d(H? Foo2— | —~de?| = 4H? $x.

Seta := H? | t? and b := k 47?. Definethereal smooth function f: [-1,1] >
R as

F(x) = (a + bx*)(4a + b(1 — x2)) + ab(1 — x?) + b;(l —x2)%. 4.1)

Notethatg = f(v)on X, f(v)isjustthe last partinthe above inequality involving
g. It is easy to verify that the only critical point of f in (—1, 1) is x = 0. Moreover,

fO)=(4a+5b)?/4>0 and f(+1)=4da(a+b)>0.

Actually, f: R — R has two others critical points, x = + %, but here we
have used that
da + b {
> 1,
3|5

since 0 < 4(H? 4+« —37%) = (4H? + k) — 3|k — 47%| = (4a + b) — 3]b|.
So, set ¢ = min { (0), f(£1)} > 0, then

g= f)=c>0.

Now, from (2.10) and ¢ = ¢ > O on X, it follows that ds? = /gl 1s a complete
flat metric on 2 and

APy — L amg=2E 2
NG

Vi
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Since g is bounded below by a positive constant and (X, ds?) is parabolic, then
In g is constant which implies that ¢ is a positive constant. Thus, the result follows
from Theorem 2.3. The case & — 472 < 0 is proved.

Case k — 472 > 0: Set wy = 2(H +it)% and wy 1= (k — 41:2)%3, ie., g =
4‘1}01 — UJ2|2. Then

wil* = (H? + )(H? - K.) = (H* + %)%,

|2 _ (x — 4t2)2

K —4r2)2
16 ’

|w
4

(a-v2? <

where we have used that H?> — K, > H? + 72 + (x — é1t2)1)2 > H? + 12, since
K <0andk — 472 > 0.

We recall a well-known inequality for complex numbers. Let &,& € C, then
)
&1 + &% > ||E1] — |€2l|”. Thus,

== #22| 12

4

2
42|l —lwa[” = |2 1 2

=

1
= E‘4(H2 + 1) — |« —41:2|‘2 > 0.

S0, as g is bounded below by a positive constant, then, arguing as in the previous
case, g is a constant. Thus, the result follows from Theorem2.3. The casex — 472 > 0
is proved. ]

Remark 4.1. Note that in the above theorem, in the case £ — 4172 > 0, we only need
to assume that 4(H? 4 72) — |k — 472 > 0.

5. Complete H -surfaces with constant angle function

We classify here the complete H -surfaces in [E(«, t) with constant angle function.
The purpose is to take advantage of this classification result in the next section.

Theorem 2.2. Let 3 C E(k, v) be a complete H-surface with constant angle func-
tion. Then X is either a vertical cylinder over a complete curve of curvature 2H on

MQ(K), aslicein H* xR orS? xR, or T € S,z with k < 0 (see Definition 2.2).
Proof. We can assume that v < 0. We will divide the proof into three cases:

* v = (: In this case, 2 must be a vertical cylinder over a complete curve of
geodesic curvature 2H on M?(x).
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» v=—1:From(24), 7 = 0and H = 0, then ¥ is aslice in H* xR or S? xR.
» —1 < v < 0: We prove here that ¥ ¢ S, , with ¥ < 0. From (2.5) we have

29 _
LT — 37 e —TPA, 5.1)
then 5
4|p|
2 2 2
H* + 17 = P H - K,

since |A|? # 0 from (2.6),s0 K, = —t% on X.
Thus, from (2.9), we have

4H? + 472 + (k —42H(Q —vH) = 0. (5.2)

Now, using the definition of g, (5.1), (5.2) and K, = —z?, we have

4/Q|? 4| p|? 44

g = Az = 4(H2 -+ ‘52)7 -+ (K — 472)27
K_4t2 . —2 . _ 2
wsel] e (2(H +it)pAd* +2(H —it)pA?)

= 4 A Ky + (- 4
+2(k — 41 —vH(H?* + 1)
= 7 (4 + (e~ 41— ) +422) =,

that is, ¢ vanishes identically on 2. Moreover, from (5.2), we can see that
4H? 4+ ¢ < 0, that is, ¥ < 0. Therefore, ¥ < ek < 0. L]

6. Complete H -surfaces with ¢ constant

Here, we prove the classification result for complete H-surfaces in E(x, t) employed
in the proof of Theorem 3.1 and Theorem 4. 1.

Theorem 2.3. Let ¥ C E(k, t) be a complete H -surface with q constant.

o Ifqg=00nX, then % is either asliccin H2 xR or S? xR if H = 0= 7, or
3 is invariant by a one-parameter group of isometries of E(k, 7).

Moreovey, the Gauss curvature of these examples is as follows.

= IfdH? + i > 0, then K > 0 they are the rotationaily invariant spheres.
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- If4H? + k = 0andv = 0, then K = O and T is either a vertical plane
in Nils, or a vertical cylinder over a horocycle in H? x R or PSL(2, C).

= There exists a point with negative Gauss curvature in the remaining cases.

* Ifg # 0on X, then X is a vertical cylinder over a complete curve of curvature

2H on M?(x).

The case g = (0 has been treated extensively when the target manifold is a product
space, but is has not been established explicitly when 7 = 0. So, we assemble the
results in [AR], [AR2] for the reader’s convenience.

Lemma 6.1. let 3 C E(«x, 1) be a complete H-surface whose Abresch—Rosenberg
differential vanishes. Then % is either a sliceinH? xR or S2 xR if H = 0 = 1,
or 3 is invariant by a one-parameter group of isometries of E(k, 7).

Moreover, the Gauss curvature of these examples is as follows.

« If4H? + k> 0, then K > 0 they are the rotationally invariant spheres.
« I[f4H? + k= 0andv = 0, then K = 0 and X is either a vertical plane in
Nil, or a vertical cylinder over a hovocycle in H? x R or PSL(2, C).

» There exists a point with negative Gauss curvature in the remaining cases.

Proof. 'The idea of the proof for product spaces that we use below can be found in
[dCF] and [FM].
If H = 0 = 7, from the definition of the Abresch—Rosenberg differential, we

have
0= —(k —41)4%,

that is, v? = +1 using (2.6). Thus, ¥ is aslice in [T? x R or S x R.
If H = 0ort # 0, we have

2UH +it)p = (k —41)A%, (6.1)
from where we obtain, taking modulus,

(k —472)%(1 —v?)?

H?*—-K,= 6.2
¢ 16(H2 + 12) =
Inserting (6.1) in (2.5),
]
(H +it)v, = _Z(4H2 + Kk — (kK — 4t90?)4,
and taking modulus,
4H? + k —(k — 47202
vz|* = g1, g(v) = : (6.3)

4 H? + 12
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Assume that v is not constant. Let p € X be a point where v;(p) £ 0 and let U
be a neighborhood of that point p where v, # 0 (we can assume v? £ 1 at p). In
particular, g(v) #= 0in U from (6.3). Now, inserting (6.3) in (2.6), we obtain

4|Vz|2

= : 6.4
TETEPIE .
Thus, putting (6.2) and (6.4) in the Jacobi equation (2.9)
v|vz |2
S =l . 6.5
ZZ 1 . ])2 ( )
So, define the real function s := arctgh(v) on . Such a function is harmonic

by means of (6.5), thus we can consider a new conformal parameter w for the first
fundamental form so that s = Re(w), w = s + it.

Since v = tgh(s) by the definition of s, we have that v = v(s), i.e., it only
depends on one parameter. Thus, we have A = A(s) and T = T(s) from (6.4)
and (6.3) respectively, and p = p(s) by the definition of the Abresch-Rosenberg
differential. That is, all the fundamental data of % depend only on s.

Now, let U be a simply connected domain on ¥ and V € R? asimply connected
domain of a surface S so that ¥g: V — U C E(k, 7). We parametrize V by the
parameters (s, ¢ ) obtained above. Then, the fundamental data (see [FM ], Theorem2.3)

{Ao, po, To, vo} of o are given by
Ao(s,t) = A(s),

po(s, 1) = p(s),
To(S,f) — a(S)BS:

vols, 1) = v(s),
where a(s) is a smooth function.
Letf € R and leti;: R? — R? be the diffeomorphism given by
ig(s, 1) == (s,0 +1),

and define 7 := g oiz. Then, the fundamental data {A;, pz, T7, vi} of 7 are given
by

Ag(s, 1) = A(s),

pi(s,1) = pls),

T7(s,t) = a(s)dy,

vi(s.1) = v(s),
that is, both fundamental data match at any point (s,¢) € V. Therefore, using [D],
Theorem 4.3, there exists an ambient isometry I7: [E(x, ) — E(k, 7) so that

Trog = Ypoiy forallf € R,
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thus the surface is invariant by a one parameter group of isometries.
Let us prove the claim about the Gauss curvature. Using the Gauss equation (2.2)
in (6.2), one gets

(ic—= Gr2)2 {1 —= vR)°

H? 1+ 2 Kk —4*W? K =
L ) 16(H2 + )

Seta := 4(H? + t?) and b := k — 472, then one can check easily that the above
equality can be expressed as

4aK = a? —b* + 2a + b)* — Qa + b(1 —v?))2 (6.6)

So, if 4H? + k > Othen g > |b| and K > 0, that is, ¥ is a topological sphere
since it is complete. If 4H? 4 « = 0, a = —b and the equation reads as

4aK = a*(1 — (1 +1v3)?),

that is, 2 has a point with negative Gauss curvature unless v = (.

If4H? + k < 0,0ne cancheckthata® 5% = (a—b)(a + b) < Osincea +b > 0
and a — b < 0. So, if infg{v?} = 0 then, from (6.6), ¥ has a point with negative
curvature. Therefore, to finish this lemma, we shall prove the following

Claim. There are no complete constant mean curvature surfaces in E(x, t) with
4H? + k<0, =0,K zo,andinf{vz} = Wl %

Proof of the Claim. Assume such a surface X exists. Since we are assuming that
K > 0 and 2 is complete, then 2 is parabolic and noncompact. If 2 were compact
we would have a contradiction with the fact that infx{v?} = ¢ > 0and 4H? +x < 0.

Since g vanishes identically on X, arctanh(v) is a bounded harmonic function on
¥ and so v is constant. So, the projection 7: ¥ — M?(k) is a global diffeomorphism
and a quasi-isometry. This is impossible since ¥ is parabolic and M?(k), & < 0, is
hyperbolic. Therefore, the Claim is proved and so the lemma is proved. ]

Proof of Theorem 2.3. We focus on the case ¢ # 0 because Lemma 6.1 gives the
classification when g = 0.

Suppose v is not constant in X. Since ¢ = ¢? > 0, we can consider a conformal
parameter z so that (-,.) = |dz|* and Q dz? = ¢ dz? on X. Thus,

Q=c=2H+it)p— (kK —4rH) 4%

First, note that we can assume that H # 0 or 7 =£ 0, otherwise v would be
constant. So, from (2.5), we have

K — 472

1- vz))A _cA,

(H +it), = —(H2 I w4
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where we have used 2(H +it)p = ¢ + (k — 412)A?%. That is,
16(H? + 2%) [|Vv]|* = (g(v) + 40)* (1 —v?), 6.7)

where

g(v):=4H? + k — (kx — 422 (6.8)

From (2.10), ¥ is flatand H? — K, = H? + t° + (k — 47°)1? by (2.2), joining
this last equation to (2.8) we obtain using the definition of g(v) given in (6.8)

s &
proom e S e v

V|? = :
19 —

(6.9)

Putting together (6.7) and (6.9) we obtain a polynomial expression in v? with
coefficients depending on a 1= 4(H? + t?), b := kx — 472 and c:

P(v?) = C(a,b,c)v® + lower terms = 0,

but one can easily check that the coefficient of v® is C(a, b,c) = —a~1b? £ 0, a
contradiction. Thus v is constant, and so, by means of Theorem 2.2, X is a vertical
cylinder over a complete curve of curvature 2H . ]
7. Appendix

Let % be a connected Riemannian surface. We establish in this Appendix a result
which we think is of independent interest, concerning differential operators of the
form A + g, acting on C?(X)-functions, where A is the Laplacian with respect to
the Riemannian metric on ¥ and g ¢ CO(X).

Lemma 7.1. Let g € CO(%), v € C2(X) such that |Vv|* < hvion X, hisa
non-negative continuous function on X, and Av + gv = 0in 2. Then either v never
vanishes or v vanishes identically on .

Proof. Set = {p € ¥ : v(p) = 0}. We will show that either 2 = @ or Q@ = X.
So, let us assume that 2 7 0. If we prove that €2 is an open set then, since €2 is
closed and ¥ is connected, €2 = 2. Let p € §2 and B(R) C X be the geodesic ball

centered at p of radius R. Such a geodesic ball is relatively compact in 2.
Set ¢ = v%/2 = 0. Then

Ad = vAv + | Vo|? = —gv® + | Vu||* < —2(g — )¢,

that is,
—Agp—2(g —h)g = 0. (7.1)



Vol. 86 (2011)  Complete constant mean curvature surfaces in homogeneous spaces 673
Define f := min {infg {2(g — A)}, 0} < 0. Then, y = —¢ satisfies
Ay + py = —-Ad — B = —Adp —2g —h)p = 0,

where we have used (7.1).
Since we are assuming that v has a zero at an interior point of B(R), 8 < 0 and
Y has a non-negative maximum at p, the Maximum Principle [GT], Theorem 3.5,

implies that ¢ is constant and so v is constant as well, i.e, v = 0 in B(R). Then
B(R) C 2, and €2 is an open set. Thus 2 = 2. ]
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