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Modules for Z/p x Z [ p

*

Jon F. Carlson. Eric M. Friedlander™ and Andrei Suslin™*

Abstract. We investigate various aspects of the modular representation theory of Z/p X Z/ p
with particular focus on modules of constant Jordan type. The special modules we consider and
the constructions we introduce not only reveal some of the structure of (Z/p < Z/ p)-modules
but also provide a guide to further study of the representation theory of more general finite group
schemes.

Mathematics Subject Classification (2010). 16G10, 20C20, 20G10.
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0. Introduction

In this paper, we investigate finite dimensional £G-modules, where & is a field of
characteristic p > 0Oand G = Z/p x Z/p. Our objective is to introduce some new
constructions and invariants for modules and to explore some of their properties. For
p > 2, kG has wild representation type so that this elementary group algebraprovides
a good test for various constructions and techniques in modular representation theory.
For example, the special case of G = Z/p x Z/ p proved to be critical in the proof
given in [7] that the generic and maximal Jordan types are well defined for a finite
dimensional module over an arbitrary finite group scheme.

In joint work with Julia Pevtsova [2], we introduced a special class of modules for
finite groups schemes, those of constant Jordan type. Most of the kG-modules we
consider in this paper satisfy this property of constant Jordan type, and much of our
effort is directed toward understanding as much as possible for such modules. We
introduce a more restrictive property, the “equal images property”, satisfied by certain
kG-modules and closed under taking quotients. We observe in Proposition 5.8 that
there is a vast array of non-isomorphic indecomposable kG -modules which satisfy
this equal images property, suggesting that kG-modules of constant Jordan type
constitute a wild category for p > 2.

*Partially supported by the NSF grant # 0654173,
“Partially supported by the NSF grant # 0300525.
" Partially supported by the NSF.
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Our examples and constructions not only reveal interesting modules for kG but
also suggest possible extensions from & to more general finite group schemes.

We begin with the equal images property and a particularly explicit class of £G-
modules satisfying the property. These we call “W modules”. W modules of the form
W, » have appeared in earlier work as “zig-zag” modules. Despite their seemingly
special nature, the class of W modules provides a splitting of the Jordan type functor
fromthe Grothendieck group of modules of constant Jordan type to Z# (Theorem4.2).
Moreover, every kG-module with the equal images property is a quotient of a W
module (Theorem 5.4).

In [6], the second author and Julia Pevtsova introduced vector bundles associated
to finite dimensional modules for an infinitesimal group scheme which have constant
j-type. This construction of vector bundles holds considerable promise in that it
distinguishes various modules with the same local Jordan type and might exhibit
explicit newly discovered vector bundles on quite elaborate singular varieties. In the
special case of the infinitesimal group scheme Gj(l) with group algebra isomorphic

to kG, this construction produces vector bundles on P!(k) which are accessible to
computation. We give explicit determination of the first and second kernel bundles
for W modules.

We introduce the construction of the “generic kernel” (as well as the “generic
image”) of a finite dimensional kG-module, a module which has the equal image
property and thus is of constant Jordan type. This is essentially an extension of
a construction introduced in [7] in order to prove that the “maximal Jordan type”
of a kG-module is well defined, independent of the choice of generators of the
augmentation ideal of kG . The generic kernel of a finite dimensional X G-module M
can be characterized as the maximal submodule of M which has the equal images
property (Proposition 7.8).

In Theorem 8.10 we exhibit an interesting filtration on kG -modules of constant
rank which differs from the radical filtration. This filtration involves duality re-
lating generic kernels and generic images, providing further insight into specific
kG-modules. A cautionary example is provided in Example 9.4.

Corollary 11.3 identifies all cyclic £ G-modules of constant Jordan type: they are
all of the form kG/I', a quotient of kG by some power of the augmentation ideal.
This result is surprisingly difficult to prove, and requires properties of the Wronskian
of a collection of polynomials with coefficients in a field of characteristic p > 0.

We conclude this paper by identifying various vector bundles over P! associated
with certain classes of kG -modules. For this, we invoke a basic property of generic
kernels to determine kernel bundles for cyclic £ G-modules of constant Jordan type.
We also determine kernel bundles for Heller shifts of the trivial module and certain
kG -modules of constant rank associated to nilpotent cohomology classes.

We reiterate that unless specified otherwise p denotes a prime number, & is a field
of characteristic p, and G denotes the group Z/ px 7./ p. If M is a vector space over



Vol. 86 (2011) Modules for Z/p < Z/p Bl

k (perhaps with more structure, such as the structure of a kG-module) and if K/ k is
afield extension, then we denote by Mg the K-vector space K @ M . For notational
simplicity, we shall denote M ®; N by M ® N for vector spaces M, N over k.

We gratefully acknowledge numerous useful conversations with Julia Pevtsova.
We also thank the Mathematical Sciences Research Institute for its hospitality during
the spring of 2008 when some of this paper was written. Furthermore, we thank the
referee for a very detailed reading of this paper.

1. Recollections

For the convenience of the reader, we briefly summarize here some of the general
results to be found in earlier papers which serve as the foundations for this present
work. These general results are typically formulated for an arbitrary finite group
scheme over k, our “base field” of characteristic p > 0. Some results only apply to
infinitesimal group schemes. Since the group algebra of Z./ p x 7/ p is isomorphic
to the group algebra of the infinitesimal group scheme G,y % Gy, these results
are fully available in our study of kZ/ p x 7/ p-modules.

The isomorphism type of a finite dimensional k[f]/(¢?)-module M is said to be
the Jordan type of M. For M of dimension m, this Jordan type is specified by a
partition of m; the Jordan types are partially ordered according to the dominance
ordering of partitions. We denote a Jordan type by I'Type(M ). Should we wish to be
more explicit, we denote the Jordan type of M by Y 7, a;[i] with m = Y7, a;i,
meaning that the Jordan canonical form of ¢ on M has a; blocks of size i. Thus. the
indecomposable k] /(¢ #)-modules of dimension ¢ has Jordan type [Z].

For an arbitrary finite group scheme G, the cohomological variety, Spec H*(G, k),
is the prime ideal spectrum of the finitely generated commutative k-algebra H*(G, k),
where H*(G, k) € H*(G, k) is the subalgebra of the cohomology algebra H*(G, k)
generated by the elements of even degree if p is odd, and H*(G, k) is the full algebra
H*(G, k) if k has characteristic 2. If M is a kG-module, then the cohomological
support variety of M is the spectrum of the quotient of H*(G, k) by the annihilator
ideal of Ext} (M, M),

Spee H*(G, k)/Annge g 5y (Exty 5 (M, M)).
It is convenient to view support varieties in terms of m-points of G

Definition 1.1. Let G be an elementary abelian p-group. Aw-pointag: K[t]/(t¥) —
KG is aflat map of K-algebras for some field extension K /k. (If the group G were
not a p-group, then the definition would also impose the condition that g factor
through a unipotent subgroup scheme.)
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Two m-points, ag : K[t]/(t?) — KG and By L[t]/(t¥) — LG are equivalent
if for any finite dimensional kG -module M, the restriction of Mg = K ® M along
ag is a free KG-module if and only if the restriction of My along fr, is a free
LG-module.

The set of equivalence classes of m-points of G is the set of points of a projective
k-scheme T1(G).

The IT-support space of a kG-module M is the reduced subscheme IT(G)y C
[1(G) whose points are those represented by m-points ax: K[t]/(t¥) — KG with
the property that ag (Mg ) is not projective.

As verified in [5], Theorem 7.5, for any finite group scheme G there is a natural
isomorphism Proj H*(G, k) = T1(() which restricts to an isomorphism

Proj (H*(G, k)/Annge g 1) (Exty o (M, M))) = TI(G) -

Definition 1.2. A finite dimensional kG -module M is said to have constant rank if
the rank of the operator ax(r): Mg —> Mg is independent of choice of the -point
ag: K[t]/(#?) > KG.
Similarly, M is said to have constant j-rank (forsome j,1 < j < p)iftherankof
(g () : Mg — Mg is independent of choice of m-point agx: K[t]/(t?) — KG.
Finally, M is said to have constant Jordan typeifthe Jordantype of ox (t): Mg —
My is independent of choice of m-point «g: K[t]/(t¥) — KG.

For infinitesimal group schemes, there is yet another perspective on support vari-
eties.

Definition 1.3. T.et G be an infinitesimal group scheme over k. A 1-parameter sub-
group of G of height r over afield extension K /& isamorphism ptx: Guy,x — Gk
of group schemes over K. There is anaturally constructed affine group scheme V,. (G)
whose points with values in any commutative k-algebra A are naturally identified with
the set of morphisms p: (4,4 — G4 of group schemes over A,

As verified in [13], Theorem 5.2 and Corollary 6.8, there is a natural morphism
Vi (G) — Spec H*(G, k) which is a homeomorphism of underlying spaces for any
infinitesimal group scheme of height < r; moreover, this homeomorphism restricts
to a homeomorphism of closed subspaces

Vi(G)m = Spec H* (G, k)/Annge g ) (Exty; (M, M)),

where V. (G)y C V,.(G) is the closed subvariety consisting of those 1-parameter
subgroups g : Gapye — G such that (ug o €)*(Mg) is not projective. Here,
€: k[t]/(t?) — kGy(y is the map of algebras (but not of Hopf algebras) sending ¢
to the divided power operator (%)(’” =1y,
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ForG = Z/p> , an elementary abelian p-group of rank r, we have isomorphisms
of k-schemes

A" = Spec H*(G, k) = V(G 7})),

P! =~ Proj H*(G, k) = TI(G).

For any scheme X over k and any commutative k-algebra A we denote by X(A) the
set of A-valued maps Spec A — X . In particular, P1(k) denotes the set of k-rational
points of P

Finally, we recall the structure of algebraic vector bundles on P! given by A. Gro-
thendieck in [8], Theorem 1. Any such bundle is a direct sum of the line bundles of
the form Op1(n) for some n € Z, the Serre twists of the structure sheat @p1. Under
Serre’s correspondence (see [9], [1.5.15), Op1(n) corresponds to the graded module
A[n] for the graded ring A = k|x, y|, where A[n] in degree d equals A4 in degree
d +n.

2. The equal images property

Although this paper concerns the representation theory of 7,/ p x 7./ p, this section
is valid for an elementary abelian p-group of arbitrary rank. Thus, in this section,
we take G = (Z /p)" for some r > 2. Our purpose in this section is to introduce the
“equal images property” for a finite dimensional k£ G-module and to explore some of
its implications.

For notation, we let kG = klt.... ,rr]/(rf’, s w ,t;p). The radical of kG is the
augmentation ideal Rad(kG) generated by x1, ..., x, where foreach 7, x; isthe class
of t; modulo the ideal (If), T, ,t,fp). Thus, xf) — Qforalli.

The data of a K-algebra homomorphism ag : K[t]/(:?) — KG is equivalent to
a choice of

lax = g (1) € KG; (1)

the condition that g be flat is equivalent to the condition that £, - be an element of
Rad(KG)\Rad?(KG), that is, in the radical of KG (sincer € K|[r]/(¢?)is nilpotent)
but not in the square of the radical of KG. In what follows we let £, = £4, the field
K being implicit in the definition of «.

The condition that the finite dimensional £ G-module M has constant Jordan type
can be reformulated in more classical terms as follows.

Proposition 2.1. A finite dimensional kG -module M has constant Jordan type if
and only if for some algebraic closure K /k and for all non-zero r-tuples 0 £ a =
(a1,...,a,) € K7, the Jordan type of 3 _; aix; acting on Mk is independent of a.
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Proof. Let K be an algebraic closure of k. For 0 #£ a = (a1,...,a,) € K", let
oy : K[t]/(t¥) — KG be the w-point which takes f to ) a;t;. Clearly, if M has
constant Jordan type, then that type is the Jordan type at every o4.

We recall that there is a partial ordering on Jordan types of 7-points on M given by
the dominance ordering on partitions of the dimension of M. We use [7], 2.7, which
asserts the following two non-trivial properties of maximal and generic Jordan types.
First, the Jordan type of M at any m-point whose equivalence class in I1(G) = P"~!
is a generic point, is greater or equal to the Jordan type at any 7-point of £G. Second,
if ax(Mxg) achieves this maximal Jordan type (i.e., the generic Jordan type), then
this maximal Jordan type is also the Jordan type for any 87 (M) whenever ag is
equivalent to fir..

To prove the converse, we now assume that «} (M) has Jordan type independent
of 0 #£ a € K for some K/k algebraically closed. Then for an explicit choice
of representative of the generic point of I1(G) the Jordan type is the same as that
of each o (Mk) (using the fact that maximality of the Jordan type of M for points
of A" is an open condition). Thus, this common Jordan type is the maximal Jordan
type of M among all m-points. Because maximality of the Jordan type of M is
achieved by some representative of a point of II(() if and only if it is achieved at
every representative, maximality of the Jordan type of M is an open condition on the
scheme of I1(G) of equivalence classes of m-points. Because the points of I1(G)
represented by s-points of the form @, are dense by the Hilbert Nullstellensatz, we
conclude that maximality holds at every z-point of kG . In other words, M must
have constant Jordan type. ]

In much of what follows we take some care to avoid imposing any condition other
than the characteristic on our base field k. Some of the reasons for this care are
revealed in the following cautionary example.

Example 2.2. Let G = 7./ p x 7./ p and suppose that k is not algebraically closed.
Write kG = k[x, y]/(x?, y?). Let f(z) be a polynomial of degree n which has no
root in k. Consider the 2n-dimensional kK G-module with x, y acting as

. (O O) g (O O)
Iy 9’ Cx 0fF
where [, is the n x » identity matrix and C,, is the companion matrix of f(z) (so that
f(z) =Det(zl, — Cp)).
Then for any 0 # (a, b) € k2, the image of ax + by on M has dimension #, equal
to Rad(M ). This easily implies that the image of ax + by on M is independent of
0 £ (a,b) € k2. Thus, the Jordan type of M at k-rational points of A? is independent

of the choice of k-rational point, and in fact equals the maximal Jordan type of M.
However, if we take K /k to be a finite field extension in which f(x) has a root y,
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then the rank of yx — y: Mg — Mg has dimension less than #. Hence, M does not
have constant Jordan type or constant rank.

We now introduce a property of certain kG-modules which we shall see implies
the property of constant Jordan type.

Definition 2.3. A finite dimensional X G-module M is said to have the equal images
property if
(Lo (Mg o = (Up(ML))e

for any two m-points ag : K[t]/(t#) — KG and By, : L[t]/(t?) — LG and for any
field extension 2 of both K, L. Here, as in (1), £, = ag(r).

Our notation here is that
Lo(Mg)=Im{{: Mx — Mg}

is the image of multiplication by £, on Mg . Observe that in Definition 2.3 it suffices
to consider fields K, L, Q which are finitely generated over k.

The equal images property was called the “constant images property” in [1].

We shall need some equivalent conditions for the equal images property. The
following lemma will be useful for this purpose. Here we make no assumptions on
the field & other than that it has characteristic p.

Lemma 2.4. Let £ be any element which is in Rad(kG ) but not inRad?(k G). We write
£=3"1 | a;x;tuforay,...,a, ckandu c Rad*(kG). Then for any kG-module
M it must be that {M = Rad(M) if and only if (3;_, a;x;)M = Rad(M).

Proof. Let N = Rad(M) and suppose that M = Rad(M) = N. SouM <
Rad(N), and by Nakayama’s Lemma [3], we have that (3., a;x;)M = N
Rad(M ). This proves one direction. The proof in the other direction is almost
identical. ]

With the above lemma, we can give an equivalent definition for the equal images
property.
Proposition 2.5. Suppose that M is a kG-module. The following are equivalent.
(1) The module M has the equal images property.

(2) For any extension K of k and any r-tuple a = (a1,...,a,) € K" of elements
of K, such that not all of the a;’s are zero, we have that (3 ._, a;x; )Mk =
Rad(Mg).
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Proof. First suppose that M has the equal images property. Then for all i and j
we have that x; M = x; M and hence that x;, M = Z;:1(xj M) = Rad(M). Now
suppose that K is any extension of & and that ag: K[t]/(¢t#) — kG is the w-point
given by ag(r) = > :_; @i x;. Then by the equal images property

fo(Mg) = xiMx = x1(K @ M) = K ® ;M = K @ Rad(M) = Rad(Mx).

This shows that (1) implies (2). The reverse implication is straightforward with the
help of Lemma 2.4. ]

A main point of the next proposition is that everything becomes much easier when
the field of coefficients is algebraically closed.

Proposition 2.6. /et M be a finite dimensional k G-module and let K be an algebraic
closure of k. Then the following are equivalent:

(1) M has the equal images property.

(2) Forall £ € Rad(KG) \ Rad*(KG), we have that £{(Mg) = Rad(Mk).

(3) The submodule {(Mg) C My is independent of £ € Rad(KG) \ Rad*(KG).
(4) Forall 0 #a € K", Im{> [_ aix; - Mg — Mg} = Rad(Mkg).

(5) The submodule (3 ;_, a;x;Y(Mg) C Mg is independent of the non-zero ele-
menta — (ay,...,a,) < K",

Proof. The implication (1) = (2) is a consequence of Lemma 2.4 and Proposi-
tion 2.5. Also, (2) <= (4), by Lemma 2.4. It is obvious that (2) = (3) < (). If
(5) holds, then we must have that x; Mg = x; Mg for all i and j. Therefore, for any
0 £ g € K", we have that Im {> ;| ait;: Mg — Mg} = x1 Mg — Rad(Mk).
Hence, (5) <= (4). It remains only to show that (1) is implied by any of the other
statements.

To prove that (2) <= (1), it suffices to assume (2) and consider some flat map
Br: L|t]/t?) — LG with L/K finitely generated, then prove that 8y (M) =
Rad(My ). We proceed by contradiction. Assume that £g(My) # Rad(My), so
that the dimension £g(Mj.) is strictly less than the dimension of Rad(My ). Choose
a finitely generated K -subalgebra A4 C I with field of fractions 7. such that there
exists some flat A-algebra homomorphism 84 : A[t]/(t?) —> AG with the property
that 8y, = L @4 B4. For some specialization ¢p: A — K determining ag =
K ®4 Ba: K[t]/(t?) — KG, the dimension of £,(Mg) (which is equal to the
specialization of the Noetherian A-module (84(f)(M4) at @) is strictly less than the
dimension of Rad(Mg ). This contradicts (2). O

We give the following first example of a kG-module with the equal images prop-
erty.
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Example 2.7. Let ] = Rad(kG) C kG be the augmentation ideal. Then 7/ has
constant Jordan type forall j,0 < j <rp—1(and I"? = 0). This is a consequence
of the fact that [ is invariant under all automorphisms of the group algebra and
whenever ¥, v are two elements of Rad(kG) that are not in Rad?(kG), then there
is an automorphism that takes ¥ to v. On the other hand, I/ has the equal images
property if and only if (r — 1)(p — 1) < j. Thatis, for j < (r —1)(p — 1), it is
straightforward to construct a monomial in X1, ..., x, that is a multiple of x; but not
a multiple of x2. (See Example 3.2 below.)

The preceding example suggests the following relationship between the constant
Jordan type property and the equal images property.

Proposition 2.8. Let M be a finite dimensional kG -module with the equal images
property. Then

(1) Rad*(M) also has the equal images property for all s > 0, and
(2) M has constant Jordan type.

Proof. Let K /k be an algebraic closure, and suppose that £; and £; are two elements
of Rad(KG) that are not in Rad?(kG). Then

flsz = El Rad(MK) = ﬁzﬁlMK = 22 Rad(MK)

Because Rad(Mg) = Rad(M )k, we have that Rad (M) has the equal images property
by Proposition 2.6. Applying this again we get that Rad(Rad(M)) = Rad?(M)
has the equal images property and the first statement follows by a finite induction.
Moreover, we see that for £;,...,¢; € Rad(KG) \ Rad*(KG), 4; ... £1(Mg) =
Rad’ (Mk) = £} (Mk).

Now, the Jordan type of £ = £; on Mg is determined by the ranks of the operators
£1,1 < i < p. Since M has the equal images property, the rank of £* is the dimension
of Rad’ (Mg). Hence M has constant Jordan type by Proposition 2.1. ]

One pleasing aspect of the equal images property is its stability under taking quo-
tients. The proof of the following proposition is essentially immediate, a consequence
of the observation that if M — M is a quotient map of kG -modules then the image
of any ax(r) on M is the quotient of the image of ax(z) on M.

Proposition 2.9. Let M be a k G-module with the equal images property and suppose
that L is a submodule of M. Then M /L has the equal images property.

The above stability of the equal images property should be contrasted with the
weaker property of constant Jordan type: any free kG -module has constant Jordan
type, but most quotients do not.
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3. W modules and the equal images property

In this and subsequent sections, G denotes the finite group Z/p X Z/p and k is a
field of characteristic p. For notation, we let kG = k[, ©2]/(t{ , 3 ), having radical
generated by x and y which are the classes of £; and 5.

As considered in [2], §2 (where the dual module is considered), the “zig-zag”

modules
\y\.// \y\. //

Vr

have constant Jordan type (# — 1)[2] + [1]. The nodes in the diagram represent
elements of a basis for the module. The arrows indicate the actions of x and y on
these basis elements. We can write such a module (which we denote by W, ») as the
kG-module generated by elements {vy,. .., v, } with relations generated by

xv; = 0= yv, — X%, x%u; =0= YU —xXviy1, forl<i<n-—1.

For p = 3, we have the following analogue of zig-zag modules (which we denote
WR,S):

\\/‘/ \\/ \\/
RN N

As a kG-module, W, 3 is generated by {v;....,v,} with relations generated by

X =0 =Yg = x3v,; x3v,=0= Yv; —XU;4q1, forl<i<n-—1.

Clearly, the Jordan type of either x or y on W, 3 is (n — 2)[3] + [2] + [1]. As
verified more generally in Proposition 3.3, W, 4 has the equal images property so
that by Proposition 2.8, it too has constant Jordan type.

We proceed to investigate these “W™ modules. Here is the general definition.

Definition 3.1. Letn > d > 1 andd < p. The W module W, ; is the kG-module
generated by {vy,. .., v, } with relations generated by

XV :O:yv,z:xdvn; xdvi =0=yv; —xv;4,, forl<i<n—1.

Forl <n < d, we set W, 4 equal to W, ,, as above.
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Example 3.2. As an example, we note that high powers of the radical of kG are W
modules. Specifically, the module Rad? V' 1 (kG) =~ Wy_ip—ifori =0,...,p—1
as it has a set of generators

i+1 )

10 1 i, p1
v = x¥ , U5 & xE Yy v g Upa 2R Y

which satisfy precisely the relation of Definition 3.1, withn = d = p —1i.

As defined, whether or not a kG-module M is a W module appears to depend
upon our choice of generators x, y of Rad(kG). But we see in Corollary 5.7, which
follows, that being a W module is independent of the choice of generators.

Proposition 3.3. Suppose that n, d are positive integers suchthat d < p. Then W, 4
has the equal images property. Thus, W, 4 has constant Jordan type given by

(n—d+1)d] +[d—-1] + -+ [1]. (2)

Proof. By Proposition 2.6, it suffices to verify that Im {ax + by: Mg — Mg} =
Im{x: Mg — Mg} for every 0 # (a,b) € K?, where M = W, 4 and K/k is an
algebraic closure. So assume that & = K is algebraically closed. Note that Rad(M)
is generated by the elements yvy,..., yvp—1, and we know that yv; = xviy1. So,
XWypa = yWy.a = Rad(W, 4). Hence, the equal images property is a consequence
of the observation that the k-subspace spanned by (ax + by)vy, ..., (ax +by)v, is

the same as the subspace spanned by yvy,..., yvup_1.
According to Proposition 2.8, W), ;4 thus has constant Jordan type. The Jordan
type (n —d + 1)[d] + [d — 1] + --- + [1] is determined by inspection. il

For use below, we record the following elementary properties of W modules.

Proposition 3.4. Consider W, 4 for somen > d > 1 andd < p. For any i, with
l<i=<d, _

Wn,d/Radt(Wn,d) = Wn,i- (3)
Furthermore, if n1,n2,...,8m, d1,da, ..., dy, are positive integers with d; < p for
all i, then there exists a surjective homomorphism

0 Wya — Bim i Wa,
where n = » h; and p > d > maxi{d;}.

Proof. The first assertion is evident from Definition 3. 1.

To define a map satisfying the conditions of the second assertion we let r; = 0
and inductively let r; = ri—1 + n;_1 fori = 2,...,m. Note that r,, + #,, = n.
Now let ¢ be given on the generators of W, 4 as

C(vrf—i-j) =K
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foralll <i <mandl < j < n;. Note here that the elements v,, | ; on the left side
of the equation should be interpreted as the standard generators as in Definition 3.1 of
the module W, ; and the element v; on the right side of the equation is the standard
generator of W,,. 4.. To check that { is a homomorphism, we need only note that the
relations among the generators of W, ; are also satisfied by their images under ¢.
In addition, ¢ is surjective because every generator of the codomain is in the image

of ¢. ]

We record further natural maps of W modules which we will use in the next
section.

Definition 3.5. We define natural maps of kG-modules for any n > d > 1 and
d < p:
in,d . Wn—l,d—l —= Wn,d (4)

defined by identifying W,_; 4_; with Rad(W, ).
We define natural maps of kG-modules foranyn > d = 1landd < p:

pi’da p;,d: Wn,d e Wn—l,d (5)

where pi’d(vi) = v, | =i < n pfz!d(vn) =0 = p;,d(vl)é p;’d(vi) = Vi-1,
1l <i <n,

We conclude this section with a useful statement concerning the generation of
the indecomposable W module M = W, 4. Let vy,...,v, be generators for M
satisfying the relations of Definition 3.1. Let (a4, b) be any pair of elements of &,
which are not both zero. Then the element

By, g e g Ry fogt PhAyy s Ly,

has the property that
(ax + by)vgp = 0. (6)

This is a straightforward verification using the relations that xv; = 0, yv; = xv,,
and so forth.

Proposition 3.6. Let M = W, 4 for some n = d = 1. Suppose that the pairs
(a1,b1),...,(an, by) in k% have the property that the classes {ar,b1),...,{(an, by)
are mutually distinct elements of P1(k). Then

M =) Ker{(a;x + biy): M > M}. (7)
i=1
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Proof. For notational convenience, let X denote Y 7 ; Ker {(a;x+b;y): M — M}.
To prove the proposition, it suffices to show that each v; lies in K. To prove this,
we show that the k-subspace V spanned by vy, . . ., v, coincides with the k-subspace
W < JK spanned by V4, by, Vay b, Clearly, W © V), since each v, 5, 1s in
V. Consequently, if we show that W has dimension s, then W = V', IV € K and
M= K.

To prove that W has dimension #, it suffices to show that the elements v,; 4, , for

i =1,...,n,are linearly independent. This is equivalent to the non-vanishing of the
determinant
B O e B
ag_l ag_zbz - bg_l
Det . (8)
a1 a®2h, ... HF1

The above is a Vandermonde determinant (formally factor a?il out of the i™ row
to put it in the form given in [10]). Formally, it is a polynomial in the variables
d1,...,dn,b1,...,b, and has value ]_[Kj(ajb,; — a;b;). Consequently, because
the elements (a1,b1},...,{an, by) are distinct, we have the determinant is not zero.
Hence the dimension of W is n and the proposition is proved. H

4. The Quillen exact category of W modules

We briefly recall for our context of W modules the Quillen exact category structure
considered in [1]. We shall be interested in the case G = Z/p x Z/p, but the
following definitions apply to any finite group scheme.

Let

& 0 Ml M2 M3 0

be any short exact sequence of finite dimensional kG -modules. Then this sequence
is said to be locally split if for any m-point ag: K|t|/(¢t?) — KG the pull-back
of & viaag, 0 — ag(Mi1g) - ax(Max) — ag(M3g) — 0is a split exact
sequence. An admissible monomorphism, denoted My < M>, is an injective map
of kG-modules which fits into a locally split short exact sequence; an admissible
epimorphism, denoted M, — M, is a surjective map of kG -modules which fits into
a locally split short exact sequence.

As in [1], it is straightforward to verify that the following determines an exact
subcategory of the Quillen exact category of finite dimensional kG -modules with
locally split short exact sequences.

Definition 4.1. We denote by € the Quillen exact category of modules of constant
Jordan type as considered in [1]. We denote by €W the additive full subcategory



622 J. E. Carlson, E. M. Friedlander and Andrei Suslin CMH

generated by kG-modules of the form W, 4. Then €W C € inherits the structure
of a Quillen exact category.

If Ko(€) is the Grothendieck group of €, then there is a homomorphism
IType: Ko(€) — Z7#, which takes the class of M to its Jordan type JType(M)
at any m-point.

Theorem 4.2. Let i: CW — € be the inclusion of Quillen exact categories and let
tx: Ko(CW) — Ko(€) denote the induced map on Grothendieck groups. Then the
composition

ITypeoty: Ko(€EW) — Z7F

is an isomorphism. Thus, t« gives a left splitting of the Jordan type homomorphism
IType: Ko(€) — Z72.

The group Ko(CW ) is minimally generated by the set of classes {{W, ,] | 1 <n < p}.

Proof. Surjectivity of I'Type ot 4 1s clear, for the images under J'Type oty of the classes
of the modules

Wp,pa %_LPE Wp—l,p—la wie W2,p: Wl,p:k
generate Z7. Indeed, by (2) we see that
Ihpe(Wap) =l +[n—1+---+[l], 1<n<p. ©)

Thus, {Wp,p | 1 < n < p}is also alinearly independent subset of Ko(CW).
To prove injectivity, we first observe the existence of alocally split exact sequence

0 —> Wog —> Wnt,a ® W14 —> Wazg —>0 (10)

whenever n — 1 = d = 1 andd = p. Here we have 0 = (pfzd,p; g)and T =

(p;—l,d’ —pi_lﬂd), with piz,d’ P 4 s in (5). Note that each of these sequences is
locally split because the middle term has precisely the same (constant) Jordan type
as the direct sum of the two ends. The sequences in (10) provide the relations

[Wn,d] - Z[Wn—l,d] - [Wn—2,d] =0, n—-1>d=1,d=<p. (11)

Theserelations easily enable us to write any W), ; as an integral linear combination
of Win,p = Winm withm < d < p. In particular, we conclude that Ko(CW) is
generated by {W, , | 1 <n < p}. n
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5. The ubiquity of W modules

Proposition 2.8 tells us that modules with the equal images property are modules of
constant Jordan type. In Theorem 5.4, we verify that every module with the equal
image property is a quotient of some W module.

Using the classification by A. Heller and I. Reiner [11] of kG-modules with
radical square equal to O, we identify those modules which also have the equal images

property.

Proposition 5.1. Assume that M is a kG-module having the equal images property
and satisfying Rad?(M) = {0}. Then M is isomorphic to a direct sum of W modules.
More precisely, there exist integers s, t and Ry, ..., Ry such that

MW, ,8Wy@ D W, 2Bk (12)

Proof. The indecomposable kG-modules M with Rad?(M) = {0} have been com-
pletely classified in [11]. As pointed out in [1], using this classification it is an easy
exercise to verify that if an indecomposable kG-module M with Rad*(M) = {0}
has the equal images property then M is isomorphic to some W, 5 or k. [

From the above, we get some information on the Jordan types of modules with
the equal images property.

Proposition 5.2. Suppose that M has the equal images property and that the (con-
stant) Jordan type of M is ay[p] + ap—1[p — 1] + -+« + ai1[l]. Then there exists a
non-negative integer s such that a; = 0 fori > s and a; # 0 fori < s.

Proof. Let n; = Dim(Rad’~}(M)) — Dim(Rad’ (M)). Recall from Section 2, that
x!M = Rad' (M) because of the equal images property. Hence, n; is the number of
Jordan blocks of the action of x on M that have size at least {. Let s be the greatest
integer such that n; # 0 or equivalently, such that Rad*~ (M) # {0}. Clearly,
a; = Ofori > s, since the operation of x on M has no Jordan blocks of size larger
than s. Moreover, a; — n; and fori < s, we havethat ¢; = n; — m;_1.

Now by Propositions 2.8 and 2.9, the modules N; = Rad’~}(M)/Rad' (M)
have the equal images property for all /. Moreover, Rad?(N;) = {0}. Hence by
Proposition 5.1, each N; is a sum of W modules of the form W, ,. It follows that

n; = Dim(¥;/ Rad(N;)) > Dim(Rad(N;)) = n; 4
foralli = 1,...,s. Consequently, ¢; #* Ofor1 <i <s. [

Our next proposition is the key to establishing that modules with the equal images
property are quotients of direct sums of W modules.



624 J. E. Carlson, E. M. Friedlander and Andrei Suslin CMH

Proposition 5.3. Suppose that M has the equal images property and that m is an
element of M. For n sufficiently large, there exists a map . W, , — M such
that for some s, Y(vy) = m where vs € W, p is a generator as in the notation of
Definition 3.1.

Proof. We first verify that for some ¢, there exist elements mq, m1. ..., m; such that
mo=m, ym;=2xmijy; fori=0,...,t—1;, ym;=0. (13)

We proceed by induction on r where r is the least integer such that Rad” (M) = {0}.
In the case that r = 1, M is a sum of trivial modules, so that we may assume that
t = 1. If r = 2, then we use Proposition 5.1 and the explicit structure of W, > to
obtain mg, M. ..., m; satisfying (13).

Proceeding inductively, we may assume that m ¢ Rad(M). For if m € Rad(M),
we appeal to our induction hypothesis to find elements mo, m1....,m; in Rad(M)
satisfying (13) since Rad (M) also has the equal images property. By Proposition 5.1,
there exist integers ¢ and #1, ..., 74, (some of which may be equal to 1) such that
M/Rad*(M) = Wy, 2 -+ & Wag.2- Consequently, if # is the maximum of the
integersni,...,Hy,thenn > 2 and we can find elements mq, . .. , my such thatmo =
mandforalli =0,...,n—1, ym; = xm;4; and also that ym, € Radz(M). Then
by induction we can find m,.q,...m; in Rad(M) for some ¢ so that ym; = xm; 44
TOr I =illye wuyd —- anid-that pemg=a.

Interchanging the roles of x and y, we conclude that there exist an integer s > 1
and elements myg, ..., m_; such that

m=mo;, ymij_| =xm; fori =0,...,—s4+1;, xm_,;=0. (14)
Hence, we obtain a well defined kX G-homomorphism
U Weirp > M, Y(ui)=m_ 144 [

Theorem 5.4. Suppose that M is a kG-module. Then M has the equal images
property if and only if there exist a positive integer n and a surjective homomorphism

Y Wya — M,
where d satisfies Radd(M )= 0.

Proof. 1f such a map ¥ exists, then M has the equal images property by Lemma 2.9.
Hence, we assume that M has the equal images property. Our objective is to construct
the map .

Let my,...,m, be a collection of elements such that the cosets m; + Rad(M)
fori = 1,...,n form a basis for M/ Rad(M ). By Proposition 5.3, for each i there
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is an integer #; and a homomorphism ¥ : Wap,, , — M such that ¥ (vy, ) = m;.
Thus by Nakayama’s Lemma we have that the sum of the maps

v Bimy Wanp > M

given by W(wy,...,wy) = Y ¥;(w;) is surjective. Moreover, each summand of
this map clearly factors through W, ,/ Rad? (Wan;,p)- The proof of the theorem is
thus completed by an appeal to Proposition 3.4. ]

The following corollary of Theorem 5.4 will be key to our discussion in Section 7
of generic kernels.

Corollary 5.5. Suppose that k is an infinite field and that S C PL(k) is infinite. Let
M be any k G-module having the equal images property. Then

M = Z Ker{ax +by: M — M}
{a.byes

Proof. By Theorem 5.4, there exist an integer # and a surjective homomorphism
V. Wa,p — M. To prove the theorem we need only note that for any pair (a,d) #
(0,0) in k2

V(Ker{ax +by: Wy p— Wy pt) C Ker{ax +by: M — M}

Then by Proposition 3.6, we have that
M=yWy,)= Y ¥(ime Wy,lax + byym =0}
(a,b)eS
c > {meM|ax+byym=0}
(a,b)eS

thus proving the corollary. [

If M/ Rad?(M) is indecomposable and if M has the equal images property, then
we give in Proposition 5.6 a “much more efficient” surjection from a W module onto
M than that described in the proof of Theorem 5.4..

Proposition 5.6. Assume that M is a kG-module having the equal images property.
If M/ Rad*(M) is indecomposable, then M is a quotient of the W module Wy, p for
n = Dim(M/ Rad(M)).

Proof. Because M/Rad?(M) is indecomposable, Proposition 5.1 implies the exis-
tence of generators ay, . .., @, with the property that

ya, =0, xay =0, and yag; =xa;4
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modulo Rad?(M) wherei = 1,...,n — 1. Moreover, the equal images property for
M implies that
Rad*(M) = x°M = xyM = y*M.

We proceed to modify the set {a1,...,a,} of generators in order to obtain a new
set of generators satisfying the conditions on {vy,...,v,} given in Definition 3.1.
Our first step involves observing that xa; is in Rad?(M); thus, xa; = x%w for some
w. Replace a1 by a] = a1 — xw, so that xa; = 0. Since ya] — xa; = x%w’ for
some w’ in Rad? (M), we may replace @, by ay, = az + xw’, so that ya| = xaj.
Continuing, we obtain {aj,...,a,} such that

o . Fo !
xay =0, and ya; =xa;

fori=1,...,n—1.

There remains to modify this new generating set {a{,...,a,} to obtain a gen-
erating set which satisfies the above relations and further satisfies the relation that
ya,, = 0. Since ya’, is in Rad?(M), we may choose £,...,£,_5 € k such that

ya, = yz(ﬁla’l + oo+ £y pal, ,) modulo Rad*(M).

Observe that we do not need to add aterm of the form x2£,,_; a;_l , because ya;_l —
xal, so that y2a!, | = xya), lies in Rad®(M).
Set

i—2
7 7 7 ! 7 E : 7

i=1
A straightforward calculation confirms that
xbp =0, yb, =0, and yb; =xb;; modulo Rad*(M).

We continue this process, inductively obtaining the corresponding set of relations
modulo the submodule Rad’ (M), stopping at j = p, since by Proposition 5.3,
Rad? (M) = {0}. [

Corollary 5.7. Ler x’, y' € kG be achoice of generators of Rad(kG), letn = d > 1
with d < p, and let M be a kG-module generated by {wq, ..., Wy} subject to the
relations generated by

x'wy=0=yw, &NPw =0 yw=xw4, 1<i<d.

Then M is isomorphicto W), 4.

Proof. As argued in the proof of Proposition 3.3, M has the equal images prop-
erty. Since M clearly satisfies the condition that M/ Rad?(M) is indecomposable,
Proposition 5.6 implies that M is isomorphic to W, 4. [
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The following proposition verifies that there are a great many kG -modules of
constant Jordan type. This is because any quotient of a W module must have the
equal images property and thus also constant Jordan type.

Proposition 5.8. Suppose that M = W, 4 for somen > 4and 3 < d < p. Suppose
that L and N are subspaces of Soc(M ) (the socle of M) which in this case is equal
to Rad? L(M). There exists an isomorphism ¢: M/L —> M/N of kG -modules
onlyif L= N.

Proof. Recall that Soc(M) is the sum of the irreducible submodules of V7. Hence,

Soc(M ) is atrivial kG-module and L, N are kG -submodules of M. If M is generated
by v1,...,V, as in Definition 3.1, then Soc(M) is the subspace of M generated by
y¥1yy, ..., y* Yv,_z.1 and both x and y annihilate the subspaces L and N.

We assume that v, ..., v, are the generators of M with precisely the relations as
in Definition 3.1. Suppose that £ = ax —by for (a, b) # (0,0)in k2. Multiplication

by £ induces a surjective homomorphism
£: M/Rad(M) — Rad(M)/Rad?*(M)

whose kernel has dimension one and is generated by the class of the element my; =
a" vy +a" 2bvy + -+ b" vy, In particular, we have that £ - m; = 0. Thisisa
straightforward verification using the generators and relations.

We claim that if m € M/L, m ¢ Rad(M/L), with £m = 0, then m = cmy
modulo Rad(M/L) for some non-zero ¢ € k. The reason is that L € Rad?~1(M)
for d = 3, and hence

M/Rad(M) =~ (M/L)/ Rad(M/L)
and
Rad(M)/Rad?(M) ~ Rad(M/L)/Rad?(M/L)

where the isomorphisms are induced by the quotient map M > M/L. The same

claim holds for M/N.
Assume that ¢ M/L — M/N is an isomorphism. We define 8 = q;lgo’ql, S0
that @ fits in the commutative diagram

(M/L)/Rad(M/L) ——= (M/N)/Rad(M/N) (15)
411 421
M/ Rad(M) ¢ M/ Rad(M)

where ¢’ is the map induced by ¢, and the two vertical arrows are isomorphisms
induced by the natural quotient maps. The commutativity of (15) implies

@(me + L) =cemeg + N modulo Rad(M/N),
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for some constant element c;. In particular, we get that
@(mp + Rad(M)) = cymy + Rad(M).

In other words, the class of my is an eigenvector for the map of & with eigenvalue ¢;.
Now because the field £ is infinite, we may choose #n distinct scalars b1, ..., 5,
in k& and form the elements £; = x + b; y. Then we have n elements

My, = m; = vy + by + bfvg, +oee +bf*1vn.

Observe that the matrix of coefficients of this collection of elements has the form

1 by ... b
1 B3 e bg—l
1 by ... br

which is a Vandermonde matrix. Its determinant is [J; <;bi —b;) # 0 and we
conclude that the set of classes of the elements my, ..., m, is abasis for M/ Rad(M).
As a consequence, the matrix of € with respect to this basis is a diagonal matrix. We
now show that it is a scalar matrix.

Suppose that £ = x + by, where b < k is notequalto any of by, b,,.. ., b,. Then
there exist @y,...,d, € k such that

mp=v1+bva+ -+ 0" v, =aim + -+ anm,,.

Note that @; # 0 for all i. This is because, if @; = 0, then substituting the row
(1 b ... b”fl) for the i™ row of the above matrix, we get a Vandermonde matrix
with zero determinant which is not possible.

Applying 8 to the above expression, we getthat ¢y — ¢y, for every i since the m;’s
are linearly independent. Hence, we have that for any v in M/ Rad(M), 8(v) = cv
where ¢ = ¢; for any (and every) £. In particular, we have thate(m + L) =cm + N
mod Rad(M/N) forany m € M.

At the level of Rad?~1(M/L), we have that
d-1

(y vg+L):cyd_1v;-+N fori =1,...,.n—d +1,

since Rad? (M) = 0. Hence, for any element m € L, m can be expressed as a
linear combination of the elements y¥—1vy,..., y?*1v,_4s.1. It follows that 0 =

e(m + Ly=cm + N,and m ¢ N. Therefore . = N. []

We end this section with the following question on the possibility of classifying
modules of constant Jordan type. We remind the reader that if a module category
has wild representation type, then it is generally considered that its objects can not
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be classified in any reasonable sense. Specifically, if the module category is wild
then there is an embedding of the category of finite dimensional k{x, y }-modules
into the module category (cf. [4]); here, k{x, y} is the associative k-algebra freely
generated by two non-commuting elements. Consequently, a classification of objects
in the module category would imply the existence of a canonical form for pairs of
non-commuting # > # matrices for all #n. Such a form is unlikely to exist.

Question 5.9. Does the full subcategory of the category of finitely generated kG-
modules consisting of all modules of constant Jordan type have wild representation

type?

6. Associated bundles on P!

In [6], a construction is presented which associates to a finite dimensional k G-module
M of constant Jordan type a family of algebraic vector bundles

{Ker {OL, Opojrricyy @ M} |1 < j < p}

on the projectivization of the affine k-scheme V(&) of 1-parameter subgroups of G.
Since the group algebra of Z./p x Z/ p is isomorphic to the group algebra of the
infinitesimal group scheme (1) X 41y, we may view W modulesfor Z/p < Z / p
as modules (of constant Jordan type) for G,y X Gy, For G = G,y x Gay,
V(G) is simply the 2-dimensional affine space A2 over k so that Proj k[V(G)] =~ P!,
the projective line.

In this section, we set G = (1) X Guqy and set @ = Opirrcy — Opi1- In
the proposition below, we identify the bundles

{Ker {0L,0 @ Wy q} | j = 1,2}

The general construction of Ker {@é, Opojk[vic)] @ M} specialized to G =
G401y X G4() can be described concretely as follows. Write kG = k[x, y]/(x?, y?).
We associate to any finite dimensional £ G-module M the following endomorphism

kls,tf]@M —k[s,t]@M, [f,0)@mi=>sf(s,0)Q(x-m)+tf(s,1)D(y -m).

We view this endomorphism as the map on the k[s, f] @ kK G-module k[s, f] @ M given
by multiplication by

O =5sRx+1t2y kst RkG.

Because ®g is homogeneous of weight 1 (with respect to the grading on ks, ¢]
assigning both s, f weight 1), we obtain a projectivization of our endomorphism

Og: OO M — O M,

a map of coherent (?-modules on the scheme P1.
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Here, and below, we extend our notational shorthand of @ for @p1 by letting @ (n)
denote Op1(n).

Proposition 6.1 (cf. [6], 5.1). As above, let G = G 01y X Ggy, and let M be a
finite dimensional kG -module. Let agp: Klul/(u?) — KG be the (flat) map of
K-algebras sending u to ax + by for any (a,b) € A(K)* — {0}, where K/k is
some field extension. Then the action of a,p(u) on Mgy = K @ M is given by
restricting along k[s,t] — K via s — a, t — b the action of muitiplication by O¢
onkl[s,t] @ M.

In particular, if for a given j, 1 < j < p, the rank of o - M — M is
independent of (a,b) # 0 (i.e., if M has constant j-type in the Iermmology of [6
then the kernel of @" on (@ & M is an algebraic vector bundle on P, sub-bundle Of
the trivial bundle O ® M:

Ker{®L O @M} C O @ M.

Moreover, the image of é’(‘; on O @ M is an algebraic vector bundle on P1(k), a
sub-bundie of O(j) @ M:

Im{®L, 00 M} C o) M.

Remark 6.2. The infinitesimal group scheme (,(2) also has group algebra isomor-
phic to the group algebraof Z/ p < Z / p. The affine scheme V({,(2)) of 1-parameter
subgroups can be identified with the spectrum of the graded polynomial algebra
k|so,s1] with deg(sp) = 1, deg(s1) = p. The associated projective scheme is a
weighted P! isomorphic to P! itself. This contrasts sharply with the rank 3 case:
Proj k[V(Gaay * Gaqy X Gamy)] ~ P? whereas Proj k[V(Ggmy)] is the weighted
projective space P(1, p, p?) which is a singular variety.

The reader can readily check that the bundles on P! =~ Proj k[V(G (1) * Ga(py)]
associated to a Z / p x Z/ p-module M of constant Jordan type arising when we use
the infinitesimal group scheme (5,(1) < (54(1) are isomorphic to those arising when we
use the infinitesimal group scheme (s, (2y, once we identify Proj £ [V(G, 1) < Gany)]
with Proj k[V(Gg))]-

The following proposition is essentially given by Proposition 6.13 in [6].

Proposition 6.3. Let us use the isomorphism of the group algebra of Z/p x Z/p
with the group algebra of kG, G = G,y X Gy, in order that we may view W, 5
as a kG-module. Then

Ker {Bg,0 @ Wy} ~ 09" L ¢ 9(—n +1).
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Proof. Observe that
Im {8, 0 @ Wa2} ® O(-1) C 0 @ Wap

is a free module of rank n — 1 on P1. Hence, we may identify this image with @ @
Rad(W,,2). As shown in Proposition 6.13 of [6], the quotient of Ker {®g, O @ W, 2}
modulo Tm {@G, O @ Wyat @ O(—1)is @(—n + 1). This immediately implies the
assertion. Note here that the summand @?(—n + 1) is the kernel of the operator @)G
on the subspace generated by vy, ..., v, (in the notation of Definition 3.1). L]

The extension of Proposition 6.3 to all W}, ; now follows as we show in our next
proposition.

Proposition 6.4. As in Proposition 6.3, we view the 7./ p < 7./ p-moduie W, 4 as a
G = Guay x Gyay-module. Then

d—1
Ker {0g, 0 @ Wy 4} = 0" o (B O(—n +1i).

i=1

Proof. The proposition is proved by an induction on Loewy length 4, using the
embeddingt, 4 Wy_14-1 —> Wy.4 of (4). By induction, Ker {@)G, ORWy_1,4-1}
is isomorphic to @®"+1-4 o @f:_lz @ (—n +i)and embeds in Ker {@)G, O Wya}
The summand @(—n + 1) of Ker {éG, ¢ @ Wy 2} arising in Proposition 6.3 comes
from the kernel of the operator &g on the first layer (i.e., the head) of ks, {] @ W, 2.
Since multiplication by ®g on k[s,t] ® W, 4 can be viewed as an endomorphism
of degree —1 of this k[s, f]-module equipped with a grading provided by ®¢g, we
conclude that this summand @ (—n + 1) of Ker {@)G, & @ W, embedsin W, 4 in

such a way that its intersection with Ker {®¢, O @ W,_; 41} is trivial. Thus, we
have a natural injective map

O(—n—+1) @ Ker {OG, 0 @ Wy_1.4-1} — Ker {86, 0 @ Wy gh.  (16)

We readily verify that Ker {éG , @ @ W, 4} hasrank n. That is, the homomorphism
Og: kls.t] @ Wy q — kls,t] @ W, 4 maps the (M layer of W4 (which has rank
n+1—i)ontothe (i —1)* layer fori < d and it mapsthe d® layerto 0. Consequently,
we conclude that (16) is an isomorphism by a comparison of dimensions. W

The computation of the kernel of
OL =BgoBg: O Q Wpg — OQ) ® Wy 4

now follows easily since Serre’s computation of the cohomology of P! (see [9],
I11.5.1) implies that the extension mentioned below is split.
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Proposition 6.5. Let G = G,y % a0y, We regard W, 4 as a kG-module, via the
isomorphism of the group algebra of Z/ p < 7./ p with kG. Then

Ker {02, 0 @ Wy g} ~ Ker{Bg, 0 @ Wy 41 P Ker {06, 0 @ Wp_y 41}

d-1
~ 092422 & (R 0(—n +1)°?) & O(—n + 1),
i=2

Proof. The second asserted isomorphism follows immediately from Proposition 6.4.
To establish the first isomorphism, we investigate Ker {®% , @ @ W41 by ob-
serving that it fits in a natural short exact sequence

0— Ker{Bg,0 @ W4} —> Ker{®%, 0 @ Wy, 4}

- - (17)
— Ker {@¢,Im{®c, O @ W, 41} — 0.

As argued in the proof of Proposition 6.4, multiplication by @ on k[s, ] @ W, 4
can be viewed as an endomorphism of degree —1 of this k[s, t]-module equipped with
a grading provided by ®&¢. Thus, we have the identification

d
Ker {8F, 0 @ Wa} ~ €P K.
i=1

where
K(i) = Ker {®%: O @ Wy 4
> (O IWy_i 243 2)/(OQ) S Wp_i_3,4-:-3)}

Restricting the extension (17) to K(i) we obtain extensions

0 — Ker{Og, 0 @ Wy 4_i} — K(i)

» (18)
—> Ker{®g, O Q@ Wy ; 141} — 0

The proposition now follows from the observation that the extensions (18) split,
since the corresponding coherent Ext! groups vanish thanks to Serre’s computation
of H*(P!, ®@(£)). The one non-vanishing Ext! group (of coherent @-modules) which
arises in this extension occurs in the case # = 3, with Ext%g (0,0(=3+1))#0. For
this one case, one easily observes that the copy of @ in the quotient splits. ]

7. Generic kernels

Throughout this section, we assume that the field k is infinite. We continue to use
the notation P1(k) to denote the k-rational points of P! which we identify with the
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collection of lines in k2. That is, P1(k) is the set of equivalence classes (a, b} of
pairs (0,0) # (a, b) € k?, where two pairs are equivalent if they lie on the same line
through the origin. We associate to any (finite dimensional) kG -module M a kG-
submodule K(M ) C M which has constant Jordan type. Indeed, the characterization
inTheorem 7.10 of K(M) C M as the maximal submodule of M which has the equal
images property implies that M — K(M) is functorial. This is not immediately
evident granted the choices we make in Definition 7.1.

We fix a choice of generators x, y of Rad(kG), so that kG >~ k[x, y|/(x¥, y?).
For any {a, b} € P1(k), write

ayM = Ker{ax +by: M — M},

Note that ¢, ;M does not depend on the choice of the representing pair (¢, b) € %>,
For any subset S C P!(k), define the subspace

sM= )" unM
{a,byeS

Since both x and y commute with each ax + 2y € S, sM is a kG-submodule of
M. Clearly,for S’ ¢ S, M C sM.
In the degenerate case in which S = @, we set gM = {0}.

Definition 7.1. Let &k be an infinite field and let M be a finite dimensional £ G-module.
We define the generic kernel of M to be

KR(M) = M sM.
ScPl{k) cofinite

Because M is finite dimensional, we may choose for a given M a cofinite S C
P1(k) such that M = K(M). Observe that

R(K(M)) = K(M), (19)

since 7(sM) = sntM.
We give the following elementary example. More examples follow later.

Example 7.2. Let M = kG, the free cyclic kG-module, with k infinite. Then
KIM) = Rad? 1 (kG) =~ W, .

To prove the equality K (M) = Rad? 1 (kG), we first verify that K (M) is contained
in Rad?~1 (kG). For this we note that k£ G has constant Jordan type p[p] and hence any
element of Ker {ax +by: M — M} mustbe in (ax + by)? kG < Rad? 1 (kG).
Hence, R(kG) € Rad?~!(kG) bythe definition. Onthe other hand, foranya, b € k,
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(ax + by)? ! € Ker{ax + by: M — M. Hence, for any cofinite set S < P!,
the elements (ax + by)? ! with ax + by in S generate all of Rad? 1 (kG) (see
Proposition 3.6). So, Rad? 1 (kG) € &(kG) by the definition of the generic kernel.

It was shown in Example 3.2 that Rad?~1(kG) =~ Wp,p has the equal images
property and thus is equal to its own generic kernel. Hence, the calculations in
the examples could also be verified using Proposition 7.8 which follows later in the
section.

Proposition 7.3. Suppose that the field k is algebraically closed. Let M be any
kG-module. Then K(M) has the equal images property.

Proof. Using (19), we may and do assume that M = K(M ). By Proposition 2.6, it
suffices to show for (0,0) # (a,b) < k? that £iapy- M = x M. (Inthis notation,
La,oM = x - M.) Clearly, we may assume that b # 0. Write M — sM where
S < P!iscofinite and S contains neither (1, 0} (which correspondsto x € Rad(kG))
nor {a, b). For any {c,d} € S, there exist elements e, / € k such that cx + dy =
ex + f(ax + by). Note here that ¢ and f are both not zero because the three points
(1,0}, {c,d}, {a, b} are distinct. Then

£0,00 (c.a)M = L py < e,y M. (20)

The proposition now follows from the definition of the generic kernel by taking the
sum indexed by {¢,d} € S on both sides of (20). ]

The following proposition justifies our definition of generic kernel without passing
to the algebraic closure of our base field &.

Proposition 7.4. Let k be an infinite field and M a kG-module. Then for any field
extension L/ k,

L@ &K(M)=K(My).

Proof. Let S C Pl(k) be a cofinite subset such that R(M) = s M. We first assume
that the field L is algebraically closed. By Proposition 7.3, K(M; ) has the equal

images property so that we may apply Corollary 5.5 to K (M ) and the infinite subset
S ¢ PYK) c PY(L). We conclude that

RMp)= > Kerfax | by: (ML) > K(ML)}
{a,b)esS
=L® Y Kerfax+by: K(M)— K(M)} =L & K(M).
{a,b}eS
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For an arbitrary field extension L/k, let T C P!(L) be a cofinite subset such
that R(M;) = ¢(M;). Since S N T is also cofinite in P1(k), we may assume that
S =8 MF, Thus,

LKWM)=LosM = Z L& unM = Z {apy (ML) € K(My).
{a.b)es {ab)eS

Let L be the algebraic closure of L. By the first part of this proof, we have that
Dimg (R (M)) = Dimz (R(L ® M)) = Dimy (K(ML)). (21)

Since LOK(M) € K(Mp),(21)implies the asserted equality L @ K (M) = K(Mp).
]

We now extend Proposition 7.3 to arbitrary infinite fields.

Proposition 7.5. Let k be an infinite field and M a finite dimensional kG-module.
The generic kernel of M has the equal images property. In particulay, K{(M) has
constant Jordan type.

Proof. Let €2/ k be an algebraic closure. By Proposition 7.3, K (Mg ) has the equal
images property. By the preceding Proposition 7.4, this is equivalent to the assertion
that €2 @ K(M) has the equal images property. By the equivalence of (1) and (2) of
Proposition 2.6, this implies that K (M) has the equal images property.

The second assertion follows immediately fromthe first and Proposition2.8. [

We next verify that the maximal subset S C P! (k) with the property that M =
K(M) has a natural characterization in terms of the action of kG on M. Observe
that any infinite subset S C P!(k) is dense in P'!; in other words, any non-empty
open subset U C P! contains a point of S.

Proposition 7.6. Let k be an infinite field and M afinite dimensional k G -moduie with
generic kernel K(M). Let r be the maximum of the ranks Rank {ax(t): M — M}
for all m-points ag: K[t]/(t?) — KG. Then we have that

(1) forany £apy = ax + by, (a,b) # (0,0), a,b € k, the kernel of the multipli-
cation Ker {{i,py: M — M} is a subset of K(M ) if and only if the rank of the
operator g py: M — M isr, and

(2) the cofinite subset
{{a,b) |Rank{f(upy: M — M} =71} C Pl(k)

is the largest subset S C PL(k) with the property that sM = K(M).
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Proof. First note that the set of all classes of m-points agx: K|[t|/(t?) — kG with
the rank of ax (r) maximal on Mg is an open subset of I1(G) by [7]. Hence, there is
some {(c,d} € P1(k) such that Rank e,ay: M — M} is maximal and satisfies the
condition that Ker {£i. 4y: M — M} C R(M). For an arbitrary {a, b} in Pl(k), the
inclusion Ker {£, p): K(M) — K(M)} — Ker {{1,py: M — M} is the identity if
and only if Ker {£1, 0y: M — M} C K(M).

We have the following relations:

Dim(Ker {E(a,b): M — M}) = Dim(Ker {f(c’d)I M — M})
— Dim(Ker {£1, 4y: RIM) — K(M)})
— Dim(Ker {£1, y: K(M) — K(M)}).

In the above chain, the inequality is a consequence of the maximality of the rank
of £,,4y, the middle equality follows from the choice of £;, 4, and the preceding
observation, and the last equality is a consequence of the equal images property of
K(M). Thus, we conclude that the left inequality is an equality (and thus £, 5
has maximal rank) if and only if Ker{£1, p0: M — M} = Ker {£1,5): K(M) —
K(M)}. This happens if and only if Ker {1, 5y: M — M} C K(M), by another
application of the above observation.

If £14 py: M — M does not have maximal rank and if ' C P!(k) contains
{a’, b}, then Ker {E’(a,’b,) M — M} C v M,sothat v M is not contained in S?(M%

As an immediate corollary of Proposition 7.6, we obtain the following character-
ization of a k G-module of constant rank.

Corollary 7.7. Let k be an infinite field and M a finite dimensional kG -module.
Then K(M) = prgyM if and only if the rank of L, ) on M is independent of
{a,b) € PL{k).

Proposition 7.8. We have the following.

(1) Suppose that . M — N is a homomorphism of kG-modules. Then we have
that Y(K(M)) € K(N).

(2) If M is a kG-module having the equal images property, then K(M) = M. In
particular K(W, 1) = Wy, 4 foranyn and d.

(3) The association of a fimite dimensional kG-module M to its generic kernel

determines a functor
K: mod(kG) — mod(kG).

Proof. The first statement is a consequence of the observation that

Y (Ker{f: M - M}) C Ker{f: N - N},
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for any £ € kG. Hence, if R(N) = sN for S cofinite in P! (k), then
YR(M)) € ¥(sM) < sN = K(N).

This proves the first statement. The second part follows from Proposition 3.6 and
Corollary 5.5. The third statement is obvious from the first two. il

Clearly, the functor K (—) preserves monomeorphisms. However, as the following
example shows, K(—) is not left exact. (The augmentation map kG — k is asimple
example of an epimorphism with the property that the induced map on generic kernels
is not an epimorphism.)

Example 7.9. Let M = Rad? ! (kG) and let L < M be the submodule generated

by x?~!. Then we have an exact sequence

0 L M N 0

where N = M/L is the quotient. The modules M and N have the equal images
property and hence they are equal to their own generic kernels. However, it is easy to
check that the generic kernel of L is its socle which is isomorphic to k. So applying
the functor & we obtain the sequence

0 k M N

which is not exact at M.
The following theorem characterizes the generic kernel K(M) of M.

Theorem 7.10. Let M be a finite dimensional kG -module. The generic kernel K(M)
of M contains every submodule of M having the equal images property. Thus, K(M)
is the maximal submodule of M which has the equal images property. Moreover,
K(M) is the maximal submodule of M which can be written as the quotient of a W
module.

Proof. The first two assertions are consequences of Propositions 7.3 and 7.8. The
last follows from Proposition 5.4. ]

We obtain as an immediate corollary a proof of the statement that K(M) C M is
“intrinsic”.

Corollary 7.11. Let M be a finite dimensional kG-module. Then K(M) does not
depend upon the choice of the generators of Rad(kG).

We explicitly determine generic kernels of the syzygy modules ©2"(k) in Exam-
ple 7.12 and “L;-modules” in Example 7.13.
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Example 7.12. A minimal projective resolution of the trivial module & for kG can

be given as
) 9 e

Py % Py 5 Py a0

where P, =~ (kG)*T! is a free kG-module with free basis CHDs wr » » Cii-  LHE
boundary maps are given by the formulae

d2n—1 (Czn—l,o) = XCap—2,0;

=]
Orn—1(Con—1,2i—1) = x¥ "Con—n2i-1 + yCan—2,2i—2,
a N . ab—1 )
2n71(c2n71,21) = XCop—22i — ¥ Cop—2,2i—1,
a2n—1(c2n—1,2n—1) = YCon—2,2n—2,

and
1
daulbonn) =% “Con— 10,

d2n (C2n,2i—1) = XC2p—1,2i—1 — YCo2p—1,2i—2,
_ p—1 <
Oan(Con2i) = P "Con12i + ¥F " Can—1,2i-1,
_ .p—1
a2n(c2rz,2n) = y*” Con—12n—1-

This is a standard, well-known calculation [3].
Fromthe above we get that the module 22" 1 (k) has generatorsay, b1, . . ., tn, bn
and relations

x? gy =0=y? b, ya; = xb;, and x? la; = —y? by,

That is, we take a; to be the class of c2,—1 2; modulo the image of d2, and b; to be the
class of ¢3,_1,2;—1. The module Q22#(k) is generated by elements ay, b1,dz, ..., dy,
by, an41 with relations

xa; = 0= Yapp1, xa;=yP 'b;_y, and ya; = —xPliy;.

Inthe case that p = 3, we can draw diagrams which reveal the structure of Q3(k)
and Q*(k) as follows:

ap ) bz
) — v \y\\./‘/ \y\\. / \x\ F \
y N N \\\ g \x /
Y S /‘/
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and
Q4(k) ==
bl b2

VRN VRN
ay . . as . . as
\y\\ // \y\\ // \yx\ s \y\\ / \y\\ / \y\x Vg
[ ] L ] L 3 L 3 L 3 [ ]
\y\\./ \yx\./ \yx\‘/‘/ \yx./‘/

With the above information, it can be calculated that K(22"~1(k)) is the sub-
module of 22"~1(k) generated by the elements

x/yP 2y xIyP 2 p forj=0,...,p—2andi=1,...,n.
Likewise, we have that K (24" (k)) is the submodule generated by the elements
a1, ., 8p41, and

xfyp—Z—J'bi, for 7 = 0y, oy B —2tidd = Tios o0t

The above conclusion is made using Theorem 7.10. That is, we need only look for
the largest submodule having the equal images property. In the diagrams we look for
the largest submodule having the “W” shape. This exercise is left to the reader.

Example 7.13. Similar arguments can be made for the L, modules. For example,
suppose that { € H"(G, k) is a nilpotent element. Let L; be the module which is the
kernel of a cocycle

¢ Qrk) — k,

representing the cohomology element {. Then K(L¢) = K(Q2"(k)), the isomorphism
being induced by the inclusion of L¢ into Q" (k).

A justification for the above statement is the following. Suppose thatf = ax + by
for (a,b) # (0,0) in k2. If n is even, then the restriction Q" (k) ey of Q" (k) to
the subalgebra generated by £ has the form & & k{£)* for some s. Here k{£} is the
rank one free module over k (£) = k[f]/(¢+#). Because { is nilpotent, we must have
that the summand isomorphic to & lies in the kernel of the cocyle £, as otherwise the
cocycle ¢ would be left split. In particular,

Ker {£: Q"(k) — Q"(k)} C Ker {C}.

It is not difficult to see that the same happens also in the case that # is odd. Hence,
fromthe definition of the generic kernel, we can see that R(Q"(k)) < Ker {¢} = L,
as asserted.
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On the other hand, if { not nilpotent, then there exists an open subset S of PP 1 such
that for any {a,b) < S, the summand isomorphic to & in the decomposition of the

restriction of Q27(k) to {£4,p)} is not in the kernel of . As aresult X(L.) is aproper

submodule of K(2”%(k)). Again we should look for modules with the “W™ shape.
It can be proved in a similar way that for { not nilpotent, K(L;) = xK(Q"(k)) =
Rad(R(Q2"(k))).

8. Duality and filtrations

The purpose of this section is to show that some of the objects defined earlier in
the paper have dual notions. The main result of the section shows that the generic
kernel, together with its dual, the generic image, defines a filtration on any module of
constant Jordan type. The filtration is distinct from the radical filtration and invariant
under automorphisms of the group algebra.

In this section we assume that the field & is infinite. Again, we denote the set of
lines through the origin in k2 by PL(k), the set of k-rational points of PL. Let kG
be the group algebra of an elementary abelian group of rank 2, and fix generators x
and y of the radical of kG. For M a finite dimensional kG-module, we let M¥ =
Homyg (M, k) denote its k-linear dual. Recall that M¥ is a kG-module under the
operation defined by the equation (g /)(m) = f(g 'm) where g € G, f € M" and
me M. Foreach V C M, we associate

Vi={f:M—=k|f(V)=0c M"
Note that if V is a kG -submodule of M, then V= is a submodule of M¥.

Lemma 8.1. Let M be a finite dimensional k[t]/(t?)-module and let V. C M be a
submodule. Then the Jordan type of V is the same as that of M"/ 7

FProof. The canonical pairing
VoM V) > ko v f = f(v)

is a perfect (non-degenerate) pairing of k[r]/(t#)-modules. The lemma follows by
observing that the k[t]/(t#)-dual W of a k[t]/(t?)-module W has the same Jordan
type as that of W. [

We introduce the generic image I (M) of a finite dimensional AG-module M,

whose construction and properties are analogous to those of the generic kernel K (M)
of M. We see in Proposition 8.4 that K(M) and I (M) are related by duality.
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For any cofinite subset S C P!(k), define the subspace

Ms = m Imi{ax +by: M — M}
{apreS
in analogy with ¢ M of the last section. Here, as before, the image of multiplication
by £ = ax + by is independent of the representative of the class {(a,b) € P,

Since both x, y commute with each ax + by for (a¢,2) € S, Mg is a kG-
submodule of M. Clearly, for S’ C S, Mg O Mg.

Definition 8.2. We define the generic image of M to be

IMy= Y = Ms

ScPLl{k) cofinite

As with the generic kernel, because M is finite dimensional, there exists a subset
S in Pl (k) which is cofinite and has the property that Mg = J(M).

Example 8.3. Suppose that M is the submodule of kG generated by m — y?~ 1
Then (ax + by)m = axm. Consequently, I(M) = Rad(kG)M = Rad(M). On
the other hand, the only subspace of M which is annihilated by (ax + &y) fora # 0
is generated by x#~1m. Hence K(M) is the submodule x#~1 M, which is strictly
contained in J(M ). This situation contrasts sharply with the results of Theorem 8.6
that follows. We note also that 3 (M) does not have constant rank in this example.

Proposition 8.4, Let M be a finitely generated kG-module. Then
M)~ KRMHE, QM) =~ IMH (22)

It follows that M* /3 (M™) has constant Jordan type. In addition, I (M) has constant
Jordantype ifand only if M* | R (M ™) does, inwhich case their Jordan types are equdl.

Proof. For any linear map £: M — M,
UMY ={g: M —k|gol=0=Ker it M =~ M%) (23)

For every cofinite subset S ¢ P1(k),

1
( m Im{ax +by: M — M}) = Z Ker {(ax + by)*: M* — M"}.
{a,b}eS {ab)eS
(24)
Thus, we conclude that

(M = KM,
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It follows that
M/S(M) ~3IMH = QM) and IWM) = KM ~ M/K(M).

The second statement is a consequence of the fact that K (M) has the equal images
property. ]

The next lemma is key to the proof of Theorem 8.6.

Lemma8.5. Let M be a kG-module of constant rank. Then for any (a, b) < P1(k),
the kernel of multiplication by ax + by on M/xK(M) is equal to K(M )/ xK(M).
Hence, (M/xK(M) < M" has the equal images property, and thus

(M/xK(M))" < K(M*).

Proof. Let M denote M/xK(M). By Corollary 7.7, we know that K (M) = s(M)
where S = PL. Observe that

K(M)Y/xK(M) C Ker {ax +by: M — M},

since we know that (ax + 2y)K(M) = xK(M).

To prove the reverse inclusion, suppose that m + K (M )is in Ker {ax +by: M —
M for some m in M. Then (ax + by)m € x&(M) = (ax + by)K(M). So
(ax +by)m = (ax +by)m' forsomem’ € K(M). Butthen (ax +by)(m—m’) =0
andthusm—m’ € Ker {ax+by: M — M} < K(M). Itfollows that m isin K(M),
and hence

Ker {(ax +by): M — M} C K(M)/xK(M).

The second assertion follows by dualization and an application of Proposition 7.8.

]
Theorem 8.6. If M is a kG-module of constant rank, then I(M) = xK(M).

Proof. Observe that x& (M) € J(M), because xK(M) = (ax + by)K(M) for
any {a,b) € Pl(k). To prove I(M) < xK(M), we apply Lemma 8.5. Namely,
Proposition 8.4 and Lemma 8.5 imply that

(M) = (KM C (M/xKM))") = xK(M). m

To formulate the next theorem, we find it convenient to introduce the dual notion
of the equal images property of Definition 2.3. As before, if ag: K[t]/(t?) — KG,
is a w-point, we let £, = ag(r) € KG.
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Definition 8.7. A finite dimensional kG -module M is said to have the equal kernels
property if

(Ker {£y: Mg — Mgl)a = (Ker{€g: My — My})o

for any two m-points ag: K|[t]/(t?) - KG, fr: L[t]/(t?) — LG and any field
extension §2 of both K, L.

As an example, notice that if M has constant rank, then M/x K (M) has the equal
kernels property by Lemma 8.5.

Remark 8.8. In Example 2.2, the module M {fails to have the equal kernels property,
even though the kernel of any operator of the form ax + by on M is independent
of the choice of (a, b} € Pl(k). That is, a field extension is necessary in order to
expose the failure of the property. A similar phenomenon occurs for the equal images
property.

As in the case of the equal images property, one can prove analogs of Proposi-
tions 2.5 and 2.6 for the equal kernels property. Here, image must be exchanged
for kernel and radical for socle. So, for example, for the equal kernels property, the
equation at the end of Proposition 2.5 would read

F
Ker {3 " ajx;: Mg — Mg} = Soc(Mk).
i=1

The proofs can be constructed in a similar way. However, such results can also be
verified using the following proposition.

Proposition 8.9. A kG-module M has the equal kerels property if and only if M*
has the equal images property.

Proof. Suppose that M has the equal kernels property. Let K be an extension of k
andletag: K[t]/(t#) — KG be am-point. Let £ = ag(z). Then, the dual statement
of equation (23) says that

Ker {£: Mg — Mg} = {g: M — K|go£" = 0} = (¢eMD .
Because Ker {£: Mgy — Mg} = Ker {x: Mg — Mk}, we have that
EME = (MDY = (cMEYDH)* = xME.

Hence M ™ has the equal images property. The proof in the other direction is similar.

[
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If M isakG-module and W C M is asubmodule, then we denote by x W C M
the kG -submodule consisting of elements m € M satisfying xm € W.
We verify by inspection that for any submodule W C M and any ¢ > 0,

(Tt = . (25)

Here, x'*: M*% — M%" sends f to f o x', where x’: M — M is the action of
x' € kG on M. With this notation, we can prove the following.

Theorem 8.10. Let M be a module of constant rank and let W C M be its generic
kernel. Then we have an increasing filtration of M,

xPTt oy exPEWycoecx(W)cWex WY cxTPW) e M

with the property that x*(W), for i = 0 has the equal images property and that
M/x) (W) for j < 0 hasthe equal kernels property. Moreover, for any £ = ax + by
with {a, b} € PY(k) and for all j, we have that x' W = £ W. Here, x' (W) denotes
(x/y Y (W) for j < 0.

Proof. First observe that all of the submodules in the theorem are stable under field
extension. So there is no loss in generality by assuming that & is algebraically closed.
Each of the x ™/ W is a submodule of M because kG is commutative.

Each of the modules x* (W) with ¢ > 0 is a radical power of W = K(M) and
thus has the equal images property by Proposition 2.8.

Using Proposition 8.4, Theorem 8.6, and (25), we conclude that

()TN = W) = X F (M) = TTHHK(MY)).

Hence, ((x)) L (W) = (M/x7 W) has the equal images property. Thus, Propo-
sition 8.9 implies that M /x~ (W) has the equal kernels property.

For £ = ax + by # 0, we know that x/ W = £/ W for j = 0 by the fact that W
has the equal images property. For negative values of j the result is a consequence of
the equal kernels property on the quotients. That is, for j < Owe have that x/ ~1W =
x~1(x/ W) is precisely the inverse image under the quotient map M — M/(x’ M)
of the kernel of x on M/(x/ M). Because M /(x/ M) has the equal kernels property,

the kernel of multiplication by x is the same as the kernel of multiplication by £.
Therefore, x 1 (x/ W) = "W x/ W) = £ L&/ W) = £/~ 1 W as asserted. n

Question 8.11. In Theorem 8.10, we know that the submodules K (M), and x* K (M)
have constant Jordan type for i = 0. Assuming that M has constant Jordan type, do
the modules x " R(M) also have constant Jordan type? If ves, then the characteri-
zation of the cyclic modules of constant Jordan type becomes much easier.
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9. n"-power generic kernels

In this section, we assume that the field & is algebraically closed. (We leave to
the reader the elementary modifications required to extend this discussion to more
general fields. This assumption is not necessary.) We [ix a choice of generators x, y
of Rad(kG), with kG =~ k[x, y|/(x?, y#).

Suppose that 7 is an integer with 1 < #n < p —1. For asubset S € P(k), define
the submodule

TM = Z Ker {(ax + by)*: M — M}
{a,b)es

Since both x and y commute with each ax + by for {(a,b) ¢ S, sM is a kG-

submodule of M. Clearly, for any cofinite subset S’ € S, and any non-negative
integer # we have that &, M C T M.

Definition 9.1. We define the n''-power generic kernel of M to be

KRUM) = M M.
ScPl{k) cofinite

Example 9.2. For the free cyclic Xk G-module, kG, we have that
KRMkG) = Rad? *(kG) = x "1 R(kG)

forany 1 < n < p. The case n = 1 is in Example 7.2. The same sort of argument
works also in this case. That is, any £ = ax + by has Jordan type p[p] on kG
and hence the kernel of £7 on kG is in £27"kG C Rad? " (kG). So K*(kG) C
Rad?™"(kG). To get the reverse inclusion, we note that £27" is in the kernel of
multiplication by £”. Hence, some infinite subset (cofinite in P! (k)) of elements of
the form £77" is in K"(k (). By a Vandermonde determinant argument, some finite
subset of these will generate Rad?™ (k).

Note that K1 (M) = K(M) for any M. The n®-power generic kernel enjoys
some of the same properties as the generic kernel. For example. for each #n there
must exist some non-empty open set S, € P(k) such that R*(M) = 5, M. 1f we

let S = ﬂﬁ;i Sp, then S has the property that R*(M) = T M for all a.
The following proposition provides a partial generalization of Example 9.2 to
other kG -modules.

Proposition 9.3. Suppose that M is a kG-module of constant rank, and assume that
p>2 Thenforanyn=2,..., p—1 we have that

KM < x "TIR(M).
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Proof. We prove the case that # = 2. The rest follows by similar arguments which
we leave to the reader. Suppose that S is a subset of P! (k) such that

KEM) =FM = > Ker{{ax +by)*: M — M}
{a,b)eS
and
KRM) = sM.

If (a,b) € S and if m € Ker{(ax + by)*: M — M}, then (ax + by)?m = 0
and hence, (ax + by)m € K(M). So, m € (ax + by) 'K(M) = x 1Q(M) by
Theorem 8.10. It follows that R2(M) < x~1 M. n

On the other hand, the equality of Example 9.2 is not valid for general £ G-modules
as seen in the following example.

Example 9.4. Assume that p > 3. Let M be the kG -module represented by the
diagram

That is, M has k-basis consisting of the elements ay, by, by, bs, by, 1, ¢ and the
matrices of x and y are given by

/00 000 0 O /00 000 0 O
0000000 0000000
1000000 0000000
x—>|0oo0oo0oo0o00o0|, y=|1 000000
0000000 0000000
0010000 0100000
\0 0 0 0 1 0 0 \0 001 00 0

It is straightforward to see that M has constant Jordan type [3] + [2] + 2[1]. Note
that for any (a,b) € Pl(k), we have that (ax + by)?*a; # 0 and that (ax +
byy*b; = Ofor j = 1,...,4. Consequently, R?(M) is the submodule N spanned
by b1,...,04,c1,C2. Because N is the direct sum of two W modules, it is equal to
its own generic kernel and is also the generic kernel of M. Therefore we have that

KREM) =N = K(M) # x 1&(M).
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Motivated by Question 8.11, we ask the following.

Question 9.5. If M has constant Jordan type, then does K™ (M ) also have constant
Jordan type?

10. Some preliminaries on cyclic modules

The purpose of this section is to develop some technical results that are essential for
the proofs of the next section. The subject matter is something of a digression from
the primary issues of the paper. The reader may wish to continue with the next section
and return to this material only as needed.

Definition 10.1. Let p,(¢),..., p.(¢f) € k|f] be polynomials. For any i > 0, we

denote by pj(.i)(t) the i™ derivative of p;(¢r). The Wronskian W(p1,..., p;) of
{p1(t), ..., pr(2)} is the following determinant:

BO - BO o n
Wipr,...,pr) =Det| PU O P27@ o prr) |
V0@ Y0 o V)

When the field k& has characteristic O, it is well known (cf. [12], pp. 524-525) that
Wi(pi,...,pr) = 0ifandonlyif py(¢),..., p,(¢) are linearly dependent. Moreover,
if one of the polynomials p;(¢) has degree at least r, then W{(p1,..., pr) is not a
constant polynomial. This is because t would divide the leading term in every entry
of the i™ column. For a field of positive characteristic, we have the following.

Proposition 10.2. Let k be a field of characteristic p > O and consider polynomials

p1(t),...,pr@t) € kft]. Then W(py,...,pr) = Qifandonlyif p1(t),..., p:(t) are
linearly dependent over k(t?) C k().

Proof. We first assume that pi(¢),..., p,(¢) are linearly dependent over k(¢%) so
that we have a non-trivial relation

¥
0=> e pi(r) fore; k@?),

i=1

By taking derivatives, and using the fact that the derivative of every e; is zero, we
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obtain a system of equations

e1pi(t)y teap2(t) + ... +e p(t) =0,
elpgl)(r) 4 egpél)(r) . £ erpﬁl)(r) = 0,

27)
(r—1) (—1) eV
eipy “Q)teps )+ Fep’ @)=0.
This implies that the columns Cy, . .., C, of the matrix
no om0
1 1 1
pl (f) p2 (I) T Pr (f) (28)
e O S O W e ()

are linearly dependent over k(¢#), and thus that the determinant of (28), which is
W(pi,..., Pn) is O.

Conversely, assume that W(pi1,..., p») = 0. We proceed by induction on r,
the case r = 1 being clear. So assume that r > 1 and that W{(py,..., pr—1) # O.
Without loss of generality, we may further assume that the right-most column C, of
(28) is a linear combination of the first ¥ — 1 columns Cy,...,C,_. Hence we get
a system of equations:

C=MC1 4+ FAp1GCr1, A € k(). (29)

Subtracting the first derivative of the ™ equation (row) of (29) fromthe (i + 1)**-row
fori =1,...,r —2, we conclude, using the product rule for derivatives, that

MpP@) e g =0, 0=xi=zr-2,

where A] is the derivative of A;. Since W{(p1,..., p,—1) # 0, we see that A7 = 0,
forall 1 =i < r—1. Thus, the first row of (29) gives a linear dependence over k(1)

of p1,..., Pr. L]

Corollary 10.3. With notation as in Proposition 10.2, assume that the degree as a
function of t of each p;(t) is less than p. Then W(p1....,pr) # 0 if and only if
p1(t), ..., p-(t) are linearly independent over k. Moreover, if deg(p;(t)) = r for
some i, then W(p1(t),..., p:(1)) is not constant as a function of t.

Proof. If W(pi1,..., pr) # 0, then Proposition 10.2 asserts that pi(¢), ..., p.(¢) are

linearly independent over k(¢ ?) and thus also linearly independent over £.
Conversely, assume that pi(¢), ..., p;(¢) are linearly independent over k. Since

each p;(f) has degree less than p, we conclude that ¥ < p. Using elementary
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transformations with constant coefficients on the system {z1(¢), ..., p»(f)}, which
do not change the value of the Wronskian W(py,..., p,), we may assume that
deg(pi(t))  deg(p;(r)) for i £ j. Thatis, if deg(p;(z)) = deg(p;(¢)), then there
is a scalar ¢ such that g; (t) = p;(t) — cp;(¢) has lower degree. Replacing p;(f) by
g; (t) amounts to an elementary column operation which does not change the value of
the Wronskian. As a result, we may assume that pi(¢),..., p,(¢) all have different
degrees. Hence, they are linearly independent over k(¢#). By Proposition 10.2, the
Wronskian is not zero.

To prove the final statement of the corollary, we note that by the above argument
we may assume that no two of the polynomials p1(¢), ..., pr () have the same degree.
Let ¢;(¢) denote the leading term of p;(¢). It is not difficult to see that the leading
term of W{(g1(¢),...,q,(t)) is the leading term of W(p1(z),..., p-(¢)). Because the
degree of the elements g, (r ) are different and less than p, they are independent over
k(t?) and the Wronskian is not zero. If for some i the degree of g;(t) is at least r,

then every entry in the ;™ column of matrix of the Wronskian W(g(r),. .., g, (t))is
divisible by z. It follows that the leading term of W(p1(t), ..., p,(t)) is divisible by
t and hence it is not constant. ]

Proposition 10.4. Let k be an algebraically closed field of characteristic p = 0. Let
k[t] <p denote the k-vector space of polynomials of degree at most n for some n < p.
Assume that n < p if the characteristic p is positive. I'ix an integer j < n, and
suppose that V. C k[t|<n is a proper subspace having the properties that

(i) V contains a polynomial of degree j + 1, and

(i) for any a < k, there exists some f(t) € V suchthat (t — a)’ divides f(t) (i.e.,
such that a is a root of multiplicity at least j of f(r)).

Then there exist some a € k and some g(t) € V such that (t — a)! T divides g(r).

Proof. Observe that Dim(k|t]|<z) = n + 1. Let r denote Dim(}'). Choose a basis
p1(t), pa(t), ..., p.(t) of V with the property that

dy = deg(p1(r)) > dz = deg(p2(r)) > -+« > dp = deg(p,(1))-

To emphasize its dependence on £, we let D(t) = W(p(t),..., pr(t)):

-
D(f):Det p] (I) p2 (I) T p?’ (I) (30)
2P0 P o P

be the Wronskian. By Corellary 10.3 (in the case that p > 0), and Condition (i),
D(t) is not a constant polynomial. In particular, it is not zero.
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We first verify that Dim V' = r > j 4+ 1. By Condition (ii) for any element
a € k there exists a non-zero polynomial f(r) = 3> ¢ _; pt; p;(t) in V such that f(r)
is divisible by (f — a)’. Consider the system of equations given by the equality

O (B0 B0 mo N m
f(l)(r) e " (f) P2 (f) Pr (f) A2 ) (31)
Felig 0@ Ve - 5P/

If r < j + 1, then the column on the left of (31) vanishes when evaluated at r = 4,
so the fact that f(r) is not zero implies that D(a¢) = 0 (i.e., ¢ is aroot of D(¢)). As
this happens for any ¢ in k& we have a contradiction to the fact that D(r) can have
only finitely many roots. Hence, we conclude that r = j 4 1.

We now proceed to show that some element of I has a root ¢ of multiplicity
J + 1. This would prove the proposition. Suppose to the contrary that there is even
asingle element y € k such that V MU = {0}, where U is the space of all multiples
of (t —y)Y "l in k[t]<n. Then the dimension of V is at most equal to the dimension
of k[t] <, minus the dimension of U. That is,

r=Dim(V)=m+1)—(n+1-(+1)=j+1.

Therefore, for the rest of the proof, we may assume thatr = j + 1.

Because the Wronskian D(r) is not a constant polynomial and the field &k is
algebraically closed, D(¢) must have a root @ € k. Then the determinant of the
matrix

pi(a) p2a) - prla)
pgl)(a) P;El) (a) pf(l)(a) (32)
@ p @ - P

is zero, and we must have that its columns are linearly dependent vectors in k”.
Suppose that jt1,..., i, are the coefficients of a non-trivial dependence relation
among the columns. Then we have that if f(r) = ), p; p;(r), then f(a) = O and
moreover, £ (a) = 0foralli = 1,...,r — 1. Therefore f(r) € V and a is a root
of f(t) of multiplicity #. This proves the proposition. ]

Corollary 10.5. Let k be a field of characteristic p = 0. Let k[x, y], denote the
space of homogeneous polynomials of degree n in the variables x and y. Assume
that n < pif p > 0. Fix an integer | < n. Suppose that V' is a subspace of k[x, y]n
having the following properties.

(i) The space V contains an element which is not divisible by y*—/ =1,

(ii) Foranya < k, there exists anelement f(x, y)inV suchthat f(x, y)isdivisible
by (x —ay)/.
Then forsomea < k, V contains anelement f(x, y)whichisdivisible by (x—ay)’ T,
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Proof. Let r: k[x,y]p — k[t]<n be the linear transformation of vector spaces ob-
tained by sending x to t and y to 1. Then under the isomorphism ¥, conditions (i) and
(i1) of the corollary translate into conditions (1) and (i1) of Proposition 10.4. Moreover,
the conclusion of Proposition 10.4 translates to the conclusion of the corollary. ]

11. Cyclic modules of constant Jordan type

Our objective in this section is to show that any cyclic module of constant Jordan type
is a quotient of the algebra by a power of the augmentation ideal of the algebra. We
break up the argument into two cases. For the first case, Theorem 11.1 completely
settles the case of a field of characteristic O and goes a part of the way to verifying
this result for fields of positive characteristic.

Theorem 11.1. Let k be a field of any characteristic. Consider a cyclic k[x, y]-
module M which is finite dimensional and has constant Jordan type. Assume that x
and y act as nilpotent operators on M. Let m € M be a generator and let n be the
least integer such that x"+tim = 0. So x" - m # 0. If k has positive characteristic
P, then assume that n < p. Then

M ~ k[x,y]/I""!
where I = (x, y) C k[x, y] denotes the augmentation ideal.

Proof. Observe that the hypothesis that M has constant Jordan type implies that
(x +ay)y**t'm = 0 for all a in k. Also we may assume that # > 0 since otherwise
M =~ k. Hence, all monomials in x, y of degree #n + 1 kill M, so that M is a quotient
of k[x, y]/I" ™. Note here that even in the case that k is the prime field with p
elements, the assumption that # < p assures us that the elements (x + ay)* ! span
the space of all homogeneous polynomials of degree n + 1 in k[x, y].

Without loss of generality, we may assume that the field k is algebraically closed.
That is, suppose that K is the algebraic closure of k. Because M has constant Jordan
type, so also does K @5 M. Also, since K ®; — is an exact functor, a proof that
K@ M ~ K[x,y]/(I"Y**! implies that M ~ k[x, y]/I"T! where I’ = K @ I is
the augmentation ideal of K[x, y]. Hence we assume that £ = K.

QOur strategy is to show that the Jordan type of M has n 4 1 blocks, one of size j
for each 1 < j < n + 1, thereby showing that the induced map k[x, y]/I* ! — M
is an isomorphism. Note that there is exactly one block of size j = n 4 1, since the
number of blocks of M of size n + 1 equals Dim(x" - M ). Yet, x" - M = (x"m),
and hence has dimension 1.

We proceed by downward induction on j. We assume that the Jordan type of M
has exactly 1 block each of size n + 1,...,j + 1. In other words, we assume that
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elements in the set

n r—1 n—j i A—]
{m, .. x"m,ym,xym, ..., x" ym, ... " m, o x) YT my

={x*y/m|0<e+ f<nf=<n—j

are linearly independent. This condition is equivalent to the condition that the ele-
ments in the set

S =4xm x" Yym,. . x'y T Imy={xym e+ f=nf<n—j} (33)

are linearly independent. So m is not annihilated by any homogeneous polynomial of
degree n divisible by x/. Because M has constant Jordan type, m is not annihilated
by any homogeneous polynomial divisible by (x — ay)’ for any a in k.

Suppose that M does not have a block of size j. Then x/ 1 y"~/Tlm is a linear
combination of the elements in S. That is,  is annihilated by some homogeneous
polynomial of degree n divisible by x/~!. We may repeat verbatim this discussion
with x replaced by x —ay for any @ € k. We conclude that m is annihilated by some
homogeneous polynomial of degree n divisible by (x —ay)/~! forany a < k.

Let V' denote the vector space of all homogeneous polynomials f(x, y) of degree
n which annihilate m. By the above, we have that I/ satisfies both conditions (i)
and (ii) of Corollary 10.5. Consequently, that corollary tells us that V' contains a
polynomial f(x, y) which is divisible by (x — ay)’ for some a € k. But this is a
contradiction. So there must also be a block of size j. ]

As we see in Corollary 11.3, the following theorem together with Theorem 11.1
easily implies the identification of all cyclic kG -modules of constant Jordan type.

Theorem 11.2. Let k be a field of characteristic p > 0. Assume that M is a cyclic
k[x, y]/(x?, y?)-module of constant Jordan type such that x? 1 - M +#£ 0. Sets
equal to the number of Jordan blocks of M of size p. Then s > 0 and

M~ Aj1PT5L
where I = (x, y) is the augmentation ideal of A.

Proof. As in the proof of the last theorem, we can assume that the field & is alge-
braically closed. Let Ay = k[x]/(x?) C A. The (constant) Jordan type of M is
the type of M as an A.-module. We readily verify that A/1# "1 has Jordan type
slel + [p —1] 4+ + [s].

The number of blocks of size p of M as an A,-module equals the dimension of
N = x?7'M. Note that N is a module over Ay of dimension s and is generated
by x?~'m. Consequently, N = 0, and we must have also that x?~1ySm = 0.



Vol. 86 (2011) Modules for Z/p < Z/p 653

Because M has constant Jordan type, we conclude that (x —yy)? 1 y'm = 0 for any
v € k,any t > s. This implies that

x'y/m=0 i+j=p—1+s. (34)

Hence, A — M factors through the surjection A — A/I?75~1  In particular, to
prove the theorem it suffices to prove that the Jordan type of M is the same as that of
A/ 12571 ag an A .-module.

We proceed as follows. Suppose that the Jordan type of M includes s blocks of
length p and also exactly one block of eachsize p —1, p—2,..., p—J + 1. Thatis
suppose that p — j is the largest integer such that there is no block of size p — j for
p—J = 5. As an A,-module, the blocks of size p can be assumed to be generated
bym,ym,..., ys_lm, as discussed before. The block of size s — i is generated by
y“lﬂ'm, fori =1,...,j] — 1. Hence the sum of the A,-socles of these blocks is
spanned by the set of elements S = 51 U S; where

= —1 WP
Si1 =& " mxP " ym,. .., xP Ty

m}
and

=gl - )
S5 = e p ¥ b T Ty

mi.

Because these elements lie in different blocks of M as an A,-module, they must
be k-linearly independent. Moreover, each is annihilated by multiplication by x.
Because there is no block of size p — j we must have that there exist scalars
dg, ... ,as_g,bl,... ,bj such that

§—2 j

xpfjflstrj*lm - Zaixpflyi + Zbixp*iys+i72' (35)
=0 i=1

Multiplying by y, which annihilates all of the terms of degree p + 5 — 2, we get that

aox? lym + arx? 1 y?m 4 agoxP Ty T im =0
Hence the linear independence of the elements in the set S implies that @; = 0 for all
i. Consequently by equation (35), there exists a homogeneous polynomial f(x, y)
of degree p — 1 in k[x, y] with the properties that

[, 9y "im =0,

and that f(x, y) is divisible by x#=7/~1,

Now let V be the k-space of all those elements f(x, y)in k[x, y],—; for which
f(x,y)y*"Im = 0. We have shown that IV contains an element which is divisible by
xP~7=1 We can repeat the same argument with x replaced by x — ay for any a < k.
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Hence, VV must contain an element which is divisible by (x — ay)? /! for any a
in k. This says that V' satisfies condition (ii) of the hypothesis of Corollary 10.5.

Next we want to check that condition (i) of the hypothesis of Corollary 10.5 is
satisfied at least for some choice of the variables. Suppose not. Then we nust have
that V' contains every polynomial of the form (x —ay)?—/ =1 y/ for every a € k. That
is, for every @ € k, V' must contain a non-zero polynomial which is divisible by both
(x —ay)?~/~1 and y/. Because the elements are relatively prime, that polynomial
must be a scalar multiple of the product of the two. Recalling the definition of the
space V', we see that for every ¢ € k we have that

(x —ay)P 7/ 1yti-1ym =0,

Because M has constant Jordan type we can make linear changes in the variables and
repeat all of the same arguments. That is we canlet X = ax + by and y = cx +dy,
as long as the vectors (@, b) and (¢, d ) are linearly independent in k2. If condition (i)
fails for X and y, then we have that

(ax + by)Y? 7 YHex +dy)y ™ lm =0

Now the elements (ax + by)Y?~/~Y(ex + dy)* T/ =1 span I77=2. Hence if condi-
tion (i) fails for all such choices of X = ax + by and y = cx + dy we must have that
IP=572M = {0} which contradicts our hypothesis that there are s blocks of size p
in the Jordan type of M.

From all of the above, we may assume that conditions (i) and (ii) of Corollary 10.5
are satisfied. Hence the corollary implies that some element f(x, y) of V is divisible
by (x —ay)?~/ for some a € k. Indeed, making the change of variables, replacing
X —ay by x, we may assume that there is a non-zero polynomial g(x, y) of degree
j — 1 such that g(x, y)x?=/~!is contained in V. Hence,

g(x, y)ys_lxp_lm = 0.

This relation contradicts the linear independence of the set S, and hence, proves the
theorem. ]

Corollary 11.3. Let k be a field of characteristic p > 0. Suppose that A =
klx, y|/(x¥, yP) is the group algebra of an elementary abelian p-group of rank 2.
IfM = A-mis acyclic A-module having constant Jordan type, then M = A/I'
Jor some t, where I is the augmentation ideal of A.

Proof. If x?~1m = 0, then we may regard M simply as a k[x, y]-module and invoke
Theorem 11.1 to prove the result. Otherwise we apply Theorem 11.2. [
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12. Further determination of bundles

In this final section, we consider the bundles on P! associated to certain kG -modules
which we have considered. We use the notation of Section 6.

Proposition 12.1. Suppose that M is a module of constant rank. Then we have that
KM) =prgM. Thatis, if £ = ax + by with (a,b) # (0,0) then Ker {£: M —
M} € K(M). Consequently, if M is a module of constant rank, then

Ker {: M > M} = Ker {£: R(M) > K(M)}.

Proof. 'The proof of the first assertion is a straightforward application of Proposi-
tion 7.6. The second assertion follows from the first, because one always has the

inclusion Ker {£: K(M) - KM)} C Ker{f: M — M}. []

_ Proposition 12.1 has the following “geometric formulation™, for the operator
B on @ @ M (respectively, @ @ K(M)) has kernel above £ € PL(k) given by
Ker {£: M — M} (resp., Ker {£: K{IM) — K(M)}).

Proposition 12.2. Suppose that M is a module of constant rank. Then we have a
coincidence of kernel bundles:

Ker {Og, 0 @ M} = Ker {Bg, 0 @ K(M)}.

We apply Proposition 12.2 to compute explicitly the kernel bundles for all cyclic
kG-modules of constant Jordan type.

Proposition 12.3. et M be a cyclic kG-module of constant Jordan type, so that
M ~kG/I forsomel <t <2p.

(1) Ift < p, then Ker 06,0 ® M} is a free O@-module of rank t.

(2) Ift > p, then RIM) = KW, _p11), s0that

Ker {Bg, 0 @ M} ~ Ker {Bg, 0 @ W;_p11. )}
is explicitly determined by Proposition 6.4.

Proof. 1f t < p, then the kernel of the endomorphism @, »)(#) on M is the socle of
M for any o, p: k[u]/(u?) — kG with (0,0) # (a, b). This immediately implies
part (1).

By Proposition 12.2 and the fact that W), ;1 equals its own generic kernel, in
order to prove part (3) it suffices to verify the equality R(M ) = K(W, ;—p+1). This
is easily done by inspection. [
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The generic kernels for the modules 2" (k) are calculated in Example 7.12. This
information is used in the proof of the following.

Proposition 12.4. Suppose thatn > 1, then there are short exact sequences of vector

bundles
0 —> Ker {06, 0 @ Wp—1,p-1}°" — Ker 66,0 ® Q2" 1)} (36)
— O(—np +1) —0
and
0 — Ker {0g, 0 @ Wy, p1}®" — Ker {06, 0 @ Q2" (k)} (37)

— O(—np) — 0.

If & € H'(G, k) is nilpotent, then the module L has constant rank, though not
constant Jordan type. In this case we calculate that

Ker {86, @ L} =~ Ker {Bg, @ @ Q2" (k)}.

Proof. From Example 7.12, K(22"~1(k))/ Rad*(R(Q2"1(k))) = Wap,2. Thus,
the kernel of ® ¢ on the top (head) of @ @ K(Q22"*~1(k)) is isomorphicto @ (—np +1)
exactly as in Example 6.3. Consequently, by Proposition 12.2 we need only compute
the kernel of ® g on @ ® Rad(KR(Q22"~1(k))). However, an easy computation reveals
that Rad(R (22"~ 1(k))) is isomorphic to a direct sum of n copies of Wj,_;_,—1. This
verifies the exactness of the first sequence. The verification of the second is similar.

We calculate that R(22%(k))/ Rad(K (22" (k))) == Wy 112 and hence, the con-
tribution of the top of K(£22%(k))) to the kernel of Og isa copy of the bundle @ (—np)
as in Example 6.3. Finally, we observe that Rad(K (©22”(k))) is isomorphic to a direct
sum of & copies of Wy ,_1 and we are done.

The last statement follows also from the calculation of Example 7.13. ]
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