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Flat currents modulo p in metric spaces and filling radius
inequalities

Luigi Ambrosio and Mikhail G. Katz

Abstract. We adapt the theory of currents in metric spaces, as developed by the first-mentioned
author in collaboration with B. Kirchheim, to currents with coefficients in Zp. We obtain
isoperimetric inequalities mod.p/ in Banach spacesand we apply these inequalities to provide a

proof of Gromov’s filling radius inequality which applies also to nonorientable manifolds. With
this goal inmind, we use theEkeland principle to provide quasi-minimizersof themass mod.p/
in the homology class, and use the isoperimetric inequality to give lower bounds on the growth
of their mass in balls.

Mathematics Subject Classification 2010). 49Q20, 53C65.

Keywords. Filling radius, currents, isoperimetric inequality.

Our aim is the extension of the theory of rectifiable currents in metric and
infinitedimensional Banach spaces to the case of coefficients in Zp. Such an extension can
be applied to give transparent proofs of Gromov’s filling radius and filling volume
inequalities which apply to nonorientable manifolds, as well.

1. Current history

Following the classical paper by H. Federer andW. Fleming [21], as well as Federer’s
treatise [20] on the theory of currents, in the last few years the theory has undergone
two important developments:

– B. White’s theory [46], inspired by Fleming’s paper[23],of rectifiable flat chains
with coefficients in a general group, in Euclidean spaces;

– the theory developed by the first author and B. Kirchheim in [3], and inspired
by E. De Giorgi [13], of real and integer rectifiable currents in general metric
spaces.

M. G. Katz was supported by the Israel Science Foundation grant no. 1294/06).
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A unified picture general coefficients in general spaces) seemed to be still missing,

but after the completion of this paper we learned of the paper by T. De Pauw and
R. Hardt [16] and the earlier paper by T. Adams [1], developed in the same spirit of
the Fleming–White theory but with no discussion of isoperimetric inequalities).
Another valuable contribution to the literature came evenmore recently withS. Wenger’s
papers [44], [45] on the isoperimetric inequalities. The classical approach [21] to
proving these inequalities in arbitrary dimension and codimension goes back to the
deformation theorem. A different technique was introduced by M. Gromov [24] and

fully exploited in [3]. It is based on the fact that, in finite-dimensional spaces, onecan
prove isoperimetric inequalities independent not only of the codimension, but also of
the norm in the space. Such a technique allows one to prove the inequality in suitable

metric spaces and in infinite-dimensional spaces, provided a finite-dimensional
approximation scheme exists.

Wenger [44] introduced a new “global” technique, based on covering arguments
and independent of deformation theorems and finite-dimensional schemes. His
technique allows one to treat also the case of Banach spaces to which the results in [3] do
not apply. White’s isoperimetric inequality [48] appliestochains in finite-dimensional
Banach spaces with coefficients in general groups. However, White’s inequality is
based on the deformation theorem in the corresponding Euclidean space, and therefore

does not provide universal constants depending only on the dimension of the
chain.

In the present text, we follow the approach of [20] see also W. Ziemer [49]
for the case p D 2, still in Euclidean space) to achieve an extension of the metric
theory of [3] to currents with coefficients in Zp: the initial idea is simply to identify
currents which differ by pT with T integer rectifiable. But then, since we want
this equivalence to be stable under the action of the boundary operator, it turns out
that larger equivalence classes and a suitable topology induced by the so-called flat
distances) are needed. In any case, our currents arise as quotient classes OET of
currents T akin to those considered in [3], which extend to general spaces those of
the Federer–Fleming theory.

In the simplest case p D 2, it is well-known that one can use currents modulo

2 to describe possibly nonorientable manifolds. In particular, we will prove
in Theorem 13.1 that to any compact n-dimensional Riemannian manifold without
boundary M one can associate a canonical equivalence class

OEOEM

notice that the current OEOEM itself is by no means canonical) whose boundary is zero,
still mod.2/. In particular, after embedding M in a linear space, we can consider
chains whose boundary mod.2/ coincides with the image of OEOEM
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2. Gromov’s inequalities

A quarter century ago, M. Gromov [24] initiated the modern period in systolic
geometry by proving a curvature-free 1-systolic lower bound for the total volume of an

essential Riemannian manifoldM of dimension n. Recall that the 1-systole, denoted

“Sys”, of a space is the least length of a loop that cannot be contracted to a point in
the space. Here the term “curvature-free” refers to a bound independent of curvature
invariants, with a constant depending on the dimension of M and possibly on the
topology of M), but not on its geometry. Such a bound is given by the inequality
between the leftmost and the rightmost terms in 2.2) below, and can be thought of
as a far-reaching generalisation of Loewner’s classical torus inequality

Sys2
2
p3

Area; 2.1)

satisfied by every metric on the 2-torus, cf. [42]. It is conjectured that the bound 2.1)
is satisfied by every surface of negative Euler characteristic, see [30] for a detailed
discussion. Recent publications in systolic geometry include [5], [8], [9], [10], [11],
[19], [30], [35], [36], [43], [27], [31], [26].

The main ingredient in the proof of the inequality is Gromov’s filling inequality.
There is a certainamount ofconfusion in the literature as to whatconstitutes Gromov’s

“filling inequality”. Gromov actually proved several inequalities:

– an inequality relating the filling radius and the volume. It is this inequality that’s
immediately relevant to Gromov’s systolic inequality;

– the inequality between the filling volume an nC1/-dimensional invariant) and

the volume n-dimensional invariant) of M. Such an inequality can be more
appropriately referred to as an isoperimetric inequality.

Marcel Berger performed a great deal of propaganda for systolic geometry see

most recently [7], [8]). The success of the field is certainly due to his efforts. In one

of his popularisation talks, he presented the following string of three inequalities:

Sys 6Fillrad Const FillVol1=.nC1/ Const Vol1=n : 2.2)

Here the last inequality corresponds to the isoperimetric inequality, while the first
one is sharp [33].) Berger’s presentation was intended for pedagogic purposes, but
eventually led to a slight confusion. Namely, this string of inequalities gave the
impression that the proof breaks up into three stages, each requiring separate
treatment. In reality, the last two inequalities are proved simultaneously. The technique
is essentially a more precise version of Federer–Fleming’s deformation theorem.

As a matter of fact, proving the isoperimetric inequality alone does not directly
lead to any simplification of the proof. Consider, for example, the familiar picture
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of the pseudosphere in R3, with a cusp along an asymptote given by the z-axis. We

think of it as a “filling” of the unit circle in the x; y/-plane. Alternatively, truncate
the pseudosphere at large height z D H, to obtain a filling which is topologically a

disk. One immediately realizes that the filling volume stays uniformly bounded, but
the filling radius with respect to this particular filling) tends to infinity.

Gromov’s original proof starts by imbedding the manifold M into the space

L1.M/ of bounded Borel functions on M. Here a point x 2 M is sent to the
function fx defined by

fx.y/ D dist.x; y/; 2.3)

where“dist” is theRiemannian distance function inM. The fact that thespaceL1.M/
is infinite-dimensional has given some readers the impression that infinite-
dimensionality of the imbedding is an essential aspect of Gromov’s proof of the systolic
inequality. In fact, this isnot the case. Indeed, wecanchooseamaximal -netN M
with jNj < 1 points. We choose satisfying < 1

10Sys.M/. This results in an
imbedding

M `1.N / 2.4)

where the systole goes down by a factor at most 5, see [34], p. 97. Thus the systolic
problem can easily bereduced tofinite-dimensional imbeddings. Similarly, by choosing

a sufficiently fine -net, one can force the map 2.4) to be .1 C /–bi-Lipschitz,
for all > 0 see [31] and Proposition 5.1 below). Hence finite-dimensional
approximations work well for our filling radius, as well, provided the estimates one proves
are independent of N.

Gromov’s original proof is difficult arecent generalisation is provided by L. Guth
in [25]; see also [26] and [32]). Only the experts possess a complete understanding
of the proof. It would thus be desirable to write down a detailed proof of Gromov’s
influential theorem, and to sort out some of the confusion in the literature.

3. Summary of main results

In Section 6, we introduce flat currents and flat currents modulo p, following the
traditional procedure in [49], [20]. The only difference is that the initial objects
we complete with respect to the flat topology are the currents of [3], whose main
properties are recalled in the appendix. Then, we see that in this class a slice operator

OET 7! hOET ; u; ri
and a boundary operator OET 7! @OET are well defined. This allows us to state a

list of properties that a suitable class of currents, together with a suitable notion of
mass, should satisfy, as in [45], in order to obtain the isoperimetric inequality. The
idea is to start from the 1-dimensional isoperimetric inequality, which needs to be
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directly checked, and then make a bootstrap argument based on a clever covering
argument. Actually, as in [44], we use the covering argument even to establish the
1-dimensional isoperimetric inequality trivial in the case of Lipschitz images of 1-
dimensional simplexes considered in [45], but not trivial in our case). Then, we show
in Section 5 and Section 6 that our class of currents, together with a suitable notion
of p-mass, denoted by Mp, do satisfy the list of properties, so that an isoperimetric
inequality holds in this class.

Definition 3.1. The filling radius

r.OEL ; M/

of a n-dimensional cycle mod.2/ in a space M is the infimum of the numbers r > 0
such that, for all Banach spaces F and all isometric embedding i of M into F there
exists an n C 1/ current OET mod.2/ in F such that @OET D i]OEL and the support
of OET is contained in the r-neighbourhood of the support of i]OEL

Of course this definition makes sense only specifying the cycles we are dealing
with: they are equivalence classes mod.2/ of currents L 2 n.E/ whose boundary
is zero, still mod.2/. Analogously, the admissible fillings T are equivalence classes

mod.2/ of currents in nC1.E/ whose boundary is equivalent mod.2/ to L see

Section 10 for a precise definition of the additive group n.E/ of integer rectifiable
n-currents in E).

One of the main result of our paper, achieved as a particular case of our Theorem

11.1 below, is the universal upper bound

r.OEL ; M/ c.n/ M2.OEL / 1=n :

When M is a compact Riemannian manifold without boundary, applying this result
to the canonical n-cycle OEL D OEOEM in M and setting

r.M/ D r M; OEOEM 3.1)

we obtain the following result.

Theorem 3.2. For any compact n-dimensional Riemannian manifold without boundary

the universal upper bound r.M/ c.n/OEVol.M/ 1=n holds.

Remark 3.3. Up to the proof of the isoperimetric inequalities no completeness of our
spaces of currents is really needed closure under the action of the slicing operator
suffices). However, the proof of the universal upper bound seems really to require
some form ofcompleteness,and justifies thewhole mathematicalapparatusdeveloped

in this paper however, we left out many mathematical questions concerning currents
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with coefficients in Zp that we plan to investigate in the forthcoming paper [4]). In
order to prove our result we use as in [3] the Ekeland principle valid in complete
metric spaces, see Section 12 for a precise statement) to find “quasi-minimizers” of
the Mp-mass in the homology class

fOET W
@OET D i]OEL g

and prove, using the isoperimetric inequality, that any such minimizer has support
close to the support of i]OEL Notice also that the same argument, based on the
isoperimetric inequalities, applies to orientable manifolds: in this case the filling
radius invariant possibly a larger one) could also be defined using the currents in [3]
and no quotient mod.p/ is needed.

4. Filling radius and systole

The invariant defined in 3.1) is related to the systole by means of the following
inequality of Gromov’s [24], which turns out to be sharp [33]. Recall that a closed
manifoldM is called essential if it admits a continuous map an Eilenberg–MacLane
space K. ; 1/ such that the induced homomorphism in top-dimensional homology
sends the fundamental homology class of M to a nonzero class.

Theorem 4.1 M. Gromov). Every essential M satisfies r.M/ 1
6

Sys.M/.

Proof. The idea of Gromov’s proof is to build a retraction skeleton-by-skeleton.
We will outline the essential idea of the argument first, so as not to overburden the
presentation with technical details, which will be explained later.

By a strongly isometric imbedding we mean an imbedding of metric spaces

M V such that the instrinsic distance in M coincides with the ambient distance
in V among points of M.

We canassume without lossof generality thata piecewise linear strongly isometric
up to epsilon) imbedding M `1 satisfies dim.`1/ < 1 see Remark 4.3 and

Proposition 5.1). If 6r.M/ < Sys, we set

D
1

10
Sys 6r.M//: 4.1)

Consider a triangulation, extending that of the image of) M, of `1 so each simplex
has diameter at most If C is a current with support in the neighborhood UrM,
let Cfat be the union of all simplices meeting the support of C. Then Cfat lies in
the r C /-neighborhood of M. Let

C k/
fat Cfat
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be its k-skeleton. A map

f .0/
W C .0/

fat M
on the 0-skeleton is constructed by sending each vertex to a nearest point ofM. Next,
we extend f .0/ to a map

f .1/
W C .1/

fat M

by sending each edge to a shortest path joining the images of its endpoints under f .0/,
in such a way that f .1/ is the identity on each edge contained in M itself here we
are assuming that the edges of the triangulation of M are minimizing paths). Since

the distances in M coincide with the ambient distances in `1, each edge of C .1/
fat is

mapped to a path of length at most r C / C C r C / D 2r C 3 Next, given

a 2-simplex abc in C .2/
fat note that its boundary is mapped to a loop Labc of length

at most
3.2r C 3 / D 6r C 9 < Sys;

by 4.1), and hence Labc is contractible by definition of the systole. We can therefore
extend f .1/ to a map

f .2/
W C .2/

fat M
whose restriction to the intersection M.2/ \ Cfat is the identity. Every essential

manifold M see [24]) by definition admits a classifying map

gW M B

to the classifying space B D K. ;1/, such that

D 1.M/;

i.B / D 0 for i 2,

g OEM / 6D 0, where OEM is the fundamental class.

Therefore the composed map

g B f .2/
W C .2/

fat B
extends to a map

hW Cfat B

in such a way that h coincides with g on M C .2/
fat see Lemma 4.2 for a more

detailed statement in the simplicial category). Since

h OEM / D g OEM / 6D 0;

we conclude that the neighborhood Cfat cannot contain a current filling M, proving
the inequality.
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The proof above is formulated in the category of continuous maps, which is
the most convenient one in the context of classifying spaces. On the other hand, a

simplicial approximation can easily be constructed if one works with finite skeleta of
the classifying space. The following essential lemma is standard.

Lemma 4.2. Consider finite dimensional simplicial complexes M, Y Z, where

M Y is a subcomplex, dim.Y / D N, and g W M Z is continuousand simplicial,
where i.Z/ D 0 for i D 2; : : : ; N 1. Then given a simplicial map f .2/

W Y .2/

M which is the identity on M.2/, the composition g B f .2/ extends to a simplicial
map hW Y Z whose restriction to M Y satisfies hjM D g.

Remark 4.3. Let N be a maximal -net in M, and consider the finite dimensional
imbedding

W M `1.N/ whose coordinate functions are the distance functions fp
from points p 2 N. The imbedding is not quite strongly isometric, since d.p;q/ D
kfp fqk but the functions fp and fq only occur as coordinates in `1 if p, q belong
to the net. However, choosing nearby points p0, q0 of the maximal net, we obtain by
the triangle inequality

d.p;q/ d.p0; q0/ C 2 D kfp0 fq0kC 2 k p/ q/kC 4 :

Thus upper bounds on distances in `1 entail upper bounds on intrinsic distances

in M, up to arbitrarily small error. A more detailed discussion may be found in
Proposition 5.1.

Remark 4.4 Gromov’s scheme). Gromov’s scheme, outlined in Berger [6], p. 298,
is to fill a manifoldM D Md in `1 by a minimal d C1/-submanifold N. Next, N
contains a point x at distance at least r from each point of M. Since N is minimal,
the volume of the distance spheres from x grows sufficiently fast. Finally, the total
volume of N is at least that of a ball of radius r in N, hence at least a constant
times rdC1. But Vol.M/ Const Vold=dC1 N / by the isoperimetric inequality
for minimal submanifolds with boundary) in `1. Combined with the inequality of
Theorem 4.1, this would complete the proof of Gromov’s systolic inequality.

Of course, lacking a completeness result, no notion of minimal submanifold in
Banach space was available at the time, which accounts in part for the complications
in Gromov’s original proof [24]. In some sense, the scheme outlined by Berger is
made rigorous in the present text, where we do have completeness, cf. Remark 3.3.

5. Approximation by finite-dimensional imbeddings

Proposition 5.1. Let M be a compact Riemannian manifold without boundary. For
every " > 0, there exists a .1 C "/–bi-Lipschitz finite-dimensional imbedding of M,
approximating its isometric imbedding in L1.M/.
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Proof. For each n 2 N, choose a maximal 1
n-separated net

Mn M;
and imbed M in `1 by the distance functions from the points in the net by the
1-Lipschitz map

nW M `1.Mn/: 5.1)

If there exists a real " > 0 such that the inverse of n is not .1 "/ 1–Lipschitz, then
there is a pair of points xn; yn 2 M such that the distance d.xn; yn/ satisfies

j n.xn/ n.yn/j .1 "/d.xn; yn/; 5.2)

meaning

jd.xn; z/ d.yn; z/j .1 "/d.xn; yn/ for all z 2 Mn: 5.3)

Since M is compact, we can assume with no loss of generality that xn x and

yn y, and if x ¤ y we can contradict 5.3) by choosing zn 2 Mn at distance less
than 1=n from x and n large enough. So, x D y and we denote sn D d.xn;yn/ 0.

SinceM is compact and locally bi-Lipschitz to an Euclidean space with Lipschitz
constant close to 1 provided we choose sufficiently small neighbourhoods), for any

i > 0 we can find Nb > 0 such that all geodesic) triangles inM with side lengths less
than Nb have sum of the internal angles less 2 C i; we choose i in such a way that

1 " 2 < cos i and we assume with no loss of generality that Nb InjRad.M/.
Let vn 2 TxnM be the unit vector such that yn D expxn snvn/, set qn WD

2
Nbvn/ and denote by an 2 Mn a point of the maximal net nearest to qn.expxn

1

Denoting by n be the angle at xn of the geodesic triangle having an, yn, xn as

vertices,

n WD †anxnyn;

we have the Taylor expansion

d.an; expxn svn// D d.an;xn/ s cos n C s!n.s/ 5.4)

where, thanks to the smoothness of d in both variables, supn j!n.s/j is infinitesimal
as s # 0. We claim that n < i for n large enough; indeed, the angle at yn in the
geodesic triangle having an, yn, qn as vertices tends to 0 because the length of the
side from qn to an tends to 0, while the length of the other two sides does not. As
a consequence the angle at yn in the geodesic triangle having an, yn, xn as vertices
tends to Since all sides of the latter triangle are shorter than Nb for n large enough,
our choice of Nb ensures that the angle n is less than i for n large enough. Putting
s D sn in 5.4) we get

jd.an; yn/ d.an; xn/j D sn cos n C o.sn/ > .1 " 2/sn C sn!n.sn/

D .1 " 2/sn C o.sn/

contradicting 5.3) for n large.
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6. Preliminary definitions

Let E; dE/ be a metric space and k 0 integer. We assume, since this suffices for
our purposes, that E; dE/ is separable; this assumption is needed to avoid subtle
measurability problems assuming that the cardinality of E is an Ulam number this
assumption could be avoided, see [20], 2.1.6, and Lemma 2.9 in [3]). We use the
standard notation Br.x/ for the open balls in E, Lip.E/ for the space of Lipschitz
real-valued functions, relative to dE, and Lipb.E/ for bounded Lipschitz functions.

We consider, as in [3], the space MFk.E/ of k-dimensional currents in E. We
denote by M.T / the mass of T 2 MFk.E/, possibly infinite. We recall the basic
definitions of mass, support, push-forward, restriction, boundary in the appendix.

Spaces of currents in E are defined as in [3], with the same notation, we will
only use k.E/ integer rectifiable currents with finite mass) and Ik.E/ currents in
k.E/ whose boundary belongs to k 1.E/), see Section 10. In the sequel p 2 is

a given integer.

6.1. Flat integer currents. We shall denote by Fk.E/ the currents inMFk.E/ that
can by written as R C @S with R 2 k.E/ and S 2 kC1.E/. It is obviously an
additive Abelian) group and

T 2 Fk.E/ H) @T 2 Fk 1.E/: 6.1)

Fk.E/ is a metric space when endowed with the distance d.T1;T2/ D F T1 T2/,
where

F T / WD inf fM.R/ CM.S/ W R 2 k.E/; S 2 kC1.E/; T D R C @Sg :

The subadditivity of F namely F nT / nF T /, ensures that d is a distance,
and the completeness of the groups k.E/, when endowed with the mass norm,
ensures that Fk.E/ is complete. Also, whenever Ik.E/ is dense in k.E/ see

Proposition 14.7 for sufficient conditions), the subset

fR C @S W R 2 Ik.E/; S 2 IkC1.E/g Ik.E/

is dense in Fk.E/. For the special class of currents T in Fk.E/ with finite mass the
density result can be strengthened: indeed, if T D Ti C Ri C @Si with Ti 2 Ik.E/,
Ri 2 k.E/, Si 2 kC1.E/ and M.Ri/ C M.Si/ 0, then Theorem 10.2 gives

Si 2 IkC1.E/ because @Si has finite mass) hence Ti C @Si 2 Ik.E/. So, T can be

approximated in the stronger mass norm by the currents Ti C @Si and this yields

fT 2 Fk.E/ W M.T / < 1g D k.E/: 6.2)

Notice also that

F .@T / F T / for all T 2 Fk.E/: 6.3)
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In addition, since @.']S/ D '].@S/ we get

F .']T / OELip.'/ kF T / 6.4)

for all T 2 Fk.E/, ' 2 Lip.E; Rk /.
It should also be emphasized that the concepts introduced in this section are

sensitive to the ambient space, namely if E embeds isometrically in F then, for
T 2 Fk.E/, F i]T / can well be strictly smaller than F T /; the same remark applies
to the Mp mass, built in Section 9. This is not the case for the concepts of mass, a

genuine isometric invariant, see [3].

6.2. Flat distance modulo p. For T 2 Fk.E/ we define

Fp.T / WD inf fF T pQ/ W Q 2 Fk.E/g :

The definition of F gives

Fp.T / D inf
°M.R/ CM.S/ W T D R C @S C pQ; R 2 k.E/;

S 2 kC1.E/; Q 2 Fk.E/ :

Furthermore, whenever Ik.E/ is dense Fk.E/, both infima are unchanged if Q runs

in Ik.E/.
Obviously Fp.T / F T /, and 6.3) together with 6.1) give

Fp.@T / Fp.T /; T 2 Fk.E/; 6.5)

while 6.4) gives

Fp.']T / OELip.'/ kFp.T / 6.6)

for all T 2 Fk.E/, ' 2 Lip.E; Rk /.
We now introduce an equivalence relation mod.p/ in Fk.E/, compatible with

the group structure, by saying that T D zT mod.p/ if Fp.T zT / D 0, and denote
by Fp;k.E/ the quotient group. Clearly T D 0 mod.p/ if T D pQ for some

Q 2 Fk.E/, but the converse implication is not known, not even in Euclidean spaces.

The equivalence classes are closed in Fk.E/ and by 6.5) the boundary operator
can be defined also in the quotient spaces Fp;k.E/ in such a way that

@OET D OE@T 2 Fp;k 1.E/ for all T 2 Fk.E/:
The same holds, thanks to 6.6), for the push-forward operator, defined in such a way
to commute with the equivalence relation mod.p/. We emphasize thatFp;k.E/, when
endowed with the distance induced by Fp, is a complete metric space: to see this, let

OETh / Fp;k.E/ be a Cauchy sequence and assume with no loss of generality that

Xh
Fp.ThC1 Th/ <1I
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we can find Rh 2 k.E/, Sh 2 kC1.E/ and Qh 2 Fk.E/ such that

ThC1 D Th C Rh C @Sh C pQh and 1X
hD1

M.Rh/ CM.Sh/ < 1:

Setting zTh WD Th p P
h 1
0 Qh it follows that zTh D Th mod.p/ and since zThC1

zTh D Rh C@Sh it follows that zTh/ is a Cauchy sequence in Fk.E/. Denoting by T
its limit, by the inequality Fp F we infer OETh D OE zTh OET in Fp;k.E/.

7. Restriction, slicing

The restriction and slicing operators can be easily extended to the set Fk E/, defined
as the closure in Fk.E/ of currents in Ik.E/, using a completion argument. In the
cases considered in Proposition 14.7, this closure coincides with the whole of Fk.E/
and, in any case, it is easily seen that @ maps Fk E/ into Fk 1 E/.

Recall from [3] that, for u 2 Lip.E/ and T having finite mass and boundary of
finite mass, the slice operator hT; u; ri 2 MFk 1.E/ is defined by

hT; u; ri WD@.T fu < rg/ @T / fu < rg:

Notice that @hT; u; ri D h@T; u; ri. It turns out that for L1-a.e. r 2 R hT; u;ri has

finite mass, and

M.hT; u;ri/ Lip.u/
d

dr kT k.fu < rg/: 7.1)

Now, let T be with finitemass; since T D RC@S withR 2 k.E/ andS 2 kC1.E/
imply that @S has finite mass we can apply the slicing operator to S to obtain

T fu < rg D R fu < rg C .@S/ fu < rg

D R fu < rg C @.S fu < rg/ hS; u; ri:
Since hS; u; ri belongs to k.E/ for L1-a.e. r 2 R, thanks to Proposition 10.3, by
integration between m and ` we obtain

Z
`

m
F T fu < rg/ dr Z

`
M.R fu < rg/

CM.S fu < rg/ dr C Lip.u/kSk.fu < `g/

m

` m/M.R/ C .` m C Lip.u//M.S/

where
R

denoted the upper integral we use it to avoid the discussion of the measurability

of the map r 7! F T fu < rg/). Since R and S are arbitrary we get

Z
`

m
F T fu < rg/ dr ` m C Lip.u//F T /: 7.2)
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Now, letT 2 Fk.E/, assume that thereexist Tn 2 Fk.E/ withfinite mass convergent
to T in Fk.E/ this surely holds if T 2 Fk E/), with

Pn F Tn T / < 1, and let

u 2 Lip.E/. By adding the inequalities 7.2) relative to TnC1 Tn, and taking into
account the subadditivity of the outer integral and the fact that ` and m are arbitrary,
we obtain that TnC1 fu < rg/ is a Cauchy sequence in Fk.E/ for L1-a.e. r 2 R.

It follows that for any such T we can define

T fu < rg WD lim
n!1

Tn fu < rg 2 Fk.E/ 7.3)

whenever the limit exists. By construction the operator T 7! T fu < rg is additive
and 7.2) still holds when T 2 Fk.E/. A similar argument shows that this definition
is independent, up to Lebesgue negligiblesets, on the chosen approximatingsequence

Tn/, provided the “fast convergence” condition
Pn F Tn T / < 1holds.

Having defined the restriction, the slice operator, mapping currents in Fk E/ into
currents in Fk 1 E/, can be again defined by

hT;u; ri WD@.T fu < rg/ @T / fu < rg/
whenever the right hand side is defined. We still have the property @hT; u; ri D

h@T; u; ri.
From 7.2) we immediately get

Z
`

m
Fp.T fu < rg/ dr ` m C Lip.u//Fp.T /: 7.4)

In particular Fp.T / D 0 implies Fp.T fu < rg/ D 0 for L1-a.e. r 2 R, so that
the restriction operator can also be viewed as an operator in the quotient spaces

Fp;k E/ WD fOET W T 2 Fk E/g;

with the property

OET fu < rg D OET fu < rg for L1-a.e. r 2 R.

Hence, the same holds for the slice operator, satisfying @
hOET ; u; ri D h@

OET ; u; ri
and

hOET ; u; ri D OEhT; u; ri for L1-a.e. r 2 R.

8. Isoperimetric inequalities

In this section we discuss the validity of isoperimetric inequalities mod.p/ in suitable
subspaces Cp;k.E/ Fp;k E/ analogous to those valid in the case of currents with
integer coefficients. We follow, as in [45], an axiomatic approach: we assume the
existence, given these subspaces Cp;k.E/, of a notion of p-massMp W Cp;k.E/ R
satisfying the following property:
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Definition 8.1 Additivity). For all OET 2 Cp;k.E/ there exists a -additive Borel
measure kT kp satisfying

Mp.OET fu < rg/ D kT kp.fu < rg/ for L1-a.e. r 2 R

for all u 2 Lip.E/.

Strictly speaking, we should use the notation kOET k to emphasize that the measure
depends only on the equivalence class of T but we opted for a simpler notation.

Then, we assume that Cp;k.E/ andMp are well-behaved with respect to the slice
operator, and satisfy the isoperimetric inequality for 1-dimensional currents and the
homogeneous version of the isoperimetric inequality typically achieved by a simple
cone construction):

i) For k 1 the slice operator hOET ; u; ri maps Cp;k.E/ into Cp;k 1.E/ and

Lip.u/
d

dr
Mp.OET fu < rg/ Mp.hOET ; u;ri/ for L1-a.e. r 2 R. 8.1)

ii) For some constant c the following holds: for all OEL 2 Cp;1.E/ with @OEL D 0
and bounded support there exists OET 2 Cp;2.E/ with @OET D OEL and

Mp.OET / c Mp.OEL / 2
:

In addition, if OEL is supported in a ball B, we may choose OET supported in the
same ball.

iii) For some constant ck the following holds: for all OEL 2 Cp;k.E/ with @OEL D 0
and support contained in a ball with radius R there exists OET 2 Cp;kC1.E/
supported in the same ball with @OET D OEL and

Mp.OET / ckRMp.OEL /:

iv) For some constant Ak > 0, the following holds: for all OET 2 Cp;k.E/ we have

lim inf
r#0

kT kp.Br.x//
rk

Ak; kT kp-a.e.

Given these properties, the nice and constructive decomposition argument in [44],
[45] that we reproduce in part in Theorem 10.6 to prove the initial isoperimetric
inequality ii)) provides the following result:

Theorem 8.2 Isoperimetric inequality mod.p/). Assume that E, Cp;k.E/ and Mp
fulfil the additivity property and conditions i), ii), iii), iv). Then, for k 1 there
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exist constants k such that, if OEL 2 Cp;k.E/ has bounded support and satisfies
@OEL D 0, there exists OET 2 Cp;kC1.E/ with @OET D OEL and

Mp.OET / k Mp.OEL / kC1/=k
:

For k 2 the constant k depends on k 1, ck, Ak.

Proof. The proof is by induction on k 1; in order to apply the construction of
[45] one needs to assume inductively that OET can be chosen with support in a ball B
whenever OEL is supported in the ball. The case k D 1 being covered by assumption

i) and the induction step goes exactly as in [45].

9. Definition of Mp

For T 2 Fk.E/, its relaxed) mass modulo p is defined by

Mp.T / WD inf
°

lim inf
h!1

M.Th/ W Th 2 k.E/; Fp.Th T / 0 9.1)

with the convention Mp.T / D C1if no approximating sequence Th/ with finite
mass exists. If Ik.E/ is dense in k.E/ in mass norm then, as we already observed,

Fk E/ D Fk.E/ and flat chains with finite mass can be approximated in mass by
currents in Ik.E/. Therefore, under this assumption, the infimum is unchanged is we
require the approximating currents Th to be in Ik.E/.

Obviously Mp M and Mp. zT / D Mp.T / if Fp. zT T / D 0; finally, T 7!
Mp.T / is lower semicontinuous with respect to Fp-convergence. Actually, it is easy

to check that Mp is the largest functional, among those bounded above by M, with
all these properties: it follows in particular that Mp.T / Fp.T /. We can think
of Mp also as a map defined in the quotient groups Fp;k.E/ and we shall not use a

distinguished notation for it.

Theorem 9.1. Assume that E is compact. For all OET 2 Fp;k.E/ withMp.OET /< 1there exists a finite, nonnegative and -additive Borel measure kT kp such that

Mp.OET fu < rg/ D kT kp.fu < rg/ for L1-a.e. r 2 R 9.2)

for all u 2 Lip.E/.

Proof. Let Ti/ k.E/ be such that M.Ti/ Mp.T / and Fp.Ti T / 0.
Possibly extracting a subsequence we can assume without loss of generality that

Xi
Fp.Ti T / < 1
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and that kTik weakly converge, in the duality with C.E/, to some finite, nonnegative
and -additive Borel measure Obviously E/ D Mp.T / and we claim that
fulfills 9.2). Indeed, let u 2 Lip.E/ be fixed and let us adopt the notation

R fu > rg

for R f u < rg; by 7.4) we infer that for L1-a.e. r 2 R, one has that Ti fu <
rg/ and Ti fu > rg/ are Cauchy sequences with respect to Fp and the sum of their
limits is T indeed, since Th have finite mass,

Th D Th fu < rg C Th fu > rg

with at most countably many exceptions). Then, denoting by T fu < rg and

T fu > rg the respective limits, the lower semicontinuity of Mp gives

Mp.T fu < rg/ lim inf
i!1 kTik.fu < rg/;

and

Mp.T fu > rg/ lim inf
i!1 kTik.fu > rg/:

The subadditivity of Mp yields

Mp.T / Mp.T fu < rg/ CMp.T fu > rg/

i!1 kTik.fu < rg/ C lim inf
i!1 kTik.fu > rg/

lim sup

lim inf

i!1 kTik.fu < rg/ C lim inf
i!1 kTik.fu > rg/

i!1 kTik.E/ D Mp.T /:lim sup

It follows that all inequalities are equalities. Hence,

kTik.fu > rg/ Mp.T fu > rg/

for L1-a.e. r 2 R. But, thanks to the weak convergence of kTik to we have also

kTik.fu > rg/ fu > rg/

with at most countably many exceptions corresponding to the numbers r such that

fu D rg/ > 0, see for instance [2]), Proposition 1.62 b). This proves 9.2).

Using the measure kT kp we can define the support of T 2 Fp;k E/, when T has

finite Mp mass.

Definition 9.2 Support). Assume that E is compact and that OET 2 Fp;k E/ has

finite Mp mass. We denote by suppOET the support of the measure kT kp, namely

x 2 supp OET if and only if kT kp.Br.x// > 0 for all r > 0.
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10. Definitions of Ip;k.E/

In this section we define classes Ip;k.E/ in such a way that the properties listed in
Section 8 hold with Cp;k.E/ D Ip;k.E/, so that the isoperimetric inequality holds
in Cp;k.E/.

10.1. Currents OEOE Recall that, for 2 L1.Rk/, OEOE

2 MFk.Rk/ is the
kcurrent in Rk defined by

OEOE f0 d 1 ^ ^ d k/ D Z
R k f0detr dx:

The change of variables formula for Lipschitz maps immediately gives

f] OEOE

D OEOE. / B f 1 10.1)

whenever f is a Lipschitz and injective map from ff ¤ 0g Rk to Rk. Here

x/ 2 f 1; 1g is the sign of the jacobian determinant ofrf x/ recall that points x
where x/ is not defined, i.e.rf x/ is singular, are mapped toa Lebesgue negligible
set, and so they are irrelevant).

10.2. Countably Hk-rectifiable sets and integer rectifiable currents. Denoting
byHk the Hausdorff k-dimensional measure in E, we recall also that a set S E is
said to be countablyHk-rectifiable if we canfind countably many BorelsetsBi Rk

and Lipschitz maps fi W Bi E such that

Hk S
nSi fi.Bi/ D 0:

More precisely, we can also find by an exhaustion argument compact sets Ki Rk

and Lipschitz maps fi W Ki E such that fi.Ki / are pairwise disjoint and

Hk.S n Si fi.Ki// D 0. Furthermore, possibly refining once more the partition,
one can assume that fi W Ki fi.Ki/ are invertible with a Lipschitz inverse in
short, bi-Lipschitz), see [3], Lemma 4.1. In the case k D 0 we identify countably
Hk-rectifiable sets with finite or countable sets.

Definition 10.1 Rectifiable and integer rectifiable currents). We say that T in
MFk.E/ with finite mass is rectifiable if kT k vanishes on Hk-negligible sets and it
is concentrated on a countablyHk-rectifiable set. We say that T is integer rectifiable
if, in addition, for all ' 2 Lip.E; Rk/ and all Borel sets A it holds '].T A/ D OEOE

for some integer valued 2 L1.Rk/.

In the case k D 0 rectifiable currents are finite or countable series of Dirac masses,

with integer coefficients in the integer case, see Theorem 4.3 in [3]. In this latter case,

finiteness of mass implies that the sum is finite.
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We shall denote by k.E/ the space of integer rectifiable currents. We shall also
denote by Ik.E/ the subspace

Ik.E/ WD fT 2 k.E/ W
@T 2 k 1.E/g :

Inconnectionwith integer rectifiable currents, let us recall the following important
result see [3], Theorem 8.6):

Theorem 10.2 Boundary rectifiability). If T is integer rectifiable and has boundary
with finite mass, then @T is integer rectifiable.

If E is a closed convex subset of a Banach space the slicing operator makes sense

in k.E/, thanks to Proposition 14.7, and it enjoys the following properties see [3],
Theorem 5.7):

Proposition 10.3 Slices of integer rectifiable currents). Let E be a closed convex
subset of a Banach space, T 2 k.E/ and u 2 Lip.E/. Then hT; u; ri 2 k 1.E/
for L1-a.e. r 2 R and

T du D Z
R

hT;u;ridr; kT duk D Z
R

khT; u; rikdr:

It turns out that the minimal in Hk-measure) set S on which T is concentrated
is

ST WD °
x 2 E W

lim inf
r#0

r k
kT k.Br.x// > 0 : 10.2)

10.3. Multiplicity of integer rectifiable currents and reductions mod.p/. The
multiplicity of a rectifiable current T 2 MFk.E/ can be defined as follows: when

E D Rk themultiplicityof OEOE is ; ingeneral, letus represent aBorel set S onwhich

kT k is concentrated i.e. kT k.E n S/ D 0) as
Si fi.Ki/ with Ki Rk compact,

fi W Ki fi.Ki/ bi-Lipschitz and fi.Ki / pairwise disjoint. Then, denoting by

gi W E Rk Lipschitz maps such that gi B fi x/ D x on Ki we define y/ at

y 2 fi.Ki/ as the multiplicity of gi /].T fi.Ki// at gi y/ 2 Ki Using 10.1) it
is not difficult to check that this definition is well posed on S up to the sign and up to
Hk-negligible sets, i.e. that j j does not depend on the chosen partition and on the
Lipschitz maps fi up to Hk-negligible sets when E is a linear space see also §9 of
[3] for a definition of multiplicity closer to the one of the Federer–Fleming theory;
since this definition uses the quite technical concept of approximate tangent space

here we avoid it). Notice also that we allow, for simplicity, the multiplicity to vanish:
but the multiplicity is nonzero Hk-a.e. on the set ST

Ifm 2 Z we call reduction ofmmod.p/ an integer zmwhich minimizes jqj among
all q 2 OE p=2; p=2 with m q 2 pZ. The integer zm is possibly not unique if p
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is even for instance

f1 D 1 or f1 D 1 if p D 2), nevertheless j zmj is uniquely
determined, and jemj D jzmj.

We define reduction of T mod.p/ a current obtained from T by taking the reduction

of its multiplicity mod.p/, namely

T p
WD 1X

iD1
fi/]OEOE. Q B fi/ Ki

whenever T D Pi fi/]OEOE.
B fi/ Ki Obviously any reduction T p has integer

multiplicity in OE p=2; p=2 and it is equivalent to T mod.p/. The reduction is not
unique, because of the ambiguity on the sign of the multiplicity and on the choice of
the reduction from Z to OE p=2;p=2 but since jemj D jmzj it turns out that j Qj is
nonzero and uniquely determined by T on ST up to Hk-negligible sets.

The followingpropositionshows that elementsofFp;0.E/are equivalence classes

of currents in 0.E/ and provides a basic lower semicontinuity property.

Proposition 10.4 Characterization of Fp;0.E/). Let E be a compact length space,

let OER 2 Fp;0.E/ and let Th 2 0.E/ be such that OETh OER in Fp;0.E/ and
suph kThk.E/ is finite. Then there exists T 2 0.E/ such that OET D OER and
lim inf kT

p
h k.E/ kT k.E/.

Proof. We assume without loss of generality that the lim inf is a finite limit and write

Th D

Nh

X
iD1

h;iix.h;i/

with h;i 2 Z n f0g. We can also assume, possibly replacing Th by their reductions,
that h;i 2

OE p=2; p=2 so that Th D T p We have Nh sup E/ and we can
h h kThk.

assume possibly extracting once more a subsequence) that Nh D N is independent

of h. Furthermore, we can also assume that x.h; i/ x.i/ as h! 1and
h;i D i 2 OE p=2; p=2 n f0g for h large enough

for all i D 1; : :: ; N Since E is a length space we can find currents Gh;i 2 I1.E/
induced by geodesics joining x.h; i/ to xi with @Gh;i D ix.h;i/ ix.i/ and

M.Gh;i / 0, for i D 1; : : : ; N Since Th Pi i ixi D P
@Gh;i it turns out

that

F Th
N

X
iD1

i ix.i// 0;

whence OER D OE

P
N
1 i ixi mod.p/. Also, it follows that

k

N

X
iD1

i ixi k.E/
N

X
iD1

j ij lim inf
h!1

N

X
iD1 h!1

kThk.E/:j h;ij D lim inf
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In the next theorem we characterize Mp on k.E/.

Theorem 10.5. Let T 2 k.E/, with E compact length space. Then Mp.T / D
kT

p
k.E/, where T p is any reduction of T modulo p. In particular, the additivity

property holds with kT kp D kT pk.

Proof. The inequalityMp.T / kT
p
k.E/ isobvious, becauseT p

D T mod.p/. We
shall prove the converse inequality by induction on k. Without loss of generality we
can assume thatE isa compact convex subset of a Banach space indeed, an isometric
embedding does not increase theMp mass, while leaving kT

p
k.E/ unchanged). The

inequality is equivalent to the lower semicontinuity of T 7! kT
p
k.E/ under

Fpconvergence. More generally, we shall prove by induction on k that

h!1 kT
p

kT
p
k.A/ lim inf h k.A/

for all open sets A E whenever Fp.Th T / 0.

k D 0. Let T 2 0.E/ and let Th 2 0.E/ be satisfying Fp.Th T / 0; wefix
an open set A E and we assume with no loss of generality that the lim inf above is
a limit and that Th D T p Then, we are allowed to extract further subsequences andh
we can assume that the fast convergence condition

Ph Fp.Th T / < 1holds. Let
u be the distance function from E n A and apply for L1-a.e. r > 0 Proposition 10.4
to Th fu > rg and OET fu > rg to obtain the existence of Sr 2 0.E/ with
Sr D T fu > rg mod.p/ and

kSrk.E/ lim inf
h!1 kThk.fu > rg/:

Since Sr D T p
fu > rg mod.p/ as well, it follows that

kT
p
k.fu > rg/ kSrk.E/ lim inf

h!1 kThk.fu > rg/ lim inf
h!1 kThk.A/:

Letting r # 0 the lower semicontinuity property on A follows.

Induction step. Let us prove that the induction assumption gives

h kT
plim inf h duk.A/ kT

p
duk.A/

whenever Th T in Fp;k.E/. Indeed, assuming with no loss of generality that

Xh

Fp.Th T / < 1;

we know from the definition of the slice operator and 7.4) that

lim
h!1hTh; u; ri D hT; u; ri in Fp;k.E/
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for L1-a.e. r 2 R, hence Proposition 10.3 gives

lim inf
h!1 kT

p

h!1
Z

R
khT

p
h duk.A/ D lim inf h ; u;rik.A/dr

Z
R

lim inf
h!1

khT
p
h ; u; rik.A/dr

Z
R

khT
p ;u; rik.A/ dr

D kT
p

duk.A/:

By applying Proposition 14.8 to T p A we have

kT
p
k.A/ D sup n

N

X
iD1

kT
p d ik.Ai/o;

where the supremum runsamong all finitedisjoint families ofopensetsA1; : : : ;AN
A and all N-ples of 1-Lipschitz maps i By the previous step all the finite sums are

lower semicontinuous with respect to Fp convergence, whence the lower semicontinuity

of T 7! kT
p
k.A/ follows.

This concludes the proof of the equality Mp.T/ D kT
p
k.E/. Since for T 2

k.E/ and u 2 Lip.E/ it holds

T fu < rg/
p

D T p
fu < rg for L1-a.e. r 2 R;

it follows that the additivity property is fulfilled with kT kp WD kT
p

k.

10.4. Isoperimetric inequalities mod.p/. Having defined k.E/, we define

p;k.E/ WD fOET W T 2 k.E/g :

An open problem, in connection with the Mp, mass is the validity of the analogous

of 6.2), namely

°
OET 2 Fp;k.E/ W Mp.OET / < 1 D p;k.E/:

We plan to investigate this in [4].
We also define

Ip;k.E/ WD °
OET

W
OET 2 p;k.E/; OE@T 2 p;k.E/ : 10.3)

Theorem 10.6. Let E be a compact convex subset of a separable Banach space.

Then Mp and Ip;k.E/, as defined in 9.1) and 10.3) respectively, satisfy conditions
i), ii), iii), iv) of Section 8 with constants depending on k only.
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Proof. i) The fact that the slice operator maps p;k.E/ into p;k 1.E/ follows by the
fact the slice preserves integer rectifiability, see Proposition 10.3. Since the boundary
operator and the slice commute up to a change of sign) the slice operator maps also
Ip;k.E/ into Ip;k 1.E/. In order to prove 8.1) we consider the inequality in an

integral form, namely

Z
b

a
Mp hOET ; u; ri dr Lip.u/ kT kp.fu < bg/ kT kp.fu < ag/ ;

1 < a b < C1:

10.4)

For S 2 Ik.E/ we can apply Theorem 5.6 of [3] to obtain

Z
b

a
M hS;u; ri dr Lip.u/ kSk.fu < bg/ kSk.fu < ag/ :

Now, let Si/ Ik.E/ be such that
Pi Fp.Si T / < 1 and M.Si/ Mp.OET /;

we have seen in the proof of Theorem 9.1 that there exists an at most countable set

N such that M.Si fu < rg/ kT kp.fu < rg/ for all r 2 R n N; in addition, the
fast convergence assumption ensures that Fp.hSi;u; ri hT; u; ri/ 0 for L1-a.e.

r > 0. So, passing to the limit in the previous inequality with S D Si Fatou’s lemma
and the lower semicontinuity of Mp provide 10.4) when a; b … N. In the general
case the inequality can be recovered by monotone approximation.

ii) In the proof of this property we shall use properties i), iii) and iv) which
are established independently of ii). In the case k D 1, property iv) holds with the
explicit constant Ak D 2; furthermore iii) holds with c D 2. For all OEL 2 Ip;1.E/
with @OEL D 0 we shall be able to construct a family of currents OELi with the same

properties satisfying

Mp OEL 1X
iD1

OELi D 0; Mp.OEL / D 1X
iD0

Mp.OELi / 10.5)

and diam.supp.OELi // 8Mp.OELi / Given this decomposition, an application of
property iii) to all OELi provides currents OETi with @OETi D OELi and Mp.OETi /
16OEMp.OELi / 2 and we can apply the property iii) to find OESN with @SN D OEL

P
N
1 OELi and Mp.OESN / 0; it turns that for N large enough the current

OET
WD

N

X
iD1

OETi C SN

has the required property.
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In order to achieve the decomposition 10.5) it suffices to find finitely many, say

N, currents OELi with diam.supp.OELi // 8Mp.OELi /

Mp.OEL

N

X
iD1

OELi /
4

5
Mp.OEL /; Mp.OEL / D Mp.OEL

N

X
iD1

OELi /C
N

X
iD1

Mp.OELi /
10.6)

and then iterate this decomposition first to OEL

P
N
1 OELi and so on) countably many

ir

times. In order to obtain the decomposition 10.6) we apply Lemma 3.2 of [44]
with F D 1=2 and D kT

p
k since A1 D 2 > F this choice ensures that for

-a.e. x there exists r > 0 such that Br.x// Fr) to obtain finitely many points

y1; : :: ; yN and corresponding radii ri > 0 satisfying:

a) Bri yi// Fri and Bs.yi// < Fs for all s > ;

b) the balls B2ri yi/ are disjoint;

c) 5 P
N
1 Bri yi// E/.

Since a) gives

Z
2ri

ri
Mp.hOEL ; d. ; yi/; ri/dr Mp.OEL B2ri yi// < 2Fri D ri

we know that Mp.hOEL ; d. ;yi /; ri/ < 1 in a set of positive L1-measure in ri; 2ri /.
But since the slices belong to Ip;0.E/ it follows that Mp.hOEL ; d. ;yi/; ri/ D 0 in a
set of positive L1-measure in ri; 2ri /. Choosing i 2 ri;2ri/ in such a way that

hOEL ; d. ; yi/; i i/ D 0 we can define

OELi WD OEL fd. ; yi/ < i g; 1 i N:

Our choice of i ensures that @OELi D 0 and property b) ensures that the supports of
these chains are pairwise disjoint. Also,

diam.supp.OELi // 2 i 4ri 8 Bri yi// 8Mp.OELi /:

Property c) ensures that 5 P
N
1 Mp.OELi / Mp.OEL / so that 10.6) holds.

iii) This can be easily achieved by a cone construction as, for instance, in [3],
Proposition 10.2. This construction provides the constant c D 2.

iv) If T 2 k.E/ and T p is a reduction mod.p/, since its multiplicity is at least 1
we know by [3], Theorem 9.5, that

kT
p

k Hk S;

where S D S.T p/ is defined in 10.2) with T p in place of T and is an “area

factor” depending only on S. In addition, Lemma 9.2 in [3] provides the universal
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lower bound k k= 2. Finally, taking into account see [37]) that any countably
Hk-rectifiable set with finite Hk-measure S satisfies

lim inf
r#0

Hk.S \Br.x//
krk D 1 for H k-a.e. x 2 S,

with k equal to the Lebesgue measure of the unit ball in Rk, we obtain that iv)
holds with Ak D k k=2!k.

As a consequence, we can obtain isoperimetric inequalities in the case when the
cycle belongs to Ip;k.E/ resp. Fp;k.E/) and the filling belongs to IkC1.E/ resp.

Fp;kC1.E/). In this connection, notice that in the classof integer multiplicity currents
we have that L 2 Fk.E/ with finite mass and @L D 0 implies L 2 Ik.E/: indeed,
writing L D A C @B with A 2 k.E/ and B 2 kC1.E/, we have @A D 0 and so

A D @R for some R 2 IkC1.E/. Since L D @.R C B/ the boundary rectifiability
theorem gives that L 2 Ik.E/. We plan to investigate the boundary rectifiability
theorem and further properties of currents mod.p/ in [4].

Corollary 10.7 Isoperimetric inequality mod.p/ in Ip;k.E/ and Fp;k.E/). Let E
be a compact convex subset of a separable Banach space. For k 1 there exist
constants ik such that, if OEL 2 Ip;k.E/ is a non zero current with bounded support
and @OEL D 0 then

inf ´ Mp.OET /
Mp.OEL / kC1/=k W

OET 2 Ip;kC1.E/; @OET D OEL µ ik:

The same property holds when OEL 2 Fp;k.E/, taking the infimum among all OET 2
Fp;kC1.E/ with @OET D OEL

Proof. If OEL 2 Ip;k.E/, we want to apply Theorem 8.2. To this aim, it suffices to
combine Theorem 10.6 and Theorem 10.5. In the general case OEL 2 Fp;k.E/, let

Pi 2 Ik.E/ be satisfying Fp.Pi L/ 0 and M.Pi/ Mp.L/. Let us write

Pi D L C Ai C @Bi C pQi

with Ai 2 k.E/, Bi 2 kC1.E/, Qi 2 Fk.E/ andM.Ai/CM.Bi/ 0. Wehave
OE@Pi D OE@Ai and since OEPi Ai 2 Ip;k.E/ we can find currents OEP 0i 2 Ip;kC1.E/
with @OEP 0

i D OEPi Ai and

Mp.OEP 0

i / ik Mp.OEPi Ai / kC1/=k ik Mp.OEL / kC1/=k
C i

with i infinitesimal. It is now immediate to check that @OEP 0

i Bi D OEL so that
OEP 0

i Bi 2 Fp;kC1.E/, and that

lim sup

i!1
Mp.OEP 0

i Bi / ik Mp.OEL / kC1/=k
:
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11. Filling radius inequality

In this section we investigate the validity of a filling radius inequality, which complements

the isoperimetric inequality of Corollary 10.7. To this aim, for OEL 2 Ip;k.E/
with @OEL D 0 we consider the subspaceM defined by

M WD °
OET 2 Fp;kC1.E/ W

@OET D OEL ; Mp.OET / < 1 : 11.1)

By Corollary 10.7Mcontains OETN 2 Ip;kC1.E/ withMp.OETN / ikOEMp.OEL / kC1/=k.

Theorem 11.1. Assume that E is a compact convex subset of a separable Banach
space. Let OEL 2 Ip;k.E/ withMp.OEL / < 1and @OEL D 0. Then, the infimum of the
numbers r such that there exists OET 2 Ip;kC1.E/ satisfying @OET D OEL whose support
is contained in the r-neighbourhood of supp OEL is not greater than CkOEMp.OEL / 1=k.

The constant Ck depends only on k and on the constant ik in Corollary 10.7.

Proof. We claim that the infimum is unchanged if we look for fillings in the more
general class Fp;kC1.E/. Indeed, let OES 2 Fp;kC1.E/ with @OES D OEL whose
support is contained in the r-neighbourhood of K, and let u be the distance function
from K, the support of OEL We now consider a sequence Si/ IkC1.E/ with

Pi Fp.Si S/ < 1 and r0 > r. We know that for L1-a.e. 2 r; r0/ we still
have OESi fu < g OES fu < g in Fp;kC1.E/, and since OES fu < g D
OES fu < g D OES we see that, possibly replacing Si by Si fu < g, there
is no loss of generality in assuming that the supports of Si are contained in the

-neighbourhood of K, for some < r0. Now, let us fix i and write

S Si D A C @B C pQ

with A 2 kC1.E/, B 2 kC2.E/, Q 2 FkC1.E/. For L1-a.e. t 2 ; r0/ we can

restrict both sides to fu < tg to obtain

S Si D A fu < tg hB; u;tiC @.B fu < tg/ C pQ fu < tg:

It follows that the current OESi C A fu < tg hB;u; ti 2 Ip;kC1.E/ has boundary
OEL and support contained in the r0-neighbourhood of K. Since r0 > r is arbitrary,
this proves the claim.

So, from now on we look for OES 2 Fp;kC1.E/ with @OES D OEL and we set

c WD ikOEMp.OEL / kC1/=k:
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12. Ekeland principle

Let us recall the Ekeland variational principle [17] see also the proof in [18],
using only the countable axiom of choice): If X; d/ is a complete metric space and

f W X R[ fC1g is lower semicontinuous and bounded from below, then for all

" > 0 there exists y 2 X such that x 7! f x/ C "d.x; y/ attains its minimum value
at x D y. Since Mp Fp and is Fp lower semicontinuous, we know that M is a

complete metric space, when endowed with the distance induced by Mp. Let " > 0
be fixed; the lower semicontinuity of OET 7! Mp.OET / ensures that we can apply the
Ekeland variational principle to find OES 2 M such that

OET 7! Mp.OET / C "Mp.OET OES /; OET 2 M;

is minimal at OET D OES If " 1=2, the minimality of OES gives

Mp.OES /
1 C "
1 "

Mp.OETN / 3c: 12.1)

Let us now prove the density lower bound

kSkp.B%.x// .3ik/ k

k C 1/kC1
%kC1 for all % 2 .0; x// 12.2)

for any x 2 supp OES n K; here x/ D dist.x; K/ > 0. In order to prove 12.2)
we use a standard comparison argument based on the isoperimetric inequalities: let

x 2 supp OES n K: for L1-a.e. % > 0 the slice

OES% WD hOES ; d. ;x/;%i D @.OES fd. ; x/ < %g/ @OES / fd. ; x/ < %g

belongs to Fp;k.E/ and has no boundary, because the conditions < x/ and
@OES D OEL imply

.@OES / fd. ; x/ < %g D 0:

By Corollary 10.7 we can find OER 2 Fp;kC1.E/ with @OER D OES% and

Mp.OER / ik Mp.OES% / kC1/=k
: 12.3)

Comparing OES with
OES0

WD OES E n B%.x/ C OER

we find

Mp.OES / Mp.OES0 / C "Fp.OES B%.x/ R/
Mp.OER / CMp.OES E n B%.x/// C "Mp.OES B%.x// C "Mp.OER /;
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so that

Mp.OES B%.x//
1 C "
1 "

Mp.OER / 3Mp.OER /: 12.4)

By 12.3) and 12.4) it follows that

d%kSkp.B%.x//
kC1/= k

kSkp.B%.x// 3ik
d

for L1-a.e. % > 0. Since kSkp.B%.x// > 0 for any % > 0 because x 2 supp OES

this proves that

% 7! kSkp.B%.x///1=.kC1/ .3ik/ k=.kC1/%=.k C 1/

nondecreasing, and hence nonnegative, in .0; x//.
To obtain theestimateon the support of OES it suffices to take a sequence%i " x/

and to use the inequalities

kT kp.B%.x// Mp.OES / 3c 3ikMp.OEL / kC1/=k

to obtain that x/ can be bounded by a multiplicative constant times OEMp.OEL / 1=k.
Since x is arbitrary this proves that the support of OES is contained in the r-neighbourhood

of K, with r CkOEMp.OEL / 1=k.

Remark 12.1 Extension toFp;k.E/). The same property holds, with the same proof,
in the classes Fp;k.E/, namely: for all OEL 2 Fp;k.E/ with Mp.OEL / < 1 and
@OEL D 0 the infimum of the numbers r such that there exists OET 2 Fp;kC1.E/
satisfying @OET D OEL whose support is contained in the r-neighbourhood of supp OEL

is not greater than CkOEMp.OEL / 1=k:

13. Nonorientable manifolds and currents mod.2/

Let M; g/ be a compact n-dimensional Riemannian manifold without boundary
and let be a Borel orientation of M, i.e. a Borel choice of unit vectors 1; : : : ; n
spanning the tangent space and mutually orthogonal the construction can be easily
achieved in local coordinates and gluing, by the minimal Borel regularity imposed
on is not a problem), possibly up to Hn-negligible sets. Here Hn is the Hausdorff
n-dimensional measure induced by the Riemannian distance. Of course, when M is
not orientable any orientation is necessarily discontinuous and it is by no means

canonical. In any case, given this orientation, we can define a current OEOEM 2 n.M/
as follows:

OEOEM fd 1 ^ ^ d k/ WD Z
M
f det

@ i
@ j

dHn:
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While OEOEM is not canonical, its equivalence class mod.2/ obviously is, because

different orientations induce currents OEOEM equivalent mod.2/. In connection with
mass measures, it is not difficult to check that

kOEOEM k.B/ D H n B/ for all B M Borel

or, it suffices to apply Lemma 9.2 and Theorem 9.5 of [3], valid in a much more
general context). In turn, Hn coincides with the Riemannian volume measure, see

for instance [20], 3.2.46. Passing to the equivalence class the same is true, because
OEOEM is already reduced mod.2/, hence

kOEOEM k2 D kOEOEM k and their total mass is
Vol.M/.

We are nowgoing to showthat @OEOEM D 0 mod.2/, and we provethis fact building
a “nice” current onM as the image of the exponential map ExpO at some base point
O 2 M. As the referee pointed out, for the purpose of proving @OEOEM D 0 mod.2/
simpler proofs are possible, which apply to Lipschitz manifolds as well; on the other
hand, we believe that this global construction which uses some properties of the cut
locus established only recently) might have an independent interest.

Theorem 13.1. Let M; g/ be a compact n-dimensional Riemannian manifold with
no boundary. Then @ OEOEM D 0 and, in particular, OEOEM 2 I2;n.M/.

Proof. We fix a base point O 2 M and consider the distance function u from O. We
consider the tangent cut locus TC at O, namely v 2 TOM belongs to TC if and

only if expO.tv/ is the unique minimizing geodesic in OE0; for all < 1, and it is
nonminimizing in OE0; for all > 1. It turns out thatTC is locally a Lipschitz graph
[28], [39], and that the boundary of the star-shaped region

WD ftv W v 2 TC; t 2 OE0; 1 g

is contained in TC. Of course the exponential map ExpO maps TC into the cut
locus, that we shall denote by C.

Next, we consider some additional regularity properties of u, besides 1-Lipschitz
continuity: this function is locally semiconcave out ofO, namely in local coordinates
its second derivatives are locally bounded from above in M n fOg. This implies, by
standard results about semiconcave functions andviscosity solutionsto the Hamilton–
Jacobi equation gx.ru; ru/ D 1 the following facts for i), ii), iii) see for instance

[40]; for the more delicate property iv) see [41], Theorem 4.12, or the appendix
of [22]):

i) for all x ¤ O the set of supergradients

@Cu.x/ WD fv 2 TxM W u.expx.w// u.x/ C gx.v;w/ C o.jwj/g

is convex and not empty, and u is differentiable at x if and only if @Cu.x/ is a

singleton;
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ii) for all x ¤ O the closed convex hull of @Cu.x/\ fv 2 TxM W gx.v; v/ D 1g
coincides with @Cu.x/ and the former set is in 1-1 correspondence with final
speeds of minimizing unit speed geodesics joining O to x;

iii) for j integer the set fx 2 M W dim.@Cu.x// jg has -finite Hn j -measure;

iv) the set of points x 2 C where u is differentiable is Hn 1-negligible.

Now, we fix an orientation of TOM and we consider the canonical Euclidean)
n-current OEOE 2 n.TOM/, with multiplicity 1 on and 0 on TOM n induced
by this orientation; since

Hn 1
.@ / Hn 1 TC/ <1

we know that OEOE 2 In.TOM/ and its boundary is supported on TC. Then, we
consider its image T D expO/]OEOE

2 In.M/ via the exponential map. We are

going to prove that:

a) T D OEOEM for some orientation of M;
b) @T D 2R for some R 2 In 1.M/.

These two facts imply the stated properties ofOEOEM Inconnectionwith a), notice first
that expO. / D M, because for each point x 2 M there is at least one minimizing
geodesic to O, and it is unique before reaching x. Moreover, Rademacher’s theorem
implies that Hn-a.e. point x 2 M is a differentiability point of u, so that @uC.x/ D
fru.x/g is a singleton and there is a unique minimizing constant speed geodesic
between O and x since its final speed is uniquely determined, ODE uniqueness
applies); if v is the initial speed of this geodesic, it turns out that x D expO.d.O; x/v/
and td.O; x/v 2 for all t < 1, hence d.O; x/v 2 This proves that expO has

a unique inverse Hn-a.e.; these facts imply that T D OEOEM provided we choose as

orientation of M the one induced by TOM via the exponential map expO
In connection with b), we know that @T D expO/].@OEOE / and that @OEOE is a

current with unit multiplicity Hn 1-a.e. on @ because TC is locally a Lipschitz
graph. We claim that for Hn 1-a.e. x 2 C the pre-image exp 1

O x/ contains exactly
two points. Since the multiplicity of @T at x can be obtained adding the properly
multiplicities of @OEOE at exp 1

O x/, this proves that @T has an even multiplicity. To
prove the claim, we know by iv) that forHn 1-a.e. x 2 C the number of minimizing
geodesics is strictly greater than 1; on the other hand, iii) with j D 2 gives that for
Hn 1-a.e. x 2 C the dimension of @Cu.x/ is at most 1, hence the extreme points
are at most two: therefore there exist precisely two minimizing geodesics from O to

x at Hn 1-a.e. x 2 C.

Proof ofTheorem 3.2. It suffices to apply Theorem 11.1 with k D n. To this aim, we
consider the canonical current OEOEM associated toM. By Theorem 13.1 this current
belongs to I2;n.M/ and it is a cycle mod.2/. Then, given an isometric embedding i of
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M into a separable) Banach space F we consider the closed convex hull E of i.M/
which is a compact set, by the compactness of i.M/), and apply Theorem 11.1 to

the cycle OEL D i] OEOEM 2 I2;n.E/, whose M2 mass is by the isometric invariance
of the M2-mass of rectifiable currents) equal to M2.OEOEM / D Vol.M/.

14. Appendix

In this appendix we recall the basic definitions of the metric theory developed in [3].

Definition 14.1. Let k 1 be an integer. We denote by Dk.E/ the set of all
k C 1/-ples D f; 1; : : :; k/ of Lipschitz real valued functions in E with the

first function f in Lipb.E/. In the case k D 0 we set D0.E/ D Lipb.E/.

Definition 14.2 Metric functionals). We call k-dimensional metric current any function

T W Dk.E/ R satisfying the following three axioms:

a) T is multilinear;

b) T.f; n
1 ; : :: ; n

k/ T.f; 1; : : : ; k/ whenever n
i i pointwise and

supn Lip. n
i / is finite, for 1 i k;

c) T.f; 1; :: : ; k/ D 0 if, for some i 2 f1; : : : ;kg, i is constant in a neighbour¬
hood of the support of f

We denote by MFk.E/ the vector space of k-dimensional metric currents.

A consequence of these axioms is that T is alternating in 1; : : :; k/, so the
differential forms notation fd 1 ^ ^ d k can be used. We can now define an

“exterior differential”

d! D d.fd 1 ^ ^ d k/ WD df ^ d 1 ^ ^ k

mapping Dk.E/ into DkC1.E/ and, for ' 2 Lip.E; F /, a pull back operator

']! D '].fd 1 ^ ^ d k D f B 'd 1 B ' ^ ^ d k B '
mapping Dk.F / on Dk.E/. These operations induce in a natural way a boundary
operator and a push forward map for metric functionals.

Definition 14.3 Boundary). Let k 1 be an integer and let T 2 MFk.E/. The
boundary of T denoted by @T is the k 1/-dimensional metric current in E defined
by @T .!/ D T.d!/ for any 2 Dk 1.E/.

Definition 14.4 Push-forward). Let ' W E F be a Lipschitz map and let T 2
MFk.E/. Then, we can define a k-dimensional metric current in F denoted by

']T setting ']T.!/ D T.']!/ for any 2 Dk.F /.
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We notice that, by construction, '] commutes with the boundary operator, i.e.

'].@T / D @.']T /: 14.1)

Definition 14.5 Restriction). Let T 2 MFk.E/ and let D gd 1 ^ ^ d m 2
Dm.E/, with m k D g if m D 0). We define a k m/-dimensional metric
current in E, denoted by T setting

T fd 1 ^ ^ d k m/ WD T.fgd 1 ^ ^ d m ^ d 1 ^ ^ d k m/:

Definition 14.6 Currents with finite mass). Let T 2 MFk.E/; we say that T has

finite mass if there exists a finite Borel measure in E satisfying

jT.fd 1 ^ ^ d k/j
k

Y
iD1

Lip. i/ Z
E jf j d 14.2)

for any fd 1 ^ ^ d k 2 Dk.E/, with the convention
Qi

Lip. i/ D 1 if k D 0.

It can be shown that there is a minimal measure satisfying 14.2), which will be
denoted by kT k indeed one checks, using the subadditivity of T with respect to the
first variable, that if f igi2I M.E/ satisfy 14.3) also their infimum satisfies the
same condition). We call mass of T the total mass of kT k, namelyM.T / D kT k.E/.

By the density of Lipb.E/ in L1.E;kT k/, which contains the class of bounded
Borel functions, any T 2 MFk.E/ with finite mass can be uniquely extended to
forms f d with f bounded Borel, in such a way that

jT.fd 1 ^ ^ d k/j
k

Y
iD1

Lip. i/ Z
E jf j dkT k 14.3)

for any f bounded Borel, 1; : :: ; k 2 Lip.E/. Since this extension is unique we
do not introduce a distinguished notation for it.

Functionals with finite mass are well behaved under the push-forward map: in
fact, if T 2 MFk.E/ the functional ']T has finite mass, satisfying

k']Tk OELip.'/ k']kT k : 14.4)

If either ' is an isometry or k D 0 it is easy to check, using 14.6) below, that equality
holds in 14.4). It is also easy to check that the identity

']T.fd 1 ^ ^ d k/ D T.f B 'd 1 B ' ^ ^ d k B '/
remains true if f is bounded Borel and i 2 Lip.E/.
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Functionals with finite mass are also well behaved with respect to the restriction
operator: in fact, the definition of mass easily implies

kT k sup jgj

m

Y
iD1

Lip. i/kT k with D gd 1 ^ ^ d m: 14.5)

For metric functionals with finite mass, the restriction operator T can be defined
even though D g; 1; : : : ; m/ with g bounded Borel, and still 14.5) holds; the
restriction will be denoted by T A in the special case m D 0 and g D A.

Finally, we will use the following approximation results.

Proposition 14.7. Let E be a closed convex set of a Banach space. Then Ik.E/ is
dense in k.E/ in mass norm. As a consequence Ik.E/ is dense in Fk.E/ in flat
norm. The same holds in metric spaces F that are Lipschitz retracts of E.

Proof. We argue as in Theorem 4.5 of [3], reducing ourselves to the approximation
of currents T 2 k.E/ of the form f]OEOE with 2 L1.Rk; Z/, B Rk Borel,

f W B E Lipschitz and D 0 Lk-a.e. out of B. Since E is closed and convex,
the construction of [29] provides a Lipschitz extension of f to the whole of Rk,
still with values in E. For " > 0 given, we can choose 0 2 BV.Rk

IZ/ such
that

RR
k j 0j dx < " to obtain that the current zT WD f] OEOE 0

2 Ik.E/ satisfies

M.T zT/ < "OE Lip.f / k.
If T 2 k.F / and i W E F is a Lipschitz retraction, then we can find a sequence

Tn/ Ik.E/ converging in mass to T Then, the sequence i]Tn/ Ik.F / provides
the desired approximation.

Proposition 14.8 Characterization of mass). Let T 2 MFk.E/ with finite mass.

Then kT k.E/ is representable by

sup n

N

X
iD1

kT d i
k.Ai/o; 14.6)

where the supremum runs among all finite disjoint families of open sets A1; : : : ;AN
and all N-ples of 1-Lipschitz maps i

Proof. In [3], Proposition 2.7, it is proved that

kT k.E/ D sup n

N

X
iD1

1 ^ ^ d ikk.Ai/o;kT d i

where the supremum runs among all finite disjoint families Ai/ of Borel sets and

1-Lipschitz maps ij 1 i N and 1 j k. Approximating Borel sets from
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inside with compact sets, and then compacts sets from outside with open sets, one
can see that the supremum is the same if Ai/ runs among all finite disjoint families
of open sets. By the inequalities

kT dq1 ^ ^ dqkk kT dq1k kT k

with qj 1-Lipschitz we obtain 14.6).
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