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Flat currents modulo p in metric spaces and filling radius
inequalities

Luigi Ambrosio and Mikhail G. Katz*

Abstract. We adapt the theory of currents in metric spaces, as developed by the first-mentioned
author in collaboration with B. Kirchheim, te currents with coefficients in Z,. We obtain
isoperimetric inequalities mod( p) in Banach spaces and we apply these inequalities to provide a
proof of Gromov’s filling radius inequality which applies also to nonorientable manifolds. With
this goal in mind, we use the Ekeland principle to provide quasi-minimizers of the mass mod{ p)
in the homology class, and use the isoperimetric inequality to give lower bounds on the growth
of their mass in balls.

Mathematics Subject Classification (2010). 49Q20, 53C65.

Keywords. Filling radius, currents, isoperimetric inequality.

Our aim is the extension of the theory of rectifiable currents in metric and infinite-
dimensional Banach spaces to the case of coefficients in Z,. Such an extension can
be applied to give transparent proofs of Gromov’s filling radius and filling volume
inequalities which apply to nonorientable manifolds, as well.

1. Current history

Following the classical paper by H. Federer and W. Fleming [21], as well as Federer’s
treatise [20] on the theory of currents, in the last few years the theory has undergone
two important developments:

— B.White’s theory [46], inspired by Fleming’s paper [23], of rectifiable flat chains
with coefficients in a general group, in FEuclidean spaces;

— the theory developed by the first author and B. Kirchheim in [3], and inspired
by E. De Giorgi [13], of real and integer rectifiable currents in general metric
spaces.

*M. G. Katz was supported by the Israel Science Foundation (grant no. 1294/06).
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A unified picture (general coefficients in general spaces) seemed to be still miss-
ing, but after the completion of this paper we learned of the paper by T. De Pauw and
R. Hardt [16] and the earlier paper by T. Adams [1], developed in the same spirit of
the Fleming—White theory (but with no discussion of isoperimetric inequalities). An-
other valuable contribution to the literature came even more recently with S. Wenger’s
papers [44], [45] on the isoperimetric inequalities. The classical approach [21] to
proving these inequalities in arbitrary dimension and codimension goes back to the
deformation theorem. A different technique was introduced by M. Gromov [24] and
fully exploited in [3]. Itis based on the fact that, in finite-dimensional spaces, one can
prove isoperimetric inequalities independent not only of the codimension, but also of
the norm in the space. Such a technique allows one to prove the inequality in suit-
able metric spaces and in infinite-dimensional spaces, provided a finite-dimensional
approximation scheme exists.

Wenger [44] introduced a new “global” technique, based on covering arguments
and independent of deformation theorems and finite-dimensional schemes. His tech-
nique allows one to treat also the case of Banach spaces to which the results in [3] do
notapply. White’s isoperimetric inequality [48] applies to chains in finite-dimensional
Banach spaces with coefficients in general groups. However, White’s inequality is
based on the deformation theorem in the corresponding Euclidean space, and there-
fore does not provide universal constants depending only on the dimension of the
chain.

In the present text, we follow the approach of [20] (see also W. Ziemer [49]
for the case p = 2, still in Euclidean space) to achieve an extension of the metric
theory of [3] to currents with coefficients in Z,: the initial idea is simply to identity
currents which differ by p7', with T' integer rectifiable. But then, since we want
this equivalence to be stable under the action of the boundary operator, it turns out
that larger equivalence classes and a suitable topology (induced by the so-called flat
distances) are needed. In any case, our currents arise as quotient classes [T] of
currents 7" akin to those considered in [3], which extend to general spaces those of
the Federer—Fleming theory.

In the simplest case p = 2, it is well-known that one can use currents mod-
ulo 2 to describe possibly nonorientable manifolds. In particular, we will prove
in Theorem 13.1 that to any compact #-dimensional Riemannian manifold without
boundary M one can associate a canonical equivalence class

121

(notice that the current [[A{]] itself is by no means canonical) whose boundary is zero,
still mod(2). In particular, after embedding M in a linear space, we can consider
chains whose boundary mod(2) coincides with the image of [M]].
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2. Gromov’s inequalities

A quarter century ago, M. Gromov [24] initiated the modern period in systolic ge-
ometry by proving a curvature-free 1-systolic lower bound for the total volume of an
essential Riemannian manifold M of dimension #. Recall that the 1-systole, denoted
“Sys”, of a space is the least length of a loop that cannot be contracted to a point in
the space. Here the term “curvature-free” refers to a bound independent of curvature
invariants, with a constant depending on the dimension of M (and possibly on the
topology of M), but not on its geometry. Such a bound is given by the inequality
between the leftmost and the rightmost terms in (2.2) below, and can be thought of
as a far-reaching generalisation of Loewner’s classical torus inequality

")
Sys? < —Area, (2.1}
% \/5

satisfied by every metric on the 2-torus, cf. [42]. It is conjectured that the bound (2.1)
is satisfied by every surface of negative FEuler characteristic, see [30] for a detailed
discussion. Recent publications in systolic geometry include [5], [8], [9], [10], [11],
[19], [30], [35], [36], [43], [27], [31], [26].

The main ingredient in the proof of the inequality is Gromov’s filling inequality.
There is a certain amount of confusion in the literature as to what constitutes Gromov’s
“filling inequality”. Gromov actually proved several inequalities:

— aninequality relating the filling radius and the volume. It is this inequality that’s
immediately relevant to Gromov’s systolic inequality;

— the inequality between the filling volume (an (# + 1)-dimensional invariant) and
the volume (n-dimensional invariant) of M. Such an inequality can be more
appropriately referred to as an isoperimetric inequality.

Marcel Berger performed a great deal of propaganda for systolic geometry (see
most recently [7], [8]). The success of the field is certainly due to his efforts. In one
of his popularisation talks, he presented the following string of three inequalities:

Sys < 6 Fillrad < Const - FillVol/*+1) < Const - Vol/7. @)

(Here the last inequality corresponds to the isoperimetric inequality, while the first
one is sharp [33].) Berger’s presentation was intended for pedagogic purposes, but
eventually led to a slight confusion. Namely, this string of inequalities gave the
impression that the proof breaks up into three stages, each requiring separate treat-
ment. In reality, the last two inequalities are proved simultaneously. The technique
is essentially a more precise version of Federer—Fleming’s deformation theorem.

As a matter of fact, proving the isoperimetric inequality alone does not directly
lead to any simplification of the proof. Consider, for example, the familiar picture
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of the pseudosphere in R 3 witha cusp along an asymptote given by the z-axis. We
think of it as a “filling” of the unit circle in the (x, y)-plane. Alternatively, truncate
the pseudosphere at large height z = H, to obtain a filling which is topologically a
disk. One immediately realizes that the filling volume stays uniformly bounded, but
the filling radius (with respect to this particular filling) tends to infinity.

Gromov’s original proof starts by imbedding the manifold M into the space
L>°(M) of bounded Borel functions on M. Here a point x € M is sent to the
function f, defined by

S (p) = dist(x, y), 2.3)

where “dist” is the Riemannian distance functionin M. The factthatthe space L.°°(M )
is infinite-dimensional has given some readers the impression that infinite-dimen-
sionality of the imbedding is an essential aspect of Gromov’s proof of the systolic
inequality. Infact, thisis notthe case. Indeed, we can choose amaximale-net N C M
with [N | < oo points. We choose ¢ satisfying ¢ < II—OSys(M). This results in an
imbedding

M — {°(N) (2.4)

where the systole goes down by a factor at most 5, see [34], p. 97. Thus the systolic
problem can easily be reduced to finite-dimensional imbeddings. Similarly, by choos-
ing a sufficiently fine ¢-net, one can force the map (2.4) to be (1 + ¢)-bi-Lipschitz,
for all € > 0 (see [31] and Proposition 5.1 below). Hence finite-dimensional approx-
imations work well for our filling radius, as well, provided the estimates one proves
are independent of N .

Gromov’s original proof is difficult (arecent generalisation is provided by L. Guth
in [25]; see also [26] and [32]). Only the experts possess a complete understanding
of the proof. It would thus be desirable to write down a detailed proof of Gromov’s
influential theorem, and to sort out some of the confusion in the literature.

3. Summary of main results

In Section 6, we introduce flat currents and flat currents modulo p, following the
traditional procedure in [49], [20]. The only difference is that the initial objects
we complete with respect to the flat topology are the currents of [3], whose main
properties are recalled in the appendix. Then, we see that in this class a slice operator

[T] = (T, u,r)

and a boundary operator [T] + d[T] are well defined. This allows us to state a
list of properties that a suitable class of currents, together with a suitable notion of
mass, should satisfy, as in [45], in order to obtain the isoperimetric inequality. The
idea is to start from the 1-dimensional isoperimetric inequality, which needs to be
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directly checked, and then make a bootstrap argument based on a clever covering
argument. Actually, as in [44], we use the covering argument even to establish the
I-dimensional isoperimetric inequality (trivial in the case of Lipschitz images of 1-
dimensional simplexes considered in [45], but not trivial in our case). Then, we show
in Section 5 and Section 6 that our class of currents, together with a suitable notion
of p-mass, denoted by M, do satisfy the list of properties, so that an isoperimetric
inequality holds in this class.

Definition 3.1. The filling radius
r([L], M)

of a n-dimensional cycle mod(2) in a space M is the infimum of the numbers r > 0
such that, for all Banach spaces F and all isometric embedding { of M into F there
exists an (# + 1) current [7'] mod(2) in F such that d[7T'] = #4[L] and the support
of [T'] is contained in the r-neighbourhood of the support of #[L].

Of course this definition makes sense only specifying the cycles we are dealing
with: they are equivalence classes mod(2) of currents I. ¢ I,(FE) whose boundary
is zero, still mod(2). Analogously, the admissible fillings T are equivalence classes
mod(2) of currents in I, (F) whose boundary is equivalent mod(2) to L (see
Section 10 for a precise definition of the additive group I, (E) of integer rectifiable
n-currents in F).

One of the main result of our paper, achieved as a particular case of our Theo-
rem 11.1 below, is the universal upper bound

r(IL], M) < e(m)[Ma([L])]"".

When M is a compact Riemannian manifold without boundary, applying this result
to the canonical n-cycle [L] = [[[M]]] in M and setting

(M) = r(M,[[M]]) 3.1)
we obtain the following result.

Theorem 3.2. For any compact n-dimensional Riemannian manifold without bound-
ary the universal upper bound r(M) < c(n)[Vol(M)]Y" holds.

Remark 3.3. Upto the proof of the isoperimetric inequalities no completeness of our
spaces of currents is really needed (closure under the action of the slicing operator
suffices). However, the proof of the universal upper bound seems really to require
some form of completeness, and justifies the whole mathematical apparatus developed
in this paper (however, we left out many mathematical questions concerning currents
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with coefficients in Z, that we plan to investigate in the forthcoming paper [4]). In
order to prove our result we use as in [3] the Ekeland principle (valid in complete
metric spaces, see Section 12 for a precise statement) to find “quasi-minimizers” of
the M,-mass in the homology class

7] 9[T] = fy[L]}

and prove, using the isoperimetric inequality, that any such minimizer has support
close to the support of iy[L]. Notice also that the same argument, based on the
isoperimetric inequalities, applies to orientable manifolds: in this case the filling
radius invariant (possibly a larger one) could also be defined using the currents in [3]
and no quotient mod(p) is needed.

4. Filling radius and systole

The invariant defined in (3.1) is related to the systole by means of the following
inequality of Gromov’s [24], which turns out to be sharp [33]. Recall that a closed
manifold M is called essential if it admits a continuous map an Eilenberg—MaclLane
space K(m,1) such that the induced homomorphism in top-dimensional homology
sends the fundamental homology class of M to a nonzero class.

Theorem 4.1 (M. Gromov). Every essential M satisfies r(M) = %Sys(M).

Proof. The idea of Gromov’s proof is to build a retraction skeleton-by-skeleton.
We will outline the essential idea of the argument first, so as not to overburden the
presentation with technical details, which will be explained later.

By a strongly isometric imbedding we mean an imbedding of metric spaces
M — V such that the instrinsic distance in M coincides with the ambient distance
in V' among points of M.

We can assume without loss of generality that a piecewise linear strongly isometric
(up to epsilon) imbedding M — £°° satisfies dim(£°°) < oo (see Remark 4.3 and
Proposition 5.1). If 6r (M) < Sys, we set

€= ll—O(SyS —6r(M)). @.1)

Consider a triangulation, extending that of (the image of) M, of £°° so each simplex
has diameter at most €. If C is a current with support in the neighborhood U, M,

let Cix be the union of all simplices meeting the support of C. Then Ciy lies in
the (r + ¢)-neighborhood of M. Let

Ca’ € Ciu
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be its k-skeleton. A map
PO = M

on the O-skeleton is constructed by sending each vertex to a nearest point of M. Next,
we extend £ to a map

1
Oy =M

by sending each edge to a shortest path joining the images of its endpoints under £,
in such a way that f M is the identity on each edge contained in M itself (here we
are assuming that the edges of the triangulation of M are minimizing paths). Since

the distances in M coincide with the ambient distances in £°°, each edge of Cfg) 18
mapped to a path of length at most (r + ¢) + € + (r + ¢) = 2r + 3¢. Next, given

a 2-simplex abc in Cf(a%), note that its boundary is mapped to a loop L. of length
at most

3(2r 4+ 3¢) = 6r 4+ 9¢ < Sys,

by (4.1), and hence L 45, is contractible by definition of the systole. We can therefore
extend /@ to a map

2
B o2 3
whose restriction to the intersection M@ N Cgy is the identity. Every essential
manifold M (see [24]) by definition admits a classifying map
g: M —> Brm

to the classifying space Bm = K(m, 1), such that
7w =m(M);
« 1;(Brn)=0fori =2,
o 24([M]) # 0, where [M] is the fundamental class.

Therefore the composed map
gof@P. Cfgj) — Br
extends to a map

h: Cey — B

in such a way that A coincides with g on M C Cfg) (see Lemma 4.2 for a more
detailed statement in the simplicial category). Since

ha([M]) = g+(IM]) # 0,

we conclude that the neighborhood Cey cannot contain a current filling M, proving
the inequality. [
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The proof above is formulated in the category of continuous maps, which is
the most convenient one in the context of classifying spaces. On the other hand, a
simplicial approximation can easily be constructed if one works with finite skeleta of
the classifying space. The following essential lemma is standard.

Lemma 4.2. Consider finite dimensional simplicial complexes M, Y, Z, where
M C Y isasubcomplex, dim(Y) = N, and g: M — Z iscontinuous and simplicid,
where m;(Z) = O fori = 2,...,N — 1. Then given a simplicial map @ : Y@ —
M which is the identity on M@, the composition g o f(z) extends to a simplicial
map h: Y — Z whose restrictionto M C Y satisfies by = g.

Remark 4.3. Let N be a maximal ¢-net in M, and consider the finite dimensional
imbedding ¢: M — £°°(N ) whose coordinate functions are the distance functions f,
from points p € N. The imbedding is not quite strongly isometric, since d(p, g) =
| fp — /4| but the functions f, and f; only occur as coordinates in £ if p, g belong
to the net. However, choosing nearby points pg, go of the maximal net, we obtain by
the triangle inequality

d(p,q) = d(po,qo) + 2¢ = | fpy — Jaoll +2€ = lt(p) — (@] + 4e.

Thus upper bounds on distances in £ entail upper bounds on intrinsic distances
in M, up to arbitrarily small error. A more detailed discussion may be found in
Proposition 5.1.

Remark 4.4 (Gromov’s scheme). Gromov’s scheme, outlined in Berger 6], p. 298,
is to fill a manifold M = M9 in £°° by a minimal (d + 1)-submanifold N. Next, N
contains a point x at distance at least r from each point of M. Since N is minimal,
the volume of the distance spheres from x grows sufficiently fast. Finally, the total
volume of N is at least that of a ball of radius r in N, hence at least a constant
times 711, But Vol(M) > Const - Vold/dH(N) by the isoperimetric inequality
for minimal submanifolds (with boundary) in £°°. Combined with the inequality of
Theorem 4.1, this would complete the proof of Gromov’s systolic inequality.

Of course, lacking a completeness result, no notion of minimal submanifold in
Banach space was available at the time, which accounts in part for the complications
in Gromov’s original proof [24]. In some sense, the scheme outlined by Berger is
made rigorous in the present text, where we do have completeness, c¢f. Remark 3.3.

5. Approximation by finite-dimensional imbeddings

Proposition 3.1. Let M be a compact Riemannian manifold without boundary. For
every & > 0, there exists a (1 + €)-bi-Lipschitz finite-dimensional imbedding of M,
approximating its isometric imbedding in L°°(M).
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Proof. For each n € N, choose a maximal %-Separated net
M, C M,

and imbed M in £° by the distance functions from the points in the net by the
1-Lipschitz map

tn: M — £7°(Mpy). (5.1)
If there exists a real £ > 0 such that the inverse of ¢, is not (1 — &) !—Lipschitz, then
there is a pair of points x,, y, € M such that the distance d(x,, y,) satisfies

|"'n(xn) _f'n(.yn)‘ = (1 o 8)d(xna yn)s (52)

meaning
|d(xp,2) —d(yp,2)| = (1 —e)d(x,, yp) forall z € M,. &3

Since M is compact, we can assume with no loss of generality that x, — x and
yn — ¥, and if x £ y we can contradict (5.3) by choosing z,, € M, at distance less
than 1/a from x and n large enough. So, x = y and we denote s, = d(x,, yp) — 0.

Since M is compact and locally bi-Lipschitz to an Euclidean space (with Lipschitz
constant close to 1 provided we choose sufficiently small neighbourhoods), for any
§ > 0 we can find b > 0 such that all (geodesic) triangles in M with side lengths less
than b have sum of the internal angles less 27 + §: we choose § in such a way that
1 — &/2 < cos§ and we assume with no loss of generality that » < InjRad(M).

Let v, € Ty,M be the unit vector such that y, = exp, (5,0y), set ¢, =
expxn(%évn) and denote by a, € M, a point of the maximal net nearest to g,.
Denoting by «, be the angle at x, of the geodesic triangle having a,,, V,, X, as
vertices,

p i= L AnXnYn,

we have the Taylor expansion
Ay, expy (SU,)) = d{ap, Xp) — S cosdy + Swy(s) 5.4)

where, thanks to the smoothness of d in both variables, sup,, |@,(s)| is infinitesimal
ass | 0. We claim that @, < & for n large enough; indeed, the angle at y, in the
geodesic triangle having a,, yn, ¢n as verlices tends to 0 because the length of the
side from ¢, to g, tends to 0, while the length of the other two sides does not. As
a consequence the angle at y, in the geodesic triangle having an, yn, X» as vertices
tends to /7. Since all sides of the latter triangle are shorter than » for n large enough,
our choice of b ensures that the angle @, is less than 6 for # large enough. Putting
§ = 8y in (5.4) we get

\d{apn, yn) — d(an, xp)| = spcosap +0(sp) > (1 —&/2)sp, + spwn(sy)
= (1 _8/2)511 + O(Sn)
contradicting (5.3) for » large. ]
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6. Preliminary definitions

Let (E,dE) be a metric space and & > 0 integer. We assume, since this suffices for
our purposes, that (£, dg) is separable; this assumption is needed to avoid subtle
measurability problems (assuming that the cardinality of £ is an Ulam number this
assumption could be avoided, see [20], 2.1.6, and Lemma 2.9 in [3]). We use the
standard notation B, (x) for the open balls in E, Lip(E) for the space of Lipschitz
real-valued functions, relative to dg, and Lip,(E) for bounded Lipschitz functions.

We consider, as in [3], the space M Fy(F) of k-dimensional currents in E. We
denote by M(T') the mass of T € MFi(E), possibly infinite. We recall the basic
definitions of mass, support, push-forward, restriction, boundary in the appendix.

Spaces of currents in E are defined as in [3], with the same notation, we will
only use T (E) (integer rectifiable currents with finite mass) and I (E) (currents in
11 (E) whose boundary belongs to Ir_; (E)), see Section 10. In the sequel p > 2 is
a given integer.

6.1. Flat integer currents. We shall denote by 7 (E) the currents in M Fy. (E) that
can by written as R + dS with R € I (E) and S € Ix1(E). It is obviously an
additive (Abelian) group and

T € $1.(E) = 9T € Fp_1(E). (6.1)

71 (E) is a metric space when endowed with the distance d(17,72) = # (11 — T>),
where

F(T) = inf {IM(R) + M(S): R € It(E), S € It 1(E), T =R + S} .

The subadditivity of ¥, namely # (nT) < a¥ (T), ensures that d is a distance,
and the completeness of the groups Ir(FE), when endowed with the mass norm,
ensures that 7, (E) is complete. Also, whenever Ip(E) is dense in Ip(E) (see
Proposition 14.7 for sufficient conditions), the subset

IR+38 R el(E), S €Iz (E) C I(E)

is dense in #(E). For the special class of currents 7" in ¥ (E) with finite mass the
density result can be strengthened: indeed,if T = T; + R; + 95; with T; € I (E),
R, € Ip(E), S; € Ir 1 (E) and M(R;) + M(S;) — 0, then Theorem 10.2 gives
S; € I 11 (E) (because 95; has finite mass) hence T; 4+ 9S; € Iz (F). So, T can be
approximated in the stronger mass norm by the currents 7; + d.S; and this yields

{T € F(E) :M(T) < o0t = It (E). (6.2)
Notice also that

FOT) < F(T) foral T e Fi(E). 6.3)



Vol. 86 (2011)  Flat currents modulo p in metric spaces and filling radius inequalities 567
In addition, since d{¢@yS) = @4(3S) we get
FpyT) = [Lip()]“# (T) (64)

forall T € Fx(E), ¢ € Lip(E, R*).

It should also be emphasized that the concepts introduced in this section are
sensitive to the ambient space, namely if £ embeds isometrically in F then, for
T € Fp(E), ¥ (i4T ) can well be strictly smaller than 5 (7'); the same remark applies
to the M, mass, built in Section 9. This is not the case for the concepts of mass, a
genuine isometric invariant, see [3].

6.2. Flat distance modulo p. For T € #,(E) we define

Fp(I) = inf{F (T —pQ): Q € Fr(E)}.
The definition of ¥ gives
Fp(T') = inf {M(R) +M(S): T =R+95+ p0, R e Iy (E),
S € Ir1(E), Q € Fr(E)}.
Furthermore, whenever I (E) is dense Fr(E), both infima are unchanged if Q runs

in I (E).
Obviously #,(T) < #(T'), and (6.3) together with (6.1) give

F,(0T) < Fp(T). T < Fi(E), 6.5)

while (6.4) gives
FplpyT) < [Lip(@)]* 7p(T) (6.6)

forall T € F:(E), ¢ € Lip(E, R¥).

We now introduce an equivalence relation mod(p) in F(E), compatible with
the group structure, by saying that T = T mod{(p) if ¥,(T" — T) = 0, and denote
by ¥, i (E) the quotient group. Clearly T = 0 mod(p) if T = pQ for some
QO € Fr(E),butthe converse implication is not known, not even in Euclidean spaces.

The equivalence classes are closed in Fi(E) and by (6.5) the boundary operator
can be defined also in the quotient spaces ¥, 4 (E) in such a way that

A[T] = [0T] € Fpp_1(E) forall T < Fi(E).

The same holds, thanks to (6.6), for the push-forward operator, defined in such a way
to commute with the equivalence relation mod( p). We emphasize that ¥, ¢ (£), when
endowed with the distance induced by ¥, is a complete metric space: to see this, let
([Ta]) € ¥, £ (E) be a Cauchy sequence and assume with no loss of generality that

> Fp(Thir — Ta) < o0;
P
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we can find Ry € I (E), Sy € I (E) and Qp € Fr(E) such that

o0
Tho1=Tp+ Ry +95, + pQj and ZM(Rk) + M(Sp) < 0.
h=1
Setting Tk =Tp—p Zg_l Qy, it follows that Tk = T mod(p) and since Tk_i_l —
Ty = Ry + 98y it follows that (T3 ) is a Cauchy sequence in #z(E). Denoting by T
its limit, by the inequality ¥, < ¥ we infer [T] = [T3] — [T] in ¥, £ (E).

7. Restriction, slicing

The restriction and slicing operators can be easily extended to the set #,.*( E), defined
as the closure in #Fz(E) of currents in Ip(F), using a completion argument. In the
cases considered in Proposition 14.7, this closure coincides with the whole of Fr(E)
and, in any case, it is easily seen that d maps #.*(E) into #,* | (E).

Recall from [3] that, for ¥ € Lip(E) and T having finite mass and boundary of
finite mass, the slice operator {T,u,r) € MFr_(E) is defined by

(Tou,ry = (T Liu <r}) —T) Liu <r}.

Notice that 9{1,u,r) = —(d1,u,r). It turns out that for Flaerek (1,u,r)has
finite mass, and p

M((T,w, 7)) = LinG) = |7 [ < r}). @.1)
Now, let 7" be with finite mass;since I’ = R+dS with R € Ip(E)and S € I 1(E)
imply that 85 has finite mass we can apply the slicing operator to S to obtain

T Ly <ry=RL{u<r}+(35) Liu <r}
=RL{u<r}+d(S Liu<r})—{S,ur).

Since {S,u,r)} belongs to I;(E) for £'-a.e. r € R, thanks to Proposition 10.3, by
integration between s and £ we obtain

*£ £
f F(T I_{u<r})dr§f M(R L{u < r})

mn

+M(S L{u <r})dr + Lip(u)|| S| ({z < £})
< (£ —m)M(R) + (£ —m + Lip(u))M(S)

where | * denoted the upper integral (we use it to avoid the discussion of the measur-
ability of the map r > F (T L{u < r})). Since R and S are arbitrary we get

*f
f F(T Liu < r})dr < (£ —m + Lip))# (T). (7.2)

i
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Now,let T € Fr(E), assume that there exist T,, € F5(E) with finite mass convergent

to T in ¢ (E) (this surely holds if T € ¥ *(E)), with ), F(T,, — T) < 00, and let

u € Lip(E). By adding the inequalities (7.2) relative to T,+1 — T}, and taking into

account the subadditivity of the outer integral and the fact that £ and = are arbitrary,

we obtain that (T,,,; L{u < r})is a Cauchy sequence in F5(E) for £'-ae. r € R.
It follows that for any such T° we can define

T Liu<ri:=1lim T, Liu <r} e Fr(E) (7.3)

whenever the limit exists. By construction the operator 7' — T L{u < r}is additive
and (7.2) still holds when T' € 7 (E). A similar argument shows that this definition
is independent, up to Lebesgue negligible sets, on the chosen approximating sequence
(Ty), provided the “fast convergence” condition » , ¥ (7, — T') < oo holds,

Having defined the restriction, the slice operator, mapping currents in ¥ ( E) into
currents in #,.* | (E), can be again defined by

{(Tou,ry = (T Liu <r})—OT) Liu <r})

whenever the right hand side is defined. We still have the property o(T,u,r) =
—{0T,u,r).
From (7.2) we immediately get

*£
f F(T Liu < r})dr < (£ —m + Lip(u)) Fp(T). (7.4)

In particular %,(T) = 0 implies F,(T" Liu < r}) = 0 for £'-ae. r € R, so that
the restriction operator can also be viewed as an operator in the quotient spaces

?pfk(E) ={[T]: T € FX(E)},
with the property
[T] Liu <r} = [T Liu <r}] for£laer ek,

Hence, the same holds for the slice operator, satisfying J{[T]|,u,r} = —{9[T ], u,r)
and

([Tlu,r) = [(T,u,r)] for £l-ae. r cR.

8. Isoperimetric inequalities

In this section we discuss the validity of isoperimetric inequalities mod( p ) in suitable
subspaces Cp, 1 (E) C ?p":k(E ) analogous to those valid in the case of currents with
integer coefficients. We follow, as in [45], an axiomatic approach: we assume the
existence, given these subspaces C,  (E), of anotion of p-mass M, : C, ((E) — R
satisfying the following property:
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Definition 8.1 (Additivity). For all [T] € C, 1 (E) there exists a o-additive Borel
measure ||7'||, satisfying

M,([T] Liu <r}) = |Tl,(iu <r}) for £l-ae.r R

for all ¥ € Lip(E).

Strictly speaking, we should use the notation || [T]|| to emphasize that the measure
depends only on the equivalence class of T, but we opted for a simpler notation.

Then, we assume that C,, 1 ( F) and M, are well-behaved with respect to the slice
operator, and satisfy the isoperimetric inequality for 1-dimensional currents and the
homogeneous version of the isoperimetric inequality (typically achieved by a simple
cone construction):

(i) Fork = 1 the slice operator {[T'],u,r} maps C,, x(E) into C,;_1(£) and

Lip(u)%Mp([T] Liu <r}) = My((T]u,r)) for£lae.reR. (8.1)

(ii) Forsome constant ¢* the following holds: for all [L] € Cp;(E) with d[L] = 0
and bounded support there exists [T] € Cp2(E) with d[T] = [L] and

M, ([7]) < c*[M,(LD]"

In addition, if [L] is supported in a ball B, we may choose [T'] supported in the
same ball.

(iii) For some constant ¢ the following holds: for all [L] € C,, x(E) with d[L] =0
and support contained in a ball with radius R there exists [T] € Cppp1(E)
supported in the same ball with 9[T] = [L] and

M, ([T]) = cx RMp([L]).
(iv) Por some constant Ag > 0, the following holds: for all [T] € C, ¢ (E£) we have

T\ ,(B
i i ) Hp(kr(x)) .
rl0 ¥

k|| T|p-ae.

Given these properties, the nice and constructive decomposition argument in [44],
[45] (that we reproduce in part in Theorem 10.6 to prove the initial isoperimetric
inequality (ii)) provides the following result:

Theorem 8.2 (Isoperimetric inequality mod(p)). Assume that E, C,, 1 (E) and M,
fulfil the additivity property and conditions (1), (ii), (iii), (iv). Then, for k = 1 there
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exist constants yi such that, if [L] € C,x(E) has bounded support and satisfies
d[L] = 0, there exists [T'] € Cppp1(E) with d[T] = [L] and

k+1)/k
M, ([T]) < 7 [M, (D] “ T,
For k = 2 the constant yy. depends on Yir_q, Ck, Ag.

Proof. The proof is by induction on & = 1; in order to apply the construction of
[45] one needs to assume inductively that [T] can be chosen with support in a ball B
whenever ] is supported in the ball. The case k = 1 being covered by assumption
(i) and the induction step goes exactly as in [45]. [

9. Definition of M,

For T € 7 (E), its (relaxed) mass modulo p is defined by

M,(T) := inf {liminf M(T}) : T € Ze(E), F(Ty — T) 0} 9.1)

with the convention M,(1') = +oc0o if no approximating sequence (1) with finite
mass exists. If Iz (£) is dense in 3 (£) in mass norm then, as we already observed,
FH(E) = F;(E) and flat chains with finite mass can be approximated in mass by
currents in I (E). Therefore, under this assumption, the infimum is unchanged is we
require the approximating currents 73 to be in Iz (E).

Obviously M, < M and M,(T) = M,(T) if #,(T — T) = 0; finally, T >
M,,(T') is lower semicontinuous with respect to ,-convergence. Actually, it is easy
to check that M, is the largest functional, among those bounded above by M, with
all these properties: it follows in particular that M, (7)) = #,(T"). We can think
of M, also as a map defined in the quotient groups ¥, (£) and we shall not use a
distinguished notation for it.

Theorem 9.1. Assume that E is compact. For all [T] € ¥ (E) withMp([T]) < o0
there exists a finite, nonnegative and o-additive Borel measure ||T ||, such that

M,([T] Liu < r}) = |T|,(u <7}) for £lae r R 9.2)

for all u € Lip(E).

Proof. Let (I;) C Ix(E) be such that M(7;) — M,(T') and #,(I; — T) — 0.
Possibly extracting a subsequence we can assume without loss of generality that

> (T —T) < o0
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and that || 7; || weakly converge, in the duality with C(E), to some finite, nonnegative
and o-additive Borel measure v. Obviously v(E) = M,(T) and we claim that v
fulfills (9.2). Indeed, let ¥ € Lip(E) be fixed and let us adopt the notation

RL{u>r}

for R L{—u < —r}; by (7.4) we infer that for £!-ae. r € R, one has that (T; Liu <
riyand (T; L{u > r})are Cauchy sequences with respect to ¥, and the sum of their
limits is 7" (indeed, since 73 have finite mass,

Th=Ty Llu<ri+ Ty Liv >r}

with at most countably many exceptions). Then, denoting by T L{y¥ < r} and
T L{u > r} the respective limits, the lower semicontinuity of M, gives

M,(T Liu <r})<liminf |T;||({u <r}),
I —=>00
and

My (T Liu > r}) < liminf | T3 | (G > r}).

The subadditivity of M, yields

M,(T) < Mp(T Liu <r})+M,(T L{u > r})
< liminf | 73| (fw < r}) + liminf | T3] (fu > r})

< limsup | Ty (fu < r}) + lim inf || T3[|(u > r})
—> 0

=00 1

< limsup | T [ () = Mu(T).

i—o0o
It follows that all inequalities are equalities. Hence,
I3 ||l > r}) — Mp(T Liu >r})
for £1-a.e. r € R. But, thanks to the weak convergence of ||7;|| to v, we have also

173G > 7}) = v(iu > 1))

with at most countably many exceptions (corresponding to the numbers r such that
v({u = r}) > 0, see for instance [2]), Proposition 1.62 (b). This proves (9.2). ]

Using the measure || 7|, we can define the support of T € ?f“p":k(E), when T has
finite M, mass.

Definition 9.2 (Support). Assume that E is compact and that [T] € &%, (E) has
finite M, mass. We denote by supp [T'] the support of the measure || Tﬁ , namely
x € supp [T] if and only if || T'||,(B;(x)) > O for all r > 0.
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10. Definitions of I, 1 (E)

In this section we define classes I, ¢ (£) in such a way that the properties listed in
Section 8 hold with Cp x(E) = I, £ (E), so that the isoperimetric inequality holds
in Cp i (E).

10.1. Currents [[8]]. Recall that, for 8§ € LY(R¥), [0] € MF.(R¥) is the k-
current in R” defined by

[O1(fo dmr A+ Admy) = ka 8 fodetVir dx.

The change of variables formula for Lipschitz maps immediately gives

K100 = [0y o 7] (10.1)

whenever f is a Lipschitz and injective map from { f £ 0} C R* to R*. Here
o(x) € {—1, 1} is the sign of the jacobian determinant of V f{(x) (recall that points x
where o (x) is not defined, i.e. V f(x) is singular, are mapped to a Lebesgue negligible
set, and so they are irrelevant).

10.2. Countably J€*-rectifiable sets and integer rectifiable currents. Denoting
by #* the Hausdor(f k-dimensional measure in £, we recall also that aset S C E is
said to be countably #¥ -rectifiable if we can find countably many Borel sets B; ¢ R*
and Lipschitz maps f; : B; — E such that

HE(S\U; Ai(B)) = 0.

More precisely, we can also find by an exhaustion argument compact sets K; C R¥
and Lipschitz maps f;: K; — E such that f;(K;) are pairwise disjoint and
FHE(S |J; fi(K;)) = 0. Furthermore, possibly refining once more the partition,
one can assume that f;: K; — f;(K;) are invertible with a Lipschitz inverse (in
short, bi-Lipschitz), see [3], Lemma 4.1. In the case k = 0 we identify countably
J*-rectifiable sets with finite or countable sets.

Definition 10.1 (Rectifiable and integer rectifiable currents). We say that T in
MF(E) with finite mass is rectifiable if ||7]| vanishes on #*-negligible sets and it
is concentrated on a countably #*-rectifiable set. We say that T is integer rectifiable
if, in addition, for all ¢ < Lip(E, Rk) and all Borel sets A itholds gp(7° L A) = [[#]]

for some integer valued & < LI(Rk).

In the case &k = Orectifiable currents are finite or countable series of Dirac masses,
with integer coefficients in the integer case, see Theorem4.3 in [3]. In this latter case,
finiteness of mass implies that the sum is finite.
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We shall denote by 7 (E) the space of integer rectifiable currents. We shall also
denote by I ( E) the subspace

LLE) i= 178 Bl By oT B % (55 .

In connection with integer rectifiable currents, let us recall the following important
result (see [3], Theorem 8.6):

Theorem 10.2 (Boundary rectifiability). If T is integer rectifiable and has boundary
with finite mass, then dT is integer rectifiable.

If E is aclosed convex subset of a Banach space the slicing operator makes sense
in I (E), thanks to Proposition 14.7, and it enjoys the following properties (see [3],
Theorem 5.7):

Proposition 10.3 (Slices of integer rectifiable currents). Let E be a closed convex
subset of a Banach space, T € Ip(E) and u € Lip(E). Then (T, u,r) € Ir_1(E)
for £1-ae.r € R and

T Ldu = f{T,u,r)dr, 11T Ldu| = [ | {(T,u,r}| dr.
R R

Tt turns out that the minimal (in J¢¥-measure) set S on which 7 is concentrated
is
St = {x c E: lin‘iinfrk|T|(B,,(x)) > O}. (10.2)
L0

10.3. Multiplicity of integer rectifiable currents and reductions mod(p). The
multiplicity 8 of arectifiable current 7' € M F(E) can be defined as follows: when
E =RFthe multiplicity of [|#]] is &; in general, let us represent a Borel set S on which
|7 is concentrated (i.e. |T|(E\ S) = 0)as | J; fi(K;) with K; C R* compact,
fi: K; — f;(K;) bi-Lipschitz and f;(K;) pairwise disjoint. Then, denoting by
gi: E — R* Lipschitz maps such that g; o f;(x) = x on K;, we define #(y) at
y € fi(K;) as the multiplicity of (g;)s(T" L fi(K;)) at g;(y) € K;. Using (10.1) it
is not difficult to check that this definition is well posed on S up to the sign and up to
J*-negligible sets, i.c. that 8| does not depend on the chosen partition and on the
Lipschitz maps f; up to J{Jk-negligible sets (when £ is a linear space see also §9 of
[3] for a definition of multiplicity closer to the one of the Federer—Fleming theory;
since this definition uses the quite technical concept of approximate tangent space
here we avoid it). Notice also that we allow, for simplicity, the multiplicity to vanish:
but the multiplicity is nonzero #*-a.e. on the set St.

If m € 7 we call reduction of m mod( p) an integer 7 which minimizes |g| among
all g € [—p/2.p/2] withm — g € pZ. The integer m is possibly not unique if p
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is even (for instance d=-1lor-1=1 if p = 2), nevertheless || is uniquely
determined, and |=m| = |m]|.

We define reduction of T mod(p) a current obtained from T by taking the reduc-
tion of its multiplicity mod( p), namely

T? =Y (fisll(@ o fi)xx]
i=1

whenever T =}, (fill(@ o fi)xk;]l. Obviously any reduction 77 has integer
multiplicity in [—p/2, p/2] and it is equivalent to T mod(p). The reduction is not
unique, because of the ambiguity on the sign of the multiplicity and on the choice of
the reduction from Z to [—p/2, p/2], but since |=7i| = || it turns out that |#] is
nonzero and uniquely determined by 7" on S, up to # k -negligible sets.

The following proposition shows that elements of ¥, o(£) are equivalence classes
of currents in o(F) and provides a basic lower semicontinuity property.

Proposition 10.4 (Characterization of ¥, o(E)). Let E be a compact length space,
let [R] € Fpo(E) and let Ty, € Iog(E) be such that [T] — [R] in Fpo(E) and
supy, | T4/ (E) is finite. Then there exists T € Io(E) such that [T] = [R] and
liminf | T |(E) = |T(E).

Proof. We assume without loss of generality that the lim inf is a finite limit and write

Ny

Th=> Onibxui)

=
with 0y, ; € Z \ {0}. We can also assume, possibly replacing T}, by their reductions,
that 0, ; € [—p/2, p/2],sothat T}, — T;f). We have Nj, < supy, || 73| (E) and we can
assume (possibly extracting once more a subsequence) that N, = N is independent
of . Furthermore, we can also assume that x(#,i) — x(i) as B — oo and

Op; =0, €[—p/2,p/2]\ {0} for h large enough
foralli = 1,..., N. Since E is a length space we can find currents G ; € I1(E)
(induced by geodesics joining x(h,i) to x;) with dGp; = Oy, — 6x@) and

M(Gy;) — 0, fori = 1,....N. Since Tj, — > _; 0:6x; = > 9Gy;, it turns out

that
N

F(Th— ) 0:6:)) — 0,

i=1

whence [R] = [X:‘i\r 8;8,;] mod(p). Also, it follows that

N N N
| ;a—axin(m = _le|9;—| = u}gg_z; O =Timinf | T, (B). [
1= 1= 1=
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In the next theorem we characterize M, on I (E).

Theorem 10.5. Let T € Ix(E), with E compact length space. Then My(T') =
|TP|(E), where T? is any reduction of T modulo p. In particulay, the additivity
property holds with |T'||, = | T#|.

Proof. Theinequality M,(T') < || TZ||(E)is obvious, because T# = T mod(p). We
shall prove the converse inequality by induction on k. Without loss of generality we
can assume that £ is a compact convex subset of a Banach space (indeed, an isometric
embedding does not increase the M, mass, while leaving |7 7| (£) unchanged). The
inequality is equivalent to the lower semicontinuity of T — || T#|(E) under -
convergence. More generally, we shall prove by induction on &k that

ITZ(4) = liminf | T;7]1(4)
—00

for all open sets A C E whenever #,(T;, —T) — 0.

k=0 LetT € In(E)andlet T, € Io(E)be satisfying ¥,(T5,—T) — 0; we fix
anopen set A C E and we assume with no loss of generality that the lim inf above is
a limit and that 7j = T;f) . Then, we are allowed to extract further subsequences and
we can assume that the fast convergence condition ), ¥,(1j, —7') < coholds. Let
u be the distance function from £ \ A4 and apply for £'-a.e. ¥ > 0 Proposition 10.4
to Ty Liu > r}and [T L{u > r}| to obtain the existence of S, € Io(E) with
Sy =T L{y > r} mod(p) and

IS I(E) < liminf || 75 | ({u > r}).
h—oo0
Since S, = T# L{u > r} mod(p) as well, it follows that

IT2||({u > r}) < ISy [(E) < liminf | T||({u > r}) < liminf | T3 [|(A).
h—o0 h—o0

Letting r | 0 the lower semicontinuity property on A follows.

Induction step. Let us prove that the induction assumption gives

limkinf ||T;f) Ldu|(A) = |T? Ldu|(A)
whenever T3, — T in ¥, ¢ (E). Indeed, assuming with no loss of generality that

> Fp(Th—T) < 0,
h

we know from the definition of the slice operator and (7.4) that

lim (Tp,u,r) = {T,u,r) in ¥, (E)
h—o0



Vol. 86 (2011)  Flat currents modulo p in metric spaces and filling radius inequalities 577

for £!-ae. r € R, hence Proposition 10.3 gives
lim inf ||Tif Ldu|(A) = hminff T2, r) | (A)dr
h—o0 h—oo Jr
> f liminf [ (T, u,7)||(A) dr
R A—roo

P
szKT P |(A) dr
— |T? Ldu|(4).

By applying Proposition 14.8 to 7'# L A we have

N

IT21(4) = sup{ DI TP L' (40},

i=1

where the supremum runs among all finite disjoint families of opensets A;,... , Ay C
A and all N -ples of 1-Lipschitz maps 7*. By the previous step all the finite sums are
lower semicontinuous with respect to ¥, convergence, whence the lower semiconti-
nuity of T +— || T#||(A) follows.

This concludes the proof of the equality M,(T') = || T?|(E). Since for T €
I (E) and u € Lip(E) it holds

(T Liu <r)P =T? Liu <r} for £laer eR,

it follows that the additivity property is fulfilled with [|[T'[|, := ||T'#|. []

10.4. Isoperimetric inequalities mod(p). Having defined I;(F), we define
Tpu(E) = [T : T € Tu(E)} .

An open problem, in connection with the M, mass is the validity of the analogous
of (6.2), namely

{71 € Fpa(E) : Mp(IT]) < oo} = Iy (E).

We plan to investigate this in [4].
We also define

L lE) = {[T] [T eIk (E), [9T] € Ip,k(E)} : (10.3)

Theorem 10.6. Let E be a compact convex subset of a separable Banach space.
Then My and L, 1 (E), as defined in (9.1) and (10.3) respectively, satisfy conditions
(1), (i), (ii1), (iv) of Section 8 with constants depending on k only.
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Proof. (i) The fact that the slice operator maps 1, 1 ( £} into I, 1 (E) follows by the
fact the slice preserves integer rectifiability, see Proposition 10.3. Since the boundary
operator and the slice commute (up to a change of sign) the slice operator maps also
L, x(E) into I, x_1(E). In order to prove (8.1) we consider the inequality in an
integral form, namely

*b
f M, (([T),.7)) dr < LipG)(IT | < 0D = IT ot < ab). 1o

—co < a=<b< +tco.

For S € I (E) we can apply Theorem 5.6 of [3] to obtain

b
f M((S,u,r))dr < Lip(u) (IS ({u < b}) — IS ({u < a})).

Now, let (S;) C Ix(E) be such that ) . 7,(S; — T') < oo and M(S;) — M, ([T]);
we have seen in the proof of Theorem 9.1 that there exists an at most countable set
N such that M(S; Liu <r}) — ||T|,({# < r}) forall r € R \ N; in addition, the
fast convergence assumption ensures that 7, ({S;,u,r) — (T,u,r)) — 0 for £!-ae.
r > 0. So, passing to the limit in the previous inequality with S = 5;, Fatou’s lemma
and the lower semicontinuity of M, provide (10.4) when @, b ¢ N. In the general
case the inequality can be recovered by monotone approximation.

(i1) In the proof of this property we shall use properties (i), (iii) and (iv) which
are established independently of (ii). In the case k = 1, property (iv) holds with the
explicit constant Ay = 2; furthermore (iii) holds with ¢* = 2. For all [L] € I, 1 (E)
with d[L] = 0 we shall be able to construct a family of currents [L;] with the same
properties satisfying

M, ([L] ;[Li]) =0 ML) = ML) (105)

and diam(supp([L;:])) = 8Mp([L;]). Given this decomposition, an application of
property (iii) to all [L;] provides currents [73] with d[T;] = [L;] and M, ([T;]) =
16[M,([L;])]? and we can apply the property (iii) to find [Sxy] with dSy = [L] —
Z‘i\r [L;] and ML, ([Sx]) — 0; it turns that for N large enough the current

N
[T]:= > IT:] + Sw

i=1

has the required property.
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In order to achieve the decomposition (10.5) it suffices to find finitely many, say
N, currents [L;] with diam(supp([L;])) < 8M,([L;]),

N N N
M1~ YD) = SMp(LD,  Mp(ILD) = Mp(iZ] — Y OILaD) + 3 My(Li])

i=1 i=1 i=1 (10_6)
and then iterate this decomposition (firstto [L] — Z‘;V [L;] and so on) countably many
times. In order to obtain the decomposition (10.6) we apply Lemma 3.2 of [44]
with # = 1/2 and u = [|T'?| (since A; = 2 > F this choice ensures that for
p-a.e. x there exists ¥ > 0 such that w(B,(x)) = Fr) to obtain finitely many points
¥1,.--, yn and corresponding radii r; > 0 satisfying:

(@) (B (y:)) = Fri and pu(Bs(y;)) < Fsforall s > ry;
(b) the balls B,,,(y;) are disjoint;

(©) XY w(Br; (3i) > (E).
Since (a) gives

*2r;

Mp(([L]. d(, yi).r))dr = Mp(L] L B2y (y:)) < 2Fr; = 1y

Fi

we know that M, ({[L],d(-, y;), 7)) < 1 in a set of positive £!-measure in (r;, 2r;).
But since the slices belong to I, o(E) it follows that M, ({[L],d(:, y;),r})) =0ina
set of positive £1-measure in (r;,27;). Choosing n; € (r;,2r;) in such a way that
{{L],d(, yi),n:}) = 0 we can define

[Li] = [L] L4d(, pi) <m}, 1<i <N

Our choice of n; ensures that d[L;] = 0 and property (b) ensures that the supports of
these chains are pairwise disjoint. Also,

diam(supp([L;])) =< 2n; < d4r; < 8u(By,(¥1)) = 8Mp([L;]).

Property (¢) ensures that 5 Z‘f M, ([L;]) = M,([L]), so that (10.6) holds.

(ii1) This can be easily achieved by a cone construction as, for instance, in [3],
Proposition 10.2. This construction provides the constant ¢* = 2.

(iv)IfT € Ip(E)and T 7 is areduction mod( p), since its multiplicity is at least 1
we know by [3], Theorem 9.5, that

IT2| = Ad¢% LS,

where S = S(I'?) is defined in (10.2) with T2 in place of T and A is an “area
factor” depending only on S. In addition, Lemma 9.2 in [3] provides the universal
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lower bound A > k*/2, Finally, taking into account (see [37]) that any countably
Je¥ _rectifiable set with finite #¢¥-measure S satisfies
HE(S M B(x))

lim inf - — 1 for #*ae xc S,
#10 o F

with @y equal to the Lebesgue measure of the unit ball in R* , we obtain that (iv)
holds with Az = k%2, O

As a consequence, we can obtain isoperimetric inequalities in the case when the
cycle belongs to I, (E) (resp. ¥, (E)) and the filling belongs to Iy, 1 (E) (resp.
F ot 11(E)). Inthis connection, notice that in the class of integer multiplicity currents
we have that 1. ¢ % (E) with finite mass and d1. = 0 implies I. < Iz(FE): indeed,
writing I, = A 4+ dB with A € Tz (E) and B € I (E), we have d4 = 0 and so
A = dR for some R € Iz (E). Since L = 9(R + B) the boundary rectifiability
theorem gives that I € I (E). We plan to investigate the boundary rectifiability
theorem and further properties of currents mod(p) in [4].

Corollary 10.7 (Isoperimetric inequality mod(p) in I, x(E) and ¥, x(E)). Let E
be a compact convex subset of a separable Banach space. For k = 1 there exist
constants &y such that, if [L] € 1, x(E) is a non zero current with bounded support
and d[L] = 0 then

M, ([T
inf{[M ([z]()[](gll)/k ] €Ly (E), O[T] = [L]} < 8.
»

The same property holds when L] € ¥, ((E), taking the infimum among all [T] €
Fppr1(E) with d[T] = [L].

Proof. 1If [L] € I, ¢(E), we want to apply Theorem 8.2. To this aim, it suffices to
combine Theorem 10.6 and Theorem 10.5. In the general case [L] € #px(E), let
P; € I (E) be satisfying #,(P; — L) — 0 and M(P;) — M, (L). Let us write

P =L+ A; + 0B + pQi

with A; € I (E), B; € I 1 (E), Q; € #Fr(E)and M(4;)+M(B;) — 0. We have
[0P;] = [04;], and since [P; — A;] € 1, (E) we can find currents [P/] € L, x 1 1(E)
with d[P/] = [P; — A;] and
’ k+1)/ k% k+1) /%
M, ([P]]) = 8 [Mp( 1P — 4:D)] 07 < 8 M(LD] ™ +

with w; infinitesimal. It is now immediate to check that d[P/ — B;] = [L], so that
[P/ — B;] € ¥px+1(E), and that

3 k+1)/k

lim supM([P} — Bi]) < & [Mp((LD] "%,

I—00

[
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11. Filling radius inequality

In this section we investigate the validity of a filling radius inequality, which comple-
ments the isoperimetric inequality of Corollary 10.7. To this aim, for [L] € L, ¢ (£)
with d[L] = 0 we consider the subspace .M defined by

M= {[T] € Fppi1(E): A[T] = [L], M,(T]) < oo} . (11.1)

By Corollary 10.7 M contains [7] € L, 411 (E) with ML, ([T]) < 8¢ [M,([L])]*+D/%,

Theorem 11.1. Assume that E is a compact convex subset of a separable Banach
space. Let [L] € L, x (E) with Mp([L]) < co and d[L] = 0. Then, the infimum of the
numbers r suchthatthere exists [T'] € L, 41 (E) satisfying [T = [L] whose support
is contained in the r -neighbourhood of supp |L| is not greater than Cg [Mp(|L])] 1k,

The constant Cy, depends only on k and on the constant 6 in Corollary 10.7.

Proof. We claim that the infimum is unchanged if we look for fillings in the more
general class ¥, x4 1(F). Indeed, let [S] € Fpx41(E) with d[S] = [L] whose
support is contained in the r-neighbourhood of K, and let u# be the distance function
from K, the support of [L]. We now consider a sequence (S;) C Iz, 1(E) with
3 Fp(S; — S) < oo and ' > r. We know that for £l-ae. p € (r,7") we still
have [S; L{u < p}] — [S Ly < p}] in Fp 1 (E), and since [S Liu < p}] =
[S] Liu < p} = [S] we see that, possibly replacing S; by S; L{u < p}, there
is no loss of generality in assuming that the supports of S; are contained in the
p-neighbourhood of K, for some p < r’. Now, let us fix i and write

S—S8i=A49B + pO

with A € Tp 1 (E), B € Iiy2(E), QO € F1(E). For £l-ae. t € (p,r") we can
restrict both sides to {¥# < f} to obtain

S—Si=AL{u <t} —{(Bu,t)+ 0B L{u<t})+p0 Liu<t}
It follows that the current [S; + A L{w <t} — (B, u,t}] € I, x 41 (£) has boundary

[L] and support contained in the r’-neighbourhood of K. Since r’ > r is arbitrary,
this proves the claim. [

So, from now on we look for [S] € ¥, g 41(E) with 9[S] = [L] and we set

¢ i= S [M([LD]*FTV/%,
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12. Ekeland principle

Let us recall the Ekeland variational principle [17] (see also the proof in [18], us-
ing only the countable axiom of choice): If (X,d) is a complete metric space and
J i X = R U{+o0} is lower semicontinuous and bounded from below, then for all
¢ > (O there exists y € X such that x > f(x) + &d(x, y) attains its minimum value
at x = y. Since M, = ¥, and is ¥, lower semicontinuous, we know that .M is a
complete metric space, when endowed with the distance induced by M. Let £ > 0
be fixed; the lower semicontinuity of [T'] = Mp([T]) ensures that we can apply the
Ekeland variational principle to find [S] € M such that

[T] = Mp([T]) + eMp([T] - [S]), [T] € M,
is minimal at [T] = [S]. If ¢ < 1/2, the minimality of [S] gives

1 +¢

M, ([S]) = T M,([T]) = 3c. (12.1)

Let us now prove the density lower bound

(38)~*

Gy ferallec @z (122)

IS1lp(Ba(x)) =

for any x € supp[S] \ K; here 7(x) = dist(x, K) > 0. In order to prove (12.2)
we use a standard comparison argument based on the isoperimetric inequalities: let
x € supp[S] \ K: for £l-ae. o > 0 the slice

[Se] = ([S].d (. x), @) = (S| Lid(:, x) < ¢}) — (A[S]) Lid(. x) < ¢}

frad

belongs to #, ¢ (£) and has no boundary, because the conditions ¢ < 7(x) and
d[S] = [L] imply
(A[S]) Lid(,x) <0} = 0.

By Corollary 10.7 we can find [R] € ¥, g1 (E) with d[R] = [S,] and

(k+1)/k

M, ([R]) < 8¢ [M,([S,])] (12.3)

Comparing [S] with
[$7]:= [STL(E \ By(x)) + [R]

we find

M, ([S]) = Mp([S']) + e Fp(|S] L By(x) — R)
< Mp([R]) + Mp([S] L(E \ By(x))) + eMp([S] L By(x)) + eMp([R]),
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so that

1
M ([S] L Bo()) = ——My((R]) < 3M,((R)). (124

By (12.3) and (12.4) it follows that

d (k+1)/k
I15(Bq0) = 38 711 (Bt

for £!-a.e. o > 0. Since ||S|,(By(x)) > 0 for any ¢ > 0 (because x € supp [S]),
this proves that

0 > (|| S p(BeINY E+D — (36, ) */E+Vo/(k + 1)

nondecreasing, and hence nonnegative, in (0, (x)).
To obtain the estimate on the support of [ S] it suffices to take asequence g; 1 t(x)
and to use the inequalities

[T p(Bg(x)) < M,([S]) < 3¢ < 35kMP([L])](k+1)/k

to obtain that 7(x) can be bounded by a multiplicative constant times [M,([L.])] Lk

Since x is arbitrary this proves that the support of [S] is contained in the r-neighbour-
hood of K, with r < Cx[M,([L])]V/*. O

Remark 12.1 (Extensionto ¥,  (£)). The same property holds, with the same proof,
in the classes ¥, ¢ (E), namely: for all [L] € F,x(£) with Mp([L]) < oo and
d[L] = 0 the infimum of the numbers r such that there exists [T] € ¥, 4 1(E)
satisfying d|T'| = | L] whose support is contained in the r-neighbourhood of supp [L]
is not greater than Cy Mp([L])]l/k.

13. Nonorientable manifolds and currents mod(2)

Let (M, g) be a compact #-dimensional Riemannian manifold without boundary
and let T be a Borel orientation of M, i.e. a Borel choice of unit vectors 7y,..., Tn
spanning the tangent space and mutually orthogonal (the construction can be easily
achieved in local coordinates and gluing, by the minimal Borel regularity imposed
on t, is not a problem), possibly up to J#"*-negligible sets. Here J¢” is the Hausdorff
n-dimensional measure induced by the Riemannian distance. Of course, when M is
not orientable any orientation t is necessarily discontinuous and it is by no means
canonical. In any case, given this orientation, we can define a current [[M] € I,(M)
as follows:
aﬂi
IMN(fdm A Admp) = f fdet(a—) dF".
- .

Tj
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While [M] is not canonical, its equivalence class mod(2) obviously is, because
different orientations induce currents [[M] equivalent mod(2). In connection with
mass measures, it is not difficult to check that

IMMI(B) = #*(B) forall B C M Borel

(or, it suffices to apply Lemma 9.2 and Theorem 9.5 of [3], valid in a much more
general context). In turn, /" coincides with the Riemannian volume measure, see
for instance [20], 3.2.46. Passing to the equivalence class the same is true, because
[M]] is already reduced mod(2), hence ||[[[M]|2 = ||[[M]| and their total mass is
Vol(M).

We are now going to show that [[M ]| = 0 mod(2), and we prove this fact building
a“nice” current on M as the image of the exponential map Exp, at some base point
O € M. As the referee pointed out, for the purpose of proving d[M] = 0 mod(2)
simpler proofs are possible, which apply to Lipschitz manifolds as well; on the other
hand, we believe that this global construction (which uses some properties of the cut
locus established only recently) might have an independent interest.

Theorem 13.1. Ler (M, g) be a compact n-dimensional Riemannian manifold with
no boundary. Then 3| [M]]] = 0 and, in particular, [[M]] € 1o,n(M).

Proof. We fix abase point O ¢ M and consider the distance function # from O. We
consider the tangent cut locus TC at O, namely v € To M belongs to TC if and
only if exp, (fv) is the unique minimizing geodesic in [0, 7] for all 7 < 1, and it is
nonminimizing in [0, 7] for all T > 1. Itturns out that T'C is locally a Lipschitz graph
[28], [39], and that the boundary of the star-shaped region

Q:i={v:veTC re]|0,1]}

is contained in TC. Of course the exponential map Exp, maps 7 C into the cut
locus, that we shall denote by C.

Next, we consider some additional regularity properties of u, besides 1-Lipschitz
continuity: this function is locally semiconcave out of (, namely in local coordinates
its second derivatives are locally bounded from above in M \ {O}. This implies, by
standard results about semiconcave functions and viscosity solutions to the Hamilton—
Jacobi equation g (Vu, Vi) = 1 the following facts (for (i), (i), (iii) see for instance
[40]; for the more delicate property (iv) see [41], Theorem 4.12, or the appendix
of [22]):

(i) forall x #* O the set of supergradients
atu(x) = {v e TuM : uexp, (w)) < u(x) + g+(v. w) +o(Jw|)}

is convex and not empty, and # is differentiable at x if and only if a1 u(x) is a
singleton;
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(i) forall x # O the closed convex hull of 3" u(x) N{v € T M : gv(v,v) = 1}
coincides with 9 u(x) and the former set is in 1-1 correspondence with final
speeds of minimizing unit speed geodesics joining O to x;

(iii) for j integer the set {x € M : dim(dTu(x)) > j} has o-finite #™/ -measure;
(iv) the set of points x € C where u is differentiable is #"!-negligible.

Now, we fix an orientation of Tp M and we consider the canonical (Euclidean)
n-current [[2]] € I,(To M), with multiplicity 1 on €2 and O on To M ' €2 induced
by this orientation; since

FHLO) < ¥ HTCO) < =

we know that [[$2]] € L,(ToM) and its boundary is supported on TC. Then, we
consider its image T = (exp, [[2]] € I,(M) via the exponential map. We are
going to prove that:

(a) T = [[M]] for some orientation of M ;
(b) dT = 2R forsome R < I,, | (M).

These two facts imply the stated properties of [[M]]. In connection with (a), notice first
that expy (£2) = M, because for each point x € M there is at least one minimizing
geodesic to O, and it is unique before reaching x. Moreover, Rademacher’s theorem
implies that #"-a.e. point x ¢ M is a differentiability point of u, so that du™*(x) =
{Vu(x)} is a singleton and there is a unique minimizing constant speed geodesic
between O and x (since its final speed is uniquely determined, ODE uniqueness
applies); if v is the initial speed of this geodesic, it turns out that x = exp o (d(O, x)v)
and rd(O,x)v € Q forall r < 1, hence (O, x)v € Q. This proves that exp,, has
a unique inverse J€"-a.e.; these facts imply that T = [[M]| provided we choose as
orientation of M the one induced by Tp M via the exponential map exp,.

In connection with (b), we know that 3T = (exp )y(2[[€2]]) and that [Q2] is a
current with unit multiplicity #” !-a.e. on 952, because TC is locally a Lipschitz
graph. We claim that for #" !-a.e. x € C the pre-image expal(x) contains exactly
two points. Since the multiplicity of 97" at x can be obtained adding the properly
multiplicities of d|[2] at exp(_)l(x), this proves that T has an even multiplicity. To
prove the claim, we know by (iv) that for #”1-a.e. x € C the nuniber of minimizing
geodesics is strictly greater than 1; on the other hand, (iii) with j = 2 gives that for
F#"lae. x € C the dimension of 3Tu(x) is at most 1, hence the extreme points
are at most two: therefore there exist precisely two minimizing geodesics from O to
xat #" lae xeC. ]

Proof of Theorem 3.2. It suffices to apply Theorem 11.1 with & = #. To this aim, we
consider the canonical current [[[M ]]] associated to M. By Theorem 13.1 this current
belongsto I, ,, (M) and it is acycle mod(2). Then, given an isometric embedding i of
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M into a (separable) Banach space F, we consider the closed convex hull E of i (M)
(which is a compact set, by the compactness of i(M)), and apply Theorem 11.1 to
the cycle [L] = iy [[[M]]] €I ,(E), whose M mass is (by the isometric invariance
of the M -mass of rectifiable currents) equal to My ([M]]) = Vol(M).

14. Appendix
In this appendix we recall the basic definitions of the metric theory developed in [3].

Definition 14.1. Let ¥ > 1 be an integer. We denote by DF(E) the set of all
(k + 1)-ples @ = (f, m1,...,7) of Lipschitz real valued functions in £ with the
first function f in Lipy(E). In the case k = 0 we set DO(E) = Lipy(E).

Definition 14.2 (Metric functionals). We call k-dimensional metric current any func-
tion T: D¥(E) — R satisfying the following three axioms:

(a) T is multilinear;

b)) T'(fiwt,...,wg) — T(fim,...,m;) whenever n' — m; pointwise and
sup,, Lip(sr]*) is finite, for 1 < i < k;

(c) T(f,my,...,n) = 0if, forsomei € {1,...,k}, m; is constant in a neighbour-
hood of the support of f.

We denote by M Fi(E) the vector space of k-dimensional metric currents.

A consequence of these axioms is that T is alternating in (7, ..., 7)), so the
differential forms notation fdm; A .-+ A dmg can be used. We can now define an
“exterior differential”

do =d(fdm »N---Adny) =df Andmy A+ AT
mapping OF (E) into D¥TI(E) and, for ¢ < Lip(E, F), a pull back operator
gaﬁa) = gaﬁ(fdzrl ANewendry = fopdmiop A~ Admagog

mapping DF (F) on D¥(E). These operations induce in a natural way a boundary
operator and a push forward map for metric functionals.

Definition 14.3 (Boundary). Let & > 1 be an integer and let T € MF;(E). The
boundary of T', denoted by d7, is the (k — 1)-dimensional metric current in £ defined
by a7 (w) = T(dw) for any @ € DF(E).

Definition 14.4 (Push-forward). Let ¢: £ — F be a Lipschitz map and let 7" €
MFi(E). Then, we can define a k-dimensional metric current in F', denoted by
a1, setting gy T'(w) = T(p*w) for any @ € DF(F).
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We notice that, by construction, ¢4 commutes with the boundary operator, i.e.

ep(3T) = ey T). (14.1)

Definition 14.5 (Restriction). Let T € MF(E)andlet w = gdty A~ Ad 1y €
DP(E), withm < k (@ = g if m = 0). We define a (k — m)-dimensional metric
current in £, denoted by 7' L @, setting

T Lo(fdrmy A Adrp_p) = T(fgduy A Adoy, Admy Ao Admg_i,).

Definition 14.6 (Currents with finite mass). Let T € M Fr(E); we say that T has
finite mass if there exists a finite Borel measure p in £ satisfying

k
T(fdm A Adme)| < [T Lintmo) [ 1714 (142)
i=1

for any fdm A« Admyp € DF(E), with the convention [T, Lip(w;) = 1ifk = 0.

It can be shown that there 1s a minimal measure p satisfying (14.2), which will be
denoted by ||T'|| (indeed one checks, using the subadditivity of T with respect to the
first variable, that if {¢; };c; C M(E) satisfy (14.3) also their infimum satisfies the
same condition). We call mass of 1" the total mass of || 1'||, namely M(71") = || T'||(E).

By the density of Lip, (E) in L1(E, |T'||), which contains the class of bounded
Borel functions, any 7' € MF;(E) with finite mass can be uniquely extended to
forms f dm with f bounded Borel, in such a way that

k
T(fdm A Admg)| < ]_[Lip(m-)fE £1dIT) (14.3)
=7
for any f bounded Borel, my,..., 7 € Lip(E). Since this extension is unique we

do not introduce a distinguished notation for it.
Functionals with finite mass are well behaved under the push-forward map: in
fact, if 7' € MF;(E) the functional ¢4 T has finite mass, satisfying

les Tl < [Lipe)F e 1T - (14.4)

If either ¢ is an isometry or k = Qitis easy to check, using (14.6) below, that equality
holds in (14.4). It is also easy to check that the identity

oy T (fdmy Ao ndmg) =T(f cpdmyop A~ Admy o)

remains true if f is bounded Borel and 7; € Lip(E).
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Functionals with finite mass are also well behaved with respect to the restriction
operator: in fact, the definition of mass easily implies

b
IT La| < sup|g|l_[Lip(ti)||T|| withw = gdty A A dty,. (14.5)
i=1

For metric functionals with finite mass, the restriction operator 7' L& can be defined

even though @ = (g, 71,..., o) with g bounded Borel, and still (14.5) holds; the

restriction will be denoted by 1" L A in the special case m = O and g = y4.
Finally, we will use the following approximation results.

Proposition 14.7. Let E be a closed convex set of a Banach space. Then I(E) is
dense in I (E) in mass norm. As a consequence 1. (E) is dense in Fi.(E) in flat
norm. The same holds in metric spaces I that are Lipschitz retracts of E.

Proof. We argue as in Theorem 4.5 of [3], reducing ourselves to the approximation
of currents T € Irx(E) of the form fy[[¢]] with 6 < Ll(Rk,Z), B < R* Borel,
f: B — E Lipschitz and § = 0 ¥*-a.e. out of B. Since E is closed and convex,
the construction of [29] provides a Lipschitz extension of f to the whole of R*,
still with values in £. For & > 0 given, we can choose 8’ € BV(IE{k; 7)) such
that fpx |6 — 6'|dx < & to obtain that the current T = 1101 € Ig(E) satisfies
M(T — T) < e[Lip(/)I¥.

IfT € Ip(F)andi: E — Fisalipschitzretraction, then we can find a sequence
(T,) C Ix(E)converging in mass to 7". Then, the sequence (#47,) C Ix(F)provides
the desired approximation. ]

Proposition 14.8 (Characterization of mass). Let T € MF,(E) with finite mass.
Then || T||(E) is representable by

N
sup { 2 IT Lda'[[(4))}, (14.6)

=1
where the supremum runs among dll finite disjoint families of open sets A1,..., AN

and all N-ples of 1-Lipschitz maps w*.

Proof. In [3], Proposition 2.7, it is proved that

N
ITICE) = sup | 32 IIT Ldwmf A-e A daf (A,
i=1

where the supremum runs among all finite disjoint families (A;) of Borel sets and
1-Lipschitz maps JI;, 1 <i<Nandl < j =< k. Approximating Borel sets from
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inside with compact sets, and then compacts sets from outside with open sets, one
can see that the supremum is the same if (A;) runs among all finite disjoint families
of open sets. By the inequalities

IT Ldgy A Adgrl < IT Ldq: || < [T
with g; 1-Lipschitz we obtain (14.6). H
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