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Irreducible Sp-representations and subgroup distortion in the
mapping class group

Nathan Broaddus, Benson Farb and Andrew Putman™

Abstract. We prove that various subgroups of the mapping class group Mod{X) of a surface X
are at least exponentially distorted. Examples include the Torelli group (answering a question of
Hamenstadt), the “point-pushing” and surface braid subgroups, and the Lagrangian subgroup.
Our techniques include a method to compute lower bounds on distortion via representation
theory and an extension of Johnson theory to arbitrary subgroups of Hy (¥; 7).

Mathematics Subject Classification (2010). 57M99, 57N05, 20F65, 20F609.

Keywords. Mapping class group, Torelli group, subgroup distortion, symplectic representation,
Johnson homomorphism.

1. Introduction

We begin with a basic motivating question. Manifolds M are commonly presented
as gluings or (possibly singular) fiberings of simpler manifolds, together with the
data specifying the gluing or fibering. In low dimensions, the gluing/fibering data
commonly takes the form of an element, or a finite collection of elements, of the
mapping class group Modg, which is the group of homotopy classes of orientation-
preserving homeomorphisms of the closed, oriented, genus g surface i ,. Examples
include Heegaard decompositions of 3-manifolds, monodromies of surface bundles,
and monodromies of Lefschetz fibrations.

The topology of the resulting manifold M can often be controlled by requiring that
the gluing data lie in various special subgroups K < Modg. We then have a purely
group-theoretic problem: determine whether or not a given element f € Mod,,
given as a product of generators of Mod, (say a generating set of Dehn twists), lies in
K. The problem of finding such an algerithm is called solving the generalized word
problem for K in Modg. The generalized word problem is a classical problem in
combinatorial group theory; it was introduced and studied by Nielsen and Magnus.

*The first two authors are supported in part by the NSE
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A basic example is provided by taking K to be the Torelli group I, < Mod,, that
is, the kernel of the natural symplectic representation 7: Mod, — Sp(2g,Z) given
by the action of Mod, on Hi(Z,;Z). In this case, the solution to the generalized
word problem is easy: one simply computes the induced linear map fx € Sp(2g, Z)
via matrix multiplication and checks whether or not f, = Id. With this in mind, the
more refined and useful problem is to actually express a given element of 1, written
in generators for Mod,, in terms of generators of the subgroup Z,. A standard
quantitative measure of the (in)efficiency of doing this is the notion of distortion,
which we now explain.

Distortion in groups. Let I” be a finitely generated group endowed with the word
metric || - || . Any finitely generated subgroup K < I' comes equipped with its own
word metric || - || g, and it is a basic problem in geometric group theory to understand
the geometry of the embedding K < T, that is, to compare the “intrinsic metric”
| - | g with the “extrinsic metric” on K given by the restriction of || - || to K. Itis
clear that there exist constants C, C’ such that

|k|r < Cllhllg +C’ forallh € K.

However, there may be “shortcuts” in I’ between elements of K. This can be
encoded by a function §: N — N, called the distortion of K in I", which is defined
to be the smallest function satisfying

lellx =8 (llalr)  forallh c K.

It is easy to see that § changes by at most a linear factor if different generating
sets are chosen for I" or for K; thus the growth type of 6 (e.g. polynomial of degree d,
exponential, etc.) is independent of these choices!. For an introduction to distortion
and its basic properties, see [Gro], [Farl].

We note here that for groups I with solvable word problem, the distortion of K
in I gives a quantitative measure of the efficiency of solving the generalized word
problem for K in I'. In particular, the generalized word problem for K in I" is solvable
if and only if the distortion of K in I' is recursive (see [Farl]). This problem can
be unsolvable in simple examples. For instance, Mihailova (see, e.g. [Farl]) found
a finitely generated subgroup K in a product F;, < Fy, of free groups which has an
unsolvable generalized word problem, and hence has nonrecursive distortion.

Statement of results. In this paper we give bounds for the distortions of various
subgroups of Mod,. Some results in this direction are already known. Stillwell
[Sti] used Mihailova’s example to find finitely generated subgroups of Mod, with

LSome people use terminology differing from ours by a linear factor, so for example what we call “linearly
distorted” they call “undistorted”.
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nonrecursive distortion. In every other case which has been previously investigated,
the distortion has turned out to be linear. Examples of linearly distorted subgroups of
Mod, include abelian subgroups [FLM], subgroups corresponding to mapping class
groups of subsurfaces [MM] (see [Haml] for another proof), and convex, cocompact
subgroups [FM].

These results led Hamenstédt to pose the problem (see Problem 6 in [Ham2])
of finding subgroups of Mod, with (recursive) super-linear distortion. In particular,
she asked 1f the Torelli group Zg is linearly distorted in Modg. Recall that 1, is
finitely generated for g > 2 by a deep theorem of Johnson ([Jo3], Theorem 2). It
was conjectured in [Far2] (Problem 3.7 and the discussion following it) that 7, has
exponential distortion in Modg. Our first result confirms the lower bound of this
conjecture.

To state our results in their full generality, let Ep be an oriented genus g surface
with & boundary components and p punctures (thought of as marked points), and let
Modgﬂ be the group of homotopy classes of homeomorphisms of Eg,b which fix
the punctures and the boundary components pointwise (either £ or p will be omitted
from our notation if they equal 0). When b € {0,1}, the Torelli group I, p is defined
as the kernel of the action of Modg p on Hi(Xg 5 Z).

Theorem 1.1 (Distortion of the Torelli group). For g > 3, the distortion of I, (resp.
15,1)inMod, (resp. Mod, 1) is at least exponential and at most doubly exponential.

We conjecture that the upper bound in Theorem 1.1 is, like the lower bound,
exponential. The upper bound is strongly related to the isoperimetric and isodiametric
inequalities in Sp(2 g, Z). Thurston has conjectured that forn > 4 the group SL(n, Z)
satisfies a quadratic isoperimetric inequality. The analogous conjecture for Sp(2g, 7))
(together with a theorem of Papasoglu) would imply our conjectured upper bound.
See §3 below, especially Remark 3.1, for a discussion.

For mapping class groups of surfaces with boundary components or punctures,
one can construct finitely generated, normal subgroups by “filling in the punctures and
boundary components”; these are the so-called surface braid groups (see [Bir]). For
example, the point pushing subgroup mi(Xg) < Modé is the kernel of the surjection

Modé —» Mod, induced by “filling in the puncture”.

Theorem 1.2 (Distortion of surface braid groups). Let K be the kernel of the surjec-
tion

Mod? ", — Mod? ,,

where at least one of n and m is strictly greaterthan 0. Then K is exactly exponentially

distorted in Modgngrn for g = 2.

We prove Theorem 1.2 in §4.
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In §5.2 we construct “relative Johnson homomorphisms”, relative to arbitrary
subgroups of Hy(X,; Z). Applying these homomorphisms together with the general
method for obtaining lower bounds on distortion given in §2.2, we obtain Theo-
rems 1.3 and 1.5 below as well as a general result, Theorem 5.12, given in §5.2.

Theorem 1.3 (Distortion of the Lagrangian subgroup). For b € {0,1}, let L <
Mod, , be the Lagrangian subgroup, that is, the group of mapping classes which
act trivially on a fixed maximal isotropic subgroup of Hi (X, p; 7). Then L is at least
exponentially distorted in Mod, p, for g > 4.

Remark 1.4. The Lagrangian subgroup was first defined by Garoufalidis and Levine
[GL] and plays an important role in the theory of finite-type invariants of 3-manifolds.

Masur-Minsky [MM] (see [Ham1] for an alternate proof) proved that for A < g
the natural inclusion Mody,; < Mod, given by subsurface inclusion Xy, < X,
is linearly distorted (“undistorted” in their terminology). We also remark that, as a
consequence of [LMR],if1 < & < gthenSp(2h, 7)is linearly distorted in Sp(2g, Z).
One might therefore expect that the subgroup of Mod, consisting of mapping classes
“homologically supported” on X ; have linear distortion. In contrast we have the
following.

Theorem 1.5. Suppose g —h > 2. Let Xy, 1 be an embedded subsurface of Lz, and
let K be the pull-back to Mod, of the corresponding copy of Sp(2h, 7.) in Sp(2g, 7.).

Then K is at least exponentially distorted in Mod,.

We would like to know what happens when ¢ = A + 1, as our methods do not
seem to work in this case.

A firstidea. 'The first key idea in this paper can be illustrated by the following proof
sketch of the lower bound in Theorem 1.1 in the case of I, with g = 3. We begin
with the standard exact sequence

1l — I, — Mod, — Sp(2g,Z) — 1

coming from the action of Mod, on H := H (¥,;7) = 7,28 LetU = /\3 H/H.
Johnson proved in [Jo1] that there is a surjective homomorphism

t: 1, > U

which is equivariant with respect to the natural actions of Mod,. Here the Mod,-
action on U factors through the standard Sp(2g, Z) action, and the Mod, action on
I, is the one induced by conjugation. This equivariance is just the formula

t(fhf™Y = fut(h) forall f € Mod,, h € I, (1)
where f denotes the induced action of f € Mod, on H; (X,; Z).
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We can use 7 to give lower bounds for word length in I, as follows. Fix a finite
generating set S for I, and let ||| z, denote word length of h withrespect to S, that
is, the minimal number of elements of S*! whose product equals 4. Also, fix a norm
|« ||z on U. Since S is finite, there exists some C > 0 such that ||7(s)||y = C for
all s € S. Since 7 is a homomorphismi, it is then clear that for every 2 € I, we have

1
51z, = =l ®). @

Now it is not hard to see that we can choose a mapping class f € Mod, with
the property that the linear transformation fx € GL(U) is partially hyperbolic, that
is, there is some eigenvalue A of fix with |A| > 1. Using the partial hyperbolicity of
f,we will find an & € I, such that || £ (z(h))||y grows exponentially in #. Then
|/ ™hf " |Mod, grows at most linearly with respect to #, but by (1) and (2) we have

1
LR gy = el
= 21 Ay,

which grows exponentially. See §3 for details.

Some questions. This paper is a first attempt at a systematic study of distortion in
mapping class groups. While the methods here apply to many examples, there are
also many examples to which they do not apply. Of the many natural questions one
might ask, we would like to point out a particular one to which our methods do not
seem to apply. Recall that the handlebody group is the subgroup of Mod, consisting
of elements which extend to a fixed handlebody. Suzuki [Suz] proved that this group
is finitely generated.

Question 1.6. What is the distortion of the handlebody subgroup in the mapping
class group?

A natural question analogous to the direction of this paper is to study and compute
the distortions of orbits of subgroups K < Mod, in the Teichmiiller space 7, for 2,
say endowed with the Teichmiiller metric; see [FM], [KL] for related discussions.
Theorem 2.1 of [FLM] (and the discussion following it) give that any Mod,-orbit in
T4 1s exponentially distorted. Thus the problem of computing the distortion of K in
Mod, and of a K-orbit in 7, are a priori different. We believe both questions are
worth pursuing.

Acknowledgments. We are grateful to Danny Calegari for his help in refining the
picture for Proposition 2.12, to Jordan Ellenberg for a helpful remark on the proof of
Proposition 2.6, and to Hanna Bennett for pointing out an error in a previous version
of this paper. We also thank the referee for several useful comments and corrections.
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2. Methods for bounding distortion in groups

In this section, we give two general methods for bounding the distortion of one group
inside another, one yielding lower bounds and the other upper bounds. We will apply
these methods throughout this paper to subgroups of mapping class groups.

2.1. Behavior of distortion under inclusions. Before we begin, we will need to
know the following basic property of distortion.

Lemma 2.1 (Behavior of distortion under inclusions). Let K < ' be finitely gener-
ated groups. If T < T with T finitely generated, then the distortion of K in T is at
least the distortion of K in .

Proof. Fix afinite generating set St for I" and let || - || be the associated word metric.
We can choose a finite generating set S for I'' with S € Spr. Letting || « || be

the associated word metric, we have ||k|r = |\k||r’ for all ¥ € K, and the lemma
follows. ]

2.2. Lower bounds via irreducible representations. If K < G, then to give a
lower bound for the distortion of K in G, one must be able to give lower bounds on
the word length in K. This is in general a very difficult problem, but for free abelian
groups V such bounds can be easily obtained. Moreover, the resulting linear algebra
is a rich source of examples of exponential growth. We say that an element of the
automorphism group GL(V) := Aut(V) is partiaily hyperbolic if the corresponding
linear transformation of V' @ C has some eigenvalue A with |A| > 1. We then have
the following easy example of exponential distortion.

Example 2.2. Let I be the semidirect product of V' = Z" with any subgroup of
SL(#n, Z) which contains a partially hyperbolic matrix A. Then V' has exponential
distortion in I'. The upper bound is easy. The exponential lower bound follows, as
explained in the “First idea” on page 540 and given in detail in Proposition 2.3 below,
from the exponential growth of the image of vectors in 1V ® R under iteration of A.

To generalize this example, we will map group/subgroup pairs to mapping tori
of abelian groups like those in Example 2.2, using the abelian group as a sort of
“detector” of exponential distortion.

Proposition 2.3 (Criterion for exponential distortion). Let K be a finitely generated
normal subgroup of a finitely generated group I'. Suppose that V' is a free abelian
group equipped with a T-action p: I' — GL(V) and that r: K — V is a surjective
homomorphism which is T-equivariant, where I acts on K by conjugation. If p(I')
contains a partially hyperbolic matrix, then the distortion of K in I' is at least
exponential.
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Remark 2.4. When applying Proposition 2.3, we will find it useful to think of the
exact sequence

|, —3 BP9 o]

and to note that since V' is abelian and ¢: K — V is surjective we have

pk) - Y () = Yleyk™) = Yk + () — (k) = P(y) forallk,y < K.

Thus the action of K on V' is trivial. Hence p factors through a representation

T/K — GL(V).

Remark 2.5. Byusing Lemma 2.1, Proposition 2.3 can be applied beyond the context
of normal subgroups. See the proofs of Theorem 1.3 and Theorem 1.5 for examples.

Proof of Proposition 2.3. 'The hypothesis that ¥ is ['-equivariant is precisely that
w(xyx™ ) = p(x) - ¥(y) forally ¢ Kandx c T, 3)
By assumption, there exists some x € I" such that
px)@l: VelC=Val

has an eigenvalue A1 with [A1| > 1. Let M = p(x)® 1 and let the distinct eigenvalues
of M beAy,...,Ar € €. Forl =i =k, let Er be the generalized cigenspace for
Ay, i.e. the kernel of the map (M — A;1)3™Y) where T is the identity. We have a
direct sum decomposition V @ C = E; ¢ .- @ Ejp which is invariant under M.
Endow V & C with an inner product such that the E; are orthogonal to each other
and let || - || be the associated norm. It is well-known (see, e.g., [KH], §2.2) that there
exists some C > Osuch thatif v € Eq, then |M" - v| = C|A;|*|v] foralln = 1.

Let S be a finite generating set for K and let S* 2 S be a finite generating set
for I". Since S is finite, there exists some D > 0 such that

|¥(s) @ 1| = D foreachs e S. (@)

Since ¥ is surjective, its image in V' & € must span V @ C. In particular, its image
cannot lie in E; ¢ -+ ¢ E, so we can find some y € K such that (y) @ 1 &
E>; & -« @ Er. Let y; be the orthogonal projection of ¢(y) @ 1 to E;. Using the
fact that the £; are orthogonal and invariant under M, we deduce that for all n > 1
we have

Iy (x"yx™™) @ 1| = [|M" - (¥ () © D)l

> | M™ -y (5)
> ClA* |yl
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Now (4) together with (5) implies that the word length ||x" yx 7| ¢ with respect
to the generating set S is at least % < C|A1|®||y1]], which grows exponentially in
since |[A1] > 1 and y; # 0. Onthe other hand, since x and y have fixed word length
with respect to the generating set S’ for I, we see that the word length in T" of x” yx ="
grows at most linearly in #. This completes the proof of the proposition. H

The following (purely linear-algebra) proposition gives a useful way in practice
to prove that an action contains some partially hyperbolic matrix.

Proposition 2.6 (Representation-theoretic criterion for hyperbolicity). Let I” be a
group and let V be a free abelian group equipped with a I'-action. Suppose that V
contains a nontrivial I'-submodule W satisfving the following two properties:

(1) W isirreducible in the sense that if W' < W is a nontrivial I'-submodule, then
WoR=WaR.

(2) The image of the map v: I' — GL(W) is infinite.

Then v(I') contains a partially hyperbolic matrix.

Remark 2.7. In all the examples we consider in this paper, one could prove that the
relevant representations contain partially hyperbolic matrices by hand; however, we
believe that Proposition 2.6 gives a conceptual reason for the ubiquity of representa-
tions with this property.

Proof of Proposition 2.6. Choosing a basis, we can identify GL(W) with GL(m, 7)
for some m > 1. If a matrix A € GL(W) is not partially hyperbolic, then every
cigenvalue A of A satisfies |A| = 1. Since A has integer entries, each of its eigenvalues
is an algebraic integer. An old theorem of Kronecker (see, e.g., [Gr]) states that if A
is any algebraic integer with |A| = 1 and with |A’| = 1 for every Galois conjugate A’
of A, then A is aroot of unity.

Let GL(n, Z)[L] denote the level L congruence subgroup of GL(n, Z), which
consists of those A € GL(n, Z) for which, when the entries of A are taken mod L,
the result is the identity matrix. Theorem 5.61 of [Mo] states that there exists some
L > 1 such that no eigenvalue of any element of GL.(n, 7)[L] is a nontrivial root of
unity. Pulling back GL(#n, Z)[L] via v then gives us a finite index subgroup I’ of T"
with the property that no eigenvalue of any element of v(I"’) is a nontrivial root of
unity. Since we are assuming (assumption (2)) that v(I") is infinite, we know v(I"')
is nontrivial (indeed infinite).

Suppose v(I'’) contains no partially hyperbolic matrix. Then by the above two
paragraphs, every A € v(I™) must be unipotent, thatis, A has 1 as its only eigenvalue.
But any subgroup of GL(#n,R) consisting of unipotent matrices must be nilpotent,
and indeed conjugate into the upper triangular group with 1°s on the diagonal (see,
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e.g., Corollary 17.5 of [Hu]). Setting
U={weW|T'' w=w},

this implies that U = 0. Since v(I") is infinite (assumption (2)), we have U % W,
for otherwise v(I™) would be trivial and so v(I") would be finite. Also, since I is a
normal subgroup of I', we have that ' - U C U; indeed, for h € Tand u € U, we
have for all g € T that

g (h-uy=h-((h'gh)y-u)y=h-u,

soh-u € U. We conclude that v(I") is reducible, contradicting assumption (1). Thus
v(I') € v(I") must contain some partially hyperbolic matrix, and we are done. [

To apply Proposition 2.6, we will need a method for establishing the irreducibility
of the action of the discrete group I'. In the cases which arise in this paper, this action
will factor through various arithmetic subgroups (such as Sp(2g, 7)) of semisimple
Lie groups, and hence the following theorem of Borel can be applied.

Theorem 2.8 ([Borl], Proposition 3.2). Let G be a connected, semisimple, real
algebraic group which is defined over () and which has no compact factors (for
example, G = Sp(2¢,R) for g = 1 or G = SL(n,R) forn = 2). Let V be a finite
dimensional vector space over R which is an irreducible G-module. Then V is also
an irreducible Gg-module, where Gy, is the group of integer points of G.

Remark 2.9. The conditions in [Borl], Proposition 3.2, do not mention integer
points, but instead refer to subgroups satisfying a certain “property (5)”. However, it
is easy to see that lattices satisfy this property, and a well-known theorem of Borel—
Harish-Chandra says that arithmetic subgroups are lattices. We also remark that
Proposition 3.2 in [Bor1] is one of the steps in the proof of an early version of the Borel
Density Theorem, but later proofs do not make use of this result, and Theorem 2.8
can be easily deduced from the Borel Density Theorem.

2.3. Isoperimetric inequalities and upper bounds on distortion. The goal of this
subsection is to prove that an upper bound for the distortion of a normal subgroup
K <1 T can be obtained from isoperimetric and isodiametric functions on the quotient
group I'/ K. We first recall some definitions. While the notion of isoperimetric
function and isodiametric function for a group are usually defined as independent
quantities (see, e.g., [Ger]), we will be interested in their simultaneous realization,
as discussed in [GR] and in [Ril], Definition 2.2.2. We refer the reader to these
references for background on this topic.
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Definition 2.10 (Simultaneous (isoperimetric, isodiametric) pairs). Let I' =~ (S|R)
be a finitely-presented group. Denote the free group on S by F(S). Also, denote
the word length of an element w in F(S) by £(w). We say that a pair of functions
(mp, p) is a simultaneous (isoperimetric, isodiametric) pair for I if for all w €
F(S) representing the identity in I", we can write w as a word

N
W = Hxirixfl, x; € F(S), e R
i=1

such that

N = pp((w)) and £(x;) < up(£(w)) foreachl =i < N.

Remark 2.11. Though the precise functions in an (isoperimetric, isodiametric) pair
for a group depend on the choice of finite generating set, changing the generators
preserves the equivalence classes of these functions up to linear substitution. Thus
as with distortion we will consider (isoperimetric, isodiametric) pairs only up to their
well-defined equivalence classes.

The main result of this subsection is the following, which is a small generalization
of a theorem of Arzhantseva and Osin ([AO], Lemma 3.6).

Proposition 2.12 (Upper bound on distortion). Let K <1 " be a finitely generated,
normal subgroup of a finitely generated group I'. Suppose that T /K is finitely
presented and that (Jup , j)bp) is a simultaneous (isoperimetric, isodiametric) pair for
['/K. Then there exists some C > 0 such that the distortion of K in T is at most
wpCHD,

Proof. Let St and Sk be finite generating sets for I and K respectively, and let
F(Sr) be the free group on Sp. Let || - ||p: I’ — N be the St word metric and
|+ lx: K — N be the Sg word metric. Let £: F(Sr) — N give the word length in
F(Sr) and 7: F(Sr) — T be the natural projection. Finally, choose R C F(Sr)
such that '/ K =~ (Sr|R) is a finite presentation.

We begin by claiming that there is some C > Osuchthatifr € Rand x € F(ST),
then

lr(xrx g < €.

Indeed, an easy induction shows that if
Cy = max{|z(r)lx [ r € R},

and
C, = max{||w(srsgst ) x | st € Sp and sx € Sk,
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then C = € C; satisfies the claim.
Now given k € K choose an efficient word w € F(Sr) such that 7{w) = k and
£(w) = ||k||r. By Definition 2.10, we can write

N
w = Hxir;—xi_l, x; € F(Sr), r; € R
i=1

with
N = pp((w)) and £(x;) < up(£(w)) foreachl =i < N.
We then calculate:

N N
Ikl = Ilw@)x = 3 Ir(wray e = 3 crole

i=1 =1
< wp (E(w))CHo E@)
= pp (k|| rycro HIr,

as desired. L]

3. Distortion of the Torelli group

In this section, we apply Propositions 2.3 and 2.12 to give lower and upper bounds
on the distortion of I, 5 in Mod, 5 for b € {0,1} and g = 3.

Proof of Theorem 1.1. Consider the standard exact sequence
1 — I, —>Modyp — Sp(28,Z) — 1. (6)

We begin with the lower bound. Set H = Hj(Xzp;2Z). In [Jol], Johnson
constructed the Johnson homomorphisms, which are for g > 3 surjective Mod, -
equivariant homomorphisms

o dga > N H

and

v I, = (N )/ H

Here H is embedded in /\3 H as H Aw, where w = a1 Aby + - +ag Aby for any
symplectic basis {a1,b1,...,ag,bg} of H. The action of Mod, ; on (/\3 H)/H or
/\3 H factors surjectively through the infinite group Sp(2g, 7).

Now H ® R is an irreducible representation of Sp(2g,IR). By Theorem 2.8
it is also an irreducible Sp(2g, Z )-representation. We can apply Proposition 2.6
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to the inclusion A C /\3 H to show that some element of Mod, 1 acts partially
hyperbolically on /\3 H. Similarly, (( /\3 H)/H)®R isanirreducible representation
of Sp(2¢,R). By Theorem 2.8 it is also an irreducible Sp(2g, £ )-representation. We
can apply Proposition 2.6 with W = 1V = (/\3 H)/H to show that some element of

Modg o acts partially hyperbolically on ( /\3 H)/H.

Now apply Proposition 2.3 to Z, 5 <1 Mod, ; with the homomorphism ¥ equal
to the relevant Johnson homomorphism to conclude that Z, 5 is at least exponentially
distorted in Mod, 5, for ¢ = 3 and b € {0, 1}, as desired.

We now establish the upper bound. As explained in §5 of [Leu] (see in particular
Corollary 5.4), the nonpositively curved symmetric space X for Sp(2g, R) admits an
Sp(2g, 7.)-equivariant retraction r : X —> 2 onto a submanifold with boundary 2 on
which Sp(2g, Z) acts cocompactly and properly by isometries (in the path metric).
Now X is a nonpositively curved Riemannian manifold, and so it has a simultaneous
(isoperimetric, isodiametric) function which is (quadratic, linear). The retraction r
distorts lengths and hence volumes by at most an exponential factor. It follows that
(2, hence Sp(2¢g, 7), has at worst a simultaneous (exponential, exponential) (isoperi-
metric, isodiametric) pair. While [Leu] explains this only for isoperimetric functions,
the argument for the (isoperimetric, isodiametric) pair follows exactly his argument.

Proposition 2.12 applied to exact sequence (6) therefore implies that for g > 3
and b < {0,1}, the group I, 5 is at most doubly exponentially distorted in Mod, 5,
as desired. ]

Remark 3.1. The isoperimetric/isodiametric bounds for Sp(2g, 7Z) used in the proof
of Theorem 1.1 are probably not sharp. In fact, Thurston has conjectured that
SL(n, Z) satisfies a quadratic isoperimetric inequality for # > 4, and one would
expect the same to hold for Sp(2g, Z) for g = 3. If Sp(2g, Z) satisfied a quadratic
isoperimetric inequality, then a theorem of Papasoglu [Pap] (see [GR], Theorem 2,
for a generalization and alternate proof) would imply that it has a (quadratic, linear)
(isoperimetric, isodiametric) pair. This would imply that our exponential lower bound
on the distortion of Zg in Mod, (and of I, 1 in Modg 1) is sharp.

In fact one could get by with much less than Thurston’s conjecture. Sharpness
of the exponential lower bound on the distortion of the Torelli group would follow if
Sp(2g, 7.) satisfied an (exponential, linear) (isoperimetric, isodiametric) pair.

4. Distortion of surface braid groups

Proof of Theorem 1.2. Consider the exact sequence

Tes K- Modé’fbfn — Mod? , — 1. (7)
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We first prove that K is at least exponentially distorted in Mod? ZT Setting H =
Hi(2g; Z), we will construct a Modg ol

-equivariant surjection ¢ : K — H"1™",
Here the Modgz | -action on H nEm factors through the natural projection

Modg?_tn — Mod, — Sp(2g, 7).

Since H"™ contains the nontrivial irreducible (by Theorem 2.8) Sp(2g, Z)-module
H , we can apply Propositions 2.6 and 2.3 to K < Modp +m ,, with the homomorphism

¥ to conclude that K is at least exponentially dlstorted in Modp as desired.

g.b+n
The construction of 1 goes as follows. Let K’ be the kernel of the surjection

Modpjngrn e Modp The map Modp — Modgzer induces a surjection
K — K'. Abasic result of Birman [Bir] shows that K’ is the fundamental group of the
configuration space of n + m points on &X', that is, that K’ =~ Jrl((Eg jErm iKY

where

g+b’

A ={(x1,...,Xn1m) € (pr)ner | x; = x; for some i # j}.
The map 1 is then the composition

K—>K =m ((E;b)”m \A) — ﬂl((Eg,b)ner) — m((Z)" ") — HP ",

We now prove that K is at most exponentially distorted in Modp +m . In [Mos],
Mosher proved that Modg is automatic. This implies [ECHLPT] that Modp b Sat
isfies a simultaneous (quadratic, linear) (isoperimetric, isodiametric) pair. We can
thus deduce the desired upper bound by applying Proposition 2.12 to the exact se-
quence (7). ]

5. Relative Johnson homomorphisms and the distortion of homologically
specified subgroups

In this section, we generalize the Johnson homomorphism to other subgroups of
Mod, , defined by a variety of homological conditions. We then apply these homo-
morphisms to give lower bounds on distortion.

5.1. Relative Johnson homomorphisms. Fix g = 3 and & € {0, 1}, and set H =

Hi(X; 5; Z). We will consider the following subgroups of the mapping class group
Mod, p.

Definition 5.1. Let W be a subgroup of H. Define
Modgb = {f €Modg, | ful(W) C W}
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Observe that Mod?jb acts on H/W. The kernel of this action will be denoted by
e
g.b

Example 3.2. The classical Torelli group I, p corresponds to Igb with W = 0.

Example5.3. Fixm < N,andlet W bethe kernelofthemap H — H (X, 5; Z/m7).
Then ModW = Mod, 5 and I;V is the level m subgroup of Mod, p, that is, the
kernel of natural map Mod, 5, — Sp(2g,Z/mZ).

Example 5.4. Let ¥’ C X, ; be asubsurface, and let W be the image of H; (X'; 7,)
in H. Then I;Vb is generated by I, together with the set mapping classes sup-

ported on X’. One may think of this as the subgroup of mapping classes which are
“homologically supported” on 2.

Example 5.5, Let W C Hi(X; 5; Z) be a Lagrangian, that is, a maximal isotropic
subgroup. Then I W is the subgroup of mapping classes which preserve W and act

trivially on H/ W It 1s easy to see that I;V must also act trivially on W. In other
words, these are the Lagrangian subgroups of Theorem 1.3.

We now wish to generalize the Johnson homomorphisms to the groups I;/b. We
begin by discussing the appropriate target for these Johnson homomorphisms. We
will need the following well-known lemma.

Lemma 5.6 ([Bro], Theorem V.6.4). If A is an abelian group, thenthereis aninjection
it N°A— Ha(A; D). If A is torsion-free, then i is an isomorphism.

Now, using Lemma 5.6, the classical Johnson homomorphism on a surface with
boundary is of the form

7 Loa— N H =~ Hy(H; 7).
The relative Johnson homomorphism on a surface with boundary will be of the form
Vool — Ha(H/W; ).
On a closed surface, the classical Johnson homomorphism is of the form
t: I, — (N H)/H =~ Hs(H; Z)/H.

Here H is embedded in /\3H as H Ao, where @ = a1 A by + -« + ag A by
for any symplectic basis {a;,b),...,a,,b,} of H. By Lemma 5.6, there is a copy

of /\3(H/ W) in Hs(H/W ;7). For any subgroup W of H, the aforementioned
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embedding of H into /\3 H therefore projects to a homomorphism
H— N'H — N(H/W)— Hy(H/W.Z)

whose image we will denote by H%. The relative Johnson homomorphism on a
closed surface will be of the form

IV - Ha(H/W;Z)/HY.

Remark 5.7. The map I — H"W need not be injective. Indeed, if W is a maximal

isotropic subspace of H, then the image of @ in /\2(H/ W) is 0. Hence in this case
HY =0.

For simplicity, we will define H% = 0if » = 1. We can now state our theorem.

Theorem 5.8 (Relative Johnson homomorphisms). For g = 3 and b € {0,1}, there
exist homomorphisms

< I, > Ha(H/W;Z)/H"
which we will call the relative Johnson homomorphisms, satisfving the following
properties:
(1) 7° isthe classical Johnson homomorphism.
(2) If Wy C Wa, then t72| Pl equals T followed by the natural map
£,

Ha(H/ Wi, Z)/H™ — Hy(H/W>; 7)/H.

(3) For f € Mod?fb and h € Iyp, we have t(fhf~1) = fi o t(h), where fy is
the induced map on Ha(H/W; Z)/HY .

Proof. We begin with the case & = 1 (where H W — 0). As described for example
in [Jo2], the classical Johnson homomorphism t can be defined in various ways.
We imitate the construction based on mapping tori. For a detailed discussion of this
definition of the classical Johnson homomorphism and a proof of its equivalence to the

more standard definition, see §3—4 of [Hai]. For # € Ig: 1»choose ahomeomorphism
h' of Xz 1 representing £ and construct a homeomorphism h of 2, by gluing a disc
D to the boundary component of X, ; to get a copy of X, and defining h to equal
lon D and h' on Xz 1 = X, \ D. Next, let M, be the mapping torus of h, that
is, the quotient of X, x [0, 1] by the equivalence relation (x,1) ~ (h(x),0). Fixing
a basepoint v on D x 0 C X, x 0, we get a canonical loop £ € m1(Mj, v), via
£(t) = v x t. Observe that

H,(M;;7)/{€) ~ H/(fa —hya |« € HY).
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Since h € Igjl, this has a natural projection to H/W. We conclude that there is a
natural map
m(Mg,v) — H/W,

and since M is an Filenberg-MaclLane space, we have an induced map
o My — K(H/W,1).

We define
W (h) = ¢.(IM;]) € Ha(H/ W 7).

It is easy to see that this definition is independent of the choices involved in its
construction, and % clearly satisfies Condition 2 of the theorem. Moreover, if
W = 0, then 7% reduces to Johnson’s definition of the classical Johnson homo-
morphism via mapping tori, so Condition 1 follows. The proof (see [Jo2]) that the
classical Johnson homomorphism is a homomorphism which satisfies Condition 3
generalizes verbatim to our situation, so we are done.

We now deal with the case » = 0. We have an exact sequence

1 —m(T'Sg) — I, — I} — 1,

where T1X, is the unit tangent bundle of X,; see [Jo3]. The classical Johnson
homomorphism restricted to 71 (71X, ) lands in H C /\3 H. Tt follows that t%
restricted to 771 (T X,) lands in HW ¢ /\3 H/ W and thus we have an induced map

¥ — (L (H/W;2)/HY.
These maps clearly satisfy the conditions of the theorem. ]

Remark 5.9. In the special case of the Lagrangian subgroup, Levine [Lev] has given
adifferent construction of z% . His construction imitates Johnson’s original definition
of t [Jo2], First Definition, while our construction is inspired by Johnson’s definition
in terms of mapping tori [Jo2], Second Definition.

Remark 5.10. Another approach sufficient for the proofs of Theorems 1.3 and 1.5
would be to use Morita’s [Morl] extension of the classical Johnson homomorphism
to a crossed homomorphism Mod, 1 — % /\3 H.

5.2. Applications to subgroup distortion. We now apply the relative Johnson ho-
momorphisms t% together with Propositions 2.6 and 2.3 to give lower bounds on the
distortions of some of the groups I,Zb inside Mod, ;. For these distortions to make
sense, however, we must first prove the following.

Proposition 5.11. For g = 3and b < {0, 1}, let W be any subgroup of Hi (X, p; Z).
Then the groups Igb and Modgjb are finitely generated.
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Proof. Let I be either I W or ModW We have an exact sequernce

1—>Ig,b r—B 1,

where B is the image of I' < Mod, ; in Sp(2¢, Z). As has already been mentioned,
Johnson [Jo3] showed that I, ; is finitely generated. It is enough, therefore, to show
that B is finitely generated. To see this, first note that B is the set of Z-points of the
(J-algebraic group consisting of matrices in SL(2g, Q) which preserve the (integral)
subgroup W < Q2 and the symplectic form and (for I' = I 1 p) which act trivially
on H/W. Hence B is arithmetic, and as such it is finitely generated (see, e.g. [Mo],
Theorem 5.57). ]

We now prove Theorems 1.3 and 1.5 from the introduction.

Proof of Theorem 1.3. Let H = Hi(X;p; Z) with symplectic basis {a¢1,...,dg,
bi,....bg} and let W = (a;,...a,} be the standard Lagrangian. Then the La-
grangian subgroup L is I W . By Lemma 2.1 and Proposition 5.11, to prove that Igfb

is at least exponentially dlstorted in Mod, p, it is enough to prove that v, ob is at least

exponentially distorted in Modg’b. The proof is based on the exact sequence
1 — IV, — Mod}/, — A —1, (8)

where A < Sp(2g, 7)) consists of symplectic matrices with a g x g block of zeros in
the lower left-hand corner. Now, by Remark 5.7, we have HY = 0. By Lemma 5.6,
the relative Johnson homomorphism % given by Theorem 5.8 is of the form

VoIl > Ha(H/W;Z) = NHIWY = A by, by).

Moreover, it is easy to see that A acts on Hy(H/W;Z) via the surjection 4 —
SL(g,Z) given by projection to the lower right hand g x g block. For g = 4,
Theorem 2.8 says that the A-module /\ Z2& is nontrivial and irreducible, so we can
apply Propositions 2.6 and 2.3 to I p < Mod? oy setting ¥ = ¢V, to conclude that

I;Vb is at least exponentially dlstorted in Modgf , as desired. ]

Proof of Theorem 1.5. Firstnotethat K = I, where W = H;(Zj.1; Z). Again, by
Lemma 2.1 and Proposition 5.11, to prove that I;V is at least exponentially distorted

in Modg, it 1s enough to prove that I;V is at least exponentially distorted in Mod?.
To prove this we consider the exact sequence

1—>Igz—>Mod;V—>A—>l, D

where A < Sp(2g, 7Z) is isomorphic to Sp(2(g — h), Z). Now, by Lemma 5.6, the
homomorphism t" given by Theorem 5.8 is of the form

IV S Hy(H/ W L)/ HY = (N (S, 2)/Hi(Zgin; Z).



554 N. Broaddus, B. Farb and A. Putman CMH

Since g — 2 > 2, Theorem 2.8 says that the Sp(2(g — %), Z)-module

(N Hi(Ze 0,1 2/ H1 (Zg 01, D)

is nontrivial and irreducible. Applying Propositions 2.6 and 2.3 to I;,V < Modg

with 7 = 7% then gives that Igf is at least exponentially distorted in Mod? | as
desired. ]

The following theorem gives lower bounds for the distortion of IW in Mod, p
for arbitrary W. As the proof is similar to the proofs of Theorems 1. 3 and 1.5, we
ornit it.

Theorem 5.12. let g = 3, b € {0,1}, and W C H. Assume that some element of
MOdZJ; acts partially hyperbolically on Ha(H /W Z)/HY . Then I:’:b is at least
exponentially distorted in Mod p.
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