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Asymptotic isoperimetry on groups and uniform embeddings into
Banach spaces
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Abstract. We characterize the possible asymptotic behaviors of the compression associated to a
uniform embedding into some L#-space, with 1 < p < oo, for alarge class of groups including
connected Lie groups with exponential growth and word-hyperbolic finitely generated groups.
In particular, the Hilbert compression exponent of these groups is equal to 1. This also provides
new and optimal estimates for the compression of a uniform embedding of the infinite 3-regular
tree into some ¥ -space. The main part of the paper is devoted to the explicit construction of
affine isometric actions of amenable connected Lie groups on L#-spaces whose compressions
are asymptotically optimal. These constructions are based on an asymptotic lower bound of the
L? -isoperimetric profile inside balls. We compute the asymptotic behavior of this profile for all
amenable connected Lie groups and for all 1 < p < oo, providing new geometric invariants of
these groups. We also relate the Hilbert compression exponent with other asymptotic quantities
such as volume growth and probability of return of random walks.
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1. Introduction

The study of uniform embeddings of locally compact groups into Banach spaces and
especially of those associated to proper affine isometric actions plays a crucial role
in various fields of mathematics ranging from K-theory to geometric group theory.
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Recall that a locally compact group is called a-T-menable if it admits a proper affine
action by isometries on a Hilbert space (for short: a proper isometric Hilbert action).
An amenable o-compact locally compact group is always a-T-menable [CCITV]; but
the converse is false since for instance non-amenable free groups are a-T-menable.
However, if a locally compact, compactly generated group & admits a proper iso-
metric Hilbert action whose compression p satisfies

plt) = Y2,

then G is amenable!. On the other hand, in [CTV], we prove that non-virtually
abelian polycyclic groups cannot have proper isometric Hilbert actions with linear
compression. These results motivate a systematic study of the possible asymptotic
behaviors of compression functions, especially for amenable groups.

In this paper, we “characterize” the asymptotic behavior of the L#?-compression,
with 1 < p < oo, for a large class of groups including all connected Lie groups
with exponential growth. Some partial results in this direction for p = 2 had been
obtained in [GK] and [BrSo] by completely different methods.

1.1. L?-compression: optimal estimates. [.et us recall some basic definitions.
Let ¢ be some locally compact compactly generated group. Equip & with the word
length function | - |§ associated to a compact symmetric generating subset S and
consider a uniform embedding F of & into some Banach space. The compression p
of F is the nondecreasing function defined by

plr) = inf l 1F(g) — F(h)|.

lg= s>

Let £, g: R, — R, benondecreasing, nonzero functions. We write respectively
f =g, f < gifthere exists C > Osuch that f(r) = O(g(Crt)), resp. forall ¢ > 0,
f(t)y = o(g(ct)) whent — co. We write f ~ gifboth f < gand g < f. The
asymptotic behavior of f is its class modulo the equivalence relation ~5.

Note that the asymptotic behavior of the compression of a uniform embedding
does not depend on the choice of S.

In the sequel, an L?-space denotes a Banach space of the form L#(X, m) where
(X, m)is ameasure space. An L?-representation of & is a continuous linear G-action
on some L¥-space. Let m be an isometric L#?-representation of G and consider a
l-cocycle b € ZY(G, 7), or equivalently an affine isometric action of G with linear
part 77: see the preliminaries for more details. The compression of & is defined by

p(t) = inf [ b(g)lp-
lgls=>t

IThis was proved for finitely generated groups in [GK]. In [CTV], we give a shorter argument that applies to
all locally compact compactly generated groups.
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In this paper, we mainly focus our attention on groups in the two following classes.
Denote (£) the class of groups including

(1) polycyclic groups and connected amenable Lie groups;

(2) semidirect products Z[#] Am 7, with m, n co-prime integers with? |ma| = 2
(if n = 1 this is the Baumslag-Solitar group B S(1,m)); semidirect products
(R ¢ @pep Qp) Am 7, with m, n coprime integers and P a finite family of
primes dividing m#n;

(3) wreath products F ¢ 7 for F a finite group.
Denote (£') the class of groups including groups in the class (£) and
(1) connected Lie groups and their cocompact lattices;
(2) irreducible lattices in semisimple groups of rank > 2;
(3) hyperbolic finitely generated groups.

Let ¢ be aleft Haar measure on the locally compact group G and write LZ(G) =
LZ(G, p). The group G acts by isometry on L# (G ) viathe left regular representation
AG,p defined by

Ag,p(g)e = (g ).

Theorem 1. Fixsome 1l < p < o0. Let G be a group of the class (L) and let | be
an increasing function f: Ry — Ry satisfying

[yt

Then there exists a 1-cocycle b € ZYWG, Ag,p) whose compression p satisfies
prf

Corollary 2. Fix somel < p < oo. Let G be a group of the class (L") and let | be
an increasing function f: R — R satisfving Property (Cy), withq = max{p,2}.
Then there exists a uniform embedding of G into some LP-space whose compression
p satisfies

p=f

Let us sketch the proof of the corollary. First, recall [W], III.A.6, that for 1 <
p < 2, L2([0,1]) is isomorphic to a subspace of LZ([0,1]). It is thus enough to
prove the theorem for 2 < p < oo. This is an easy consequence of Theorem 1 since
every group of class (£') quasi-isometrically embeds into a group of (£). Indeed,
any connected Lie group admits a closed cocompact connected solvable subgroup.

This condition guaranties that the group is compactly generated.
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On the other hand, irreducible lattices in semisimple groups of rank > 2 are quasi-
isometrically embedded [LMR]. Finally, any hyperbolic finitely generated group
quasi-isometrically embeds into the real hyperbolic space H” for # large enough
[BoS] which is itself quasi-isometric to SO(#, 1).

The particular case of nonabelian free groups, which are quasi-isometric to 3-
regular trees, can also be treated by a more direct method. More generally that
method applies to any simplicial® tree with possibly infinite degree.

Theorem 3 (sece Theorem 7.3). Let T be a simplicial tree. For every increasing
function f: R, — R, satisfying

[y

there exists a uniform embedding F of T' into £ (1") with compression p =~ f.

Remark 1.1. In [BuScl], [BuSc2], it is shown that real hyperbolic spaces and word
hyperbolic groups quasi-isometrically embed into finite products of (simplicial) trees.
Thus the restriction of Corollary 2 to word hyperbolic groups and to simple Lie groups
of rank 1 can be deduced from Proposition 7.3. Nevertheless, not every connected
Lie group quasi-isometrically embeds into a finite product of trees. Namely, a finite
product of trees is a CAT(0) space, and in [Pau] it is proved that a non-abelian simply
connected nilpotent Lie group cannot quasi-isometrically embed into any CAT(0)
space.

Theorem 4. Let Ty be the binary rooted tree of depth N. Let p be the compression
of some 1-Lipschitz map from Ty to some LP-space for 1 < p < o0. Then there
exists C < o0, depending only on p, such that

2N g
[ (e <
i ! g
where ¢ = max{p,2}.

Although this result is a strengthening (see Corollary 6.3) of Theorem 1 in [Bou],
its proof is based on the same arguments. As a consequence, we have

Corollary 5. Assume that the 3-regular tree quasi-isometrically embeds into some
metric space X. Then, the compression p of any uniform embedding of X into any
LP-space for 1 < p < oo satisfies (Cy) for g = max{p,2}.

*By simplicial, we mean that every edge has length 1.
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In [BeSc], Theorem 1.5, it is proved that the 3-regular tree quasi-isometrically
embeds into any graph with bounded degree and positive Cheeger constant (e.g. any
non-amenable finitely generated group). On the other hand, in a work in preparation
with Cornulier [CT], we prove that finitely generated linear groups with exponential
growth, and finitely generated solvable groups with exponential growth admit quasi-
isometrically embedded free non-abelian sub-semigroups. Together with the above
corollary, they lead to the optimality of Theorem 1 (resp. Corollary 2) when the group
has exponential growth and when 2 < p < oo (resp. 1 < p < o0).

Corollary 6. Let G be « finitely generated group with exponential growth which is
either virtually solvable or non-amenable. Let ¢ be a uniform embedding of G into
some LP-space for 1 < p < oo. Then its compression p satisfies Condition (Cy) for

g = max{p,2}.

Corollary 7. Let G be a group of class (L") with exponential growth. Consider
an increasing map | and some 1 < p < oo, then [ satisfies Condition (C,) with
g = max{p,2} if and only if there exists a uniform embedding of G into some
LP space whose compression p satisfies p = f.

Note that the 3-regular tree cannot uniformly embed into a group with subex-
ponential growth. So the question of the optimality of Theorem 1 for non-abelian
nilpotent connected Lie groups remains open.

About Condition (C,). First, note that if p < g, then (C,) implies (C,): this
immediately follows from the fact that a nondecreasing function f satisfying (C?)
also satisfies f(¢)/t = O(1).

Let us give examples of functions f satisfying Condition (Cp). Clearly, if f and
h are two increasing functions such that f* < & and h satisfies (C,), then f satisfies
(Cp). The function f(r) = r* satisfies (C,) for every @ < 1 but not fora = 1. More

precisely, the function
4

Fley= Togn)i7?

does not satisfy (Cp) but
4
((log t)(loglogr)*)!/»

satisfies (Cp) for every @ > 1. In comparison, in [BrSo], the authors construct a
uniform embedding of the free group of rank 2 into a Hilbert space with compression
larger than

J@) =

:
((log)(log logt)?)1/2’
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As t/(log)M? does not satisfy (Cp), one may wonder if (Cp) implies

pt) = (ogn)/7

The following proposition answers negatively to this question. We say that a function
f is sublinear if f(z)/t — 0 whent — oo.

Proposition 8 (see Proposition 7.5). Forany increasing sublinear functionh: Ry —
R and every 1 < p < oo, there exists a nondecreasing function f satisfying (Cp),
a constant ¢ > 0 and an increasing sequence of integers (n;) such that

f(n;) = ch(n;) Vi cN.

In particular, it follows from Theorem 1 that the compression p of a uniform em-
bedding of a 3-regular tree in a Hilbert space does not satisfy any a priori majoration
by any sublinear function.

1.2. Isoperimeftry and compression. To prove Theorem 1, we observe a general
relation between the LZ-isoperimetry inside balls and the L#-compression. Let G be
alocally compact compactly generated group and consider some compact symmetric
generating subset S. For every g € G, write?

Vel(2) = sup le(sg) — ¢(2)].

seS

Let 2 = p < oo and let us call the L#-isoperimetric profile inside balls the nonde-
creasing function J 5 4 defined by

||€0||p
" Ve I

7é () =

where the supremum is taken over all measurable functions in L7 () with support in
the ball B(1,1). Note that the group & is amenable if and only if lim;_, Jg p(r) =
o0. Theorem 1 results from the two following theorems.

Theorem 9 (see Theorem 5.1). Let G be a group of class (£). Then Jg,p (t) ~t.

Theorem 10 (see Corollary 4.6). Let (¢ be a locally compact compactly generated
group and let | be a nondecreasing function satisfying

“f Sf) \dr
ﬁ (]ggp([)) T <7 OO0 (CJP)

#We write V instead of V because this is not a“metric” gradient. The gradient associated to the metric
structure would be the right gradient: |Ve@|(g) = sup, o5 [¢(gs) — ¢(g)|. This distinction is only important
when the group is non-unimodular.
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for some 1 < p < oo. Then there exists a 1-cocycle b € ZY(G,Ag,,) whose
compression p satisfies p = f.

Theorem 9 may sound as a “functional” property of groups of class (£). Never-
theless, our proof of this result is based on a purely geometric construction. Namely,
we prove that these groups admit controlled Fglner pairs (see Definition 4.8). In
particular, when p = 1 we obtain the following corollary of Theorem 9, which has
its own interest.

Theorem 11 (see Remark 4.10 and Theorem 5.1). Let G be a group of class (£)
and let S be some compact generating subset of . Then G admits a sequence of
compact subsets (Fp)neN satisfying the two following conditions:

(1) there is a constant ¢ > 0 such that
w(skFn A Fp) <cu(Fp)/n Vse S,¥n e N;

(ii) for every n € N, F, is contained 3 in S™.
In particular, G admits a controlled Folner sequence in the sense of [CTV].

This theorem is a strengthening of the well-known construction by Pittet [Pit].
It is stronger first because it does not require the group to be unimodular, second
because the control (i1) of the diameter is really a new property that was not satisfied
in general by the sequences constructed in [Pit].

1.3. Compression, subexponential growth, and random walks. Let 7 be an iso-
metric L¥-representation of G. Denote by Br(G) the supremum of all & such that
there exists a 1-cocycle b € Z(G,n) whose compression p satisfies p(¢t) = .
Denote by B,(G) the supremum of B, (G ) over all isometric L#-representations 7.
For p = 2, B>(G) = B(G) has been introduced in [GK] where it was called the
equivariant Hilbert compression rate (we suggest that the term exponent would be
more appropriate here than the term rate). On the other hand, define

- log J(b;’p(r)
tg,p = liminf ——————.
t—o0 logt

As a corollary of Theorem 1, we have

Corollary 12. For every 1 < p < o0, and every group G of the class (£), we have
B,(G) =1

The following result is a corollary of Theorem 10.

SActually, they also satisfy S[¢%] ¢ F,, fora constant ¢ > 0.
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Corollary 13 (see Corollary 4.6). Let G be a locally compact compactly generated
group. Forevery 0 < p < o0, we have

The interest of this corollary is illustrated by the two following propositions.
Recall the volume growth of G is the = equivalence class Vi of the function r —-

p(B(L, r)).

Proposition 14 (see Proposition 7.1). Assume that there exists f < 1 such that
Ve(r) < e, Then

aG:p z ]_ _ﬁ-

As an example we obtain that B(G) > 0, 19 for the first Grigorchuk’s group (see
[Ba] for the best known upper bound of the growth function of this group).

Let ¢ be a finitely generated group and let v be a symmetric finitely supported
probability measure on G. Write v = v % -« % v (n times). Recall that v (1) is
the probability of return of the random walk starting at 1 whose probability transition
is given by v.

Proposition 15 (see Proposition 7.2). Assume that there exists v < 1 such that
(1) = e, Then

w2 = (1-y)/2.
In [PS], it is proved that if G is a finitely generated extension
l-K—-~G—>N-—>1
where K is abelian and N is abelian with Q-rank d. Then

limsup log(—log(v"™ (1)) <1—2/(d +2)
It
for any symmetric finitely supported probability on G.

Corollary 16. Assume that G is a finitely generated extension 1 — K — G —
N — 1 where K is abelian and N is abelian with Q-rank d. Then

B(G)>1/(d +2).

In particular, B(G) > 0 for any finitely generated metabelian group G.
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1.4. The case of Z  Z. Combining the construction of Theorem 1 for C? Z with the
cocycle induced by the morphism of Z(%) — £P(Z), we obtain (see Proposition 7.6
for the details).

Theorem 17. Fixsome 1 < p < 00. Let G = Z. ! Z and let | be an increasing
function [ Ry — Ry satisfying

< fr) \dr
fl (,;p/(zp—l)) T ()

Then there exists a 1-cocycle b € ZY (G, Ag,p) whose compression p satisfies

p=f

In particulay;
r
B,(7.:7) = .
p222) = -

In a previous version of this paper, we stated the lower bound B(Z ¢ Z) = 2/3,
but the proof that we gave relied on a wrong version of Proposition 15 (we stated
G2 = 1 —y, whichis wrong as shown by a counter-example in [NP]). The mistake,
together with a proof of the full statement B,(Z?Z) > 2pp_1 (see [NP], Lemma 7.8)
was communicated to us by Naor and Peres. The proof that we propose here is
essentially the same as the one of [NP], but it was actually also known by the author.

1.5. Questions

Question 1.2 (Condition (C,) for nilpotent connected Lie groups.). Let N be a
simply connected non-abelian nilpotent Lie group and let p be the compression of a
1-cocycle with values in some LZ-gpace (resp. of a uniform embedding into some
LP-space) for 2 < p < oo. Does p always satisfies Condition (Cp)?

A positive answer would lead to the optimality of Theorem 1. On the contrary,
one should wonder if it is possible, for any increasing sublinear function f, to find a
1-cocycle (resp. a uniform embedding) in L# with compression p = f. This would
also be optimal since we know [Pau] that N cannot quasi-isometrically embed into
any uniformly convex Banach space. Namely, the main theorem in [Pau] states that
such a group cannot quasi-isometrically embed into any CAT(0)-space. So this only
directly applies to Hilbert spaces, but the key argument, consisting in a comparison
between the large scale behavior of geodesics (not exactly in the original spaces but
in tangent cones of ultra-products of them) is still valid if the target space is a Banach
space with unique geodesics, a property satisfied by uniformly convex Banach spaces.
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Question 1.3 (Quasi-isometric embeddings into Ll-spaces.). Which connected Lie
groups quasi-isometrically embed into some L'-space?

It is easy to quasi-isometrically embed a simplicial tree T into £' (see for instance
[GK]). In [BuScl], [BuSc2], it is proved that every semisimple Lie group of rank 1
quasi-isometrically embeds into a finite product of simplicial trees, hence into a
£'-space. The above question is of particular interest for simply-connected non-
abelian nilpotent Lie groups since they do not quasi-isometrically embed into any
finite product of trees. Kleiner and Cheeger recently announced a proof that the
Heisenberg group cannot quasi-isometrically embed into any L !-space.

Question 1.4. If & is an amenable group, is it true that
B,(G) = ag,p?

We conjecture that this is true for Z 2 Z, i.e. that B(Z ¢ Z.) = 2 /3. A first step to
prove this is done by Proposition 3.9 which, applied to G = Z ! Z says that

B(Z27) = By, (72 D).

As a variant of the above question, we may wonder if the weaker equality B, ,(G) =
¢, p holds, in other words if Corollary 13 is optimal for all amenable groups. Possible
counterexamples would be wreath products of the form G = 7Z ; H where H has
non-linear growth (e.g. H = Z?).

Question 1.5. Does there exist an amenable group G with B(G) = 07

A candidate would be the wreath product 7. 2 (7,2 7.) since the probability of return
of any non-degenerate random walk in this group satisfies

p®(1) < e
for every y < 1 ([Er], Theorem 2). It is proved in [AGS] that B(Z 2 (7.2 £)) < 1/2.

Question 1.6. Let G be a compactly generated locally compact group. If G admits
an isometric action on some LP-space, p = 2, with compression p(¢) > /2, does
it imply that G is amenable?

Recall that this was proved in [GK], [CTV]for p = 2. The generalization to every
p = 2 would be of great interest. For instance, this would prove the optimality of a
recent result of Yu [Yu] saying that every finitely generated hyperbolic group admits
a proper isometric action on some £7-space for large p enough, with® compression
o(t) ~s 112,

®This is clear in the proof.
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2. Preliminaries

2.1. Compression. Let us recall some definitions. Let (X,dy) and (¥,dy) be
metric spaces. Amap F: X — Y is called a uniform embedding of X into Y if

dy(x,y) = 00 < dy(F(x), F(y)) — .

Note that this property only concerns the large-scale geometry. A metric space
(X,d) is called guasi-geodesic if there exist 6 > 0 and y > 1 such that for all
x,y € X, there exists a chain x = xg, X1,...,xp = y satisfying:

> d(xg—1, %) < yd(x, ),
k=1

Whi= Lys o 88 B8R X5) 2.6
If X is quasi-geodesic and if F: X — Y is a uniform embedding, then it is easy to
see that F is large-scale Lipschitz, i.e. there exists C = 1 such that

vx,y € X, dy(F(x), F(y)) < Cdy(x,y)+ C.

Nevertheless, such a map is not necessarily large scale bi-Lipschitz (in other words,
quasi-isometric).

Definition 2.1. We define the compression p: Ry — [0,00] of amap F: X — Y
by

ve>0, p)= if  dy(F),F(y),
UG i

Clearly, if F is large-scale Lipschitz, then p(f) < ¢.
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2.2. Length functions on a group. Now, let G be a group. A length function on
G is a function L: G — R satisfying L(1) = 0, L(gh) < L(g) + L(h), and
L(g) = L(g™Y). If L is a length function, then d(g, h) = L(g1h) defines a left-
invariant pseudo-metric on G. Conversely, if d is a left-invariant pseudo-metric on
G,then L(g) = d(1, g) defines a length function on G.

Let G be alocally compact compactly generated group and let S be some compact
symmetric generating subset of (r. Equip G with a proper, quasi-geodesic length
function by

|gls =inf{n c N : g ¢ S"}.

Denote d g the associated left-invariant distance. Note that any proper, quasi-geodesic
left-invariant metric is quasi-isometric to ds, and so belongs to the same “asymptotic
class™.

2.3. Affine isometric actions and first cohomology. Let G be a locally com-
pact group, and & an isometric representation (always assumed continuous) on a
Banach space E = E,. The space Z1(G,n) is defined as the set of continu-
ous functions b: G — E satisfying, for all g, # in G, the 1-cocycle condition
b(gh) = n(g)b(h) + b(g). Observe that, given a continuous function b: G — ¥,
the condition » € Z(G, ) is equivalent to saying that G acts by affine isometries
on H# by a(g)v = m(g)v + b(g). The space Z(G, ) is endowed with the topology
of uniform convergence on compact subsets.

The subspace of coboundaries B (G, 7) is the subspace (not necessarily closed)
of ZW(G, 7) consisting of functions of the form g > v — w(g)v forsome v € E. In
terms of affine actions, B! (G, ) is the subspace of affine actions fixing a point.

The first cohomology space of  is defined as the quotient space

HY G, n)= ZY(G,n)/BY(G, ).

Notethatifb € Z1(G, ), themap(g, ) — ||b(g)—b(h)| defines aleft-invariant
pseudo-distance on &. Therefore the compression of a 1-cocycle b: (G,dg) — E
is simply given by

p(t) = inf [[b(g)].
lgls>t
The compression of an affine isometric action is defined as the compression of the
corresponding 1-cocycle.

Remark 2.2. When the space E is a Hilbert space’, it is well known [HV], §4.a, that
b € BYG, m) if and only if b is bounded on G.

"The same proof holds for uniformly convex Banach spaces.
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3. The maximal L?-compression functions Mp¢g,, and Mp; . ,

3.1. Definitions and general results. Let (G,dg, i) be a locally compact com-
pactly generated group, generated by some compact symmetric subset S and equipped
with a left Haar measure i. Denote by Z1(G, p) the collection of all 1-cocycles with

values in any L#-representation of (¢. Denote by pj the compression function of a
l-cocycle b € Z1(G, p).

Definition 3.1. We call maximal L?-compression function of G the nondecreasing
function Mpg, p defined by

MpG.p(t) = sup {pp(r) : b€ ZX(G, p), sup b)) <1,
f=

We call maximal regular L?-compression function of G the nondecreasing function
Mp;, , , defined by

Mpig,, =sup|pe(t): b€ Z'(G,Aq,p). sup [6(9)]| < 1.
Fe

Note that the asymptotic behaviors of both Mpg, p and Mp; , , do not depend on
the choice of the compact generating set .S. Moreover, we have

Mp), () < Mpg p(t) < t.

Let ¢ be a measurable function on G such that ¢ — A(s)g € LP(G) for every
s € §. For every t > 0, define

Varp(@,1) = inf |[l¢ —A(g)¢lp-

lgls>=t

The function ¢ and p being fixed, the map ¢ — Var,(¢, f) is nondecreasing.
Proposition 3.2. We have

Mpyg (1) = sup Vary(g,1).
Velp=1

Proof. We trivially have

Mpyg ,(t) = sup Vary(g,1).
[Velp=<1

Let b be an element of Z'(G,Ag ). By convoluting b(g), for every g, on the
right by a Dirac approximation, one can approximate » by a cocycle " such that
x — b'(g)(x) is continuous for every g in G. Hence, we can assume that b(g) is



512 R. Tessera CMH

continuous for every g in G. Now, setting ¢(g) = b(g)(g), we define a measurable
function satisfying

b(g) = ¢ —A(g)e.
So we have

o() = Var, (¢,1) < Mpag (1)

where p is the compression of b. W

Remark 3.3. It is not difficult to prove that the asymptotic behavior of Mp,, , is
invariant under quasi-isometry between finitely generated groups.

Proposition 3.4. The group G admits a proper® 1-cocycle with values in some LP-
representation if and only if Mpg, p(t) goes to infinity ast — oc.

Proof. The “only if” part is trivial. Assume that Mpg ,(¢) goes to infinity. Let (1)
be an increasing sequence growing fast enough so that

¥ o

ke Tk
For every k € N, choose some b, € Z'(G, p) whose compression pg satisfies

Mpa,p(tx)

) >
pr(tx) = 5

and such that

sup || b (s)| = 1.
seS

Clearly, we can define a 1-cocycle b € Z1(G, p) by
or

That is, if for every k, by takes values in the representation 7y, then b takes values

in the direct sum @ﬁpﬂk. Now, observe that for [g| > 1 and j < k, we have
1;(g)ll = 1/2, so that
16(DN? = k/27%.

Thus the cocycle b is proper. ]

The following proposition, which is a quantitative version of the previous one,
plays a crucial role in the sequel.

8For p = 2, this means that G is a-T-menable if and only if M o > goesto infinity. It should be compared
to the role played by the H-metric (see § 2.6 in [C], and § 7.4) for Property (T).
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Proposition 3.5, Let f: R, — R be a nondecreasing map satisfying
foo ( F() )p dt
— | — <00,
1 \Mpgp(t)/ 1
Then,
(1) there exists a 1-cocycle b € ZYWG, p) such that

pEF
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(CMp)

(2) if one replaces Mpg,p by Mp,, , in Condition (CMp), then b can be chosen

in ZN G, Ag.p).

Proof. (1): For every k € N, choose some b € ZNG, p) (for (2), we take by €

Z1(G, g p)) whose compression oy satisfies

MpG,p (2k+1)

pr(@ ) 2 ==

and such that

sup || D (s)]| = 1.
ses

Then define another sequence of cocycles Ek c ZYG, p) by

P feH
T Mpg T F

Since MpG p and f are nondecreasing, for any 2k <t < 2%+l e have

@ o
Mpg,p(25 1) = Mpe p(1)

Hence, fors € S,

o a2y
S Ib = X (57 o)

2" (spenm) <

So we can define a 1-cocycle on & € Z1(G, p) by

(3.1)
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On the other hand, if |g|s > 2k+1 then

1B(Dp = 15k
F2F)
= Mp,, 2K+
> £(25).

So if p is the compression of the 1-cocycle &, we have p = f.

pe (25T

(2): We keep the previous notation. Assume that f satisfies

[ (G2s) & <=

The cocycele b provided by the proof of (1) has the expected compression but it takes
values in an infinite direct sum of regular representation Ag,,. Now, we would like
to replace the direct sum » = @ br by a mere sum, in order to obtain a cocycle in
ZY(G,Ag,p). Since G is not assumed unimodular, the measure g is not necessarily
right-invariant. However, one can define an isometric representation rg_, on L?(G),
called the right regular representation by

re.p(8)e = A(g) 'p(g) Yo e LP(G),

where A is the modular function of ¢. We will use the following well-known property

of the representation rg, p, for p > 1. Tosimplify, letus write r(g) instead of ri, p(g).
For every (¢, v¥) € L¥(G) x L#((), we have

lim |lr(e)e + ¥lp = llelp + Il¥ip- (3.2)

g |00

Moreover, this limit is uniform on compact subsets of (L?(G))?. As rG,p and Ag,p
commute, g, p acts by isometries on Z5i AG.p)

Lemma 3.6. There exists a sequence (gr ) of elements of G suchthat b’ = Y r(gr) by
defines a cocycle in ZW (G, Ag,p) and such that

1512 - | S e OIENIIOGIHES (63)
J=0 izk

for any k large enough and every g € B(1, g2y,

Proof of Lemma 3.6. By an immediate induction, using (3.2), we construct a se-
quence (gz) € G satisfying, for every K = 0,5 € S,

|- r@om)|” = S e + 32+ <1,
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which implies that &’ is a well-defined 1-cocycle in Z1(G, Ag,p). Similarly, one can
choose (g ) satisfying the additional property that, for every k € N, |g| < 2812,

H‘Z”(gf)b Al —HZr(gj)b @] — Iz <27

Fixing k € N, an immediate induction over K shows that for every |g| < 2512 and
every K > k,

\HZ’”(&)@ Al Hzr(gf)b @) an (g)|P\<Zz =

This proves (3.3). ]
By the lemma, for |g| < 2k+2,
15 ()IF = 1ok () —
Then, for 25+ < |g| < 25%2, we have

16" (@IIF = f2*) -1
Therefore, the compression p’ of b’ satisfies
o= f
and we are done. ]

We have the following immediate consequence.

Corollary 3.7. Foreveryl < p < o,

log MpG,p(1)
log ¢ '

B(G, p) = liminf

Example 3.8. Let F,. be the free group of rank # = 2 and let A(F;) be the set of
edges of the Cayley graph of F, associated to the standard set of generators. The
standard isometric affine action of F, on £#(A(F,)), whose linear part is isomorphic

to a direct sum Ag,p @yr - Bgp Ag,p of r copies of Ag,, has compression = f.
This shows that Mp;, ,(f) = LR
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3.2. Reduction to the regular representation for p = 2. In the Hilbert case,
we prove that if a group admits a 1-cocycle with large enough compression, then
MpG 2 = Mp,,; ,. This result is mainly motivated by Question 1.4 since it implies
that

B(Z 7)) = By, ,(Z 7).

Proposition 3.9. /et 7w be a unitary representation of the group ¢ on a Hilbert space
¥ and let b € ZY (G, ) be a cocycle whose compression p satisfies

sl riR
Then®
p=Mprg,
In particular;
M)O2 = M)O)LG,Q'

combining with Proposition 3.5, we obtain

Corollary 3.10. With the same hypotheses, we have

log M, !
B(G) = B(G,Ag.) — liminf —= Paca®)
00 log ¢
Proof of Proposition 3.9. For every t > 0, define
—lb@I?/¢*

pi(g) =e

By Schoenberg’s Theorem (Appendix C in [BHV]), ¢; is positive definite. Tt is
easy to prove that ¢; is square-summable (see [CTV], Theorem 4.1). By [Dix],
Théoreme 13.8.6, it follows that there exists a positive definite, square-summable
function t; on & such that ¢; = ¥; % 1;, where % denotes the convolution product.
In other words, ¢; = (A(g2)¥;, ¥;). In particular,

e (1) =1 = |93

and for every s € S,

e — A)Wel|3 = 20092 )15 — (AW, ¥e))

= 2(1 — ¢s(5))
_ 21— eI/
< 1/1?

Note that the hypotheses of the proposition also imply that G is amenable [CTV] (Theorem 4.1), [GK].
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On the other hand, for ¢ such that p(|g|s) > 1, we have
19 — A(Q)We )2 = 2(1 — ¢ IE@17/22)
> 2(1 — e—p(lgls)z/rz)

> 2(1 — 1/e).

So, we have

[V =M@l
2

where ¢ 1s a constant. In other words,

Vara(yr;, o~ He)) = et.

It follows from the definitions that Mp, , , = p. ]

4. L ?-isoperimetry inside balls

4.1. Comparing J(b; . and Mp, ., ,- Let G be a locally compact compactly gen-
erated group and let S be a compact symmetric generating subset of ¢. Let 4 be a
subset of the group G. One defines the L#-isoperimetric profile inside A by

¢llp
Jp(A) = sup —=
¢ IVelp

where the supremum is taken over nonzero functions in L (G ) with support included
in 4.

Definition 4.1. The I.?-isoperimetric profile inside balls is the nondecreasing func-
tion Jg » defined by

TG (6) = T,(B(L,1)).

Remark 4.2. The usual L#-isoperimetric profile of G (see for example [Cou]) is
defined by

jG,p(f) = sup Jp(A)-
ulA)=t
Note that our notion of isoperimetric profile depends on the diameter of the subsets
instead of their measure.

Remark 4.3. The asymptotic behavior of J;’G is invariant under quasi-isometry
between compactly generated groups [T]. In particular, it is also invariant under
passing to a cocompact lattice [CS].
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Remark 4.4. Using basic L#-calculus, one can easily prove [Cou] that if p < ¢,
then
G P = T = J2 s

Now let us compare J;’,G and Mp, . , introduced in § 3.

Proposition 4.5. Forevery 2 < p < o0, we have
b
M)O)LG,p s ‘]G,p'

Proof. Fix some ¢ > 0 and choose some ¢ € L?(X) whose support lies in B(1,¢)

such that

lell, i
- = Jg 1)/ 2.
IVell, i

Take g € G satisfying |g|g = 3¢. Note that B(1,£) N A(g)B(1,¢) = ¢. So ¢ and
A(g)e have disjoint supports. In particular,

le —A@)elly = ll¢lp

and _ N
V(g — A0, = 22 Vel .
This clearly implies the proposition. ]

Combining with Proposition 3.5, we obtain

Corollary 4.6. ler f: R, — R, anondecreasing map be satisfying

</ ft) \dr
/; (]gap(r)) T<OO (ij)

for some 1 < p < 0. Then there exists a 1-cocycle b in ZY(G, Ag,p) such that

Pzt
Question 4.7. For which groups G do we have Mp;; , =~ J g P‘?

We show that the question has positive answer for groups of class (£). On the
contrary, note that the group G is nonamenable if and only if J(‘g: 5 is bounded. But
we have seen in the previous section that for a free group of rank = 2, Mp, , (t) =
/P More generally, the answer to Question 4.7 is no for every nonamenable group
admitting a proper 1-cocycle with values in the regular representation. This question
is therefore only interesting for amenable groups.
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4.2. Sequences of controlled Felner pairs. In this section, we give a method,
adapted'® from [CGP] to estimate J ﬁ i

Definition 4.8. Let (& be a compactly generated, locally compact group equipped
with a left invariant Haar measure . Let @ = () be a nondecreasing sequence of
integers. A sequence of w-controlled Fpiner pairs of G is a family (Hp, H,) where
H,, and H, are nonempty compact subsets of G satisfying for some constant C > 0
the following conditions:

(1) S* H, c H]
Q) u(H,) = Cu(Hy);
(3) H' € B(1,Cn)

If «, =2 n, we call (H,, H]) a controlled sequence of Fglner pairs.

Proposition 4.9. Assume that G admits a sequence of a-controlled Folner pairs.
Then
Jg, p 2L,

Proof. For every n € N, consider the function ¢, : G — R defined by
¢a(g) = min{k € N : g € S*(H,)°
where A° = G ~ A. Clearly, ¢, is supported in H),. It is easy to check that

IVeullp < (W(HL)Y?
and that
l@nllp = ca(u(Hn))' 2.
Hence by (2),
lenllp > €120, Venlp,

so we are done. L]

Remark 4.10. Note that if H and H' are subsets of G such that SFH ¢ H' and
w(H") = Cu(H), then there exists by pigeonhole principle an integer 0 < j < k—1
such that

. ; ; C ;
w(@S HY = u(S/ " H ~ S'H) < ?u,(Sf ).

So in particular if (H,, H,) is a a-controlled sequence of Fglner pairs, then there
exists a Fglner sequence (K,) such that H, C K, C H, and

aK
(K ) < C/ay.
p(Ky)
Moreover, if &, =~ n, then one obtains a controlled Fglner sequence in the sense of
[CTV], Definition 4.8.

19Tn [CGP], the authors are interested in estimating the L2 dsoperimetric profile of a group.
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5. Isoperimetry in balls for groups of class (£)

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let G be a group belonging to the class (£). Then, G admits a
controlled sequence of Fplner pairs. In particular, Jg,p(r) =28

Note that Theorem 1 follows from Theorem 5.1 and Corollary 4.6.

5.1. Wreathproducts F ? Z. Let F be a finite group. Consider the wreath product
G =F 7 =Zwx F? the group law being defined as (n, f)(m, g) = (n + m,
Tm | +g) where 7, f(x) = f(m—+x). Asaset, G is aCartesian product Z x U where
U is the direct sum F@) = @nez F, of copies F,, of FF. Theset S = Sg U Sg,
where Sgp = Fpand Sz = {—1,0, 1} is clearly a symmetric generating set for .
Define

Hy = I xUy
and

H, = I, x Uy
where U,, — Fl=2n2n0] gnq 1, — [—n, n].

Letus prove that (1, ), is asequence of controlled Fglner pairs. We therefore

have to show that

(1) S*H, © H!
(2) |Hp| < 2|Hyl;
(3) there exists C > 0 such that H) C B(1,Cn)

Property (2) is trivial. To prove (1) and (3), recall that the length of an element of
g = (k,u)of G equals L(y) + ) ;.7 |u(h)|r where L(y) is the length of a shortest
path ¥ from O to k in Z passing through every element of the support of ¥ (see [Par],
Theorem 1.2). In particular,

|(u,k)|s < 2L(y).

Thus, if g € H,, then L(y) < 30n. So (3) follows. On the other hand, if g =
(k,u) € S", then
klz = L(y) = n
and
Supp(u) C 7.
So H,g C H). ]

Remark 5.2. Note that the proof still works replacing Z by any group with linear
growth. On the other hand, replacing it by a group of polynomial growth of degree
d yields a sequence of #1/9 -controlled Fglner pairs. For instance, as a corollary, we
obtain that B(F : Z%) = 1/d.
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5.2. Semidirect products (R & @,.p Qp) Xm Z.. Note that discrete groups of
type (2) of the class (£) are cocompact lattices of a group of the form

G=17xu (R@@@p)

peP

with m, 1 coprime integers and P afinite set of primes (possibly infinite) dividing mn.
To simplify notation, we will only consider the case when P = {p} is reduced to one
single prime, the generalization presenting no difficulty. The case where p = oo will
result from the case of connected Lie groups (see next section) since 7 Mz R embeds
as a closed cocompact subgroup of the group of positive affine transformations R x IR,

So consider the group G = Z 1/, (2. Define a compact symmetric generating
setby S = Sg, U Sz where Sg, = Z, and Sz = {—1,0,1}. Define (Hy, H)) by

Hyp = dp % p‘szp

and
H| = Ly x p_szp,

where I, = [—k,k]. Using the same kind of arguments as previously for ¥ ? Z, one
can prove easily that (Hj, H]’C) is a controlled sequence of Fglner pairs. ]

5.3. Amenable connected Lie groups. Let G be a solvable simply connected Lie
group. Let S be a compact symmetric generating subset. In [Gu] (see also [O]), it is
proved that G admits a maximal normal connected subgroup such that the quotient of
G by this subgroup has polynomial growth. This subgroup is called the exponential
radical and is denoted Exp(G). We have Exp(G) C N, where N is the maximal
nilpotent normal subgroup of G. Let 7" be a compact symmetric generating subset of
Exp((G). An element g € G is called strictly exponentially distorted if the S-length
of g" grows as log |#|. The subset of strictly exponentially distorted elements of G
coincides with Exp(G). That is,

Exp(G) = {g € G : |g"|s ~ log|n|} U{l}.

Moreover, Exp(G) is strictly exponentially distorted in G in the sense that there exists
B = 1 such that for every & € Exp(G) \ {1},

B log(lh|r + 1) — B < |h|s < Blog(lhlr + 1) + B (5.13

where T is a compact symmetric generating subset of Exp(G).
We will need the following two lemmas.

Lemma 5.3. Let G be alocally compact group. Let H be a closed normal subgroup.
Let A and v be respectively left Haar measures of H and G/H. Leti be ameasurable
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left-section of the projection m: G — G/H, ie. G = Uyegmi(x)H. Identify G
with the cartesian product G/H x H via the map (x, h) — i (x)h. Then the product
measure v @ A is a left Haar measure on G.

Proof. We have to prove that v ® A is left-invariant on G. Fix g in G. Define a
measurable map o, from G/H to H by

og(x) = (i(w(g)x)" gi(x).

In other words, o,(x) is the unique element of I such that

gi(x) = i(w(g)x)og(x).

Let ¢: G — IR be a continuous, compactly supported function. We have

f wlgi(x)hldv(x)dA(h) = f pli(r(g)x)og(x)h]dv(x)dA(h).
G/HxH G/HxH

As v and A are respectively left Haar measures on G/H and H, the Jacobian of the
transformation (x, k) — (w(g)x,0.(x)h) is equal to 1. Hence,

/ @li(m(g)x)og(x)h]dv(x)dA(h) = f @li(x)h]dv(x)dA(h).
G/HxH G

JHxH

Thus v & A is left-invariant. ]

Lemma 5.4. Let G be a connected Lie group and H be a normal subgroup. Consider
the projection w: G — G/H. There exists a compact generating set S of G and a
o-compact cross-section o of G/H inside G such that o(m(S)*) C S*+1,

Froof. Since m is a submersion, there exists a compact neighborhood S of 1 in G
such that 7(.S) admits a continuous cross-section ¢ in S. Now, let X be a minimal
(discrete) subset of G/H satisfying G/H = |,y x7(S). Since this covering is
locally finite and 7z(S') is compact, one can construct by induction a partition ( Ay )xex
of G/H such that every A, is a constructible, and therefore o-compact subset of
x7(S). Let o2: X — G be a cross-section of X satisfying o2(X N a(S)*) C S”.
Now, for every z € Ay, define

o(z) = ox(x)oy (x12).
Clearly, o satisfies to the hypotheses of the lemma. H

Equip the group P = G/Exp(G) with a Haar measure v and with the symmetric
generating subset 7(.S), where 7 is the projection on P. Assume that S satisfies to
the hypotheses of Lemma 5.4 and let ¢ be a o-compact cross-section of P inside G
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such that o(7(S)*) C S*"L. For every n € N, write F;, = o(7n(S)"). Let a be
some large enough positive number that we will determine later. Denote by | x| the
integer part of areal number x. Define, for every n € N,

Hy = S lxplon)]

and
H;; o 8 2n T lexp(ar) | '

Note that H, = S"H,. On the other hand, since Exp(G) is strictly exponentially
distorted, there exists ¢ > 1 only depending on « and £ such that, for every n € N,

i |exp(ee ) | c gan

Hence, to prove that (H,,, H}) is a sequence of controlled Fglner pairs, it suffices to
show that u(H,) < Cu(Hy,). Consider another sequence (A4,, 4}) defined by, for
every n € N*

A, = F,_Tlexplen)]

and
A;z — F2HT2L6XP(MI)J _

As F, is o-compact, A, and A} are measurable. To compute the measures of 4,

and A4}, we choose a normalization of the Haar measure A on Exp(G) such that

the measure i disintegrates over A and the pull-back measure of v on g(P) as in
Lemma 5.3. We therefore obtain

1(Ay) = v((S)* HA(T lplenly

and
(A,) = v(a(S)*A(T2lewlenly,

Since P and Exp(G) have both polynomial growth, there is a constant C such that,
for every n € N*,

u(Ay) < Cu(Ap).

So now, it suffices to prove that
Ay o Hy & 8 € A,

where the only nontrivial inclusion is H) C A},. Let g € S?";let f € Fa, be such
that 7(g) = m( f). Since Fa, C S?*12 C §37,

gf ! € 85" N Exp(G).
On the other hand, by (5.1),
S6" N Exp(G) C T2lexp6br)]
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Therefore, for every n € N ¥,

H! C Fy,T?ew@niplosen) _ g p2len©fn|+lown)

Hence, choosing o > 68 + log2, we have
T, & By reiemleml = gl

and we are done. U]

6. On embedding of finite trees into uniformly convex Banach spaces

Definition 6.1. A Banach space X is called g-uniformly convex (g > 0) if there

is a constant @ > 0 such that for any two points x, y in the unit sphere satisfying

|x — y|| = &, we have

X4y
2

‘ <1 —a&?,

Note that by a theorem of Pisier [Pis]|, every uniformly convex Banach space is
isomorphic to some g-uniformly convex Banach space.

In this section, we prove that the compression of a Lipschitz embedding of a finite
binary rooted tree into a g-uniformly convex space X always satisfies condition (Cy).
Theorem 4 follows from the fact that an I.?-space is max{p, 2}-uniformly convex.

Theorem 6.2. Let Ty be the binary rooted tree of depth J and let 1 < g < o0. Let
F be a 1-Lipschitz map from Ty to some g-uniformly convex Banach space X and
let p be the compression of F. Then there exists C = C(g) < oo such that

2F
PO\ dr
fl (T) T =C (Gl

Corollary 6.3. Let F be any uniform embedding of the 3-regular tree 1" into some

g-uniformly convex Banach space. Then the compression p of F satisfies Condi-
tion (Cy). ]

As a corollary, we also reobtain the theorem of Bourgain.

Corollary 6.4 ([Bou], Theorem 1). With the notation of Theorem 6.2, there exists at
least two vertices x and y in T such that

| £(x) — F(y)l <( C )”g
d{x,y) ~\logJ '
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Proof. Forevery 1 <t < 2J thereexist z,z’ € T7,d(z,z") = t such that:

pe) _ |F@) —FE) | IF@) - FE)

f [ - d(z,z")
Therefore
. | F(z) = F() . plu)
min < min —.
z#2'eTy d(z,z") 1<u<2t U
But by (6.1)
1 727 27 roeN?dr
( min M) [ —drg/ (&) — =,
leu<2J U 1 t 1 t t
We then have
. | Fz) = F(EZ)| ( C )1/,;
min [ —— )
z#z'eTy d(z,z") ~\logJ 0

Proof of Theorem 6.2. Since the proof follows closely the proof of Theorem 1
in [Bou], we keep the same notation to allow the reader to compare them. For
F = Lidy. o ydenmoteddy = {1, l}j and 7; = Uj’gj 2;+. Thus T; is the finite tree
with depth j. Denote d the tree-distance on 1}.

Lemma 6.5 ([Pis], Proposition 2.4). There exists C = C(q) < o0 such that if
(&)sew is an X -valued martingale on some probability space 0, then

E 1€s11 _éng < Csup ||éng (6.2)
5
s

where || | 4 stands for the norm in Lgf(Q).

[Lemma 6.5 is used to prove

Lemma 6.6. [fx1,..., x5, with J =2, is a finite system of vectors in X, then
F
D27 min 2% — x5 2 — X219 <C sup w0 —x )7 (6.3)
= Bj=d -2 l<j=t—1

Denote Oy C Oy C -+« C D, the algebras of intervals on [0, 1] obtained by
successive dyadic refinements. Define the X -valued function

E= ) g i (41 — ;)

l<j<t—1
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and consider expectations & = E[&| 3] fors = 1,...,r. Since & form a martingale
ranging in X, it satisfies inequality (6.2). On the other hand

F
|Esr1 —&lIZ = 277129 3" 279||2xp05 — X_1)2s — X5 ||

127 —F
g 23{1}21}_25 12%; — X 25 — x; 254

So (6.3) follows from the fact that

1€ 113 < Es1 — sl = sup x5 41 — x5 (1%, u
J

Lemma 6.7. If f1,..., f7, with J = 27, is a finite system of functions in L (£2).
Then

r

D2 min _|12ff — fimas =S4T C sup | i1 — File 64

s=1 Pepud-2 1<j<d—1
Proof. Replace X by L;‘}(Q), for which (6.2) remains valid, and use (6.3). ]
Lemma 6.8. Let f1,..., fr, with J = 27, be a sequence of functions on {1, —1}J
where f; only depends on ey, ..., &;. Then

P

2% min (fg . ||jf,—+2s(e,5)ﬁ+2s(8,5’)|qd8d8d5’)
jX 28 Xddos

5« jaJ-2%
;=1

<29C sup | fi+1— Sl
l<j=Ji-1

Proof. Foreveryd < j = J —d, using the triangle inequality, we obtain

125 — fi—a — fi+allg = j 12f; — fi—a — fi+all?deds

£; xQqg

. z—qf | fr42s (&, 8) — fiyas(e,67)|9ded 5d6'.
§2; X82g xRy

The lemma then follows from (6.4). L]

Now, let us prove Theorem 6.2. Fix J and consider a 1-Lipschitz map #: T; —
X. Apply Lemma 6.8 to the functions fi,..., f7 defined by

Ya € Q;,  fila) = F(a).
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By definition of the compression, we have

p(d ((e,8),(e,87)) = | fi4+2(6,8) — fj42s(e, 8] (6.5)

where ¢ € Q; and 6,8’ € (2ps.
But, on the other hand, with probability 1/2, we have

d ((£,8), (5,8")) = 2.2°.

So combining this with Lemma 6.8, (6.5) and with the fact that F is 1-Lipschitz, we
obtain

F
3 22ty < 28H ¢
5s=1

But since p is decreasing, we have
¥ L(p@))*
27 p(25)4 =279 ! f —(—) dr.
2s—l+1 I I

So (6.1) follows. ]

7. Applications and further results

7.1. Hilbert compression, volume growth and random walks. Let G be alocally
compact group generated by a symmetric compact subset S containing 1. Let us
denote V(n) = u(S™) and S(n) = V(n + 1) — V(n) = pu(S*T! ~ S*). Extend V
as a piecewise linear function on R such that V'(t) = S(»n) for ¢ €]n,n + 1].

Proposition 7.1. Let G be a compactly generated locally compact group. For any
2= p <o,

T6.p(1) = log V(r)

Proof. For every n € N, define
k(n) =supik, V(n —k) = Vin)/2}
and

jn) = swp k()

l<j=n

For every positive integer I < n/j(n),

V(n) = 2'Vin —Lj(n)).
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Hence, as V(0) = 1,
Vin) > A/ (m)+1)
Thus, there is a constant ¢ > 0 such that

j(n)

cn
& ——.
~ log Vi(n)

Let g, < n be such that j(n) = k(gn). Now define

gn—1
on = > laap-
k=1

Note that the subsets SB(1,k) A B(1,k) = B(1,k + 1)~ B(1,k), fork ¢ N, are

piecewise disjoint. Thus, an easy computation shows that

1Vl < Vign)'?.

On the other hand
CH
= i V . 1/p>—V 21/})'
l@nllp = J()V(gn — jm)) "7 = Tog V(n)( (gn)/2)
Since J (1) = ¢l /IV@n |, we conclude that JE (n) = n/log V(n). ]

Now, consider a symmetric probability measure v on a finitely generated group
G, supported by a finite generating subset S. Given an element ¢ of £2(G), a simple
calculation shows that

> ] w60 - v @ due = [ -v@ < p)pan = le13- 1 + ol

where p denotes the counting measure on &. Let us introduce a (left) gradient on G
associated to v. Let ¢ be a function on G; define

Fele) = f 9(s8) — o) Pdv @ (s).
This gradient satisfies

1IVelal? = 2(el? — lv * ¢]3).

We have » N N
w(SY V2|Vg|, < Vel < Vel

Proposition 7.2. Assume that v (1) > e=Cn’ for some b < 1. Then

15 ,(0) = ¢t
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Proof. Let us prove that there exists a constant C’ < oo such that for every n € N,
there exists n < k < 2#n such that

| 1VvER, )12

fnb—l.
Iv@R 3 —

Since v is supported in SZ¥ C S*7 this will prove the proposition. Let C,, be
such that for every n < ¢ < 2n,

| |Vv@D|, |2 n
| v 2 ="

Since the function defined by ¥ (g) =|| 122 |13 satisfies
1 e
Vg + 1) -y@) =—5 1 IVWEPR |,
we can extend 1 as a piecewise linear function on R 1 such that
1 o
Y0 =5 || V@2, |3

for every t € [¢,q + 1[. Then, for every n < ¢t < 2n we have

RACH
v -

—log (1'2((2”}1))) > Cnnb.

G i

which integrates in

Since ¥(n) < 1, this implies
Y(2n) < e=Cnn’”
But on the other hand,
Y @n) > o8 2> vE (1) > 50
Sal,. < B O

7.2. A direct construction to embed trees. Here, we propose to show that the
method used in [Bou], [GK], [BrSo]to embed trees in L #-spaces can also be exploited
to obtain optimal estimates (i.e. a converse to Theorem 6.2). Moreover, no hypothesis
of local finitude is required for this construction.
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Theorem 7.3. Let T be a simplicial tree. For every increasing function f: R —
R satisfying, for1 < p < o0
* NP dr
[TLoys g
i t t

there exists a uniform embedding F of T into £#(T') with compression p = f.
Froof. Let us start with a lemma.

Lemma 7.4. For every nonnegative sequence (&) such that

> et —Eal? < o0,
1]

there exists a Lipschitzmap F: T — £2(T) whose compression p satisfies
- 1/p
vneN, pn)> (Zéf) -
j=0

Proof. 'The following construction is a generalization of those carried outin [GK] and
[BrSo]. Fix a vertex o. For every y € T, denote dy, the element of £7(T) that takes
value 1 on y and O elsewhere. Let x be a vertex of T and let xo = x,%1,...,X; = 0
be the minimal path joining x to 0. Define

/
F(x)=) &by
i=1

To prove that ¥ is Lipschitz, it suffices to prove that || F(x) — F(y)|p is bounded
for neighbor vertices in 7. So let x and y be neighbor vertices in 7" such that

d(o,y) =d(x,0) +1 =1+ 1. We have

!
IF(y) — FIZ <& + D l&nt1 — Eal®.

J=0

On the other hand, let x and y be two vertices in 7. Let z be the last common vertex
of the two geodesic paths joining 0 to x and y. We have

d(x,y)=4d(x,z) +d(z,y)
and

IF(x) = F()ly = 1Fx) = F@Ip + [ Fz) - F»ly
= max{| F(x) — F@)I} . |1F(z) —FIj}
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Let £k = d(z, x); we have

k
|F(x) - F@)|2 = 3 &
i=0

which proves the lemma. ]

Now, let us prove the theorem. Define (§;) by
fo=561=0
: LA
Yizl, &u—&= 7
and consider the associated Lipschitz map F from T to £#(T'). Clearly, we have

Y e —El? < 00

and

R [72/2]—1 .

Y Z (Z@kﬂ &l) = n/2( Y I8 — &) = ef (/D)
j=0 j=[r/2] k=0 k=0

using the fact that f is nondecreasing. So the theorem now follows from the lemma.

]

7.3. Cocycles with lacunar compression

Proposition 7.5. For any increasing sublinear function h: Ry — R and every
2 < p < oo, there exists a function f satisfying (Cp), a constant ¢ > 0 and an
increasing sequence of integers (n;) such that

Vi e N, f(n;)=ch(n;).
Proof. Choose a sequence (#;) such that

= (H) o

iclN

Define
VieN, n; <t <nipr, f)=hn)

We have
f (5 = Toeor [ S <0 02 (R) <o

So we are done. U]
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7.4. The case of Z 3 Z. The proof of Theorem 17 follows from Proposition 3.5 and
from the following observation.

Proposition 7.6. For all 1 < p < oo, the maximal £¥-compression function of the
group G = 1.7 7 satisfies

MPG,p(f) i Ip/(2pfl).

Proof. Denote by 8 the projection 7, : 7. — C, 2 7.. Fix two word lengths on 7, 2 7,
and C; ? 7., which for simplicity, we will both denote by |g|.

Consider the unique cocycle b: 727, — £P(7.) which extends the natural injective
morphism Z® — £2(7). Forany g = (k,u) € Z:Z = Z x Z'D) | we therefore

have |[b(g)|| = |#||,. Taking the £#-direct sum of this cocycle with every cocycle
of Z ¢ Z factorizing through 8, and since Mpc,;7,p(t) = t, we obtain
Mpzz,p(6) = inf — max{[p(g)l. 16(&)}- (7.1)
gL, |g|>t

Up to multiplicative constants, (see [Par], Theorem 1.2), the word length of an
element g = (k,u) € Z ¢ 7 is given by

L{y) + > lu(h)| = L{y) + [|u]1.

heF

where L(y)is the length of a shortest path y from Qto k passing through every element
of the support of u. Similarly, | p(g)| =~ L(y) + |Supp(#)|. Hence by (7.1), we can
assume that L(y) < |g|/2, so that ||#||; = |g|/2. By Holder’s inequality, we have
ul| < Hu||p|Supp(u)\1*1/p, which is less than a constant times || 2(2)||| p(g)|* 1/ 2.
Therefore

M () >~ _inf , =ip,
Pz27.p(f) _geZZ%], |g|ztmaX{|p(g)\ g1/ p(g) }

which immediately implies the proposition. [

7.5. H-metric. Let & be alocally compact, compactly generated group and let S be
a compact symmetric generating set. A Hilbert length function is a length function
associated to some Hilbert 1-cocycle b, 1.e. L(g) = ||#(g)|. Consider the supremum
of all Hilbert length functions on &, bounded by 1 on S: it defines a length function
on G which in general is no longer a Hilbert length function. This length function
has been introduced by Cornulier [C], § 2.6, who called the corresponding metric
“H-metric”. Observe that if the group G satisfies Mpg,2(t) = 1, then the H-metric
of (¢ is quasi-isometric to the word length. As a consequence of Theorem 5.1 and
Proposition 4.5, we get

Proposition 7.7. For every group in the class (X£), the H-metric is quasi-isometric
to the word length.



Vol. 86 (2011) Asymptotic isoperimetry and uniform embeddings DA%

References

[AGS]

[ANP]

[Ba]

[BHV]

[BeSc]

[BoS]

[Bou]

[BrSo]

[BuScl]

[BuSc2]

[CCIIV]

[C]

[CT]

[CTV]

[Cou]

[CGP]

G. N. Arzhantseva, V. §. Guba, and M. V. Sapir, Metrics on diagram groups and
uniform embeddings in Hilbert space. Comment. Math. Helv. 81 (2006), 911-929.
Zbl 1166.20031 MR 2271228

T. Austin, A. Naor, and Y. Peres, The wreath product of 7 with Z has Hilbert com-
pression exponent 2/3. Proc. Amer. Marh. Soc. 137 (2009), 85-90. Zbl 05503005
MR 2430428

L. Bartholdi, The growth of Grigorchuk’s torsion group. Internat. Math. Res. Notices
1998 (1998), no. 20, 1049--1054. Zbl 0942.20027 MR 1656258

M. B. Bekka, P. de la Harpe, and Alain Valette, Kazhdan’s property (T). New
Math. Monogr. 11, Cambridge University Press, Cambridge 2008. Zbl 1146.22009
MR 2415834

[. Benjamini and O. Schramm, Every graph with a positive Cheeger constant con-
tains a tree with a positive Cheeger constant. Geom. Funct. Ann. 7 (1997), 403-419.
Zbl 0882.05052 MR 1466332

M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces. Geom. Funct.
Anal. 10 (2000), 266-306. Zbl 0972.53021 MR 1771428

I. Bourgain, The metrical interpretation of superreflexivity in Banach spaces. Israel
J. Math. 36 (2)(1986), 222-230. Zbl 0643.46013 MR 0880292

N. Brodskiy and D. Sonkin, Compression of uniform embeddings into Hilbert space.
Topology Appl. 155 (2008), 725-732. Zbl 05266322 MR 2395586

S. Buyalo and V. Schroeder, Embedding of hyperbolic spaces in the product of trees.
Geom. Dedicata 113 (2005), 75-93. Zbl 1090.54029 MR 2171299

S. Buyalo and V. Schroeder, A product of trees as universal space for hyperbolic
groups. Preprint 2005. arXiv:math/0509355 [math.GR]

P. A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups with the
Haagerup property. Progr. Math. 197, Birkh#user Verlag, Basel 2001. Zbl 1030.43002
MR 1852148

Y. de Cornulier, Relative Kazhdan property. Ann. Sci. Ecole Norm. Sup. 39 (2000),
301-333.7Zb1 1107.22001 MR 2245534

Y. de Cornulier and R. Tessera, Quasi-isometrically embedded free sub-semigroups.
Geom. Topol. 12 (2008), 461-473. Zbl 1184.20041 MR 2390351

Y. de Cornulier, R. Tessera, and A. Valette, [sometric group actions on Hilbert
spaces: growth of cocycles. Geom. Funct. Anal. 17 (2007), 770-792. Zbl 1129.22004
MR 2346274

T. Coulhon, Heat kernel and isoperimetry on non-compact Riemannian manifolds.
In Heat kernels and analysis on manifolds, graphs and metric spaces (P. Auscher,

T. Coulhon, A. Grigor’yan, ed.), Contemp. Math. Amer. Math. Soc., Providence, RI,
2003, 65-99, 7bl 1045 58016 MR 2039952

T. Coulhon, A. Grigorian, and C. Pittet, A geometric appreach to on-diagonal heat
kernels lower bounds on groups. Ann. Inst. Fourier 51 (2001), 1763-1827.
7Zbl 1137.58307 MR 1871289



534

[CS]

[Dix]

[Er]

[G]

[GK]

[Gu]

[HV]

[LMEK]

[NP]

[O]

[Par]

[Pau]

[Pis]

[Pit]

[PS]

[S]

[T]

[W]

R. Tessera CMH

T. Coulhon et L. Saloff-Coste, Variétés riemanniennes isométriques a 'infini. Rev.
Mat. Iberoamericana 11 (1995), 687-726. Zbl 0845.58054 MR 1363211

J. Dixmier, Les C* algébres et leurs représentations. Gauthier-Villars, Paris, 1969.
Zbl 1129.22004 MR 2346274

A. Brschler, Isoperimetry for wreath products of Markov chains and multiplicity
of selfintersections of random walks. Probab. Theory Related Fields 136 (2000),
560-586. Zbl 1105.60009 MR 2257136

M. Gromov, Hyperbolic groups. In Essays in group theory (S. M. Gersten, ed.), Math.
Sci. Res. Inst. Publ. 8 75-263, Springer Verlag, New York 1987. Zbl 0634.20015
MR 0919829

E.Guenter and J. Kaminker, Exactness and uniform embeddability of discrete groups.
J. London Math. Soc. T0 (2004), 703-718. Zbl 1082.46049 MR 2160829

Y. Guivarc’h, Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire.

In Journées sur les marches aléatoires. Astérisque 74, Soc. Math. France, Paris 1980,
47-98. 7bl 0448.60007 MR 0588157

P delaHarpe and A. Valette, La propriété (1) de Kazhdan pourles groupes localement
compacts, Astérisque 175, Soc. Math. France, 1989. Zbl 0759.22001 MR 1023471

A. Lubotzky, S. Mozes, and M. Raghunathan, The word and Riemannian metric on
lattices of semisimple groups. Pub. Math. Inst. Hautes Ftudes Sei. 91 (2000), 5-53.
Zbl 0088.22007 MR 1828742

A. Naor and Y. Peres, Embeddings of discrete groups and the speed of random walks.
Internat. Math. Res. Notices 2008 (2008), Art. ID rnn 076, 34 pp. Zbl 1163.46007
MR 2439557

D.V. Osin, Exponential radical of solvable Lie groups. J. Algebra 248 (2002), 790-805.
Zbl 1001.22006 MR 1882124

W. Parry, Growth series of some wreath products. Trans. Amer. Math. Soc. 331 (1992),
751-759. Zbl1 0793.20034 MR 1062874

S. D. Pauls, The large scale geometry in nilpotent Lie groups. Comm. Anal. Geomi. 9
(2001), 951-982. Zbl 100553033 MR 1883722

G. Pisier, Martingales with values in uniformly convex spaces. Israel J. Math. 20
(1975), 326-350. Zbl 034446030 MR 0394135

C. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds. J. Differ-
ential Geom. 54 (2000), 255-302. Zbl 1035.53069 MR 1818180

C. Pittet and L. Saloff-Coste, On random walks on wreath products. Ann. Probab. 30
(2002), 948-977.Zbl 1021.60004 MR 1905862

L. Saloff-Coste, Analysis on Riemannian cocompact covers. Surv. Differ. Geom. IX,
International Press, 2004, Zbl 1082.31006 MR 2105413

R. Tessera, Large-scale Sobolev inequalities on metric measure spaces and applica-
tions. Rev. Mat. Iberoam. 24 (2008), §25-864. Zbl 05509264 MR 2490163

P. Wojtaszczyk, Banach spaces for analysts. Cambridge Stud. Adv. Math. 25, Cam-
bridge University Press, Cambridge 1991. Zbl 072446012 MR 1144277



Vol. 86 (2011) Asymptotic isoperimetry and uniform embeddings )

[Yu] G. Yu, Hyperbolic groups admit proper affine isometric actions on £% -spaces. Geomn.
Funct. Anal. 153 (5), 1144-1151, 2005. Zbl 1112.46054 MR 2221161

Received December 18§, 2008

Romain Tessera, Equipe Analyse, Géométrie et Modélisation, Université de Cergy-Pontoise,
Site de Saint-Martin, 2, rue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France

E-mail: tessera@phare normalesup.org



	Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces

