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Elements and cyclic subgroups of finite order of the Cremona
group

Jérémy Blanc

Abstract. We give the classification of elements — respectively cyclic subgroups — of finite order
of the Cremona group, up to conjugation. Natural parametrisations of conjugacy classes, related
to fixed curves of positive genus, are provided.
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1. Introduction

The group Bir(P2), called Cremona group, is the group of birational transformations
of the complex plane P? = P2(C). An element (or a subgroup) of Bir(IP?) is said to
be of de Jonqguieres type if it preserves a pencil of rational curves; after conjugation
the pencil may be chosen to be the set of lines passing through a point.

The study of the elements (or cyclic subgroups) of finite order of the Cremona
group 1s a classical subject.

The first work in this direction was the classification of involutions given by Bertini
[Bel877]. Bertini’s proof is incomplete; a short and complete proof was published
only recently [BaB0OO].

The classification of finite cyclic subgroups of prime order of Bir(P2?) was com-
pletely achieved a few years ago (see [BaBO00], [dFe04] and [BeB0O4], and also
[ZhaO11]).

The classification of all finite cyclic subgroups which are not of de Jonquicres type
was almost achieved in [DI09]. A list of representative elements is available: Table 9
in [DIO9] (see also [BlaO7a], Table 1); explicit forms are given and the dimension of
the varieties which parametrise the conjugacy classes are also provided; there are 29
families of groups of order at most 30. To complete the classification of these groups
there remains, as [DI09] says, to “Give a finer geometric description of the algebraic
variety parametrizing conjugacy classes”.
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In the case of linearisable groups (groups conjugate to subgroups of Aut(P?) =
PGL(3, C)), there is exactly one conjugacy class for each order #, represented by the
group generated by (x 1 y 1 z) = (x 1 v : 27/ 2) (see [BeB04]).

The remaining groups — non-linearisable de Jonquieres groups — are less well
understood so far. It is not too difficult to see that these groups have even order, and
that their 2-torsion is generated by an element which preserves any element of the
invariant pencil of rational curves. There are some other geometric descriptions in
Section 5 of [DIN9], but nothing more on the conjugacy classes of cyclic groups of
de Jonquieres type (although there are more results on non-cyclic finite groups of de
Jonquicres type). In [BlaO7b], we proved the existence of infinitely many conjugacy
classes of such cyclic groups of order 2n, for any », but the parametrisation of this
huge family of groups was not discussed.

Concerning elements (instead of cyclic subgroups) of finite order of Bir(IP?),
there 1s no further result except that two linearisable elements of the same order are
conjugate ([BeB04]). For example, in the ¢lassification of cyclic groups of order 3 or 5
given by [Zha01] and [dFe04], there is no result concerning the possible conjugation
between an element and its inverse.

In the present article, we complete the classification of elements and cyclic sub-
groups of finite order of Bir(P2). The main contribution concerns de Jonquieres
elements and is described in Section 3. We apply cohomology group theory and
other simple algebraic tools to the group PGL(2, C(x)) x PGL(2, C), which is iso-
morphic to the subgroup of Bir(P2) which preserves some fixed pencil of lines. The
classification obtained is summarised in Theorem 2. We also describe the action on
conic bundles induced by these elements (§3.4). Section 4 concerns cyclic groups
which are not of de Jonquieres type; we use the classification of [DI09] and refine it by
providing the parametrisations of the 29 families of cyclic groups (Theorem 3), using
some classical tools on surfaces and curves. Then, we give the conjugacy classes of
elements by studying the possible conjugations between the different generators of a
cyclic group (Theorem 4, proved in Section 5).

In such a classification, there are two steps. The first is to find representative
families and to prove that each group is conjugate to one of these. The second step is
to parametrise the conjugacy classes in each family, by algebraic varieties. For cyclic
groups of prime order, the varieties are the moduli spaces of the non-rational curves
fixed by the groups (a curve is fixed by a birational map if this map restricts to the
identity on the curve). Here, we naturally generalise this invariant, by looking for the
non-rational curves fixed by the non-trivial elements of the group. The main invariant,
called NFCA, is described in Section 2, before the statements of the principal results.
The importance of this invariant appears in Theorem 1, proved in Section 6.

I thank I. Dolgachev for his useful remarks on this article.
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2. Results

2.1. The conjugacy invariant which determines the conjugacy classes. The genus
is for us the geometric genus and we say that a birational map fixes a curve if it restricts
to the identity on the curve.

Definition 2.1 (Normalised fixed curve: NFC - already defined in [dFe04]). Let
g € Bir(P?) be a non-trivial element of finite order. If no curve of positive genus is
fixed (pointwise) by g, we say that NFC(g) = #; otherwise g fixes exactly one curve
of positive genus ([BaB00], [dFe04]), and NFC(g) is then the isomorphism class of
the normalisation of this curve.

It was proved in [BaB00], Proposition 2.7, that two involutions g1, g> € Bir(IP?)
are conjugate if and only if NFC(g;) = NFC(g»). If g1, g» € Bir(IP?) have the same
prime order, then the groups generated by g1, g2 (but not necessarily g, and g», as
we will see later in Theorem 4) are conjugate if and only if NFC(g;) = NFC(g,)
(see [dFe04], [BeB04]). For cyclic groups of composite order, the NFC invariant is
no longer sufficient, as observed in [BeB04]; we must therefore introduce a new one.

Definition 2.2 (Normalised fixed curve with action: NFCA). Let g € Bir(P?) bea
non-trivial element of finite order n. Then, NFCA(g) is the sequence of isomorphism

classes of pairs
n—1

k
((NFC(g )7 g'NFC(gk)))k=1’
where Blrsan is the automorphism induced by g on the curve NFC(g*) (if NFC(g*)
is equal to ¥, then g acts trivially on it).

The following result — proved in Section 6 — gives a precise and simple way (0
decide whether two cyclic subgroups (respectively elements) of finite order of Bir (IP2)
are conjugate.

Theorem 1 (Relation between the conjugacy classes of cyclic groups and the NFCA
invariant).

1. Let G, H C Bir(IP?) be two cyclic subgroups of the same finite order. Then, G
and H are conjugate in Bir(P?) if and only if NFCA(g) = NFCA(h) for some
generators g of G and h of H.

2. Let g, I € Bir(P?) be two de Jonquiéres elements of the same finite order. Then,
g and h are conjugate in Bir(P?) if and only if NFCA(g) = NFCA(h).

3. Assertion 2 is false if neither g nor h is of de Jonquiéres type.
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2.2. The classifications. We can now state the explicit classification of elements
and cyclic groups of finite order of Bir(IP?). The following theorem summarises the
results of Section 3.

Theorem 2 (Classification of de Jonquicres elements of finite order).

1. Forany positive integer m, there exists an unique conjugacy class of linearisable
elements of order m, represented by the automorphism

(x:y:2) > (x:y:ed™mg),

2. Any non-linearisable de Jonquiéres element of finite order of Bir(P?) has order
2n, for some positive infeger n, and is conjugate fo an element g, such that g
and g" are of the following form:

a(x)y + (—l)sp(xn)b(X))

e s eZiJr/nx
g: (x.y) ( T By + (—1)Pa(x)

p(;cn))’

ghi(x,y) - (x,

where a,b € C(x), 6 € £{0, 1}, and p is a polynomial with simple roots. The
curve T of equation y*> = p(x™) — (pointwise) fixed by g" — is hyperelliptic, of
positive genus, and the action of g on this curve has order n and is not a root of
the involution associated to any g%.

Furthermore, the above association yields a parametrisation of the conjugacy
classes of non-linearisable de Jonquiéres elements of order 2n of Bir(P?) by
isomorphism classes of pairs (I', h), where T is a smooth hyperelliptic curve of
positive genus, and h € Aut(I') is an automorphism of order n, which preserves
the fibers of the g% and is not a root of the involution associated to the g%.

Remark 2.3. In the above theorem, a hyperelliptic curve is a curve which admits a
(2:1)-map g7: ' — P, If the curve has genus > 2, the g7 is unique, but otherwise
it is not.

Remark 2.4. The analogous result for finite de Jonquigres cyclic groups is obvious,
and follows directly from Theorem 2.

In the case of elements which are not of de Jonquieres type, the distinction between
cyclic groups and elements is more important since in general two generators of the
same group are not conjugate, even if the actions on the curves are the same. Before
stating the results for the remaining cases (Theorems 3 and 4), we recall the possible
normalisations of the non-rational curves fixed by non-de Jonquieres elements of
finite order of Bir(P?):
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a) elliptic curves: curves of genus 1 — abbreviated as “ell” in Table 2,

b) (hyperelliptic) curves of genus 2 — abbreviated as “gen2” in Table 2,

¢) Geiser curves: non-hyperelliptic curves of genus 3 (isomorphic to plane smooth
quartic curves) — abbreviated as “Gei” in Table 2;

d) Bertini curves: non-hyperelliptic curves of genus 4 whose canonical model lies
on a singular quadric — abbreviated as “Ber” in lable 2.

Remark 2.5. Note that if " is a curve isomorphic to one of the curves in a), b), ¢)
or d), there are infinitely many distinct birational embeddings of ' into P?. The
classification below (and also in [BaB0O] and [dFe04]) implies that there is only
one embedding of I — up to birational equivalence — which is fixed (pointwise) by
a birational map of finite order. E.g., no smooth quartic curve of P2 is fixed by an
element of Bir(IP2), but any smooth quartic curve is birational to a sextic with 7 double
points, which is fixed by a Geiser involution. For more details on this, see [BPV09].

The following result will be proved in Section 4.

Theorem 3 (Classification of cyclic subgroups of finite order which are not of de
Jonquicres type).
1. Any non-trivial cyclic subgroup of finite order of the Cremona group which is

not of de Jonquiéres type is conjugate to an element of one of the 29 families of
lable 1.

2. If g is a generator of a group of Table 1 and h is a de Jonquiéres element, then
NFCA(g) # NFCA(h).

3. Any two of the 29 families of Table 1 represent distinct families of conjugacy
classes of non-de Jonquiéres cyclic groups in the Cremona group.

4. If a curve of positive genus is fixed by some non-trivial element of a group of
Table 1, then its normalisation is either elliptic, or of genus 2, or is a Bertini or
Geiser curve. Each possibility is listed in Table 2.

5. Infamilies which contain more than one element (#1 through #18, #20 and#23),
the conjugacy classes of subgroups G belonging to the family are parametrised
by isomorphy classes of pairs (I, G|r), where I is the normalisation of the
unique curve of positive genus fixed by the r-torsion of G and G|r is the action
of G on the curve; the number r and the type of the pairs are given in Table 2.
For families #1 through #5, #7, #8, #12, #13 and #17, there is only one action
associated to any curve I', so the conjugacy class is parametrised by the curves
only.

6. Let G and H be two cyclic subgroups of the same finite order of the Cremona
group, which are not of de Jonquiéres type. Then, G and H are conjugate
if and only if NFCA(g) = NFCA(h) for some generators g, h of G and H
respectively.
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d] denotes the automorphism (w : x : vy : z) > (aw : bx 1 ¢y : dz).

Table 1. The list of finite cyclic subgroups of the Cremona group which are not of de Jonquiéres type, viewed as automorphism groups of
rational surfaces embedded into weighted projective spaces. The parameters A, ;r € C and the homogeneous forms L; of degree i are such
that the surfaces are smooth, and [¢ : b : ¢ :

5 not. of not. of generator of equation of in the #
1m [BlaO7a] [DI09] the group the surface space
2 2.G A7 [Fls12121] w? = Ly(x,y,2) P(2,1,1,1) | 1
2 1.B m% [-1:1:1:1] w2 =z34+zL4(y,2) + Ls(y, 2) P(3,1,1,2) | 2
3 3.3 34, [w:1:1:1] w> + La(x,v,z2) P> 3
3 1.p 44, [1:1:1: ] w? =z3 + Lg(x,y) P(3,1,1,2) | 4
4 24 243+ A4 [1:1:1:i] w2 = L4(x,y) + z* P(2,1,1,1) | 5
4 1.B22 2D4(a1) i:1:-1:-1] w? =23 +zLa(x%, %) + xyL5(x%, %) P(3,1,1,2) | 6
5 15 24, [1:1:&5:1] w2 =23 + Ax¥z + x(ux® + y°) P(3,1,1,2) | 7
6 3.6.1 Eg(ar) [@:1:1:—1] w3 + %3 + y3 +xz% + Ayz? P3 3
6 3.6.2 As+A4, [1:-1:w:»?] wx? +w? + 33 + 23 + wyz P3 9
6 2.G3.1 E-(ay) [-1:1:1: @] w2 = La(x,y)+z3L1(x,¥) P(2,1,1,1) | 10
m 6 2.G32 Dgla)+A1 [-1:1:w: w?] w2 =x(x>+ vy +2)+yzL1(x2,vz) P(2,1,1,1) | 11
= 6 2.6 As+A> [—1:w:1:—1] w2 = x>y + y* + z4 + Ay2z? P(2,1.1,1) | 12
. 6 lop Eg(ag) [-1:1:1: @] w? =23 + Lg(x, ¥) P(3,1,1,2) | 13
6 1.02 Eglas)+A4> [1:1:-1:w] w? =23 + L3(x2, y2) P(3,1,1,2) | 14
6 1.B31 Ez(ay)+A; [-1:1:w:1] w2 =23+ xL1(x3, vz + La(x3,¥3) P(3,1,1,2) | 15
6 1.B32 2D4 [1:1:o: o] w2 =23 + AxZy2z + Lo(x3, v3) P(3,1,1,2) | 16
6 1.6 As+A>+A47 [1:1:—w:1] w2 =23 + Axtz 4 pux® + 36 P(3,1,1,2) | 17
8 1.B42 Dg(as) [Eg:1:i:—i] w? =z3 + AxZy2z + xy(x* + ) P(3,1,1,2) | 18
9 3.9 Eglay) [£o:1:w@: @] w> + x2° + x%y + ¥z P3 19
10 1.B5 Eg(ag) [1:1:¢5:1] w? =23 + Axtz + x(ux® + y°) P(3,1,1,2) | 20
12 3.12 Es [:1:—1:1] w? + x>+ yz? + y°x P3 21
12 212 E-(a») [1:w:1:i] w2 =x3y + y* + z4 P(2,1,1,1) | 22
12 lop2.2 Es(az) i:1:—1:—w] w? =23 + xyLo(x2, y?) P(3,1,1,2) | 23
4 2.G7 E+(ay) [1:87:C)%:(t7)2] w2 =x"y+y3z+xz° P(2,1,1,1) | 24
15 1.p5 Eg(as) [1:1:&5: 0] w2 =z +x(x>+ ¥°) P(3,1,1,2) | 25
18 2.G9 E- [—1:(¢9)®:1:¢&9] w2 =x"y+ y* +xz° P(2,1,1,1) | 26
20 1.B10 Esz(az) i:1:210:—1] w? =z +x%z +xy° P(3,1,1,2) | 27
- 24 l.op4 Eg(ay) [Es:1:i: —iw] w? =z + xy(x? + ¥9) P(3,1,1,2) | 28
= 30 1l.op5 Eg [1:1:&5: ] w? =z3 + x(x> + y°) P(3,1,1,2) | 29
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Now that the classes of the cyclic groups have been determined, there remains
— 1n order to give the conjugacy classes of the elements — to decide whether or not
two generators of the same group are conjugate. This is done in the following result,
proved in Section 5.

Theorem 4 (Classification of elements of finite order which are not of de Jonquieres
type). Let G be a cyclic group acting on the surface S, embedded in a weighted pro-
jective space (P32, P(2,1,1,1) or P(3, 1, 1, 2)), such that the pair (G, S) represents
an element of Family #n of Tables 1, 2 (with 1 < n < 29). Let g, h be two generators
of G.
Then, g, h are conjugate in Bir(S) if and only if they are conjugate in Aut(S).

Furthermore, we have the following:

1. Ifn € {1,2}, then g = h.

2. Ifn € {9, 11, 16}, then g is conjugate to h.

3. Ifn ¢ 46,9, 11,16}, then g is conjugate to h if and only if g = h.

4. If n = 6 then the equation of S is given by w?> = z3> + z(ax* + bx2y? +
x4 xy(a’ x* +b'x2y2+ 'y inP(3, 1, 1,2) for some a, b, c,a’, b’ ¢’ € C.
Moreover the two generators of G are conjugate if and only if one of the following
occurs:

i) a=c=0,
(i) a' =c =0,
(i) a,c,a’,.c’ e C* alc=2d"/c,
(iv) a,c,a’,c’ e C*, afc = —d'/c, and bb' = 0.

We conclude this section with a direct consequence of the four theorems.
Corollary 2.6. Let g be an element of odd order of Bir(IP?). Then, g is conjugate

to g~ ' if and only if g is linearisable. O

3. The study of de Jonquieres groups

3.1. The group dJo. The group of birational transformations of the plane that leave
invariant a fixed pencil of lines consists, in affine coordinates, of elements of the form

(x.v) —> (ax—l—b oz(x)y—l—ﬂ(x))’ A0

cx+d yx)y +8(x)
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where a,b,c,d € C,a,8,y.6 € C(x),ad —bc # 0 and «é — By # 0. This group
1s called the de Jonquiéres group, is denoted by dJo and is isomorphic (o

PGL(2, C(x)) x PGL(2, C),

where the action of PGL(2, C) on PGL(2,C(x)) is the action of PGL(2,C) =
Aut(P1(C)) on the function field C (x) of P1(C). The explicit form (3.1) embeds dJo
into Bir(C?), this latter being conjugate to Bir(I??) after the choice of an embedding
C? — P2

We will use algebraic tools on the semi-direct product structure of dJo, groups
of matrices and Galois cohomology to study its elements of finite order. One can
proceed in another manner, using geometric tools. If g € dJo has finite order, the
natural embedding of C? into P! x P! allows us to consider g as an element of
Bir(P! x P!) which preserves the first ruling. The blow-up n: S — P! x P! of
all the base-points of the powers of g conjugates g to a biregular automorphism
g’ = nlgn of S. Moreover, g’ preserves the fibration 7: S — P! which is the
composition of n with the first projection of P! x P!, Contracting some curves in
fibres of 7, we may assume that s is a conic bundle (i.e. that every singular fibre of
7 is the union of two transversal (—1)-curves), and that g’ acts minimally on (S, )
(i.e. that for any singular fibre F = F; U F, of =, the two components F; and
F, are exchanged by some power of g). Furthermore, we have wg’ = g, where
g € Aut(P1) = PGL(2, C) corresponds to the image of g by the second projection
of dJo = PGL(2, C(x)) x PGL(2,C).

In this section, we characterise the conjugacy classes of the elements of finite
order of dJo, and prove Theorem 2. The first step is to give an explicit form of all
non-diagonalisable elements. This is done in Proposition 3.3. We show in particular
that such an element g has order 2n, where its action on the basis of the fibration has
order n, and that ¢ = g" fixes (pointwise) a curve I', which is a double covering of
P! by means of the fibration. In particular, g|r is an automorphism of I" which is not
aroot of the involution associated to the double covering. This observation is not new
and can also be deduced by geometric methods (as in [DI09] and [B1a09]). In fact, g
may be seen as an automorphism of a conic bundle (S, ), and o exchanges the two
components of 2k fibres, where & > 0, and T" is reducible if £ = 0 and irreducible of
genus k — 1 if k > 1. Moreover, 7 has 2k, 2k + 1 or 2k + 2 singular fibres, and all
three possibilities occur (see Section 6 of [Bla09], and in particular Proposition 6.5).

To prove Theorem 2, we have to go into more detail. We prove that the correspon-
dence between g and the pair (T, g|r), endowed with the action of order # is 1-to-1.
Using geometric methods, this is possible when #n is equal to 1 ([BaB00]), but here
these methods do not apply directly. We therefore have to use Galois cohomology,
as in [BeaO7] and [B1a07b]. The correspondence generalises the work in [BlaO7b],
which proved the existence of some g of any possible even order 2n, starting with
particular pairs (T, g|r).
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3.2. Explicit form for non-diagonalisable elements of finite order of dJo. Al-
though the elements of finite order of PGL(2, C(x)) and PGL(2, C) are quite easy
to understand, it is not obvious to describe the conjugacy classes of elements of finite
order of dJo. The projection of any subgroup G C dJo on PGL(2, C) gives rise to
an exact sequence

]l >G> G — Gy — 1,

where G1, G, belong respectively to PGL(2, C(x)) and PGL(2,C). In the case
where the exact sequence splits, and H (G5, PGL(2, C(x)) = {1} (which occurs if
G, 1s finite), one can conjugate G 1o G1 x G2 C dJo (Lemma 2.5, [BeaO7]). The
hard case is when this exact sequence does not split, even when G is finite and cyclic
(which is the case we consider here). The hardest case will be when G has order 2,
and G, has even order.

Notation 3.1. Note that PGL(2, C(x)) and PGL(2, C) embed naturally into dJo via
respectively the map that associates

a P a(x)y + px)
(V 8) € PGL(2,C(x)) to (x,y)-—> (x, )y + 800) )

and
ax + b

y )
cx—l—d’y'

(C d) € PGL(2,C) o (x,y) - (

2

This induces a semi-direct product structure. As in any semi-direct product, any
element ¥ € dJo is equal to pv for some unique p € PGL(2, C(x)), v € PGL(2, C),
and will be written ¥ = (p, v). This yields the usual multiplication {p, v)}{p’, V') =
(p-v(p), vv’). Notice that PGL(2, C) acts on PGL(2, C(x)) via its action on C (x)
givenby v(f) = fov™L.

s (41) Lo coman = () 10100, st
(ax—i—b a(x)y+A(x)
cx+d y(x)y+8(x)

equal to pv = (p,v) ifand only if v(p) = p.

) is equal to vp and corresponds to (vev™!, v) = (v(p), v); it is

Firstly, we recall the following basic algebraic result on the group PGL(2). We
leave the proof — which is an elementary exercise in linear algebra, close to the proof
of Lemma 3.1 in [BPVO08] — to the reader.

Lemma 3.2. Let K be some field of characteristic zero that contains all the roots of
unity.
1. Any element a« € PGL(2,K) of finite order is either diagonalisable or is an
involution conjugate to (? g ) for some element g € K*.

Furthermore, the two possibilities are distinct, except for (? h02) and (6 _01 )
which are conjugate, for any h € K*.
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2. For a,b € K*, the elements (}0),(}9) € PGL(2.K) are conjugate in
PGL(2,K) if and only ifa = b*1,

3. For a,b € K*, the elements (98),(9%) € PGL(2.K) are conjugate in

PGL(2,K) if and only if a/b is a square in K. O

Secondly, we give a first description of the elements of finite order of dJo, which
will be made more precise later.

Proposition 3.3. et g € dJo = PGL(2, C(x)) x PGL(2, C) be an element of finite
order. Then, up to conjugation in the group dJo, g is one of the following:

1. A diagonal element ((}9) . ((1, ?ﬂ }), for some o, B € C* of finite order.

2. An element (p, (é g)) where & € C* is an element of finite order n > 1, where
g" is equal to the involution o = (? p(gn)) € PGL(2, C(x)), and p is a poly-
nomial with simple roots. Furthermore, p commutes with o in PGL(2, C{(x))
and if n is even we may assume that p(0) # 0.

Proof. We write g = (p,v) € PGL(2,C(x)) x PGL(2,C). Observe that the order
of v € PGL(2, C) is finite, and denote it by #; up to a conjugation by an element of
PGL(2, C), we may assume that v = ( ¢ ), where £ is a primitive n-th root of unity.

Assume first that n = 1, which is equivalent to assuming that v is the identity,
or that g belongs to PGL(2, C(x)). If g is diagonalisable in PGL(2, C(x)), it is
conjugate to (} ), where & € C(x)* is an element of finite order and in particular
belongs to C*; this yields an element of type (1). If g is not diagonalisable, it is
conjugate to (9 7)), for some p(x) € C(x)* which is not a square (Lemma 3.2);
up to conjugation by a diagonal element of PGL(2, C (x)) we may assume that p is
a polynomial without multiple roots, whence g is of type (2).

Assume now that the order n of v 1s at least equal to 2.

The element g” is equal to (o, 1), where ¢ = p - v(p) - vZ(p)...v" (p) is
an element of finite order of PGL(2, C(x)). Notice that v(c) = v{(p - v(p) -
v2(p)...v" 1 (p)) = p~l -0 - p. Thus, v(c) = o if and only if p commutes with
o. This will be crucial in the sequel. We distinguish three cases for o, depending on
whether its order is 1, 2 or at least 3.

(i) Assume that o is the identity. This implies that the map v' — p-v(p)... v (p)
represents a cocycle of (v) = Z/nZ with values in PGL(2, C(x)). The exact se-
quence 1 — C(x)* — GL(2,C(x)) — PGL(2,C(x)) — 1 yields the cohomology
exact sequence

H'({v),GL(2,C(x))) = H'({v),PGL(2, C(x))) — H?*({v),C(x)").

Since C(x) has the Cq-property (by Tsen’s theorem), H?({v), C(x)*) is (rivial
[Ser68], X.§7, Propositions 10 and 11, Furthermore, H!({v), GL(2, C(x))) = {1}
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[Ser68], X.§1, Proposition 3, whence H!({v),PGL(2,C(x)) = {1}. This yields
the existence of u € PGL(2, C(x)) such that p = ™! - v(u). Consequently, the
conjugation of g by (i, 1) is (1, v), which is an element of type (1).

(ii) Assume that o is an element of order i > 3. Conjugating g by some element of
PGL(2, C(x)), we may suppose that ¢ is diagonal (Lemma 3.2), and thus o = (} ?)
for some element ¢ € C* of finite order. Since v(c) = o, p commutes with o,
whence p is diagonal, i.e. p = (4 2), for some r € C(x)*. Choose b € C* such
that 5" = ¢ and write ¥’ = r/b. The equality ¢ = r - v(r)...v" 1(r) implies
that 7" - v(r¥)...v" @) = ¢/(B™) = 1; since HY(Z/nZ,C(x)*) = {1} (by
Hilbert’s Theorem 90, [Ser68], X.§1), we see that #’ is equal to a~l. v(a) for some
a € C(x)*, which means that » = a~' -5 - v(a). The element ((} ) . 1) conjugates
gto((45).(5¢)) whichis an element of type (1).

(iii)) The remaining case is when o is an involution. After a conjugation by
an element of PGL(2, C(x)), we may assume that o = (0 %), for some element
h € C(x)* (Lemma 3.2). Choosing an element R € GL{2, C(x)) whose class in
PGL(2,C(x)) is p, we have det(R) - v(det R)...v" !(det R) = p2h, for some

€ Cx)*, so u2h € C(x)”. Replacing o by ((1’ “éh), after a conjugation by
an element of PGL(2, C(x)) (Lemma 3.2), we may assume that v(#) = A. This
condition is equivalent to the fact that # € C(x"). Since the conjugation of o
by ( 4cony) changes A into & - (g(x™))%, for any ¢ € C(x), we may assume that
h = p(x™) where p is a polynomial with simple roots. Finally, if » is even and
p(0) = 0, then x™ divides p(x™). The conjugation of o by (.5, ) removes the

factor x". We obtain in any case an element of type (2). O

Corollary 3.4. Up to conjugation in dJo, any element g which is not diagonalisable
has order 2n, for some positive integer n, and o = g" is equal to (x,y) --»
(x, p(x™)/y), for some polynomial p with simple roots. The curve T C C? fixed
by o has equation y* = p(x™), and is a double covering of C by means of the
x-projection (x,y) v x. Moreover, g restricts to an automorphism g|r of T of

order n, which is not a root of the involution associated to the g3. O

Lemma 3.2 and Proposition 3.3 show the importance of involutions in the de
Jonquieres group, and especially of those that belong to PGL(2, C(x)). According
to Corollary 3.4, we can associate to any non-diagonalisable element g of dJo an
involution ¢ € PGL(2,C(x)), acurve I', and an element g|r € Aut(I") which is not
a root of the involution associated to the double covering I' — C.

To prove Theorem 2, we will show that the map g — (T, g|r) is a 1-to-1 corre-
spondence, i.e. that for any pair (I", g|r), there exists g € dJo, and that its conjugacy
class in dJo is unique. This is done in the next subsection, and in particular in
Propositions 3.7 and 3.8.
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3.3. The map g — (I, g|r) is a 1-to-1 correspondence. The correspondence
o < I' is well-known to be 1-to-1. According to Proposition 3.3, g may be viewed
as (p. (5 ¢)) € PGL(2,C(x)) x PGL(2, C), where p commutes with o. To prove
Propositions 3.7 and 3.8, we will need the description of the centraliser N, of ¢ in
PGL(2,C(x)) (Lemma 3.5), and a technical lemma on exact sequences associated
to N, (Lemma 3.6).

Lemma 3.5. Ler 0 € PGL(2,C{(x)) be the involution ((1’ g) for h € C(x)* and
denote by Ny the centraliser of o in PGL(2, C(x)).

L. Ny is the disjoint union of NO and N} (written Ny, = N2 & N}), where

NS = {(Z ((__ll);bah) e PGL(2, C(x)),a. b € cc:(x)*}.

2. Ny = N2 %7 /27, where 7./ 27 is generated by ((1) _01) and acts on the group
N2 by mapping an element on its inverse.

3. Ifh = p?, € C(x)*, the conjugation by (% _‘“ﬂ) sends o, N2 and N}

respectively on

((1) _01), {((1) 2),616((3()6)*} and {((1) g),ae(C(x)*}.

4. If h is not a square in C(x)*, the map (§ b#) — [a + b~/h] yields an isomor-
phism from N2 1o C(x)[VA]* /T (x)*.

5. Each element of N, acts on the curve T' C C? of equation y* = h(x). This
action gives rise to a split exact sequence

1 N? - N, - Z/27 — 1.

Proof. Assertions 1 through 4 follow from a straightforward calculation. Letus prove
the lastone. Let p = (x, y) € C* be a general point of I'. Then, (¢ 2} sends p onto

(x a(X)erb(x)h(x)) _ (x y(a(x)y+b(x)h(x))
T b(x)y+ax) Ty talx)y

Furthermore, (§ % ) sends p onto (x,—y) € T\ p. O

), which is equal to p since y? = h(x).

Given some integer #, some primitive #-th root of unity £, and some o : (x, y) -—>
(x, ¥/ p(x™)) as before, we look for elements g = (p,v) € PGL(2,C(x)) x
PGL(2,C) such that p € No, v = (¢ ) and g" = o. This means that o is equal
to p - v(p)...v" 1(p), which corresponds to some kind of norm of p, according to
the action of v on PGL(2, C(x)). To prove the existence of p, we have to prove that
this norm is surjective. If (p, v)" = (p’,v)" = o and p, p’ have the same action on
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I" (which corresponds to saying that p, p’ € N! for the same 7, by Lemma 3.5), we
want to prove that (p, v) and (o', v) are conjugate in dJo. We will use the fact that
p-(p")" ! hasnorm 1. The two results needed correspond in fact to exactness of exact
sequences associated to norms, which is proved in Lemma 3.6 below.

In this lemma, G denotes the set of elements of G fixed by the action of v.

Lemma 3.6. Let £ € C* be an n-th root of unity, let p € C[x] be a polynomial with
simple roots, let 0 = (? p(gn)) € PGL(2,C(x)) and let v = ((1) g) € PGL(2,C).
Denote by N, = N2 & N} the centraliser of o in PGL(2, C (x)), as in Lemma 3.5.

Then, the action of v on PGL(2, C (x)) leaves N2 invariant and, writing G = N2,
the following sequence of group homomorphisms is exact:

d
G ! G ! (G —=1. (32)

N () a—av(e).. v 1)

Furthermore, if n is even each of the following sequences is also exact:

da @2

V1 3.3
arra-v? (@) ! a—a-v? (). "4 (o) v 2 (o) ) (3.3)
d 3
p2 3 2 G . 1 3 4
(G) W(G) ara-v()..v " a) ( ) - G4
14 ©3
’ G 1L .2 1 (G)Vz G 1. (3.5)
a—>av () aa sk (a)_‘_m

Proof. Using Lemma 3.5, we make the following observations. If p{x") is a square
in C(x)*, then G = N2 =~ C(x)* and the action of v on G is the restriction of the
field homomorphism C(x) — C(x) that sends f(x) on f(£x) (see Notation 3.1).
Otherwise, writing 7 = p(x") we have G = C(x)[vh]*/C(x)*, where the action
of v is induced by the field isomorphism of C (x)[+/A] that sends a(x) + b (x)+/h on
a(§x) + bEx)Vh.

Since C(x) has the Cq-property (by Tsen’s theorem), for any finite Galois ex-
tension L /K, where K is finite over C(x), the norm of the extension is surjective
(see [Ser68], X.§7, Propositions 10 and 11). This implies the surjectivity of the
homomorphisms @1, ¢2 and ¢3.

The exactness of sequences 3.2, 3.3, 3.4 1s respectively equivalent to the triviality
of HY((v),G), HY((v? >,G) and H((v),(G)""). If G = C(x)*, this follows
directly from Hilbert’s Theorem 90. If G 2= (C (x)[+/h])*/C (x)*, the exact sequence

1 — C(x)* — (CVAD* — (C)[Vh])*/Tx)* — 1 (3.6)
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yields the cohomology exact sequence

H' ({0}, (C)IVRD*) = H' () (COIVR/Cx)*) — H*((v).C(x)").
(3.7)

Once again, H ' ({v), (C(x)[v/h])*) is trivial by Hilbert’s Theorem 90, and so is
H?({v),C(x)*) by Tsen’s theorem and Propositions 10 and 11, X.§7 in [?]bib:Ser;
we obtain therefore the triviality of H'({(v), (C (x)[+/h])*/C (x)*) and the exactness
of (3.2). The cases (3.3) and (3.4) are similar.

We now prove the exactness of (3.5). The equality i = d3 o @2 and the exactness
of (3.3) and (3.4) imply that the image of v is the kernel of 3 and that ¢5 is surjective.
To prove the exactness of (3.5), we separate two possibilities.

Firstly, let us assume that 4 = p(x™) is not a square, which means that G =
C(x)[vh]*/C(x)* and that v acts as the field automorphism of C (x)[+/}] that sends
a(x) + b(x)vh on a(Ex) + b(Ex)v/h. Denote by v C(x)[vh] — C(x)[/}] the
field automorphism that sends a (x) + b (x)vh on a(Ex) — b (Ex)~/h. Since the order
of v is even, the map v! — ¥ induces another action of {v) =~ Z/nZ on the field
C(x)[vh)]. Furthermore, the actions of v on C(x)* and on (C (x)[~h])*/C(x)*
given respectively by f(x) — f(Ex) and [a(x) + b(x)Vh] — [a(Ex) — b(Ex)VE]
are compatible with the exact sequence (3.6), and thus yield the exact sequence (3.7)
with this new action. Once again, the cohomological sets H({v), (C(x)[vh])*)
and H?({v), C(x)*) associated to these actions are trivial, which implies that
H((v), (Cx)[vA])* /T (x)*) is trivial. Observe that (a +b~/h)(a—b~/h) € T(x)
for any a, b € C(x), which implies that the new action of v on (C (x)[~/h])*/C (x)*
is o — v{o)~ 1. The triviality of the cohomology group is therefore equivalent to the
left exactness of (3.5).

Secondly, assume that p(x") is a square. Since ¥ o r is the trivial map, there
remains to show that if 8 € G and ¥ (8) = 1, then § is in the image of r. By
the equality ¥ = @, o dy, and the exactness of (3.3), there exists @ € G such that
d1(p) = da(a). Since d1(r{w)) = d2(x), we may replace B by B/r(«) and assume
that 8 is in the kernel of dy, i.e. that £ € (G)”. The hypothesis on p(x") implies
that G = C(x)* and that G¥ = C(x™)*. Therefore, 8 = bo - [];_,(hi — x™) where
bi € Cflori = 0,...,r and by # 0. Then, B is equal to r(ag - [ |;= (@i — x™)),
where (a;)? = b; and 2m = n (recall that » is assumed to be even). O

Proposition 3.7. Let £ € C* be an n-th root of unity, let p € C[x] be a polyno-
mial with simple roots, let 0 = ((1) p(gn)) e PGL(2,C(x)) and let v = ((1) g) €
PGL(2,C). Denote by Ny = N2 w N} the centraliser of o in PGL(2, C(x)), as in
Lemma 3.5. Then, the following hold:

1. There exists an element py € N? such that (py,v)" = (o, 1).

Moreover, if two such elements py and pj, exist, then (py.v) and (p},,v) are
conjugate in dJo = PGL(2, C(x)) x PGL(2, C).
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2. There exists an element p; € N} such that (p1,v)"* = (o, 1) if and only if n is
even.

Furthermore, if two such elements py and p) exist, then (py.v) and (p},v) are
conjugate in dJo.

Proof. Note that the action of v on PGL(2, C(x)) leaves N/ invariant for / = 0, 1,
we denote as before by (N}) the fixed part of each set, and have o € (N2)".

For any element p € N2, we have (p,v)* = (p-v(p)...v" 1(p),1). The
exactness of the sequence (3.2) implies the existence of pg € N, (9 such that (pg, V)" =
(0, 1). Assume now that pg, p, € N2 are such that (py, v)" = (pj, v)" = (o, 1).
Writing ;1 = (po) ™ ph, we have - v(p) ... v" () = 1, and the exactness of (3.2)
yields the existence of A € N2 such that « = Av(L)~L. Then, the elements (po, v)
and (py, v) are conjugate by (A, 1). This yields Assertion (1).

If n is odd and p; € N}, then (p;, )" belongs to N.! and thus is not equal to o.
Assume now that  is even and write § = (§ ° )} € PGL(2, C(x)). Forany p € N2,
we have pé € N!and (5, v)" = (p-v(p)~t-v2(p)...v" L1(p)~L, 1). The exactness
of the sequence (3.5) implies the existence of p; € N} such that (p1,v)" = (o, 1).
Assume now that p1, pj € N4 are such that (py,v)* = (p},v)" = (0,1). Write
p1 = pod and p| = p}é, for some py, py € N2 and set . = (po) (po) € N2.
We have - v(p)~t-v2(p) ... v" ()™t = 1, and the exactness of (3.5) yields the
existence of A € N such that « = Av(A). Then, the elements (oo, v) and ()8, v)
are conjugate by (A, 1). This yields Assertion (2). O

We can now consider the result of Proposition 3.7 from the geometric point of
view, and obtain the key result of this section.

Proposition 3.8. Fori = 1,2, let h; € dJo be a non-diagonalisable element of
finite order 2n of the de Jonquiéres group, whose action on the basis of the fibration
has order n and is such that (h;)" is equal to an involution of PGL(2, C(x)) which
fixes a (possibly reducible) curve Ty C C? such that the projection on the first factor
induces a (2:1)-map m; : I'; — C. Then, the following conditions are equivalent:

1. The elements hy and h, are conjugate in the de Jonquieres group dJo.

2. There exist two birational maps . I't ——> I'z, a: C ——> C such that myfp =
amy and VW conjugates the restriction of hy on I'y to the restriction of hy on I'z.

Proof. Assume that W € dJo conjugates /21 to /i5. Then, W conjugates (/21)" to (h2)"
and consequently sends I'y on I'; birationally. Thus (1) = (2).

Assume the existence of ¥ and « as in Assertion 2. Up to conjugation in dJo we
may assume (Proposition 3.3) that ; = (py,v) and (h)" = o, where v = (5 ¢ ),
o = (924}, & e C* is a primitive »-th root of unity and p is a polynomial with
simple roots.
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There exists an element W € dJo that extends ¥ and sends I'y on I'2, hence
conjugates (/1)" to (h2)" (this follows from the correspondence between the in-
volutions and the hyperrelliptic curves, and can be found by hand directly, using
Lemma 3.2). We may therefore assume, after conjugation of /5 by W, that I’ = Iy,
(ha)* = ()" = o, hy = (p2,v) and that /1, /i, have the same action on I'y. Since
vie)=ocando = p; -v(p;)...v" L(p;) fori = 1,2, both p; and p, belong to the
centraliser N, of o in PGL(2, C(x)). The fact that p; and p, have the same action
on I'1 implies that they belong either both to N2 or both to N} (Lemma 3.5(5)).
Finally, we apply Proposition 3.7 to deduce that /1 and £, are conjugate in the de
Jonquicres group. O

3.4. Geometric description —action on conic bundles. Let g € dJo be an element
which is not diagonalisable in this group. Then, g has even order 2n and g" fixes
a bisection I' of the fibration. In §3.1, we explained how to see g acting on a conic
bundle. We prove now that the action of (I, g|I") not only gives the conjugacy class in
dJo (Proposition 3.8), but also describes the action of g on the conic bundle. Recall
that a singular fibre is twisted by an automorphism if this one exchanges the two
components of the singular fibre. Assertions 1 and 3 of the following Lemma are
well-known, whereas the two others are new.

Lemma 3.9. Let S be a smooth projective surface S, endowed with a conic bundle
structure w: S — P, Let g € Aut(S) be an automorphism of S of finite order which
preserves the set of fibres of . Assume that g has order 2n, where n is the order of
the action of g on the basis of the fibration and that the triple (g, S, ) is minimal
(i.e. that there exists no set of disjoint (—1)-curves invariant by g and contained in a
finite set of fibres).

Denote by T' C S the bisection fixed (pointwise) by h = g"; let p € P, and let
F = 77 Y(p) C S. Then, the following occur:

1. F is a singular fibre twisted by h if and only if F N T consists of one point.

2. F is a singular fibre twisted by g and not by h if and only if F N T" consists of
two points, exchanged by g|r.

3. The number of singular fibres twisted by h is equal to 2k, where k = Qif ' is
reducible and k = g(I')— 1 when T is irreducible, where g(I') is the geometric
genus of I

4. The number of singular fibres of 7 is equal to 2k + r, where r € {0, 1,2}. The
number r is equal to the number of singular fibres twisted by g and not by h.

Proof. 1If F is singular and twisted by £, then / fixes one point of F, so ' N F
consists of one point. Conversely, assume that I' N F consists of one point. Observe
that no curve invariant by 7 may be tangent to I (since its image under the projection
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S — S/{h > locally splits at the point of tangency). This implies that F is singular
and that F N T is the singular point of F. If F was not twisted by /, there would be
three /-invariant tangent directions at this point, a contradiction. So F' is twisted by
h and we get Assertion 1.

Assume now that 7 N I" consists of two points exchanged by g. This implies that
n is even. If F is smooth, it is isomorphic to Pl soh = g™ acts identically on F,
which is impossible since the fixed locus of % is smooth and contains I'. Thus, F is
singular, twisted by g and not by /. The converse being obvious, we get Assertion 2.

Assertion 3 follows from Riemann—Hurwitz formula and Assertion 1.

Let us prove Assertion 4. Since (g, S, 7) is minimal, any singular fibre of 7 is
twisted by a power of g. If this is not /2, then it is g (and all its odd powers). Moreover,
this may occur only for two fibres, since g acts on the basis with two fixed points
(except when n = 1 and g = k, in which case Assertion 4 is trivially true). O

Lemma 3.10. In Lemma 3.9, no one of the three possibilities for r € {0, 1,2} can be
excluded.

Remark 3.11. For another description of the number r, see Proposition 6.5 in [ Bla09],
especially Assertion 4.

Proof. We provide distinct examples of pairs (I', g|r), use Proposition 3.7 to obtain
the existence of an element g € dJo associated to the pair, and use Assertion 4 of
Lemma 3.9 to obtain r by counting the pairs of points in the same fibre exchanged

by glr.
In each example, I' is the curve whose affine part has equation

y? = ("= D" + 1)

in C2, 7|1 corresponds to the projection (x, y) — x and g|r is induced by a diagonal
automorphism of C2. To see what happens on the two points at infinity, we use the
birational map ¥ : (x, y) --» (x~!,iyx~") which sends birationally " on itself.

(1) g|risinduced by «: (x, ¥) — (27" x, y). On x = 0, the two points of T are

fixed by g|r. Conjugating & by ¥, we obtain ™1, so the two points at infinity
are fixed by g|r. This implies that r = 0.

(2) g|r is induced by «: (x,y) — (e27/"x, —y). On x = 0, the two points of T
are exchanged by g|r. Conjugating & by ¥, we obtain ¢!, so the two points
at infinity are also exchanged by g|r. This implies that r = 2.

(3) g|r isinduced by «: (x, y) (e™/my, v). On x = 0, the two points of I are
fixed by g|r. Conjugating o by v, we obtain (x, y) — (e 7/ "x, —y), so the
two points at infinity are exchanged by g|r. This implies that r = 1. 0

These results corrected a mistake in a previous version of Theorem 5.7, [DI09],
where it was supposed that » = 0 is the only possibility.
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3.5. The proof of Theorem 2. Proposition 3.8 gives the classification of conjugacy
classes of non-diagonalisable elements of finite order of dJo in this group (note that
for diagonalisable elements, the resultis a simple exercise in linear algebra). The main
invariant is the pair (I, g|r )} associated to g. If T is an irreducible curve of positive
genus, the pair 1s also an invariant of conjugacy in the Cremona group, but this is not the
case otherwise (when the bisection I” is the union of 1 or 2 irreducible rational curves).
In this case, the element g is in fact conjugate to a linear diagonal automorphism of
P2 (or P! x Py in the Cremona group, although it is not diagonalisable in the de
Jonquieres group. This was proved in [Bla09], and was extended to finite Abelian
groups. Using Propositions 3.7 and 3.8, we could give an algebraic proof of this result,
by considering the finitely many possibilities for g and conjugating these directly by
hand. However, we briefly recall here the main parts of the geometric proof.

Proposition 3.12 ([B1a09], Theorem 1). Let g be an element of finite order m > 1 of
Bir(P2) that leaves invariant a pencil of rational curves. The following conditions
are equivalent:

1. No non-trivial power of g fixes a curve of positive genus.
2. The element g is birationally conjugate to an element of Aut(P?),

3. The element g is birationally conjugate to the automorphism (x : y . z) —
(e27/mx : y 1 2) of P2

4. The element g is birationally conjugate to an element of Aut(lFy), for some
Hirzebruch surface Fy.

Proof. The automorphism (x, ¥) — (¢27/™x ) of CZ extends to an automorphism
of F for any k, so (3) implies (4). The implication (4) = (2} is an easy exercise,
using elementary links of conic bundles at points fixed by g. The implication (2) =
(3) was proved in [BeB04] using the action of GL.(2,Z) on (C*)? via the action by
conjugation of the group of monomial elements of Bir(P2) on the group of diagonal
elements of Aut{IP?), and was then generalised to any dimension and to elements of
non-necessarily finite order in [Bla06].

The hardest part consists in proving that (1) implies the other conditions. Let us
explain the argument.

If g is diagonalisable in the de Jonquicres group, then we are done. We may
assume that g has order 2n and acts on the basis of the fibration with order n. We
view g as an automorphismof a conic bundle (S, i), and assume that g acts minimally
on the conic bundle, i.e. that every singular fibre is twisted by a power of g (we say that
an automorphism twists a singular fibre I = F; U F if it exchanges the components
Fy and F»). If 7 has no singular fibre, S is a Hirzebruch surface and we obtain
(4). A quick computation (see Lemma 5.1 in [DI09]) shows that if & has 1, 2 or 3
singular fibres, then we may contract a g-invariant set of disjoint sections of self-inter-
section —1. This conjugates g to an automorphism of a del Pezzo surface of degree
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> 6. A study of each possibility shows that g is conjugate to an automorphism of P2
([Bla09], Proposition 9.1).

We may thus assume that 7 has at least 4 singular fibres. We have ng = gm for
some automorphism g of P! of order . Since the involution g" = ¢ fixes no curve
of positive genus, it can twist O or 2 singular fibres, depending on whether it fixes a
reducible or an irreducible curve ([Bla09], Lemma 6.1). The only possibility is that
7 has 4 singular fibres, two twisted by ¢ and two by g (which are the fibres of the
points fixed by g). In particular, » = 2, and g permutes the two fibres twisted by o.
Computing the intersections in the Picard group, we find that if g" = o twists 2k
fibres and g twists r fibres, then 2k /n = r (mod 2) ([Bla09], Proposition 6.5). This
creates a problem of parity, since r =n =2 and k = 1. O

We are now able to summarise the results of this section, by proving Theorem 2.

Proof of Theorem 2. Assertion 1 follows from Proposition 3.12; let us prove Asser-
tion 2. We fix some non-linearisable de Jonquiéres element, that we call g. After
conjugation, we may assume that g is an element of type (2) of Proposition 3.3,
ie. g = (p.(p¢)). where £ € C* has finite order n > 1, and g" = 0 =

(974"} € PGL(2, C(x)). Since p commutes with o (Proposition 3.3), p is equal

1 (Z ((_—lf)afah) € PGL(2, C(x)), for some a,b € C(x)*, § € {0, 1}, by Lemma 3.5.

The curve T fixed by ¢ has equation y? = p(x") and has positive genus by Propo-
sition 3.12. The action of g on I' has order n, preserves the fibers of the g%, and
is not a root of the involution associated to the g%. Furthermore, any such action
can be obtained in this way, by Proposition 3.7. The 1-to-1 correspondence between
conjugacy classes and actions 1s provided by Proposition 3.8. O

4. Cyclic groups, not of de Jonquiéres type

In this section we study cyclic groups of finite order of Bir(IP2) which do not preserve
any pencil of rational curves. We remind the reader of the following classical result:

Proposition 4.1. Let g € Bir(P?) be an element of finite order, not of de Jonquiéres
type. Then, there exists a birational map ¢ : P> ——> S such that

1. S is a del Pezzo surface (projective smooth surface such that — K is ample);
2. the conjugate h = ¢pg¢~" is an automorphism of S
3. tk Pic(S)* = 1.

Proof. Since g has finite order, we may conjugate it to an automorphism % of some
projective smooth rational surface S (see for example [dF-Ei]). After contracting
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invariant sets of (—1)-curves, we may assume that the pair (%, S) is minimal. Then,
by Mori theory [Man] either S is a del Pezzo surface and rk Pic(S)* = 1 or &
preserves a rational fibration; this latter possibility is excluded by hypothesis. O

We may restrict our attention to the study of del Pezzo surfaces of degree 1, 2
or 3, as the following simple lemma shows:

Lemma 4.2. Let S be a del Pezzo surface of degree > 4, and let g € Aut(S). Then,
g preserves a pencil of rational curves.

Proof. By the Lefschetz formula, there exists at least one point of S which is fixed
by g, see Corollary 1 on p. 248 in [AB66]. If S =~ P! x P!, the blow-up of a
fixed point conjugates g to an automorphism of a del Pezzo surface of degree 7. We
may thus assume the existence of a birational morphism n: S — P2, which is the
blow-up of r points of P2, for 0 < r < 5. Then, g preserves the linear system of
curves equivalent to the anticanonical divisor — K g, which are the strict pull-backs by
n of the cubics passing through the » blown-up points. Furthermore, g also preserves
the linear subsystem A, corresponding to the cubics being singular at n(p), where
p € S is fixed by g. Since the dimension of A, is 6 — r > 1, and the action of g on
it is linear, we can find a subsystem of dimension 1, invariant by g; this completes
the proof. |

Remark 4.3. This simple result is also a consequence of the huge work of [DI09].

Recall ([Kol96], Theorem II1.3.5) that a del Pezzo surface of degree 3 (respec-
tively 2, 1) 1s 1somorphic to a smooth hypersurface of degree 3 (respectively 4, 6) in the
projective space P2 (respectively in IP(1, 1, 1, 2), P(1, 1,2, 3)). Furthermore, in each
of the 3 cases, any automorphism of the surface is the restriction of an automorphism
of the ambient space.

For any automorphism g of a del Pezzo surface of degree 1, 2 or 3, we can choose
coordinates w, x, y, z on the projective spaces such that g is a diagonal automorphism
(w:x:yv:z)b> (@w: Bx:yy:dz)—thatwewilldenoteby[e : B : y : 8] —of the
weighted projective space which preserves the equation of the surface, this equation
being one of the following:

0= La(w,x,y,2), 4.1)
w? = L(x, ¥,2), (4.2)
w2:ZS+Z'L4(x’y)+L6(xsy)a (43)

where L; denotes a homogeneous form of degree 7.
A systematic study of all automorphisms is therefore possible, and was carried
out in [Segd?2] (for degree 3), [Dol04] and [Bar06] (degree 2), and especially in
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[DIO9] where all the results are summarised (this was also done in my PhD thesis,
see |BlaO7a]).

Now, to eliminate the groups which are not of de Jonquicres type is more subtle.
This was done in [DI09] (and in my thesis), using tools like the Lefschetz formula or
Weyl groups. Summing up, we get that any finite cyclic subgroup of Bir(P2) which is
not of de Jonquieres type is conjugate to a group of Table 1. Note that the 29 families
of Table 1 are those of [Bla(7a], and also those of Table 9 of [DI09].

To determine the conjugacy classes among the 29 families (which is done in the
proof of Theorem 3 below), we need a few classical results on plane cubic curves, of
which we remind the reader:

Lemma 4.4. Let I' C P? be a smooth cubic curve, and let Aut(P?)r be the group
of automorphisms of P2 which preserve T'. Then, the following occur.

1. There exists g € Aut(P?) such that g(T') has Hesse form, i.e. that its equation
isx3 4+ y3 4 234 Axyz =0, for some A € C,

2. If TV C P2 is isomorphic to T, then there exists g € Aut(IP?) so that g(I') = T".
3. The group Aut(IP?)r acts transitively on the 9 inflexion points of T.

4. Ift,0 € Aut(P?)r induce two translations on T which are conjugate in Aut(T"),
then T and o are conjugate in Aut(P?)r.

Proof. The first two assertions are very classical, proofs can be found in [ADO09].
Putting I" in its Hesse form, the 9 inflexion points become easy to compute; these are
the orbits by [0 : 1 : —1] of the subgroup of Aut(IP?) generated by the permutation
of coordinates and (x : y : z) — (x : wy : w?z), where w is a primitive 3-rd root
of unity. This yields Assertion 3. The group Aut(I') is isomorphic to I' x Z/mZ,
for m € {2,4, 6}, and is generated by the translations (the abelian group I') and one
element of order m with fixed points. To prove Assertion 4, it thus suffices to find in
Aut(P?)r an element of order m which acts on I' with fixed points. We put I" in its
Hesse form, and see that (x : y : z) > (y : x : z) issuitable if m = 2. If m = 6,
then we may assume that I is the Fermat cubic x* + y3 +z3 = 0,and (x : y : 2) >
(y : x : wz) is suitable. If m = 4, weseethat (x : y : z) — (x : —y : iz) acts
with fixed points on the smooth cubic curve I'V of equation xz2 + y? 4+ x2y; we use
Assertion 2 to conclude. O

Proof of Theorem 3. The first assertion follows from the beginning of this section.

Recall that the set of points fixed by an automorphism of a surface is smooth (as
can be shown by local analytic linearisation). We can therefore apply the adjunction
formula, and the canonical embeddings into weighted projective spaces to deduce the
genus of the fixed curves.
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(i) On a del Pezzo surface of degree 3, i.e. a cubic surface in P3, any fixed curve
is elliptic, and any birational morphism to IP? sends it on a smooth cubic curve (for
further details and generalisations, see [Bla08]).

(ii) A del Pezzo surface of degree 2 is canonically embedded into P(2, 1, 1, 1) as
a surface of equation w? = L4(x, y, z). The curve given by w = 0 is equivalent to
—2Kg, and 1s a Geiser curve isomorphic to a smooth quartic plane curve (but is sent
by any birational morphism to P2 on a sextic with 7 double points, see [BPV09] for
further details). The other fixed curves are elliptic curves, equivalent to — K.

(iii) A del Pezzo surface of degree 1 is canonically embedded into P(3, 1, 1, 2) as
a surface of equation w? = z3 + zL,(x, y) + Lg(x, v). The curve given by w = 0
is equivalent to —3 K g, and is a Bertini curve. The curve given by z = 0 is equivalent
to —2Ks and is a (hyperelliptic) curve of genus 2. The other possible fixed curves
are elliptic curves, equivalent to — K.

The observations (1), (11), (111) and a simple examination of each of the 29 cases
directly yields Assertion 4.

Let us prove Assertion 2. Let g be a generator of a group G of one of the
29 families; we distinguish three cases. (a) If G belongs to family #9, then g3
fixes an elliptic curve, and g acts on this curve as a translation of order 3, so
does not preserve the fibers of any gZ. (b) If G belongs to family #n for n €
{3,4,5,7,8,12,14,17,19,21, 22,25}, the m-torsion of G fixes a curve of genus 1
or 2, for some integer i > 3. (¢) In the remaining families, some non-trivial element
of G fixes an non-hyperelliptic curve (Geiser or Bertini curve). In cases (a) through
(c), and for any de Jonquieres element /2, we have NFCA(g) # NFCA(/) (by the
description of NFCA (%) given in Theorem 2); this proves Assertion 2.

Since the subgroups of two different families of the same order fix different types
of curves, Assertion 3 is clear. Note that this could also be proved using the fact that
each family appears in [DI09], Table 9, with the conjugacy class of its action in the
Weyl group, and that all of them are different.

There remains to study each of the 29 families and to show that if two groups
belonging to the same family have similar NFCA invariants, there exists an isomor-
phism between the two surfaces on which the groups act, that conjugates the two
groups; the explicit parametrisations will follow from this study.

Let us explain the approach and notation of the remaining part. For each family,
we take a group G, acting on the surface S, embedded in a weighted projective space
(P3,P(2,1,1,1) or P(3, 1,1, 2)), such that the pair (G, S) represents an element of
the family. We choose an integer r, denote by I' C S the curve fixed by the r-torsion
of G, and explain which kind of curve it is. Then, we take another group G’ which
acts on S’, whose r-torsion fixes T'" C S” (we only add a prime to the group, surface
and parameters), and assume that there exists an isomorphism «: I' — T which
conjugates the group H = G|r to H' = G’|rr. We prove that ¢ can be chosen so
that it extends to an automorphism of the weighted space which sends S on S” and
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conjugates G to G'. For some families (when G |r is trivial, or unique as in #8, #12
and #13) the same results work by assuming only that I" is isomorphic to I'", without
taking into account H, H'; this simplifies the parametrisation.

In families #1 through #5, and in #7 and #17, each non-trivial element of the
group fixes the same curve, and the isomorphism class of the curve determines the
isomorphism class of the surface, sor = |G |. Forexample, in family #5, suppose that
S, S” are surfaces given by equations w? = Ly(x, y)+ z* and w? = L} (x, y) + z*
respectively, and that G, G" C Aut(S) are generated by z — iz. The two correspond-
ing curves are elliptic curves, double coverings of P! by means of the projection on
(x : y), ramified over the four roots of respectively L4 and L. If the curves are
isomorphic, there exists B € Aut(P!) such that f(L4) = L. Clearly B extends to
P(2,1,1,1), and conjugates G to G'. A similar simple argument works for families
#1 through #4, and for #7 and #17.

[#6, r = 2] The 2-torsion fixes the Bertini curve I, and H is generated by
an involution with fixed points. Since the curve determines the surface, we may
assume that G, G’ act on the same surface S. The action of Aut(S) on I" yields the
classical exact sequence 1 — Z /27 — Aut(S) — Aut{I") — 1; consequently if
H, H < Aut(I') are conjugate, so are G, G" C Aut(S).

[#8, r = 3] The curve I' is the elliptic curve whose equation in the plane w = 0
of P3is FF = x3 4+ y3 4 xz2 + Ayz?%, and H C Aui(T) is generated by an involution
which fixes four points, one of these being the inflexion point (0 : 0 : 1). Since
[ = T, there exists B € Aut(P?) such that S(F) = F’ and we may assume that f
fixes the inflexion point (0 : 0 : 1) (Lemma 4.4, Assertions 2 and 3). The extension
of B to an automorphism of P? therefore conjugates G to G'.

[#9, r = 2] The curve T is elliptic and its equation in the plane x = 0 of P3 is
w3 + y3 4+ 23 4+ Lyz?; the group H C Aut(T") is generated by a translation of order
3, induced by the automorphism (w : y : z) > (w : @y : w?z) of the plane. Since
I" 2 TV, there exists B € Aut(P2) such that 8(T") = I'" (Lemma 4.4, Assertion 2).
Then, B conjugates H to a subgroup of Aut(I'’) which is conjugate to H’, and up
to a change of § we may therefore assume that B conjugates H to H'(Lemma 4.4,
Assertion 4). Since 8 commutes with p : (w : y : 2) — (w : @y : ®?z), we may
choose — after composition by apower (w : v : z) — (y : w : z)} —that £ is diagonal,
which implies that it is a power of p. Consequently, G and G’ are equal.

[#10, #11, r = 2] In both families, I' is the Geiser curve of the surface, H C
Aut(I"} has order 3 and fixes respectively 4 or 2 fixed points of I". The isomorphism
class of the Geiser curve determines that of the surface, and the classical exact se-
quence 1 — Z /27 — Aut(S) — Aut(I') — 1 shows that the conjugacy class of
H < Aut(I') determines the conjugacy class of G in Aut(S).

[#12, r = 3] The curve I" has equation w? = y* +z* + 1y2z2 = F,(y,z) inthe
weighted plane x = 0, and is therefore elliptic; furthermore H C Aut(I")is generated
by a translation of order 2. Denote by v € Aut(I") (respectively v" € Aut(T"")) the
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involution induced by w — —w; this is the involution which corresponds to the
g2: T — P! givenby (w : y : z) ——> (¥ : z). By hypothesis, there exists an
isomorphism «: I' — T that conjugates H to H’. Since all the non-translation
involutions are conjugate in Aut(I"), there exists an isomorphism g: I’ — I/ that
conjugates v tov’. Let us now prove that we can choose f so that it also conjugates H
to H’. If " is a general elliptic curve, this is clear since H is in the center of Aut(I")
and H, H' are conjugate by hypothesis. Otherwise, we can choose a root of v (of
order 4 or 6) which conjugates SHA ™! to H’, which completes the argument. Since
H conjugates v to v/, it is an isomorphism between the fibres of the corresponding
two g7, and therefore extends to an automorphism of the plane x = 0 (isomorphic
to P(2, 1, 1)) that sends w? — Fy(y,z) onto w? — F;(y, z). The extension of this
automorphism to an automorphism of P(2, 1, 1, 1) follows directly.

[#13, #14, r = 3] In both families, I" has genus 2 and belongs to the weighted
plane z = 0. Furthermore, f{ is generated by an involution which is respectively that
induced by the gf, with 6 fixed points, and an involution with 4 fixed points. Since
a: T' — T preserves the g2, it extends to the plane z = 0 and hence to P (3, 1, 1, 2).
Note that in fact, for family #13, r = 2 is also possible.

[#15, #16, #18, #20, #23, r = 2] In these five families, I" is the Bertini curve,
and H is a cyclic group of order respectively 3, 3, 4, 5, 6, which fixes respectively 3,
1,2, 4,2 poits of I'. Once again, the isomorphism class of I' determines that of the
surface and the classical exact sequence induced by the action on the Bertini curve
yields the result.

Each of the remaining families (#19, #21, #22, and #24 through #29) contains a
single element. [

5. Elements of finite order, not of de Jonquiéres type

In this section, we distinguish the generators of the cyclic groups which are not of de
Jonquieres type.

Proof of Theorem 4. Suppose that g, & are conjugate by some birational transforma-
tion ¢ of S. Then, since ¢ is G-equivariant, we may factorise it into a composition
of automorphisms and elementary G-equivariant links ([Isk96], Theorem 2.5). Since
our surface is of Del Pezzo type (S € {D} in the notation of [Isk96]), the first link is of
type I or II. The classification of elementary links ([Isk96], Theorem 2.6) shows that
the only possibility for the link is to be the Geiser or Bertini involution of a surface
obtained by the blow-up of one or two points invariant by G. A Geiser (respectively
Bertini) involution of a Del Pezzo surface of degree 2 (respectively 1) commutes
with any automorphism of the surface, thus the elementary link conjugates g to itself.
Consequently, g and /2 are conjugate by some element of Aut(.S).
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Forn € {1,2} there is only one generator since G == Z/27.

If n = 9 (respectively n = 11), then the automorphism (w : x : v : z) — (w :
x :z:y)of P3 (respectively of P(2, 1, 1, 1)) induces an element of Aut(S) which
conjugates the two generators of G = Z/6Z.

If n # {6,9, 11, 16}, two distinct generators of G are induced by two automor-
phisms of the weighted space which are diagonal, with different eigenvalues (up to
a weighted multiplication). Consequently, distinct generators of G are not conjugate
by an element of Aut(.S).

If n = 16, we write explicitly the form L, of degree 2, and obtain the expression
w? = z3 + Ax%y?z 4 (ax® + bx3y? + ¢y%) for the equation of S inP(3,1,1,2),
with some a,b,c,A € C. Furthermore, ac # 0 since S is not singular. Choose
oy, i € C* such that o = a,y3 = ¢, u? = ac. Then, the automorphism
(w:x:y:z) (uw:yy:ax:afy)of P(3,1,1,2) induces an automorphism
of S which conjugates the two generators of G = Z/6Z.

The remaining caseisn = 6. We write explicitly the two forms L, L, of degree 2,
and obtain w? = z3 + z(ax* + bx2y? + cx*) + xy(a’x* + b'x2y? + /y*) for
the equation of S in P(3, 1, 1,2), with some a, b, c,a’,b’,¢’ € C. Since S is not
singular, a, @’ are not both zero, and b, b" are not both zero.

Assume now that the two generators g1, g2 of G are conjugate by 7 € Aut(S).
Recall that g1, g, are induced by the automorphisms g;: (w : x : y : z)
(iw:x:—y:—z2andg: (w:x:y:z)>(iw:x:—y:—z)of PG, 1,1,2),
respectively. Furthermore, 7 extends to 7 € Aut(lP(3, 1, 1, 2)), which conjugates
g1 10 gz, and thus T isequal to (w : x : v : z) > {(pw : yy : ax : vz), for
some «, ¥, i1, v € C*. Consequently, the expression p?w? = v3z3 + vz(a*ex* +
a?y?bx?y? + yray?y + ayxy(atc’x* + a?y?b'x?y? + yta’y*) is a multiple of
the equation of .S.

This shows that the two generators of G are conjugate in Aut(S) if and only if
there exist @, y. i, v € C* such that the following two vectors of C? are linearly
dependent:

( 1, 1, a, b, & a’, b, c"),

(p?, v3, v-atce, v-a?y?h, v-y*a, ay-a?

¢, ay-a?y?b’, ay-yta’).

We now consider different cases, and decide whether the two generators are con-
jugate.

a) Assume that ¢« = ¢ = 0, which implies that a’, ¢/ € C*. Then, choosing «, y,
i, vsuch that o = &, y? = ¢/, v = ay, u? = v3 gives a positive answer.

b) The case @’ = ¢’ = 0 is similar. We choose «, y, i, v such that a? = a,
¥2 = ¢, b = ay, g* = v,

c)lf a = a’ =0, then cc¢’ # 0, and the answer is negative. The same occurs for
¢ = ¢’ = 0, which implies that aa’ # 0.
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d) There remain the cases where @, ¢, a’, ¢’ € C*. Linear dependence implies the
following conditions:

1. (a/y)* = (a/c)* = (d'/c"V? = afe = £d'/c';

2. v=cl/a-c'fd - (a/y)-ay = (c/a)-(d'[c') - ay;
3. aby? = bca®? = b ((oz/)/)2 — a/c) = 0;

4. a'b'y* =b'c'e? = b ((e/y)* —d'/c’) = 0.

Ifa/c = a’/c’, choosing «, v, i, v such that @ = a,y? = c,v = ay, u? = v3

gives a positive answer. If a/c = —a'/c¢’ and bb" # 0, the conditions above show
that the answer is negative. If a/c = —a’/c¢’ and b’ = 0 (respectively b = 0),
choosing «, v, jt, v such that @? = a, y? = ¢ (respectively a? = 4/, y? = ¢’) and

v = —ay, t? = v gives a positive answer. O

6. The importance of the NFCA invariant

Proof of Theorem 1. Let g, h € Bir(P?) be two elements of the same finite order,
such that NFCA(g) = NFCA(h).

Assume that g, h are both of de Jonquieres type. If neither g nor / is linearisable,
Assertion 2 of Theorem 2 shows that g and / are conjugate. If one of the two
clements — say g — is linearisable, then NFCA(g) is a sequence of empty sets, and so
is NFCA(h); Theorem 2 shows that /% is lincarisable, and conjugate to g.

Assume now that at least one of the two elements is not of de Jonquieres type.
Assertion 2 of Theorem 3 implies that neither g nor / is of de Jonquicres type. Then,
Assertion 6 of Theorem 3 shows that the groups generated respectively by g and 4
are conjugate. However, in general g and / are not conjugate (Theorem 4). O
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