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Push-forwards forWitt groups of schemes

Baptiste Calmès and Jens Hornbostel

Abstract. Using suitable closed symmetric monoidal structures on derived categories of
schemes, as well as adjunctions of the type Lf ; Rf / and Rf ;f Š / i.e. Grothendieck duality

theory), we define push-forwards for coherentWitt groups along proper morphisms between
separated noetherian schemes. We also establish fundamental theorems for these push-forwards
e.g. base change and projection formula) and provide some computations.

Mathematics Subject Classification 2010). 19G12, 19G38, 18F30, 11E81, 19E08.
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Introduction

Push-forwards, also known as transfers or norm maps, exist for many cohomology
theories over schemes, e.g. for K-theory, higher) Chow groups and algebraic cobordism.

They are undoubtedly a useful tool for understanding and computing those

cohomology theories. The present article is about the construction of such
pushforward maps for the coherentWitt groups of schemes defined in the seminal work of
Balmer1. A reader familiar with cohomology theories might think that constructing
a push-forward is probably straightforward. He or she) should be warned: Witt
groups are not an oriented cohomology theory. In particular, push-forwards are, in
some sense, only conditionally defined. For example, when X and Y are connected
noetherian schemes of finite Krull dimension, smooth over a field, the Witt groups
depend on a line bundle L used to define the duality and the push-forward takes the
form see Theorem 6.7)

WiCdimX X; X f L/ WiCdim Y Y; Y L/
1The modern definition of Witt groups using triangulated categories with dualities [2] can be applied either

to the derived category of complexes of locally free sheaves to obtain“locally free” Witt groups or to the derived
category of complexes with coherent cohomology to obtain “coherent”Witt groups. As with K-theory, it is the
latter that is naturally covariant along proper morphisms, as we prove in this article. All schemes considered

areover ZOE1= 2 so that thederived categories involved are ZOE1=2 -linear and themachinery of triangularWitt
groups applies.
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where is the canonicalbundle the highest nontrivial exterior power of the cotangent
bundle) and L is an arbitrary line bundle on Y In particular, if we pick a line bundle

K over X, there is no push-forward starting from Wi.X; K/ if K is not isomorphic
to X f L for some L up to a square M 2, as Wi.Y; K/ Š Wi.Y;K M 2/
so only the class of K in Pic.X/=2 really matters). This fundamental difference with
oriented cohomology theories, where the push-forward is always possible, significantly

changes classical computations, as one sees e.g. in [18], [39], [4]. The groups
WdimX i.X; X/ can be considered as a homology theory analogous to a non oriented
complex homology theory in topology, but the construction of the push-forward here

relies on triangulated monoidal methods.

Besides this article and its precursors on regular schemes [10] and [11], there are

already several articles available on the construction of push-forwards inspecialcases.

In [16], Gille defined push-forwards along finite morphisms in the affine case. His
approach is quite elementary in the sense that he uses direct computations involving
explicit injective resolutions etc. It is useful to get a hand on concrete forms. In [31]
and [32], Nenashevadapts the oriented cohomology techniques of Panin and Smirnov
to the non-oriented case of locally free Witt groups. He thus obtains push-forwards
along projective morphisms between smooth quasi-projective varieties over fields.
Still another approach using stable A1-representability of Witt groups can be found
in [24]. We understand that there is also some unpublished work of C. Walter on this
subject. Our approach is different, and it applies to a much larger class of situations:
it uses derived functors and Grothendieck duality, so the dualities that appear are

canonical and do not depend on choices as the other constructions mentioned above.

If necessary, choices can be made in order to compare our constructions with others
in the special cases where the latter are defined. Fundamental properties such as base
change are proved in a simple and conceptual way, and we furthermore obtain the

full generality of singular schemes. An example of how those properties can be used

for very concrete computations can be found in the computation of Balmer and the
first author of theWitt group of Grassmann varieties [4].

Let us now explain why we use triangulated monoidal methods, even though there
is no mention of a tensor product in the definition ofWitt groups of triangulated
categories. In fact, the proof of many results amounts to verifying that a certain number
of diagrams of morphisms of functors such as 2) below are commutative. It might
be possible to check this by hand in every concrete situation; however, it would be
extremely painful: try it for example in the simple caseof a regularclosed immersion.
Hence, some kind of systematic method is needed. Our solution to this problem is the
use of a convenient setting involving a tensor product, an adjoint internal Hom, functors

of the type f f and f Š and the adjunction relationships between them, that
is some variant of the so-called Grothendieck six functors formalism in an arbitrary
triangulated category. In this setting, we have shown in [12] that all the necessary

diagrams commute, whereas this article exploits the existence of this structure on
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various concrete triangulated categories. Here is a brief sketch of what is involved:
Witt groupsare defined for triangulated categoriesC equipped with a duality, i.e. with
a contravariant endofunctor D on C together with a bidual isomorphism of functors
Id D2 D D B D satisfying D.$A/ B $DA D IdDA for all objects A of C. A
morphism betweenWitt groups is naturally induced by an exact functorF W C1 C2
both triangulated categories with dualities resp. D1;$1/ and D2;$2/) equipped

with an isomorphism of exact functors W FD1 D2F which explains how F
“commutes” with the dualities. The fact that the isomorphism is not the identity
requires the analysisof its interactions with the other morphisms of functors involved.
It is the central problem to solve when proving the main theorems. To start with, this
morphism should make the diagram

F
F$1

$2F

FD1D1

D1

D2D2F
D2

D2FD1

1)

commutative. In [12], we discuss such morphisms of functors and diagrams in the
setting of closed symmetric monoidal categories. More precisely, let C1 and C2 be

closed symmetric monoidal categories, with tensorproductdenoted by and internal
Hom denoted by OE ; Given an object K, the functor DK WD OE ; K together with
the canonical natural transformation $K W

Id D2 defines a weak duality functor.K
Starting with an exact functor f W C1 C2 which has a left adjoint f which is
monoidal) and a right adjoint f Š, there is a natural transformation

W f Df ŠK DKf
such that the diagram 1), which becomes

f f $f ŠK

$Kf

f DfŠKDf ŠK

DfŠK

DKDKf
DfŠK

Df ŠKf DK

2)

commutes, asshown in [12]. Therefore, provided$K,$f ŠK and are isomorphisms,

f induces a morphism ofWitt groups

W.C1; Df ŠK;$f ŠK/ W.C2;DK;$K/
The present article is a description of how to apply this abstract closed monoidal
setting to well-chosen derived categories of schemes, with the derived functors Lf
Rf and its right adjoint f Š constructed by Grothendieck duality theory.
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The main result of this article is the definition of a push-forward along a proper
morphism f W X Y of separated noetherian schemes. In its most general form
Theorem 4.4), this push-forward is a morphism

Wi.X; fŠK/ f Wi.Y; K/
where K is a dualizing complex on Y This push-forward is induced by the derived
functor Rf and a suitable morphism of functors K W Rf DfŠK DKRf This
means that a form on a complex A for the duality Df ŠK is sent to a form on the
complex Rf A for the duality DK. We further prove that this push-forward respects

composition Theorem 5.3).
Similarly, for morphisms of finite tor-dimension f we define a pull-back Theorem

4.1), that is a morphism

Wi.Y;K/ Wi.X; Lf K/
respecting composition Theorem 5.2).

We also prove a flat base change theorem 5.5) relating the push-forward and
the pull-back in cartesian diagrams and a projection formula in the case of regular
schemes Theorem 5.7). Some explicit computations of transfers are provided in the
last section.

We assume that schemes are separated and noetherian for the following technical
reasons: quasi-compact and separated are necessary to have an equivalence between
the derived category of quasi-coherent sheaves D.Qcoh.X// and the subcategory

Dqc.X/ of complexes with quasi-coherent homology in the derived category of all
sheaves. Noetherian is used to ensure that the injectives in Qcoh.X/ remain injective
in the category of all OX-modules. Working without those assumptions would probably

require significant improvements in the theory of Grothendieck duality; this is
beyond the scope of this article which only intends to apply this theory toWitt groups.

Two main cases are discussed. The easier case is when all schemes considered are
regular. Then their derived category Db;c of complexes with coherent and bounded
homology is preserved under the derived tensor product L and under RHom, the
derived internal Hom. This endowsDb;c with a natural structure of symmetric monoidal
category. The dualizing complexes see Definition 2.1) are linebundles or shifted line
bundles. The coherent Witt groups are thus defined using the duality RHom. ; L/
for some line bundle L. Furthermore, the derived pull-back Lf for any morphism,
the derived push-forward Rf and its right adjoint f Š for proper morphisms also
preserve Db;c. Hence the abstract formalism of [12] applies on the nose, and we
therefore obtain push-forwards and their classical properties of composition, base

change and projection.
The general case, when schemes are not assumed to be regular, is more

complicated. Indeed, in this case L or RHom do not necessarily preserve bounded
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homology and so there is no nice closed symmetric monoidal category structure on

the category Db;c as the following affine example illustrates. Choose a field k and
set X D Spec.kOE 2/. Then consider the complex with k concentrated in degree
zero. A projective resolution of k is given by

:
kOE 2 :

kOE 2 :
kOE 2 k 0:

Thus k L k is the complex

0
k

0
k

0
k 0

which has unbounded homology. On the other hand, the unbounded derived category

Dqc of complexes with quasi-coherent cohomology admits a closed symmetric
monoidal structure; this is not completely obvious, see Theorem 1.2. But this category

is not suitable to defineWitt groups, because there is no obvious strong) duality
on it and, anyway, as Eilenberg swindle type of arguments show for K-theory,
unbounded categories are not the good framework to define cohomology theories. Still,
the closed symmetric monoidal structure on Dqc is useful to prove systematically the
commutativity of diagrams such as 1). That is, we can use the framework of [12] to
prove this commutativity in the large closed symmetric monoidal category Dqc and

then notice that all functors used in the definition of the duality RHom. ;K/ for
some suitable K) and the push-forward Rf actually restrict to Db;c under mild
additional assumptions. Thus, the commutativity of the diagrams involved is proved
in large categories by general closed symmetric monoidal methods, but the diagrams
actually often live in a smaller category whoseWitt groups are interesting.

A technical point arising is the construction of the functors involved in the
symmetric monoidal structure as well as Lf Rf and f Š on the unbounded derived
category Dqc. This relies on the work of Spaltenstein [35], the articles of Neeman

[29] and [30], and on the very useful notes of Lipman [28], which are a reference on
Grothendieck duality and contain very detailed explanations of all constructions.

The article is organized as follows. In Section 1, we recall the closed symmetric
monoidal structures of the different categories we use. In Section 2, we use these

structures to define triangulated categories with dualities and related Witt groups.
Section 3 contains results on the derived functors Lf and Rf and on Grothendieck
duality, i.e. the construction of the rightadjointf Š ofRf Section 4 contains the main
result of the paper, namely Theorem 4.4. We explain there explains how to use [12] to
obtain the definition of push-forwards for the coherentWitt groups of schemes. It also
contains a definition of the finite tor-dimension e.g. flat) pull-back Theorem 4.1).
Section 5 explains the behavior of the push-forward and the pull-back under composition,

and proves a base change formula relating them. Section 6 explains possible
reformulations of the push-forward indifferentcontexts and Section 7 studies in detail
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the push-forward in the case of finite field extensions, regular embeddings and
projective bundles, which is useful for computations and also allows a comparison with
the transfer maps of other authors when they are defined. Everything except some
specific computations in the last section works both for Grothendieck–Witt groups
GW andWitt groups W. For simplicity, we stated all results for W only.

The present article is a generalization of the main results of the unpublished
preprints [10] and [11] on regular schemes. To keep this article short, some
applications established in [11] dévissage/localization, Witt motives and partial results
about their decomposition for cellular varieties) are not included here. Most important,

all the abstract theorems about triangulated symmetric monoidal functors and

adjunctions between them which are crucial for proving the theorems of this article
are proven in the long article [12].

We would like to thank Amnon Neeman for his precise explanations about his
approach to dualizing complexes; it enabled us to generalize earlier versions of the
results. We would also like to thank Paul Balmer and Bruno Kahn for their constant
support, and the referee for his careful reading and detailed comments.

1. Closed symmetric monoidal categories

Let ch denote the category of separated noetherian schemes and Reg its full
subcategory of regular schemes. For any scheme X, let K.X/ resp. D.X/) denote the
homotopy resp. derived) category of homological complexes of OX-modules without

any restriction). We then add subscriptsCfor bounded above, i.e. bounded where
the differentials go, for bounded below, b for bounded, i.e. below and above, qc for
quasi-coherent and c for coherent to characterise the derived categories of complexes
whose homology is as the subscript. For example Db;c.X/ is the derived category
of complexes of OX-modules with coherent and bounded homology, and Dqc.X/
is the derived category of complexes with quasi-coherent homology. Note that we
work with homological notation to be compatible with the literature onWitt groups,
but it is easy to switch to cohomological notation by moving bounding subscripts to
superscripts and exchanging C and i.e. DC D D

For any scheme X, the usual tensor product and internal Hom of complexes
together with the obvious structure morphisms coming from the corresponding ones

for sheaves turn K.X/ into a suspended closed symmetric monoidal category in
the sense of Section 3 in [12]. This is completely classical and is detailed in [12],
Appendix, where a discussion on sign choices can be found. In particular, we have a

functor T W K.X/ K.X/ given by TA/n D T.An 1/.
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Theorem 1.1. Let X be a scheme.

1) The tensor product on K.X/ admits a left derived functor

L
W D.X/ D.X/ D.X/

together with unit, associativity and symmetry morphisms.

2) It restricts to

Dqc.X/ Dqc.X/ Dqc.X/:

3) When X 2 Reg, it furthermore restricts to

Db;c.X/ Db;c.X/ Db;c.X/:

4) The internal Hom on K.X/ has a right derived functor RHom

D.X/o D.X/ D.X/

which is a right adjoint to the derived tensor product in the usual special sense

natural in the three variables).

5) When X 2 ch, RHom restricts to

Db;c.X/o Db;c.X/ Dc.X/

as the usual RHom computed by replacing the second variable by a
quasiisomorphic complex of injectives in Qcoh.X/).

6) When X 2 Reg, this last restricted RHom arrives in Db;c.X/.

Proof. See Theorem A in [35] or [28], 2.5.7, for the existence of the derived tensor
product. It is based on the existence of a q-flat also called K-flat) resolution for
any complex C, i.e. the existence of a quasi-isomorphism QC C where QC is a

complex such that QC/ preserves quasi-isomorphisms. These resolutions can
even be constructed functorially see [28], 2.5.5). The derived tensor product can
then be constructed by taking q-flat resolutions of both variables. The former case

is used to define the unit morphism and the latter case to define the associativity and

symmetry morphisms directly from the ones of K.X/ see [35], Theorem A, or [28],
2.5.9). See [28], 2.5.8, for the fact that L restricts to Dqc. In the regular case, by
Point 3) of Proposition A.4, we can replace any complex in Db;c.X/ by a bounded
complex of locally free sheaves, in which case the derived tensor product obviously
maps to Db;c.X/.

Similarly, the derived internal Hom is constructed using q-injective also called
Kinjective) resolutions: see Section 1 in [35] for the definition of a q-injective complex
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and [35], Theorem A, or [28], 2.4.5, for the existence of RHom. Adjointness is also
stated in [35], Theorem A see also [28], 2.6.1, for more details).

We now consider RHom.A;B/ with A;B 2 Db;c.X/ for X 2 ch. By Corollary

A.6, the right derived functor RHom here is computed as the one in [23], Proposition

II.3.3. This proves Point 5). In the regular case, we can compute RHom by a

locally free resolution of the first variable and then, up to isomorphism, also replace
the second variable by a complex of locally free sheaves. As explained above, both
these complexes can be chosen to be bounded, and since Hom.A; B/ is coherent
when A and B are [19], 5.3.5, this proves Point 6).

Now the subtle point is that RHom.M;N/ is not necessarily an object in Dqc.X/
whenM andN are. To fix this, we use thequasicoheratorQW Mod.X/ Qcoh.X/
as introduced in Lemma 3.2, p. 187 in [8], which is right adjoint to the inclusion
Qcoh.X/ Mod.X/. On an affine space X D Spec.A/, it takes a sheaf of
OXmodules to the quasi-coherent sheaf associated to the A-module of its global sections
by the tilde construction. Its right derived functor is denoted by RQ, as considered
in [1], Remark 0.4, [28], Exercises 4.2.3, or B.16 in [36]. It is a right adjoint to the
inclusion Dqc.X/ D.X/, and A Š RQ.A/ when A 2 D ;qc.X/ in particular for
A 2 Db;c.X/) by [8], Exposé II, Proposition 3.5.2. An alternative construction of
RQ can be obtained from Theorem 4.1 in [29].

Theorem 1.2. Let X be a scheme.

1) The derived tensor product L togetherwith the obvious morphisms turns D.X/
into a symmetric monoidal category, closed by the RHom, and suspended in the
sense of Section 3 in [12].

2) If X 2 ch, the functor

RQ B RHomW Dqc.X/o Dqc.X/ Dqc.X/

is a right adjoint in the usual special way, see [26], v), p. 97) to the restricted
tensor product L onDqc. ThisturnsDqc.X/ into a suspendedclosed symmetric
monoidal category.

3) If X 2 Reg, the usual RHom is a right adjoint in the usual special way) to
the restricted tensor product L on Db;c. This turns Db;c.X/ into a suspended
closed symmetric monoidal category.

Proof. The closed symmetric monoidal structure on D.X/ easily follows from Theorem

1.1. The fact that it is suspended follows, as explained in [12], Section 3, from
the suspended bifunctor structure of RHom. The symmetric monoidal structure on

Dqc.X/ simply follows from the fact that L restricts to it. The fact that it is closed
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is a formal consequence of the fact that D.X/ is closed and that RQ is a right adjoint
to the monoidal) inclusion

W Dqc.X/ D.X/:

Homqc.A L B; C/ D Hom. A L B/; C/ ' Hom. A L B; C/

' Hom. A; RHom. B; C// ' Homqc.A; RQRHom. A; B//:

The closedness – that is the existence of the right adjoint to the derived tensor product

– can also be deduced from Brown representability, in the spirit of the examples
following [29], Theorem 4.1.) Point 3) follows from the same considerations, using
Theorem 1.1 3) and 6).

Notation 1.3. To shorten the notation, let OE ; denote the functor RHom, right
adjoint to the tensor product on the derived category D and let OE ; 0 denote the
functor RQB RHom, right adjoint to the tensor product on the derived category Dqc.

Since the derived quasi-coherator is the identity on D ;qc see above), if OEA; B 2
D ;qc then OEA;B Š OEA; B 0.

We finish this section by pointing out a comment of Neeman: exploiting the fact
that for X 2 ch, there are enough flat objects in Dqc and his representability result
more extensively gives an alternative approach for constructing a closed symmetric
monoidal structure on Dqc.X/ directly without passing through D.X/.

2. Witt groups

From now on, we assume that all schemes are defined over ZOE1=2

To define aWitt group, we need a strong duality on a triangulated category. Using
the previous framework of triangulated closed symmetric monoidal categories, we
recall how OE ; K and OE ; K 0 define dualities. The purpose of this section is to
compare the restrictions of these dualities to the subcategory Db;c and to discuss

when these dualities are strong on it. For any object K, let ]K resp. ]0

K denote the
contravariant exact functor OE ; K resp. OE ; K 0).

Following [12], Section 3.2, applied to the closed symmetric monoidal structure
on D.X/ with X an arbitrary scheme, we may define the bidual morphism

$K W Id ]K]K

K
0K

as a morphism

0

of triangulated endofunctors of D.X/. From Corollary 3.2 in [12], we
obtain that D.X/; ]K;$K/ is a triangulated category with weak duality in the sense

of [12], Definition 2.1.1, so $K is not necessarily an isomorphism). Similarly, when

X 2 ch, we obtain a triangulated category with weak duality Dqc.X/;] ;$ /.
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Definition 2.1. Let K be an object of Dqc.X/. It is a dualizing complex or it is
dualizing) if

– the functor OE ; K preserves Db;c.X/ and

– the bidual morphism $K is an isomorphism on Db;c.X/.
If furthermore it has finite injective dimension, i.e. it is quasi-isomorphic to a finite
complex of injectives, we say it is an injectively bounded dualizing complex.

In the terminology of Definition 2.1.1 in [12], the second condition says that ]K
is a strong duality on the subcategory Db;c.X/.

Note that for any X 2 ch, a dualizing complex K is automatically in Db;c.X/
since the natural morphism K OEOX; K coming from the monoidal structure is an
isomorphism and OX is coherent. In particular, our definition is exactly the “modern”
Definition 3.1, [30]) by Lemma 3.5 of loc. cit.Also note that our injectively bounded

dualizing complexes are the “old” dualizing complexes of [23], V. §2.

K 0K0

Proposition 2.2. Let X 2 ch and K 2 Dqc.X/ be a dualizing complex. Then the
functors ]K and ] coincide and the bidual morphisms $K and $ are equal on

the subcategory Db;c.X/.

Proof. Since OEA; K 2 Db;c.X/ for any A 2 Db;c.X/, we have OEA;K 0 Š OEA; K by
the remark after Notation 1.3 which proves that ]0

K Š ]K. The bidual morphisms are
then equalby the large commutative diagramconsidered in theproof ofTheorem 4.1.2
in [12], in which the f should be replaced by the inclusionDqc.X/ D.X/, which
is monoidal by definition of the tensor product on Dqc.X/.

Example 2.3. 1) A dualizing complex tensored by a shifted line bundle is still a

dualizing complex. In fact, this is the only freedom: by Lemma 3.9 in [30] see

also [23], Theorem V.3.1, for the injectively bounded case), a dualizing complex is
unique up to tensoring by shifted line bundles the shift can be different on different
connected component of X).

2) On a Gorenstein scheme X e.g. regular), OX itself is dualizing, so by the
previous point, the only dualizing complexes are the shifted line bundles.

Note that on a regular scheme, the category Db;c.X/ itself is closed symmetric
monoidal. It follows that dualizing complexes are dualizing objects in the sense of
Definition 3.2.2 in [12] in the category Db;c.X/, for X 2 ch.

Theorem 2.4. Let X 2 ch and K be dualizing. Then Db;c.X/;]K;$K/ is a

triangulated category with strong duality in the sense of Definition 2.1.1 in [12]. Let
it be denoted by CK and itsWitt groups by Wi.X;K/, i 2 Z ([12], Definition 2.1.5).
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Proof. The functor ]K D ]0
K is a contravariant endofunctor of Db;c.X/ and $K D

$0K

K
0K

is an isomorphism
0

on this categoryby definition of dualizing complexesby Proposition

2.2. The necessary commutative diagrams that ] and$ must satisfy simply
follow from the fact that they arealreadysatisfied inDqc.X/ since Dqc.X/; ]0

K;$0K/
is a triangulated category with weak duality.

We may thus think of the triangulated category with duality Db;c.X/; ]K;$K/
as being restricted from D.X/; ]K;$K/ or from Dqc.X/; ]0

K;$0K /, both structures
coinciding on Db;c.X/.

Remark 2.5. In [2], all dualities considered are strict, i.e. they strictly commute
with the suspension, but this assumption is only there for simplicity. Instead, in
Definition 2.1.1 of [12], we only assume commutativity up to a natural isomorphism,
and all theorems in [2] are still true in this more general situation.

Remark 2.6. Recall see e.g. [40], Definition 10.5.1) that for a left exact functor f
between exact categories, the right derived functor really is a couple Rf; s/ with
s

W qf Rf /q and q the morphism from the homotopy category to the derived
category. It is only the couple Rf; s/ which is unique up to unique isomorphism
and therefore deserves being called the right derived functor, despite the standard
abbreviated notation Rf Consequently, the various derived functors, for example
RHom. ; K/ used to define the duality) and Rf used below to define the
pushforward) together with all the morphismsof functors defining the symmetricmonoidal
structure can be considered as abstract exact functors and morphisms of exact functors.

With them, it is possible to define coherent Witt groups and push-forwards by
the methods discussed in this article, since these methods only involve the abstract
triangulated categories and functors, i.e. the framework of [12]. But as such, there
is no uniqueness of all these constructions. It is only if we keep as extra data all
the structural morphisms of the derived functors the s part of the couples), and thus
the relationship between the closed symmetric monoidal structure on K.X/ and the
one on D.X/, that the whole derived construction becomes unique up to unique
isomorphism, thus in particular the induced dualities, pull-backs and push-forwards.

3. The functors Lf Rf andf Š

We nowintroduce the functors Lf Rf and f Š associated to amorphism ofschemes

f and explain how they behave with respect to the monoidal structures. The first
two functors are derived functors, whereas the third one is right adjoint to Rf at the
level of derived categories, but is not the derived functor of some underlying functor
on the category of OX-modules. The construction of f Š is the heart of Grothendieck
duality theory, for which we refer the reader to [23], [37], [29], [13] or [28].
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Proposition 3.1. Let f W X Y be a morphism of schemes.

1) The functor f admits a left derived functor Lf W D.Y / D.X/ which
restricts to Dqc.Y / Dqc.X/.

2) If f is of finite tor-dimension see e.g. Examples 2.7.6), [28]) or if X;Y 2 Reg,
then Lf restricts to Db;c.Y / Db;c.X/.

Proof. For existence, see [35], Theorem A(iii) or Proposition 6.7, or Example 2.7.3
in [28]. For the fact that it restricts to Dqc, see [28], 3.9.1. It restricts to Db;c in the
finite tor-dimension case because Lf is then bounded and it respects the coherence

of the cohomology by [23], Proposition II.4.4, bearing in mind Proposition A.7. The
case X; Y 2 Reg follows from Point 3) of PropositionA.4 and PropositionA.7.

Proposition 3.2. The usual isomorphism f A B/ f A f B induces an
isomorphism of triangulated bifunctors in the sense of [12], Definition 1.4.14)

W Lf / Lf / Lf /

which turns Lf into a suspended symmetric monoidal functor in the sense of [12],
Section 4.

Proof. See [35], Proposition 6.8. The morphism is defined as the corresponding
one on K.X/ after having replaced both variables by q-flat resolutions. It is already
an isomorphism on K.X/. The commutative diagrams required compatibility with
the associativity, unit and symmetry of the monoidal structures) then easily follow
from the corresponding ones on K.X/, using Proposition A.3, Points 1) and 3).

By Proposition 4.1.1 in [12] applied to the symmetric monoidal structure and Lf
on D.X/, there is a natural morphism

W Lf OE ; OELf /; Lf / :

We also obtain a morphism

0
W Lf OE ; 0 OELf /; Lf / 0:

using Dqc.X/ instead of D.X/.

Proposition 3.3. Let X; Y 2 ch and A; B 2 Dqc.Y /. Assuming OEA; B 2 Dqc.Y /
and OELf A; Lf B 2 Dqc.X/, the morphisms A;B and 0

A;B coincide. In particular,

when K and Lf K are dualizing, K and 0

K coincide.
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Proof. This follows from the commutative diagram

Lf OEA; B 0

0

OELf A;Lf B 0

Lf OEA; B OELf A; Lf B

in which the vertical maps become identities under the assumptions. This diagram
is formally obtained from the definitions of and 0 out of the closed monoidal
structures.

Proposition 3.4. When X; Y 2 chand f W X Y isof finite tor-dimension or when

X; Y 2 Reg and for any f W X Y the natural morphism is an isomorphism on

objects in Db;c.

Proof. This follows from [28], Proposition 4.6.6, for f of finite tor-dimension, the
first variable coherent and the second in D so in particular for both in Db;c. Note
that the of loc. cit. coincides with our by definition compare [28], 3.5.4.5), and
[12], Proposition 4.1.1). In the regular case, by Point 3) of Proposition A.4, we can
assume our objects are bounded complexes of locally free sheaves, in which case the
result follows from [28], Proposition 4.6.7.

Proposition 3.5. Let f W X Y be a morphism of schemes.

1) The functor f admits a right derived functor Rf W D.X/ D.Y /.
2) The functor Rf restricts to Dqc.X/ Dqc.Y / when f is quasi-compact and

separated, in particular if X and Y are in ch, see Corollary 6.1.10 in [22].

3) The functor Rf restricts to Db;c.X/ Db;c.Y / when f is proper and Y is
quasi-compact.

Proof. For existence, see Theorem A(iii) in [35] or Examples 2.7.3 in [28]. For
the fact that it restricts to Dqc. / see [28], 3.9.2. In the proper case with Y
quasicompact, it restricts to Db;qc. / by [28], 3.9.2, and it then preserves coherence of the
cohomology by Theorem 3.2.1 in [21]. Note that we use Definition 5.3.1 in [19] to
define coherent modules on non necessarily noetherian schemes.

Proposition 3.6. For any morphism f of schemes, the functor Rf is a right adjoint
to Lf on D. / and consequently on all full subcategories to which both functors
restrict.

Proof. See see Theorem A(iii) in [35] or Proposition 3.2.1 in [28].
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By Proposition 4.2.5, [12] applied to the monoidal structure and the functors on

the categories D. / we obtain the projection morphism

W Rf / Rf Lf //

Theorem 3.7. Let f W X Y be quasi-compact and quasi-separated e.g. proper.
Then the projection morphism is an isomorphism on Dqc.

Proof. This is Proposition 3.9.4 in [28].

Theorem 3.8. For any separated morphism f W X Y with X and Y separated
and quasi-compact, the functor Rf W Dqc.X/ Dqc.Y / has a right adjoint f Š.

Proof. See Example 4.2 in [29] and use that Dqc. / and D.Qcoh. // are equivalent
for separated quasi-compact schemes by Proposition A.4 1).

Proposition 3.9. Let f W X Y be a proper morphism of separated noetherian
schemes and let K be a dualizing complex on Y Then f ŠK is a dualizing complex
on X. If K is an injectively bounded dualizing complex i.e. dualizing in the sense of
[23], V. §2, then f ŠK is injectively bounded too.

Proof. For the case of injectively bounded complexes, see [23],V, §8, or Corollary 3,
[37]. For the general case, we reproduce here a proof of Neeman. Since the question

of whether f ŠK is dualizing is local on X, we may assume Y is affine and restrict
to an affine open set U of X. As f is of finite type, we have a factorization U
An Y Y for some n where the left arrow is a closed embedding. Taking the
closure of U in Pn Y we see that U can be embedded as an open subset of a closed
subset of some Y Pn. Hence we only have to show that closed immersions, open
immersions and projections Y Pn Y respect dualizing complexes. The case

of closed immersions is done in [30], see Theorem 3.14, Remark 3.17 and Lemma
3.18; closed immersions are finite. The case of open immersions is Theorem 3.12

in [30]. For projective morphisms f W PnY Y one uses that RHom.A; f ŠK/ Š
RHom.A; f ŠO f K/ Š RHom.A; f K/ f ŠO, usingLemma5.6belowand that

f ŠO is a shifted line bundle by [23], SectionVII.4. Then one checks the conditions of
Definition 2.1 on objects of the form f B and O.i/ which by a theorem of Beilinson
[7] generate Db;c.PnY / as a thick triangulated category.

4. Pull-back and push-forward forWitt groups

We can now state the main result of this article: the definition of the push-forward
for coherent Witt groups along proper morphisms Theorem 4.4). This section also
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contains a definition of the pull-backs for morphisms of finite tor-dimension Theorem

4.1).
Let f W X Y be a morphism of schemes. By [12], Theorem 4.1.2, applied

to the monoidal categories D. / K W Lf ]K ]Lf KLf defines a duality
preserving functor fLf ; Kg between triangulated categories with weak dualities,
from D.Y /; ]K;$K/ to D.X/; ]Lf K;$Lf K/, for any object K of Dqc.Y /.

Theorem 4.1. Let f W X Y be a morphism of schemes such that

– the objects K and Lf K are dualizing.

– Lf preserves Db;c,

– K is an isomorphism on Db;c.Y /,
Then fLf ; Kg induces a morphism on Witt groups,

f W
Wi Y;K/ Wi X; Lf K/;

which we call pull-back. This pull-back therefore exists in particular ifK and Lf K
are dualizing and

– f is of finite tor-dimension and X; Y 2 ch or

– for any f and X; Y 2 Reg in which case K dualizing implies Lf K dualizing
by Example 2.3.

Proof. This follows from Theorem 4.1.2 and Lemma 2.2.6 1) in [12]. The theorem

of loc. cit. ensures the existence of the appropriate commutative diagrams in D.X/.
The requirements in the lemma of loc. cit. that the dualities given by K and f K
restrict as strong dualities to Db;c are satisfied by assumption, and the requirement
that K is an isomorphism when restricted toDb;c follows from Proposition 3.4.

Remark 4.2. Note that we obtain the very same pull-back when starting with the
monoidal structure on Dqc instead of D. This follows from Proposition 3.3.

Remark 4.3. In Theorem 3.12 of [30] it is proved that if f is an open immersion,
then Lf K is automatically dualizing if K is dualizing.

Let X; Y 2 ch, let K 2 Dqc.Y / and let f W X Y be a separated morphism.

K
00f

From [12],Theorem 4.2.9, applied to theclosed monoidalcategoryDqc.X/, we obtain
a morphism of functors K W Rf ] ]ŠK Rf By loc. cit., the pair fRf ; Kg is

duality preserving, i.e. Diagram 1) commutes.
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Theorem 4.4. Let X; Y 2 ch and f W X Y be a separated morphism such
that Rf preserves Db;c. Let K and f ŠK be dualizing. Then fRf ; Kg induces a

morphisms of Witt groups

f W Wi X; f ŠK/ Wi Y;K/

which we call push-forward. This push-forward is therefore defined in particular if

f is proper and K is dualizing see Proposition 3.9).

Proof. This follows from Theorem 4.2.9 and Lemma 2.2.6. 1) in [12]. For the
theorem of loc. cit., consider the triangulated closed monoidal categoryDqc. The fact
that K is an isomorphism follows from Proposition 4.3.3 in [12] using Theorem 3.7.
Then, apply the Lemma of loc. cit. to the subcategories Db;c, to which the dualities
restrict by definition of a dualizing object. Note that when X and Y are regular,
the complete proof works using directly Db;c as the triangulated closed monoidal
category in Theorem 4.2.9 of [12].

5. Properties

We now show that both push-forwards and pull-backs respect composition and that
they commute in an appropriate way (“base change”) provided certain standard
conditions hold. We also prove a projection formula for regular schemes.

Theorem 5.1. For any f W X Y and g W Y Z,

1) there is an isomorphism Lf B Lg L.g B f / between functors on D. /
which is associative in the usual sense.

2) There is an isomorphism R.g B f / Rg B Rf between functors on D. /
which is associative in the usual sense, and respects the adjoint couple

L. / ; R. / / in the sense of Definition 5.1.5 of [12].

3) When the schemes are separated and quasi-compact, and both f and g are
separated, there is an isomorphism f Š

B
gŠ g B f /Š between functors on

Dqc. / which is associative in the usual sense, and which respects the adjoint
couple R. / ; /Š/ in the sense of Definition 5.1.5 of [12].

Proof. For the functors Lf on D, the isomorphism is in Theorem A(iii), [35] or
[28], 3.6.4. For a proof that it is associative, see Scholium 3.6.10 in [28]. The other
points follow from the first one by Lemma 5.1.6 in [12].
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Theorem 5.2. The pull-back respects composition: the diagram

Wi.Z; K/
g Wi. LgY; K/

gf/

f Wi.X; Lf Lg K/
o

Wi.X; L.gf / K/
commutes, under the conditions for the existence of the pull-backs f and g of
Theorem 4.1.

Proof. This follows from [12], Theorem 5.1.3 and Corollary 5.1.4, applied to the
structures on D. /

Theorem 5.3. The push-forward respects composition: the diagram

Wi.X; f ŠgŠK/

o

f Wi.Y;gŠK/ f Wi.Z; K/

Wi.X; gf /ŠK/
gf /

commutes, under the conditions for the existence of the push-forward of Theorem 4.4.

Proof. This follows from [12], Theorem 5.1.9 and Corollary 5.1.10, applied to the
structures on Dqc. /

We now prove a base change formula. Let us consider a pull-back diagram

V

fN

gN

Y

f

X g Z.

By Section 5.2, [12], we obtain a morphism of functors

" W Lf Rg RgN LfN

between functors on D.X/.

Proposition 5.4. If all schemes are in ch and the diagram is tor-independent, e.g.

f flat, the morphism " is an isomorphism on Dqc.X/.
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Proof. Thecase where f isflat isProposition 3.9.5 in[28] all mapsbetweenschemes

in ch are “concentrated” in the sense of loc. cit.). The more general case is Theorem

3.10.3 in [28].

Then, when the schemes are in ch, still by Section 5.2 of [12], " induces a

morphism

W LfN g
Š

Ng
ŠLf

between functors on Dqc.X/. It is an isomorphism on the subcategory D ;qc by
Corollary 4.4.3, [28]. In particular, K is an isomorphism when K is dualizing and
thus in Db;c.Z/).

Theorem 5.5 Base change). Under the assumptions of Proposition 5.4 and the
ones for the pull-backs along f and fN and the push-forwards along g and gN to
exist Theorems 4.1 and 4.4), the pull-back and push-forward satisfy a base change

formula: the diagram

Wi.V; gNŠLf K/
gN Wi.Y;Lf K/

Wi.V;LfN gŠK/

fN

Wi.X; gŠK/ g

f

Wi.Z; K/

commutes.

Proof. This follows from [12], Theorem 5.2.1 and Corollary 5.2.2, applied to the
structures on Dqc. / keeping in mind Remark 4.2.

We conclude this section with a projection formula forWitt groups, in the case of
regular schemes. For this, we first need to introduce another natural morphism that
will anyway be of some use even in the case of non regular schemes.

When f W X Y is a separated morphism in ch, using the functors Lf
monoidal), Rf and f Š between the categories Dqc.X/ and Dqc.Y /, and the fact

that the projection morphism is an isomorphism by Theorem 3.7, we obtain a

morphism of functors

W f Š / L Lf / f Š L /
by Proposition 4.3.1 in [12].

Lemma 5.6. The morphism
W f ŠA L Lf B f Š.A L B/ is an isomorphism

when B is a perfect complex.
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Proof. Themorphism is compatible with open immersions byDiagram 41 of Proposition

5.2.5 in [12], and so we can restrict to the case of bounded complexes of vector
bundles, then to vector bundles, then again using open immersions to the trivial bundle

OY In that case, one can show that A;OY coincides with the unit morphism of
the monoidal structure f Š.A/ L OX f Š.A/, and is therefore an isomorphism.
By this coincidence we mean that the left diagram

f ŠA L Lf OY f Š.A L OY /
o

f ŠA L OX

o

f ŠA

Rf B L OY Rf B L Lf OY /
o

Rf B

o

Rf B L OX/

is commutative, in which the left vertical morphism is the fact that Lf is monoidal
and in particular respects units, and the bottom and right maps are unit morphisms of
the monoidal structures. By following the definition of given in Proposition 4.3.1
of [12] the commutativity of the left diagram follows from the one of the right hand
side, which is in turn implied, using the definition of in Proposition 4.2.5 of [12],
by the compatibility of the unit and monoidal structure morphisms for Lf

For any scheme X in Reg, the derived tensor product preserves Db;c.X/
Theorem 1.1 3)). This gives two different products on Witt groups by the formalism
of [18], using Proposition 4.4.6 and Corollary 4.4.7 in [12] applied to the closed
monoidal structure ofDb;c.X/. We fix one of these products say, the left one) for the
following results. When K and L are shifted line bundles, thus dualizing complexes,
the product is a pairing

Wi X; K/ Wj X; L/ WiCj X; K L/:

Theorem 5.7 Projection formula). For any proper morphism f W X Y with
X; Y 2 Reg, the pull-back and push-forward satisfy a projection formula: If K,
L are shifted line bundles on Y x 2 Wi.X; fŠK/ and y 2 Wj Y;L/, then

f I.x:f y// D f x/:y in WiCj Y; K L/ with I the isomorphism from
Wi.X; f ŠK f L/ to Wi.X; f Š.K L// induced by K;L.

Proof. First note that L being a shifted line bundle explains the absence of derivations

in the pull-back and tensor products above. Then, the morphism K;L is an

isomorphism by Lemma 5.6, thus the result follows from [12], Theorem 5.5.1 and
Corollary 5.5.2, applied to the closed monoidal structure on Db;c.

6. Reformulations in special cases

In this section, we give other canonical ways of writing the push-forward, under
additional assumptions.
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Notation 6.1. For an equidimensional morphism f W X Y of relative dimension

n, let f denote the object f Š.OY /OE n WD T nf Š.OY /.

This notation is motivated by the fact that in several cases, this object can be
identifiedwith ageometricobject called a relativedualizingsheafandusually denoted

f : see Sections 7.2 and 7.3 for the examples of regular embeddings and projective
spaces.

6.1. Relative dualizing sheaf

Theorem 6.2. Let f W X Y be a proper morphism in ch, K a dualizing complex

on Y such that f ŠK is a dualizing complex and assume that OY ;K W f ŠOY L

Lf K f ŠK is an isomorphism. Then we can rewrite the push-forward of Theorem

4.4 as

f W
WiCd X; f L Lf K/ Wi Y; K/:

In particular, the hypotheses and therefore the conclusion hold if K is dualizing and
either of the two following conditions hold.

– f is quasi-perfect see below, e.g. of finite tor-dimension) and f ŠK is dualizing.

– Y is a Gorenstein scheme, e.g. regular.

Proof. The reformulation of the push-forward is Definitions 6.1.3 and 6.1.4, [12].
When f is quasi-perfect, Proposition 2.1 in [27] shows that is an isomorphism on

all Dqc.Y /. Example 2.2 in loc. cit. shows that if f is of finite tor-dimension, it is
quasi-perfect. When Y is Gorenstein, the only dualizing complexes are shifted line
bundles, for which is an isomorphism by Lemma 5.6.

Let g W Y Z be another proper morphisms in ch and M a dualizing complex
on Z and let

f;g W f L Lf g
L Lg M/ gf

L L.gf / M

be the morphism defined in Theorem 6.1.5 of [12].

Theorem 6.3. The push-forward of Theorem 6.2 respects composition: the morphism

f;g is an isomorphismand ifI denotes the isomorphismofWittgroups induced by f;g,
then the push-forward on Witt groups defined above satisfies that g f D gf / I

Proof. This follows from Theorem 6.1.5 and Lemma 2.2.6 2) in [12]. Note that f;g
is an isomorphismbecause it is a composition of isomorphismsunder the assumptions
for the reformulated push-forward to exist.
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Theorem 6.4. In the situation of Theorem 5.5 and under the assumptions of the
reformulation of the push-forward above for the morphisms g and gN, the base change
theorem 5.5 becomes

f g D gN IfN

where I is the isomorphism of Witt groups induced by the isomorphism

W LfN g
L Lg K/ gN

L
LgN Lf K:

Proof. This follows from Theorem 6.1.7 in [12]. Note that OZ is an isomorphism
see before Theorem 5.5).

In the regular case, the projection formula 5.7 becomes the following.

Theorem 6.5. Let f W X Y be a proper equidimensional morphism of relative
dimension d with X;Y 2 Reg. Then the push-forward of Theorem 6.2 and the
pullback of Theorem 4.1 satisfy f I.x:f y// D f x/:y in WiCj Y; L K/ for any

x 2 WiCd.X; f f L/ and y 2 Wj Y; K/.

Proof. See [12], Theorem 6.1.9 and Corollary 6.1.10.

6.2. Smooth schemes over a base. We now fix a base scheme S 2 ch with a

dualizing complex KS and consider the category mPr=S of schemes in ch that are
smooth, equidimensional and proper over S. For such a scheme X, let the structural
morphism be denoted by pX W X S and its relative dimension over S by dX.
Note that any separated morphism between schemes in mPr=S is proper, being the
composition of a closed embedding, its graph, and a proper projection.

Notation 6.6. Let X 2 mPr=S. We set X D pŠX KS/OE dX Observe that

X D pX if KS D OS.

Theorem 6.7. Let f W X Y be a separated morphism, X;Y 2 mPr=S and let

L be a line bundle on Y The push-forward can be written

f W
WiCdX X; X f L/ WiCdY Y; Y L/

Proof. First, let us note that when pulling back or tensoring by a line bundle, there
is nothing to derive. This is why no L appear in front of f and We then use the
definitions in [12] Definitions 6.3.3 and 6.3.4). We need to check that the morphism

X L ' f Š
Y f L f Š

Y L/

is an isomorphism. This is the case by Lemma 5.6.
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Theorem 6.8. The push-forward of Theorem 6.7 respects composition.

Proof. See [12], Theorem 6.3.5 and Corollary 6.3.6.

Theorem 6.9. The push-forward of Theorem 6.7 satisfies flat base change.

Proof. See [12], Theorem 6.3.7 and Corollary 6.3.8.

7. Examples

Note that f Š is unique up to unique isomorphism whenever it is defined, because it
is always defined as a right adjoint to Rf This allows us to use computations of f Š

from [23] and other sources in the examples below.

7.1. Finite field extensions. The simplest example of a proper morphism is the case

of a finite field extension E=F giving rise to a finite morphism

f W X D Spec.E/ Spec.F/ D Y:

The tilde construction gives equivalences of categories Mod.F / ' Qcoh.Y / and

Mod.E/ ' Qcoh.X/, and the subcategories of finite dimensional vector spaces

correspond to coherent sheaves of modules. We thus describe all objects and functors
through these equivalences of categories. The only dualizing complex up to shifts
and isomorphisms) on Y is F itself. The functors f D F E/ and f D /jF
are exact, there is nothing to derive. The functor f Š is given by III, §6, of [23] as

HomF E; / mapping to E-vector spaces) and the unit and counit of the adjunction

f ; f Š/ are respectively given by

V HomF E;V jF /; HomF E; V 0/jF V 0;

a 7! e 7! e:a/; 7! .1/;

for an E-vector space V and an F -vector space V 0. For fields, the only nonzeroWitt
group modulo4 isW0 which is the classicalWitt group of the field. So we are reduced
to study push-forward for forms on vector spaces, i.e. complexes concentrated in
degreezero. Following the construction, it is easytocheck that for anyE-vector space

V the morphism W f OEV;f ŠF OEf V; F coincides with the Cartan isomorphism
of F -vector spaces

HomE.V; HomF E;F //jF ' HomF V jF ;F /
which sends a morphism

W V HomF E; F / to the morphism a 7! a/.1//.
Thus, the push-forward f W W0.E; HomF E; F // W0.F / is a Scharlau transfer
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'!
see [34], p. 48) with respect to the usual trace Tr

W E F To see this, note

that Tr factors as E HomF E; F / F where the isomorphism is given by

e 7! x 7! Tr.e:x// and HomF E; F / F is the evaluation at 1.

7.2. Regular embeddings. Let F be a vector bundle of rankd > 0 over X with a

regular section s W OX F i.e. such that the corresponding embedding f W Z X
of the zero locus is a closed regular embedding of codimension d. In this case the
augmented Koszul resolution is exact, see Proposition 3.1 IV, §2) in [14], and thus
yields a quasi-isomorphism

KF

qis

D 0 ƒdF _ ƒd 1F _ F _ OX 0 /

f OZ D 0 f OZ 0 /

3)

from the Koszul complexKF to f OZ concentrated in degree 0. Since f is a closed
embedding, thus finite, f is exact and coincides with Rf Let F D ƒdF be
the determinant of F In this situation, we have f ŠA D f F OE d Lf A for
all A 2 Db;c.X/; this may be extracted from III, §7, [23], see also Proposition 1

in [37], after applying Lemma 5.6 and using that F is dual to the cotangent sheaf.

By tensoring the augmented Koszul resolution with F and using the canonical
isomorphisms ƒiF _ F Š ƒd iF and f OZ F Š f f F we obtain
the trace map f f ŠOX OX counit of the adjunction Rf ; f Š/) in the derived
category as the composition of a usual map of complexes followed by the inverse of
a quasi-isomorphism OX is in degree 0 and f f F in degree d):

f f ŠOXD 0 0 0 f f F

id

0 /

0 F F f f F 0 /
s

OX 0 OX 0 0 0 /

Now assumeZ is Gorenstein. Then OZ is dualizing, and the isomorphism OZ

F

OEOZ; OZ
_

adjoint to OZ L OZ ' OZ defines a form on OZ, denoted by 1Z. On the
other hand, there is a well-known form F W KF Hom.KF ; OEd / see §4 in
[6]) given by the canonical isomorphism ƒiF_ ' ƒd iF _/_ ƒdF _ in degree

i with a sign chosen so that when F D °Li is a direct sum of line bundles, this
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form is the tensor product of forms Li on Koszul complexes of length one

KLi

Li

D 0 L_i
1

s_
i

OX

1

0 /

Hom.KLi ;L_i OE1 / D 0 L_i
s_
i

OX 0 /

4)

representing elements in W1.X; L_i /. The following proposition can be considered

'!

as a concrete description of the push-forward of 1Z along f
Proposition 7.1. Let Z and X be Gorenstein schemes and f W Z X be a closed
regular embedding of codimension d defined as the zero locus of a regular section of
a vector bundle F of rank d whose determinant ƒdF is denoted by F Then the

image of the form 1Z W OZ OEOZ; OZ adjoint to OZ L OZ ' OZ) under the
composition

W0.Z;OZ/ 'Wd.Z;f Š _F / f Wd.X; _F /

is a form such that the following diagram in D.X/ commutes.

KF
qis

' f OZ

Hom.KF ; _F OEd / ' OEf OZ; _Fqis
OEd

Proof. Let iF W KF KF KF in D.X/ be the composition

KF KF
qis qis f OZ Lf OZ f OZ LOZ/ ' f OZ

qis 1

KF

F_

where is the morphism from Proposition 4.2.1 in [12]. Note that iF is in fact
represented by a morphism of complexes not just a fraction): one can check that the
map fromKF KF toKF in degree i is a sum of the canonical morphisms ƒkF
ƒi kF ƒiF with appropriate signs. We also consider the map F W KF

OEd given by

KF

F

D 0 ƒdF _ ƒd 1F _ F _ OX 0 /

_F OEd D 0 _F 0 /
The following three lemmas together clearly imply the proposition.
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Lemma 7.2. The morphism of complexes xF W KF Hom.KF ; OEd / defined
as the composition

KF Hom.KF ;KF KF / iF / Hom.KF ; KF / F / Hom.KF ; _F OEd /
coincides with the form where the first map is the unit of the adjunction of the tensor
product and the internal Hom in the homotopy category.

Lemma 7.3. The form W f OZ OEf OZ; _F OEd coincides with the composition

f OZ OEf OZ; f OZ L f OZ OEf OZ;f OZ L OZ/
o

OEf OZ; _F OEd ' OEf OZ; f OZOEd OEf OZ; f f Š _F

F

where the

_
first map is the unit of the adjunction of the tensor product and the internal

Hom in D.X/, the penultimate one is the identification OZ ' f Š
OEd and the last

one is induced by the counit of the adjunction f ; f Š/, i.e. the trace map described
above.

Lemma 7.4. The composition of Lemma 7.2 coincides with the one of Lemma 7.3
when f OZ is identified with KF using qis.

Proof of Lemma 7.2. As we aredealingwith honest morphisms ofcomplexeswe may
first reduce to open subsets on which F is a sum of line bundles Li note that two
morphisms in D.X/ are not necessarily equal if they are equal when restricted to all
open sets of an affine covering, see for example [5]). We then reduce to the case of
codimension d D 1, by multiplicativity of Koszul complexes: let d D d1 C d2 and

let F D F1 ° F2 where F1 resp. F2) is the sum of the first d1 line bundles resp.
last d2). Let f1 W OZ1 X resp. f2 W OZ2 X) be the corresponding regular
subschemes. Then F ' F1 F2 and KF ' KF1 KF2 We leave it to the
reader to show that the diagram

KF1 KF2

xF1 xF2

' KF
xF Hom.KF; _

F OEd /

'
Hom.KF1 ; _

1
OEd1 / Hom.KF2 ; _

2
OEd2 / Hom.KF1 KF2 ; _

1
OEd1 _

2
OEd2 /

commutes, where is the morphism defined as in [12] Definition 4.4.1), using the
monoidal structure on the homotopy category. By definition, F F1 and F2 make
the same diagram commutative when they replace xF xF1 and xF2 Hence it suffices
to show the lemma for one line bundle L and its associated Koszul complex of length
one, which can be checked by hand.
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Proof of Lemma 7.3. By definition, the form is given by the composition

f OZ f 1Z f OEOZ; OZ ' f OEOZ; f Š _F OEd OEf OZ; _F OEd :

One proves using the closed monoidal structure that it coincides with the composition

f OZ ' f f Š _F OEd f OEOZ; f Š _F OEd OEf OZ; _F OEd

where the second map is adjoint to theunit morphism of themonoidal structure. Then,
looking back at the definition of and in Proposition 4.2.2 and Theorem 4.2.9 of
[12], one sees that is thecomposition around the lower leftcorner of thecommutative
diagram

f OZ OEf OZ; f OZ Lf OZ OEf OZ;f OZ L OZ/ OEf OZ;f OZ

f f Š _
F OEd OEf OZ;f f Š _

F
OEd L f OZ OEf OZ;f f Š _

F OEd L OZ/ OEf OZ;f f Š _
F OEd

F OEd OEf OZ;f OEOZ; f Š _f OEOZ;f Š _
F OEd

L f OZ OEf OZ;f OEOZ;f Š _F OEd L OZ/ OEf OZ; _
F OEd

which thus proves the lemma all squares in this diagram are commutative by obvious
functorial reasons, and the triangle by adjunction).

Proof of Lemma 7.4. This follows from the computation of the resolution of f OZ
by KF when computing the derived functors OEf OZ; and L f OZ.

This finishes the proof of Proposition 7.1.

Remark7.5. IfF D F 0°L1, withL1 a linebundle, s D s0; s1/, s0 ands1 transverse,
the push-forward of 1Z is zero: decompose the inclusion Z X as Z Z.s0/ X
where Z.s0/ is the zero locus of s0. Push-forwards respect composition and the
pushforward of 1Z along Z Z.s0/ is already zero since it is the form 4) which is the
cone of a degenerate) form s W L_1 OX.

On the other hand, an example when this push-forward isnonzero can be extracted
from [4]. Let k be a field and let Grk.2; 4/ be the Grassmannian of 2-planes in A4k

k to Ak induces a section of the dual W _ of the universalA nonzero map from A4
subbundle W A4k of rank 2. Its zero locus is a copy of P2 regularly embedded

in Gr.2; 4/. The push-forward of the unit form of P2 to Gr.2; 4/ is nonzero by [4]
where it is proved that it is an element of a basis of the total Witt group of Gr.2; 4/
as a W.k/-module.
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7.3. Projective spaces. Let Y 2 ch be a Gorenstein scheme, let E be a vector
bundle of rank r C 1 on Y and let us examine when the unit form on X D PY E/
can be pushed forward to Y along f W X Y Since f is smooth thus flat), we
can use Section 6.1. In the case of a smooth morphism f the object f of 6.1 is
a line bundle, and it is the maximal exterior power of the relative cotangent bundle
see Chapter VII §4 in [23]). Here, since f is a projective bundle, it is given by

f D f E/_ O. r 1/ see e.g. [15], Appendix B.5.8). If r C 1 is even, we
can push-forward the unit form 1X

W OX ' OEOX; OX from W0.X; OX/ by using the
composition

'!

W0 X; OX/' W0 X; O. r 1// D W0 X; f E// W rf Y; E/

where the first isomorphism is given by tensoring with the canonical form r D
OEO. rC1/=2/ O..rC1/=2/ O. rC1// Š HomO.O. rC1/=2/; O. rC
1// and the last map is the push-forward in the form of Theorem 6.2. Computing the
image of 1X through this composition means therefore computing the image of r
by the push-forward. The complex on which f r/ lives is Rf O. r C 1/=2//.
But this complex is zero by [20], 2.1.15, so f r/ D 0. If r C 1 is odd, there is
no push-forward induced by f with sourceW0.X; OX/ because then there is no line
bundleK on Y such thatOX isequal to f _E/ O. r 1/ f K/ up to a square

in Pic.Y /. In other words, pushing forward the unit form of PY E/ to Y is not very
interesting: whenever it is possible, we get zero. Of course, there are other forms
on Pr E/ not mapping to 0 under the push-forward, as we will see in the following
remark.

Remark 7.6. Let us explain a potential source of confusion. Let i W Spec k Prk
be a rational point and L a line bundle on Prk Since Pic.Spec k/ D 0, using first
an isomorphism Ok ' i i L/, we can push-forward from W0.Spec k; Ok/ to
Wr Prk ; L/ for any L. But for different L, we get very different push-forwards.
Indeed, for example Wr Prk; O. r// D 0 for odd r by [39] or [3]) so any
pushforward to there is obviously zero, whereas since k ' Ok the push-forward written
as in Theorem 6.7)

W0 Spec k; Ok/ ' W0 Spec k;!k/ Wr Pr
k ; Prk/

is certainly nonzero, because we can further compose it by a push-forward back to
W0.Spec k;!k/ and since the push-forward respects composition, the composite is
the identity. Note that this lastcase also givesan exampleof a form on Prk whose
pushforward to Spec k is not zero. More generally, this phenomenon of different
pushforwards starting from the same group can happen whenever f W Pic.Y / Pic.X/
is not injective.
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A. q-flat and q-injective resolutions

For the convenience of the reader, we include here well-known facts on q-flat or

qinjective objects that are repeatedly used in the proofs of this article. Most of them
are due to Spaltenstein.

Definition A.1. Let X be a scheme and let A be an object in the homotopy category

K.X/. We say that A is q-flat or K-flat) if the triangulated functor
A/ W K.X/ K.X/ preserves quasi-isomorphisms. We say that A is

qinjective or K-injective) if the triangulated functor Hom ; A/ W K.X/o K.X/
preserves quasi-isomorphisms.

Example A.2. A bounded above complex of flat OX-modules is q-flat. A bounded
below complex of injectives is q-injective.

A discussion of q-flat and q-injective complexes can be found in Sections 1 and 5

of [35]. See in particular Propositions 1.5 and 5.3.

Proposition A.3. Let A and B be objects in K.X/ or K.Y / and let f W X Y be

a morphism of schemes.

1) If A and B are q-flat, then so is A B.

2) If A is q-flat and B is q-injective, then Hom A; B/ is q-injective.

3) If A is q-flat, then f A is q-flat.

Proof. See [35], Proposition 5.3 and 5.4.

The following two propositions summarize the equivalences of categories and the
properties of injectives that we need. Let Qcoh.X/ denote the abelian category of
quasi-coherent sheaves on X and Cb.Vect.X// resp. Cb.Coh.X//) the category of
bounded complexes of locally free resp. coherent) sheaves on X.

Proposition A.4. Let X 2 ch.

1) The natural functor D.Qcoh.X// Dqc.X/ is an equivalence of categories
and thus the same is true for their homologically bounded, bounded below or
bounded above subcategories and the subcategories with coherent homology.

2) The natural functor Db.Coh.X// Db;c.Qcoh.X// is an equivalence.

3) If X 2 Reg, then the natural functor D.Cb.Vect.X/// Db;c.X/ is an equiv¬
alence of categories.
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Proof. Point 1) is Corollary 5.5 in [9]. In Point 2), fully faithful follows from
Theorem 12.1 in [25], second part: For affine schemes, use Example 12.3 in [25]. In
general, take a finite affine cover of the noetherian scheme X and then take the direct
sum over the coherent sheaves on X obtained by extending the coherent sheaves

on the affine subschemes using [22], I.6.9.7. Essentially surjective can be found
in [17], Example 2.5.2, which follows from Lemme 2.1.2. c) of [38] and an
induction argument. Point 3) can then be proved as follows. Let Cb.Coh.X// be
the category of bounded complexes of coherent sheaves. Decompose the functor

D.Cb.Vect.X/// Db;c.X/ as

D.Cb.Vect.X/// D.Cb.Coh.X/// Db.Coh.X//
Db;c.Qcoh.X// Db;c.X/:

All these functors are equivalences of categories: the first one by the fact since X is
regular, every coherent sheaf has a finite resolution by locally free sheaves by [33],
§7, Point 1, the second one by Lemma 11.7 of [25], the third one by Point 2) and

the fourth by Point 1).

Proposition A.5. Let X 2 ch.

1) The category Qcoh.X/ has enough injectives by [36], B.3.

2) The natural inclusion Qcoh.X/ Mod.X/ preserves injectives by [36], B.4.

3) Every bounded below complex of quasi-coherent OX-modules admits a quasi¬

isomorphism into a complex of Qcoh.X/-injectives by 1) and [23], I.4.6.

4) Every bounded below complex of Qcoh.X/-injectives is q-injective in both
K.Qcoh.X// and K.X/ by 2).

CorollaryA.6. LetX 2 ch. On objects inD ;qc.X/orD X/, theunbounded right
derived functors computed by q-injective resolutions as in [35]) coincide with the
more classical bounded below right derived functors computed by using resolutions
by bounded below complexes of injectives as in [23]).

Proof. Bythe proposition, any objectA 2 D ;qc.X/ is quasi-isomorphic toabounded
below complex of Qcoh.X/-injectives which are also Mod.X/-injective resp. a

bounded belowcomplexof Mod.X/-injectives) and this complex is q-injective.

Similarly, for q-flat resolutions, we have a weaker statement, sufficient for our
purposes.

Proposition A.7. Let X 2 ch. On objects in DC;qc.X/ or DC.X/, the unbounded
left derived functors computed using q-flat resolutions can be computed by using
bounded above resolutions consisting of flat OX-modules.
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Proof. This follows from the fact that any OX-module is a quotient of a flat one see

[28], 2.5.5).
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