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On the centralizer of diffeomorphisms of the half-line

Hélène Eynard

Abstract. Let f be a smooth diffeomorphism of the half-line fixing only the origin and Zr its
centralizer in the group of Cr diffeomorphisms. According to well-known results of Szekeres
and Kopell,Z1 is a one-parametergroup. On the other hand,Sergeraert constructed an f whose
centralizer Zr 2 r 1, reduces to the infinite cyclic group generated by f We show that

Zr can actually be a proper dense and uncountable subgroup of Z1 and that this phenomenon
is not scarce.

Mathematics Subject Classification 2010). 37E05.

Keywords. Interval diffeomorphism, centralizer, commuting, Liouville number, vector field,
flow.

Let f be a smooth diffeomorphism of the closed half-line RC with a single fixed
point at the origin. In this article, we study the centralizer of f in the group Dr of
Cr diffeomorphisms of RC, 1 r 1, that is, the closed) subgroup Zr of Drfmade up of all diffeomorphisms commuting with f The first things to observe are

that Zr decreases with r, contains the infinite cyclic subgroup generated by f and is
quite small. Indeed, for r D 1, well-known theorems by G. Szekeres and N. Kopell
[7], [4] show that Z1f is always a one-parameter subgroup of D1 see also Chapter
4 in [9] and Chapter 4 in [5] for complete proofs and more discussion). For r 2,
the situation is more subtle, and for instance both of the limit cases permitted by the
inclusions

Z Š ff n ; n 2 Zg Zr
f Z1

f Š R
can occur. According to F. Takens’ work [8], if f is not infinitely tangent to the
identity at 0 then Z1f consists of smooth diffeomorphisms and therefore coincides
with Z1f On the other hand, in [6], F. Sergeraert builds a diffeomorphism f whose

centralizer Z2f is strictly contained in Z1f and one can actually check [2] that, in this

example, Z2f reduces to the group spanned by f – and is hence as small as possible.
The following result says that there exist intermediate situations:

Theorem A. There exists a smooth diffeomorphism f of RC with a single fixed
point at the origin, whose centralizer Zrf for 2 r 1, is a proper, dense and

uncountable subgroup of the one-parameter group Z1f
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This theorem follows from the proposition below, where f is the flow at time one

of the vector field coming out:

Proposition 1. There exists a complete C1 vector field on RC, vanishing only at
0, whose flow f t at time t is not C2 at 0 for t D 1=2 but is smooth on RC for all
t 2 Z ° P 2K Z, where K R n Q is a Cantor set.

A natural question to ask now is whether diffeomorphisms f whose centralizer

Zrf r 2, is neither the one-parameter group generated by f namely, Z1f Š R)
nor the discrete group spanned by f that is, ff n; n 2 Zg Š Z), are very peculiar or
not. At the end of the paper, Theorem B gives a partial answer to this question: every
diffeomorphism of RC which satisfies a certain oscillation condition and belongs to a

smoothflow(with the usualhypotheses on theunique fixed point)can beapproximated
in a suitable sense by diffeomorphisms f whose centralizer Zrf is as in Theorem A.
The proof of this second theorem is very similar to that of the first one but involves
more technicalities. For this reason, we discuss the weaker statement in priority.

It would also be interesting to know whether the centralizer Zrf when it is a

proper subgroup of R Š Z1f can contain any Diophantine number. It turns out [2]
that the Cantor set we construct in our proof of Proposition 1 contains only Liouville
numbers.

Acknowledgements. I am extremely grateful to Sylvain Crovisier for explaining the
method of approximation by conjugation to me and suggesting that it could be used

in this work to preserve and control the desired smoothness of the limit flow. More
generally Iamdeeply thankful for his continued interest in my progress and his useful
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Emmanuel Giroux, who dedicated much of his time and energy to me through countless
discussions, reflexions and rewritings, always leading to a better understanding, and

I warmly thank him for his uncommon involvement and patience.

Proof of Proposition 1

1. Overview. The following proof combines the strategy used by F.Sergeraert in[6],
Section 4, with the method of approximation by conjugation introducedby D.Anosov
and A. Katok in [1] and later developped by many authors see [3] and references

therein). We start with a particular smooth vector field 0 the same as in [6]) and

build as the limit of a sequence of deformations k where each k is the pullback
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hk 0 of 0 by a smooth diffeomorphism hk. Thus, the flow f t
k of k is related to the

flow f t
k D h 1

0 of 0 by f t
k B f t

0 Bhk. The point is to cook up the conjugations hk so

k k 1, converge in the C1 topology for a dense set ofthat the diffeomorphisms f t

times t but converge only in the C1 topology for some other time. In particular, the
diffeomorphisms hk diverge in the C2 topology. Here, the behaviour of the initial
vector field plays a crucial role: we take a vector field 0 presenting plateaux which
accumulate at the origin and whose heights tend to zero but with wild oscillations.
According to a theorem of F. Sergeraert [6], Section 3, these oscillations are necessary

if we want to create a non-smooth flow with small perturbations hk of the identity.
Furthermore, Theorem B at the end of this paper states an oscillation condition which
is sufficient for our construction to work.

Let us indicate now how these oscillations come into play. First of all, we pick
an initial vector field 0 vanishing only at the origin, and contracting: every point is
attracted by 0 in the future. Or, in other words, the function 0=@x is negative away
from 0. The graph of this function can then be depicted as an undersea landscape
consisting of a sequence of alternating lowlands Lk and highlandsHk whose respective

altitudes vk and uk measured from the water surface, so that 0 < uk < vk)
go to zero when k grows, but “oscillate wildly” in the sense that the ratios vk=uk
tend to infinity.

HkC2 LkC1 HkC1 Lk Hk

0

A consequence of this behaviour is that, if an element f t
0 of the flow takes a

segment S Hk into Lk for some large k, then its restriction to S is an affine map
with big dilation factor vk=uk.

In our deformation process, the diffeomorphisms hk are defined inductively and

all coincide with the identity near 0. Each new perturbation is described by the
diffeomorphism gk D hk B h 1

k 1
and its role is to modify the flow of 0 locally at a

specific time 1=qk, in a fundamental segment Sk of f 1=qk
0 lying in the lowland Lk.

k B f 1=qkIn other words, g 1
0 B gk agrees with f 1=qk

0 outside Sk. Furthermore, we

take gk close enough to the identity so that the Ck norms of the maps

g 1
k B f t

0 B gk f t0; t 2
1

qk Z \ OE0; 1 ;

and also

h 1
k B f t

0 B hk h 1
k 1 B f t

0 B hk 1;

are all strictly bounded by 2 k, and we denote by Ik a compact neighbourhood of
1
qk Z\ .0;1/ such that the non-strict bounds still hold for all t 2 Ik. With a suitable
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choice of the sequence qk, we can arrange that the intersection of the compact sets

Ik is a Cantor set K consisting of irrational times t for which the diffeomorphisms

h 1
k B f t

0 B hk, k 1, converge in the C1 topology. Indeed, it suffices to pick qk at

each step in such a way that 1
qk Z meets any component of Ik 1 in at least two points,

and also avoids the kth rational number for an arbitrary enumeration of Q) so that

K D T
Ik has no rational point.

Although the action of the perturbation diffeomorphism gk on the map f 1=qk is0
local, its action on the vector field 0 and on general elements of its flow is not at all.
To see this, let us consider the difference k D gk 0 0. Since gk commutes with

f 1=qk
0 out of Sk and coincides with the identity near 0, it is actually the identity on

the whole interval OE0; min Sk In particular, k vanishes identically there. Inside Sk,
our choice of gk gives k the following shape of a Ck-small wave:

On the other hand, the half-line OEmax Sk; C1/ is tiled by the segments S
p
k D

f p=qk
0 Sk/, p 1. The commutation property noted above now implies that, for

every p 1,

k D f p=qk
k jS

p 0 k jSk/: 1)

Inotherwords, thewave k jSk ispropagated to theright ofSk by the iterates off 1=qk
0

Let us look at the wave k jS
p
k

when Sp
k sits on the highlandHk. As explained before,

the restriction of f p=qk
0 to S p

k for such a p is an affine map of the form

x 2 Sp
k 7!

vk

uk
x C ck for some ck 2 R:

Then, according to 1),

k jS
p
k

x/ D
k jSk / f p=qk

0 x/
Df p=qk uk

1

0 x/ D
vk

k jSk /
vk
uk

x C ck ;

and so, for any integer m 1,

k x/ D
vk

Dm
k jS

p
uk

m 1
Dm

k jSk /
vk

uk
x C ck :

Thus, in the course of the propagation, the wave remains C1 small but its higher order
derivatives are amplified and can become big. As we already said, the difficulty is
then to adjust the perturbation diffeomorphisms gk so that the differences hk 0 0
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which are essentially the superpositions of the propagated waves l l k) diverge
in the C2 topology while the conjugates h 1

k B f t
0 B hk, for t in the Cantor set K, still

converge in the C1 topology. Following Sergeraert, a solution is roughly to take

uk and vk respectively equal to 2 k4 and 2 k2 while the size of the wave k jSk
is

defined as 2 k3

2. Notation and toolbox. In this short section, we assume that all necessary conditions

are met so that the expressions we write make sense. For any Ck map g defined
on an interval I R open or closed), we set

kgkk D sup fjD
mg.x/j; 0 m k; x 2 Ig 2 OE0; C1 :

If f W I f I/ is an orientation-preserving C2 diffeomorphism, we define Lf to
be

Lf D D log Df D
D2f
Df

:

The non-linear differential operator L satisfies the following chain rule:

L.h B g/ D Lh B g Dg C Lg: 2)

To compute higher order derivatives of compositions, we will also use Faà di Bruno’s
formula in the form

Dm h B g/ D X2…m

Dj jh B g YB2

DjBjg; 3)

where …m is the set of all partitions of f1; : : : ; mg and jXj, for any finite set X, is
the number of its elements.

Let be a vector field on an interval J Throughout the paper, we will make no

difference between and the function @x, where x is the underlying coordinate in

J and in particular we will identify @x with 1. If J is both the source of g and the
target of h where g and h are diffeomorphisms), we can define two new vector fields,

g and h which are the pushforward of by g and its pullback by h, respectively.
Viewed as functions, these vector fields are given by

g D Dg B g 1
B g 1 ; 4)

h
h D

B 5)
Dh

and so we easily get the following expressions for the derivatives:

D.g / D D B g 1
C Lg B g 1

B g 1; 6)

D2h
D.h / D D B h B h: 7)

Dh/2
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3. The initial vector field. The construction involves two smooth functions

W R OE0; 1 satisfying the following conditions:

x/ equals 0 if x 1=6 and 1 if x 1=3;

x/ equals 0 if x 1=6 or x 5=6, and 1 if 1=3 x 2=3;

1

1 1

01 06
1
6

1
3

1
3

2
3

5
6

Now, setting un D 2 n4 and vn D 2 n2 we define the vector field 0 as in [6] by

0.x/ D unC1 un unC1/ .2nC1x 1/ vn un/ .2nC1x 1/

for x 2 OE2
n 1; 2 n ; 0.0/ D 0 and 0.x/ D 1 for x 1.

2 n 1 2 n

un
vn

unC1

0

0 ; t 2 Rg the flow of 0 and by
W R RC

theFrom now on, we denote by ff t
diffeomorphism given by t/ D f t

0 .1/ for all t 2 R. Note that, sinceD D 0B

0 D D B
1 and D 0 D L B

1 : 8)

We also fix a forward orbit fal; l 0g of f0 D f 1
0 where a0 D 1 and al D f0.al 1/

D l/ for all l 1.
One easily checks that 0 is smooth, contracting, infinitely flat at the origin and

C1-bounded – with 1 < k 0k1 < C1. Furthermore, 0 equals vn identically on

the central third of OE2 n 1; 2 n namely OE2 n 1
C 2 n 1=3; 2 n 2 n 1=3 and

un on OE2 n 2 n 1=6;2 n
C 2 n=6 A simple computation of travel time at

constant speed shows that for all n 4, there exist integers i.n/ and j.n/ such that

2 n 1
62 n 1 ai.n/C2 < ai.n/ 1 2 n

C
1
62 n 9)

and

2 n 1
C

1
32 n 1 aj.n/C2 < aj.n/ 1 2 n 1

32 n 1: 10)

Thus 0 equals vn on OEaj.n/C2;aj.n/ 1 and hence f t
0 induces on OEaj.n/C1; aj.n/ 1

the translation by tvn for 0 t 1. Similarly, f t
0 induces the translation by tun

in a neighbourhood of ai.n/.
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4. The deformation process. Our goal is now to produce a sequence hk of smooth
diffeomorphisms of RC such that the vector fields k D h 0 converge in the C1
topology to the vector field of Proposition 1. In order to have regular perturbation
patterns and easier computations), we actually work at time scale, i.e. we define hk
as the conjugate Bˆk B

1 of a smooth diffeomorphismˆk of R which coincides
with the identity near C1 so that hk is also the identity near 0). Conforming to the
general schemeof the approximation by conjugation method see [3]),ˆk is obtained
as a composition

ˆk D 'k B 'k 1 B B '1

where the diffeomorphisms 'k are manufactured inductively from a fixed function
and two adjustment integer parameters qk and nk. The details of the construction

follow.

1
4

1
20

1
20

1
4

1

Let
W R OE0; 1 be a smooth function supported in OE 1=4; 1=4 and satisfying

t/ D t2=2 around 0. Given positive integers q, n, set wn D 2 n3 and denote by

q;n W R OE0; 1 the smooth function defined by

q;n.t/ D wn q t j.n/ for all t 2 R. 11)

Clearly, q;n is supported in j.n/ 1
4q ;j.n/ C

1
4q Moreover, for every integer

m 1 and all t 2 R,

Dm
q;n.t/ D wnqmDm q t j.n/

and hence

k q;nkm D wnqm
k km:

In particular, by taking n large compared to q once m is fixed, one can make the Cm
norm of q;n arbitrarily small.

Now let Jq;n be the interval j.n/ 1
2q ;j.n/ C

1
2q

and define 'q;nW R R as

the map meeting the following properties:

'q;n.t/ D t for t > j.n/ C
1 ;2q

'q;n.t/ D t C q;n.t/ for t 2 Jq;n;

'q;n commutes with the translation by 1
q

outside Jq;n, and so

'q;n.t/ D t C q;n t C
p
q

if t 2 Jq;n
p
q

; p 0:
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In short, we can write

'q;n.t/ D t CXp 0
q;n t C

p
q

for all t 2 R; 12)

and similarly,

D'q;n.t/ D 1
CXp 0

D q;n t C
p
q

;

Dm'q;n.t/ DXp 0

Dm
q;n t C

p
q

for all m 2.

Note that for every t 2 R, at most one term in each sum is nonzero since the support
of q;n has length less than 1=q. These equations imply that

k'q;n idkm D k q;nkm 13)

and, in particular, 'q;n is a diffeomorphism provided k q;nk1 < 1.
The following lemma will be used later in the proof of Lemma 4) to show that

the limit flow coming out of our construction is not smooth at time 1=2:

Lemma 2. For all l 1, let ql and nl be positive integers with ql odd and

wnlqlk k1 < 1. Then for every k 1 the diffeomorphism ˆk defined by

ˆk D 'k B 'k 1 B B '1; where 'l D 'ql ;nl ;

has the following behaviour on 1
2 Z:

ˆk coincides with the identity in a neighbourhood of Z C
1
2;

ˆk is tangent to the identity on Z – meaning that ˆk.l/ D l and Dˆk.l/ D 1
for all l 2 Z;
Lˆk Lˆk 1/.l/, for l 2 Z, equals wnk q2 if l j.nk/ and 0 otherwise.

k

Proof. Since l D ql ;nl is supported in 1
4ql ;

1
4ql C j.nl / and

'l D id
CXp 0

l t C
p
ql

;

'l is the identity on the 1
4ql

-neighbourhood of 1
ql Z C

1
2ql

But ql is odd, say ql D
2sl C 1, so

1
2 D

ql
2ql D

2sl C 1

2ql D
sl

ql C
1

2ql 2
1

ql
Z C

1

2ql
;
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and hence 1
ql ZC

1
2ql

contains ZC
1
2

for all l 1. Thereforeˆk D 'k B B'1 is the

identity in a neighbourhood of ZC
1
2

On the other hand, since .0/ D D .0/ D 0,

each 'l is C1 tangent to the identity on 1
ql Z Z, so ˆk is C1 tangent to the identity

on Z.
Now, applying the chain rule 2) for the operator L D D2=D toˆk D 'k Bˆk 1,

we get

Lˆk D L'k Bˆk 1 Dˆk 1 C Lˆk 1:

For l 2 Z, we have seen above thatˆk 1.l/ D l and Dˆk 1.l/ D 1, so

Lˆk Lˆk 1/.l/ D L'k.l/:

Ifl > j.nk/ then L'k.l/ D 0 just because 'k agrees with the identity on the interval
OEj.nk/ C

1 ; C1/. If l2qk j.nk/ then 11) and 12) give

L'k.l/ D
D2'k.l/
D'k.l/ D D2'k.l/ D D2

k j.nk/ D wnkq 2
k;

which completes the proof.

For the next lemma, we fix anenumeration of the rational numbers, Q D frkgk 1,

k

and set ˆ0 D id and I0 D OE0;1 Moreover, as in Lemma 2, we will henceforth
abbreviate 'ql ;nl as 'l and similarly ql ;nl as l and Jql;nl as Jl

Lemma 3. For suitably chosen increasing sequences of positive integers qk and nk,
the diffeomorphisms ˆk D 'k B B '1 and hk D Bˆk B 1, the vector fields

k D h 0 and their flows f t
k satisfy the following estimates for every k 1:

kˆk ˆk 1kkC1 2 k 1 ; ik)

k k k 1k1 2 k; iik)

k f t
k 1 jOE0;1 kk 2 k for all t 2 Ik [ f1g; iiik)k f t

where Ik Ik 1 is a compact set avoiding the kth rational number rk and consisting
of 2k disjoint segments of nonzero length, two in each component of Ik 1.

Proof. Let k 1 and assume we already chose ql and nl for 1 l k 1 in
such a way that estimates il iil and iiil hold. In particular, since ˆ0 D id by
convention,

kˆk 1 idk2

k 1

XlD1
kˆl ˆl 1k2

k 1

XlD1

2 l 1
D

1
2

2 k 1

2
: 14)
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Take an odd integer qk > qk 1 such that 1
qk Z avoids rk and meets the interior of

each component of Ik 1 in at least two points. Then pick nk > nk 1 such that

k kkkC1
2 k 4 vk 1

nk

j…kC1j kDˆk 1kkC1
k k 0k1

; 15)

i.e.
wnk

vk 1
nk

2 k 4 q k 1
k

j…kC1j k kkC1 kDˆk 1kkC1
k k 0k1

;

which is possible since

wn
vk 1

n
D 2 n3C.k 1/n2

D o.1/:

Note that inequality 15) clearly implies k kk1 < 1, and so 'k is a diffeomorphism
remember that k'k idkm D k kkm).

Let us first prove that this choice of nk implies ik). Sinceˆk D 'k Bˆk 1, Faà

di Bruno’s formula 3) gives, for 0 m k C 1,

Dm ˆk ˆk 1/ D X2…m

Dj j.'k id/ B ˆk 1 YB2

DjBjˆk 1:

But for every partition 2 …m with m k C 1,

kDj j.'k id/ Bˆk 1k0 D k kkj j k kkkC1
and

YB2
jDjBjˆk 1j kDˆk 1kkC1

k ;

and so

kˆk ˆk 1kkC1 j…kC1j k kkkC1 kDˆk 1kkC1
k :

Thus, by the choice of nk in 15),

kˆk ˆk 1kkC1
2 k 4 vk 1

nk

k 0k1
2 k 1;

which is the desired estimate ik) note that k 0k1 1).
To prove iik), let us define

k D ˆk
@t ˆk 1

@ t and k D 'k @t @ t ;
so that

k D ˆk 1 k and k k 1 D k:
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Viewing k as a function,

k D
1

D'k
1 and D k D

D2'k
D'k/2 :

Given the choice of nk in 15),

1 and sokD'k 1k0 D kD kk0 2 k 4
k 0k

1 1

D'k 0
2/;

and

kD
2'kk0 D kD

2
kk0 2 k 4

k 0k
1

1 ;

so

j kj 2 k 3
k 0k

1
1 and jD kj 2 k 2

k 0k
1

1 : 16)

Next, applying 5) and 7) to k D ˆk 1 k,

k D
k Bˆk 1

Dˆk 1
and D k D D k Bˆk 1

D2ˆk 1

Dˆk 1/2 k Bˆk 1

so, according to 14) and 16),

j kj 2 k 2
k 0k

1
1 ;

jD kj 2 k 2
k 0k

1
1 C

4

2
2 k 3

k 0k
1

1 D 2 k 1
k 0k

1
1 :

Now, applying 4), 6) and 8) to k k 1 D k,

j k k 1j D j k B
1

0j k kk0 k 0k0 2 k 2 ;

jD. k k 1/j D jD k B
1

C D 0 k B
1
j

2k kk1 k 0k1 2 k:

Thus, k k k 1k1 2 k as stated in estimate iik).

l the flow of 'l @ t forLet us finally prove iiik). Set '0 D id and denote by t

0 l k. Then t0 is just the translation by t and

t
k D ' 1

k B
t
0 B 'k:

Since

k D ˆk @t D ˆk 1'k @t and k 1 D ˆk 1 @t ;

their flows are given by

f t
k D Bˆ 1

k B ˆk 1 B
1 and f t

k 1 B
t

k 1 D Bˆ 1
0 Bˆk 1 B

1 :k 1 B
t
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By definition, 'k D 'qk;nk commutes with the translation 1=qk
0 outside Jk D Jqk;nk

Consequently, 'k commutes with any iterate p=qk
0 p 1, outside the interval

j.nk/ C
1

2qk
p
qk

; j.nk/ C
1

2qk D
p 1

[qD0

Jk
q

qk
:

Therefore, p=qk
k equals p=qk

0 outside this interval, and in particular, for 0 p qk,
outside

Mk D j.nk/ 1 C
1

2qk
; j.nk/ C

1

2qk
:

On the other hand, for t 2 Jk,

1=qk
k 'k.t / Ck t/ D ' 1 1

qk

k t C k.t / CD ' 1 1

qk
by definition of 'k on Jk

D t C
1

qk C k.t / because t C k.t/ C
1

qk
> j.nk/ C

1

2qk

D
1=qk
0 t/ C k.t /:

Thus, 1=qk
k

1=qk
0 D k. Similarly, for any p 1,

p=qk
k t/ p=qk

0 t/ D
p 1

XqD0

k t C
q

qk
for all t 2 R, 17)

so

p=qk
k

p=qk
0 m D k kkm:

again since at most one term of the sum is nonzero in 17)). Now, in the region Mk
where p=qk

k and p=qk
0 disagree for 0 p qk, the diffeomorphism ˆk 1 is the

identity. Moreover, j.nk// D aj.nk/ and Mk/ OEaj.nk/C1; aj.nk/ 1 so, by
10), restricted to Mk is an affine map with slope vnk As a consequence, the

derivatives of

f p=qk
k D B ˆ 1

k Bˆk 1 B
1

k 1 B
p=qk

have a simple expression on Mk/:

k D vnk/1 m Dm p=qkDm f p=qk
k B

1:

Similarly, again on Mk/,

k 1 D vnk/1 m Dm p=qkDm f p=qk
0 B

1:
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Therefore, for 0 p qk and 0 m k,

Dm f p=qk
k f p=qk

k 1 v1 m p=qk
k

p=qk
nk 0 m

D v1 m
nk k kkm v1 k

nk k kkk 2 k 4

according to our choice of nk in 15), and thus

f t
k f t

k 1 k 2 k 4 for all t 2
1
qk

Z \ OE0; 1 :

Now let Tk be a subset of 1
qk Z\ Ik 1 with exactly two points in each of the 2k 1

connected components of Ik 1 remember that qk was chosen so that there are at

least two points there). Since both vector fields k and k 1 are smooth on RC, we
can find a compact neighbourhood Ik of Tk in Ik 1 nfrkg consisting of 2k segments,
such that

f t
k 1 jOE0;1 k 2 k for all t 2 Ik [ f1gk f t

in fact, the restriction to OE0; 1 is not essential here: one can prove that the difference

f t
k f t

k 1
is 1-periodic on OE1;1/, and Ik can thus be chosen so that the above bound

holds on all of RC). This completes the proof of iiik), and thus of Lemma 3.

5. The limit vector field

Lemma 4. The vector fields k, k 1, of Lemma 3 converge in the C1 topology on

RC, and in the C1 topology on R
C

to a vector field which satisfies all properties
stated in Proposition 1 with K D T

Ik.

Proof. The C1 convergence of the vector fields k on RC follows directly from
estimate iik) in Lemma 3. Next, estimate ik) shows that the diffeomorphisms ˆk
converge in the C1 topology to asmooth diffeomorphismˆofR, so the vector fields

ˆk@t converge in the C1 topology to ˆ @t. Now k equals ˆk @t on RC
and

is a smooth diffeomorphism from R to RC
Given any compact set A RC

and any
integer m 0, the restriction of to 1.A/ is Cm-bounded, and hence the vector
fields k converge Cm uniformly to on A. Therefore, the vector fields k converge
to on RC

in the C1 compact-open) topology.
The convergence of the vector fields k implies a similar convergence of their

flows f t
k to the flow f t of Furthermore, estimate iiik) in Lemma 3 shows that, for

t 2 K [ f1g, the restrictions f t
k jOE0;1

converge in the Cm topology on OE0; 1 for any

k t 2 K[f1g, converge in theC1topologym 0. In theend, thediffeomorphisms f t
on RC, so f t is smooth for all t 2 K [ f1g, and hence for all t 2 Z °P 2K

Z.
Note here that each Ik, by construction, is a compact set avoiding the kth rational
number and consisting of 2k segments, two in each component of Ik 1, soK D T

Ik
is indeed a Cantor set.



428 H. Eynard CMH

The last thing we have to prove is that f 1=2 is not C2 at 0 or, equivalently, that

Lf 1=2
D D2f 1=2=Df 1=2 is not continuous at 0. Let us compute Lf 1=2 at a point

ai.nl /, as defined in 9), for l 2 N. Taking the limit of the maps

k B id Cf 1=2
k D Bˆ 1 1

2 B ˆk B
1 ;

we get

f 1=2
D Bˆ 1

B id C
1

2 Bˆ B
1:

Let us set D ˆ 1
B id C

1
2/ Bˆ so that f 1=2

D B B 1. Near ai.nl /, the
map 1 is affine, with slope u 1

nl so

Lf 1= 2 ai.nl / D
1

unl
L i.nl/ :

On the other hand, by 2) applied twice,

L i.nl/ D Lˆ 1 ˆ i.nl/ C
1

2
Dˆ i.nl/ C Lˆ i.nl/ :

According to Lemma 2, each ˆk, and hence ˆ is tangent to the identity on 1
2Z

provided all integers qk were chosen odd. Moreover, ˆk and ˆ 1
k coincide with the

2
so Lˆ 1 i.nl/ C

1identity near Z C
1

2 D 0. Summing up, and using the third
property in Lemma 2, we get

L i.nl/ D Lˆ i.nl/ DXk 1

Lˆk Lˆk 1/ i.nl/ DXk l
wnkq2

k: 18)

Therefore,

Lf 1=2 ai.nl/ D
1

unl Xk l
wnkq 2

k <
wnl

unl 1;

and so f 1=2 is not C2 at 0.

More examples

Let S denote the space of smooth diffeomorphisms ofRC which are infinitely tangent
to the identity at the originandhavenoother fixedpoint. Wesay thatadiffeomorphism

f of RC is contracting if f.x/ < x for all x > 0, and we call Szekeres vector field
of f the unique C1 vector field generating the one-parameter group Z1f [7], [4].
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As mentioned in the introduction, the question we discuss in this section is whether
the phenomenon presented in Theorem A is very peculiar or quite general. First of
all, because of Takens’ work [8], this phenomenon is limited to S. A difficulty then
is that there is no obviously relevant topology on S for our problem. In particular,
the C1 compact-open topology restricted to S is extremely coarse: given any two
diffeomorphisms f; g 2 S, which are both contracting, say, it is easy to construct
a sequence of diffeomorphisms fk 2 S which converge to f in the C1 topology
and whose germs at 0 are all equal to that of g. In other words, the C1 topology
does not see the germ at 0 while this germ precisely determines the smoothness of
the Szekeres vector field and hence the nature of the centralizers in the groupsDr for

r 2. So we do not claim that the phenomenon described in Theorem A is generic
in any way, but the following result shows that it is at least not scarce:

Theorem B. Let f0 be a smooth contracting diffeomorphism of RC having a smooth
and C1-bounded Szekeres vector field, and satisfying the following oscillation
condition:

lim sup

x!0
sup

0<y x
j log.x f0.x//j
j log.y f0.y//j DC1: 19)

Then, for every k 0 and every " > 0, there exists a smooth diffeomorphism f of

RC which is close to f0 in the sense that

jD
m f f0/.x/j "jD

m f0 id/.x/j for all m k and all x 2 RC, 20)

and whose centralizer Z1f is a proper, dense and uncountable subgroup of Z1f
Note that the oscillation condition 19) forces f0 to be infinitely tangent to the

identity at 0.
It is interesting to compare this result with Theorem 3.1 in [6]. Indeed, the latter

says that, if a smooth contracting diffeomorphism f does not oscillate much in the
sense that

sup
0<y x

y f y/ D O x f x/ for some > r 1
r

;

then the Szekeres vector field of f is Cr Theorem B can be thought of as a kind of
“partial converse”.

Proof. The idea of the proof is the same as for Theorem A: we start with a smooth
vector field, here the Szekeres vector field 0 of the given f0 instead of Sergeraert’s
vector field, and construct deformations k of 0 which converge to the Szekeres

vector field of the wanted f We will just hint at how to adapt the arguments in this
more general setting. As before, we denote by f t

0 the flow of 0 so that f0 D f 1
0

and by the diffeomorphism from R to RC
given by t/ D f t

0 .1/ for all t 2 R.
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We also fix a forward orbit of f0, namely fal D f l
0 .1/ D l/; l 0g, and we set

Vl D OEalC2; al 2 for all l 0.

Lemma 5. There exist two alternating sequences of integers i.n/ and j.n/, n 0,
with i.n/ < j.n/ < i.n C 1/ < j.n C 1/ < such that

log un

log vn n!1 C1 21)

where un D supVi.n/ j 0j and vn D infVj.n/ j 0j. In particular, Vi.n/ and Vj.n/ are
disjoint when n is large enough.

Proof of lemma 5. Thisproof isratherelementary. Stillwegive it for the reader’s
convenience. The oscillation property 19) means that there exist decreasing sequences

xn/n and yn/n converging to 0, with yn < xn, satisfying

lim
n!1

log xn f0.xn//
log yn f0.yn// DC1 22)

the numerator and denominatorare negative whenn is large enough). We can assume

in addition that xnC1 f 2 yn/ for all n. Let0

i.n/ D maxfk 2 N; ak xng;

j.n/ D minfk 2 N; ak yng:

Any fundamental interval f0.x/; x OE0;1 of f0 contains exactly one element of
the forward orbit fai ;i 2 Ng of a0 D 1, so the definitions of i.n/ and j.n/ imply

xnC1 ai.nC1/ < f 1
0 xnC1/ f0.yn/ < aj.n/ yn < xn ai.n/;

and a fortiori i.n/ < j.n/ < i.nC1/ for all n. Let us now prove that for this choice

of alternating sequences i.n/ and j.n/,

log un
log vn n!1 C1;

where un D supVi.n/ j 0j and vn D infVj.n/ j 0j. By definition of i.n/, j.n/, Vi.n/
and Vj.n/, there exist tn and sn in OE 3;3 such that

un D 0 f tn
0 xn/ and vn D 0 f sn

0 yn/ :

Now
d
dt f

t
0 x/ D 0 f t

0 x/ for all t; x/ 2 R RC;
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so

xn f0.xn/ D f 0
0 xn/ f 1

0 xn/

D 0 f n
0 xn/ D 0 f n

0 xn/ for some n 2 OE0; 1 ;

and similarly

yn f0.yn/ D 0 f n
0 yn/ D 0 f n

0 yn/ for some n 2 OE0; 1 :

So

log un
logvn D

log 0 f tn
0 xn/

log 0 f sn
0 yn/ D

log.xn f0.xn// C log 0.f tn
0 xn//
0 xn//0.f n

log.yn f0.yn// C log 0.f sn
0 yn//
0 yn//0.f n

: 23)

The flow f t
0 t2R

of 0 preserves 0, i.e.

0 f t
0 x/ D Df t

0 x/ 0.x/ for all t; x/ 2 R RC:
As a result,

0 f tn
0 xn/

0 f n
0 xn/ D D f tn n/

0 f n
0 xn/

and

0 f sn
0 yn/

0 f n
0 yn/ D D f sn n/

0 f n
0 yn/ :

One easily checks that

Df t
0 .0/ D e tD 0.0/ for all t 2 R;

so since Df 1
0 .0/ D 1 f 1

0 D f0 has to be infinitely tangent to the identity at 0 to
satisfy the oscillation condition 19)), D 0.0/ D 0 and

Df t
0 .0/ D 1 for all t 2 R:

Since 0 is C1 on RC, both t;x/ 7! f t
0 x/ and t;x/ 7! Df t

0 x/ are uniformly
continuous on every compact subset of R RC. Thus, since j nj 1, j nj 1,

jtn nj 4, jsn nj 4, and xn and yn converge to 0,

D f tn n/
0 xn/ 1 and D f sn n/

0 f n
0 f n

0 yn/ 1:

This, together with 22), 23), and the fact that

log.xn f0.xn//! 1 and log.yn f0.yn//! 1
implies that

log un
log vn C1;

which concludes the proof.
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We now choose a sequence wn with intermediate decay, i.e. satisfying wn D
o.vmn / for all m and un D o.wn/ one can take for instance wn D

pun). Then we
define the maps q;n and 'q;n by formulae 11) and 12), using the same function

but the new parameters wn and j.n/. Extending thence all other definitions and
notation of Subsection 4, our task is to show that Lemmas 3 and 4 still hold.

Proof of Lemma 3 in the general setting. We only insist here on the points that differ
from the proof in Subsection 4. Again, we proceed by induction. At step k, the choice
of qk is just the same, but we need to be more careful about nk. The reason is that
the map is no longer affine on the regions we consider, and hence the computation
of higher derivatives of compositions is trickier.

First, using the fact that 0 is smooth and infinitely flat at 0, one can check that,
for any fixed m 1,

sup fjD
m t/j; t 2 OEj.n/ 1; 1/g n!1

0

and

vmC1
n sup

°jD
m 1 x/j; x 2 aj.n/C1; aj.n/ 1

n!1
0:

this is derived from the relations D D 0 B and D 1 D 1= 0).
Then we pick an integer nk > nk 1 meeting the following three conditions:

OEj.nk/ 1;1/ k 1
D < 1; 24)

Dm 1
OEaj.nk/C1;aj.nk/ 1 0

< v m 1
nk for 1 m k, 25)

and

k kkkC1
2 k2 4 v2knk

j…kC1j
2
kDˆk 1kkC1

k k 0k1
: 26)

Inequality 26) is stronger than 15) and thus implies ik) and iik) of Lemma 3 the
arguments are strictly the same). The proof of iiik) is more complicated but we still
have with our former notation)

f t
k D Bˆ 1

k B ˆk 1 B
1 and f t

k 1 B
t

k 1 D Bˆ 1
0 Bˆk 1 B

1 :k 1 B
t

For t D p=qk, 0 p qk, again t
k D t0 outside

Mk D j.nk/ 1 C
1

2qk
; j.nk/ C

1

2qk
;

so f t
k f t

k 1 D 0 outside Mk/. Furthermore, ˆk 1 D id on Mk. Thus, on

Mk/,
k B

1 and f tf t
k D B

t
0 B

1
k 1 D B

t
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or, equivalently,

f t
k f t

k/ B
1

B
t

k 1 D B
t 0/ B

1:

For m k, Faà di Bruno’s formula gives

Dm f t
k 1 D X2…m

k f t Dj j
B

t
0 B

1

YB2
k B

t DjBj 1 : 27)

According to inequality 25),

YB2

DjBj 1 < v 2k
nk on Mk/ aj.nk/C1;aj.nk/ 1 : 28)

Now write

B
t
k B

t 0/ B
t

0 D B
t

0 B
t
k/ B

t0/

and observe, using 17), that

t
0 B

t
k D id C

p 1

XqD0

k id C
q

qk
for t D

p
qk

0 p qk.

For l k, Faà di Bruno’s formula gives

Dl
B

t
k B

t
0 B

t
0 D Dl

B
t

0 B
t
k B

t
0

D X2…l
j j<l

Dj j B
t
0 B

t
k YB2

0 B
t DjBj t

0 B
t
k :

Since t0 D id C t it follows from 24) that

Dj j. B
t
0/ B

t
0 B

t
k/ < 1 on Mk:

Now for any partition 2 …l with less than l blocks, i.e. j j < l, one block B of
has at least two elements, so at least one factor in the product

YB2

DjBj t
k D YB2

0 B
t DjBj id C

p 1

XqD0

k id C
q
qk

is a derivative of order at least 2, and hence is bounded above by k kkk, while
the others are all less than 2. So the product is bounded above by 2l 2

k kkk
2k 2

k kkk. Therefore,

Dl
B

t
k B

t
0/ j…lj 2l 2

k kkk j…kj 2k 2
k kkk:

In view of 27), 28) and 26) this implies that kf
t

k 1kk 2 k 4 for allk f t

t D p=qk, 0 p qk, and one completes the proof of Lemma 3 just as in
Subsection 4.
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Proof of Lemma 4 in the general setting. The proof that the vector fields k converge
and that the limit flow f t is smooth for t 2 Z °P 2K Z is strictly the same as in
Subsection 5. Note that if we start our construction at step k0 instead of step 1, the
limit diffeomorphism f satisfies the condition 20) for l k0 and " D 2 k0 1, so

one can construct f arbitrarily close to f0 in the sense of Theorem B.
The part of Lemma 4 that needs a little extra effort is the irregularity of f 1=2.

Again,

f 1= 2
D B B

1;

with D ˆ 1
B id C 1=2/ B ˆ The computation of L i.nl/ leading to 18) can

be integrally transposed here, and yields L i.nl/ D Pk l wnk q2k with the new
wn). However, this time is not affine on the involved region, so the computation
of Lf 1=2 i.nl/ is a bit longer. Formula 2) applied twice gives

Lf 1=2
D L B B

1/ D. B
1/ C L B

1 D 1
C L 1 ;

and hence, since D 1
D 1= 0,

Lf 1=2 ai.nl/ D L B B
1/ D. B

1/ C L 1 ai.nl/ C
L i.nl/

0 ai.nl /
:

Now, according to Lemma 2 still valid in our new setting), the limitˆ of the
diffeomorphisms ˆk coincides with the translation by 1=2 at order one on Z, so the first
term of the above sum is equal to

L B id C
1
2 B

1 D id C
1

2 B
1

CL
1 ai.nl/ D Lf 1=2

0 ai.nl/ :

But when l grows, Lf 1=2
0 ai.nl / tends to Lf 1=2

0 .0/ D 0. Therefore

Lf 1=2 ai.nl / Pk l wnk q2
k

0 ai.nl/
< wnl

unl l!1 1;

so f 1=2 is not C2 at 0. This concludes the proof of Lemma 4 and of Theorem B.
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