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On the centralizer of diffeomorphisms of the half-line

Hélene Eynard

Abstract. Let f be a smooth diffeomorphism of the half-line fixing only the origin and Z7 its
centralizer in the group of C” diffeomorphisms. According to well-known results of Szekeres
and Kopell, Z! is a one-parameter group. On the other hand, Sergeraert constructed an f whose
centralizer Z", 2 < r < oo, reduces to the infinite cyclic group generated by f. We show that
Z" can actually be a proper dense and uncountable subgroup of Z! and that this phenomenon
is not scarce.

Mathematics Subject Classification (2010). 37E05.

Keywords. Interval diffeomorphism, centralizer, commuting, Liouville number, vector field,
flow.

Let f be a smooth diffeomorphism of the closed half-line R . with a single fixed
point at the origin. In this article, we study the centralizer of f in the group D" of
C7 diffeomorphisms of R4, 1 < r < oo, that is, the (closed) subgroup Z } of D”
made up of all diffeomorphisms commuting with . The first things to observe are
that Z” decreases with r, contains the infinite cyclic subgroup generated by f and is
quite small. Indeed, for r = 1, well-known theorems by G. Szekeres and N. Kopell
[71, [4] show that Z} is always a one-parameter subgroup of D! (see also Chapter
4 in [9] and Chapter 4 in [5] for complete proofs and more discussion). For r > 2,
the situation 1s more subtle, and for instance both of the limit cases permitted by the
inclusions
Z={f".nel}CZ; CZ; =R

can occur. According to F. Takens’ work [8], if f is not infinitely tangent to the
identity at O then Z} consists of smooth diffeomorphisms and therefore coincides
with Z}’o. On the other hand, in [6], F. Sergeraert builds a diffeomorphism f* whose

centralizer Z J% is strictly contained in Z 1 and one can actually check [2] that, in this

example, Z J% reduces to the group spanned by f — and is hence as small as possible.
The following result says that there exist intermediate situations:

Theorem A. There exists a smooth diffeomorphism [ of Ry with a single fixed
point at the origin, whose centralizer Z'., for 2 < r < o0, is a proper, dense and

uncountable subgroup of the one-parameter group Z }
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This theorem follows from the proposition below, where £ is the flow at time one
of the vector field & coming out:

Proposition 1. There exists a complete C! vector field & on R, vanishing only at
0, whose flow f* at time t is not C* at O for t = 1/2 but is smooth on R for all
t€Z @) e TZ, where K C R\ Q is a Cantor set.

A natural question to ask now is whether diffeomorphisms f whose centralizer
Z ]’2, r > 2, is neither the one-parameter group generated by f (namely, Z} ~ R)
nor the discrete group spanned by f (thatis, { ™, n € Z} =~ /), are very peculiar or
not. At the end of the paper, Theorem B gives a partial answer to this question: every
diffeomorphism of R which satisfies a certain oscillation condition and belongs to a
smooth flow (with the usual hypotheses on the unique fixed point) can be approximated
in a suitable sense by diffeomorphisms f* whose centralizer Z Jﬁ is as in Theorem A.
The proof of this second theorem is very similar to that of the first one but involves
more technicalities. For this reason, we discuss the weaker statement in priority.

It would also be interesting to know whether the centralizer Z J’}, when it is a
proper subgroup of R 2= Z!, can contain any Diophantine number. It turns out [2]
that the Cantor set we construct in our proof of Proposition 1 contains only Liouville
numbers.

Acknowledgements. I am extremely grateful to Sylvain Crovisier for explaining the
method of approximation by conjugation to me and suggesting that it could be used
in this work to preserve and control the desired smoothness of the limit flow. More
generally I am deeply thankful for his continued interest in my progress and his useful
comments on this article. I would also like to thank Jean-Christophe Yoccoz for shar-
ing his insight on the subject with me and encouraging me to work on this particular
question. These two interactions were possible thanks to the financial support of the
Agence Nationale de la Recherche (through the “Symplexe” project). Last but not
least, this work would not have been possible without the considerable help of Em-
manuel Giroux, who dedicated much of his time and energy to me through countless
discussions, reflexions and rewritings, always leading to a better understanding, and
I warmly thank him for his uncommon involvement and patience.

Proof of Proposition 1

1. Overview. The following proof combines the strategy used by F. Sergeraertin [6],
Section 4, with the method of approximation by conjugation introduced by D. Anosov
and A. Katok in [1] and later developped by many authors (see [3] and references
therein). We start with a particular smooth vector field &, (the same as in [6]) and
build & as the limit of a sequence of deformations & where each & is the pullback
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I} &o of &o by a smooth diffeomorphism £y . Thus, the flow f of & is related to the
flow fJ of & by f{ = kit o f§ o hg. The pointis to cook up the conjugations Az so
that the diffeomorphisms fk‘, k > 1, converge in the C*° topology for a dense set of
times ¢ but converge only in the C! topology for some other time. In particular, the
diffeomorphisms /. diverge in the C? topology. Here, the behaviour of the initial
vector field plays a crucial role: we take a vector field & presenting plateaux which
accumulate at the origin and whose heights tend to zero but with wild oscillations.
According to a theorem of I. Sergeraert [6], Section 3, these oscillations are necessary
if we want to create a non-smooth flow with small perturbations %z of the identity.
Furthermore, Theorem B at the end of this paper states an oscillation condition which
1s sufficient for our construction to work.

Let us indicate now how these oscillations come into play. First of all, we pick
an initial vector field &, vanishing only at the origin, and contracting: every point is
attracted by 0 in the future. Or, in other words, the function &/d, is negative away
from 0. The graph of this function can then be depicted as an undersea landscape
consisting of a sequence of alternating lowlands L and highlands H; whose respec-
tive altitudes —vg and —uy (measured from the water surface, so that O < vz < vg)
go to zero when k grows, but “oscillate wildly” in the sense that the ratios vy /ug
tend to infinity.

Hk+2 Ly Hy g Hy

1ﬁLmI .

A consequence of this behaviour is that, if an element £ of the flow takes a
segment S C Hy into Ly for some large &, then its restriction to S is an affine map
with big dilation factor vy /up.

In our deformation process, the diffeomorphisms /i are defined inductively and
all comcide with the identity near 0. Each new perturbation 1s described by the
diffeomorphism gz = Ay o h;il and its role is to modify the flow of &; locally at a

specific time 1/g, in a fundamental segment Sy of fol/ % lying in the lowland L.
In other words, g;l 5 fol/qk o gk agrees with fol/ % outside Sg. Furthermore, we

take gx close enough to the identity so that the C* norms of the maps

g o fiogk—fi, teXzZn(o,1],
and also
hito fo ohe =yl o ff o hxi,

are all strictly bounded by 27%, and we denote by I a compact neighbourhood of
ﬁZ M {0, 1) such that the non-strict bounds still hold for all ¢ € 1. With a suitable
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choice of the sequence gx, we can arrange that the intersection of the compact sets
I 1s a Cantor set K consisting of irrational times ¢ for which the diffeomorphisms
h,:l o fo o hy, k > 1, converge in the C* topology. Indeed, it suffices to pick g at

each step in such a way that 1k 7 meets any component of /;_q in at least two points,

ax
and also avoids the k™ rational number (for an arbitrary enumeration of Q) so that
K = (1 Ix has no rational point.

Although the action of the perturbation diffeomorphism gz on the map fol/ U s
local, its action on the vector field & and on general elements of its flow is not at all.

To see this, let us consider the difference vy = g; & — £p. Since gx commutes with

01/ % out of S and coincides with the identity near 0, it is actually the identity on

the whole interval [0, min S]. In particular, v¢ vanishes identically there. Inside Sk,
our choice of gx gives v the following shape of a C¥-small wave:

On the other hand, the half-line [max Si, +00) is tiled by the segments S =

fo_p /ak (Sx), p = 1. The commutation property noted above now implies that, for
every p > 1,

versz = ( ) (k15 (1)

In other words, the wave vy |s, 18 propagated to the right of S by the iterates of fol/ k.
Let us look at the wave v | s? when S sits on the highland Hy. As explained before,

the restriction of £/ to S7 for such a p is an affine map of the form

Uk
x€S{— — x+¢ forsomecg €R.
Uk

Then, according to (1),

(U k) P/Qk(x) —1
(vk |S,f)(x) = kl}SDf(f()/;)k(x) ) _ (Z_’;) (v 'Sk)(z_l,z X+ ck),

and so, for any integer m > 1,

Doy 15)00 = ()" Deug 50(2 v+ e
k |SE U k ISk i k-
Thus, in the course of the propagation, the wave remains C ! small but its higher order
derivatives are amplified and can become big. As we already said, the difficulty is
then to adjust the perturbation diffeomorphisms g so that the differences iy &0 — &o
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(which are essentially the superpositions of the propagated waves vy, [ < k) diverge
in the C2 topology while the conjugates #; ' o fif o by, for t in the Cantor set K, still
converge in the C* topology. Following Sergeraert, a solution is roughly to take
ur and vy respectively equal to 2% and 2_"2, while the size of the wave vg |g, 18

defined as 2% 3.

2. Notation and toolbox. In this short section, we assume that all necessary condi-
tions are met so that the expressions we write make sense. For any C* map g defined
on an interval I C R (open or closed), we set

gl =sup{|D"g(x)|, 0<m <k, x €I} €0, +00].

If £: 1 — f(I)is an orientation-preserving C?2 diffeomorphism, we define Lf to
be

D2 f

Df

'The non-linear differential operator L satisfies the following chain rule:

Lf =DlogDf =

L(hog)=Lhog-Dg+ Lg. 2)

To compute higher order derivatives of compositions, we will also use Faa di Bruno’s
formula in the form

D"™(hog)= Y (D™h)og-]] D"ls. (3)
aelly, Benm
where IT,, is the set of all partitions = of {1,...,m} and | X|, for any finite set X, is

the number of its elements.

Let n be a vector field on an interval J. Throughout the paper, we will make no
difference between 7 and the function /3y, where x is the underlying coordinate in
J, and in particular we will identify d, with 1. If J is both the source of g and the
target of i (where g and /4 are diffeomorphisms), we can define two new vector fields,
2«1 and /#*n, which are the pushforward of 7 by g and its pullback by /, respectively.
Viewed as functions, these vector fields are given by

g« =Dgog ™l nog™, )
noh
h*n = 5
"= "Doh (5)
and so we easily get the following expressions for the derivatives:
D(g«n) = Dnog '+ Lgog™! nog™, (6)
Z

D(h*n) = Dnoh — noh. (7)

(Dh)?
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3. The initial vector field. The construction involves two smooth functions «,
B: R — [0, 1] satisfying the following conditions:

* a(x)equalsOif x < 1/6and 1if x > 1/3;
» B{x)equalsOifx <1/6orx >5/6,and 1if 1/3 <x <2/3;

i

1

|
=
o
=k
(W
Wit

0
Now, setting u, = 2% and By = 2_”2, we define the vector field &y as in [6] by

SO(X) = —Up+1— (un — un+1) a(2n+1x - 1) - (Un — un) ﬁ(2n+1x - 1)

forx e 277127, £() =0 and &)(x) =—1 forx > 1.

2*]’1*1

N
=

Upt1 i ‘
ivn
\_ ¢o ;

From now on, we denote by { .t € R} the flow of & and by y: R — R* the
diffeomorphism given by ¥ (t) = f3 (1) forall7 € R. Note that, since Dy = &0,

Up

|- —

Eo=Dyoy™ and D& =Lyoy (8)

We also fix a forward orbit {a;, [ > O} of fo = f!, whereag = landa; = fola;—1)
=) foralll = 1.

One easily checks that & is smooth, contracting, infinitely flat at the origin and
C!-bounded — with 1 < ||&y||; < 4oc. Furthermore, &, equals —v,, identically on
the central third of 2771, 27"], namely [27"~' + 27"=1/3,27"* — 27"=1/3] and
—u, on [27" — 2777 1/6, 27" 4+ 27" /6]. A simple computation of travel time at
constant speed shows that for all # > 4, there exist integers 7 (n) and j(n) such that

27" — 227" < aiygr < Aig—1 <277+ 2277 ©)

and
gl + %2_’1_1 S djmyr2 < djm)—1 = g _ %2—11—1' (10)
Thus & equals —v, on [@j()+2, @jm)—1). and hence ff induces on [@j(n)+1, @jn)—1]

the translation by —tv,, for0 < ¢ < 1. Similarly, fJ induces the translation by —tu,,
in a neighbourhood of a; ().
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4. The deformation process. Our goal is now to produce a sequence /g of smooth
diffeomorphisms of Ry such that the vector fields & = hj &y converge in the C*
topology to the vector field £ of Proposition 1. In order to have regular perturbation
patterns (and easier computations), we actually work at time scale, i.e. we define /i
as the conjugate ¥ o ®; oy~ ! of a smooth diffeomorphism ® of R (which coincides
with the identity near 4+oc so that /i is also the identity near (). Conforming to the
general scheme of the approximation by conjugation method (see [3]), © is obtained
as a composition
Qi =k ogr—10- 0

where the diffeomorphisms ¢ are manufactured inductively from a fixed function
y and two adjustment integer parameters gz and ng. The details of the construction
follow.

T ——t
-1l L

20 20

B=T
EN

Let y: R — [0, 1] be a smooth function supported in [—1/4, 1/4] and satisfying
y(t) = t2/2 around 0. Given positive integers g, n, set w, = 27" and denote by
Ya.n : R — [0, 1] the smooth function defined by

Yan(t) = way(q(t — j(n))) forallr € R, (11)

Clearly, yg.» is supported in [j(n) — ﬁ, j(n) + ﬁ]. Moreover, for every integer
m>landallr € R,

D™ yyn(t) = wag™ D™y (q(r — j(n)))
and hence
||Vq,n||m = wnquV”m-

In particular, by taking » large compared to g once m is fixed, one can make the C'™
norm of y,,, arbitrarily small.

Now let J,, , be the interval [ j(n) — i, jn) + ﬁ] and define ¢, ,: R — R as
the map meeting the following properties:

* pgnlt) =1 fore > j(n)+ 5
* Yan(t) =1+ ygalt)fort € Jyu;
* @g,n commutes with the translation by  outside J,», and so

qn(t) =1+ )/q,n(t = g) if t e (Jq,n o S) p > 0.
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In short, we can write

Pan @ =1+ Yo (t + 3) forall r € R, (12)
p=0 1

and similarly,

P
Dgoq,n([) =1+ ZDVq,n([ T E)a

p=0

D" 0 =Y D"y (r n 3) for all m > 2.
p=0 1

Note that for every ¢ € R, at most one term in each sum is nonzero since the support
of yg4,» has length less than 1/g. These equations imply that

||§0q,n —id||;m = ||Vq,n||m (13)

and, in particular, ¢4, is a diffeomorphism provided ||yg.» |1 < 1.
The following lemma will be used later (in the proof of Lemma 4) to show that
the limit flow coming out of our construction is not smooth at time 1/2:

Lemma 2. For all | > 1, let q; and n; be positive integers with q; odd and
Wy, qr||v|l1 < 1. Then for every k > 1 the diffeomorphism ®y defined by

O = propp_10---0p1, wherep; = Qg n,.

has the following behaviour on %Z:

» &y coincides with the identity in a neighbourhood of 7. + 1

» &y is tangent to the identity on 7. — meaning that (1) = [ and DD () = 1
foralll € Z;

o (L®; — LOy_)(), for!l € Z, equals wy, g7 if | < j(ny) and 0 otherwise.
q k9 J

Proof. Since y1 = yq;,n, is supported in [ — -, zi—] + j(n7) and

X P
¢ =1d + yl(t+—),
) p

p=0

¢y 1s the identity on the ﬁ—neighbourhood of q—llZ + ﬁ. But g; is odd, say g; =
251+ 1,80
1 q,g_2sl—|—1_sl+1 1 1

2 2qp 21 @ 2 @ 2q;
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and hence %Z + 2%;1 contains Z + % forall/ > 1. Therefore &y = @go---op; is the
identity in a neighbourhood of Z + % On the other hand, since y(0) = Dy(0) = 0,
each ¢ is C ! tangent to the identity on %Z D 7,30 P is C! tangent to the identity
on Z.
Now, applying the chain rule (2) for the operator L = D?/D to ®; = ¢ o Dp—_q,
we get
LOp = Lo o®@p—1 - DPp_1 + LOp_;.

For ! € Z, we have seen above that ®,_;(I) =7 and D®,_;(l) = 1, s0
(L®x — LOr_1){I) = Lyr(D).

If | > j(ng)then Lyi (1) = O just because ¢y agrees with the identity on the interval
[j(ng) + ﬁ,—l—oo). If [ < j(ng) then (11) and (12) give

D2 (1)
Lop(l) = ———= = D?*pr(l) = D*y (j = i
() Dorl) o () VielJ (k) = wnrdp
which completes the proof. O

For the next lemma, we fix an enumeration of the rational numbers, Q = {rg }r>1,
and set ®y = id and I, = [0, 1]. Moreover, as in Lemma 2, we will henceforth
abbreviate ¢g, », as ¢; (and similarly y,, », as y; and Jy, ,, as Jj).

Lemma 3. For suitably chosen increasing sequences of positive integers qi and ng,
the diffeomorphisms ®x = @i o+ 0 @1 and hy = W o Oy o Y™}, the vector fields
& = hi&y and their flows [} satisfy the following estimates for every k > 1:

1Dk — Pp—i ller1 < 27571, (ix)
& — Ex_1]l1 < 27F, (iix )
1A = A D) lpalle <27F forall t e I U{1}, (iiix )

where I, C Ir_, is a compact set avoiding the k™ rational number i and consisting
of 2k disjoint segments of nonzero length, two in each component of I _,.

Proof. Let k > 1 and assume we already chose ¢; and n; for 1 </ <k —1in
such a way that estimates (i7), (ii;) and (iii; ) hold. In particular, since ®y = id by
convention,

k—1

k—1
1
by —id|» < B — Byl <y 27 =2 o7k
| Pr—1 ||2_;||1 “nz_; : <3
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Take an odd integer g5 > gx—1 such that ﬁZ avoids ri and meets the interior of
each component of [x_; in at least two points. Then pick ng > ng_; such that

g—k—4 k-1

1Villks1 < A : (15)
Tit1] 1D @r—t |6+ €04

Le.

9—k—4 q;k—l

k—1 — k+1 4
Vns | Mgt 1] 17 le+1 1D Pr—11lz " [50ll1

which 1s possible since

Wy,

— 2—n3+(k—1)n2 — 0(1)

k—1
U

Note that inequality (15) clearly implies ||yx||1 < 1, and so ¢ is a diffeomorphism
(remember that |lgx — id|lm = ||Vk||lm)-

Let us first prove that this choice of ng implies (ix ). Since & = gp o g1, Faa
di Bruno’s formula (3} gives, for 0 <m < k + 1,

D™ (D — Pr—y) = Z D™ (g —id) o By - l_[ DBla,_,.

melln Bern

But for every partition = € I1,, withm <k + 1,

I D™ (r —id) o Dr_1llo = vkl < Il Ve lks1
and
[T1D"" @] < DO lf

Ben

and so

k+1
| P — Pr—1llk+1 =< [ Tk+1] |lyellc+1 ||D‘1>k—1||kJr :

Thus, by the choice of ng in (15),

—k—4 k-1
2 Unk < 2—k—1

150ll1

which is the desired estimate (i) (note that ||&|; = 1).
To prove (iig ), let us define

| Pk — Pr—illk+1 =

Nk = @;‘;8; - (ID;';_lat and  { = 90;31 — dy,
so that
e = P78 and & — &1 = Vi
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Viewing ¢ as a function,
1 D2y
k=———1 and DG = ——i—3.
¢ Doy ‘ (Degr)?

Given the choice of ng in (15),

IDgr — 1o = [[Dyllo <27%* ||&]I7!  (and so

Pk

< 2),

0
and

—k— —
1D%@kllo = 1D%yllo = 277 [i§olly ",

SO
] <2757 & lIT" and D& < 27572 &7 (16)

Next, applying (5) and (7) to ng = ®7_, i,

Ck © Pr—1 D2d;_,
Mk =———— and D = Do P — —— Gk o Dy
D Py (D®g_1)?

s0, according to (14) and (16),
mkl <2757 Jlgolly

s 1, 4 k- — R _
[Dmie| <2772 lEollT! + 5 2757 follT! = 277 &7

Now, applying (4), (6) and (8) to & — &x—1 = Vi,

& — Em1| = [me o v &0l < [Inello 1ol < 27572,
|D(k — £x—1)| = | D o ™" + Dég - 0 Y|
< 2||mllr ol < 27%.

Thus, ||& — &—1]|1 < 27 as stated in estimate (ii).
Let us finally prove (iiix). Set ¢o = id and denote by of the flow of ¢; 9, for
0 <1 < k. Then o}, is just the translation by ¢ and

{ —1 4
Op =@ ©°0(° k-
Since

Er = Y ®30; = Y@y _ 0pdr and &y = v Py 0y,

their flows are given by

¢ —1 t —1 ¢ -1 t -1
Je =V o o0 0o Dpq 0y and  fr_y =¥ odr o0 o B0y
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By definition, g = ¢4, », commutes with the translation cro1 /4

plag

outside Jr = Jg ny-

Consequently, ¢ commutes with any iterate oy **, p > 1, outside the interval

Lﬂﬁk)+-§$———g—,1(k)%——l;]::i:j(J __ﬁl).

! Gk

plax plag

Therefore, o' ™" equals o,
outside

outside this interval, and in particular, for0 < p < g,

1 1
My = [j(f’lk) — 14+ —, jlne) + —}
2qk 2qk
On the other hand, for ¢ € Jg,
_ 1
o0 = g (o + )
9k

1
= ! (I + () + q_) by definition of gz on Ji
k

1 L. 1
=t+ — + y(t) because t + yi(t) + — > j(ng) + ’
r Jk 2qk

— O_O/Qk ([) L )’k([)

Thus, le/q" — crol/qk = yk. Similarly, for any p > 1,
/Qk (1)—oy frie (1) = Z Yk (f o 1 ) forall t € R, (17)
qk
S0
o5 — o], = Nyl

(again since at most one term of the sum is nonzero in (17)). Now, in the region My
where o /4% and of /9% disagree for 0 < p < g, the diffeomorphism ®_; is the

identity. Moreover, ¥ (j(ng)) = @ju,) and ¥ (My) C [ajmn)+1, Ajn,)—1] S0, by
(10), v restricted to My 1s an affine map with slope —v,, . As a consequence, the
derivatives of

fp/qk W o @;11 OO_Jf/CIk odyp o W_l

have a simple expression on ¥ (My):
Dm(fp/qk) _ (_vnk)l—m Dm(glf/qk) oL,
Similarly, again on ¥ (M),

Dm( P/Qk) _( Unk)l mDm( éi’/Qk)ow—l'
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Therefore, for0 < p < grand 0 <m < k,
O T

1— 1—k —k—4
= U Ykl < v Nvelle <2

according to our choice of ng in (15), and thus

| £ = il <275 forallr e qikz n[o,1].
Now let Tj be a subset of ﬁZ N Ir—1 with exactly two points in each of the 21
connected components of /x_; (remember that gx was chosen so that there are at
least two points there). Since both vector fields & and &1 are smooth on R, we
can find a compact neighbourhood Iy of Ty in Ix_; \ {r&} consisting of 2% segments,
such that

| (¢ = A ol <27 foralls e £ U {1

(in fact, the restriction to [0, 1] is not essential here: one can prove that the difference
fk’ — fk’_l is 1-periodic on [1, o¢), and /; can thus be chosen so that the above bound
holds on all of R ). This completes the proof of (iiig ), and thus of Lemma 3. O

5. The limit vector field

Lemma 4. The vector fields &, k > 1, of Lemma 3 converge in the C' topology on
R, and in the C° topology on R* | to a vector field & which satisfies all properties

stated in Proposition 1 with K = () Ix.

Proof. The C! convergence of the vector fields & on R4 follows directly from
estimate (iig) in Lemma 3. Next, estimate (i) shows that the diffeomorphisms @
converge in the C'°° topology to a smooth diffeomorphism ® of R, so the vector fields
®, d; converge in the C topology to ®*d;. Now & equals 1. P;d; on R” and
is a smooth diffeomorphism from R to R . Given any compactset A C R and any
integer m > 0, the restriction of ¥ to ¥~ 1(A) is C™-bounded, and hence the vector
fields & converge C™ uniformly to & on A. Therefore, the vector fields & converge
to £ on RY in the C* (compact-open) topology.

The convergence of the vector fields & implies a similar convergence of their
flows f{ tothe flow f7 of &. Furthermore, estimate (iiix) in Lemma 3 shows that, for
t € K U {1}, the restrictions f [0.1] Sonverge in the C™ topology on [0, 1] for any
m > 0. Inthe end, the diffeomorphisms £/, € KU{1}, convergein the C* topology
on Ry, so f* is smooth forall t € K U {1}, and hence forallt € Z & Y g T7Z.
Note here that each Ix, by construction, is a compact set avoiding the k™ rational
number and consisting of A segments, (wo in each componentof I _;,s0 K = [} I
is indeed a Cantor set.
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The last thing we have to prove is that £1/2 is not C? at 0 or, equivalently, that

LfY2 = D2 f12/pf1/2 is not continuous at 0. Let us compute L £ /2 at a point
i(n;), as defined in (9), for / € N. Taking the limit of the maps

1
we get
FU2 = t/foq)_lo(id—i—%) o®oy !

Let us seto = & o (id+ §) o, s0 that f1/2 = o0 oy, Near a;(n), the

map v " is affine, with slope —u;, ', s0

LfY? (aitap) = —%La(i (n1))-

ny

On the other hand, by (2) applied twice,

Lo(itn)) = Lo ( (i) + ) DO(i(n)) + LO(i(n))).

According to Lemma 2, each @, and hence &, is tangent to the identity on %Z
provided all integers g were chosen odd. Moreover, ®; and <1>,:1 coincide with the
identity near Z + 3, so L&~ (i(n;) + 1) = 0. Summing up, and using the third
property in Lemma 2, we get

Lo(i(n) = LO(i(n)) = Y (L — L& (i) = Y wnpqz.  (18)

k=1 k>

Therefore,

w
Lf1/2 (ai(m)) = —M—anqu < _M”l — —00,
ny k=l njp

and so £1/2isnot C2 at 0. O

More examples

Let S denote the space of smooth diffeomorphisms of R} which are infinitely tangent
to the identity at the origin and have no other fixed point. We say that a diffeomorphism
f of Ry is contracting if f(x) < x for all x > 0, and we call Szekeres vector field
of f the unique C! vector field generating the one-parameter group Z } [71, [4].
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As mentioned in the introduction, the question we discuss in this section is whether
the phenomenon presented in Theorem A is very peculiar or quite general. First of
all, because of Takens’ work [8], this phenomenon is limited to S. A difficulty then
is that there 1s no obviously relevant topology on S for our problem. In particular,
the C*° compact-open topology restricted to S is extremely coarse: given any two
diffeomorphisms f, g € .S, which are both contracting, say, it is easy to construct
a sequence of diffeomorphisms f;r € S which converge to f in the C* topology
and whose germs at O are all equal to that of g. In other words, the C*° topology
does not see the germ at O while this germ precisely determines the smoothness of
the Szekeres vector field and hence the nature of the centralizers in the groups D” for
r > 2. So we do not claim that the phenomenon described in Theorem A 1s generic
in any way, but the following result shows that it is at least not scarce:

Theorem B. Let fy be a smooth contracting diffeomorphism of R having a smooth
and C'-bounded Szekeres vector field, and satisfving the following oscillation con-

dition; Tog( £2)]
. oglx — Jolx
lim su ( su ) = 4+
0’ \olyey Tlog(y — fo()]

Then, for every k > 0 and every ¢ > 0, there exists a smooth diffeomorphism f of
R which is close to fy in the sense that

(19)

| D" (f — foXx)| < ¢|D"™(fo —id)(x)| forallm <k andall x € Ry, (20)

and whose centralizer Z;o is a proper, dense and uncountable subgroup of Zfl.

Note that the oscillation condition (19) forces fy to be infinitely tangent to the
identity at 0.

It is interesting to compare this result with Theorem 3.1 in [6]. Indeed, the latter
says that, if a smooth contracting diffeomorphism f* does not oscillate much in the
sense that

r—1

sup (y — f(») = O((x — f(x))l) for some A > ,

O<y<x r

then the Szekeres vector field of f is C”. Theorem B can be thought of as a kind of
“partial converse”.

Proof. The idea of the proof is the same as for Theorem A: we start with a smooth
vector field, here the Szekeres vector field & of the given £ instead of Sergeraert’s
vector field, and construct deformations & of & which converge to the Szekeres
vector field € of the wanted . We will just hint at how to adapt the arguments in this
more general setting. As before, we denote by f{ the flow of & (so that fo = £}
and by v the diffeomorphism from R to R given by ¥ (r) = f/(1) forallr € R.
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We also fix a forward orbit of fy, namely {a; = fol(l) = (), = 0}, and we set
Vi = lajqa.a;—5] foralll = 0.

Lemma 5. There exist two alternating sequences of integers i (n) and j(n), n = 0,
withi(n) < j(n) <i(n+1) < j(n + 1) <---, such that

logu,

— 4+ (21)

log Uy B—>00

where u, = supy, . €0| and v, = infy,
disjoint when n is large enough.

i &o|. In particular, Vi) and Vi) are

Proof of lemma 5. This proofis rather elementary. Still we give it for the reader’s con-
venience. The oscillation property (19) means that there exist decreasing sequences
(xn)n and (v, ), converging to 0, with y, < x,, satisfying

- log (xn — fo(xn)) _
n—00 108 (¥n — fo(¥n))

+0o0 (22)

(the numerator and denominator are negative when n 1s large enough). We can assume
in addition that x,1+1 < fZ(ya) forall n. Let

i(n) = max{k € N, ar > x,},
J(n)y =mintk € N, ar < yu}.

Any fundamental interval ( fo(x), x] C [0, 1] of fy contains exactly one element of
the forward orbit {a;,i € N} of ap = 1, so the definitions of 7 (n} and j(») imply

Xnt+1 = Ai(n+1) < fo_l(xn—i—l) = fO(yn) < dj(n) S Vn < Xp = Aj(n)»

and a fortiori i(n) < j(n) < i(n + 1) for all n. Let us now prove that for this choice
of alternating sequences i{n) and j(n),

log u,
— —I—Oos
logv, n—oo

where u, = SUpy; ., 0| and v, = infy; , [§o]. By definition of i(n), j(n), Vi)
and V), there exist ¢, and s, in [-3, 3] such that

wn = [0 (/3" Gen)| and vn = [80 (£ ().
Now i
Efo’f (x) =& (fy(x)) forall (r,x) e R x Ry,
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SO
Xn — fo(xn) = foo(xn) - fol(xn)
= —&o (fg" (xn)) = [E0 (5" (xa))| for some 7, € [0. 1],
and similarly
Yn — fO(yn) = _50 ( ()Un (yn)) = ‘EO ( oan (yn))| for some o, € [0’ 1]'
So

_ o (£ (xn))
logu,, _ 10g|§0( ot” (xn))| _ log(xn — fo(xn)) + log &0 (f3" (xn)) 23)
oz~ Tog &0 (57 Om)| ™ tog(s, — fo(sn)) + log [ 2002
0 n

The flow (), g Of &0 preserves &, i.c.

3 (fot(x)) = Dff(x)&p(x) forall (r,x) e R x R,
As a result,
EO ( OTn (xn))
EO( Osn (yn)) B .
2wl W D A—0n "(5)) .
b (o oy~ U U5 )

One casily checks that

= D(fo(tn_m)) ( 0" (xn))

and

DfLO) = &!P2©  forallr e R,

so since Dfy(0) = 1 (f)' = fo has to be infinitely tangent to the identity at O to
satisfy the oscillation condition (19)), D&y(0) = 0 and

Df{(0) =1 forallt € R,

Since & is C! on Ry, both (¢, x) — f{(x) and (¢, x) — Df{(x) are uniformly
continuous on every compact subset of R x R,. Thus, since |7,| < 1, |o,| < 1,
lth — | < 4, |8, — 0n| <4, and x,, and y, converge to 0,

D(f ™) (5 Ge)) — 1 and  D(£L") (27 (a)) — 1.
This, together with (22), (23), and the fact that
log(xn — fo(xp)) — —o0 and  log(yn — fo(yn)) — —00

implies that
logug,

— +00,
log vy

which concludes the proof. [
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We now choose a sequence w, with intermediate decay, i.e. satisfying w, =
o(v)) for all m and u, = o(w,) (one can take for instance w, = . /u,). Then we
define the maps y,,, and ¢, , by formulae (11) and (12), using the same function
y but the new parameters w, and j(n). Extending thence all other definitions and
notation of Subsection 4, our task is to show that Lemmas 3 and 4 still hold.

Proof of Lemma 3 in the general setting. We only insist here on the points that differ
from the proof in Subsection 4. Again, we proceed by induction. At step &, the choice
of gi is just the same, but we need to be more careful about n. The reason is that
the map ¥ is no longer affine on the regions we consider, and hence the computation
of higher derivatives of compositions is trickier.

First, using the fact that &, is smooth and infinitely flat at 0, one can check that,
for any fixed m > 1,

sup {| D"y (1), t € [(n) — 1,00)} —20
and

o T hsup {| DY TN, x € [ajmyrs ajim-1]) e

(this is derived from the relations Dy = & o and Dy~ = 1/&p).
Then we pick an integer ny > nx_; meetng the following three conditions:

2% o fiy < @
Hme—l <v™ U forl<m <k, (25)
‘[aj(nk>+1aaj(nk>—1] 0 k
and
p—k?—4 vﬁi
lvelle+1 < (26)

k1 '
M1 P D Pr—1 ™ lgolls

Inequality (26) is stronger than (15) and thus implies (ix) and (iix) of Lemma 3 (the
arguments are strictly the same). The proof of (iiig ) is more complicated but we still
have (with our former notation)

fkt = Yo CD,:il oofc o®r_q0 1,0_1 and fkt_l =Yo CIDI;ll ooé o®p_g0 w_l.
Fort = p/qi,0 < p < g, again o} = of outside
. [N 1
M = |jne) =1+ —. jlne) + — |,
2qy 2qy

so ff — fi_, = 0 outside ¥ (My). Furthermore, ®;_; = id on M. Thus, on
M),
W( k) P __ t —1 d 4 _ 4 =={f;
Jr =voopoy and  fr_ =Yooy
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or, equivalently,
Ji = fici=Woo)oy™ —(Woap)oy.
For m < k, Faa di Bruno’s formula gives
D"(ff—fi_) = > Do —voof)oy - [ DIy~ (@7)
el Ben
According to inequality (25),
‘ I1 D'BWFI‘ <v; 2% on Y(M) C [ajmoe1 i) (28)

Berm

Now write
Y oop— Yool =Yooy ooy oop)— (¥ ooyp)

and observe, using (17), that

p—1
ao_too,’( :id+Zyk(id+i) fort = £,O§p < gk.

= Gk Gk

For ] < k, Faa di Bruno’s formula gives
D! (o of v oot) = D' (1 008) o (07" 00f) = (¥ o0))
= 3 PPy eoh)e (o oof) - [T PP (07" o o).
mell; Ben

|| <<l

Since o, = id + ¢, it follows from (24) that
D™y ool) ooyt oof)| <1 on M.

Now for any partition 7 € I1; with less than / blocks, i.e. || < [, one block B of
7 has at least two elements, so at least one factor in the product

rp—1
[T 0" o5t oot) = T] D|B|(id +) Vk(id + ﬁ))
Berm Ben g=0 Tk

is a derivative of order at least 2, and hence is bounded above by | yk|/«, while

the others are all less than 2. So the product is bounded above by 2/72||yx|lx <
25=2||vk ||k. Therefore,

DIy ool — v ood)| < 1T 2" 2yl < [Tkl 25721 yec |-
In view of (27), (28) and (26) this implies that || ff — £/ ,llx < 2757 for all

t = p/qr, 0 < p < gp, and one completes the proof of Lemma 3 just as in
Subsection 4. O
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Proof of Lemma 4 in the general setting. The proof that the vector fields & converge
and that the limit flow f* is smooth fort € Z & Y g TZ is strictly the same as in
Subsection 5. Note that if we start our construction at step kg instead of step 1, the
limit diffeomorphism £ satisfies the condition (20) for I < kg and & = 27%0~1 50
one can construct f arbitrarily close to fj in the sense of Theorem B.

The part of Lemma 4 that needs a little extra effort is the irregularity of f1/2.
Again,

[ =yoooy™,

witho = ®~' o (id 4 1/2) o ®. The computation of Lo (i(n;)) leading to (18) can
be integrally transposed here, and yields Lo (i (1)) = Y ;.; Wa,q (With the new
wy ). However, this time ¥ is not affine on the involved region, so the computation
of LfY2(i(n;)) is a bit longer. Formula (2) applied twice gives

Lf'? = (Lyo(oo v - D(oo W_l)) +(Loo p! 'Dw_l) + Ly,
and hence, since Dy~ ! = 1/&,,

Lcr(i(nl))
Eo(aitny)

Now, according to Lemma 2 (still valid in our new setting), the limit ® of the diffeo-
morphisms ®; coincides with the translation by 1/2 at order one on Z, so the first
term of the above sum is equal to

v+ vt 5 ov) 29 0

But when [ grows, L fol/ 2 (@i(n,)) tends to L fol/ 2(0) = 0. Therefore

LY (aitup) = [Lp o (0 o™ - Do oy ™) + Ly (aitnp) +

2
w w
Lfl/z(ai(ng)) B M < _ — —0x,

Eo(aitny) Up, I->o00

s0 /2 isnot C? at 0. This concludes the proof of Lemma 4 and of TheoremB. [
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