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Modular elliptic directions with complex multiplication with an
application to Gross’s elliptic curves)

Josep González and Joan-C. Lario

Abstract. Let Af be the abelian variety attached by Shimura to a normalized newform f 2
S2. 1.N// andassume thatAf has elliptic quotients. The paperdeals with the determinationof
the one dimensional subspaces ellipticdirections) in S2. 1.N // corresponding to thepullbacks
of the regular differentialsof allelliptic quotients ofAf For modularelliptic curves over number
fields without complex multiplication CM), the directions were studied by the authors in [8].
The main goal of the present paper is to characterize the directions corresponding to elliptic
curves with CM. Then we apply the results obtained to the case N D p2, for primesp > 3 and

p 3 mod 4. For this case we prove that if f has CM, then all optimal elliptic quotients of
Af are also optimal in the sense that its endomorphism ring is the maximal order of Q.p p/.
Moreover, if f has trivial Nebentypus then all optimal quotients are Gross’s elliptic curve A.p/
and its Galois conjugates. Among all modular parametrizations J0.p2 / A.p/, we describe
a canonical one and discuss some of its properties.

Mathematics Subject Classification 2010). 11G18, 14K22, 11R37, 11F11.

Keywords. Modular abelian varieties, complex multiplication, Grössencharacter, optimal
elliptic quotient.

1. Introduction

Let Qalg be a fixed algebraic closure of Q. An elliptic curve C defined over Qalg

is said to be modular if there is a non-constant homomorphism
W J1.N/ C,

where J1.N / denotes the jacobian of the modular curve X1.N /. Every modular
elliptic curve over Qalg is a quotient of some modular abelian variety Af attached

by Shimura to a normalized newform f From now on, we shall always consider
parametrizations

W J1.N / C which factorize through such abelian varieties Af
called in this paper modular abelian varieties of elliptic type.

Amodular parametrization
W J1.N/ C definedover a number fieldL Qalg

induces an injection
W

1.C=L/ 1.J1.N /=L/. In what follows, we shall

The first author is partially supported by DGICYT Grant BFM MTM2009-13060-C02-02, and the second
author by DGICYT Grant BFM MTM2009-13060-C02-01.
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identify 1.J1.N /=L/ with the subspace of cusp forms in S2. 1.N// whose
qexpansion lies in LOEOEq via hdq=q 7! h where q D exp.2 iz/.

The determination of the normalized cusp forms in S2. 1.N //associated with the
pullbacks 1.C // was discussed by the authors in [8] for elliptic curves without
complex multiplication. In this paper, we shall deal with the complex multiplication
case that needs techniques ad hoc. The present case is substantially richer since it
requires the intervention of class field theory as well as the main theorem of complex
multiplication.

Shimura shows in [16] that all elliptic curves with complex multiplication CM)
are modular. Due to Ribet [12], we know that Af has an elliptic quotient with CM
by an imaginary quadratic field K Qalg if and only if f D f where is the
quadratic Dirichlet character attached to K. In this case, there is a primitive Hecke
character

W I.m/ Qalg of conductor an ideal m of K such that the q-expansion
of the CM normalized newform f is given by

f D Xa;m/D1

a/qN.a/
D 1X

nD1

anqn :

Here, I.m/ denotes the multiplicative group of fractional ideals of K relatively
prime to m, and the first summation is over integral ideals. The level of f is

N D N.m/ j Kj, the norm of m times the absolute value of the discriminant of
K. We consider the number fields Ef D Q.fang/ and E D Q.f a/g/, generated
by the images of One has E D Ef K, and we shall denote by ˆ the set of its
K-embeddings E Qalg. The number field E is a CM field. Through the paper,

for all CM fields we shall denote by bar the canonical complex conjugation.
For future use, we recall that an abelian variety Y is called an optimal quotient

of an abelian variety X over a field k if there is a surjective morphism
W X Y

defined over k whose kernel is an abelian variety. In this case, every endomorphism
of X which leaves stable ker induces an endomorphism of Y The property of
being an optimal quotient is transitive. Hereafter, every Af is taken to be an optimal
quotient of J1.N /.

The plan of the paper is as follows. In Section 2, we study the decomposition
of Af over the quadratic field K for f with CM as before. This is an intermediate
step necessary to determine the elliptic directions we are interested in. We shall prove

Theorem 1.1. Let f 2 S2. 1.N // be a newform with CM and keep the above

notations. There is an abelian variety A; / of CM type ˆ defined over K, with
W E End0 A/, satisfying the following properties:K
i) A is an optimal quotient of Af over K and the pullback of 1.A/ corresponds

with the subspace generated by f f W 2 ˆg;
ii) a// f / D a/ f for all a 2 I.m/ and 2 ˆ;
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iii) is an isomorphism;

iv) if p is a prime ideal of K with p - N, then the lifting of the Frobenius endomor¬

phism acting on the reduction of A mod p is p// or Np// depending on

K ª Ef or K Ef respectively.

We remark that the above abelian variety A is simple over K, and that A is Af
over K when K ª Ef while Af is isogenous over K to A AN when K Ef To
encode both cases of part iv) in Theorem 1.1, we shall denote by 0 the primitive
Hecke character mod xm defined as

0.a/ D ´
a/ if K ª Ef ;

Na/ if K Ef

As it will be shown, one has mD xm in the first case.

Then we study the splitting field of A; that is, the smallest number field where
all endomorphisms of A are defined. We make use of class field theory to build a

certain abelian extension L=K attached to the Hecke character 0; the field L is a

cyclic extension of the Hilbert class field of K and it is contained in the ray class field
mod xm. To simplify notation, the Artin automorphism L=K

a in Gal.L=K/ will be

often denoted by the same symbol representing the ideal a. In particular, one has

p N.p/ mod P/
for all 2 OL, where P is an unramified prime ideal of L over a prime ideal p of K.
The extension L=K is characterized by the property that a viewed in Gal.L=K/ is
trivial if and only if 0.a/ 2 K The main result of Section 3 is the following

Theorem 1.2. Let A be as above. Then the following holds:

i) There is an elliptic curve C defined over L with complex multiplication by the
ring of integers OK and such that A is isogenous over L to CdimA.

ii) The field L is the smallest number field satisfying End0Qalg.A/ D End0L A/.

iii) There is a one-cocycle
W I. xm/ L satisfying a/ D 0.a/forall a 2 I. xm/

a / D id in Gal.L=K/. The class of in H1.I. xm/; L / is uniquelywith L=K

determined by this condition.

Inviewof iii), the cohomology class of depends intrinsically onA, and we shall
denote it by OEA 2 H1.I.xm/;L / Section 4 is devoted to determining the elliptic
directions in 1.A/ in terms of OEA To this end, for each one-cocycle 2 OEA and

2 ˆ we introduce the sums

g / WD Xa2Gal.L=K/

a 1
a/

0.a/ 2 E L;
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and also its ˆ-trace

trˆ / WD X2ˆ
g / 2 L:

Theorem 1.3. With the above notations, the following holds.

1) If
P

n 1 nqn 2 S2. 1.N // corresponds to an elliptic direction attached to a

modular parametrization 2 HomL.A;C/, then 1 ¤ 0.

2) The following statements are equivalent:

i) the normalized cusp form

h D q
CXn 2

nqn
2 S2. 1.N//

gives an elliptic direction attached to some 2 HomL.A;C/;
ii) there is a one-cocycle 2 OEA with trˆ / D OELW K and such that

h D
1

OEL
W K X2ˆ

g / f:

The q-expansion of this elliptic direction is then given by

h D
8ˆ Xa;m/D1
<̂

ˆ̂:

a 1
a/ qN.a/ if K ª Ef ;

Xa;m/D1

N.a/

Na/

qN.a/ if K Ef

Moreover, all other elliptic directions are a/ h/, for a 2 E and the equality
0.a// h D

a 1
a/a

1
h holds for every a 2 I. xm/.

We shall say that a one-cocycle 2 OEA is modular if one has trˆ / D OELW K
According to Theorem 1.3, these are precisely the one-cocycles that provide the
elliptic directions. In Section 3, we also describe how to obtain all modular
onecocycles in OEA explicitly way by means of a K-linear projector, and close the section
by raising some open questions.

In the last three sections, we deal with the particular case concerning the level
N D p2 where p > 3 is a prime with p 3 mod 4. The relevance of this case

is in connection with the elliptic curves A.p/ studied by Gross in [9] and [10]. For
convenience of the reader, we recall here its definition. Let K D Q.p p/ and

let OK be its ring of integers. Let H denote the Hilbert class field of K, and let
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H0 D Q.j.OK// be its maximal real subfield. The elliptic curve A.p/ is defined
over H0 and given by theWeierstrass equation

y2
D x3

C
mp

24 3
x

np2

25 33
;

where m and n are the real numbers satisfying

m3
D j.OK/; n2

D
j.OK/ 1728

p
; sgn n D

2

p
:

The elliptic curve A.p/ admits a global minimal model over H0 with discriminant
p3 and whose invariants are c4 D mp and c6 D np2.

Given any intermediate modular subgroup between 1.p2/ and 0.p2/ and a

normalized newform f 2 S2. / we denote by A /
f its associated optimal quotient

of Jac.X / where X denotes the modular curve over Q attached to According

to this terminology, we have A 1.p2//
f D Af In Section 5, we prove:

Theorem 1.4. With the above notations, the following holds.

i) For every positive divisor d of p 1/=2 there is a unique abelian variety Af
of CM elliptic type in J1.p2/ such that the Nebentypus of f has order d; one
has K 6 Ef dim Af D OEH

W K ' d/, where ' is the Euler function, and the
splitting field of Af is the intermediate field between H and H Q.e2 i=p/ of
degree d.

ii) Let f be a CM normalized newform in S2. 1.p2// and let satisfy

c d 2 0.p2/W ".d/ D 1³;1.p2/ " WD ²
a b

where " is the Nebentypus of f Then all optimal elliptic quotients of A /
f have

complex multiplication by OK. Moreover, if f belongs to S2. 0.p2//, then all
optimal quotients of A /

f are defined overH and are precisely the elliptic curve

A.p/ and its Galois conjugates.

Among all modular parametrizations J0.p2/ A.p/ one stands out. In Section

6, we discuss this canonical parametrization and give some of its arithmetical
properties.

Theorem 1.5. Set p D p p OK. Let iW I.p/ H be the unique map defined by

the conditions i.a/12
D OK/= a/ and NH=K.i.a//

p D 1. Let denote a Néron
differential of A.p/, and let be any Hecke character attached to A.p/. Then:
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i) There is an optimalquotient W J0.p2/ A.p/ such that !/Dc g.q/ dq=q
where the elliptic direction is given by

g.q/ D Xa;p/D1

i.a/qN.a/
2 S2. 0.p2//;

and c 2 Z is a unit in ZOE 1
2p

ii) The complex lattice
°
2 i

R
g.z/dz W 2 H1.X0.p2/; Z/ is

1
c

i pC1/=4

h

vuuut

.2 /.2hC1 p/=4 pp .1 3h/=2

Y1 m<p
m/D1

m

p
OK

where h is the class number of K, the h-th root is taken to be real, is the
Gamma function, and D Q

i.a/
a2Gal.

is a positive unit of H0.H=K/ a/

Finally, in Section 7 we discuss how to compute the modular elliptic directions
for Af when f 2 S2. 1.p2// has CM and its Nebentypus is nontrivial.

2. The abelian variety A

We shall adhere to the notations in the Introduction and prove Theorem 1.1. Let
W I.m/ Qalg be the fixed primitive Hecke character, and let

f D Xa;m/D1

a/qN.a/
D 1X

nD1

anqn

be its associated CM newform in S2. 1.N//. The optimal quotient Af of J1.N/ is
defined over Q by Af D J1.N/=If J1.N //, where If J1.N / is the annihilator of

f in the Hecke algebra acting on J1.N /. In particular, the pullback of 1.Af Qalg/
is hf f gi where runs over Gal.Qalg=Q/. Recall that Ef D Q.fang/ and E D
Q.f a/g/. We fix an isomorphism

W Ef End0Q.Af /;
in such a way that an/ corresponds to the Hecke operator Tn acting on Af The
Nebentypus of f is the mod N Dirichlet character ".d/ D d/ d//=d where

is the quadratic character attached to K. We recall that ".d// is the diamond
operator hdi acting on Af One has

dim Af D OEEf W Q D ´
OEE

W K if K ª Ef ;
2 OEE

W K if K Ef
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Notice that E D K Ef Now, we proceed to construct the abelian variety A over K
of dimension OEE

W K with the properties required in Theorem 1.1. According to
Shimura’s Proposition 8 in [17], there exists u 2 End0 Af / such thatK

u f / D p K f
for all in Gal.Qalg=Q/. Here, the choice of the square root p K fixes u up to a

sign. For the case K ª Ef we let A D Af and extend to E,

W E End0K.Af /;

via p K/ D u. For the second case, we proceed as follows. Since now K Ef
there is 2 Ef such that / 2 End0Q.Af / acts as

/ f / D p K f
for all in Gal.Qalg=Q/. Then consider the involution w WD /u 1

2 End0K Af /.
Let A be the optimal quotient of J1.N / defined by Af B, where B D .1 w/Af
Clearly, the abelian variety A is defined over K, and 1.A=K/ is identified with

h f i 2ˆ Since B is stable by E/, the isomorphism
W E End0Q.Af / induces

in a natural way an embedding still denoted by the same letter

W E End0K.A/

such that / f / D f for all in E and all K-embeddings in ˆ From
the equality xw D w, it follows that xB D .1 C w/Af Note that xB is K-isogenous
to A.

A case-by-case argument, employing that End0K X/ End0Q.ResK=Q.X// for
any abelian variety X=K, shows that the abelian variety A is K-simple in both cases.

Therefore, it follows that is an isomorphism. In both cases, A is an abelian variety
of CM typeˆ and satisfies i), ii), and iii) of Theorem 1.1.

To conclude theproof, it remains tocheck theproperty iv) relative to the Frobenius
liftings. To this end, let p be a prime such that p - N and denote by Frobp and Verp
the Frobenius and the Verschiebung acting on the reduction of Af modulo p, which
satisfy Frobp Verp D p. By the Eichler–Shimura congruence, we know that

Tp D Frobp CVerp hpi;

where Tp and hpi denote the reductions of the Hecke operator Tp and the diamond
operator hpi acting on Af mod p. Let us consider the two cases separately.

Case K ª Ef : first, assume that pOK D pxp splits in K. Since

ap/ D p// C Np//; p// Np// D p hpi;
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and Tp DAap/, it follows that the liftingof Frobp is either p// or xp//. Sincea

certain power of p/ belongs to p, one concludes that the lifting of Frobp D Frobp
is p//. A similar argument works when pOK D p is inert in K, taking intoCaccount that Frobp D Frob2p D p hpi D p//.

Case K Ef : since E/ leaves the abelian subvariety B stable, applying the
same arguments as before, it follows that p// is the lifting of Frobp acting on the
reduction of B mod p. Since A is K-isogenous to xB, the statement iv) holds in this
case as well. This completes the proof of Theorem 1.1.

The following lemma will be used in the next sections.

Lemma 2.1. If K 6 Ef then mD xm.

Proof. Since K 6 Ef there is in Gal.Qalg=K/ such that f D fN. First, we prove

that the Hecke characters and c given by a/ D a// and c.a/ D Na/

coincide on I.m xm/. Indeed, since " D " 1 the assertion is immediate for prime
ideals p j p when p is inert. For the case that p splits completely in K, from the
equalities ap D Sap and " p/ D " 1.p/, that is,

p/ C Np/ D c.p/ C c.Np/ and p/ Np/ D c.p/ c.Np/;

it follows that p/ is either c.p/ or c. Np/. Again, we obtain that p/ and

c.p/ are equal because a certain power of them lie in p. Both Hecke characters
being primitive of conductor m and xm respectively, we must have mD xm.

3. Splitting field of A

We first introduce an abelian extension L=K that will play a key role in the splitting
of the abelian variety A over Qalg. Let 0 be the primitive Hecke character mod xm,

0
W I. xm/ Qalg;

given by 0.a/ D a/ if K ª Ef or 0.a/ D Na/ otherwise. We consider the
character

W OK= xm/ Qalg defined by

a/ D
0..a//
a

; for all a 2 OK with a; xm/ D 1:

One easily checks that is well defined. Recall that the existence of a Heckecharacter
mod xm is equivalent to the condition that the composition OK OK OK= xm

is
a group monomorphism see [16]) and thus ker \OK D f1g. By class field theory,
to the congruence subgroup

P xm/ D f.a/ 2 I. xm/ W a mod xm 2 ker. /g
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there corresponds an abelian extension L=K. It is easy to check that, for a 2 I. xm/,
one has a 2 P xm/ if and only if 0.a/ 2 K. Let Kxm denote the ray class field of
K mod xm. Since the map a 7! aOK provides an isomorphism between ker and

P xm/=P1. xm/, by using the exact sequence

1 OK OK= xm/ I. xm/=P1.xm/ I.OK/=P.OK/ 1;

one readily shows that L D Kker
xm

and Gal.L=H/ is isomorphic to the cyclic group
im. / OK Recall that here H denotes the Hilbert class field of K and, as usual, for
any integral idealnwedenotebyP.n/ thesubgroup ofI.n/ formedbyprincipal ideals
and the subscript 1 is for the subgroup of principal ideals with a generator congruent
to one mod n. An alternate route to define the extension L=K is as follows. For every

2 ˆ the character

W Gal.Kxm=K/ Qalg ; a/ D
0.a/

0.a/

is well defined via the Artin isomorphism Gal.Kxm=K/ ' I. xm/=P1. xm/. Due to the
fact that

T 2ˆ ker D P xm/=P1. xm/, it follows that

L D KT 2ˆ ker

xm
:

Notice that L=Q is not necessarily a normal extension; in fact, this is so if and only
if L D LN

Proposition 3.1. There is an elliptic curve C defined over L such that:

i) EndL.C / ' OK;

ii) its Grössencharacter C coincides with 0
B NL=K;

iii) C is isogenous over L to all its Gal.L=K/-conjugates;

iv) the abelian variety A is isogenous over L to the power COEEWK

Proof. The extreme cases L D H and L D Kxm are proved by Gross in [9] and
by de Shalit in [6], respectively. For the general case, one can follow the same
arguments. Let C1 be any elliptic curve over L such that EndL.C / ' OK. Let n
be its conductor. Once we fix an isomorphism

W K End0 C1/, we can considerL
the Grössencharacter C1 W IL.n/ K attached to the pair C1; / For a prime
ideal P of L relatively prime to n, we know that C1 P// is the lifting of the
P-Frobenius acting on the reduction of C1 mod P. Recall also that if P 2 P1;L.n/
then C1 P/ D NL=K. / where P D / with 1 mod P/.

Byclass field theory, the composition 0BNL=K takesvaluesinK and theequality

0BNL=K.P/ D NL=K. /holds for everyP D / with 1 mod xmOL/. Hence
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the quotient 0

B NL=K/= C1 defines a character i W IL.n xmOL/=P1;L.n xmOL/
OK of finite order. The twist C WD C1 i satisfies i) and ii). Now, iii) follows
from the fact that C D aC for all a 2 Gal.L=K/ due to ii).

Now we check iv). By Faltings’s criterion for instance, see §2, Corollary 2,
of [3]), it suffices to prove that for every prime P of L not dividing N nor the
conductor of C, the reductions of the abelian varieties A and CdimA modulo P are

isogenous over the residue field OL=P. We write pf D NL=K P, where with no

risk of confusion now f is the residue degree of P over K. On the one hand,
the characteristic polynomial of the endomorphism FrobP acting on the l-adic Tate

module of the reduction of A=L modulo P, for a prime l ¤ p, is the characteristic
polynomial of the complex representation of 0.pf //:

PA;P.x/ D Y2ˆ
x 0.pf //.x 0.pf //:

On the other hand, the corresponding Frobenius characteristic polynomial for C at P
is

PC;P.x/ D x C P//.x C P/ / D x 0.pf //.x 0.pf //:

Since 0.pf / belongs to K, we obtain PA;P.x/ D PC;P.x/dimA. Thus, A is isogenous

over L to CdimA.

Proposition 3.2. The field L is the smallest number field satisfying End0Qalg.A/ D
End0L A/.

Proof. SinceAis isogenous overLto the OEE
W K -th power of theellipticcurveC, we

have End0Qalg.A/ D End0L A/. That L is the smallest number field with this property

can be deduced from the following fact. For every ' 2 End0L A/, one has the explicit
version of the Skolem–Noether theorem:

p' D 0.p// ' 0.p// 1 ;

for all p 2 I. xm/ not dividing N. To check this equality, it is enough to verify that it
holds reduced modulo a prime ideal P of L over p. The smallest field of definition
for all endomorphisms of A is the fixed field LG, where

G D f 2 Gal.L=K/ W D for all 2 End0L.A/g:

By the Cebotarev density theorem, every in Gal.L=K/ can be written as D
L=K

p /
for some prime ideal p relatively prime to N. We have that 2 G if and only if

0.p// is in the center of End0L A/; that is, when 0.p/ 2 K and this fact implies
that p splits completely in L, so that D id.
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Let C be an elliptic curve defined over L as in Proposition 3.1. The main theorem

of complex multiplication Theorem 5.4 in [15]) implies the existence of a system of
isogenies f a W C aCg over L, a; xm/ D 1, satisfying the following properties:

i) ab D
a

b a;

ii) if C has good reduction at a prime ideal P j p, then p is the lifting of the
Frobenius map between the reductions of C and pC mod P.

Attached to the system of isogenies f ag, a one-cocycle can be defined as follows
see also [7]). For a non-zero regular differential in 1.C=L/, let W I. xm/ L

be the map given by

a
a!/ D a/!;

wherea! denotes the differential in aC corresponding to by conjugation. It follows
that is a one-cocycle, and for all u 2 L one has

u!.a/ D a/au=u:

Clearly, the class of in H1.I. xm/; L / does not depend on the particular choice
of Note that if a 2 P xm/, then we have a/ D 0.a/. The class in
H1.I. xm/;L / can be characterized from 0 as follows:

Proposition 3.3. Let W I. xm/ L be any one-cocycle satisfying a/ D 0.a/
for all a 2 I. xm/ with L=K

a / D id in Gal.L=K/. Then OE D OE

Proof. Assume that 2 H1.I. xm/;L / satisfies a/ D 0.a/ for all a 2 P xm/.
The quotient defines a one-cocycle in H1.Gal.L=K/; L / By Hilbert’s 90

theorem, we know that there is u 2 L such that a/= a/ D au=u for all
a 2 I. xm/. Thus, we have OE D OE

This completes the proof of Theorem 1.2 in the Introduction. From now on, we
shall denote by OEA in H1.I. xm/; L / the cohomology class of

4. Modular one-cocycles and elliptic directions

In this section we keep the notations as above and tackle the problem of determining
the elliptic directions in 1.A/. The goal is to proveTheorem1.3 that will be deduced
from the next three Propositions after the following

Lemma 4.1. Let 2 HomL.A;C/ be a non-constant modular parametrization, and
let 2 1.C=L/ be any non-zero regular differential. Denote by

h DXn 1

nqn
2 S2. 1.N //
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the cusp form associated with the pullback !/. Then:

i) 1 2 L ;
ii) for all a 2 I. xm/ relatively prime to N, one has 0.a// h D

a 1
a/a

1h;

iii) we have the identity h D
1

OELWK Pa2Gal.L=K/ P 2ˆ
a 1 a/

0.a/
a 1h;

iv) f 0.ai/g is a K-basis of E if and only if f
a 1
i hg is an L-basis of 1.A=L/.

Proof. i) Since and are defined over L, the cusp form h associated with !/
has q-expansion

P
n 1 nqn with coefficients in L. Since the abelian variety A is

simple overK, we have that A is aK-factor of theWeil restriction ResL=K.C/. Thus,
the set fahW a 2 Gal.L=K/g generates 1.A=L/. This implies 1 ¤ 0.

ii) It is enough to consider the case when a D p is a prime ideal not dividing N.
Then the claim follows from the commutativity of the diagram

A
0.a//

a 1

A

a 1
C

a 1
a

C

due to the fact that 0.p// and p 1
p are liftings of the corresponding p-Frobenius

morphisms at a prime ideal P j p of L.
iii) Write h D P 2ˆ c f with c 2 Qalg. By applying ii), for all 2 ˆ and

a 2 Gal.L=K/, one has

a 1 a/
0.a/

a 1
h D

1

0.a/ X2ˆ
c 0.a/ f DX2ˆ

c 1/.a/ f:

Thus, it holds

Xa X
a 1

a/
0.a/

a 1
h
DX; Xa

c 1/.a/ f
D OEL

W K X c f D OEL
W K h:

iv) If f 0.a1/; : : : ; 0.ar/g is a K-basis of E, then for every a 2 I. xm/ we can
write 0.a/ D P

r
iD1 i 0.ai/ with i 2 K. Thus, we obtain

a 1
a/a

1
h D 0.a// h/ D

r

XiD1
i 0.ai// h D

r

XiD1
ia 1

i ai/a 1i h:
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Since fahW a 2 Gal.L=K/g generates 1.A=L/ and dim.A/ D OEE
W K it follows

that fa 1
1 h; : : : ; a 1

r hg is a L-basis of 1.A=L/.
Conversely, assume that fa 1

1 h; : : : ; a 1
r hg is a L-basis of 1.A=L/. By using

iD1 i 0.ai / D 0 for some i 2 K, then
P

rpart ii), if
P

r
iD1 i

a 1
i ai/a 1i h D 0.

This implies that all i D 0. Since dim.A/ D OEE
W K D r, the proof is done.

Due to part i) in the above Lemma 4.1, there is a unique 2 1.C=L/ such that
the pullback !/ gives a normalized cusp form, say

h D q
CXn 2

nqn :

This particular will be called modular with respect to or, simply, -modular.
For every 1-cocycle 2 OEA we consider the following sums. Let 2 ˆ and set

g / WD Xa2Gal.L=K/

a 1
a/

0.a/
:

Notice that g / is well defined and g / 2 E L.

Remark 4.1. The sum g / can be interpreted as a sort of Gauss sum, in the sense

that we have

g / D Xa2Gal.L=K/

1 a/ua

where ua D
a 1

a/= 0.a/. If C admits a global minimal Weierstrass equation

L

overL, then the one-cocycle attached to a Néron differential satisfies thecapitulation
property a/OL D aOL see Remark 10.3 in [7]). Then ue is an unit ina O where
e is the order of a in Gal.L=K/.

We shall denote the ˆ-trace of g / by

trˆ / D X2ˆ
g / 2 L:

Remark 4.2. Recall that we have defined 2 OEA to be modular if trˆ / D OELW K
in the Introduction. As it will be shown, both terms modular and -modular) turn
out to be equivalent.

For every 2 L and 2 OEA let denote the twisted one-cocycle in OEA given
by a/ D a/ a Writing D with some 2 1.C=L/, then D 1

We shall need the following lemma.
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Lemma 4.2. For all a 2 I. xm/ and 2 ˆ one has

i) g a 1 a// a 1
a/ D g / 0.a/;

ii) trˆ a 1 a// D
a 1

trˆ /

Proof. It follows straightforward from the definitions and by using the cocycle
relations for

Proposition 4.3. Assume that 2 OEA is modular with respect to 2 HomL.A; C/.
Then trˆ / D OEL

W K and

h D
1

OEL
W K X2ˆ

g / f
is the normalized elliptic direction in 1.C=L//.

Proof. Since is -modular, there is a non-zero regular differential 2 1.C=L/
such that !/ is a normalized cusp form h D q

CPn 2 nqn and D By
comparing the first Fourier coefficient in the equality at Lemma 4.1 iii), we have that
trˆ / D OEL

W K For every 2 ˆ set

F D Xb2Gal.L=K/

b 1
b/

0.b/
b 1

h:

Also by Lemma 4.1 iii), we know that
P 2ˆF D OEL

W K h. From the equality
0.a// b 1

h/ D
b a/ 1

a/ b a/ 1h, one obtains

0.a// F / D Xb2Gal.L=K/

b 1
b/

0.b/
ba/ 1

a/ b a/ 1

h

D Xb2Gal.L=K/

b a/ 1
b a/

0.b/
b a/ 1

h D 0.a/F :

Hence F and f differ by a scalar multiple. Since the q-expansion of F begins as

g /qC ; itfollows thatF D g / f and thenh D
1

OELWK P 2ˆ g / f
Now, we shall prove that the modular one-cocycles in OEA with respect to

some modular parametrization are precisely those that satisfy the trace condition

trˆ / D OEL W K To this end, for a given one-cocycle 2 OEA not necessarily
modular), let us consider the K-linear map pr

W L L,

pr.u/ WD Xa2Gal.L=K/ X2ˆ
1

0.a/
a 1

a/a
1
u D ´

u trˆ u/ if u ¤ 0;

0 otherwise.
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Consider the eigenspace M D fu 2 LW pr.u/ D OEL
W K ug. Notice that u is

modular if and only if u 2 Mnf0g. In particular, we know that dimK.M/ > 0 and

it does not depend on the particular choice of 2 OEA used to define the K-linear
map pr.

Proposition 4.4. One has

i) pr2 D OEL
W K pr;

ii) dimK.M/ D OEE
W K ;

iii) if is modular, thenM D hf
a 1

a/giK where a runs over Gal.L=K/.

Proof. The first claim comes from the computation:

pr2 u/ DXa X
1
0.a/

a 1
a/

a 1

hXb X
1

0.b/
b 1

b/b 1
ui

DXa Xb X
1

0.a/ X
1

0.b/
ab/ 1 ab/.ab/ 1

u

DXa Xb X
1

0.a/ X
1

0.a 1b/
b 1

b/b
1
u

DXb Xa X;
/ a/1

b 1
b/

0.b/
b 1

u

D OEL W K pr.u/:

Let us prove ii) and iii) simultaneously. Since dimK.M/ is independent of the
one-cocycle chosen in OEA we can and do) assume that is modular. Set

h D
1

OEL
W K X2ˆ

g / f D 1CXn>1

n qn:

Let W D hf
a 1

a/giK where a runs over Gal.L=K/. We need to show that
W D M and dimK.W / D OEE

W K Choose a1; : : : ; ar 2 I. xm/ such that

f 0.a1/;: : : ; 0.ar/g is aK-basis ofE. We claim that fa
1

1 a1/;: : :; a 1
r ar/g isa

K-basisofW Indeed, if
P

r
iD1 i

a 1
i ai / D 0 for some i inK, then consider WD

iD1 i 0.ai / 2 E. It is easy to check that / h/ D P
n 1

0n

P
r qn with 01 D 0.

This forces D 0, since otherwise we get a contradiction from Lemma 4.1 i) applied
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to / h/. Therefore, all i D 0 which implies that a 1
1 a1/; : : : ; a 1

r ar/ are
linearly independent. Now, for every ideal a 2 I.xm/, one has 0.a/ D P

r
iD1 i 0.ai/

for some i 2 K. By taking q-expansions in the equality

a 1
a/a 1

h D
r

XiD1

i
a 1
i ai /a 1

i h;

we obtain a 1
a/ D P

r
iD1 i

a 1i ai /. So far, we have dimK.W / D OEE
W K and

the inclusion W M follows from Lemma 4.2 ii).
To easy notation, set ui D

a 1
i ai/ for 1 i r and let us show that they

generateM. For any nonzero u 2 M, consider the normalized cusp form

hu D
1

OEL
W K X2ˆ

g u/ f:

Since fhu1 ; :: : ;hung is a L-basis of 1.A=L/ by Lemma 4.1 iv), there are i 2 L
such that hu D P

r
iD1 i D 1. By applying 0.a// to

iD1 i hui Notice that
P

r

hu, and then conjugate by a, we obtain

u.a/hu D

r

XiD1

a
i ui a/ hui :

Therefore, we have

i D
a i

ui a/
u.a/ D

a i
au

aui
ui
u

for all a and 1 i r. That is, i WD i u=ui 2 K. Then u D P
r
iD1 i ui since

P
r
iD1 i D 1. The statement iii) follows.

Proposition 4.5. Let 0

2 OEA such that trˆ 0/ D OEL
W K Then 0 is modular with

respect to some 0

2 HomL.A; C/.

Proof. We shall prove that there is 0

2 HomL.A; C/ and 0

2 1.C=L/ such that
0 0/ corresponds to the normalized cusp form

h0 D
1

OEL
W K X2ˆ Xa2Gal.L=K/

a 1
0.a/

0.a/ f:

Consider anynon-constant 2 HomL.A;C/ and take! 2 1.C=L/such that !/
corresponds to the normalized cusp form

h D
1

OEL
W K X2ˆ

g / f;
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where D Let L D ker.pr/° M be the decomposition corresponding to the
projector pr attached to Now, there is 2 M such that 0

D and

h0 D
1

OEL
W K X2ˆ

g / f
with D Pa2Gal.L=K/ raa 1

a/ for some ra 2 K due to Proposition 4.4 iii). We
claim that

Xa2Gal.L=K/
raa 1

a/ h0 D Xa2Gal.L=K/
ra 0.a/ h: 1)

Letting ‰ D Pa2Gal.L=K/ ra 0.a/ 2 End0K A/, then it follows

h0 D ‰
1

D B ‰/
1

;

which implies that 0 is modular. To check 1), we use Lemma 4.2 i):

h0 D
1

OEL
W K XXb

b 1 b/b 1

0.b/ f

D
1

OEL
W K XXb Xa

b 1
b/ra ab/ 1

a/
0.b/ f

D
1

OEL
W K XXa

rag a 1 a//
a 1

a/ f

D
1

OEL
W K XXa

ra 0.a/g / f

D
1

OEL
W K

‰ X g / f D ‰ h/:

The transitivity of the action of E / on the set of elliptic directions follows
from the equality 1). To finish the proof of Theorem 1.3, it remains to determine the
q-expansions of the normalized elliptic directions. For it, first we need a technical
lemma.

Lemma 4.6. Let ` W I.m/ L be a

id in Gal.LN=K/. Let W Gal.LN=K/
mGaapl.sLu=chKt/habte à.am/aDp

su
c.ha/thfaotr à.allba/ D

D
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`.a/ a/`.b/ for all a 2 I.m/. Then the identity

1

OEL
W K X2ˆ

c/ D `.c/ 2)

holds for all c 2 I.m/ if and only if

D a2GX
al.LN K/

`.a/
a/

and
X2ˆ

D OEL
W K : 3)

Proof. Assume 3). For every c 2 I.m/, we have

X2ˆ X
a2Gal.LN K/

`.a/

a/
c/ D X2ˆ X

a2Gal.LN K/

`.ac/
ac/

c/

D `.c/ X2ˆ X
a2Gal.LN K/

c/`.a/
a/

D `.c/
c/

X
a2Gal.LN K/

`.a/ X2ˆ
1

a/

D `.c/
c/

X2ˆ
D `.c/ OEL

W K :

Now, suppose 2). Fix 2 ˆ Note that for 2 ˆ the characters and are

equal if and only if D For every a 2 Gal.LN=K/, one has

`.a/
a/ D

1

OEL
W K C X2ˆnf g

a/
a/

D
1

OEL
W K C X2ˆnf g

/ a/ :1

Summing over all a, then

X
a2Gal.LN K/

`.a/
0.a/ D C

1

OEL
W K X2ˆnf g X

a2Gal.LN K/
/ a/ D :1

The condition
P 2ˆ D OEL

W K is obtained by replacing a with O in 2).
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Proposition 4.7. Assume that 2 OEA satisfies trˆ / D OEL
W K Consider the

normalized cusp form

h D
1

OEL
W K X2ˆ

g / f:

Then:

i) one has

h D
8ˆ Xa;m/D1
<̂

ˆ̂:

a 1
a/ qN.a/ if K ª Ef ;

Xa;m/D1

N.a/

Na/

qN.a/ if K Ef ;

ii) for all c 2 I. xm/, we have 0.c// h/ D
c 1

c/c
1h.

Proof. For all a 2 I.m/, set

`.a/ D
8ˆ

a 1

<

:̂

a/ if K ª Ef ;

N.a/
Na/

if K Ef

It is clear that `.ab/ is `.a/a 1`.b/ or `.a/Na`.b/ depending on whether K ª Ef or
not, respectively. Since for the case K Ef one has

`.a 1/

a 1/ D
Na

1
.1=`.a//

a 1/ D
Na

1 N.a/=`.a//
N.a/= a/ D

Na
1

Na/

0. Na/

;

for all 2 ˆ then in both cases it follows that g / D Pa2Gal.LN K/ `.a/= a/.
By using Lemma 4.6, a case-by-case computation shows that for all a 2 I.m/ and

c 2 I. xm/ one has

1
OEL

W K X2ˆ
g / a/ 0.c/ D

c 1
c/c

1

`.a/: 4)

Plugging c D 1 in 4) it follows part i). Part ii) follows from part i) and 4).

Now, Theorem 1.3 in the Introduction follows from Propositions 4.3, 4.5 and 4.7.
Note that due to Proposition 4.4, all one-cocycles in OEA are modular if and only if
OEE

W K D OEL
W K ; i.e., whenAisK-isogenous toResL=K.C /. Ingeneral, in order to

determine a modular one-cocycle in OEA a strategy emerges from the previous results.
Indeed, first one can build a one-cocycle 2 OEA by solving and combining norm
equations. If trˆ / ¤ 0, then trˆ / is modular since its ˆ-trace equals OEL W K
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Alternatively, if trˆ / D 0 or in any circumstance, the nullspace of the K-linear
map pr OEL

W K Id provides all u 2 L such that u is modular.
We also remark that for the case K Ef there are elliptic quotients of Af that

do not factor through neither A nor AN. These quotients can be obtained using the
above results plus theWeil involution acting on Af

We conclude this section with three open questions: one concerning about the
isomorphism W E End0K A/ and the others about the elliptic optimal quotients of
A. All the results of the paper hold when we replace J1.N / with Jac.X / where
is an intermediate congruence subgroup between 1.N / and 0.N/ such that f in
S2. / and X is the modular curve attached to this subgroup. Although the optimal
quotient A of A /

f does depend on it is known that Tp/ 2 EndQ.A /
f / and, thus,

Tp/ belongs to EndK.A/ for all

Question 4.8. Is a// 2 EndK.A/ for all integral ideals a and all

We ask ourselves whether the j -invariants of optimal modular parametrizations
of CM elliptic curves are not far from being also optimal in the sense of having CM
by the maximal order of K. Of course, if OK/ EndK.A/ all optimal elliptic
quotients have multiplication by OK. If a// 2 EndK.A/ for all integral ideals

a 2 I. xm/, then the j -invariants of all optimal elliptic quotients are in the Hilbert
class field H. From Cremona’s tables N < 130000), we have checked that all
optimal elliptic quotients over Q with CM of J0.N/ have complex multiplication
by OK. Also, the same experimental result has been obtained in all examples over
Qalg collected by the authors.

Question 4.9. Assume that 2 HomL.A; C/ is optimal. Does C have complex
multiplication by OK?

And the last question is related to the above Remark 4.1.

Question 4.10. Is it true that the existence of an optimal elliptic quotient of A having
global minimal model over L is equivalent to the existence of a modular one-cocycle

2 OEA with values a/ in the ring of integers OL for all integral ideals a 2 I. xm/?

In the next sections, we apply the above results and focus our attention on Gross’s
elliptic curves A.p/. We also give a positive answer to the second question mentioned
above for the particular case of level N D p2.

5. CM elliptic optimal quotients of J1.p2/

In the sequel p is a prime > 3 and such that p 3 mod 4. The discriminant
of K D Q.p p/ is p. Set p D p p OK. Let X denote the set of Hecke
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characters mod p and let Y be the set of Dirichlet characters
W OK=p/ C such

that 1/ D 1.
To every Hecke character 2 X, we attach its eta-character in Y defined as

in Section 3 by a/ D a//=a, and it can be easily seen that this map X Y
is surjective. The Nebentypus " W Z=pZ/ C of the newform f 2 S2. 1.p2//
associated with is given by ".n/ D n/ n/, where is the quadratic Dirichlet
character associated with K. In this case, we have that ord " D ord / 2.

By the results in Section 3, we know that the elliptic optimal quotients of the
abelian variety Af are defined over a number field L, which is a cyclic extension
of H of degree ord " contained in Kp.

Proposition 5.1. The ray class field Kp satisfies OEKp W H D p 1/=2 and we
have Kp D H Q. p/, where p D e2 i=p.

Proof. From the exact sequence

1 OK=p/ OK I.p/=P1.p/ I.OK/=P.OK/ 1;

we know that the Galois group Gal.Kp=H/ is isomorphic to OK=p/ OK
and, thus, one has OEKp

W H D p 1/=2. Consider the morphism ˆp W I.p/
Gal.H Q. p/=K/ given by the Artin symbol. We claim that p̂ has kernel P1.p/,
which implies that Kp H Q. p/. Indeed, for any ideal a 2 I.p/, we have that

ˆp.a/ acts trivially on H if and only if a 2 P.p/, that is a D aO. Moreover,

p̂.aO/ acts trivially on Q. p/ if and only if theArtin symbol Q. p/=Q
N.a/ is the identity;

i.e., N.a/ 1 mod p/ which is equivalent to a 2 P1.p/ since N.a/ a2
mod p/. Finally, for any subfield F of Q. p/ which contains K we have that

H \ F D K since either F D K or F=K is ramified at p. Hence, one has the
equality OEH Q. p/ W H D p 1/=2 D OEKp

W H and the statement follows.

We shall need the following lemma.

Lemma 5.2. Let 2 X and denote by and f its eta-character and newform,
respectively. Then the following holds:

i) For every ideal a 2 I.p/, one has

TrE=K a//
D8<:

a X2ˆ
a/ if a D aOK,

0 if a 62 P.p/.

ii) Let 0 and f 0 denote the eta-character and newform associated with 0 2 X.
Then f 0 D f for some 2 Gal.Qalg=K/ if and only if ker 0 D ker
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Proof. First, let us prove i). When a D aOK, the claim on the trace is clear since

a// D a a/. Suppose that a 62 P.p/, and let n be the order of a in I.p/=P. /
Notice that n > 1 and a/ 62 K. For every 2 ˆ we have a/ D a/ for
some 2 n, where n denotes the group of n-th roots of unity. Thus, we have

X2ˆ
a/ D a/ X2ˆ 2 K:

Therefore, either TrE=K a// D 0 or a/ 2 K. n/. Let us see that the last
possibility does not occur. For it, assume that a/ 2 K. n/ which implies that
the extension K. a//=K is normal. Since n is the minimum positive integer such

that a/n 2 K, it follows that either n K or a/2n
2 Kn see Proposition 2

in [14]). Since a/ 62 K, we must have that a2n/ D bn D bOK/n/ for
some b 2 K and, hence, a2 D bOK. The class number of K being odd, we get a

contradiction.
Let us prove ii). If f 0 D f for some 2 Gal.Qalg=K/ then the statement is

clear since 0 D Now, suppose that ker 0 D ker We claim that

f f W 2 ˆg\ f f 0
W 2 ˆ0g ¤ ¿;

where ˆ0 is the corresponding set of K-embeddings Q. 0/ C. Let us consider
the normalized cusp forms

h D
1

jˆj X2ˆ
f D q C ;

h0 D
1

jˆ0j X2ˆ0

f 0

D q C

in S2. 1.p2//new. Since K ª Q.im / and ker 0

D ker there is 2 ˆ such that

a/ D 0.a/ for all a 2 OK coprime with p. By applying i), we obtain the equality

h D Xa2P.p/

TrE=K. a//

jˆj
qN.a/

D Xa2P.p/

TrE=K. 0.a//

jˆ0j
qN.a/

D h0:

Therefore, the Qalg-vector spaces generated by f f W 2 ˆg and f f 0
W 2 ˆ0g

have a common non-zero cusp form, which implies that f 0 D f for some 2
Gal.Qalg=Q/ cf. Proposition 3.2 in [1]). Since h 2 h f W 2 Gal.Qalg=K/i \
h f 0

W 2 Gal.Qalg=K/i, it follows that 2 Gal.Qalg=K/.

Proposition 5.3. For every positive divisor d of p 1/=2 there is a unique abelian
variety Af of CM elliptic type of level p2 such that the Nebentypus of f has order d;
this abelian variety satisfies that K 6 Ef and dim Af D OEH

W K ' d/, where ' is
the Euler function.
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Proof. Let d be a divisor of p 1/=2 and take 2 X such that its eta-character
has order 2d. Let us denote by f the newform attached to whose Nebentypus

" has order d. First, let us show that K 6 Ef Indeed, let c 2 X defined by

c.a/ D Na/. The eta-character and the normalized newform attached to c are

clearly N and fN, respectively. Since ker N D ker Lemma 5.2 ii) ensures that
fN 2 f f W 2 ˆg, which implies K 6 Ef The same argument can be applied to
another newform f 0 obtained from 0 2 X whose associated character 0 has order

2d to show that f 0 belongs to f f W 2 ˆg, which proves that Af is unique when
the order of " has been fixed.

Since K 6 Ef the equality dim Af D OEEf W Q D OEE
W K holds. Now, we

have that OEE
W K D jf f W 2 ˆgj D jf W 2 ˆgj. Again using part ii) of

Lemma 5.2, we obtain

OEE
W K D jf 2 ˆ W D gj jf W 2 ˆgj D jf 2 ˆ W D gj ' d/:

Since the condition D is equivalent to being a character of Gal.H=K/,
it follows dim Af D OEH

W K ' d/.

Remark 5.1. Note that the number of abelian varieties Af of CM elliptic type of
level p2 is the number of divisors of p 1/=2. Also for every number field L
intermediate between H and H Q. p/ there is a unique abelian variety Af of CM
elliptic type and level p2 for which L is its splitting field as defined in Section 3.

Next, in order to show that the CM elliptic optimal quotients of Af in J1.p2/
have endomorphism ring isomorphic to OK, we shall need to use some auxiliary
congruence subgroups of SL2.Z/ of level p2. To this end, fix a newform f in
S2. 1.p2// attached to a Hecke character 2 X. Let " denote the Nebentypus
of f Let us consider the following congruence subgroups of level p2:

c d 2 0.p2/ W a d 1 mod p/³;p D²
a b

and " as in the introduction; i.e.,

c d 2 0.p2/W ".d/ D 1³:" D ²
a b

It is clear that 1.p2/ p " and f 2 S2. " /. For any intermediate congruence
subgroup of level p2 satisfying 1.p2/ "; let X be the modular curve

over Q attached to We shall denote by A /
f the optimal quotient of the jacobian

of X attached to f by Shimura. More precisely, let If be the annihilator of f in
the Hecke algebra acting on Jac.X / Then

A /
f D Jac.X / If Jac.X // :
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Proposition 5.4. Let f and be as above. Then all elliptic optimal quotients of

A /
f have complex multiplication by OK.

Proof. Fix an elliptic direction in 1.Af / and let C be an elliptic optimal quotient
attached to this direction. ByProposition 5.3 andTheorem 1.2, we knowthatK

6 Ef
and thus all endomorphisms of A /

f are defined over its splitting field, say L, that
satisfies L Kp. Let c denote the conductor of the order O ' EndL.C / in OK.
We want to show that c D 1, and split the proof in three steps.

Step 1: c j 2 for all Since End.C / D EndL.C / one has that L contains the
ring class field of O say K Notice that K L Kp. But p - c since
otherwise p must divide OEL

W H cf. Proposition 7.24 in [4]) and this degree is a

divisor of p 1/=2. Hence, K is an unramified extension of the Hilbert class field
and, therefore, it must coincide with H. Again by Proposition 7.24 in [4], we obtain
that c j 2.

Step 2: c does not depend on We consider the natural projection
W X X "

The degree of is odd since it divides OE 1.p2/ W 0.p2/=f 1g D p.p 1/=2 and

p 3 mod 4.
Let ; " W

Jac.X / A ; " be the optimal quotient over Q for which there is
an isogeny

W A ; " Jac.X "/ defined over Q rending the following diagram

Jac.X /

; "

Jac.X "/

A ; "

commutative. Since every element of the group H1.X ; Z/= H1.X ; Z// has"
order dividingdeg thecardinality of thisgroup is odd. From the group isomorphism
ker ' H1.X ; Z/= H1.X ;Z//, it follows that deg is odd. Since A / is an" f
optimal quotient of A ; " there is an isogeny f W A /

f A "/f whose degree

divides deg Hence, for every optimal elliptic quotient
W A /

f C there is an

optimal elliptic quotient " W A "/
f C " and an isogeny

W C C " rending
the diagram

A /
f

f A "/
f

"

C C "
commutative. It is clear that deg is odd since it divides deg f So c " and c can
only differ by an odd factor, which implies that c is independent of the group
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Step 3: c D 1 forall Now, itsuffices toprove c D 1 for a particular subgroup
We consider D p. Following Shimura in [17], we know that the matrix

0 1
1 1=p

lies in the normalizer of p in SL2.R/ and provides an automorphism u of X p of
order p. Set

G D X1 i<p
i/D1

u /i 2 End Jac.X p /:

We claim that G leaves stable the subvariety If Jac.X p//, which is equivalent

to saying that G leaves stable the vector space generated by the set of eigenforms

in S2. p/ which are not Galois conjugates of f In fact, the action of G
on all eigenforms of S2. p/ can be described as follows. It is well-known that if
we denote by New the set of normalized newforms in S2. / then the set of
normalized eigenforms in S2. p/ is the disjoint union of New p 1, and 2, where

1 D New 1.p/ \ S2. p/, 2 D Bp.New 1.p// \ S2. p/, and Bp is the operator
acting as Bp.h.q// D h.qp/. With p D e2 i=p and from the equality

X1 i<p
i/D1

i
p D

1 Cp p
2

;

it can be easily checked that every eigenform h.q/ DPn 1 bnqn 2 S2. p/ satisfies:

G h/ D
8
<̂

:̂

1 Cp p
2

h C
p p p

2
bp Bp.h/ if h 2 New p [ 1,

p 1
2

h if h 2 2.

The claim follows from the fact that all h 2 New p have level p2 and Nebentypus
whose conductor divides p and, thus, bp D 0 see Subsection 1.8 in [5]).

Since G leaves stable the subvariety If Jac.X p //, then G induces an endomorphism

p/
f which we still denote by G. Due to the fact that G acts on 1.Aof A p/

f /
as the multiplication by 1Cp p/=2, itfollows thatG leavesstable all subvarieties

of A. p/. Thus, 1 Cp p/=2 2 O p and the statement follows.

As for Gross’s elliptic curves, we obtain the following result, which concludes the
proof of Theorem 1.4.

Corollary 5.5. Let f be a CM normalized newform with trivial Nebentypus. The

elliptic curve A.p/ and its Galois conjugates are the optimal quotients of A /
f over

the Hilbert class field H, for all subgroups with 1.p2/ 0.p2/.
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Proof. By Theorem 20.1 in [9], we know that A.p/ is a quotient of J0.p2/ defined
over H, attached to a newform f with trivial Nebentypus. Notice that the
corresponding field L coincides with the Hilbert class field H. Since we have K 6 Ef
by Theorems 1.1 and 1.2, every elliptic optimal quotient C of A /

f is definedoverH

and the abelian variety A /
f is simple over K. Since dim A /

f D OEH
W K it follows

that A /
f is K-isogenous to the Weil restriction ResH=K C In [9], Gross shows

that A /
f is K-isogenous to ResH=K A.p/. Therefore, on the one hand, there is

2 Gal.H=K/ such that A.p/ and C are Qalg-isomorphic. On the other hand,
by Theorem 5.4, A.p/ and C are H-isogenous. Hence, A.p/ is H-isomorphic to

C and the claim follows.

6. Canonical CM elliptic direction for A.p/

When the class number of K is greater than one, there are infinitely many elliptic
directions in S2. 0.p2// attached to different parametrizations J0.p2/ A.p/.
Here, we shall emphasize one of them we call it canonical) in terms of a particular
one-cocycle that can be constructed by means of the Dedekind eta-function.

Let OH be the ring of integers of the Hilbert class fieldH. For all a 2 K coprime
with p, we denote by a

p/ the Jacobi symbol m
p /, where m is an integer such that

a m mod p/. One has a/ D
a
p /. By [10], we know that there is a unique map

i W I.p/ H with the following two requirements:

i) i.a/12
D O/= a/,

ii) NH=K.i.a//
p D 1,

for all a 2 I.p/. Moreover, this map also satisfies the following conditions:

iii) i.a/OH D aOH,

iv) i.a b/ D i.a/ a 1i.b/ for all a; b 2 I.p/,
v) i.Na/ D i.a/ for all a 2 I.p/.

By taking into account conditions ii) and iv), and since OEH
W K is odd, we also

obtain:

vi) for all a 2 P.p/, one has i.Na/ 2 K and i.a/
p D 1.

For every a 2 I.p/, we set

a/ WD
ai.a/ D

N.a/
i.Na/

: 5)

The map
W I.p/ H also satisfies conditions ii), iii), v), and vi). But now

conditions i) and iv) are replaced with
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i0) a/12
D N.a/12 Na/

OK/
and the one-cocycle condition:

iv0) a b/ D a/ a b/, for all a, b 2 I.p/.
Conditions vi) and iv0) imply that the one-cocycle belongs to OEAf for all Af of
CM elliptic type and level p2.

Remark 6.1. Notice that the above one-cycle can be effectively computed by
using the Dedekind eta-function on ideals as Rodríguez-Villegas does in [13]), and

it coincides with what Hajir denotes in Definition 2.3 in [11].

Let f denote the normalized newform in S2. 0.p2// attached to a Hecke character

whose eta-character has order 2. By Section 3, the splitting field L of Af
is H. Let S2.Af / be the C-vector space generated by the Galois conjugates of the
newform f attached to and let denote a Néron differential of Gross’s elliptic
curve A.p/.

Proposition 6.1. Let f beasabove. There is an optimal quotient
W J0.p2/ A.p/

such that !/ D c g.q/dq=q, where

g.q/ D Xa;p/D1

i.a/qN.a/
2 S2.Af /;

and c 2 Z is a unit in ZOE
1

2p

Proof. By Lemma 5.3, we have OEE
W K D OEL

W K and, thus, all one-cocycles in
OEAf are modular. Therefore, by Theorem 1.3 we have that

g.q/ D Xa;p/D1

a 1
a/qN.a/

D Xa;p/D1

i.a/qN.a/

is a normalized cusp form in S2.Af / for which there is an optimal elliptic quotient
C given by the lattice

ƒg D °
2 i

R
g.z/dz W 2 H1.X0.p2/; Z/ :

Since i. Na/ D i.a/ for alla 2 I.p/, it follows that g.q/ 2 H0OEOEq Thus, g.q/ dq=q 2
1.X0.p2//=H0 Hence, thenaturalmorphism W X0.p2/ C is defined overH0.

Notice that necessarily one has ƒg D OK, for some 2 C Indeed, OK is the

only ideal a such that j.a/ D j.a/ since OEH
W K is odd. Thus, we have j.ƒg/ D

j.OK/. Since Af isQ-isogenous to ResH0=Q.C / and to ResH0=Q.A.p//, it follows
that C and A.p/ are H0-isogenous and, therefore, H0-isomorphic. Therefore, there
exists c 2 H0 such that !/ D c g.q/dq=q. It is clear that ƒg/ D p3c12.
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The Manin ideal attached to is c OH0 we refer to Section 4 in [8] for more
details on the Manin ideal). By Propositions 4.1 and 4.2 in [8], we know that cOH0
is an integral ideal and it can only be divided by primes lying over 2 or p. Now,
we want to prove that c 2 Z. Since c/ D g dq=q, the one-cocycle attached
to c is This means that for every a 2 I.p/ there is an isogeny of degree N.a/,

W

a 1
C C ;

such that c/ D
a 1

a/ a 1 c/. Taking intoaccount that j.a/ D
a 1j.OK/,

we obtain that the lattice corresponding to a 1
C is 1

i.a/
a. Finally, we have that

a 1

OK/ D
1

i.a/
a D i.a/12 a/ D

OK/
a/

a/ D OK/:

Therefore, ƒ/ 2 K \ H0 D Q and c12 2 Q. Since Q.c/ H is unramified
outside p and there is not a real quadratic field of discriminant p, it follows that
c3 2 Q. Finally, since H does not contain the 3rd roots of unity recall p > 3), one
obtains c 2 Q.

Remark 6.2. Since c 2 K the one-cocycle attached to is also In this sense,

we say that the normalized cusp form g is the canonical cusp form attached to A.p/.

For when the class number of K is 1 that is, p D 7, 11, 19, 43, 67, 163), one has

that is defined over Q and c coincides with the classical) Manin constant. Then
c D 1 in these cases since Manin’s conjecture has been checked for all elliptic
curves over Q with conductor 130000 in Cremona’s tables. We have computed c
for the remaining primes p 100 that is, p D 23, 31, 47, 59, 71, 79, 83) and we
have also obtained that c D 1. It seems reasonable to expect c D 1 for all A.p/.

Remark 6.3. In general, as already mentioned, there are infinitely many normalized
cusp forms g0 2 S2.Af / whose directions are pullbacks of 1.A.p// under modular
parametrizations 0

W Af A.p/. For each one of them, there is a one-cocycle 0

cohomologous to such that

g0

DXa
a 1

0.a/qN.a/
2 S2.Af /;

and a constant c0 2 H0 with 0 !/ D c0g0. The concern on whether the constant c
is 1 is already in [9], see Question 23.2.2 on p.81, but without fixing 0. However,
c0 ¤ 1 unless 0 D canonical) as in Theorem 6.1, although the Manin ideal
attached to any 0 ¤ might still be OK as well.
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We end this section giving an expression for the transcendental 2 C attached

to the lattice ƒ of A.p/, which generalizes the one given by Gross in [9] for when K
has class number one. Keeping the above notations, we set

WD Yb2Gal.H=K/
b;p/D1

i.b/
b/

:

H

It is clear that is well defined, independent of the Galois conjugate of and

2 O Let h denote the class number of K, and consider

fOK;b1; : : : ; b.h 1/=2; : : : ; Nb1; : :: ; Nb.h 1/= 2g

a set of representatives of Gal.H=K/ with bi; p/ D 1. Then we can rewrite

D
h 1/=2

YiD1

i.bi/ i.Nbi /
N.bi/

: 6)

Indeed, since i.b/= b/ is independent of the class of b in Gal.H=K/, it suffices to
prove that b/ Nb/ D N.b/. But this is a consequence of

N.b/
p

h

p D
N.b/

p

N

D p

2

p D D 1;

where 2 K is a generator of bh. Observe that is a positive unit in OH0

Proposition 6.2. Let ƒ D OK be the lattice attached to A.p/. Then

D i pC1/=4
h

vuuut

.2 /.2hC1 p/=4 pp .1 3h/=2

Y1 m<p
m/D1

m
p

;

where the h-th root is taken to be real.

Proof. By the Chowla–Selberg formula [2], we know that

Ya2Gal.H=K/ p

6h

N.a/ 6 a/ D
2

p 1

YmD1
p

m/ 6m
;

where h1; ai D
1

N.a/a. Since is the one-cocycle attached to we have that

a/ D N.a/12 a/ D N.a/12

i.a/
a

12 N.a/12

p3

i.a/12 D i.a/12
12: 7)
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Combining 6), 7), and Gauss’s identity

n 1

YiD1

i
n D .2 / n 1/=2n 1=2;

the statement follows by taking into account that lies in R or i R according to

p 1 mod 8/ or not cf. [9]).

As a result, we obtain the following fact, which concludes the proof of Theorem

1.5.

Corollary 6.3. With the above notations, one has

°
2 i

R
g.z/dzW 2 H1.X0.p2/; Z/ D

1
c OK:

7. CM elliptic directions for non-trivial Nebentypus

In this section, we shall consider arbitrary Hecke characters mod p. Let in X and
let be its eta-character. Let f denote the normalized newform attached to In
order to find the elliptic directions in S2.Af /, one needs to determine the modular
one-cocycles u in OEAf Then the normalized cusp forms

gu D Xa;p/D1

a 1
u.a/ qN.a/

are the elliptic directions in S2.Af /. Recall that in the particular case 2 D 1, all
one-cocycles are modular. In general, as explained above, to find the modular
onecocycles amounts to an eigenvector problem. In our particular setting, the following
lemma will be useful since it will allow to handle certain linear systems by means of
a quotient polynomial ring.

Lemma 7.1. Let M=F be a cyclic field extension of degree k. Fix a generator

of Gal.M=F /, and let k be the group of k-th roots of unity. Let E D
EndFOEGal.M=F / M/ be the F -algebra of Gal.M=F /-equivariant F -linear endomorphisms

of M. One has

i) the map ‚ W F OEX Xk 1/ E given by

‚.
k

XiD1

ai X i /.u/ D
k

XiD1

ai iu; for all u 2 M;

is well defined and an isomorphism of F -algebras.
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ii) For every p.X/ 2 F OEX Xk 1/, let Z D f 2 k W p. / D 0g. Then the
endomorphism G D ‚.p.X// diagonalizes and its characteristic polynomial
is

1/k
k

YiD1

X p. i
k/ ;

where k D e2 i=k. We have dimF ker G D jZj, and

Q 2Z X /
M/: 8)ker G D ‚ Xk 1

Proof. It is obvious that ‚ is well defined and a morphism of F -algebras. Choose

2 M such that f
i

g1 i k is a F -basis of M. The morphism ‚ is injective
because ‚.q.X// D 0 implies that ‚.q.X//. / D 0 and, then, q.X/ D 0. For

a given G 2 E, we have that G. / D P
k
iD1 ai

i for some ai 2 F and, thus,

G.u/ D P
k
iD1 ai

i u for all u 2 M. Therefore,‚ is surjective and part i) is proved.
We consider the F -algebra monomorphism ‰ W E EndF FOEX Xk 1/

defined by ‰.G/ D yG, where

yG.q.X// D ‚ 1 G/ q.X/; for all q.X/ 2 F OEX Xk 1/: 9)

Now it suffices to prove part ii) for yG. Note that for any field extension F0=F the
relation 9) allows us to consider yG as a F0-linear endomorphism of F0OEX Xk 1/.

Let G D ‚.p.X//. The set of eigenvalues of yG is fp. i
k/ W 1 i kg. Indeed,

if 2 F0 is an eigenvalue of eigenvector q.X/ 2 F0OEX Xk 1/, then there exists

2 k such that q. / ¤ 0 and, thus, D p. / Conversely, if D p. / for some

2 k then q.X/ D Q
02 knf g

X 0/ is an eigenvector with eigenvalue Notice

that all eigenvalues of yG are in F0 D F. k/.
Now, let D p. / for some 2 k and we will prove that

dimF0 ker. yG id/ D jf 2 k W p. / D gj;

which implies part ii) except for the equality 8). Note that by a translation of yG, we
can and do) assume D 0. Then one has

ker yG Dfq.X/ 2 F0OEX Xk 1/ W q. / D 0 for all 2 knZg

Dfq.X/ 2 F0OEX Xk 1/ W q.X/ D Y2 knZ

X / r.X/; degr < jZjg:

It follows that dimF0 ker yG D jZj and ker yG D ker.‰ B ‚/.Q 2Z X //. Finally,
the equality 8) is a consequence of the fact that q.X/ D Q 2Z X / 2 F OEX is

coprime withr.X/ D Xk 1/=p.X/ and q.X/ r.X/ is zero inFOEX Xk 1/.
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Now, we focus our attention on the Hecke character 2 X. For the sake

of simplicity, let us assume that its eta-character satisfies ord. / D p 1. Since
ker is trivial, the corresponding field L is the ray class field of K mod p; that
is, L D H Q. p/ cf. Propsition 5.1). The cyclic group Gal.L=H/ has order

k WD p 1/=2. Also, let E D EndHOEGal.L=H/ L/ be the H-algebra of Gal.L=H/-
equivariant endomorphisms. After fixing a generator of Gal.L=H/, consider‚ as

in Lemma 7.1. Finally, let W I.p/ L be the one-cocycle in Section 6. To find the
elliptic directions inS2.Af / turns out to be equivalent to find the twisted one-cocycles

u.a/ D a/u=au which are modular. Note that now is not modular in OEAf

Proposition 7.2. For all u 2 L the following conditions are equivalent:

i) the one-cocycle u.a/ D a/ u is modular;au

ii) u D‚ Xk 1ˆk.X/ v/, for some v 62 ker‚ Xk 1

ˆk.X/

In particular, for u D ‚ Xk 1

ˆk.X/ p/ the one-cocycle u is modular. Here, ˆk.X/
denotes the k-th cyclotomic polynomial.

Proof. The values u 2 L for which u is modular are the eigenvectors of the
Klinear map

pr.u/ D Xa2Gal.L=K/

a 1
a/ X2ˆ

1

a/
a 1

u 10)

with eigenvalue equal to OEL
W K Also, by Proposition 4.4, we know that pr=OEL

W K
is a projector, pr diagonalizes, and its characteristic polynomial is

OEL
W K X/OEEWK X OELWK OEEWK

D OEL
W K X/'.k/Xk ' k/ OEHWK :

By part i) of Lemma 5.2, we can rewrite

pr.u/ D Xa2Gal.L=H/

a 1

a/ X2ˆ
1

a/
a 1

u:

Let g 2 Z be a primitive root of Z=p Z/ such that g/ D where D e
i

k

Since the set of principal ideals faj D g2jOK W 1 j kg is a set of representatives
of Gal.L=H/ and g2jOK/ D g2j, we have

G.u/ WD

pr.u/
OEH

W K D
1

OEH
W K

k

XjD1 X2ˆ
2j a 1j u D

k

XjD1

TrQ. / Q. 2j /a 1j u:

Hence, G belongs to E and its characteristic polynomial has roots 0 and k with
multiplicities k ' k/ and '.k/, respectively.
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Now, we fix the generator D g 2OK of Gal.L=H/ and apply Lemma 7.1 to
the endomorphism G k Id 2 E. It follows that the set

Z D °
0

2 k W

P
k
jD1

TrQ. / Q. 2j/. 0/2j k D 0

has cardinality jZj D '.k/. Letting k D 2, we claim that

Z D f j
k W 1 j < k; gcd.j; k/ D 1g:

Since Gal.Q. / Q/ acts transitively on Z and jZj D '.k/, it suffices to prove that

k 2 Z. Indeed, one checks:

k

XjD1 Xi2.Z=kZ/

j i
k

j
k D

k

XjD1 Xi2.Z=kZ/

.1 i/j
k D

k

XjD1 Xi2.Z=kZ/

i j
k D k:

Then, from Lemma 7.1, we obtain

fu 2 LW pr.u/ D OEL
W K ug D nu D ‚ Xk 1

ˆk.X/ v/W v 2 Lo:

Note that the image of ‚ Xk 1
ˆk.X/ is independent of the choice of the generator in

Gal.L=H/. It can be easily checked that ‚..Xk 1/=ˆk.X// vanishes onH, which
implies that ‚..Xk 1/=ˆk.X//. p/ is non-zero since the class of the polynomial
Xk 1/=ˆk.X/ in LOEX Xk 1/ is non-zero.

Example. Take p D 7, so that K D Q.p 7/ has class number one. Let
in X with eta-character satisfying .3/ D e2 i=6. Its corresponding newform f D

P
a//qN.a/ 2 S2. 1.49// has Nebentypus " of order 3; note that a// D

a a/ for all a 2 OK. The one-cocyle satisfies
p a// D a with the unique

choice of sign for a such that the symbol a= 7/ D 1. This one-cocycle is not
modular for in fact, it is modular for the Hecke character in X with eta-character
of order 2 in which case the unique) elliptic direction coincides with the rational
newform in S2. 0.49// giving rise to the elliptic curve 49A1 in Cremona’s notation.)
Thus, we need to twist by a coboundary in order to get a modular one-cocycle.
According to Proposition 7.2, we can take, for instance, u D ‚.X 1/. 7/ D

2 and the cuspidal form gu D P
a 1

7 7 u.a/qN.a/ D P
a//.a2/u=u qN.a/

2
S2. 1.49// is an elliptic direction of Af A computer calculation shows the lattice

ƒ for the corresponding elliptic optimal quotient from Jac.X "/ satisfies: c4.ƒ/ D
c4.A.7//u4, and c6.ƒ/ D c6.A.7//u6.
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