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Modular elliptic directions with complex multiplication (with an
application to Gross’s elliptic curves)

Josep Gonzdlez and Joan-C. Lario*®

Abstract. Let A be the abelian variety attached by Shimura to a normalized newform f €
S>(I'1 (N)) and assume that A  has elliptic quotients. The paper deals with the determination of
the one dimensional subspaces (elliptic directions) in S2(I"1 (¥ )) corresponding to the pullbacks
of the regular differentials of all elliptic quotients of A . For modular elliptic curves over number
fields without complex multiplication (CM), the directions were studied by the authors in [8].
The main goal of the present paper is to characterize the directions corresponding to elliptic
curves with CM. Then we apply the results obtained to the case N = p?, for primes p > 3 and
p = 3mod 4. For this case we prove that if f has CM, then all optimal elliptic quotients of
Ay are also optimal in the sense that its endomorphism ring is the maximal order of Q (/= p).
Moreover, it f has trivial Nebentypus then all optimal quotients are Gross’s elliptic curve A(p)
and its Galois conjugates. Among all modular parametrizations Jo(p%) — A(p), we describe
a canonical one and discuss some of its properties.

Mathematics Subject Classification (2010). 11G18, 14K22, 11R37, 11F11.

Keywords. Modular abelian varieties, complex multiplication, Grossencharacter, optimal el-
liptic quotient.

1. Introduction

Let Q¢ be a fixed algebraic closure of Q. An elliptic curve C defined over Q8
is said to be modular if there is a non-constant homomorphism 7 : J{(N) — C,
where J;(N) denotes the jacobian of the modular curve X;(N). Every modular
elliptic curve over Q¢ is a quotient of some modular abelian variety Ay attached
by Shimura to a normalized newform f. From now on, we shall always consider
parametrizations 7 : Ji(N) — C which factorize through such abelian varieties Ay,
called in this paper modular abelian varieties of elliptic type.

A modular parametrization 7 : J;(N) — C defined over a number field L < Q¢
induces an injection 7*: Q(C/1) — QY(J1(N);1). In what follows, we shall

*The first author is partially supported by DGICYT Grant BEM MTM2009-13060-C02-02, and the second
author by DGICYT Grant BEM MTM2009-13060-C02-01.
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identify Q' (J1(N) ;1) with the subspace of cusp forms in S(I'1(N)) whose g-
expansion lies in L[[g]], via s dg/q > h where ¢ = exp(2niz).

The determination of the normalized cusp forms in S, (I'1 (N }) associated with the
pullbacks 7*(Q21(C)) was discussed by the authors in [8] for elliptic curves without
complex multiplication. In this paper, we shall deal with the complex multiplication
case that needs techniques ad hoc. The present case is substantially richer since it
requires the intervention of class field theory as well as the main theorem of complex
multiplication.

Shimura shows in [16] that all elliptic curves with complex multiplication (CM)
are modular. Due to Ribet [12], we know that A has an elliptic quotient with CM
by an imaginary quadratic field K ¢ Q¢ if and only if / = f ® y, where y is the
quadratic Dirichlet character attached to K. In this case, there is a primitive Hecke
character v : I(m) — Q% of conductor an ideal m of K such that the g-expansion
of the CM normalized newform f is given by

oQ

=Y v@¢"®=> anq".

(a,m)=1 n=1

Here, /{m) denotes the multiplicative group of fractional ideals of K relatively
prime to nt, and the first summation is over integral ideals. The level of f is
N = N(m) |Ag]|, the norm of m times the absolute value of the discriminant of
K. We consider the number fields £y = Q({a,}) and E = Q({/(a)}), generated
by the images of y. One has £ = Ey - K, and we shall denote by ® the set of its
K-embeddings £ < Q2. The number field £ is a CM field. Through the paper,
for all CM fields we shall denote by bar ~— the canonical complex conjugation.

For future use, we recall that an abelian variety Y is called an optimal quotient
of an abelian variety X over a field & if there is a surjective morphism 7: X — Y
defined over k whose kernel is an abelian variety. In this case, every endomorphism
of X which leaves stable ker 7 induces an endomorphism of Y. The property of
being an optimal quotient is transitive. Hereafter, every A is taken to be an optimal
quotient of J1(N).

The plan of the paper is as follows. In Section 2, we study the decomposition
of A¢ over the quadratic field K for f with CM as before. This is an intermediate
step necessary (o determine the elliptic directions we are interested in. We shall prove

Theorem 1.1. Ler f € S>(T'1(N)) be a newform with CM and keep the above
notations. There is an abelian variety (A, 1) of CM type © defined over K, with
t: E < EndY (A), satisfying the following properties:

(1) A is an optimal quotient of Ay over K and the pullback of 2 1(A) corresponds
with the subspace generated by {° f : o € ®};

(i) (Y (@)*C f) ="V () f, forall a € I(m) and o € ®;
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(ii1) ¢ is an isomorphism;

(iv) ifpisaprime ideal of K withp + N, then the lifting of the Frobenius endomor-
phism acting on the reduction of A mod p is t{(y(p)) or L(¥ (D)) depending on
K & £y or K C Ey, respectively.

We remark that the above abelian variety A is simple over K, and that A 1s A
over K when K & Ey, while Ay is isogenous over K to A x A when K C Er. To
encode both cases of part (iv) in Theorem 1.1, we shall denote by ' the primitive
Hecke character mod tu defined as

a) if K Z Ey;
V() = {‘”” TEEE
yw(a) if K € Ey.
As it will be shown, one has 1 = m 1in the first case.
Then we study the splitting field of A; that is, the smallest number field where
all endomorphisms of A are defined. We make use of class field theory to build a
certain abelian extension L /K attached to the Hecke character v'; the field L is a
cyclic extension of the Hilbert class field of K and it is contained in the ray class field
mod . To simplify notation, the Artin automorphism (225 in Gal(L/K) will be
often denoted by the same symbol representing the ideal a. In particular, one has

Pf =N (mod )

for all B € @y, where L3 is an unramified prime ideal of L over a prime ideal p of K.
The extension L/K is characterized by the property that a viewed in Gal(L/K) is
trivial if and only if ¥'(a) € K*. The main result of Section 3 is the following

Theorem 1.2. et A be as above. Then the following holds:

(1) There is an elliptic curve C defined over L with complex multiplication by the
ring of integers Ok and such that A is isogenous over L to C ™4,

(ii) The field L is the smallest number field satisfying Endg)., (A) = End] (A4).

(iii) There isaone-cocycle A 1() — L* satisfving A(a) = ¥'(a) foralla € I{i)
with (L{TK) = id in Gal(L/K). The class of » in H'(I(iv), L*) is uniquely
determined by this condition.

In view of (iii}, the cohomology class of A depends intrinsically on A, and we shall
denote it by [A] € H!(I(in), L*). Section 4 is devoted to determining the elliptic
directions in Q2'(A) in terms of [A]. To this end, for each one-cocycle A € [A] and
o € &, we introduce the sums

Gwy= Y oM@ ep g

O alp!
acGal(l/K) W(a)
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and also its $-trace

tre(d) 1= ) go(A) € L.

oed

Theorem 1.3. With the above notations, the following holds.

(1) If > ps1 ¥nq" € S2(I'1(N)) corresponds to an elliptic direction aitached to a
modular parametrization m € Homp, (A, C), then y; # 0.

(2) The following statements are equivalent:

(1) the normalized cusp form

h=gq-+ Z)/nqn € S2(I'1 (N))

n=2

gives an elliptic direction attached to some m € Homp (A, C);

(ii) there is a one-cocycle A € [A] with tre(A) = [L: K] and such that

3 g M)-°f.

oed

[L K]
The g-expansion of this elliptic direction is then given by

> AN K g Epy

(a,m)=1

N(a) N(a) K CE

h =

Moreover, all other elliptic directions are ((a)*(h), fora € E*, and the equality
L (@) h = A@)% ' h holds for every a € I(i).

We shall say that a one-cocycle A € [A] is modular if one has tre(A) = [L: K].
According to Theorem 1.3, these are precisely the one-cocycles that provide the
elliptic directions. In Section 3, we also describe how (o obtain all modular one-
cocycles in [A] explicitly way by means of a K -linear projector, and close the section
by raising some open questions.

In the last three sections, we deal with the particular case concerning the level
N = p? where p > 3 is a prime with p = 3 mod 4. The relevance of this case
is in connection with the elliptic curves A(p) studied by Gross in [9] and [10]. For
convenience of the reader, we recall here its definition. Let K = Q(,/—p) and
let Ok be its ring of integers. Let H denote the Hilbert class field of K, and let
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Hy = Q(j(Ok)) be its maximal real subfield. The elliptic curve A(p) is defined
over Hy and given by the Weierstrass equation

mp np*

D
T S ST

where /n and n are the real numbers satisfying

= o), nt= ORI i (2),
=P P

The elliptic curve A(p) admits a global minimal model over H with discriminant
—p? and whose invariants are ¢, = —mp and cg = np>.

Given any intermediate modular subgroup I" between 't (p?) and T'o(p?) and a
normalized newform f € S2(I"), we denote by AJ(,F) its associated optimal quotient
of Jac(XT), where X denotes the modular curve over Q attached to I". According

(T1(p2)
Ay

to this terminology, we have = Ay. In Section 5, we prove:

Theorem 1.4. With the above notations, the following holds.

(i) For every positive divisor d of (p — 1)/2 there is a unique abelian variety Ay
of CM elliptic type in J1(p?) such that the Nebentypus of f has order d ; one
has K € Ey, dim Ay = [H : K]p(d), where ¢ is the Euler function, and the
splitting field of Ay is the intermediate field between H and H - Qe Py of
degree d.

(ii) Let f be a CM normalized newform in So(T1(p?)) and let T satisfy
o) a b 2
FipycTclei=q1. ;) €lop?):eld) =1y,

where ¢ is the Nebentypus of f. Then all optimal elliptic quotients of A}F) have
complex multiplication by Og. Moreover, if f belongs to So(To(p?)), then all

optimal quotients of A}F) are defined over H and are precisely the elliptic curve
A(p) and its Galois conjugates.

Among all modular parametrizations Jo(p?) — A(p) one stands out. In Sec-
tion 6, we discuss this canonical parametrization and give some of its arithmetical
properties.

Theorem 1.5. Set p = ./—p Ok. Let &: I(p) — H be the unique map defined by

the conditions §(a)!? = A(Ok)/A(a) and (NH/%W) = 1. Let w denote a Néron
differential of A(p), and let ¥ be any Hecke character attached to A(p). Then:
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(i) Thereisanoptimal quotient w: Jo(p?) — A(p) suchthat w*(w)=c g(q)dq/q
where the elliptic direction is given by

gg)= Y 8™ e S, (To(p?).
(a,p)=1
and ¢ € 7 is a unit in Z[ﬁ].
(ii) The complex lattice {271 [ fy g(z)dz: v € Hy (Xo(pz),Z)} is
h
1

[(p+1)/4 Qh+1—p)/4 (1-3h)/2 (m)
— . . . 23-[ . . F o . (9
c p-(Q2m) g | | F K

l=m<p
x(m)=1

where h is the class number of K, the h-th root is taken to be real, T is the
Gamma function, and p = [ |yeca(H/K) % is a positive unit of Hy.

Finally, in Section 7 we discuss how to compute the modular elliptic directions
for Ay when f € S>(I'1(p?)) has CM and its Nebentypus is nontrivial.

2. The abelian variety A

We shall adhere to the notations in the Introduction and prove Theorem 1.1. Let
i I(m) — Q¢ be the fixed primitive Hecke character, and let

f= > v@¢"9=> a4q"
n=1

(a,m)=1

be its associated CM newform in S>(I'1 (N )). The optimal quotient Ay of Ji(N) is
defined over Q by Ay = J1(N)/1r(J1(N)), where 17 (J1(N) is the annihilator of
/ in the Hecke algebra acting on J;(N). In particular, the pullback of ' (A /Qalg)
is ({¢ f}) where o runs over Gal(Q¥¢/Q). Recall that Ef = Q({a,}) and E =
QU (a)}). We fix an isomorphism

t: Ef = Endgy(Ay).

in such a way that ¢{a,) corresponds to the Hecke operator T, acting on As. The
Nebentypus of f is the mod N Dirichlet character e(d) = y(d )W ((d))/d, where
x is the quadratic character attached to K. We recall that ((e(d)) is the diamond
operator (d) acting on A¢. One has

[E: K] ifK ¢ Ef;

dimA; =[Es: =
imdy =[Er:Ql {Z[E:K] if K € E.
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Notice that £ = K - Ey. Now, we proceed to construct the abelian variety A over K
of dimension [E : K] with the properties required in Theorem 1.1. According to
Shimura’s Proposition 8 in [17], there exists v € End}, (Af) such that

u*Cfy= Ak - f

for all o in Gal(Q™¢/Q). Here, the choice of the square root +/Ag fixes 1 up o a
sign. For the case K € E¢, welet A = Ay and extend ¢ to E,

t: E <> End} (As),

via t(+/Ag) = u. For the second case, we proceed as follows. Since now K € Ey,
there is o € Ey such that ¢() € End(%2 (Ay) acts as

W) Cfy="rk - f

for all o in Gal(Q*2/Q). Then consider the involution w := ((e)u~! € End% (45).
Let A be the optimal quotient of J{(N) defined by A¢/B, where B = (1 —w)Ay.
Clearly, the abelian variety A4 is defined over K, and Q'(A;g) is identified with
{¢ floed. Since B is stable by ((E), the isomorphism ¢: £ < Endg2 (Ar) induces
in a natural way an embedding still denoted by the same letter

i: E < End¥(A)

such that ((y)*(° f) =%y -9 f for all y in E and all K-embeddings ¢ in . From
the equality w = —w, it follows that B = (1 + w)As. Note that B is K-isogenous
to A.

A case-by-case argument, employing that End% (X) < End% (Resg /(X)) for
any abelian variety X, g, shows that the abelian variety 4 is K-simple in both cases.
Therefore, it follows that ¢ is an isomorphism. In both cases, A is an abelian variety
of CM type @ and satisfies (1), (11), and (i11) of Theorem 1.1.

'To conclude the proof, itremains to check the property (iv) relative to the Frobenius
liftings. To this end, let p be a prime such that p N and denote by Frob, and Ver,
the Frobenius and the Verschiebung acting on the reduction of Ay modulo p, which
satisfy Frob, - Ver, = p. By the Eichler—Shimura congruence, we know that

— —~

T, = Frob, + Ver, -{p},

where ﬁ, and (;) denote the reductions of the Hecke operator T, and the diamond
operator {p) acting on Ay mod p. Let us consider the two cases separately.
Case K & Ey: first, assume that pOg = pp splits in K. Since

Hap) =t () + (¥ (@), (Y (p))- (¥ (P) = p(p),
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and 77, = t(ap), itfollows that the lifting of Frob, is either ¢ (¥ (p)) or ¢ (3 (p)). Since a
certain power of ¥ (p) belongs to p, one concludes that the lifting of Frob, = Frob,
is ({t{p)). A similar argument works when pQg = p is inert in K, taking into

account that Frob, = Frobﬁ =—p (:5) = W

Case K C Ey: since ((FE) leaves the abelian subvariety B stable, applying the
same arguments as before, it follows that ¢ (4 (p)) is the lifting of Frob,, acting on the
reduction of B mod p. Since A is K-isogenous to B, the statement (iv) holds in this
case as well. This completes the proof of Theorem 1.1.

The following lemma will be used in the next sections.

Lemma 2.1. If K & Ey, then m = .

Proof. Since K € Ey, thereis o in Gal(Q™¢/K) such that? f = £ . First, we prove
that the Hecke characters v and . givenby ¥ (a) = (¥ (a)) and . (a) = ¥ (a)
coincide on /(m ). Indeed, since “e = ¢! the assertion is immediate for prime
ideals p | p when p is inert. For the case that p splits completely in K, from the
equalities “a, = a, and e(p) = ¢~ (p), that is,

TYE+ Y E) =ve® +ve(®) and Y)Y d) = Ve Ve (D).

it follows that “v(p) is either . (p) or V. (p}. Again, we obtain that 7 (p) and
Y. (p) are equal because a certain power of them lie in p. Both Hecke characters
being primitive of conductor m and m respectively, we must have m = 1. O

3. Splitting field of A

We first introduce an abelian extension L /K that will play a key role in the splitting
of the abelian variety A over Q¥2. Let v’ be the primitive Hecke character mod t,

W' I () — Qe

given by ¥'(a) = ¥ (a) it K € Ef or ¥'(a) = ¥ (a) otherwise. We consider the
character n: (O /m)* — Q¢ defined by
V'((a))

na) = P for all @ € Og with (a, m) = 1.

One easily checks that n 1s well defined. Recall that the existence of a Hecke character
mod 1t is equivalent to the condition that the composition O — Og — Ok /m is
a group monomorphism (see [16]) and thus ker n N O = {1}. By class field theory,
to the congruence subgroup

Pp(m) = {(a) € I{m): a mod m € ker(n)}
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there corresponds an abelian extension L /K. It is easy to check that, for a € I(m),
one has a € P,(m) if and only if ¥'(a) € K. Let Kx denote the ray class field of
K mod m. Since the map a — aOg provides an isomorphism between ker 5 and
Py (m)/ Py (m), by using the exact sequence

1 = 0k — (O /m)* — I(m)/Pr(m) — I{Ok)/P(Ok) — 1.

one readily shows that L = Kllif T and Gal(L/H) is isomorphic to the cyclic group
im(n)/O%. Recall that here H denotes the Hilbert class field of K and, as usual, for
any integral ideal n we denote by P (n) the subgroup of /(1) formed by principal ideals
and the subscript 1 is for the subgroup of principal ideals with a generator congruent
to one mod n. An alternate route to define the extension L/ K is as follows. For every
o € &, the character

"Y' (a)
W' (@)

is well defined via the Artin isomorphism Gal(Kw/K) >~ I(m)/ Pi(tu). Due to the
fact that (), cq ker o = Pp(m)/ P1(in), it follows that

xo: Gal(Km/K) — Q" yo(a) =

_ mcrecbkerXU
L =K .

Notice that L/Q is not necessarily a normal extension; in fact, this is so if and only
if L =1L.

Proposition 3.1. There is an elliptic curve C defined over L such that:
(1) Endy,(C) ~ Ok;

(i1) its Grossencharacter W coincides with ' o Ny /g,

(iii) C is isogenous over L to all its Gal(L / K)-conjugates;

(iv) the abelian variety A is isogenous over L to the power CLF K],

Proof. The extreme cases L. = H and L. = Kg are proved by Gross in [9] and
by de Shalit in [6], respectively. For the general case, one can follow the same
arguments. Let C be any elliptic curve over L such that Endz (C) >~ Og. Letn
be its conductor. Once we fix an isomorphism 6: K — Endg (C1), we can consider
the Grossencharacter ¥¢, : Iy, (n) — K™ attached to the pair (Cy, 8). For a prime
ideal 3 of L relatively prime to n, we know that 8(vc, (1)) is the lifting of the
P3-Frobenius acting on the reduction of C; mod 8. Recall also that if B € Py 7 (1)
then ¢, (B) = Nk (B), where T = (f) with f = 1 (mod ).

By class field theory, the composition y'oNy ; k takes valuesin K* and the equality
Y'oNp gk (B) = Nz k(B) holds forevery B = (B)withf = 1 (mod m@;,). Hence
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the quotient (" o N1,/ x)/¥c, defines a character §: I (nmOp)/ P, (nm0Op) —
O% of finite order. The twist C := C1 ® § satisfies (i) and (ii). Now, (iii) follows
from the fact that ¢ = ac for all a € Gal(L/K) due to (ii).

Now we check (iv). By Faltings’s criterion (for instance, see §2, Corollary 2,
of [3]), it suffices to prove that for every prime 3 of L not dividing N nor the
conductor of C, the reductions of the abelian varieties 4 and C4™4 modulo L are
isogenous over the residue field @7 /. We write p/ = N, /k B, where with no
risk of confusion now f is the residue degree of T8 over K. On the one hand,
the characteristic polynomial of the endomorphism Frobsg acting on the /-adic Tate
module of the reduction of A/L modulo L3, for a prime [ # p, is the characteristic
polynomial of the complex representation of ¢(y' (p/)):

Paa(x) = []x =% /N ="y ")),

oed

On the other hand, the corresponding Frobenius characteristic polynomial for C at 3
is

Pep(x) = (x — Yo (BN — e @) = (x — ' () x — v/ ().

Since v'(p”) belongs to K, we obtain Py p(x) = Pcq(x)¥™4. Thus, A is isoge-
nous over L to C9m4, ]

Proposition 3.2. The field L is the smallest number field satisfying End(%@alg (A) =
End} (A).

Proof. Since A is isogenous over L to the [E : K]-th power of the elliptic curve C, we
have End%alg (A) = End] (A). That L is the smallest number field with this property

can be deduced from the following fact. For every ¢ € End](i {(A), one has the explicit
version of the Skolem—Noether theorem:

Po=1(/' ()@ (¥' )7

for all p € I(m) not dividing N. To check this equality, it is enough to verify that it
holds reduced modulo a prime ideal 3 of L over p. The smallest field of definition
for all endomorphisms of A is the fixed field LY, where

G={veGa(L/K):"¢p =¢ forall¢ € End) (4)}.

By the Cebotarev density theorem, every v in Gal(L/ K) can be written as v = (L/TK)
for some prime ideal p relatively prime to N. We have that v € G if and only if
(' (p)) is in the center of End} (A); that is, when ¥/(p) € K and this fact implies
that p splits completely in L, so that v = id. O
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Let C be an elliptic curve defined over L as in Proposition 3.1. The main theorem
of complex multiplication (Theorem 5.4 in [15]) implies the existence of a system of
isogenies {jtq: C — *C}over L, (a, ) = 1, satisfying the following properties:

(1) ftap = “p fa;
(i1) 1f C has good reduction at a prime ideal 8 | p, then pu, is the lifting of the
Frobenius map between the reductions of C and *C mod L.

Attached to the system of isogenies {4}, a one-cocycle can be defined as follows
(see also [7]). For a non-zero regular differential w in Q' (Cy,), let A,,: I(m) — L*
be the map given by

e ((®) = Au(@)o,
where “w denotes the differential in * C corresponding to o by conjugation. It follows
that A,, is a one-cocycle, and for all ¥ € L™ one has

Auw (@) = Ay (@) u/u.

Clearly, the class of A, in H'(I(i), L*) does not depend on the particular choice
of w. Note that if a € P,(m), then we have A,(a) = ¥'(a). The class A, in
H(I(m), L*) can be characterized from v’ as follows:

Proposition 3.3. Let A: I(im) — L* be any one-cocycle satisfving A(a) = ' (a)
forall a € I(m) with (L/TK) = id in Gal(L/K). Then [A] = [Ay].

Proof. Assume that A € H'(I(m), L*) satisfies A(a) = y/(a) for all a € P, ().
The quotient A /A, defines a one-cocycle in H!(Gal(L/K), L*). By Hilbert’s 90
theorem, we know that there is u € L* such that A(a)/A,(a) = “u/u for all
a € I(m). Thus, we have [A] = [A,]. O

This completes the proof of Theorem 1.2 in the Introduction. From now on, we
shall denote by [A] in H (I (i), L*) the cohomology class of A,,.

4. Modular one-cocycles and elliptic directions

In this section we keep the notations as above and tackle the problem of determining
the elliptic directions in ' (A4). The goal is to prove Theorem 1.3 that will be deduced
from the next three Propositions after the following

Lemma4.1. Let m € Homy (A, C) be a non-constant modular parametrization, and
let w € Q1 (C /1) be any non-zero regular differential. Denote by

h=" yng" € S2(I'1 (V)

n>1
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the cusp form associated with the pullback 7*(w). Then:
i) y1 € L%
(il) for all a € I(in) relatively prime to N, one has (' (a))*h = & Au (@) h;

—il
. . g -
(iii) we have the identity h = ﬁ Y el B Dored _Uw’(a()a) alp.

(iv) {¥'(a;)} is a K-basis of E if and only i]”{aflh} is an L-basis of Q1(A/).

Proof. (i) Since 7 and w are defined over L, the cusp form / associated with 7 (w)
has g-expansion ) . y»g™ with coefficients in L. Since the abelian variety A is
simple over K, we have that A is a K -factor of the Weil restriction Resy, 1k (C). Thus,
the set {*h: a € Gal(L/K)} generates ' (A,7). This implies y; # 0.

(11) It 1s enough to consider the case when a = p 1s a prime 1deal not dividing N .
Then the claim follows from the commutativity of the diagram

4 (' (a) 4

il
a T T

a1 a”! Ha
g—— =
due to the fact that ¢ (/' (p)) and p! tp are liftings of the corresponding p-Irobenius
morphisms at a prime ideal g | p of L.
(iil) Write h = 3 .o " f, with ¢, € Q¥¢. By applying (ii), for all & € ® and
a € Gal{L/K), one has

aflkw(a) a—L 1 . ) . )

h= v - vidAdv " Ao .

Uw/(a) Ul/f’(a) (%C () (C[) f) ‘;C ()( X )(a) f
Thus, 1t holds

aillw a) —1
ZZT@E))(I h = ZZCV(XV 'Xa_l)(a)vf

o,V

=[L:K]Y ¢"f =[L:K]h.

(iv) If {'(ay), ..., ¥ (a,)} is a K-basis of E, then for every a € I(in) we can
write ¥/(a) = >7_, &;(a;) with oz € K. Thus, we obtain

@ h =1 @) W) = Y e @) h = 0T A(a)™ .
i=1

i=1
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Since {*i: a € Gal(L/K)} generates 21(A4,7) and dim(A) = [E : K], it follows
that {97 h.....% h}isa L-basis of Q1(A,7).

Conversely, assume that {“l_lh, e “71h} is a L-basis of QI(A/L). By using
part (ii), if S7_, ey (a;) = Oforsome oy € K, then Y 7_ o % Ag(ap)®  h = 0.
This implies that all ; = 0. Since dim(A) = [E : K] = r, the proof is done. O

Due to part (i) in the above Lemma 4.1, there is a unique @ € Q'(Cyy,) such that
the pullback 7*(w) gives a normalized cusp form, say

h=q+) vaq"

n=>2

This particular A,, will be called modular with respect to  or, simply, 7-modular.
For every 1-cocycle A € [A], we consider the following sums. Let o € &, and set

L= Y 29

T qfp?
a€Gal(L/K) IJI(C[)

Notice that g, (A) is well defined and g, (A) € E - L.

Remark 4.1. The sum g, (1) can be interpreted as a sort of Gauss sum, in the sense
that we have

g = Dy @ug

a€Gal(L/K)

where u, = “71)L(a) /¥ (a). If C admits a global minimal Weierstrass equation
over L, then the one-cocycle A attached to a Néron differential satisfies the capitulation
property A(a)0y, = a@p, (see Remark 10.3 in [7]). Then u is an unit in @7 where
e is the order of a in Gal(L/K).

We shall denote the ®-trace of g, (1) by

tre(A) = Y g, (A) € L.

oged

Remark 4.2. Recall that we have defined A € [A] to be modular if trg(A) = [L: K]
in the Introduction. As it will be shown, both terms (modular and m-modular) turn
out to be equivalent.

Forevery y € L* and A € [A], let A,, denote the twisted one-cocycle in [A] given
by A, (a) = Aa)y/%y. Writing A = A, with some w € Q1(C/p), then A, = A, .
v
We shall need the following lemma.
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Lemma 4.2. Forall a € () and o € ©, one has
(i) go(hamtyig) - ® @) = go(A) - T¥/(a);
(i) tro (o iq) = ra(h).

Proof. It follows straightforward from the definitions and by using the cocycle rela-
tions for A, 1

Proposition 4.3. Assume that A € [A] is modular with respect to 7 € Homp, (A, C).
Thentre(A) = [L : K] and
1
[L: K]

> gA)-f

oed

is the normalized elliptic direction in 7*(21(C/1.)).

Proof. Since A is w-modular, there is a non-zero regular differential € Q(Cyp)
such that 7*(w) is a normalized cusp formh = g + > ., yag™ and A = A,. By
comparing the first Fourier coefficient in the equality at Lemma 4.1 (iii), we have that
tre(A) = [L : K]. Forevery o € @, set

(D)

_ b1

Iy = Z o/ (b)
beGal(L/K)

Also by Lemma 4.1 (iii), we know that > .4 Fo = [L : K]k. From the equality

(@ (@) *(P TRy = B0 (@) @) one obtains

—1
b A,(B) (5‘(1)71
T4’ (b)
b-a)~! 3 (p .
= 2 — A D) ety Sy F,.

74" (b)

beGal(L/K)

Hence F, and ¢ f differ by a scalar multiple. Since the g-expansion of F, begins as

2o (A) g+--- itfollowsthat F, = g,(A)-° f,andthen’h = ﬁ > ew 8o (X)) F.
U

h.

(@) (Fe) = ) Aa) @O

beGal(L/K)

Now, we shall prove that the modular one-cocycles A in [A] with respect to
some modular parametrization 7 are precisely those that satisfy the trace condi-
tion tre{A) = [L : K]. To this end, for a given one-cocycle A € [A] (not necessarily
modular), let us consider the K-linear map pr: L — L,

= > (X L )alk(a)alu{u-trcp(ku) if u # 0;

Ol .
acGal(L/K) oed () 0 otherwise.
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Consider the eigenspace M = {u € L: pr(u) = [L : K]-u}. Notice that A,, is
modular if and only if v € M\{0}. In particular, we know that dimg (M) > O and
it does not depend on the particular choice of A € [A] used to define the K-linear
map pr.

Proposition 4.4. One has
(i) pr2 = [L : K] pr;
(i) dimg (M) = [E : K];

(iii) if A is modular, then M = ({“711((1)})1( where a runs over Gal(L/K).

Proof. The first claim comes from the computation:

—1

pri(u) =) (XU: ow}(a))a_lk(a) “ [25: (Xt: rw}(B))B_lub)B_lu]

a

“TL () (Tam)™ e

XX (a))(; ) O

B b A (B) 1
- ;;(;(m#)( D)ol
= [L: K] pr(u).

Let us prove (ii) and (iii) simultancously. Since dimg (M) is independent of the
one-cocycle A chosen in [A], we can (and do) assume that A is modular. Set

> M) f =14+ yag™

oed n>1

e K]

Let W = {({* 'A(a)})x where a runs over Gal(L/K). We need to show that
W = M and dimg (W) = [E : K]. Choose ai,...,a, € I(m) such that
{¥'(ay),. .., ¥ (a;)}is a K-basis of E. We claim that {“flk(al), em a;lk(ar)} isa
K -basis of W. Indeed, if Y ;_; o a; ! A(a;) = Oforsome¢; in K, then consider « :=
Yoy (a;) € E. Itis easy to check that ((e)*(h) = > ,..; v» g™ with y; = 0.
This forces & = 0, since otherwise we get a contradiction from Lemma 4.1 (i) applied
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to t(a)*(h). Therefore, all @; = 0 which implies that ar! Alar), ..., ar! A{a, ) are lin-
early independent. Now, for every ideal a € I (@), one has ¥/ (a) = Y[, o' (a;)
for some ¢«; € K. By taking g-expansions in the equality

.
@ h =Y e M),
i=1
we obtain ® ' A(a) = i “flk(ai). So far, we have dimg (W) = [E : K] and
the inclusion W C M follows from Lemma 4.2 (ii).

’ -1 .
To easy notation, set u; = % A(a;) for 1 < i < r and let us show that they
generate M. For any nonzero u € M, consider the normalized cusp form

|
hu:— UA‘M 'U.
TR fe

Since {huy, ..., hy,} is a L-basis of Q1(A;7) by Lemma 4.1 (iv), there are y; € L
such that b, = Y _;_; yi hu,;. Notice that > ;_; 7 = 1. By applying «(y/(a))* to
hy, and then conjugate by a, we obtain

Au (a)hu = Z a)/i Aui (a) huf .

i=1

Therefore, we have
a )l’ul (a) a u ul

Vi = )L (a ) )’z%;
forallaand 1 <7 < r. Thatis, ; :== y;u/u; € K. Thenu =Y ;_, Bi u; since
> _1vi = L. The statement (iii) follows. O

Proposition 4.5. Let A’ € [A] such that trg(A"Y = [L : K]|. Then A is modular with
respect to some 7' € Homy (A, C).

Proof. We shall prove that there is 7" € Homy, (4, C) and ' € Q1(C,1) such that
7" (') corresponds to the normalized cusp form

ail)hf(a)

i@

UECID a€Gal(lL/K)

Consider any non-constant = € Homy, (A4, C) and takew € Q(C;p,) such that 7* (w)
corresponds to the normalized cusp form

b= K]Zggm "f.
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where A = A,. Let L = ker(pr) & M be the decomposition corresponding to the
projector pr attached to A. Now, there is ¥ € M such that A’ = A, and

W= 2 ey S

oed

with y = ¥ ecqu k) o Ala) for some rq € K due to Proposition 4.4 (iii). We
claim that

) raalk(a))h’zt( ) raw'(a))*h. 1)

acGal(L/K) acGal(L/K)

Letting W = 1 3 cqacr/k) Ta¥'(@)) € Endy (A4), then it follows

= v (n(L0)) = rowr (L)

which implies that A’ is modular. To check (1), we use Lemma 4.2 (i):

b~ 1A(B)B 1
nmzz v

o B (b)) A (a)
C[L:K] ZU:XB:ZG: 7y(b) /

1 C[il ag
B [L:K]eragv()“alx(a)) AMa)"f

:=EE}ET§j§jnfw%¢MvuJ“f

1
~[L: K]

V(Y ga RS ) = W), 0

The transitivity of the action of ((£*) on the set of elliptic directions follows
from the equality (1). To finish the proof of Theorem 1.3, it remains to determine the
g-expansions of the normalized elliptic directions. For it, first we need a technical
lemma.

Lemma 4.6. Let £: I(m) — L* be a map such that {{a) = ¥ {a) for all a =
id in Gal(L/K). Let v: Gal(L/K) — Gal(L/K) be a map such that £(ab) =
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L) D L(6) for all a € I(w). Then the identity

D BaT¥(0) = () (2)

ocd

[L: K]

holds for all ¢ € I(w) if and only if

()
fo= 2wy @4 L fo=IL:K] 3)

acGal(L/K) oed

Proof. Assume (3). For every ¢ € [(m), we have

£{a) £{ac)
2l X ; veo=3( 2 3 40
o€d>(aeeal(1:/1<) w(a)) Ueq’(aEGal(E/K) w(ac))
"©¢(a)
—0Y( X )

0€®  aeGal(l/K)

7(c)

—w0 (Y (X

acGal(L/K) oed

o)
7(c)

=10 (D Bs) =L©IL: K]

oed

Now, suppose (2). Fix v € ®. Note that for o€ ®, the characters y, and y, are
equal if and only if o = v. For every a € Gal(L/K), one has

La) 1 T (a)
v~ T Eq,z\{}ﬁ“vw(a))

> BolteryH).
oceP\{v}

1
TR K](

Summing over all a, then

(o) ) )
Z vw!(a)_ﬂ [L K]( Z ﬁO' Z (XO‘Xpl)(a))—)Bv-

acGal(L/K) ogeP\{v}  geGal(L/K)

The condition ) .4 Bo = [L : K] is obtained by replacing a with O in (2). O
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Proposition 4.7. Assume that A € [A] satisfies ra(A) = [L : K]. Consider the
normalized cusp form

h = go(A)-7 f.
= 2
Then:
(i) one has
a! a .
> M@ K Z Eyy
5= (a,m)=1
Z f(a) N{a) if K C Ef,'
(a,m)=1 ( )

(i) forall ¢ € I(iw), we have L(y/ (©))*(h) = ¢ A(e)* ' h
Proof. Forall a € I(m), set

“Ma) ifK & Ef;
£(a) = { N(a)
Aa)

if K < Ey.

It is clear that £{ab) is E(a)“ilﬂ(]f)) or £(a)*£(b) depending on whether K & Ey or
not, respectively. Since for the case K € E¢ one has

L) /@) T (N@)/L@) _ TA@)
Yy oyl N@/ye @
for all o € @, then in both cases it follows that g, (A) = ZGEGaI(L/K)E(a)/UW(a).

By using Lemma 4.6, a case-by-case computation shows that for all a € /(1) and
¢ € I(m) one has

T K]Zgg(k)wa)“w () ="A0° L. 4

Plugging ¢ = 1 in (4) it follows part (i). Part (ii) follows from part (i) and (4). O

Now, Theorem 1.3 in the Introduction follows from Propositions 4.3, 4.5 and 4.7.
Note that due to Proposition 4.4, all one-cocycles in [A] are modular if and only if
[£: K] = [L : K];i.e., when Ais K-isogenous to Resy / x (C). In general, in order to
determine a modular one-cocycle in [ A] a strategy emerges from the previous results.
Indeed, first one can build a one-cocycle A € [A] by solving and combining norm
equations. If trg(A) # O, then Ay 4 (x) is modular since its ®-trace equals [L : K].
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Alternatively, if tre(A) = 0 or in any circumstance, the nullspace of the K -linear
map pr —[L : K] Id provides all « € L such that A,, is modular.

We also remark that for the case K € Ep, there are elliptic quotients of Ay that
do not factor through neither A nor A. These quotients can be obtained using the
above results plus the Weil involution acting on Ay.

We conclude this section with three open questions: one concerning about the
isomorphism ¢: £ — End?( (A) and the others about the elliptic optimal quotients of
A. All the results of the paper hold when we replace J1(N) with Jac(Xr), where I’
is an intermediate congruence subgroup between '} (N) and T'o(N ) such that f in
S»(T") and X is the modular curve attached to this subgroup. Although the optimal
quotient 4 of A}F) does depend on I', it is known that ¢t (7, ) € Endg (A}F)) and, thus,
((T,,) belongs to Endg (A) forall I'.

Question 4.8. Is t((a)) € Endg (A) for all integral ideals a and all I'?

We ask ourselves whether the j-invariants of optimal modular parametrizations
of CM elliptic curves are not far from being also oprimal in the sense of having CM
by the maximal order of K. Of course, if ((Og) C Endg(A) all optimal elliptic
quotients have multiplication by Og. If ((n(a}) € Endg(A4) for all integral ideals
a € I(im), then the j-invariants of all optimal elliptic quotients are in the Hilbert
class field . From Cremona’s tables (N < 130000}, we have checked that all
optimal elliptic quotients over Q@ with CM of Jy (N} have complex multiplication
by Ok. Also, the same experimental result has been obtained in all examples over
Q™ collected by the authors.

Question 4.9. Assume that ¥ € Homy (A4, C) is optimal. Does C have complex
multiplication by Og?

And the last question is related to the above Remark 4.1.

Question 4.10. Is it true that the existence of an optimal elliptic quotient of A having
global minimal model over L 1s equivalent to the existence of a modular one-cocycle
A € [A] with values A(a) in the ring of integers (97, for all integral ideals a € {m)?

In the next sections, we apply the above results and focus our attention on Gross’s
elliptic curves A(p). We also give a positive answer to the second question mentioned
above for the particular case of level N = p2.

5. CM elliptic optimal quotients of J1(p?)

In the sequel p is a prime > 3 and such that p = 3 mod 4. The discriminant
of K = Q(/=p)is —p. Setp = /—p0Og. Let X denote the set of Hecke
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characters mod p and let ¥ be the set of Dirichlet characters n: (Ok /p)™ — C* such
that n(—1) = —1.

To every Hecke character ¥ € X, we attach its eta-character 7 in ¥ defined as
in Section 3 by n(a) = ¥ ({a))/a, and it can be easily scen that this map X — ¥
is surjective. The Nebentypus ¢: (Z/pZ)* — C* of the newform f € S>(T1(p?))
associated with  is given by e(n) = y(n)n(n), where y is the quadratic Dirichlet
character associated with K. In this case, we have that ord ¢ = (ord 1)/2.

By the results in Section 3, we know that the elliptic optimal quotients of the
abelian variety Ay are defined over a number field L, which is a cyclic extension
of H of degree ord ¢ contained in K.

Proposition 5.1. The ray class field Ky satisfies [Ky © H] = (p — 1)/2 and we
have Ky = H - Q(&p), where &y = e*™'/7.

Proof. From the exact sequence

1 — (Ok/0)*/Ok™ — 1)/ P1(p) — 1(Ok)/P(Ok) — L.

we know that the Galois group Gal(K,/H) is isomorphic to (Ok/p) /O™
and, thus, one has [K, : H] = (p — 1)/2. Consider the morphism ®,: I(p) —
Gal(H - Q(Zp)/K) given by the Artin symbol. We claim that ®, has kernel P (p),
which implies that Ky, € H - Q(&p). Indeed, for any ideal a € I(p), we have that
&, (a) acts trivially on H if and only if a € P(p), that is a = a@. Moreover,

®, (a®) acts trivially on Q(g,) if and only if the Artin symbol (LE42) is the iden-

tity; i.e., N(@) = 1 (mod p) which is equivalent to a € P;(p) since N(a) = a>
(mod p). Finally, for any subfield F of Q({,) which contains K we have that
H N F = K since either F = K or F/K is ramified at p. Hence, one has the
equality [H - Q(¢,) : H] = (p — 1)/2 = [K, : H] and the statement follows. O

We shall need the following lemma.

Lemma 5.2. Let v € X and denote by n and [ its eta-character and newform,
respectively. Then the following holds:

(i) Forevery ideal a € I{p), one has
a Z “nla) ifa=alk,

Trg/x (@) = § ceo
0 ifa ¢ P(p).

(ii) Let ' and f' denote the eta-character and newform associated with ' € X.
Then f' = ° f for some o € Gal(Q™¢/K) if and only ifker f = ker 1.
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Proof. First, let us prove (i). When a = aOk, the claim on the trace is clear since
Ty ((a)) = a’nla). Suppose thata ¢ P(p),andletn be the orderof ain I{p)/ P(n).
Notice that » > 1 and ¥ (a) ¢ K. For every o € ®, we have i (a) = ¥ (a)l, for
some {, € jin, Where u, denotes the group of n-th roots of unity. Thus, we have

D@ =y@) L ek

oed oed
Therefore, either Trg/g (¥ (a)) = O or ¥(a) € K(un). Let us see that the last
possibility does not occur. For it, assume that ¥ (a) € K(u,} which implies that
the extension K(y (a))/K is normal. Since # is the minimum positive integer such
that ¥ (a)" € K, it follows that either u, C K or ¥ (a)?" € K" (see Proposition 2
in [14]). Since ¥ (a) ¢ K, we must have that ¥ (a®>*) = b" = Y ((hOg)") for
some b € K and, hence, a®> = b@g. The class number of K being odd, we get a
contradiction.

Let us prove (ii). If f/ = ¢ f for some o € Gal(Q¥¢/K) then the statement is

clear since " = “ 5. Now, suppose that ker ” = ker . We claim that

(Cfi0e®nN{®fi0ed £,

where @’ is the corresponding set of K-embeddings Q (') < C. Let us consider
the normalized cusp forms

1 ag
hzaz =g+
oed

B = 1 j{:(thZZQ‘%'”

'
|¢)|0€¢’

in S2(T'1(p?))™". Since K ¢ Q(imn) and ker 7/ = ker 7, there is T € ® such that
n{a) = n'(a) forall a € Ok coprime with p. By applying (i), we obtain the equality

L= Z TTE/1|'<(1|/f(a)) qN(a) _ Z TI’E/J|KCIS/|’,(C[)) qN(a) —
a€P(p) acP(p)

Therefore, the Q2-vector spaces generated by {° f: 0 € ®}and {° f': 0 € D'}

have a common non-zero cusp form, which implies that f* = ¢ f for some o €

Gal(Q¥¢/Q) (cf. Proposition 3.2 in [1]). Since 2 € {7 f: 7 € Gal(Q¥/K)) N

(T f': © € Gal(Q¥2/K)), it follows that & € Gal(Q¥¢/K). O

Proposition 5.3. For every positive divisor d of (p — 1)/2 there is a unique abelian
variety Ay of CM elliptic type of level p? such that the Nebentypus of | has order d ;
this abelian variety satisfies that K € Ey and dim Ay = [H : K]p(d), where ¢ is
the Euler function.
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Proof. Let d be a divisor of (p — 1)/2 and take ¥ € X such that its eta-character
has order 2d. Let us denote by f the newform attached to i, whose Nebentypus
¢ has order d. First, let us show that K & Er. Indeed, let . € X defined by
W.(a) = ¥ (a). The eta-character and the normalized newform attached to v, are
clearly 7 and f, respectively. Since ker7 = ker#, Lemma 5.2 (i) ensures that
f €{°f:0 e ®}, which implies K ¢ E r. The same argument can be applied to
another newform £’ obtained from ¢’ € X whose associated character " has order
2d to show that f” belongs to {° f : o € &}, which proves that A¢ is unique when
the order of ¢ has been fixed.

Since K & Ey, the equality dim Ay = [Ey : Q] = [E : K] holds. Now, we
have that [E: K] = [{°f:0 € ®} = [{°%: 0 € $}|. Again using part (ii} of
Lemma 5.2, we obtain

[E:K]=lce®:n="n}| - [{"n:0 € D} =|{lo € P: ="} ¢d).

Since the condition 5 = 5 is equivalent to /% being a character of Gal(H/K),
it follows dim Ay = [H : K]e(d). O

Remark 5.1. Note that the number of abelian varieties Ay of CM elliptic type of
level p? is the number of divisors of (p — 1)/2. Also for every number field L
intermediate between H and H - Q({,) there is a unique abelian variety Ay of CM
elliptic type and level p? for which L is its splitting field as defined in Section 3.

Next, in order to show that the CM elliptic optimal quotients of A7 in Jq(p?)
have endomorphism ring isomorphic to Og, we shall need to use some auxiliary
congruence subgroups of SL»(Z) of level p2. To this end, fix a newform f in
S»(T'1(p?)) attached to a Hecke character v € X. Let & denote the Nebentypus
of . Let us consider the following congruence subgroups of level p?:

r, = {(? Z) eTo(pP):a=d =1 (mod P)}v

and I'; as in the introduction; 1.¢.,

= {(‘g 2,) e To(p?): e(d) = 1}.

Itis clear that Ty (p?) € T, € Toand f € S»(T,). For any intermediate congruence
subgroup I of level p? satisfying T'y (p?) € T < T, let X1 be the modular curve
over Q attached to I'. We shall denote by AJ(,F) the optimal quotient of the jacobian
of Xr attached to f by Shimura. More precisely, let /¢ be the annihilator of f in
the Hecke algebra acting on Jac(XT). Then

A}F) = Jac(X1)/1r (Jac(XT)) .
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Proposition 5.4. Let [ and I" be as above. Then all elliptic optimal quotients of

A}F) have complex multiplication by Og.

Proof. Fix an elliptic direction in 2! (A ) and let Cr be an elliptic optimal quotient
attached to this direction. By Proposition 5.3 and Theorem 1.2, we know that K & Ey

and thus all endomorphisms of A}F) are defined over its splitting field, say L, that
satisfies L. € K. Let cr denote the conductor of the order Or >~ Endy (Cr) in Ok.
We want to show that cr = 1, and split the proof in three steps.

Step 1: cr | 2 for all T'. Since End(Ct) = Endy (Cr), one has that L contains the
ring class field of Or, say Kr. Notice that Kr € L < K,. But p ¢ cr, since
otherwise p must divide [L : H] (cf. Proposition 7.24 in [4]) and this degree is a
divisor of (p — 1)/2. Hence, K is an unramified extension of the Hilbert class field
and, therefore, it must coincide with H. Again by Proposition 7.24 in [4], we obtain
that e | 2
Step 2: cr does not depend on I'. We consider the natural projection 7: Xt — Xr,.
The degree of 7 is odd since it divides [['1(p?) : To(p?)/{£1}] = p(p — 1)/2 and
p =3 mod 4.

Let 7zr,r,: Jac(XT) — Ar,r. be the optimal quotient over Q for which there is
an isogeny v: Arr, — Jac(Xt,) defined over @ rending the following diagram

T

Jac(XT) Jac(Xt,)

Arr,

commutative. Since every element of the group H1(Xr,,Z)/7«(H1(Xr, Z)) has
order dividing deg 7, the cardinality of this groupis odd. From the group isomorphism
kerv ~ Hy(Xr,,Z)/7.(H (X, Z)), it follows that deg v is odd. Since A}F) is an
optimal quotient of Arr,, there is an isogeny vy : A}F) — A}FE) whose degree
divides deg v. Hence, for every optimal elliptic quotient s : A}F) — T there 1s an

optimal elliptic quotient g : A}FS) — Cr, and an isogeny p: Cr — Cr, rending

the diagram

) vy (T:)
Ay > Ay
ar Mg
Cr = Cr,

commutative. Itis clear that deg y is odd since it divides deg vs. So cr, and cr can
only differ by an odd factor, which implies that cr is independent of the group T".
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Step3: cr = 1 for all I'. Now, itsuffices to prove cr = 1 fora particular subgroup I'.
We consider I' = I',. Following Shimura in [17], we know that the matrix

1 1/p
o )

lies in the normalizer of I', in SL»>(R) and provides an automorphism u of Xr, of
order p. Set
Z u*) e End Jac(XT,).
l=i<p
x(@)=1
We claim that G leaves stable the subvariety /¢ (Jac(XT,)), which is equiva-

lent to saying that G leaves stable the vector space generated by the set of eigen-
forms in S>(I',) which are not Galois conjugates of f. In fact, the action of G
on all eigenforms of S,(I',) can be described as follows. It is well-known that if
we denote by Newr the set of normalized newforms in S,(I"), then the set of nor-
malized eigenforms in S>(I'p) is the disjoint union of Newr,, §1, and §», where
51 = Newr,(p) N S2(Tp), S2 = By(Newr, () N S2(I'p), and B, is the operator
acting as B, (h(q)) = h(g?). With {, = ez’”ﬁ’ and from the equality

Z ;l__l—i—\/—

l<i<p

x(H)=1
it can be easily checked that every eigenform A(g) = an1 bnq™ € S>(I') satisfies:

1 — _ =
RV ¥ Ly By (h)

T h ith e§,.

if h € Newr, USy,

The claim follows from the fact that all 4 € Newr, have level p? and Nebentypus
whose conductor divides p and, thus, b, = 0 (see Subsection 1.8 in [5]).

Since G leaves stable the subvariety I (Jac(XT,)), then G induces an endomor-
phism of A}Fp ), which we still denote by G. Due to the fact that G acts on Q! (Aj(fr” ))
as the muluplication by (—14-,/=p)/2, itfollows that G leaves stable all subvarieties
of ATP), Thus, (—1 + /=p)/2 € Or, and the statement follows. N

As for Gross’s elliptic curves, we obtain the following result, which concludes the
proof of Theorem 1.4.

Corollary 5.5. Let | be a CM normalized newform with trivial Nebentypus. The
elliptic curve A(p) and its Galois conjugates are the optimal quotients of AJ([F) over
the Hilbert class field H, for all subgroups T with T'1(p?) € T C T{p?).
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Proof. By Theorem 20.1 in [9], we know that A(p) is a quotient of Jo(p?) defined
over H, attached to a newform f with trivial Nebentypus. Notice that the corre-
sponding field L coincides with the Hilbert class field H. Since we have K & Ey,

by Theorems 1.1 and 1.2, every elliptic optimal quotient Cr of A}F) is defined over H

and the abelian variety A}F) is simple over K. Since dim AJ(,F) = [H : K], it follows

that AJ(,F) is K-isogenous to the Weil restriction Resg g Cr. In [9], Gross shows

that A}F) is K-isogenous to Resg,;x A(p). Therefore, on the one hand, there is

o € Gal(H/K) such that A(p) and ? Cr are Q*¢-isomorphic. On the other hand,
by Theorem 5.4, A(p) and ? Ct are H -isogenous. Hence, A{ p) is H -isomorphic to
Cr and the claim follows. O

6. Canonical CM elliptic direction for A(p)

When the class number of K is greater than one, there are infinitely many elliptic
directions in S2(T'o(p?)) attached to different parametrizations Jo(p?) — A(p).
Here, we shall emphasize one of them (we call it canonical) in terms of a particular
one-cocycle that can be constructed by means of the Dedekind eta-function.

Let Oy be the ring of integers of the Hilbert class field H. Forall a € K coprime
with p, we denote by (%) the Jacobi symbol (%), where m is an integer such that

a =m (mod p). One has n(a) = (%). By [10], we know that there is a unique map
d: I(p) — H with the following two requirements:

(i) 8(a)'? = A(O)/Ala),

(i) (M) —

for all a € I(p). Moreover, this map also satisfies the following conditions:
(i) ()0 = aOH,

(iv) 8(a-b) = 8(a)-* §(b) foralla, b e I(p),

(v) 8(a) = 8(a) forall a € I(p).

By taking into account conditions (ii} and (iv), and since [H : K] is odd, we also
obtain:

(vi) forall a € P(p), one has 8(a) € K and (@) = 1.
For every a € I(p), we set

N(a)

S(@)

The map A: I(p) — H also satisfies conditions (ii), (iii}, (v), and (vi). But now

conditions (1) and (iv) are replaced with

Aq) 1= 96(a) = (5)
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(i) A@)'"2 = N(@)"? 528,
and the one-cocycle condition:
(iv') Ala-b) = A(a)-*A(b), forall a, b € I(p).

Conditions (vi) and (iv’) imply that the one-cocycle A belongs to [A] for all A¢ of
CM elliptic type and level p2.

Remark 6.1. Notice that the above one-cycle A can be effectively computed by
using the Dedekind eta-function on ideals (as Rodriguez-Villegas does in [13]), and
it coincides with what Hajir denotes ¢ in Definition 2.3 in [11].

Let # denote the normalized newform in S2(T'o(p?)) attached to a Hecke char-
acter ¥ whose eta-character has order 2. By Section 3, the splitting field L of Ay
is H. Let S2(Af) be the C-vector space generated by the Galois conjugates of the
newform f attached to v and let @ denote a Néron differential of Gross’s elliptic
curve A{p).

Proposition 6.1. Ler f be as above. There is an optimal quotient : Jo(p?) — A(p)
such that 7*{(w) = c g(q) dq/q, where

glg)= Y  8)g™® e Sy(4p),
(a,p)=1

and ¢ € Z is a unit in Z[ﬁ].

Proof. By Lemma 5.3, we have [E : K| = [L : K] and, thus, all one-cocycles in
[A¢] are modular. Therefore, by Theorem 1.3 we have that

g@= Y " MNP = 3 SN

(a,p)=1 (a,p)=1

is a normalized cusp form in S5(Ayr) for which there is an optimal elliptic quotient
C;, given by the lattice

Ag = {2nify g(z)dz: y e Hl(Xo(pz),Z)}.

Since§(a) = §(a) foralla € I(p),itfollows that g(¢) € Hy[lg]]. Thus, g(¢)dq/q €
QN (Xo(p?)/H,. Hence, the natural morphism : Xo(p?) — Cj, is defined over Ho.
Notice that necessarily one has Ay = Q - Ok, for some Q € C*. Indeed, Ok is the
only ideal a such that j(a) = j(a) since [H : K] is odd. Thus, we have j(Ag) =
J(Ok). Since Ay is Q-isogenous to Resq, /g(C,) and to Resg, ;g (A(p)), it follows
that C;, and A(p) are Hy-isogenous and, therefore, Hy-isomorphic. Therefore, there
exists ¢ € HJ such that m*(w) = ¢ g(q) dq/q. Itis clear that A(Ag) = —picl2,
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The Manin ideal attached to 7 is ¢ Op, (we refer to Section 4 in [§] for more
details on the Manin ideal). By Propositions 4.1 and 4.2 in [8], we know that cO g,
is an integral ideal and it can only be divided by primes lying over 2 or p. Now,
we want to prove that ¢ € Z. Since n*(w/c) = gdgq/q, the one-cocycle attached
to w/c is A. This means that for every a € I(p) there is an isogeny of degree N(a),

M ailC;u 3 g

suchthat u*(w/c) = “7lk(a)-“7l(a)/c). Taking into account that j(a) = “7lj((91<),
we obtain that the lattice corresponding to oo 3 18 Wla) - Qa. Finally, we have that

T A(QOK) = A(Lsza) = §(0) 2 A(Qa) = A(OK)A(Qa) = A(Q0k).

d(a) Afa)

Therefore, A(A) € KN Hy = Q and ¢'? € Q. Since Q(¢) € H is unramified
outside p and there is not a real quadratic field of discrimimant p, it follows that
c? € Q. Finally, since H does not contain the 3rd roots of unity (recall p > 3), one
obtains ¢ € Q. O

Remark 6.2. Since ¢ € K*, the one-cocycle attached to w is also A. In this sense,
we say that the normalized cusp form g is the canonical cusp form attached to A( p).

For when the class number of K is 1 (thatis, p = 7, 11, 19, 43, 67, 163), one has
that 7 1s defined over Q and ¢ coincides with the (classical) Manin constant. Then
¢ = =1 in these cases since Manin’s conjecture has been checked for all elliptic
curves over Q with conductor < 130000 in Cremona’s tables. We have computed ¢
for the remaining primes p < 100 (that is, p = 23, 31, 47, 59, 71, 79, 83) and we
have also obtained that ¢ = 41. It seems reasonable to expect ¢ = +1 for all A(p).

Remark 6.3. In general, as already mentioned, there are infinitely many normalized
cusp forms g’ € S»(Ay) whose directions are pullbacks of Q' (A4(p)) under modular
parametrizations 7’: Ay — A(p). For each one of them, there is a one-cocycle A’
(cohomologous to A) such that

g/ _ Zaflkl(a)qN(a) c SZ(Af),

a

and a constant ¢’ € Hy with 7”*(w) = ¢’g’. The concern on whether the constant ¢
is +1 is already in [9], see Question 23.2.2 on p. 81, but without fixing 7". However,
¢’ # +1 unless 7' = 7 (canonical) as in Theorem 6.1, although the Manin ideal
attached to any " # 7 might still be O as well,
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We end this section giving an expression for the transcendental 2 € C* attached
to the lattice A of A{p), which generalizes the one given by Gross in [9] for when K
has class number one. Keeping the above notations, we set

3(b)

pi= | | —_—.

beGa(H/K) W(B)
(b,p)=1

It is clear that p is well defined, independent of the Galois conjugate of i, and
p € O . Let h denote the class number of K, and consider

VO ksDrss s B msw s Bl s B(h—l)/z}
a set of representatives of Gal(H/K) with (b;, p) = 1. Then we can rewrite

B2 561 8(By)
[ 2820t

N(B) 2

i=1

Indeed, since 6(b)/v (b) is independent of the class of b in Gal(H /K), it suffices to
prove that ¥ (b) - ¥ (b) = N(b). But this is a consequence of

(M) - (@) (%) (E) (8 -
P P p/\p p ’
where f € K is a generator of b”. Observe that p is a positive unit in (9}‘}0.

Proposition 6.2. Let A = Q - Ok be the lattice attached to A(p). Then

-
O = 4 ;ptD/4 p.(zn)(2h+1—p)/4.ﬁ(1—3h)/2. l—[ F(%)

l<m<p
x(m)=1

where the h-th root is taken to be real.

Proof. By the Chowla—Selberg formula [2], we know that

[T N a@m) = (%)Gh(ﬁ r(%)m))6,

aeGal(H/K) 1

where {1, 74) = ﬁa. Since A is the one-cocycle attached to w, we have that

5 ) 912 - 3N(C[)12 le

(7)

Alta) = N(@)*Aa) = N(@)*A (5@ @z T P
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Combining (6), (7), and Gauss’s identity

n—1 ;
l—[ F(l—) _ (23_[)(11—1)/2”—1/2’
n

i=1
the statement follows by taking into account that 2 lies in R or i R according to
p = —1 (mod 8) or not (cf. [9]). O

As a result, we obtain the following fact, which concludes the proof of Theo-
rem 1.5,

Corollary 6.3. With the above notations, one has

{Znify g(z)dz: y € Hi(Xo(p?).Z)} = %SZ -Ok.

7. CM elliptic directions for non-trivial Nebentypus

In this section, we shall consider arbitrary Hecke characters mod p. Let v in X and
let n be its eta-character. Let f denote the normalized newform attached to ¥. In
order to find the elliptic directions in S>(Ar ), one needs to determine the modular
one-cocycles A, in [A¢]. Then the normalized cusp forms

gu= 3 % Aula)g"®@

(a,p)=1

are the elliptic directions in Sz(As). Recall that in the particular case n* = 1, all
one-cocycles are modular. In general, as explained above, to find the modular one-
cocycles amounts to an eigenvector problem. In our particular setting, the following
lemma will be useful since it will allow to handle certain linear systems by means of
a quotient polynomial ring.

Lemma 7.1. Let M/F be a cyclic field extension of degree k. Fix a genera-
tor v of Gal(M/F), and let y be the group of k-th roots of unity. Let & =
End raip/ ry) (M) be the F-algebra of Gal(M/ F )-equivariant F-linear endomor-
phisms of M. One has

() the map ©: F[X]/(X* — 1) — & given by

k k
@(Zai XHw) = Zai “u, forallu e M,

i=1 i=1

is well defined and an isomorphism of I -algebras.



Vol. 86 (2011) Modular elliptic directions with complex multiplication 347

(i) For every p(X) € F[X|/(X* — 1), let Z = {¢ € pux: p(t) = 0V Then the
endomorphism G = ©(p(X)) diagonalizes and its characteristic polynomial
13
k .
DT = p@R).
i=1
where . = e2™/%. We have dimp ker G = |Z|, and

kerG = ® Xt -1 (M). (8)
Hzez(X - é')

Proof. It is obvious that ® 1s well defined and a morphism of /'-algebras. Choose
a € M such that {’Ia}lsisk is a F-basis of M. The morphism ® is injective
because ®{(g(X)) = 0 implies that &(g(X)He) = 0 and, then, g(X) = 0. For
a given G € &, we have that G(a) = Zi-(:l ;" « for some a; € F and, thus,
G(u) = Zle ai’i u forall u € M. Therefore, © is surjective and part (1) is proved.

We consider the F-algebra monomorphism W: & — Endr F[X]/(X kK _ 1) de-
fined by W(G) = G, where

G(g(X)) = ©71(G)-q(X), forallg(X) e F[X]/(X*—1). 9)

Now it suffices to prove part (ii) for G. Note that for any field extension Fy/ F, the
relation (9) allows us to consider G as a Fo-linear endomorphism of Fo[X]/(X k_1).
Let G = ®(p(X)). The set of eigenvalues of G is {p(tly: 1 <i < k}. Indeed,

if B € Fy is an eigenvalue of eigenvector (X ) € Fy[X]/(X* — 1), then there exists
¢ € py such that (&) # 0 and, thus, 8 = p({). Conversely, if B = p() for some
¢ € pg theng(X) = [1prep, iy (X — ) is an eigenvector with eigenvalue . Notice

that all eigenvalues of Garein Fy = F (pg).
Now, let 8 = p(¢) for some ¢ € puy and we will prove that

dimp, ker(G — fid) = [{{ € pux: p(§) = B},

which implies part (ii) except for the equality (8). Note that by a translation of G, we
can (and do) assume S = 0. Then one has

ker G ={g(X) € Fo[X]/(XF—1): q(6) =0 forall £ € ug\Z}

={q(X) € F[X]/(XF=1): q(X) = [] (X=0r(X), degr < |Z|}.
feur\Z

It follows that dim s, ker G = |Z| andker G = ker(¥ 0 @)([ ]z (X — £)). Finally,
the equality (8) is a consequence of the fact that g(X) = [ ;e (X — ) € F[X] is

coprime with 7 (X) = (X*—1)/p(X) and ¢(X)-r(X)iszeroin F[X]/(X*—1). O
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Now, we focus our attention on the Hecke character v € X. For the sake
of simplicity, let us assume that its eta-character satisfies ord(n) = p — 1. Since
ker i is trivial, the corresponding field L is the ray class field of K mod p; that
is, L = H - Q(¢,) (cf. Propsition 5.1). The cyclic group Gal(L/H) has order
k= (p—1)/2. Also, let & = Endgga(r/ ) (L) be the H-algebra of Gal(L/H)-
equivariant endomorphisms. After fixing a generator v of Gal(L/H ), consider ® as
in Lemma 7.1. Finally, letA: I(p) — L* be the one-cocycle in Section 6. To find the
elliptic directions in Sz (A ) turns out to be equivalent to find the twisted one-cocycles
Ay (a) = Aa)u/%u which are modular. Note that now A is not modular in [Ar].

Proposition 7.2. For all u € L*, the following conditions are equivalent:
(i) the one-cocycle A, (a) = A(a)z; is modular;
. k_ k_

(i) u = ®(§k(xl))(v)’ for some v & ker @(%).

In particular, for v = @(%)@p) the one-cocycle Ay is modular. Here, ®p(X)
denotes the k-th cyclotomic polynomial.

Proof. The values u € L* for which A, is modular are the eigenvectors of the K-

linear map
| 1 —1
pr) = Y Ma)(zw(a))a y (10)

acGal(l./K) oeP

with eigenvalue equal to [L : K]. Also, by Proposition 4.4, we know that pr/[L : K|
is a projector, pr diagonalizes, and its characteristic polynomial is

([L : K] _ X)[E:K]X[L:K]—[E:K] _ (([L : K] . X)(p(k)Xk_(p(k))[H:K]_

By part (i) of Lemma 5.2, we can rewrite

w= T Sag)

acGal(L/H) oed

Let g € Z be a primitive root of (Z/p Z)* such that n(g) = ¢, where { = e 7
Since the set of principal ideals {a; = g% Ok: 1< j < k}isasetof representatives
of Gal(L/H) and A (g% Ok) = g%, we have

pl'() 1 < g—'a-*l a —'afl
GO0 = T = Ty 2o (8 ) " = X Trane @)

Jj=1 oed =1

Hence, G belongs to & and its characteristic polynomial has roots O and k& with
multiplicities k — ¢ (k) and ¢ (k), respectively.
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Now, we fix the generator t = g~ 20 of Gal(L/H) and apply Lemma 7.1 to
the endomorphism G — k Id € &. It follows that the set

Z={t' € e Xj_, Trow )¢ —k =0}
has cardinality |Z| = ¢(k). Letting & = 2, we claim that

= (¢ 1<j <k, ged(j. k) =1}

Since Gal(Q(¢)/Q) acts transitively on Z and |Z| = ¢(k), it suffices to prove that
{r € Z. Indeed, one checks:

k

Xk:( Z 5‘”)?;«—2( Z §(H)J)=Z( Z 5}!’(1’):

i=1 ie(Z/kT)* i=1 ie(@/kT)* j=1 ie(Z/kT)*
Then, from Lemma 7.1, we obtain

fueL:pr(u) =[L: Klu} = {u = ®(%)(v): v E L}.

Note that the image of ®(%) is independent of the choice of the generator 7 in

Gal(L/H). It can be easily checked that ©®((X* — 1)/ ®¢ (X)) vanishes on H, which
implies that O((X* — 1)/ ®p(X ))(£,) is non-zero since the class of the polynomial
(X* —1)/®x(X) in L[X]/(X* — 1) is non-zero. ]

Example. Take p = 7, so that K = Q(+/—7) has class number one. Let
in X with eta-character satisfying 7(3) = ¢27//¢, Its corresponding newform f =
Y U ((@)gN@ e 5,(T1(49)) has Nebentypus & of order 3; note that ¥ ((a)) =
an(a) for all @ € Og. The one-cocyle A satisfies A((a)) = a with the unique
choice of sign for @ such that the symbol (a/+/—7) = 1. This one-cocycle is not
modular for v (in fact, it is modular for the Hecke character in X/ with eta-character
of order 2 in which case the (unique) elliptic direction coincides with the rational
newformin S5 ("0 (49)) giving rise to the elliptic curve 49A1 in Cremona’s notation. )
Thus, we need to twist A by a coboundary in order to get a modular one-cocycle.
According to Proposition 7.2, we can take, for instance, ¥ = O(X — 1)(¢&7) =
¢2 — 7 and the cuspidal form g, = Y 8 (@)@ = T A (@) @Du u g¥@D e
S2(I'1(49)) is an elliptic direction of A¢. A computer calculation shows the lattice
A for the corresponding elliptic optimal quotient from Jac(Xr, ) satisfies: c4(A) =
ca(A(T)u*, and c6(A) = c6(A(T))u®.
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