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Dynamics of meromorphic mappings with small topological
degree II: Energy and invariant measure

Jeffrey Diller, Romain Dujardin and Vincent Guedj

Abstract. We continue our study of the dynamics of meromorphic mappings with small
topological degree 2.f / < 1.f / on a compact Kähler surface X. Under general hypotheses we
are able to construct a canonical invariant measure which is mixing, does not charge pluripolar
sets and has a natural geometric description.

Our hypotheses are always satisfied when X has Kodaira dimension zero, or when the
mapping is induced by a polynomial endomorphism of C2. They are new even in the birational
case 2.f / D 1). We also exhibit families of mappings where our assumptions are generically
satisfied and show that if counterexamples exist, the corresponding measure must give mass to
a pluripolar set.

Mathematics Subject Classification 2010). 37F10, 32H50, 32U40.

Keywords. Complex dynamics, meromorphic mappings, geometric currents, intersection of
positive closed currents.

Introduction

In this article we continue from [DDG1] our study of the dynamics of meromorphic
mappings with small topological degree on complex surfaces. Whereas our previous
article focused on constructing canonical forward and backward invariant currents
for a given mapping, here we take up the problem of intersecting these currents to
create a natural invariant measure. In fact, the first half of this article does not concern
dynamics at all but rather the general problem of defining the wedge product of two
positive closed .1; 1/ currents on a compact complex surface. This is of interest
in its own right, and our treatment draws much in content and spirit from recent
work of Guedj and Zeriahi [GZ2] concerning the definition of the complex Monge–
Ampère operator in the compact setting. Let us begin, nevertheless, by rehearsing
the dynamical setting of immediate concern. We refer the reader to [DDG1] for a

more thorough presentation and list of references.

Let X; !/ be a compact Kähler surface and f W X X a meromorphic
selfmap. Weassume that f is 1-stable, meaning that the induced actionf W H1;1.X/
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H1;1.X/ satisfies

f n/ D f /n for all n 2 N:

We let 2 D 2.f / denote the topological degree of f and 1 D 1.f / be the first
dynamical degree of f These are the spectral radii of the actions f W Hj;j X/
Hj;j X/ for j D 2 and j D 1, respectively. Our main assumption is that f has

small topological degree; that is,

2.f / < 1.f /:

Notice that with this terminology a birational map 2 D 1) has small topological

degree only when 1 > 1. Note also that in this case either X is rational or
kod.X/ D 0.

Under these conditions we have shown in [DDG1] that there exist closed positive
1,1) currents T C and T uniquely characterized by

T C D lim
n!1

1

n1 f n/ and T D lim
n!1

1

n1 f n/ : 1)

Furthermore, T can be written as T D C ddcG where are positive
closed currents with bounded potentials. By scaling we normalize the cohomological

intersection number so that fT Cg fT g D 1. Finally, under the additional
assumption that X is projective non-projective examples can arise on surfaces of
Kodaira dimension zero), the invariant currents have special geometric properties:

T C is laminar while T is woven see [DDG1] for definitions).
We have three goals in this article.

– First, we seek general conditions under which the wedge product T C^T may be
reasonably defined as a probability measure f on X. Here, “reasonably defined”
is understood as a continuity requirement: when T are approximated in a standard

pluripotential theoretic sense by convergent sequences Tj / of less singular

positive closed .1; 1/ currents, then we insist that limj!1 T Cj ^ Tj f
– Second, we seek to show that the conditions that guarantee existence of f also

ensure that it has good dynamical properties:

i) f is invariant under f ;

ii) f is mixing;

iii) f may be alternately viewed asgeometric intersectionof the laminar/woven
structures of the currents T C and T

In a third article, [DDG3] we will greatly elaborate on this second goal, studying
the fine ergodic properties of f; f / when properties i) to iii) are satisfied.
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– Finally we seek to apply our results to particular examples of meromorphic
mappings. This requires that we find checkable dynamical criteria that imply the
potential theoretic conditions needed to define f
It should be noted that, as with the other two articles [DDG1], [DDG3] in this

series, this one represents an attempt to generalize things that are known about
birational maps to the larger setting of maps with small topological degree. On the
other hand, this paper is the only one in the series that gives new results even in the
birational setting.

Let us now describe our results. Regarding the first goal, let S D Cddc' and

T D C ddc be any two positive closed .1; 1/ currents on X, each expressed in
terms ofapositive currentwith bounded localpotentials and anegative relative)
potential function (', Products ^ T involving a positive current with bounded
potentials are well-understood [BT1]. The most straightforward way to define S ^T
more generally is to require ' 2 L1.T / and then declare ddc' ^ T WD ddc.'T /.
We write “T 2 L1.S/” when this integrability holds. This condition is independent

of the choice of decomposition of T and moreover symmetric in S and T
In our dynamical situation, the condition T C 2 L1.T / suffices for our first

goal. However, it is not clear that the resulting measure f then has good dynamical
properties. In particular it seems difficult, given only the L1 condition, to establish
that the intersection T C ^ T is geometric. Moreover, in certain cases see e.g. the
examples in §4.4) we do not know whether T C 2 L1.T / but we are nevertheless
able to define a “reasonable” wedge product T C ^ T by taking advantage of the
global compact Kähler) context, in the spirit of [GZ2].

Let S and T be positive closed currents as before. We say that S has finite T -

energy, and denote “S 2 E.T /”, if there exists an unbounded convex increasing
function W 1; 0 1; 0 such that B ' 2 L1. ^ T / and the “weighted
energy”

Z
0

B ' d' ^ dc' ^ T 2)

is finite. This condition is independent of the choice of decomposition for S. We
stress that it does not imply that S 2 L1.T /.

Our first main result is the following.

Theorem 1. Let S D Cddc' and T D Cddc be positive closed currents on

a compact Kähler surface as above. Assume that S 2 E.T /, T 2 E.S/ and T does

not charge pluripolar sets.
Then the product S ^ T is well-defined and does not charge pluripolar sets.

When the first assumption of this theorem holds for the invariant currents T C
and T associated to a 1-stable meromorphic map f W X X of small topological
degree, we say that f has finite dynamical energy. In this case we can show that the
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current T C does not charge pluripolar sets see Proposition 2.2). Thus the measure

f D T C ^ T is well defined and does not charge pluripolar sets. We are further
able to prove that f has the desired properties i)–(iii) above, property iii) being
the hardest to establish.

Theorem 2. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree. Assume that f has finite dynamical energy. Then

f WD TC ^ T is invariant and mixing.
If furthermore X is projective then f is described by the geometric intersection

of the laminar/woven structures of TC=

We now turn to the problem of checking the finite dynamical energy condition;
i.e., of finding a weight so that the integral in 2) is demonstrably finite. Some

weights are, of course, easier to work with than others. The class of homogeneous
weights t/ D t/p, 0 < p 1 turns out to be particularly useful for dynamical
applications.

For the weight t/ D t we obtain the following criterion which generalizes the
work of Bedford and the first author [BD] see also [DG]). In order to state it, we
let IC denote the indeterminacy set of f and I D f EC/ denote the image of the
exceptional set EC of f
Theorem 3. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree, and let T D CddcG be the invariant currents.
Suppose that GC is finite at each point of I and G is finite at each point in IC.
Assume furthermore that

– either T C 2 L1.T /
– or no point in either IC or I is spurious.

Then T C 2 E.T / and T 2 E.T C/ with weight t/ D t

We do not define “spurious” here see §3), but we do note that the second assumption

is satisfied when, for instance, the classes of T C and T are Kähler. Also, when

2 D 1 it holds up to a birational change of surface [BD], Proposition 4.1. Finiteness
of G on I is a kind of “avoidance” condition on the orbits of IC and I that is
readily verified for many maps.
We show in Section 4 that the hypotheses of Theorem 3 our satisfied in particular for

– polynomial maps of C2,
– maps on P1 P1 that come from the secant algorithm for finding roots of

polynomials,
– maps on surfaces X with kod.X/ D 0.

We also give weaker “indeterminacy avoidance” conditions that guarantee finite
energy with respect to the other homogeneous weights t/ D t/p. By studying
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a birational example of Favre, whose salient feature is an invariant line on which
the map f acts by rotation, we show how it can happen that the weaker avoidance
conditions are verified when the stronger ones are not. For birational mappings with
T C 2 L1.T / it was proven in [DG] that

finite energy with respect to the weight t/ D t
is equivalent to

log d. ; IC/ 2 L1 f /:

On the other hand, it follows from Theorem 2 and the results of [Du2] that, if a

birational map f with 1 > 1 has finite dynamical energy then it enjoys many
interesting dynamical properties. Thus, the examples in §4.4 show that for birational
maps, it is possible that the results of [Du2] hold while log d. ; IC/ … L1. f /.

Less formally but more suggestively, our methods allow us to prove that f acts

much like a non-uniformly hyperbolic measure even though f does not satisfy a

convenient hypothesis guaranteeing existence of well-defined Lyapunov exponents
see e.g. Section S.2 in [KaHa] for background on these).

It is worth emphasizing that we do not know any example violating the finite
dynamical energy condition.1 A rational map with small topological degree and
infinite dynamical energy will tend to have some very surprising properties. For
instance, we obtain the following dichotomy:

Theorem 4. Let f be a 1-stable meromorphic self map of a compact Kähler surface,
with small topological degree. Assume further that T C 2 L1.T / Then

– either f has finite dynamical energy,

– or f D TC ^ T charges the pluripolar set fGC C G D 1g.
The family of birational maps given in Example 4.7 satisfies this dichotomy.

Furthermore, generic members of this family indeed have finite dynamical energy.
The structure of the paper is as follows. In §1, we develop the general framework

for intersection of positiveclosed .1; 1/ currents satisfying the finite energy condition.
Theorem 1 and a general dichotomy leading to Theorem 4 are both established here.

In§2, we consider the natureof the measure f under the assumption that f has finite
dynamical energy. Theorem 2 is the end result. In §3, we consider the particular case

of homogeneous weights more carefully, giving several criteria for finite dynamical
energy along the lines of Theorem 3. Finally, in §4, we illustrate our main results

by applying them to several significant examples, both invertible and non-invertible
ones among them.

Acknowledgment. We would like to thank A. Zeriahi for several useful discussions.

1Added in proof: such examples have been very recently constructed by X. Buff [Bu].
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1. Weighted energy with respect to a current

We develop in this section the pluripotential theoretic tools that we will use to define
and understand the wedge product T C ^ T There is no dynamics here, so these
results might accordingly be of independent interest.

1.1. The class E.T; / Throughout the section, we take ; T to be positive closed

.1; 1/ currents on X such that has bounded potentials. We assume
R
X ^ T D

f g fTg D 1, the middle term denoting intersection of cohomology classes. We let
PSH.X; / D fu 2 L1.X/ W C ddcu 0g denote the set of -plurisubharmonic
or just -psh) functions. If u 2 PSH.X; / for smooth, then u is called

quasiplurisubharmonic or just qpsh).

If u; v 2 PSH.X; / are bounded, it follows from plurifine considerations see

[BT2]) that

1fu>vgOE C ddcu ^ T D 1fu>vgOE C ddc max.u;v/ ^ T 3)

in the sense of Borel measures.
Let ' 2 PSH.X; / be an unbounded function and let 'j WD max.'; j/ 2

PSH.X; /\ L1.X/ be its canonical approximants. We have 'j & ', and by 3),

1f'> kgOE C ddc'j ^ T D 1f'> kgOE C ddc'k ^ T

whenever j k, since
°'j > k D f' > kg and max.'j ; k/ D 'k. Observe

that f' > kg f' > j g. Hence

j .'; T / WD 1f'> j gOE C dd c'j ^ T

is an increasing sequence of Borel measures on X, whose total mass is bounded from
above by 1 D f g fT g.

Definition 1.1. We set '; T / WD lim % j .'; T / and

E.T; / WD f' 2 PSH.X; / '; T /.X/ D 1g:

Alternatively ' 2 E.T; / if and only if OE C ddc'j ^ T.f' j g/ 0.
Observe that the probability measures OE C ddc'j ^ T converge to '; T /

as Borel measures i.e. in mass) when ' 2 E.T; / This is much stronger than
convergence as Radon measures i.e. in the weak topology) and furnishes the key to
the next proposition.

Proposition 1.2. Assume ' 2 E.T; / Then

1) the measures ^ T and '; T / do not charge the set f' D 1g;
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2) if T puts no mass on a complete pluripolar set P, then neither does ';T /.

Proof. We can suppose that ' 0. To simplify notation we set D '; T / and

j D j.';T /. Note first that j f' D 1g/ D 0, and hence f' D 1g/ D 0.
Fix

W R R a convex increasing function such that 1/ D 1 and

B ' 2 L1. / see Lemma 1.3 below). Since 0 'j ' and 0 j we
have

sup
j Z

X
/ B 'j d j Z

X
/ B ' d < C1:

By Stokes’ theorem,

Z
X

/ B 'j C ddc'j/ ^ T D Z / B 'j ^ T C Z
0

B 'jd'j ^ d c'j ^ T;

where the rightmost term is non-negative. Observe that the measures Cddc'j /^T
and have the same mass since ' 2 E.T; / and coincide in .' > j /, so

C dd c'j /^ T.' j / D ' j /:

Therefore

Z.' j/
/B'j Cdd

c'j /^T D / j / ' j/ Z.' j/
/B' d ;

which yields

Z
X

/ B 'j ^ T Z
X

/ B ' d < C1:
We infer B ' 2 L1. ^ T /, hence in particular ^T.' D 1/ D 0.

Let P be a complete pluripolar set, i.e. P D f D 1g for some
quasiplurisubharmonic function 0 on X. Let be a Kähler form. By assumption

^ T.P/ D 0. Attenuating the singularities of if necessary i.e. replacing by

B for some convex increasing function with slow growth at 1 and such that
still 1/ D 1), we can assume 2 L1.! ^ T /.

Write D Cddcu, where is smooth and u is bounded. We can also assume

without loss of generality that 0

D C is Kähler and ddc 0 replace
by A!, A 1, if necessary).

We claim that for every bounded -psh function v, 2 L1.OE C ddcv ^ T /.
Indeed

0 Z /OE

C dd cv ^ T Z /! 0 ^ T C Z u C v/. dd c /^ T:

Nowwe canassume that uCv 0since these functionsare bounded. Theconclusion
follows by observing that ddc 0.

This shows in particular that j D OE C ddc'j ^T.P/ D 0, hence P/ D 0
since j / converges to in the strong sense of Borel measures.
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We now introduce a set of weights.

Notation. We let W be the set of all convex increasing functions
W R R such

that 1/ D 1and 0/ D 0.

A straightforward computation see [GZ2]) shows that if ' 2 PSH.X; / and
0

B ' 1, then B ' 2 PSH.X; /

Lemma 1.3. Let be a positive measure and u a measurable function which is
bounded from above and such that u > 1 -a.e. Then there exists 2 W such

that B u 2 L1. /

Proof. Assume for simplicity that u is negative. From the identity

Z B u/d D Z
1

0
Bu < t/dt

it is straightforward to construct a piecewise affine that suffices.

Proposition 1.4. Assume that T has the form T D C ddc with a positive
current with bounded potentials, and T puts no mass on the set f D 1g. Then T
does not charge pluripolar sets.

Consequently if ' 2 E.T; / then '; T / does not charge pluripolar sets.

Proof. Fix a Kähler form Replacing with C we may assume f g
2 > 0.

If P X is locally pluripolar then by Theorem 7.2 in [GZ1], P fu D 1g for
some u 2 PSH.X; / Fix 2 W such that B 2 L1.T ^ !/.

We can assume without loss of generality that B u 2 PSH.X; / and
R
X / B

u OE Cddcu ^ < C1, replacing u by B u C/, C > 0, if necessary in other
words it is no loss of generality to assume u has “small singularities”, see [CGZ] for
more detail). The comparison principle see Proposition 2.5 in [GZ2]) then gives

Z / B uT ^ 2 Z / B u OE

C dd cu ^ C 2Z / B T ^! < C1:

Therefore B u 2 L1.T ^ !/, in particular T ^ P/ T ^ fu D 1g/ D 0.
The second statement of the proposition follows from Proposition 1.2.

We introduce another class of -psh functions.

Definition 1.5. For 2 W we set

j2N R
X / B 'j OE C ddc'j ^ T < C1 ;E T; / WD

°' 2 PSH.X; / sup

where 'j WD max.'; j / are the canonical approximants.
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The relationship between these classes and E.T; / is the following.

Proposition 1.6. We have

E.T; / D [2W

E T; /:

Proof. Given ' 2 E T; / we may assume ' 0. Then

0 OE Cdd
c'j ^T.f' jg/

1

j j/j
sup

k
Z
X

B'k/OE Cdd
c'k ^T 0;

since 1/ D 1. Hence ' 2 E.T; /
Conversely assume ' 2 E.T; / By Proposition 1.2 and Lemma 1.3, there is

weight 2 W such that B ' 2 L1. '; T //. We have by definition

'; T /.f' > j g/ D OE C dd c'j ^T.f' > jg/: 4)

Since the measures on either side have the same total mass, we infer that

'; T /.f' j g/ D OE C dd c'j ^T.f' jg/: 5)

Writing '/ D '; T / and 'j WD C ddc'j we use 4) again to get

Z
X

B 'j/ 'j ^ T D / j /Z
f' jg 'j ^ T C Z

f'> jg
B '/ 'j ^ T

D / j /Z
f' jg

d '/ C Z
f'> j g

B '/ d '/
Z

X
B '/ d '/:

So ' 2 E T; /

1.2. Intersection of currents. Let S, T be positive closed .1; 1/ currents on

X such that

1) ; have bounded potentials;

2) S D C ddc' for some ' 2 PSH.X; /;
3) T D C ddc for some 2 PSH.X; /;
4) f g f g D

R
X ^ D fSg fTg D 1.
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We want to define the wedge product S ^ T That is we want to construct
a probability measure such that whenever 'j 2 PSH.X; / \ L1.X/, j 2
PSH.X; /\L1.X/ decrease towards '; then

Sj ^ Tj WD OE C ddc'j ^ OE ^ ddc j †)

in the weak sense of Radon measures. Recall that the wedge product Sj ^Tj of closed
currents with bounded potentials is well defined thanks to the work of E. Bedford
and A. Taylor [BT1]. It is well known that it is not always possible to define S ^ T
when the currents have unbounded potentials, even if S D T We show here that it
is nevertheless possible in some very general situations.

TheL1 condition. When the potential ' of S, is integrable with respect to the trace

measure of) the current T then the current 'T is well-defined, as is therefore

D S ^ T WD ^ T C dd c.'T /:

It is well known that the continuity property / holds in this case. This is a
consequence of the following lemma, which we will need for other purposes.

Lemma 1.7. Assume ' 2 L1.T /. Then for any bounded quasiplurisubharmonic
function u, and for any sequence 'j 2 PSH.X; / decreasing to ', one has 'j 2
L1.T / and

Z
X

u OE C ddc'j ^ T Z
X

u OE C dd c' ^ T:

Proof. By the monotone convergence theorem 'j T 'T as currents. Therefore
OE Cddc'j ^ T OE Cddc' ^ T in the weak sense of Radon measures. Hence
we are done if u is continuous. Since u is upper semi-continuous, we get that

lim sup Z
X

u OE C dd c'j ^ T Z
X

u OE C dd c' ^ T:

We now use the assumption that u 2 PSH.X; / for some positive closed .1;1/-
current with bounded potentials. It follows from repeated application of Stokes’
theorem that

Z
X

u OE C dd c'j ^ T D Z u ^ T C Z
X 'j OE C ddcu ^ T Z

X 'j ^ T

Z
X

u OE C dd c' ^ T C Z
X
.' 'j / ^ T:

The integrations by parts are easily justified because u is bounded. By monotone
convergence,

R
X.' 'j / ^ T 0. So we infer

lim inf Z
X

u OE C dd c'j ^ T Z
X

u OE C ddc' ^ T:
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Note that the condition ' 2 L1.T / is symmetric, ' 2 L1.T / 2 L1.S/.
This follows from the Stokes theorem: if is any fixed Kähler form, then

Z
X 'T ^ D Z

X
S ^ C Z

X ' ^ Z
X ^ !;

where the last two integrals are finite because qpsh functions are always integrable
with respect to measures of the form ^ resp. ^ see e.g. [De]).

Lastly, note that if 1 C ddc'1 and 2 C ddc'2 are two representations of the
same closed positive current S, with i of bounded potential, then '1 2 L1.T / iff

'2 2 L1.T /. It therefore makes sense to write “S 2 L1.T /” as a shorthand for

“' 2 L1.T / for some choice of ” Thus we have just seen that

S 2 L1 T / T 2 L1 S/:

In the next paragraph we will give a different approach to the wedge product,
using the energy formalism.

The energy condition. We will show that the wedge product S ^ T can be defined
as '; T / whenever ' 2 E.T; /

Proposition 1.8. Assume ' 2 L1.T / so that the probability measure S ^ T is well
defined. Then

'; T / D 1f'> 1gS ^ T:

Therefore ' 2 E.T; / if and only if S ^ T.f' D 1g/ D 0.

Proof. Without loss of generality, assume that ' < 0. Let 'j WD max.'; j / and

uk WD max.'=k C 1;0/ 2 PSH.X; /\ L1.X/, where k j is fixed. Observe
that fuk > 0g D f' > kg and uk D 0 elsewhere, thus

uk OE C ddc'j ^ T D uk1f'> jg
OE C dd c'j ^ T D uk j .'; T /;

Letting j C1we infer, by using Lemma 1.7, that

huk S ^ T; hi D huk ';T /; hi; for all k 2 N

and for any continuous test function h on X. Nowuk % 1f'> 1g, so

h1f'> 1g S ^ T; hi D h ';T /; hi
since '; T / does not charge f' D 1g.

Proposition 1.8 implies that wheneverS 2 L1.T /, onehas ' 2 E.T; / if andonly
if 2 E.S; / and in either case '; T / D ; S/. The next result gives some

symmetry even without the integrability assumption. It follows from a monotone
convergence argument that we defer until the next subsection.



288 J. Diller, R. Dujardin and V. Guedj CMH

Theorem 1.9. Assume ' 2 E.T; / and 2 E.S; / Assume moreover that T does

not charge pluripolar sets. Then

'; T / D ; S/

and this measure does not charge pluripolar sets.

If, moreover, 'j 2 PSH.X; / j 2 PSH.X; / decrease to ', and we set

Sj WD C ddc'j Tj WD C ddc j then we have 'j 2 E.Tj ; /; j 2 E.Sj; /
and

'j ; Tj/ D j ; Sj / ';T / D ;S/
in the weak sense of Radon measures.

Note that the condition ' 2 E.T; / does not depend on the choice of

Proposition 1.10. Assume that S D 1Cddc'1 D 2Cddc'2, where 1, 2 have
bounded potentials. Then '1;T / D '2; T /. In particular '1 2 E.T; 1/ if and
only if '2 2 E.T; 2/.

Proof. Fix u bounded such that 2 D 1Cddcu. Subtracting a constant if necessary,

we can assume '1 D '2 C u. FixM > 0 such that M u CM.
Observe that max.'2; j/ C u D max.'1; j C M/ in the plurifine open set

f'1 > j CMg f'2 > jg. Thus

1f'1> jCMgOE 1 C ddc max.'1; j C M/ ^ T

1f'2> j gOE 2 C dd c max.'2; j/ ^ T '2; T /:
We infer '1; T / '2; T /, whence equality by reversing the roles of '1

and '2. In particular '1 2 E.T; 1/ if and only if '2 2 E.T; 2/.

We already know that if both 'j and j are bounded, then 'j; Tj / D Sj ^ Tj
Hence under the hypotheses of Theorem 1.9, our results now make it reasonable to
set

S ^ T WD '; T / D ; S/:
Also we can write “S 2 E.T /” to say that ' 2 E.T; / for some choice of In
summary, we have shown that ifS 2 E.T /andT 2 E.S/, then there is awell-defined
wedge product S ^ T We stress that our definition of S ^ T applies even in some
cases where S … L1.T / see [GZ2], §2.4). On the other hand, the case where S
and T are transversely intersecting lines shows that S 2 L1.T / does not mean that

S 2 E.T /.
We now discuss the hypothesis made in Theorem 1.9 that T does not charge

pluripolar sets. Later on we will apply this construction to the case where T D T C is
the canonical f -invariant current associated to a 1-stable endomorphism f W X
X of small topological degree. The laminar structure and extremality properties of
T C will allow us to reach the following alternative:
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– either T C does not charge pluripolar sets,

– or T C is supported on a complete pluripolar set.

It is therefore important to notice that the latter possibility can not occur under
the finite energy assumption.

Proposition 1.11. Assume T D C ddc is supported on D 1/ and ' 2
E.T; / Then ; S/ D 0, hence in particular … E.S; /

Proof. Assume ' 2 E.T; / It follows from Lemma 1.14 that ' 2 E.Tj ; / where

Tj D C ddc j j D max. ; j /.
Observe that by definition of '; Tj /, the measuresTj^Sk converge in the strong

sense of Borel measures) towards ';Tj /, as k C1. Here Sk D C ddc'k,
where 'k D max.'; k/.

Now '; Tj / D Tj ^ S, as follows from Proposition 1.8. We infer

1f > jgTj ^ Sk k!C1
1f > jgTj ^ S:

Observefinally that 1f > jgTj ^Sk D 1f > jgT ^Sk D 0ifT is supported on D
1/. The latter equality follows from lemma 1.12 below. Thus 1f > jgTj ^S D 0,

hence ;S/ D 0.

The following result is probably known to experts in pluripotential theory. Since
we could not find a reference, we include a proof.

Lemma 1.12. Assume T D ddc 0 is a positive closed .1; 1/ current in the
unit ball B C2, which gives full mass to f D 1g. Then so does the measure

T ^ ddcu, for any locally bounded plurisubharmonic function u.

Proof. This is a local question; we can assume all our objects are defined in a small
neighborhood of xB. Set % WD e This is a bounded psh function such that f% > 0g D
f > 1g and f% D 0g D f D 1g. By assumption %T D 0 and we need to
prove that % D 0, where D T ^ ddcu, u 2 PSH.B/\ L1loc.B/.

If u is smooth, this easily follows from the identity

h% ; i D h%T; dd c

ui
valid for any test function

For the general case we approximate u by a decreasing sequence of smooth psh
functions uj Set j WD T ^ ddcuj Since

h% j; i D h%T; ddc
uji D 0;
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it suffices to show that the measures % j converge, in the weak sense of Radon
measures, towards % This is obvious if % is continuous. Let %" denote a sequence

of smooth psh functions decreasing to %. Since

lim

j!C1h%" j; i D h%" ; i;
for fixed" > 0, it suffices to show that %" j % j as " 0 uniformly with respect
to j

Using a “max-construction”, we can assume without loss of generality that %"

% uj u jjzjj
2 1 near @B. This allows us to integrate by parts, since all these

functions vanish on @B. Let be a test function, then

h%" j; i h% j; i
jj jjC2h.%" %/ddcuj; T i

D C Z d.%" %/ ^ dcuj ^ T

C Z d.%" %/^ d c.%" %/ ^ T
1=2

Z duj ^ dcuj ^ T
1=2

;

as follows from Cauchy–Schwarz inequality.
The latter integral is uniformly bounded from above,

Z duj ^ dcuj ^ T D Z uj/ ^ ddcuj ^ T jjujjL1 Z ddcuj ^ T M0;

while the next to last converges to zero,

Z d.%" %/ ^ d c .%" %/ ^ T Z .%" %/ddc % ^ T 0;

as follows from the monotone convergence theorem.

1.3. Proof of Theorem 1.9. We start with two useful inequalities.

Lemma 1.13. Fix 2 W and letu;v 2 PSH.X; /\L1.X/be such that u v 0.
Then

0 Z
X

B v/ OE C dd cv ^ T 2 Z
X

B u/ OE C dd c u ^ T:

The proof is a simple integration by parts see Lemma 2.3 in [GZ2] for similar

computation). It will follow from this lemma that in the definition of the class

E X; / one can replace the canonical approximants by any sequence of bounded

-psh functions decreasing towards '.
Fix 0 a positive closed current with bounded potentials. For this lemma we

use the notation ' WD C ddc' and u WD C ddcu.
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Lemma 1.14. Fix 2 W and 0 ' 2 PSH.X; /\ L1.X/. Let u v be two
-psh functions. Then

0 Z
X

B '/ ' ^ v 2 Z
X

B '/ ' ^ u C 0.0/
Z
X

OEv u 2:

Proof. It follows from Stokes’ theorem that

Z B '/ ' ^ v D Z B '/ ' ^ u C Z v u/ ' ^ OE ddc
B ' :

Observe that ddc B ' 0

B ' thus the latter integral is bounded from above
by I D

R
v u/ 0

B ' ' ^ Now

0
B ' ' 0

B ' ' C
00

B 'd' ^ dc' D
0

B ' C ddc
B '/;

so we may estimate the integral I:

I Z B '/ ^ ddc u v/ C Z v u/ 0

B ' 2

Z B '/ ^ u C 0.0/ Z v u/ 2 :

The conclusion follows by observing that

Z B'/ '^ u D Z B'/ ^ uCZ 0B' d'^dc'^ u Z B'/ ^ u:

Proof of Theorem 1.9. Without loss of generality we can assume that '; 0.

Step 1. Assume that 'j WD max.'; j/ and j WD max. ; j/ are the canonical
approximants. We first show that the measures Sj ^ Tj converge to '; T /. Recall
that by definition,

';T / D lim % 1f'> j gSj ^ T:

Fix N 2 N. It follows from 3) that for all j N,

Sj ^ Tj 1f > NgSj ^ Tj D 1f > NgSj ^ T:

Let be a cluster point of the sequence Sj ^ Tj /. We infer

lim
N!C1

1f > Ng '; T / D 1f > 1g '; T / D ';T/;

since '; T / does not charge the pluripolar set f D 1g, as follows from Proposition

1.2 because we assume T does not charge pluripolar sets). Since both and

';T / are probability measures, it follows that D '; T /.
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We now show that '; T / D ; S/. Observe first that

1f'> jg\f > jgSj ^ Tj '; T /;

where the convergence holds in the strong sense of Borel measures. Recall that
; S/ D lim % 1f > jgS ^ Tj. Now1f'> jgS ^ Tj D 1f'> jgSj ^ Tj hence

1f'> j g 1f > j gS ^ Tj D 1f'> j g\f > jgSj ^ Tj :

We infer 1f'> 1g ; S/ D '; T /. Since these are both probability measures,

we conclude that ; S/ D '; T / and this measure does not charge pluripolar
sets by Proposition 1.2).

Step 2. In the sequel we set D '; T / D ;S/ and we fix 2 W such that

' 2 E T; / and 2 E S; / We show that

B 'j Sj ^ Tj B '
in the strong sense of Borel measures.

Let B be a Borel subset of X. We leave the reader check that
R

B B 'j Sj ^ T
converges to

R
B B 'd as j 1. It then suffices to verify that

R
B B 'j Sj ^

T Tj / 0. It follows from 3) that

1f > j g B 'j Sj ^ Tj D 1f > j g B 'jSj ^ T:

Since

Z
B\f jg

j j B 'jSj ^ T Z
f jg

j j B 'jSj ^ T Z
f D 1g

j j B 'd D 0;

we will be done if we can show that
Rf j g j j B 'jSj ^ Tj 0.

From Lemmas 1.13 and 1.14, we obtain M 2 R such that

Z / B 'j Sj ^ Tj M ; Z / B j Sj ^ Tj M for all j 2 N:

Choose another weight
Q 2 W, such that the same uniform bound hold, and such that

moreover D o. Q/ and
Q

is increasing to find such a Q, choose
Q

first and then
We conclude that

Z
f j g

j j B 'j Sj ^ Tj MQ
Q

j/ 0;

as desired.
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From Step 2 we immediately obtain the following generalization of Lemma 1.13.

Corollary 1.15. Let 2 W, u 2 E T; / and v 2 PSH.X; / such that u v 0.
Then v 2 E T; / and

0 Z
X

B v/ OE C dd cv ^ T 2 Z
X

B u/ OE C dd c u ^ T:

Step 3. Let 'j; j 0 denote now arbitrary sequences of -psh, -psh functions
decreasing towards '; From Lemma 1.14 and Corollary 1.15, we infer that 'j 2
E Tj; / and j 2 E Sj; / Thus the measures 'j ; Tj/ D j ; Sj/ are well
defined. We set

'.K/
j WD max.'j ; K/; K/

j WD max. j; K/;

'.K/
WD max.'; K/; K/

WD max. ; K/:

Similarly,

S K/
j WD C ddc'.K/j ; T K/

j WD C ddc K/
j ;

S K/
WD C ddc'.K/; T K/

WD C ddc K/:

It follows from Step 1 that S.K/ ^ T K/ and S K/
j ^ T K/

j Sj ^ Tj when

K C1. It follows from the monotone convergence theorem of [BT1] that for
each fixed K,

S K/
j ^ T K/

j S K/ ^ T K/ as j C1:
Thus we will be done if we can prove that the convergence S K/

j ^ T K/
j Sj ^ Tj

is uniform with respect to j This is what we show now.
Fix a Borel subset B X. Note that

°'j K [ ° j K
°
uj K

where uj WD 'j C j Fixing 2 W as at the end of Step 2, we have from convexity
of that

sup

j Z
X j

Z
X

Buj/ Sj^Tj sup
j Z

XB'j/Sj^TjCsup B j/Sj^Tj 2M :

It follows again from 3) that S K/
j ^ T K/

j Sj ^ Tj in the plurifine open set

°'j > K \ ° j > K thus

S K/
j ^ T K/

j B/ Sj ^ Tj B/ Zfuj
Kg

S K/
j ^ T K/

j C Sj ^ Tj :
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Lemma 1.14 and Corollary 1.15 imply that
R

/Bu
K/
j S K/

j ^T K/
j is bounded

above by 4M C C. Hence

S K/
j ^ T K/

j B/ Sj ^ Tj B/
6M C C

j K/j
converges to zero as K C1, uniformly with respect to j
1.4. The gradient approach. We now give an alternative description of the finite
energy conditions in terms of integrability properties of weighted gradients in the
spirit of [BD] who considered the special case t/ D t in what follows).

Recall that any function ' 2 PSH.X; / has gradient in L2 " X/ for any " > 0,
butr' … L2.X/ in general. Indeed, ' has gradient in L2 if and only if ' 2 L1. '/,
where we write ' D C ddc' as before. More generally when ' WD C ddc'
does not charge the set f' D 1g, there exists 2 W such that B ' 2 L1. '/.
Hence

Z
0

B 'd' ^ d c' ^ D Z B '/ ddc' ^ Z B '/ ' ^! < C1;X X X

where is a fixed Kähler form. We get that ' has weighted gradient in L2.X/.
This suggests that we can give an alternative description of our energy conditions

in terms of weighted gradients.

Definition 1.16. For 2 W we set

j 0 R
X

0

B 'jd'j ^ dc'j ^ T < C1¯
;r T; / WD

®' 2 PSH.X; / sup

where 'j WD max.'; j / are the canonical approximants.

Proposition 1.17. Fix 2 W. Then

E T; / D °' 2 r T; / B ' 2 L1
^ T / :

Proof. This follows from integrating by parts,

Z B 'j/ 'j ^ T D Z B 'j/ ^ T C Z
0

B 'j d'j ^ dc'j ^ T:

Remark 1.18. If 0 is bounded above, then to verify the condition B' 2 L1. ^T /
in Proposition 1.17, it suffices to show simply that B ' 2 L1.T /.
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Proof. Since 0 has bounded potentials, we have c! C ddcu where u is
bounded and, without loss of generality, positive. Thus,

0 Z B ' ^ T c Z B ' ^ T C Z udd c
B '/^ T:

The assertion therefore follows from the bound uddc. B'/ u. 0 B'/ddc'
ku 0k1 C.

1.5. Examples. We give here simple criteria which ensure that some of our energy
conditions are satisfied. We let E1.T; / denote the class E T; / for the weight

t/ D t Observe that

E1 T; / D \2W

E T; /:

Proposition 1.19. If ' 2 PSH.X; / is bounded, then ' 2 E1.T; /

This is easy and follows directly from the definitions. In dynamical situations,
invariant currents with bounded potentials appear for instance for meromorphic maps

on surfaces ofKodaira dimension zero see §4). The next result is a bit moreelaborate
and will be useful in particular with ' D in §3.

Proposition 1.20. Assume ' 2 PSH.X; /\ L1loc.X n F/, where F is a finite set of
points. Then ' 2 L1.T /.

Moreover if ' Alog dist. ;F / Afor some constantA > 0, and if T; p/ D 0

for all p 2 F then ' 2 E.T; /

Proof. We can assume without loss of generality that ' 0 on X. Fix a Kähler
form on X. We need to show that

RX '/T ^! < C1. Let 0 be a smooth form
cohomologous to which vanishes in a small neighborhood of F We can find h 0
a smooth function such that D 0 C ddch. Now

Z
X '/T ^ D Z

X '/T ^
0

C Z
X

hT ^ ddc'/
Z

X '/T ^ 0

C Z
X

hT ^ < C1;

since ' is bounded on the support of T ^ 0. We have used here that hT 0 while
ddc' This shows that ' 2 L1.T /. Thus the measure WD S ^ T D
C ddc'/^ T is well defined.
Assume now that ' g WD Alog dist. ; F / A for some constant A > 0 and

T; p/ D 0 for all p 2 F Assume g 2 PSH.X; / Observe that g 2 L1.T /.
Hence D OE C ddcg ^ T is a well defined positive measure which looks, locally
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near each point in F like the projective mass of T Since T; p/ D 0 when p 2 F
we infer that p/ D 0. Therefore fg D 1g/ D 0, and there exists 2 W such

that g 2 E T; / It now follows from Corollary 1.15 that ' 2 E T; / also, since

' is less singular than g.
When g is not -psh, it is !-psh and hence C /-psh, for some Kähler form
Observe that ' is also C /-psh. We claim that ' 2 E.T; / if and only if

' 2 E.T; C !/. Indeed

j!C1 j .'; T; / C 1f'> jg! ^ T

D ';T; / C 1f'> 1g! ^ T:

';T; C f!g/ D lim

Now ^T.' D 1/ D 0 since .' D 1/ F is finite. Thus

M. '; T; C f!g// D fT g C f!g/ if and only if M. '; T; // D fT g ;

which is the desired result. Here M. / denotes the total mass of the measure We
can now conclude the proof by replacing by C in the above argument.

2. The canonical invariant measure

Now let us return to the dynamical situation described in the introduction. For the
remainder of this paper, f W X X is a meromorphic transformation of a compact
Kähler surface X; !/. We always assume that

f is 1-stable, i.e. f n/ D f /n on H1;1.X; R/ for all n 2 N;
the dynamical degrees of f satisfy 1 2.f / < 1 WD 1.f /.

With these conditions, our work in [DDG1] shows that the canonical current
T C D

1
1 f T C in 1) exists and can be alternatively expressed

T C D lim
n!1

n
1 f n C D C C ddcGC; with GC D 1X

nD0

C B f n

n1

; 6)

where C is a positive closed current with bounded potentials cohomologous to T C
and ddc C D

1
1 f C C. The canonical forward invariant current T D

1
1 f T also exists and admits a similar description

T D lim
n!1

n
1 f n

D C ddcG ; with G D 1X
nD0

n
1 f n : 7)
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2.1. The dynamical energy. We can assume, without loss of generality, that f!Cg

f! g D fT Cg fT g D 1: Our aim here is to use the techniques from §1 to define
a probability measure f D T C ^ T and understand its geometric and dynamical
properties.

Definition 2.1. We say that f has finite dynamical energy if
T C 2 E.T / and T 2 E.T C/:

We assume henceforth that our maps always have finite dynamical energy. Finite
dynamical energy is equivalent via Proposition 1.6 to having 2 W such that

GC 2 E T ; C/ and G 2 E T C; /:

We say then more specifically that f satisfies condition E / We shall see in §4

some weights 2 W that actually arise in specific families of examples.
The existence of f in the sense of Theorem 1.9, is a consequence of finite

dynamical energy. When kod.X/ D 0, the invariant current T has bounded potentials,
hence it does not charge pluripolar sets. When X is rational, we instead consider T C.

Proposition 2.2. Assume X is rational and f has finite dynamical energy. Then T C
does not charge pluripolar sets.

Proof. The proof consists in establishing the following more precise alternative:

– either T C does not charge pluripolar sets,

– or it is supported on a pluripolar set, hence f cannot have finite dynamical
energy.

Decompose TC as T C D T Cnp C T Cpp where T Cnp D 1
fGC> 1gT C does not charge

pluripolar sets, while T Cpp D 1 GCD 1/
givesfull mass the pluripolar setGC D 1.

Because T C is a strongly approximable laminar current see [DDG1]) It follows
from [Du1], Theorem 6.8, that this decomposition is closed, i.e. T Cpp; T C

np are closed
currents.

Since TC is invariant under f 1) and does not charge critical) curves see

Theorem 2.4 in [DDG1]), we also infer that T Cpp;T Cnp are both invariant. Now T C is
an extremal point of the cone of positive closed invariant currents see Remark 2.2 in
[DDG1]). Thus it follows that either T C D T Cnp does not charge pluripolar sets see

Proposition 1.4), or T C D T Cpp is supported on the pluripolar set fGC D 1g. In
the latter case, it follows from Proposition 1.11 that f cannot have finite dynamical
energy.

As it will be seenbelow and in [DDG3], the finite dynamicalenergy condition will
allowus to understand the dynamics of f quite thoroughly. From Proposition 1.8 we
get the following nicealternative, which emphasizes the naturality of thisassumption.
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Theorem 2.3. Assume that T C 2 L1.T / so that f D T C ^ T is well defined.
Then

– either f charges the pluripolar set fGC D 1g[ fG D 1g,
– or f has finite dynamical energy.

2.2. Mixing

Theorem 2.4. Assume f has finite dynamical energy. Then the measure f D
T C ^ T is f -invariant and mixing, and it does not charge pluripolar sets.

Proof. It follows from Proposition 2.2 and Theorem 1.9 that f D T C ^ T is a

well defined probability measure which does not charge pluripolar sets. In particular,

f D T C ^ T does not charge the pluripolar set IC fGC D 1g. Moreover
by Theorem 1.9,

f D lim
n;p!C1

n;p; where n;p WD
1

n1 f n/ C ^
1
p
1
f p/ :

Since f n;p D n 1;pC1
and since the operator f is continuous on the set of

probability measures which do not charge the indeterminacy set IC, weinfer f f D
f i.e. f is an invariant probability measure.

We now show that f is mixing. Let h and k be test functions on X. We need to
show that

Z
X

k h B f n d f Z
X

hd f Z
X

k d f :

Set j WD OE! C ddcvj ^ T C, where vj WD max.G ; j/ are the canonical
approximants of G Fix 2 W such that G 2 E T C; / It follows from
Corollary 1.15 that BG 2 L1. f /, Bvj 2 L1. j / uniformly in j and also that

j f in the plurifine open set fG > j g. Therefore

Z
X

k h B f n d f Z
X

k h B f n d j jjkjjL1 jjhjjL1. f C j/fG j g

converges to zero as j C1, uniformly with respect to n 2 N.
It suffices then to replace f by Cddcv/^T C, where v is a bounded -psh

function and show

Z
X

k h B f n
C ddcv/ ^ T C

Z k.! C ddcv/^ T C
Z hd f :

Observe that here we can replace by which is smooth. So it suffices to show
the convergence for an arbitrary Kähler form instead of
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If v is smooth the convergence follows from Proposition 2.5 below. For the
general case, recall that we can approximate v from above by a decreasing family
of smooth !-psh functions v". The proof will be finished if we show that

R
X kh B

f n ddc.v" v/ ^ T C converges to zero as " 0, uniformly with respect to n. For
this we first integrate by parts

Z
X

k h B f n ddc v" v/^ T C

dk ^ dc v" v/^ h B f n T C

C

Z
X

Z
X

dh B f n
^ dc v" v/^ k TC D I.n; "/ C II.n; "/;

and use the Cauchy–Schwarz inequality. For the first term we get

I.n; "/ jjhjjL1 jjkjjC1 Z d.v" v/ ^ dc v" v/ ^ T C
1=2

0;

because v is bounded.

Treating the second integral II.n; "/ similarly gives rise to an integral of the form

Z d.h B f n/ ^ dc h B f n/^ kT C:

n1n2

Then we argue as in the proof of Theorem 3.3 in [DDG1] to get that this integral is

O. /.

Proposition 2.5. Let h be a smooth) test function on X. Then

h B f n TC cT C; where c D Z hd f
Again, the proof is similar to that of Theorem 3.3 in [DDG1], so we omit it.

2.3. Geometric intersection. In this paragraph, X is supposed to be projective. We
showed in [DDG1] that the invariant currents T C and T admit important geometric
structures. More precisely T C resp. T is a strongly approximable laminar resp.
woven) current.

Our purpose here is to show that the measure f can be alternatively obtained
by “intersecting” these geometric structures. Recall that another result that has been

obtained using laminarity is the fact that T C –and consequently f – does not charge

pluripolar sets.
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We first very briefly recall some preliminaries on geometric currents see [Du1],
[Du2] and also [DDG1], [DDG3] for more details). The construction of these
geometric structures requires subdivisions Q of X into families of “cubes” Q 2 Q,
which are obtained by projecting along two generically transverse linear pencils, and
taking intersections of subdivision of the projection bases into squares. In particular
we have some freedom in the choice of the projections and the squares. The spaces

parametrizing projections and squares are manifolds so we can speak of a “generic
subdivision” where genericity is understood in the sense of Lebesgue measure.

That T C is a strongly approximable laminar current means that if Q is a generic
increasing family actually, a sequence) of subdivisions by cubes, then T C is the limit
of an increasing family

T C
Q D XQ2Q

T CQ ;

the current T C
Q is uniformly laminar in Q. Furthermore, TC

Q can be written as

an integral over a measured family of disjoint submanifolds of uniformly bounded
volume

T C
Q D Z

2A
C
Q

OE C d C
Q /: 8)

We have the important estimate

M.T C T C
Q / Cr2: 9)

The same holds for T with “woven” instead of “laminar”. In this case 8) becomes

TQ D Z
2AQ

OE d Q /; 10)

where the are allowed to intersect and can be singular. In view of 8) and 10)
we can naturally define the geometric intersection of T C

Q and TQ as

Q
Z
A

TQC ^P TQ D Z
AC

Q

0 d C
Q / d Q

OE C \ 0/;

where by definition, OE \ 0 is the sum of Dirac masses at isolated intersections,
counting multiplicities.

Assume now that T C ^ T is well defined, in the L1 or energetic sense. We say
that the wedge product T C^T is a geometric intersection if the family of measures

T C^P T WD

PQ2Q
T C T increases to T T whenQ is any family of generic

Q Q Q ^P Q C^
subdivisions into cubes of size r 0.

The following basic result asserts that for uniformly geometric currents the wedge
product is geometric.
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Proposition 2.6. With notation as above, assume that T C
Q 2 L1loc.T /. Then theQ

wedge product T C
Q ^ TQ is geometric, that is,

T C
Q ^ TQ D XQ2Q

TQC ^P TQ:

Proof. The proposition follows by applying Lemma 2.7 below twice. Notice that if
and 0 are submanifolds in Q, OE 2 L1loc.OE 0 / iff and 0 only have isolated

intersections. If this holds, then OE ^ OE 0 D OE \ 0 see [De]).

Lemma 2.7. Assume that R and S are two positive closed currents in an open set

Q, such that S 2 L1loc.R/ and S admits a decomposition S D
R

S d / as an

integral of positive closed currents. Then for a.e. S 2 L1loc.R/ and we have the
decomposition

R ^ S D Z R ^ S /d /:

Proof. The result is local so consider a small ball B b Q. By definition, 7!
M.S jB/ is locally integrable. By Lemma 2.8 below, for every there exists a non
positive psh function u in B such that ddcu D S and ku kL1.B0/ CM.S jB/,
where B0 is a slightly smaller ball. Hence u D

R
u d / is a well defined psh

function which is a potential for S in B0.

Now since u 2 L1loc.R/, we get that for a.e. u 2 L1loc.R/, which is the first
assertion of the lemma, while the second follows by applying ddc to the formula
uR D

R
u Rd /

The following lemma is classical and goes back at least to [Le] see [BE] for a

brief treatment).

Lemma 2.8. Let T be a positive closed current with finite mass in the unit ball
B C2. Then T admits potential u which is canonical, negative on B.0;1=2/ and
satisfies kukL1.B.0;3=4/ CM.T /, with C a universal constant.

We now arrive to the main result in this paragraph.

Theorem 2.9. Assume X is projective and that f has finite dynamical energy. Then
the wedge product T C ^ T is geometric.

Proof. Let us first assume for simplicity that T C 2 L1.T / This guarantees that all
thewedge products T ^T T C^T are well defined in theL1loc sense and bounded

Q Q Q
from above by T C^T The wedge product T C

Q ^TQ
isgeometricby Proposition 2.6

and we need to show that this product increases towards f D T C ^ T as r > 0
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decreases towards 0. Here the situation is symmetric so it suffices to estimate the
mass M.T ^ T C T C

Q //. We follow the proof and notation of Theorem 5.2 in
[Du2].

Shifting the cubes slightly, we can assume the mass of f is not concentrated near

the boundary of Q. Let Q D PQ2Q Q be a test function such that each function

Q is supported in the cube Q, satisfies 0 Q 1 and is identically equal to 1 in
the major part of Q. It suffices to show that

R
X QT ^ T C T C

Q / 0. Note that
can be chosen so that kr Qk D O.1=r/ and kddc Qk D O.1=r2/.
Let Gj D maxfG ; j g, Tj D C ddcGj and j D Tj ^ T C as before.

Then

Z QT ^ T C T C
Q / D Z QTj ^.T C T C

Q /CZ Q.T Tj /^.T C T C
Q /:
11)

In the second integral on the right, we use the facts that T C T C
Q are closed on

Supp Q and that T ^ T C T C
Q / D Tj ^.T C T C

Q / on fG > j g to estimate

Z
X

Q.T Tj / ^ T C T CQ / D Z
fG j g

Q.T Tj / ^ TC T C
Q /

12)

Z
fG j g

Q. f C j/;

which tends to zero as j 1 uniformly in r recall that j fG jg/ D
fG j g/ see 5)). From now on we fix j such that this integral is small.
It remains to control the first integral on the right hand side of 11). For

convenience it is better to write Tj D C ddcHj where is a smooth form
cohomologous to and Hj is still bounded. This gives

Z QTj ^.T C T C
Q / D Z d Q^dcHj ^.T C T C

Q /CZ Q ^ T C T C
Q /:

The second term on the right tends to zero as r 0 by laminarity of T C. The
first we estimate with Schwarz’ inequality and the estimate given by the “strong
approximability” of T C.

2

kd Qk
2

Z d Q ^ d
cHj ^ T C T C

Q / 1 O.r2/Z dHj ^dcHj ^.T C T C
Q /:

1 D O.r 2/, it suffices to know that the last integral tends to zeroSince kd Qk
2

with r. But this happens because the bounded function Hj has gradient in L2 with
respect to T C, and because T C

Q % T C see the end of the argument in [Du2]).
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We now no longer assume that T C 2 L1.T / One difficulty is that we have to
justify the existence of the local wedge products T C ^T etc. This is ensured by theQ
following lemma which, it is perhaps worth stressing, does not require homogeneity
of X).

Lemma 2.10. There exists SC arbitrary close to T C such that G 2 L1loc.SC/.Q Q Q
Likewise, there exists SQ arbitrary close to TQ such that GC 2 L1loc.SQ /.

Proof. Since T 2 E.T C/, by the first item of Proposition 1.2 G is not 1 a.e.

on T C. Thus, given a cube Q, G is not identically 1 on TC Now T C
Q Q D

R

OE d C /; hence for C-a.e. disk ˆ / WD
R

G is finite. Consider nowQ

C
N WD Cjfˆ> Ng

and T C
Q;N WD Z

OE d C
N /:

Then by construction G 2 L1.T C
Q;N / and T C

Q;N is arbitrarily close to T C
Q

The argument for SQ
is similar.

From now on we replace the TQ with the SQ
as given by the previous lemma, so

all the local wedge products T C
Q ^TQ T C

Q ^ T T C ^ TQ are well defined in the

usual L1 sense. We further assume that SQ is so close to TQ that the estimate 9) is
satisfied.

We now need to justify the inequalities T C
Q ^ TQ T C ^ T etc. This follows

from the following simple observation: let Tj D Cddc max.G ; j /. Wehave

that T C ^Tj T C ^T by the energy approach) and T C
Q ^ Tj T C

Q ^T by

the classical approach) as j 1. Since T C
Q ^ Tj T C ^ Tj we conclude that

T C
Q ^ T T C ^ T In the same way we obtain that T C ^ TQ T C ^ T The

inequality T C
Q ^ TQ T C

Q ^ T is obvious since all wedge products are defined in
the classical sense.

Starting from here the proof is identical to the L1 case.

3. Homogeneous weights

In thissection we give criteriaallowing to verify in practice see §4.4) the finite energy
condition for the homogeneous weights t/ D t/p, with 0 < p 1.

Recall from 6) and 7) that we can write T D C ddcG To analyze
the potential GC, it is easier to use the function C as an intermediary. Indeed,
Proposition 2.4 in [DDG1] implies that C Alog dist. ; IC/ B for some A; B >
0, where IC X is the indeterminacy set of the map f Let us call an indeterminacy
point

p 2 IC spurious if f p/ C D 0:
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At every non-spurious point, we also have the reverse inequality

C Alog dist. ; p/ B:

Similar inequalities hold for We let EC denote the exceptional set of f
i.e. the union of those curves collapsed by f to points, and set I D f EC/.
Then Alog dist. ; I / B with the reverse inequality holding if and only

f 1.p/ ¤ 0 for every p 2 I Likewise, we say that a point

p 2 I is spurious if f 1 p/ D 0:

We refer the reader to [DDG1] for more about spurious points. Here we point out
only that

1) if the invariant cohomology classes fT Cg, fT g are Kähler, then there is no

spurious point of indeterminacy in resp. IC, I ;

2) when f is bimeromorphic, we can always perform a bimeromorphic change of
coordinates to get rid of spurious indeterminacy ([BD], Proposition 4.1).

It is plausible that a similar result holds when the topological degree 2.f / is merely
smaller than the first dynamical degree 1 D 1.f /. We refer the reader to §5 in
[DDG1] for some results in this direction.

The Lelong numbers of T C vanish on I see [DDG1], Theorem 2.4). Hence
Proposition 1.20 gives

Proposition 3.1. We have 2 E.T C; /

A similar result holds for C=T if we know that T has zero Lelong number
at each point in IC which we do e.g. when 2.f / D 1).

The main theme in this section is that for homogeneous weights, it is possible to
pass from control on energy of to control on that of G This idea originates in
[BD]. We set

Ep T; !/ WD E T;!/ and rp T; !/ WD r T; !/
where t/ D t/p, 0 < p 1.

Proposition 3.2. Fix 0 < p 1. Then

C 2 Ep T ; C/ if and only if GC 2 rp T ; C/:

If p
1 > 2.f / then we similarly have that

2 Ep T C; / if and only if G 2 rp T C; /:
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Proof. Since C and GC are both C-psh functions such that GC C 0, it
follows from Corollary 1.15 that

GC 2 E T ; C/ H) C 2 E T ; C/;

for any weight 2 W.
Assume conversely now that C 2 E T ; C/ for the special homogeneous

weight t/ D t/p, 0 < p 1. Since 0

B GC 0. j
1

C B f j / Dj.p 1/
1

0. C B f j /, it follows from the Cauchy–Schwarz inequality and

f j/ T D j
1T that

Z
X

1=2
0

B GC dGC ^ d cGC ^ T

1

X j Z
j 0 1 X

0

B GCd. C B f j / ^ d c C B f j/ ^ T
1=2

Xj 0

1
jp=2
1

Z
X

0

B
Cd C ^ dc C ^ T

1=2

< C1:

Hence GC 2 r T ; C/.
For and G the proof is very similar except that in the estimate analogous

to the one in the previous display, pushforward does not distribute over products as

well as pullback. If is a .1; 0/ form, we have only an inequality

i f ^ f 2.f / f i ^ N/:
Arguing as above and setting E / D

R

0

B d ^ dc ^ T C, we thus get

Z

1=2 j=2
0

B G dG ^ d
cG ^ T C p

X 1Xj 0

2
E / 1=2 ;

which is finite if p
1 > 2.

Since L1 Lp for 0 < p 1, Propositions 1.17 and 3.2 directly imply

Corollary 3.3. Suppose 0 < p 1 and T C 2 L1.T / Then C belongs to
Ep.T ; C/ if and only if GC does. If in addition p

1 > 2, then belongs to
Ep.T C; / if and only if G does.

Having largely reduced the problem of controlling G to that of controlling
we now seek effective means of accomplishing the latter. The computations below
will be the same for C and so we work only with C. We let D C C c!.
Forc > 0large enough, both C and ' WD log dist. ;IC/ are -psh functions. Since

C A' B, Lemma 1.13 gives
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Proposition 3.4. Let be any weight function. Then ' 2 E T ; / implies that
C 2 E T ; /

Hence we consider weighted energy of '. Let 'j be the canonical approximants.
Then up to finite additive constants we have

0 Z B 'j C dd c'j /^ T D Z G ddc'j ^ ddc
B 'j

D Z G 00

B 'j/d'j ^ dc'j ^ dd c'j C Z G 0
B 'j / dd c'j /2

Z
XnIC

G 00
B 'd' ^ dc' ^ dd c'

C Z
XnIC

G 0

B ' dd c'/2
C Z G 0

B '/ j
D I C II C III;

where j D ddc'j /2
j'D j is a positive measure. Note also that d'^dc'j ^ddc'2jputs no mass on ' D j One can verify this by replacing maxf ; jg with a smooth

convex approximation in the definition of 'j and then computing directly.
To bound integral I, we compute in local coordinates that

d'^ dc' ^ dd c' C dV.x/
dist.x;IC/4

So if m t/ is the spherical mean of G on the set fdist.p; IC/ D etg, we get

I C Z

max'
1

m t/ 00.t/dt;

We claim that II is always finite. To see this, let W XO X be the blowup of X along
the finite set IC. Then direct computation in local coordinates about IC reveals that
on X n IC, one has ddc' B /2 dV where dV is a smooth volume form on XO.

Since G B is -psh on XO, this gives us that

II D ZXOn
1.IC/

G B / 0B'B / ddc'B /2 ZXOn
1.IC/

G B dV < 1:
Finally, to deal with III, we note that for j large j is uniformly in j proportional
to normalized spherical measure on fdist.p; IC/ D e j g. Hence we obtain that

III Cm j / 0. j /:

With these estimates we arrive at two conclusions very much in the spirit of [BD].
We state them only for C, but the analogous assertions for are equally valid and

proved in the same way.
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Corollary 3.5. If G is finite at all points in IC, then C 2 E1.T ; C/. Hence
also GC 2r1.T ; C/. If moreover T C 2 L1.T / then GC 2 E1.T ; C/.

Proof. By Propositions 3.4 and 3.2, it suffices to verify that the above bounds on I
and III are finite and uniform as j 1). In this case, we have t/ D t and in
particular 00 0. Hence I is trivially finite.

On the other hand, 0 1 and as t 1, m t/ decreases to the average value

of G on the set IC. In particular the bound on III is uniform as j 1if G is
finite on IC.

For other homogeneous weight functions, our estimates on I and III immediately
give an analogous criterion.

Corollary 3.6. Let as above) m t/ denote the mean of G on fdist.x; IC/ D etg.
Suppose for some q 2 .0; 1/ that

lim sup

t! 1
jtj

q 1
jm t/j < 1:

Then for any 0 < p < q, we have C 2 Ep.T ; C/. Hence GC 2 rp.T ; C/.
If additionally T C 2 L1.T / then GC 2 Ep.T ; C/.

In some circumstances e.g. polynomial maps of C2) it is possible to see directly
that T C 2 L1.T / Corollaries 3.5 and 3.6 are adequate by themselves for these

situations. In other circumstances, however, it is not easy to verify that T C 2 L1.T /
We shownowthat one can avoid doing thisif there are no spurious points in IC or I
Theorem 3.7. Suppose that 0 < p 1 is chosen so that p >1 2 and that GC 2
rp.T ; C/, G 2 rp.TC; / If there are no spurious points in IC or I then

it is further true that GC 2 Ep.T ;!/ and G 2 Ep.T C; !/.
We prove the theorem in a sequence of lemmas, focusing mainly on GC. The

case of G is identical, except that as in the proof of Proposition 3.2, we need the
condition p

1 > 2 to make the triangle inequality work in a couple of places below.

Lemma 3.8. There exists k 2 N and c > 0 such that for every n 2 N, we have

f nk

nk
1

c! C dd cwn

where wn cG is c!-psh

We remark before continuing that if the indeterminacy set of f has no spurious
points, then neither does thatof f k. Therefore, there is no particular harm inassuming
for the sake of notational simplicity that k D 1 when we apply the lemma.
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Proof. Let be a smooth form cohomologous to T Then by Theorem 1.3 in
[DDG1] we have D a C for some a > 0 and a smooth form such that

k
1 f k tends to zero in cohomology. Thus for k large enough, we have

f k

k1

a C
1

2 C dd cw

where w is a quasipsh function that is smooth away from I f k/. Since there are

no spurious points in I we have in fact that w bG for some b > 0. Iterating
this inequality then gives

f kn

kn
1

abn C
1

2n C ddc
n 1

XjD0

f jkw

12.n 1 j/ jk

C dd c
n 2

XjD0

abn 2 j
1
jk
1

f jk/ ;

`D0
2 ` 2. Since f jwhere bn D P

n 1

1

f j
j

G

j1 G the lemma follows

immediately.

Lemma 3.9. Both
R

B GC T C ^ and
R

B G T ^ are finite.

Proof. Modulo finite additive constants, the first integral is estimated by

Z B GC T C ^
1=2

D Z
0

B GCdGC ^ dcGC ^
1= 2

1X
nD1

Z
0

C B f n

n1

d. C B f n/ ^ dc. C B f n/ 1=2

2n
1

^

D 1X
nD1

1
np=2
1

Z
0

B C d C ^ dc C ^
f n

n1

1=2

1X
nD1

1
np=2
1

Z
0

B
C d C ^ dc C ^ c! C dd cwn/

1=2

;

where c, wn are as in the previous lemma. If we take the contributions to the
integral from c! and from ddcwn separately, then the first contribution is finite by
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Proposition 1.20. The second contribution is handled up to additive constants as

follows:

Z
0

B C d C ^ dc C ^ dd cwn

D Z wn dd c
B C/ ^ ddc C

D Z wn dd c
B C C C/ ^ ddc C C C/ C O.1/

c Z G ddc
B C C C/ ^ ddc C C C/ C O.1/

D c Z G ddc
B C/ ^ ddc C C O.1/

D c Z
0

B
C d C ^ dc C ^ T C O.1/

which is finite by the hypotheses of Theorem 3.7

Lemma 3.10. Both
R

B GC T ^ and
R

B G T C ^ are finite.

Proof. We treat the first integral only. Let D CC! Then from Proposition 2.5
in [GZ2] we have up to additive constants that

Z B
GC T ^ D Z B

GC dd c G C / ^

2Z B GC OE C ddcGC ^

C 2Z B G OE C ddcG ^ !:

D 2Z B GC T C ^ C 2 Z B G T ^ !:
We have just seen that the last two integrals are finite, so the proof is complete.

Theorem 3.7 is now an immediate consequence of Proposition 1.17 and
Remark 1.18.

4. Examples

In this section we exhibit families of examples satisfying our energy conditions.
Recall from Theorem 4.2 in [DDG1] that the assumption 1.f/ > 2.f / implies
that X is either rational or of Kodaira dimension zero.
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4.1. Polynomial mappings of C2. Suppose that f W C2 C2 is polynomial and,
as always, has small topological degree. Recent work of Favre and Jonsson [FJ] gives
a smooth compactification X D C2 [D1 of C2 and k 2 N such that

P1) the meromorphic extension of f k to X is 1-stable;

P2) f k contracts the divisor D1 at infinity to a fixed point in I n IC.f k/;
P3) the relative potential GC for T C is continuous in X n IC.f k/.

Using this information, we will show

Theorem 4.1. Let f W C2 C2 be a polynomial mapping with 2.f / < 1.f /,
and let X;k be as in P1)–(P3). Then f k

W X X has finite dynamical energy.

More precisely GC 2 E1.T ; C/ and G 2 E1.T C; /

Proof. To simplify notation, we replace f k by f We recall that 1-stability implies
that IC \ I D ;. Since GC is continuous in X n IC, it is in particular finite at all
points in I so GC 2 E1.T ; C/ by Proposition 1.20 and Corollary 3.5.

Though G is less well-behaved, we can show it is finite at all points in IC. Since

f is polynomial on C2, we have IC D1. The invariance f C2/ C2 and the
contraction property f D1 n IC/ D q D f q/ 2 I imply that f 1.IC/ IC.
Thus

G p/ DXn 0

1
n1
f n/ p/ Xn 0

1
n1
f n/ M > 1;

where M D min
p2IC p/ is finite because IC \ I D ; see Lemma 3.2 in

[DDG1]). From Corollary 3.5 again, we see that G 2 r1.T C; / Since GC 2
L1.T / we have G 2 L1.T C/ by symmetry. Hence in fact G 2 E1.T C; /

It follows from Theorem 2.4 that f D T C ^ T is a well-defined, mixing
invariant probability measure which does not charge pluripolar sets. We can actually
say more.

Theorem 4.2. Let f be as in Theorem 4.1, and V X be an algebraic curve. Then
log dist. ; V / 2 L1. f /.

In particular log dist. ; Cf / 2 L1. f /, where Cf denotes the critical set of f
This result will allow us in [DDG3] to use Pesin’s theory ofnon-uniformly hyperbolic
dynamical systems and show the existence of many saddle periodic points.

Proof. Assume without loss of generality that V is irreducible. We claim that G
jV

6

1 on V Granting this for the moment, let 0 'V 2 L1.X/ be a global potential
for the current of integration along V Thus ddc'V D OEV ‚ where‚ is smooth,
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and 'V 2 L1. f / if and only if log dist. ; V / 2 L1. f /. From our claim we have

that G 2 L1.OEV / and, by symmetry ' 2 L1.T / Hence the measure T ^ OEV is
well-defined.

Fix a constant betweenp
2 and 1. Then from [FJ], we have C1 > 0such that

dist.f nx; IC/ C1dist.x;IC// n
; for all x 2 X and n 2 N

Since C.x/ Alogdist.x; IC/ B, we infer from 6) that

GC.x/ A0 logdist.x; IC/ B0:

Therefore repeated integration by parts gives up to finite additive/multiplicative
constants)

Z ' f D Z GC T ^ OEV Z log dist. ; IC/ T ^ OEV

D Z
V

G ddc log dist. ; IC/ ^ OEV

Z
V

G ^ OEV C Xx2IC\V

G x/ < 1;

since G is finite on IC.
It remains to verify that G is not identically 1 on V Since V must meet

D1 somewhere, it suffices to show that G is finite on V \D1. This is the case

if, for instance, V \D1 IC. However, from f G D 1.G / we see

that we need only show that G is finite on f n.V /\D1 for some n 2 N. If, for
instance, V \D1 does not contain the superattracting point q 2 I then this is true

for n D 1 because f 1.D1 n fqg/ IC. Finally, as the next lemma makes clear,
even ifD1\V does contain q, the same reasoning works for some larger value of n.

Lemma 4.3. There exists an integer n 2 N such that if W is any irreducible component

of f n.V /, not contained in D1, then q … W

Proof. Suppose on the contrary that for each n 2 N, there exists an irreducible
component Wn of f n V such that q 2 Wn but Wn 6 D. Then since q is superattracting
for f this remains true at the local level. That is, there is a neighborhood U 3 q and

for every n 2 N a local irreducible componentWn of the local) pullback f jU /n V /
such that q 2 Wn but Wn 6 D.

Moreover, by [FJ] we may choose a coordinate patch U about q D 0 so that

f W U; 0/ U;0/ is a rigid holomorphic germ and there exists a non-trivial local
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divisor Dloc D satisfying f jU / Dloc 1Dloc. The local topological degree of

fjU is no larger than 2. Hence

n
1 Wn;f n Dloc q D f nWn; Dloc q

n
2 hV; Dlociq ;

where h ; iq denotes local intersection of germs at q. This contradicts 2 < 1 for
large n.

4.2. The secant method. If P W C C is a polynomial of degree at least two such

that all roots of P are simple, then we recall the secant method from [DDG1]: given
points x;y 2 C, one declares f x;y/ D y;z/ where z is chosen so that .0; z/
lies on the line from x; P.x// to y;P.y//. This prescription defines a 1-stable
meromorphic map f W P1 P1 P1 P1 with small topological degree.

Proposition 4.4. The secant map f has finite dynamical energy. More precisely,
GC 2 E1.T ; C/ and G 2 E1.T C; /

Proof. We have that I D I f n/ D f.z; z/ W P.z/ D 0g consists of fixed
points for every n 2 N and that each of these is attracting for f It follows that
dist.f n.I /; IC/; dist.f n.IC/; I / c for some c > 0 and every n 2 N. As
with the case of G for polynomial maps of C2 then, we infer that GC is finite on I
and vice versa. Thus by Corollary 3.5, GC 2 r1.T ; C/ and G 2 r1.T C; /

The classes of T C and T are both Kähler, moreover, so from Theorem 3.7 we
see that GC 2 E1.T ; C/ and G 2 E1.T C; /

4.3. Kodaira dimension zero. When kod.X/ D 0, we may assume after birational
conjugation that X is minimal and f is 1-stable see [DDG1], Proposition 4.3).

Proposition 4.5. Assume X is a minimal surface with kod.X/ D 0. Then f satisfies
condition E / with t/ D t Moreover log dist. ; IC/ 2 L1. f /.

Proof. We know from [DDG1] that f is non-ramified. Therefore I is empty and
see Proposition 4.10 in [DDG1]) G is continuous on X. That is, the hypotheses of

Corollary 3.5 are satisfied by both GC and G From Proposition 1.20, we further
have logdist. ; IC/ 2 L1. f /.

4.4. Irrational rotations. The following examples originate in the work of Favre
[F] see also [B]). Their common feature is the existence of a complex line where f
is conjugate to a rotation. Choosing the rotation angle properly allows us to produce
functions G that are very singular and therefore useful for testing the sharpness of
the energy conditions.
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Example 4.6. Given a 2 C, we consider the birational transformation

f W
OEx

W y W t 2 P 2
7! OEy

2
W ay2

C t2 xy W yt 2 P2;

For the all but countably many) parameters a 2 C such that f is 1-stable on P2, we
have 1.f / D 2 is the degree of the homogeneous polynomials defining f Thus f
has small topological degree. Moreover, since dimH1;1.P2/ D 1, it follows that we
may take D C D So there are no spurious points in either IC or I

One checks that IC D fOE1 W 0 W 0 g, I D fOE0 W 1 W 0 g, and that the line

L WD t D 0/ joining these two points is f -invariant. When a 2 C n OE 2; 2 we

have
IC1 \ I1 D ;, where

IC1 D [n 0

IC.f n/ and I1 D [n 0
I f n /:

This implies that f is 1-stable and that G is finite at points in I From Proposition

3.2, Corollary 3.5 and Theorem 3.7 it follows that f satisfies condition E / for

t/ D t
Now suppose that a D 2 cos 2 OE 2; 2 In this case fL WD fjL is conjugate to

a rotation of angle 2 and f is 1-stable if and only if is irrational. Determining
whether or not f satisfies E / for any given is tricky. We will show for any given

p 2 .0; 1/ that G 2 Ep.T ; / if is not too well approximated by rational
numbers. In [F] it was precisely proved that G … E1.T ; / for certain values
of

Observe that f is conjugate to f 1 by the involution x; y/ 7! y;x/. Hence
by Corollary 3.6 also Proposition 3.2 and Theorem 3.7), we need only verify that
lim supt! 1 jm t/jjt jq 1 dt < C1, where p is some number larger than q and

m t/ is the mean value of G on the sphere @
BOE1W0W0

et /. By plurisubharmonicity,
m t/ iscomparable to supB.IC;et/ G which is in turn bounded belowbymL t/ WD
supB.IC;et/\L G We therefore estimate the latter, fixing coordinates on L Š P1
so that fL.x/ D e2 i x for all x 2 C L and that IC, I become the points 1 and

1, respectively. Hence

G x/ 'Xn 0
2 n log je

2 in x C 1j:

Note for any n 2 N and t > 0 that sup
jx 1jDe t log je2

in x C 1j is essentially
achieved at x D 1 C e t Hence

mL.t/ Xn 0

2 n
maxflog n/; tg

where n/ WD minm2Z j2n .2m C 1/j. Now let 2mjC1
2nj /j2N Q be the

sequence uniquely determined by requiring gcd.2nj ; 2mj C 1/ D 1, setting n0 D 1
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and choosing nj > nj 1 to be the smallest integer such that nj/ < nj 1/. From
this it is entertaining to compute that

lim sup jmL.t /jjt j
q 1 dt lim sup 2 nj j log nj /j

q :

In particular, G 2 Ep.T ; / if the right side is finite for some q > p. We
remark that finiteness holds for almost all 2 R and can be checked for any given
irrational by examining its continued fraction expansion.

The next example is studied in [DG] where it isproved thatGC 2 L1.T / Hence
we are in a situation where the alternative of Theorem 2.3 holds.

Example 4.7. For parameters a;b; c 2 C we consider the rational transformation
of the complex projective plane, f D fabc W P2 P2, defined by

f OEx
W y W z D OEbcx. cx Cacy Cz/ W acy.x ay Cabz/ W abz.bcx Cy bz/ :

The following facts can be verified by straightforward computation.

fabc is birational with inverse f 1
D fa 1b 1c 1

If D fOEa W 1 W 0 ; OE0
W b W 1 ;OE1

W 0 W c g.

f preserves each of the lines fx D 0g, fy D 0g, fz D 0g according to the
formulas

OEx
W 1 W 0 7! OE bcx W a W 0 ; OE0

W y W 1 7! OE0
W acy W b ;

OE1
W 0 W z 7! OEc

W 0 W baz

In particular, we have I1f ; I1f 1 fxyz D 0g for all a; b;c 2 C
Given s > 1 and an irrational number 2 R, let f W P2 P2 be the birational

map f D fabc with a D i b D se2 i c D i=s. One can then check see [DG])
that

f is 1-stable on X D P2;

T C 2 L1.T /
Thus the measure f D T C ^ T is a well defined probability measure. It is

further shown in [DG] that f does not charge curves and is mixing. We can apply
the alternative of Theorem 2.3, reinforced by the ergodicity of f :

either f is supported on the pluripolar set fGC C G D 1g,
or f has finite dynamical energy.

The latter almost always occurs2: when is not too close to rational numbers, this
can be verified by arguing as in the previous example.

2But not always, see [Bu].
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