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Dynamics of meromorphic mappings with small topological
degree II: Energy and invariant measure

Jeffrey Diller, Romain Dujardin and Vincent Guedj

Abstract. We continue our study of the dynamics of meromorphic mappings with small topo-
logical degree A>( f) < A1 (f) on a compact Kihler surface X. Under general hypotheses we
are able to construct a canonical invariant measure which is mixing, does not charge pluripolar
sets and has a natural geometric description.

Our hypotheses are always satisfied when X has Kodaira dimension zero, or when the
mapping is induced by a polynomial endomorphism of C2. They are new even in the birational
case (A2( f) = 1). We also exhibit families of mappings where our assumptions are generically
satisfied and show that if counterexamples exist, the corresponding measure must give mass to
a pluripolar set.

Mathematics Subject Classification (2010). 37F10, 32H50, 32U40.

Keywords. Complex dynamics, meromorphic mappings, geometric currents, intersection of
positive closed currents.

Introduction

In this article we continue from [DDG1] our study of the dynamics of meromorphic
mappings with small topological degree on complex surfaces. Whereas our previous
article focused on constructing canonical forward and backward invariant currents
for a given mapping, here we take up the problem of intersecting these currents to
create a natural invariant measure. In fact, the first half of this article does not concern
dynamics at all but rather the general problem of defining the wedge product of two
positive closed (1, 1) currents on a compact complex surface. This is of interest
in its own right, and our treatment draws much in content and spirit from recent
work of Guedj and Zeriahi [GZ2] concerning the definition of the complex Monge—
Ampere operator in the compact seting. Let us begin, nevertheless, by rehearsing
the dynamical setting of immediate concern. We refer the reader to [DDG1] for a
more thorough presentation and list of references.

Let (X, w) be a compact Kihler surface and f: X — X a meromorphic self-
map. We assume that f is /-stable, meaning that the induced action f*: HL1(X) —
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HV1(X) satisfies
(f™* = (f*" foralln € N.

We let A, = A,(f) denote the topological degree of f and A; = A{(f) be the first
dynamical degree of f. These are the spectral radii of the actions f*: H//(X) —
H7/(X)for j = 2and j = 1, respectively. Our main assumption is that f has
small topological degree; that is,

A2(f) < A1(f)-

Notice that with this terminology a birational map (A, = 1) has small topologi-
cal degree only when A; > 1. Note also that in this case either X is rational or
kod(X) = 0.

Under these conditions we have shown in [DDG1] that there exist closed positive
(1,1) currents 7% and 7"~ uniquely characterized by

1 1
TT = lim —(f"» and T~ = lim —(f").o. (1)

Furthermore, T can be written as T = w® + dd°G¥, where w¥ are positive
closed currents with bounded potentials. By scaling «, we normalize the cohomo-
logical intersection number so that {777} - {7~} = 1. Finally, under the additional
assumption that X is projective (non-projective examples can arise on surfaces of
Kodaira dimension zero), the invariant currents have special geometric properties:
7Tt is laminar while 7~ is woven (see [DDG1] for definitions).

We have three goals in this article.

— First, we seek general conditions under which the wedge product T+ AT~ may be
reasonably defined as a probability measure s on X. Here, “reasonably defined”
is understood as a continuity requirement: when T'F are approximated in a stan-
dard pluripotential theoretic sense by convergent sequences (Tji) of less singular

positive closed (1, 1) currents, then we insist that lim; _, o TJ.Jr ANTT = py.

— Second, we seek to show that the conditions that guarantee existence of ftr also
ensure that it has good dynamical properties:

(i) gy is invariant under f;
(i1) fur is mixing;
(iii) pr may be alternately viewed as geometric intersection of the laminar/ woven
structures of the currents 71 and 7.

In a third article, [DDG3] we will greatly elaborate on this second goal, studying
the fine ergodic properties of (£, 17) when properties (i) to (iii) are satisfied.
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— Finally we seek to apply our results to particular examples of meromorphic map-
pings. This requires that we find checkable dynamical criteria that imply the
potential theoretic conditions needed to define pir.

It should be noted that, as with the other two articles [DDG1], [DDG3] in this
series, this one represents an attempt to generalize things that are known about bi-
rational maps to the larger setting of maps with small topological degree. On the
other hand, this paper is the only one in the series that gives new results even in the
birational setting.

Let us now describe our results. Regarding the first goal, let S = o + dd ¢ and
T = B + dd® be any two positive closed (1, 1) currents on X, each expressed in
terms of a positive current with bounded local potentials (o, £) and a negative (relative)
potential function (¢, ¥). Products o A T involving a positive current with bounded
potentials are well-understood [BT1]. The most straightforward way to define S AT
more generally is to require ¢ € LY(T) and then declare dd¢p A T := dd¢(¢T).
We write “T € L!(S)” when this integrability holds. This condition is independent
of the choice of decomposition of 7" and moreover symmetric in S and 7.

In our dynamical situation, the condition T+ € L(T™) suffices for our first
goal. However, it is not clear that the resulting measure 1y then has good dynamical
properties. In particular it seems difficult, given only the L! condition, to establish
that the intersection T+ A T~ is geometric. Moreover, in certain cases (see e.g. the
examples in §4.4) we do not know whether T+ € L(T ™), but we are nevertheless
able to define a “reasonable” wedge product T™ A T~ by taking advantage of the
global (compact Kihler) context, in the spirit of [GZ2].

Let S and T be positive closed currents as before. We say that S has finite T -
energy, and denote “S € &(T)”, if there exists an unbounded convex increasing
function y: (—oc,0] — (—oc, 0] such that y o ¢ € L'(a A T) and the “weighted
energy”

[X/ogod(p/\dcgo/\T (2)

is finite. This condition is independent of the choice of decomposition for S. We
stress that it does not imply that S € L1(T).
Our first main result is the following,.

Theorem 1. Let S = o +ddp and T = B+ dd be positive closed currents on
a compact Kdhler surface as above. Assume that S € E(T), T € E€(S) and T does
not charge pluripolar sets.

Then the product S A\ T is well-defined and does not charge pluripolar sets.

When the first assumption of this theorem holds for the invariant currents 7'+
and T~ associated to a 1-stable meromorphic map f: X — X of small topological
degree, we say that f has finite dynamical energy. In this case we can show that the
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current 77 does not charge pluripolar sets (see Proposition 2.2). Thus the measure
pr = TT AT~ is well defined and does not charge pluripolar sets. We are further
able to prove that y1 has the desired properties (i)—(iii) above, property (iii) being
the hardest to establish.

Theorem 2. Let | be a 1-stable meromorphic self map of a compact Kdihler surface,
with small topological degree. Assume that f has finite dynamical energy. Then
g = T AT is invariant and mixing.

If furthermore X is projective then Ly is described by the geometric intersection
of the laminar/woven structures of T/~

We now turn to the problem of checking the finite dynamical energy condition;
i.e., of finding a weight y so that the integral in (2) is demonstrably finite. Some
weights are, of course, easier to work with than others. The class of homogeneous
weights y(t) = —(—t)?,0 < p < 1 turns out to be particularly useful for dynamical
applications.

For the weight y(¢) = ¢ we obtain the following criterion which generalizes the
work of Bedford and the first author [BD] (see also [DG]). In order to state it, we
let I denote the indeterminacy set of f,and I~ = f(E™) denote the image of the
exceptional set E* of f.

Theorem 3. Let [ be a 1-stable meromorphic self map of a compact Kdihler surface,
with small topological degree, andlet TT = w™ +dd° G* be the invariant currents.
Suppose that G is finite at each point of 1~ and G~ is finite at each point in 7.
Assume furthermore that

— either T € LY(T™),
— or no point in either It or I~ is spurious.
Then TT € &(T) and T~ € E(T ) with weight x(t) = t.

We do not define “spurious” here (see §3), but we do note that the second assump-
tion is satisfied when, for instance, the classes of 7% and 7~ are Kiihler. Also, when
A> = 1itholds up to a birational change of surface [BD], Proposition 4.1. Finiteness
of G* on IT is a kind of “avoidance” condition on the orbits of /+ and 7~ that is
readily verified for many maps.

We show in Section 4 that the hypotheses of Theorem 3 our satisfied in particular for

— polynomial maps of C2,

— maps on P! x P! that come from the secant algorithm for finding roots of
polynomials,

— maps on surfaces X with kod(X) = 0.

We also give weaker “indeterminacy avoidance” conditions that guarantee finite
energy with respect to the other homogeneous weights x(r) = —(—¢)?. By studying
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a birational example of Favre, whose salient feature is an invariant line on which
the map f acts by rotation, we show how it can happen that the weaker avoidance
conditions are verified when the stronger ones are not. For birational mappings with
T+ e LY(T™) it was proven in [DG] that

finite energy with respect to the weight x(t) =t
is equivalent to
logd( 1%) € L' (up).

On the other hand, it follows from Theorem 2 and the results of [Du2] that, if a
birational map f with A; > 1 has finite dynamical energy then it enjoys many
interesting dynamical properties. Thus, the examples in §4.4 show that for birational
maps, it is possible that the results of [Du2] hold while log d(-, I ) ¢ L' (uys).

Less formally but more suggestively, our methods allow us to prove that u ¢ acts
much like a non-uniformly hyperbolic measure even though iy does not satisfy a
convenient hypothesis guaranteeing existence of well-defined Lyapunov exponents
(see e.g. Section S.2 i [KaHa] for background on these).

It is worth emphasizing that we do not know any example violating the finite
dynamical energy condition.! A rational map with small topological degree and
mfinite dynamical energy will tend to have some very surprising properties. For
instance, we obtain the following dichotomy:

Theoremd. Let | be a 1-stable meromorphic self map of a compact Kéhler surface,
with small topological degree. Assume further that TT € LY(T ™). Then

— either f has finite dynamical energy,
— or iy = T AT~ charges the pluripolar set {G* + G~ = —oc}.

The family of birational maps given i Example 4.7 satisfies this dichotomy.
Furthermore, generic members of this family indeed have finite dynamical energy.

The structure of the paper is as follows. In §1, we develop the general framework
for intersection of positive closed (1, 1) currents satisfying the finite energy condition.
Theorem 1 and a general dichotomy leading to Theorem 4 are both established here.
In §2, we consider the nature of the measure ¢ under the assumption that f has finite
dynamical energy. Theorem 2 is the end result. In §3, we consider the particular case
of homogeneous weights more carefully, giving several criteria for finite dynamical
energy along the lines of Theorem 3. Finally, in §4, we illustrate our main results
by applying them to several significant examples, both invertible and non-invertible
ones among them.

Acknowledgment. We would like to thank A. Zeriahi for several useful discussions.

IAdded in proof: such examples have been very recently constructed by X. Buff [Bu].
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1. Weighted energy with respect to a current

We develop in this section the pluripotential theoretic tools that we will use to define
and understand the wedge product T1 A T. There is no dynamics here, so these
results might accordingly be of independent interest.

1.1. The class €(T, o). Throughout the section, we take o, T to be positive closed
(1, 1) currents on X such that o has bounded potentials. We assume fX anT =
{a} - {T} = 1, the middle term denoting intersection of cohomology classes. We let
PSH(X, o) = {u € LY (X): a + dd®u > 0} denote the set of a-plurisubharmonic
(or just @-psh) functions. If u € PSH(X, @) for « smooth, then u is called quasi-
plurisubharmonic (or just gpsh).

If u,v € PSH(X, @) are bounded, it follows from plurifine considerations (see
[BT2]) that

Lol +ddul AT = Lysyyla + dd max(u, v)] AT (3)

in the sense of Borel measures.
Let ¢ € PSH(X, ) be an unbounded function and let ¢; := max(p,—j) €
PSH(X, «) N L*>(X) be its canonical approximants. We have ¢; \ ¢, and by (3),

Ligs—iyla+dd o] AT = Lips_pifa +ddoi ] AT
whenever j > k, since {¢; > —k} = {p > —k} and max(p;, —k) = ¢i. Observe
that {¢ > —k} C {¢ > —j}. Hence
pilp. T := Ligs—jsla + ddp;] AT
is an increasing sequence of Borel measures on X, whose total mass is bounded from
above by 1 = {a} - {T}.
Definition 1.1. We set u(¢,T) :=lim / p;(¢,T) and
E(T,a) = {p e PSH(X, ) / u(p. TH(X) = 1}.

Alternatively ¢ € €(T, ) if and only if [« + dd ;) AT ({p < —j}) — 0.

Observe that the probability measures [« + dd ;] A T converge to (g, T)
as Borel measures (i.e. in mass) when ¢ € &(T,«). This is much stronger than
convergence as Radon measures (i.e. in the weak topology) and furnishes the key to
the next proposition.

Proposition 1.2. Assume ¢ € E(T, «). Then
(1) the measures o AT and p(p, T) do not charge the set {¢ = —o0};
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(2) if T puts no mass on a complete pluripolar set P, then neither does (g, T').

Proof. We can suppose that ¢ < 0. To simplify notation we set u = u(p, T) and
p; = pi(p, T). Notefirst that it; ({¢ = —oco}) = 0, and hence j({p = —o0}) = O.

Fix y: R — R a convex increasing function such that y(—oc) = —oc and
xo@ € L'(p) (see Lemma 1.3 below). Since 0 > ¢; > g and 0 < p; < p, we
have

S“P/(_X)O@?j dp; S/(—X)ogod,u < +o0.

J JX X

By Stokes’ theorem,

f(—)()ocﬂj (04+ddC90,j)/\T=[(—X)O%‘a/\T+f)(’0§0jd§0j/\dcgoj‘/\T,
kg

where the rightmost term is non-negative. Observe that the measures (¢ +dd @, )AT
and p have the same mass since ¢ € &(T, «) and coincide in (¢ > —j), s0

(@+dd ) A"T(p<—j)=plp <—j).

Therefore

[ Yoy (et dd® oI AT = (— ) Dilp < —f) = [ T
(p=—/) (p=—J)

which yields

[(—){)O(ﬂja/\TSf(—)()owd,u<+oo.
X X

We infer y o ¢ € L' (o A T), hence in particular @ A T (¢ = —o0) = 0.

Let P be a complete pluripolar set, i.e. P = {¢ = —oo} for some quasi-
plurisubharmonic function ¥ < 0 on X. Let @ be a Kiihler form. By assumption
w A T(P) = 0. Attenuating the singularities of 1 if necessary (i.e. replacing ¥ by
x o for some convex increasing function y with slow growth at —oc and such that
still y(—oc) = —o0), we can assume ¥ € LY (w A T).

Write ¢ = 6 + ddu, where 6 is smooth and u is bounded. We can also assume
without loss of generality that @’ = 8 + w is Kiihler and ddv > —o' (replace w
by Aw, A > 1, if necessary).

We claim that for every bounded «-psh function v, ¥ € L (o + ddv] A T).
Indeed

05[(—W)[a+ddcv]/\T5](—w)w’AT—|—f(u—I—U)(—ddcg/f)/\T.

Now we can assume that # +v > 0 since these functions are bounded. The conclusion
follows by observing that —dd“y < &'.

This shows in particular that pt; = [a + dd ;] AT(P) = 0,hence pu(P) =0
since {y¢;) converges (o 4 in the strong sense of Borel measures. O
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We now introduce a set of weights.

Notation. We let ‘W be the set of all convex increasing functions y: R — R such
that y(—o0) = —oc and x(0) = 0.

A straightforward computation (see [GZ2]) shows that if ¢ € PSH{X, o) and
¥ o@ < 1,then y o ¢ € PSH(X, «).

Lemma 1.3. Let pu be a positive measure and u a measurable function which is
bounded from above and such that u > —oo j-a.e. Then there exists y € W such
that y ou € L' ().

Proof. Assume for simplicity that » is negative. From the identity

f()(ou)d,uzfooou(xou<—t)dt

it is straightforward to construct a piecewise affine y that suffices. O

Proposition 1.4. Assume that T has the form T = f + dd ¥, with 8 a positive
current with bounded potentials, and T puts no mass on the set {y = —oc}. Then T
does not charge pluripolar sets.

Consequently if ¢ € E(T, «), then u{p, T') does not charge pluripolar sets.

Proof. Fix a Kihler form w. Replacing 8 with 8 + @, we may assume {8}? > 0.
If P C X is locally pluripolar then by Theorem 7.2 in [GZ1], P C {u = —oo} for
some v € PSH(X, B). Fix y € Wsuchthat y oy € LY(T A w).

We can assume without loss of generality that y c u € PSH(X, 8) and fX (—x)o
ulf+dd°ul Aw < +oo, replacing u by y o (u — C), C > 0, if necessary (in other
words it 1s no loss of generality to assume u has “small singularities”, see [CGZ] for
more detail). The comparison principle (see Proposition 2.5 in [GZ2]) then gives

f(—)()ouT/\a)52[(—X)ou[ﬂ+ddcu]Aw+2[(—X)OWTAw<—|—oo.

Therefore y ou € LY (T A w), inparticular T A @w(P) < T Aw({u = —c0}) = 0.
The second statement of the proposition follows from Proposition 1.2. O

We introduce another class of «-psh functions.

Definition 1.5. For y € W we set
E (T, ) := {go € PSH(X, ) / sup [y (=) opjla +dd ;] AT < —i—oo},
JeN

where ¢; := max{g, —j) are the canonical approximants.
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The relationship between these classes and & (T, «) is the following.

Proposition 1.6. We have

E(T.a) = | ) 64(T. ).

XEW

Proof. Given ¢ € €,(T,a), we may assume ¢ < 0. Then

0<latdd®pInTly < =j}) < 7oy

sup [ (—youp)la+dd° gl AT — 0,
k JX

since y(—oc) = —oc. Hence ¢ € E(T, o).
Conversely assume ¢ € E(T,«). By Proposition 1.2 and Lemma 1.3, there is
weight y € W such that y o ¢ € L' (uu(p, T)). We have by definition

ple. TYe > —j}) =[a+ddp;] AT({g > —j}). (4)
Since the measures on either side have the same total mass, we infer that
ple. TY{e < —jy) =la+ddp;] AT{p < —j}). (5)

Writing ({p) = plp, T) and oy, := o + ddg;, we use (4) again (o get
f(—xowj)%j AT ={=0(=j) Ol /\T+f (—xc@lug, AT
X fo=—j} {o=—j}

= (=) dulp) + [ i) dil)

{p=—j} {p>—j}

—you)du(p).
st( xop)dulp)
Sop € &,(T, ). O

1.2. Intersection of currents. Let«, 8, S, T be positive closed (1, 1) currents on
X such that

(1) «, B have bounded potentials;

(2) S = a4+ ddyp for some ¢ € PSH(X, «);

(3) T =p + dd°y for some v € PSH(X, 8);

@ fo}-{fy = [yanp={S}{T} =1L
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We want to define the wedge product S A 7. That is we want to construct
a probability measure u such that whenever ¢; € PSH(X,«a) N L*®(X), ¥, €
PSH(X, B) N L*°(X) decrcase towards ¢, 1 then

SinT; i =la+ddg;ln[pAddy;] — p &)

in the weak sense of Radon measures. Recall that the wedge product S; A T; of closed
currents with bounded potentials is well defined thanks to the work of E. Bedford
and A. Taylor [BT1]. It is well known that it is not always possible to define S A T
when the currents have unbounded potentials, even if S = T'. We show here that it
is nevertheless possible in some very general situations.

The L' condition. When the potential ¢ of S, is integrable with respect to (the trace
measure of ) the current 7, then the current ¢ 7T is well-defined, as is therefore

w=SAT:=aAT+dd(¢T).
It is well known that the continuity property (1) holds in this case. This is a conse-

quence of the following lemma, which we will need for other purposes.

Lemma 1.7. Assume ¢ € LY (T). Then for any bounded quasiplurisubharmonic
function u, and for any sequence ¢; € PSH(X, a) decreasing to ¢, one has ¢; €
LY(T) and

[u[oz+ddcgaj]/\T—>[u[a+ddc(p]/\T.
X X

Proof. By the monotone convergence theorem ¢; T — @7 as currents. Therefore
@ +ddo;] AT — [a +dd¢] A T in the weak sense of Radon measures. Hence
we are done if u is continuous. Since u is upper semi-continuous, we get that

limsupfu[a+dd0¢j]AT§[u[oz—|—ddcgo]/\T.
X X

We now use the assumption that ¥ € PSH(X, y) for some positive closed (1, 1)-
current y with bounded potentials. It follows from repeated application of Stokes’
theorem that

[u[a—!—ddc(pj]/\Tzfua/\T—l—[@j[)/-i-ddcu]/\T_[WJV/\T
X X X

zfu[a—kdd%ﬂ/\T—i—f(gO—g@)y/\T.
X X

The integrations by parts are easily justified because v is bounded. By monotone
convergence, [y (p — ¢;)y A T — 0. So we infer

liminf/u[oz—i—ddchJ]ATz[u[oe—i—ddcgo]/\T. O
X X
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Note that the condition ¢ € L(T) is symmetric, ¢ € L'(T) < ¥ € L(S).
This follows from the Stokes theorem: if w 1s any fixed Kéhler form, then

[(pT/\a):[WS/\w—i—/goﬁ/\a)—[Wa/\a),
b X X X

where the last two integrals are finite because gpsh functions are always integrable
with respect to measures of the form ¢ A w (resp. £ A w) (see e.g. [De]).

Lastly, note that if «; + dd g, and ap + dd €, are two representations of the
same closed positive current S, with «; of bounded potential, then ¢, € L'(T) iff
@> € LY(T). It therefore makes sense to write “S € L(T)” as a shorthand for
“9 € LY(T) for some choice of «”. Thus we have just seen that

Sel (T T eL'(9).
In the next paragraph we will give a different approach to the wedge product,

using the energy formalism.

The energy condition. We will show that the wedge product S A T can be defined
as (@, T) whenever ¢ € E(T, o).

Proposition 1.8. Assume ¢ € L'(T) so that the probability measure S A T is well
defined. Then

1@, T) = Ligs—co}S A T.
Therefore ¢ € &(T,a) ifand only if S A T({p = —o0}) = 0.

Proof. Without loss of generality, assume that ¢ < 0. Let ¢; := max(g,—j) and
up 1= max{(p/k + 1,0) € PSH(X, o) N L>°(X), where k < j is fixed. Observe
that {uy > 0} = {¢ > —k} and u; = 0 elsewhere, thus

ug o +dd o] AT =wydipo_jyla+dd o) AT =ug (e, T),
Letting j — 400 we infer, by using LLemma 1.7, that
(up S AT hY = {upple,T),h), forallk e N
and for any continuous test function 2 on X. Now ux /" 1iys o0}, 50
(Lip>—oc} S AT h) = {ulp, T). h)
since (g, T') does not charge {¢ = —o0}. O

Proposition 1.8 implies that whenever S € L!(T),onehas ¢ € &(T,«)if andonly
it v € (S, B), and in either case u(p, T) = p(ir, S). The next result gives some
symmetry even without the integrability assumption. It follows from a monotone
convergence argument that we defer until the next subsection.
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Theorem 1.9. Assume ¢ € E(T,a) and y € E(S, B). Assume moreoverthat T does
not charge pluripolar sets. Then

ule, Ty = u(y, S)

and this measure does not charge pluripolar sets.

If, moreover, ¢; € PSH(X, ), ¥; € PSH(X, B) decrease to ¢, ¥, and we set
Sii=a+ddy;, T; .= p + dd;, then we have g; € E(T;,a),¥; € E(S;, )
and

e, Tj) = p(;, Sj) — wlp, T) = p(p, S)

in the weak sense of Radon measures.
Note that the condition ¢ € &(T, @) does not depend on the choice of «.

Proposition 1.10. Assume that S = a1 +dd e, = as+ dd€ s, where aq, o have
bounded potentials. Then p(¢1, T) = plpa, T). In particular ¢1 € &(T, 1) if and

only if p € E(T, t2).

Proof. Fix u bounded such that oy = o1 +dd“u. Subtracting a constant if necessary,
we can assume ¢ = @5 + u. Fix M > Osuch that —M <u <4+M,

Observe that max{g,, —j) + u = max(g;,—j + M) in the plurifine open set
{pr > —j + M} C {p2 > —j}. Thus

Lip > jrmilon + dd max(py,—j + M) AT
< Ly »—jilor + dd° max(pz, — )] AT < plpa, T).

We infer ju(@1,T) < (e, T), whence equality by reversing the roles of ¢4
and 5. In particular ¢ € (T, «y) if and only if ¢, € E(T, v2). ]

We already know that if both ¢; and v; are bounded, then p(¢;, T;) = S; A T;.
Hence under the hypotheses of Theorem 1.9, our results now make it reasonable (o
set

SAT = plp,T) = pn(p. ).
Also we can write “S € &(T)” to say that ¢ € &(T, «) for some choice of «. In
summary, we have shown thatif S € §(T)and T € &(S), then there is a well-defined
wedge product S A 7'. We stress that our definition of S A 7T applies even in some
cases where S ¢ LY(T) (see [GZ2], §2.4). On the other hand, the case where S
and T are transversely intersecting lines shows that S € L!(T) does not mean that
S e &(T).

We now discuss the hypothesis made in Theorem 1.9 that 7 does not charge
pluripolar sets. Later on we will apply this construction to the case where T = T is
the canonical f *-invariant current associated to a 1-stable endomorphism f: X —
X of small topological degree. The laminar structure and extremality properties of
T will allow us to reach the following alternative:
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— either T does not charge pluripolar sets,
— or T'" is supported on a complete pluripolar set.

It is therefore important to notice that the latter possibility can not occur under
the finite energy assumption.

Proposition 1.11. Assume T = B + dd is supported on (v = —ox) and ¢ €
E(T,a). Then u(r, S) = 0, hence in particular ¢ &(S, B).

Proof. Assume ¢ € (T, ). It follows from Lemma 1.14 that ¢ € &(7;, o), where
T; = p+dd®yj, oy = max(y,—j).

Observe thatby definition of p (¢, T;), the measures T; ASg converge (in the strong
sense of Borel measures) towards p(p, 77), as k — 4-o00. Here S = o + dd ey,
where ¢ = max(p, —k).

Now u(e,T;) = T; A S, as follows from Proposition 1.8. We infer

k—+oo

Liys—jyTj A Sk —— Liy»—3Tj A S.

Observe finally that 1y~ _ 3 Ti ASk = 1gys_ 3 TASE = 0if T is supportedon (3 =
—o0). The latter equality follows from lemma 1.12 below. Thus 1¢y~_ 1T, AS = 0,
hence pu(y, S) = 0. O

The following result is probably known to experts in pluripotential theory. Since
we could not find a reference, we include a proof.

Lemma 1.12. Assume T = dd°W > 0 is a positive closed (1, 1) current in the
unit ball B C C2, which gives full mass to {y = —oc}. Then so does the measure
T A dd€u, for any locally bounded plurisubharmonic function u.

Proof. 'This is a local question; we can assume all our objects are defined in a small
neighborhood of B. Set o := e¥. This is a bounded psh function such that {o > 0} =
{t > —o0} and {o = 0} = {¥ = —oc}. By assumption o7 = 0 and we need to
prove that opt = 0, where 0 = T A dd“u, u € PSH(B) N L2 (B).

If u is smooth, this easily follows from the identity

(o, x) = (T, yddu)

valid for any test function y.
For the general case we approximalte v by a decreasing sequence of smooth psh
functions u;. Set p; ;=T Addu;. Since

{op;, x) = {eT, ydd u;) =0,
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it suffices to show that the measures ou; converge, in the weak sense of Radon
measures, towards oy This 1s obvious if ¢ 1s continuous. Let ¢, denole a sequence
of smooth psh functions decreasing to o. Since

im (e, x) = (s, X)-

J—=too

for fixed & > 0, it suffices to show that oz ; — e, as € — 0 uniformly with respect
toJ.

Using a “max-construction”, we can assume without loss of generality that o, =
o0 =u; =u = ||z||* — 1 near dB. This allows us to integrate by parts, since all these
functions vanish on dB. Let y be a test function, then

[{osttj. x) — {omj. X))
< |xlle2{(ee —@)dd u;,T)

:fod(gg—g)/\dcuj/\T

1/2 1/2
fcx(]d(Qa_Q)/\dC(Qs—Q)/\T) ([duj/\dcuj/\T) .

as follows from Cauchy—Schwarz inequality.
The latter integral is uniformly bounded from above,

fduj Aduj AT = [(—uj) nddu; AT < ||u||Loo[ddCuj AT < My,
while the next to last converges to zero,

fd(Qs—Q)/\dc(Qs—Q)/\TSf(Qs—Q)ddCQAT—W,

as follows from the monotone convergence theorem. U

1.3. Proof of Theorem 1.9. We start with two useful inequalities.

Lemma 1.13. Fix y € Wandletu,v € PSH(X,¢)NL*>(X) be suchthatu < v < 0.
Then

OfL(—Xov)[a+ddcv]AT§2L(—Xou)[a+ddcu]/\T.

The proof is a simple integration by parts (see Lemma 2.3 in [GZ2] for simi-
lar computation). It will follow from this lemma that in the definition of the class
&,(X. a), one can replace the canonical approximants by any sequence of bounded
a-psh functions decreasing towards .

Fix y = 0 a positive closed current with bounded potentials. For this lemma we
use the notation ¢, := o +ddp and y, 1=y + ddu.
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Lemma 1.14. Fix y € Wand 0 > ¢ € PSH(X,«) N L>®(X). Letu < v be two
y-psh functions. Then

0< [ (—xop)ay Ayy < 2[ (—xc@)ug Ayu+ X’(O)f [v — ula®.
X X X
Proof. 1t follows from Stokes’ theorem that

[(—xogo)%/\yu = [(—xow)%/\yu +f(v—u)%/\[—ddcxow]-

Observe that —dd®y o ¢ < y' o ¢ «, thus the latter integral is bounded from above
byl = [(v—u)y opay, A . Now

Kopay<opoa,+ x'cpdpndeo =y cpa+dd(xop),

so we may estimate the integral /:
1 f[(—Xogo)aAddC(u—v)—l—[(v—u))(’ogaozz

< [(—xow)a/\yu +X’(O)[(U—u)a2-

The conclusion follows by observing that

[(—xow) Ap AYy = [(—XOW)OJAVu+[X/OW dpnd“eAyy > [(—xow)a/\yu-
0

Proof of Theorem 1.9. Without loss of generality we can assume that ¢, < 0.

Step 1. Assume that ¢; := max(y,—j) and ¥; := max(y, —j) are the canonical
approximants. We first show that the measures S; A T; converge to (g, T). Recall
that by definition,

,u(gp, T) = lim / 1{(p>_j}Sj & T
Fix N € N. It follows from (3) that for all j > N,

SinTy = YysnypSj AT = LigsonySj AT
Let ¢ be a cluster point of the sequence (S; A T;). We infer
> i | PR T)=1¢;-_ T) = T
o E A e Nil(e, T) = Lys ocyit(e, T) = ple, T),

since p{p, T'} does not charge the pluripolar set {yy = —oo}, as follows from Propo-
sition 1.2 (because we assume 7" does not charge pluripolar sets). Since both ¢ and
1{p, T) are probability measures, it follows that o = u(p, T).
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We now show that pu(p, T) = u(y, S). Observe first that

Ligs>—jinty>—j3Si AT — ple, T),
where the convergence holds in the strong sense of Borel measures. Recall that
pu(y, Sy =hm / Ly ynS AT;. Now 1o i3S ATy = 1y 3 S; A T, hence
Ligs>— it [Le>—3S ATi] = Lo jingy>-nSi AT

We infer 1y~ o1t (¥, S) = p(p, T'). Since these are both probability measures,
we conclude that ;e (v, S) = u(p,T) and this measure does not charge pluripolar
sets (by Proposition 1.2).

Step 2. In the sequel we set u = (e, T) = pu(¥, S) and we fix ¥y € W such that
¢ € & (T, a)and ¥ € €,(S, B). We show that

xXo@; S; ANTj — yopu

in the strong sense of Borel measures.

Let B be a Borel subset of X. We leave the reader check that [ y o 9;S; AT
converges to [ x o pdp as j — oo. It then suffices to verify that [ x o ¢; S; A
(T —T;) — 0. It follows from (3) that

Lys—jyxo9iSi AT = Lyo—jpx o9 S; AT

Since

[ |X|O€0jsj/\T5[ leoijj/\Tﬁf x| o pdp = 0,
Bniy=—j} {v=—j} {yr=—00}

we will be done if we can show that [, |x|o9;S; AT; — 0.
From Lemmas 1.13 and 1.14, we obtain M, € R such that

[(_X)O(Pij/\ijMx, /(—X)Ok/ijj/\ijMx forall j € N.

Choose another weight y € ‘W, such that the same uniform bound hold, and such that
moreover ¥ = o(y) and y/ y is increasing (to find such a y, choose y first and then
x 1. We conclude that

i, .
[ Xl o9 Si AT < My t(—J)‘—>O,
{¥=<—jt A

as desired.
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From Step 2 we immediately obtain the following generalization of Lemma 1.13.

Corollary 1.15. Let y € W, u € §,(T, ) and v € PSH(X, &) such thatu < v < 0.
Then v € E,(T, ) and

OffX(—)(ov)[a—i—ddcv]/\T52[}((—Xou)[a—|—ddcu]/\T.

Step 3. Let p;,; < 0 denote now arbitrary sequences of «-psh, f-psh functions
decreasing towards ¢, . From Lemma 1.14 and Corollary 1.15, we infer that ¢; €
Ex(Ti,a) and ¥; € &,(S;, f). Thus the measures u(y;, T;) = u(y;, S;) are well
defined. We set

K K
99](. ) .= max(g;, —K), 1/fj( = max(y;, —K),

go(K) ;= max(y, —K), l/f(K) := max (v, —K).
Similarly,

SE =g+ dael®, T = g1+ ddy®,

SE = o +ddp®, 7K =g+ ddy®).

It follows from Step 1 that S A TK) — 4 and SJ(K) A Tj(m — S; A T; when
K — Hoc0. It follows from the monotone convergence theorem of [BT1] that for
each fixed K,

SEIANTHE o sEY AT a5 j > fo0.

Thus we will be done if we can prove that the convergence S }K) A TJ-(K) — S; AT;
is uniform with respect to j. This is what we show now.

Fix a Borel subset B C X. Note that {¢; < —K} U {y; < —K} C {u; < —K},
where u; := ¢; + ;. Fixing y € ‘W as at the end of Step 2, we have from convexity
of y that

supf(—xouj) SinT; < supf(—)(ogoj)Sj/\Y}—l—supf(—)(owj)SjAT} <2M,.
j JX i Jx i Jx

It follows again from (3) that SJ-(K) A TJ.(K) = S; A T; in the plurifine open set
{(pj > —K} N {WJ > —K}, thus

SOATO® - AT @ s [ AT 5 aT)
U;j=—
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Lemma 1.14 and Corollary 1.15 imply that [ (—y) o u (K)g J-(K) A TJ-(K) is bounded

j
above by 4M, + C. Hence

(K) , (K 6My + €
STAT T (BY—S; ATj(B)| € ———
/ ;B =S5 AT = X (=K
converges to zero as K — 400, uniformly with respect to ;. 0

1.4. The gradient approach. We now give an alternative description of the finite
energy conditions in terms of integrability properties of weighted gradients (in the
spirit of [BDD] who considered the special case y(¢) = r in what follows).

Recall that any function ¢ € PSH(X, ) has gradient in L27%(X) for any & > 0,
but Vg ¢ L?(X) in general. Indeed, ¢ has gradient in L if and only if ¢ € L'(a,,),
where we write o, = o + dd“yp as before. More generally when «, := o + dd g
does not charge the set {¢ = —oo}, there exists y € W such that y o ¢ € L (ay).
Hence

/X’ogodgo/\dc(p/\a):[(—Xogo)ddcga/\a)5[(—Xo¢)a¢/\a)<+oo,
X X X

where o is a fixed Kihler form. We get that ¢ has weighted gradient in L?(X).
This suggests that we can give an alternative description of our energy conditions
in terms of weighted gradients.

Definition 1.16. For y € ‘W we set

VT, a) := {(p e PSH(X,a) / sup [y x' opjdp; Adp; AT < —|—oo},
J=0

where ¢; := max(g,—j) are the canonical approximants.
Proposition 1.17. Fix y € 'W. Then

Ey(T, ) = {(p eVy(T,a)/ yope LY a A T)}

Proof. This follows from integrating by parts,
/(—)(ocpj)a¢j AT = /(—)(owj)a/\T—i—[)('ogoj de; Ndp; AT. O

Remark 1.18. If 4’ is bounded above, then to verify the condition yop € L' (« A T)
in Proposition 1.17, it suffices to show simply that y o ¢ € L(T).
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Proof. Since « > O has bounded potentials, we have ¢ < cw + ddu where u is
bounded and, without loss of generality, positive. Thus,

osf—xogoomTScf—xosoa)/\T+f—uddc(xoso)/\T-

The assertion therefore follows from the bound —u dd€(yop) < —u(y' cp)ddyp <
¥ [l @™ O

1.5. Examples. We give here simple criteria which ensure that some of our energy
conditions are satisfied. We let (7, ) denote the class &, (T, «) for the weight
x(t)} = r. Observe that

ENT.e) = (] &x(T. ).

xew
Proposition 1.19. If ¢ € PSH(X, ) is bounded, then ¢ € E(T, ).

This 1s easy and follows directly from the definitions. In dynamical situations,
invariant currents with bounded potentials appear for instance for meromorphic maps
on surfaces of Kodaira dimension zero (see §4). The next result is a bit more elaborate
and will be useful in particular with ¢ = I'* in §3.

Proposition 1.20. Assume ¢ € PSH(X, o) N L2 (X \ F), where F is a finite set of
points. Then ¢ € L'(T).

Moreover if p > Alogdist(-, F)— A for some constant A > 0, and if v(T, p) = 0
forall p € F, then ¢ € E(T, a).

Proof. We can assume without loss of generality that ¢ < 0 on X. Fix @ a Kiihler
form on X. We need to show that [ (—¢)T A @ < +oc. Let @’ be a smooth form
cohomologous to @ which vanishes in a small neighborhood of F'. We canfind /2 > 0
a smooth function such that = o’ + dd®h. Now

fX(—fp)T/\w ZfX(—so)T/\w’+thT/\(—ddc¢)
S[(—W)TAa)’+[hT/\a<+oo,
X X

since ¢ is bounded on the support of T A @’. We have used here that 2T > 0 while
—ddp < «. This shows that ¢ € L'(T). Thus the measure u = S AT =
(¢ +ddp) ~ T is well defined.

Assume now that ¢ > g := Alogdist(-, F) — A for some constant A > 0 and
v(T,p) = Oforall p € F. Assume g € PSH(X,«). Observe that g € LY(T).
Hence 8 = [o + dd®g] A T is a well defined positive measure which looks, locally
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near each point in F, like the projective mass of 7. Since v(7, p) = Owhen p € F,
we infer that 8(p) = 0. Therefore 8({g = —oc}) = 0, and there exists y € W such
that g € €,(T, @). It now follows from Corollary 1.15 that ¢ € &,(T, ) also, since
@ 1s less singular than g.

When g is not «-psh, it is @w-psh and hence (@ + o)-psh, for some Kihler form
w. Observe that ¢ is also (@ + «)-psh. We claim that ¢ € &(T, «) if and only if
¢ € 8(T, o + w). Indeed

wo Tat{o)=lm [1j (@, T.e) + Lo jy0 A T
= (e, T, ) + Lipsoero A T.
Now w A T(p = —o0) = 0 since (p = —o0) C F is finite. Thus
M(ple. T, o+ {o}) = {T} (e + {w}) if and only if M (uu(p. T, ) = {T} - o,

which is the desired result. Here M(1t) denotes the total mass of the measure . We
can now conclude the proof by replacing « by ¢ + @ in the above argument. O

2. The canonical invariant measure

Now let us return to the dynamical situation described in the introduction. For the
remainder of this paper, /: X — X is a meromorphic transformation of a compact
Kihler surface (X, w). We always assume that

o fisl-stable,ie. (f™)* = (f*)"on H“'(X,R) forall n € N;
» the dynamical degrees of f satisfy 1 < A>(f) < A1 := A (f).

With these conditions, our work in [DDG1] shows that the canonical current
TH = A7 f*T* in (1) exists and can be alternatively expressed

© +
TH = lim A7" f"™ ot =0™ +dd°G*, withGT = F—Ofn
a1 , EO P
H=

(S

where o™ is a positive closed current with bounded potentials cohomologous to 7+
and dd°T't = A7! f*wt — w™. The canonical forward invariant current 7- =
AT £ T~ also exists and admits a similar description

nH—>00

o0
T~ = lim A7" flo” =0~ +dd°G™, withG™ =Y A"AIT™. (7)
n=0
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2.1. The dynamical energy. We can assume, without loss of generality, that {1} -
fw™} = {T*}-{T~} = 1. Our aim here is to use the techniques from §1 to define
a probability measure 1y = T+ A T~ and understand its geometric and dynamical
properties.

Definition 2.1. We say that f has finite dynamical energy if
Tt e&(T7) and T~ e &(TM).

We assume henceforth that our maps always have finite dynamical energy. Finite
dynamical energy is equivalent via Proposition 1.6 to having y € W such that

Gt e & (T ,0") and G~ € E(T T, w7).

We say then more specifically that f satisfies condition (£,). We shall see in §4
some weights y € W that actually arise in specific families of examples.

The existence of pz, in the sense of Theorem 1.9, is a consequence of finite dy-
namical energy. Whenkod(X ) = 0, the invariant current 7~ has bounded potentials,
hence it does not charge pluripolar sets. When X is rational, we instead consider 7.

Proposition 2.2. Assume X is rational and f has finite dynamical energy. Then T
does not charge pluripolar sets.

Proof. The proof consists in establishing the following more precise alternative:
— either T does not charge pluripolar sets,

— or it is supported on a pluripolar set, hence f cannot have finite dynamical
energy.

Decompose T+ as TT = T, 4 T, where T}, = 1 +._,; T does not charge
pluripolar sets, while T}, = 1+ __ ) gives full mass the pluripolar set G = —oc.
Because T is a strongly approximable laminar current (see [DDG1]) It follows
from [Dul], Theorem 6.8, that this decomposition is closed, i.e. TPJ;,, T,ji', are closed
currents.

Since T is invariant (under /*/A1) and does not charge (critical) curves (see
Theorem 2.4 in [DDG1]), we also infer that 7,7, 7, are both invariant. Now T is
an extremal point of the cone of positive closed invariant currents (see Remark 2.2 in

[DDG1]). Thus it follows that either 7+ = T,:;, does not charge pluripolar sets (see

Proposition 1.4), or T = T, is supported on the pluripolar set {G* = —oc}. In
the latter case, it follows from Proposition 1.11 that f cannot have finite dynamical
energy. ]

As it will be seen below and in [DDG3], the finite dynamical energy condition will
allow us to understand the dynamics of u ¢ quite thoroughly. From Proposition 1.8 we
get the following nice alternative, which emphasizes the naturality of this assumption.
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Theorem 2.3. Assume that T € LY (T ™), so that iy = T A T~ is well defined.
Then

— either jiy charges the pluripolar set {Gt = —o0} U {G~ = —oc},

— or [ has finite dynamical energy.
2.2. Mixing

Theorem 2.4. Assume [ has finite dynamical energy. Then the measure py =
Tt AT™ is f-invariant and mixing, and it does not charge pluripolar sets.

Proof. 1t follows from Proposition 2.2 and Theorem 1.9 that uy = TT AT isa
well defined probability measure which does not charge pluripolar sets. In particular,
pr = T A T~ does not charge the pluripolar set /7 C {G+ = —o0}. Moreover
by Theorem 1.9,

1 1
_ 1 h = Nk + A — r -
L n,pl_?}roo Hu,p, WICIC iy p )L'f (") e l‘f (fP)sw
Since fipln,p = Mn—1,p+1 and since the operator f, is continuous on the set of
probability measures which donot charge the indeterminacy set I+, we infer fupis =
g, 1e. fip 18 an invariant probability measure.

We now show that 1 is mixing. Let /4 and & be test functions on X. We need to

show that
[khof”dufefhduffkd,uf.
X X X

Set i := [w™ + ddvj] ATT, where v; := max(G~,—j) are the canonical
approximants of G~. Fix y € W such that G~ € &,(T*,w™). It follows from
Corollary 1.15 that y o G~ € L' (js), yov; € L'(j1;) uniformly in j, and also that
t; = fur in the plurifine open set {G~ > — j}. Therefore

< [lkllL=lAllLee Gy + 1G™ < =}

[khOfndﬂf—/khOfndﬂj
X X

converges to zero as j — +o¢, uniformly with respectton € N,
It suffices then to replace j 5 by (0~ +ddv) AT T, where v is a bounded »~-psh
function and show

fkhof”(a)_—i—ddcv)/\T"" — ([k(w_+ddcv)/\T+) ([hd,uf).
X

Observe that here we can replace @™ by 87, which is smooth. So it suffices to show
the convergence for an arbitrary Kihler form w, instead of 6.
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If v is smooth the convergence follows from Proposition 2.5 below. For the
general case, recall that we can approximate v from above by a decreasing family
of smooth @-psh functions v,. The proof will be finished if we show that [y k# o
ftdd¢ (v, —v) ATT converges to zero as & — 0, uniformly with respect to n. For
this we first integrate by parts

fkhof”dd""(vs—v)/\T“L
X

=

fdk/\dc(vg—v)/\hof”TJr
X

+ =I(n,e) + 11(n,¢),

[dhof”/\dc(vg—v)/\kTJ’
X

and use the Cauchy—Schwarz inequality. For the first term we get

1/2
I(n,e) < ||h||r=<|lk||e1 [[ d(ve —v) A d (Vs — V) A T+] — 0,

because v is bounded.
Treating the second integral /1 (n, ) similarly gives rise to an integral of the form

fd(hof”)/\dc(hof”)/\kTJ“.

Then we argue as in the proof of Theorem 3.3 in [DDG1] to get that this integral is
OA3/A7). O

Proposition 2.5. Let hh be a (smooth) test function on X. Then

ho fPTT > cTT, wherecthduf

Again, the proof is similar to that of Theorem 3.3 in [DDG1], so we omit it.

2.3. Geometric intersection. In this paragraph, X is supposed to be projective. We
showed in [DDG1] that the invariant currents 7" and 7~ admit important geometric
structures. More precisely T (resp. T ™) is a strongly approximable laminar (resp.
woven) current,

Our purpose here is to show that the measure p1y can be alternatively obtained
by “intersecting” these geometric structures. Recall that another result that has been
obtained using laminarity is the fact that 7+ —and consequently £—does not charge
pluripolar sets.
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We first very briefly recall some preliminaries on geometric currents (see [Dul],
[Du2] and also [DDG1], [DDG3] for more details). The construction of these geo-
metric structures requires subdivisions @ of X into families of “cubes” Q € @,
which are obtained by projecting along two generically transverse linear pencils, and
taking intersections of subdivision of the projection bases into squares. In particular
we have some freedom in the choice of the projections and the squares. The spaces
parametrizing projections and squares are manifolds so we can speak of a “generic
subdivision” where genericity is understood in the sense of Lebesgue measure.

That 77 is a strongly approximable laminar current means that if @ is a generic
increasing family (actually, a sequence) of subdivisions by cubes, then 7' is the limit

of an increasing family
e = Y1

Qed

the current 7§ is uniformly laminar in Q. Furthermore, T can be written as
an integral over a measured family of disjoint submanifolds of uniformly bounded
volume

Ty = [QEAE[A;] dv(@). (8)

We have the important estimate
M(TT - Tg) < Cr?. 9)

The same holds for 7, with “woven” instead of “laminar”. In this case (8) becomes
o= [ a1, (10)
o:EAQ

where the A™ are allowed to intersect and can be singular. In view of (8) and (10)
we can naturally define the geometric intersection of Té“ and Té as

T+/\T—:[
0 0 B
45 J4ag

[AT NA] vaQr () dvy (@),
where by definition, [A, N Ay/] is the sum of Dirac masses at isolated intersections,
counting multiplicities.

Assume now that 7+ A T~ is well defined, in the L! or energetic sense. We say
that the wedge product T A T~ is a geometric intersection if the family of measures
To ATg =Y gca Tg A T increases to T+ AT~ when @ is any family of generic
subdivisions into cubes of size r — 0.

The following basic result asserts that for uniformly geometric currents the wedge
product 1s geometric.
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Proposition 2.6. With notation as above, assume that Tg € LL,

(Ty). Then the
wedge product T&" A T is geometric, that is,

Tg ATg =) TS ATS.
Qed

Proof. The proposition follows by applying Lemma 2.7 below twice. Notice that if
A and A’ are submanifolds in Q, [A] € L} ([A']) iff A and A’ only have isolated
intersections. If this holds, then [A] A [A'] = [A N A’] (see [De]). O

Lemma 2.7. Assume that R and S are two positive closed currents in an open set
Q, such that S € L} (R) and S admits a decomposition S = [ Sydv{c) as an
integral of positive closed currents. Then for v a.e. o, Sy € LL_(R) and we have the

decomposition

RAS = f(R A Sg)dv(w).

Proof. The result is local so consider a small ball B € Q. By definition, «
M(Sy|p) is locally v integrable. By Lemma 2.8 below, for every « there exists a non
positive psh function u, in B such that dd uy = Sy and [Jug]| 115y < CM(Sg|B),
where B’ is a slightly smaller ball. Hence u = [uydv(e) is a well defined psh
function which is a potential for S in B’

Now since v € L] _(R), we get that for a.e. a, uy € LL_(R), which is the first

assertion of the lemma, while the second follows by applying dd° to the formula
uR = [ugRdv(a). O

The following lemma 1s classical and goes back at least to [Le] (see [BE] for a
brief treatment).

Lemma 2.8. Let T be a positive closed current with finite mass in the unit ball
B C C2. Then T admits potential u which is canonical, negative on B(0,1/2) and
satisfies |[ullp1(go,3/4) < CM(T), with C a universal constant.

We now arrive to the main result in this paragraph.

Theorem 2.9. Assume X is projective and that f has finite dynamical energy. Then
the wedge product TT A T~ is geometric.

Proof. Letus first assume for simplicity that T+ € L1(7T 7). This guarantees that all
the wedge products T=AT 4, T g AT, are well defined in the L sense and bounded

loc

fromabove by Tt AT ~. The wedge product T(;{ ATg4 1s geometric by Proposition 2.6
and we need to show that this product increases towards iy =TT AT, as r > 0
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decreases towards 0. Here the situation is symmetric so it suffices to estimate the
mass M(T~ A (T — TE{ )). We follow the proof and notation of Theorem 5.2 in
[Du2].

Shifting the cubes slightly, we can assume the mass of j ¢ is not concentrated near
the boundary of Q. Let @ = }_peq ¥ ¢ be a test function such that each function
Yo 1s supported in the cube Q, satisfies 0 < ¥ < 1 and 1s 1dentically equal to 1 1n
the major part of Q. It suffices to show that [, YT~ A(TT — Tg ) — 0. Note that
W can be chosen so that ||Vrg|| = O(1/r) and |dd gl = O(1/7?).

Let G = max{G~,—j}, T; = @~ +dd°G; and yi; = T7 AT as before.
Then

[ var rar-14) = [vaty @ -1+ [ wa-THATT T,
an

In the second integral on the right, we use the facts that 7T > TJ are closed on
Supp Yo and that T~ A(T+ —Tg) = T; ATt =Tg)on{G~ > —j} to estimate

‘ [X Ya(T™ —T7) A(TH =T

= ‘ [ Va(T™—T7) A (TH = Tg)
1G—<—j}
(12)

< [ Va(iy + 1)),
{G—<—j}

which tends to zero as j — oo uniformly in r (recall that u;({G~ < —j}) =
pw{{G~ < —j}) see (5)). From now on we fix j such that this integral is small.

It remains to control the first integral on the right hand side of (11). For con-
venience it is better to write T;” = 6~ + dd“H;, where 67 is a smooth form
cohomologous to @™ and H; is still bounded. This gives

fwai}_/\(T*—Té“) — —[dw@AchjA(T+—Tg)+fw@t?_/\(T”L—T(:{).

The second term on the right tends to zero as r — 0 by laminarity of 7%, The
first we estimate with Schwarz’ inequality and the estimate given by the “strong
approximability” of T

2
‘/dwa/\d”"Hj/\(T“L—Tg{)

< |dvalZ O(rz)dej/\dCHj/\(T+—Tg).

Since ||dglf@||go = O(r™2), it suffices to know that the last integral tends to zero
with r. But this happens because the bounded function f; has gradient in L? with
respect to 71, and because Tg 7 T (see the end of the argument in [Du2]).
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We now no longer assume that 7+ € L1(77). One difficulty is that we have to
justify the existence of the local wedge products Tg AT, etc. This is ensured by the
following lemma (which, it is perhaps worth stressing, does not require homogeneity
of X).

Lemma 2.10. There exists S (:i‘l_ arbitrary close to T&" such that G~ € LIIOC(SZ{ ).
Likewise, there exists Sg arbitrary close to Tg such that GT ¢ e [B @)

Proof. Since T~ € &(T), by the first item of Proposition 1.2 G~ is not —oc a.e.
on T'*. Thus, given a cube Q, G~ is not identically —oc on 7. Now T} =

f[Ao,]dvzg(a), hence for vt-a.e. disk A,, ®(a) 1= an G~ is finite. Consider now

v}\", = vT |(¢>—_ny and Tér,N = /[Aa]dvj\',(a).

Then by construction G~ € L! (Ta’ ~) and T&"  1s arbitrarily close to TQ+ :
'The argument for Sy is similar. O

From now on we replace the Tg with the Séf as given by the previous lemma, so
all the local wedge products (T ATy, Tg AT, T+ ATp) are well defined in the

usual L! sense. We further assume that Séf is 5o close to Téf that the estimate (9) is
satisfied.

We now need to justify the inequalities TCZ{ ATy = Tt AT, etc. This follows
from the following simple observation: let 7;” = o™ + dd® max(G~—,—j). Wehave

that T+ AT, — T+ AT~ (by the energy approach) and Tg AT, — Tg AT~ (by
the classical approach) as j — oc. Since Tg A Tj_ <Tt A Tj_ we conclude that
Tg AT~ <TT AT In the same way we obtain that TT ATy < Tt AT The
inequality TQ'{ NTg = TJ A T~ is obvious since all wedge products are defined in

the classical sense.
Starting from here the proof is identical to the L! case. O

3. Homogeneous weights

In this section we give criteria allowing to verify in practice (see §4.4) the finite energy
condition for the homogencous weights x(t) = —(—t)?, with0 < p < 1,

Recall from (6) and (7) that we can write T = w® + dd°G*. To analyze
the potential G7, it is easier to use the function 't as an intermediary. Indeed,
Proposition 2.4 in [DDG1] implies that T+ > Alogdist(-, I 7)— B forsome A, B >
0,where I 7 C X is the indeterminacy set of the map f. Letus call an indeterminacy
point

p eIt spurious if f(p)-w™ =0.
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At every non-spurious point, we also have the reverse inequality
't < Alogdist(-, p) — B.

Similar inequalities hold for T~. We let E™ denote the exceptional set of f,
i.e. the union of those curves collapsed by f to points, and set /= = f(E™).
Then '™ > Alogdist(-, /) — B with the reverse inequality holding if and only
F~Yp)-w™ # Oforevery p € I™. Likewise, we say that a point

p € 1™ isspurious if f~'(p)-w” =0.
We refer the reader to [DDG1] for more about spurious points. Here we point out

only that

(1) if the invariant cohomology classes {71}, {T~} are Kiihler, then there is no
spurious point of indeterminacy inresp. I+, I~;

(2) when f is bimeromorphic, we can always perform a bimeromorphic change of
coordinates to get rid of spurious indeterminacy ([BD], Proposition 4.1).

[t is plausible that a similar result holds when the topological degree A, ( /') is merely
smaller than the first dynamical degree A1 = A1(f). We refer the reader to §5 in
[DDG1] for some results in this direction.

The Lelong numbers of T vanish on I~ (see [DDG1], Theorem 2.4). Hence
Proposition 1.20 gives

Proposition 3.1. We have '™ € E(T T, 7).

A similar result holds for Tt /T~ if we know that 7~ has zero Lelong number
at each point in I ™ (which we do e.g. when A>(f) = 1).

The main theme 1in this section 1s that for homogeneous weights, it is possible to
pass from control on energy of T'* to control on that of G*. This idea originates in
[BD]. We set

EP(T,w):=&6,(T,w) and V(T w):=V, (T, w)
where y(r) = —(—1)?,0< p < 1.
Proposition 3.2. Fix0 < p < 1. Then
' e @°(T ", w") ifandonlyif GT e V/(T ,0™).
If A% > Ay (f) then we similarly have that

I e&?(TH w) ifandonlyif G~ e VI(TH, w™).
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Proof. Since I'™ and Gt are both @™ -psh functions such that GT < 't < 0, it
follows from Corollary 1.15 that

Gt e (T ,0t)y=T et (T oM,

for any weight y € ‘W,
Assume conversely now that T'" € &€,(T~,w™) for the special homogeneous

weight (1) = —(=1)?, 0 < p < 1. Since y/ o Gt < y(A['T* o f1) =
i (p—1) X(TF o f 7y, it follows from the Cauchy—Schwarz inequality and
()T~ = AT~ that

1/2
([ Yo GTdGT AdGT A T—)
X

< Zi (f X’oG+d(F+ofj)Adc(F+off)AT_)1/2
TS A Az

ji=0
1 't e+ A\
lejp/z A oTHdT T AdTT AT < +o00.
; X
J=0 71

Hence Gt € V, (T, 0™).

For I'™ and G, the proof is very similar except that in the estimate analogous
to the one in the previous display, pushforward does not distribute over products as
well as pullback. If nis a (1,0) form, we have only an inequality

i fen A fen < Aa(f) - fuli n A TD).
Arguing as above and setting £, (') = [y o T"dTl~ Ad°T~ AT™, we thus get

1/2 s Jf2 1/2
(fX/oG—dG—/\dCG—/\ﬁ) SZ(P) [E,(T)] .

FEL
which is finite if A7 > A,. O
Since L' € L? for 0 < p < 1, Propositions 1.17 and 3.2 directly imply

Corollary 3.3. Suppose 0 < p < land TT € LY(T™). Then T'" belongs to
EP(T~,w™) if and only if G does. If in addition A% > A,, then T~ belongs to
EX(TT,w™) ifand only if G~ does.

Having largely reduced the problem of controlling G* to that of controlling I'*,
we now seek effective means of accomplishing the latter. The computations below
will be the same for I'" and T, so we work only with T'T. We let Q@ = o™ + cw.
For ¢ > 0large enough, both '™ and ¢ := logdist(-, I ™) are Q-psh functions. Since
't > Ap — B, Lemma 1.13 gives
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Proposition 3.4. Let y be any weight function. Then ¢ € &,(T~, Q) implies that
I't e (T, Q).

Hence we consider weighted energy of ¢. Let ¢; be the canonical approximants.
"Then up to finite additive constants we have

0 < —fXO</9j(Q +dd ) AT = —/—G_ddc(pj AddEyop;
:[—G_(X”O@j)d@j ~d g nddy; +[-G_(X’Ofﬂj)(dd6¢j)2
S[ Gy opdpnd®ondde

X\I+

+ f Gy o p (ddp) + [ —G (' o)y
X\I+
=1+ 1I 4 III,

where vj = (dd°y;)?|y=—; is a positive measure. Note also that dpad®p; AddC 7
puts no mass on ¢ = —j. One can verify this by replacing max{-, j } with a smooth
convex approximation in the definition of ¢; and then computing directly.

To bound integral I, we compute in local coordinates that

C dV(x)

Soif m™ () is the spherical mean of G~ on the set {dist(p, I ™) = e'}, we get
max ¢
I <C [ —m~(t)y"(r) dr,
—00

We claim that I is always finite. To see this, let 77 : X — X bethe blowup of X along
the finite set / ™. Then direct computation in local coordinates about I * reveals that
on X \ /1, one has (ddp o m)? < dV, where dV is a smooth volume form on X
Since G~ o is ¥~ -psh on X, this gives us that

1= [ —(G_o:/'[)()(’ogoon) (ddCQOOJT)Z < [ —GTon dV < oc.
X\n-1(I+) X\m—1(I+)

Finally, to deal with ITI, we note that for j large v; is uniformly (in j ) proportional
to normalized spherical measure on {dist(p, I 7) = e~/ }. Hence we obtain that

I < =Cm™ (=)' (=])-

With these estimates we arrive at two conclusions very much in the spirit of [BD].
We state them only for ', but the analogous assertions for '™ are equally valid and
proved in the same way.
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Corollary 3.5. If G~ is finite at all points in I'", then TT € §1(T~,w™). Hence
also GT e VYT, w™). If moreover TT € LY (T™) then Gt € EY(T~, w™).

Proof. By Propositions 3.4 and 3.2, it suffices to verify that the above bounds on I
and III are finite (and uniform as j — o¢). In this case, we have y(r) = ¢, and in
particular y” = 0. Hence I is trivially finite.

On the other hand, ¥ = 1 and as 1 — —oo, m™ (1) decreases to the average value
of G~ on the set . In particular the bound on III is uniform as j — oo if G~ is
finite on /. O

For other homogeneous weight functions, our estimates on I and I1I immediately
give an analogous criterion.

Corollary 3.6. Let (as above) m™(t) denote the mean of G~ on {dist(x, I t) = &'},
Suppose for some q € (0, 1) that

limsup [t]97 m™ ()] < oo.

t——00
Then for any 0 < p < g, we have 't € 62(T~,w™). Hence Gt € V(T , ™).
If additionally TY € LY(T7), then GT € €2(T~,w™).

In some circumstances (e.g. polynomial maps of C?) it is possible to see directly
that 7T e LY(T™). Corollaries 3.5 and 3.6 are adequate by themselves for these
situations. In other circumstances, however, itis noteasy to verify that T+ € L1 (T 7).
We show now that one can avoid doing this if there are no spurious pointsin I~ or I~

Theorem 3.7. Suppose that 0 < p < 1 is chosen so that A{ > A, and that GT €
V(T ,w"), G~ € VP(TT,w™). If there are no spurious points in It or I, then
it is further true that Gt € 82 (T~ ,w)and G~ € &2 (T, w).

We prove the theorem in a sequence of lemmas, focusing mainly on G1. The
case of G~ is identical, except that as in the proof of Proposition 3.2, we need the
condition AY > X, to make the triangle inequality work in a couple of places below.

Lemma 3.8. There exists k € N and ¢ > 0 such that for every n € N, we have

nk

Es

nk
l1

<cw +ddw,

where w, = —c G~ is cw-psh

We remark before continuing that if the indeterminacy set of f has no spurious
points, then neither does thatof £¥. Therefore, there is no particular harm in assuming
for the sake of notational simplicity that £ = 1 when we apply the lemma.
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Proof. Let 6~ be a smooth form cohomologous to 7. Then by Theorem 1.3 in
[DDG1] we have @ = a6~ + n for some ¢ > 0 and a smooth form 7 such that
AT* fE5 tends to zero in cohomology. Thus for k large enough, we have

fko _ 1

22 <abT + —w+ddw

Ak 2

where w is a quasipsh function that is smooth away from 7 ~(f%). Since there are
no spurious points in / ~, we have in fact that w > bG~ for some b > 0. Iterating

this inequality then gives

g 1 o M
o = < ab,b~ —I——a)—i-dd (Zm)

n—2
Fdd* (Y abyaj— (170,17).
=0 A

where b, = Y 7_527¢ < 2. Since f’i? > f*ig}i > G, the lemma follows
1 1
immediately. O

Lemma 3.9. Both [ —y o Gt TT Awand [ —y o G~ T~ A w are finite.

Proof. Modulo finite additive constants, the first integral is estimated by

1/2
([—){OG+T+/\61))

1/2

= (f)(’oG+dG+/\dCG+/\w)

ad T'to 2\ d(Tto fYYAdS(T T o f7)

/

(/) = o)

o0 1 n 1/2
-3 f;(or+dr+/\dcr+/\—f*‘”

v L

oc 1 1/2
<> T ([;(’oF+dF+/\dCF+/\(ca)+ddcwn)) ,

1/2

where ¢, w, are as in the previous lemma. If we take the contributions to the in-
tegral from cw and from dd“w, separately, then the first contribution is finite by
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Proposition 1.20. The second contribution is handled up to additive constants as
follows:

f)(’oF+dF+AdCF+/\ddcwn
= [—wn dd“(y oTTYAddTT

= f—wn (dd®yoTt+0YAWdTT +01) + 0(1)

A

c/—G_ (ddxoTT +0™)AddTT + 0™+ 0O()
= c[—G— dd¢(x o THYAdd’TT + O(1)
= C[X’0F+dF+AdCF+AT_+ 0(1)
which is finite by the hypotheses of Theorem 3.7 O

Lemma 3.10. Both [ —y o GY T~ Awand [ —y o G~ TT A w are finite.

Proof. We treat the first integral only. Let @ = ™ + ™. Then from Proposition 2.5
in [GZ2] we have up to additive constants that

[—XoG+T_Aw:[—XoG+ddc(G_—|—§2)/\w
52[—XoG+[Q+ddCG+]/\a)
+2[—XOG_[S2—I—ddCG_]/\w.
:2[—XOG+T+Aw+2/—xoG_T_Aw.

We have just seen that the last two integrals are finite, so the proof is complete. O

Theorem 3.7 is now an immediate consequence of Proposition 1.17 and Re-
mark 1.18. -

4. Examples

In this section we exhibit families of examples satisfying our energy conditions.
Recall from Theorem 4.2 in [DDG1] that the assumption A (f) > A>(f) implies
that X is either rational or of Kodaira dimension zero.



310 I. Diller, R. Dujardin and V. Gued;] CMH

4.1. Polynomial mappings of C2. Suppose that f: C2 — C?2 is polynomial and,
as always, has small topological degree. Recent work of Favre and Jonsson [F]] gives
a smooth compactification X = C2 U D, of C? and k € N* such that

(P1) the meromorphic extension of f k10 X is 1-stable;
(P2) f* contracts the divisor D at infinity to a fixed pointin I~ \ 1 T (f¥);
(P3) the relative potential G for T is continuous in X \ I+ (£%).

Using this information, we will show

Theorem 4.1. Let f: C2 — C? be a polynomial mapping with A>(f) < A(f),
and let X,k be as in (P1)~(P3). Then f*: X — X has finite dynamical energy.
Morve precisely GT € EW (T, wT) and G~ € E1(T T, w™).

Proof. To simplify notation, we replace f* by f. We recall that 1-stability implies
that /™ N I~ = @. Since G 7 is continuous in X \ /T, it is in particular finite at all
pointsin I 7, s0 G € E1(T~,w™) by Proposition 1.20 and Corollary 3.5.

Though G~ is less well-behaved, we can show it is finite at all pointsin 7 *. Since
£ is polynomial on C?, we have I T C D4. The invariance f(C?) C C2 and the
contraction properly f(Deo \ IT) = ¢ = f(g) € I” imply that f~1(IT) Cc I™.
Thus { {

G (py=)_ M) 2 D (MM > o,

n>0 n=>0 1

where M = min,c;+ I'"(p) is finite because ITNI™ = @ (see Lemma 3.2 in
[IDDG1]). From Corollary 3.5 again, we see that G~ € VI{(T+, ™). Since G* ¢
LY(T™), we have G~ € LY(T*) by symmetry. Hence in fact G~ € E1(TT, w™).

Ll

It follows from Theorem 2.4 that iy = T A T~ is a well-defined, mixing
invariant probability measure which does not charge pluripolar sets. We can actually
say more.

Theorem 4.2. Let [ be as in Theorem 4.1, and V C X be an algebraic curve. Then
logdist(-, V) € L' (1)

In particular log dist(-,€¢) € L'(us), where €y denotes the critical set of f.
This result will allow us in [DDG3] to use Pesin’s theory of non-uniformly hyperbolic
dynamical systems and show the existence of many saddle periodic points.

Proof. Assume without loss of generality that V' is irreducible. We claim that G|_V =

—oc on V. Granting this for the moment, let 0 > ¢y € L(X) be a global potential
for the current of integration along V. Thus dd€ ¢y = [V]— ©, where ® is smooth,
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and gy € L'(us) if and only if logdist(-, V) € L'(yr). From our claim we have
that G~ € LY([V]) and, by symmetry ¢ € L'(T ™). Hence the measure T~ A [V] is
well-defined.

Fix a constant y between /A, and A{. Then from [FJ], we have C; > 0 such that

dist(f"x,I1) > (Cidist(x, I1))”", forallx € X andn € N
Since 't (x) > Alogdist(x, I ™) — B, we infer from (6) that
GT(x) > A'logdist(x, I ) — B'.

Therefore repeated integration by parts gives (up to finite additive/multiplicative con-
stants)

[ons = [-6* T a1 < [“toedinc.1H T A )

- [ —G~dd logdist(-, IT) A[V]
V

S[V—G_a)/\[VH— 3 6T <o,

xel+tnV

since G~ is finite on I 7.

It remains to verify that G is not identically —oo on V. Since V' must meet
D, somewhere, it suffices to show that G is finite on V N D4. This is the case
if, for instance, V N Dy, C IT. However, from foG~ = A1(G~ —T'7), we see
that we need only show that G~ is finite on f ~"(V) N Dy for some n € N. If, for
instance, V N Dy, does not contain the superattracting point ¢ € I, then this is true
for n = 1 because f~1(Du \ {g}) C IT. Finally, as the next lemma makes clear,
even if Do, NV does contain g, the same reasoning works for some larger value of #.

O

Lemma 4.3. There exists an integer n € N such that if W is any irreducible compo-
nent of f~"(V'), not contained in Do, then g ¢ W.

Proof. Suppose on the contrary that for each n € N, there exists an irreducible com-
ponent W, of f"*V such thatg € W, but W, ¢ D. Then since ¢ is superattracting
for f, this remains true at the local level. That is, there is a neighborhood U 3 ¢ and
foreveryn € N alocal irreducible component W, of the (local) pullback ( /|y )** (V')
such thatg € W, but W,, ¢ D.

Moreover, by [FJ] we may choose a coordinate patch U about ¢ = 0 so that
(U, 0) — (U,0) is a rigid holomorphic germ and there exists a non-trivial local
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divisor Djoc C D satisfying ( f'|v)* Dioe = A1 Dioc. The local topological degree of
Jjv is no larger than A». Hence

AT < (Wn,fn*Dloc)q - (f*an,Dloc)q < M {V. Dioc)y, -

where (-, ), denotes local intersection of germs at ¢g. This contradicts A < Ay for
large n. O

4.2. The secant method. If P: C — C is a polynomial of degree at least two such
that all roots of P are simple, then we recall the secant method from [DDG1]: given
points x,y € C, one declares f(x,v) = (y,z) where z is chosen so that (0, z)
lies on the line from (x, P(x)) to (v, P(y)). This prescription defines a 1-stable
meromorphic map f: P! x P! — P! x P! with small topological degree.

Proposition 4.4. The secant map [ has finite dynamical energy. More precisely,
Gt e (T, 0N and G~ € EY(TT,w7).

Proof. We have that I~ = I (f") = {(z,z) : P(z) = 0} consists of fixed
points for every n € N and that each of these is attracting for f. It follows that
dist( f*(17), 1), dist(f (I "), I7) > ¢ for some ¢ > 0 and every n € N. As
with the case of G~ for polynomial maps of C? then, we infer that G T is finite on / ~
and vice versa. Thus by Corollary 3.5, GT e V(T ", 0™ ) and G~ € VI(T T, w™).

The classes of Tt and 7~ are both Kihler, moreover, so from Theorem 3.7 we
seethat GT € EV(T ", 0 ) and G~ € 8V (T, w™). O

4.3. Kodaira dimension zero. When kod(X ) = 0, we may assume after birational
conjugation that X is minimal and f is 1-stable (see [DDG1], Proposition 4.3).

Proposition 4.5. Assume X is a minimal surface withkod(X) = 0. Then f satisfies
condition (Ey) with y(t) = t. Moreover logdist(-, 1) € L'(jis).

Proof. We know from [DDG1] that f is non-ramified. Therefore /™ is empty and
(see Proposition 4.10 in [DDG1]) G~ is continuous on X . That is, the hypotheses of
Corollary 3.5 are satisfied by both G* and G~. From Proposition 1.20, we further
have log dist(-, I 1) € L1 (uy). O

4.4. Irrational rotations. The following examples originate in the work of Favre
[F] (see also [B]). Their common feature is the existence of a complex line where f
is conjugate to a rotation. Choosing the rotation angle properly allows us to produce
functions G* that are very singular and therefore useful for testing the sharpness of
the energy conditions.
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Example 4.6. Given a € C, we consider the birational transformation
Filx:y:t]leP? [y?ay? + 12— xy: yt] € P2,

For (the all but countably many) parameters @ € C such that f is 1-stable on P2, we
have A1 (f) = 2 is the degree of the homogeneous polynomials defining f. Thus f
has small topological degree. Moreover, since dim H ! (P2) = 1, it follows that we
may take @ = o™ = @™. So there are no spurious points in either 7™ or I,

One checks that 7t = {[1 : 0 : O]}, I~ = {[0 : 1 : O]}, and that the line
L := (t = 0) joining these two points is f-invariant. When a € C \ [-2,2], we
have I} N I = @, where

=1t and 15=1J17(").

n>0 n=0

This implies that £ is 1-stable and that G is finite at points in /¥, From Proposi-
tion 3.2, Corollary 3.5 and Theorem 3.7 it follows that f satisfies condition (%) for
x(t)y=r.

Now suppose that a = 2 cos w8 € [-2,2]. In this case f;, := fjz, is conjugate to
a rotation of angle 278, and f is 1-stable if and only if € is irrational. Determining
whether or not 1 satisfies (£, ) for any given y is tricky. We will show for any given
p € (0,1) that GT € EP(TT,w¥) if 4 is not too well approximated by rational
numbers. In [F] it was precisely proved that GT ¢ (T T, w™T) for certain values
of 6.

Observe that £ is conjugate to f ! by the involution (x, y) + (y,x). Hence
by Corollary 3.6 (also Proposition 3.2 and Theorem 3.7), we need only verify that
lim sup,_,_ . [m~(0)||1]197 1 dt < +o0, where p is some number larger than ¢ and
m~ (1) is the mean value of G~ on the sphere dB[;..g)(¢*). By plurisubharmonicity,
m™ () is comparable to supp s+ .y G, which s in turn bounded below by m; (7) :=
Supp(r+ .nnr, G~ . We therefore estimate the latter, fixing coordinates on L = P!
so that f7,(x) = 2™ x forall x € C C L and that 7+, I~ become the points 1 and
—1, respectively. Hence

G (x) =~ 22_” log |e¥* "8 x + 1].

n>0

Note for any n € N and 7 > O that supj,_y =, log |e271n8 x4+ 1| is essentially
achieved at x = 1 + ¢~'. Hence

my (1) ~ Z 27" max{loge(n),t}
n>0

where €(n) = min,ez |20 — 2m + 1)|. Now let (zrz;i;l_l)jeN C Q be the

sequence uniquely determined by requiring ged(2n;, 2m; + 1) = 1, setting ng = 1
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and choosing n; > nj_; to be the smallest integer such that e(n;) < €(n;—1). From
this it 1s entertaining to compute that

limsup |my (0)||t|7 7 dt ~ limsup2 ™ |loge(n;)|4.

In particular, G € EP(TT,w™) if the right side is finite for some ¢ > p. We
remark that finiteness holds for almost all & € R and can be checked for any given
irrational # by examining its continued fraction expansion.

The nextexample is studied in [DG] where itis proved that G € L'(T ™). Hence
we are in a situation where the alternative of Theorem 2.3 holds.

Example 4.7. For parameters a, b, c € C*, we consider the rational transformation
of the complex projective plane, f = fup.: P2 — P2, defined by

flx:y:z]=[bcx(—cx +acy+z):acy(x —ay +abz):abz(bcx + y —bz)].

The following facts can be verified by straightforward computation.
* fube is birational with inverse f~! = £, 1 1. 1.
e Ip ={la:1:0,[0:b:1],[1:0:c]}.
» [ preserves each of the lines {x = 0}, {y = 0}, {z = 0} according to the
formulas
[x:1:0l—[=bcx:a:0], [0:y:1]—[0:—acy:b],

[1:0:z] > [c:0:—baz]
In particular, we have /2°, I]?‘il C {xyz =0} foralla,b,c € C*.
Given s > 1 and an irrational number 6 € R, let f: P2 — P2 be the birational
map f = fupe witha =i, b = —se¢?™% ¢ = i/s. One can then check (see [DG])
that

« fis 1-stable on X = P?;
« TT e LY(T).
Thus the measure py = T+ A T~ is a well defined probability measure. It is

further shown in [DG] that y¢r does not charge curves and is mixing. We can apply
the alternative of Theorem 2.3, reinforced by the ergodicity of

» either ps is supported on the pluripolar set {G* + G~ = —o0},
» or f has finite dynamical energy.

The latter almost always occurs®: when 6 is not too close to rational numbers, this
can be verified by arguing as in the previous example.

2But not always, see [Bu].
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