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The asymptotic rank of metric spaces

Stefan Wenger™

Abstract. In this article we define and study a notion of asymptotic rank for metric spaces
and show in our main theorem that for a large class of spaces, the asymptotic rank is charac-
terized by the growth of the higher isoperimetric filling functions. For a proper, cocompact,
simply connected geodesic metric space of non-positive curvature in the sense of Alexandrov
the asymptotic rank equals its Euclidean rank.

Mathematics Subject Classification (2010). 49Q15.

Keywords. Isoperimetric inequalities, asymptotic rank, Euclidean rank, non-positive curvature,
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1. Introduction

For a proper cocompact CAT(0)-space or a simply connected non-positively curved
Riemannian manifold X, the Euclidean rank is defined as the maximal » € N for
which Euclidean n-space R” isometrically embeds into X . In this article we study
the following generalization of the Euclidean rank. Let (X, d) be an arbitrary metric
space. A metric space (Z, dz) is said to be an asymptotic subset of X if there exist
a sequence of subsets Z; C X and r; — oo such that (Z;, rj_ld ) converges in the
Gromov-Hausdorff sense to (Z,dz).

Definition 1.1. The asymprotic rank of X, denoted by asrk(X), is the supremum
over n € N for which there exists an asymptotic subset Z of X and a biLipschitz
embedding ¢: K — Z with K C R” compact and £"(K) > 0.

Here £ denotes the Lebesgue measure on R”. One may equivalently use asymp-
totic cones instead of asymptotic subsets. Itis not difficult to show that the asymptotic
rank is a quasi-isometry invariant, see Corollary 3.3. In Section 3 it will furthermore
be shown that asrk(X) is the supremum over n € N for which there exists an »-
dimensional normed space whose unit ball is an asymptotic subset of X. If X is a

* Partially supported by NSF grant DMS 0707009.
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Hadamard space, that is a complete metric space which is CAT(0), then asrk(X ) is
the maximal geometric dimension of an asymptotic cone of X. If X i1s moreover
proper and cocompact then asrk (X'} coincides with its Euclidean rank. This follows
from work of Kleiner [18]. We refer to Section 3 below for details. For a general
melric space X we have the following properties:

(1) asrk(X) < sup{Topdim(C): C C Z cpt, Z an asymptotic subset of X};
(ii) asrk(X}) > sup{n € N : 3 : R" — X quasi-isometric}.

In the above, Topdim(C') denotes the topological dimension of C'. Clearly, if X is
a geodesic metric space then asrk(X) = 0 if and only if X is bounded. Moreover,
if X is a geodesic Gromov hyperbolic metric space then astk(X) < 1 because every
asymptotic subset of X is isometric to a subset of a real tree. On the other hand, not
all geodesic spaces with asymptotic rank 1 are Gromov hyperbolic as the countable
wedge sum of circles .S jl of length j shows. However, a geodesic metric space X with
astk(X) = 1 which has a quadratic isoperimetric inequality for curves is Gromov
hyperbolic, see Corollary 1.3.

The main results of the present article characterize the asymptotic rank in terms
of the growth of higher isoperimeltric filling functions Vg4 for a class of metric
spaces including all Hadamard spaces. In the generality of (complete) metric spaces
X, a suitable notion of k-chains and & -cycles is provided by the theory of integral
currents, developed by Ambrosio and Kirchheim in [3]. Definitions will be given in
Section 2. For k > 0, the space of integral k-currents in X is denoted by I (X).
Given an element 7 € I (X), its mass is denoted by M{(T), its boundary (defined
if &k > 1) is an element of I;_;(X) and denoted by 7. We recall that X is said to
admit an isoperimetric inequality of Euclidean type for I (X) if there exists D > 0
such that i

Fillvol(T) < DM(T) * (1)

for every T € I (X) with a7 = 0, where Fillvol(T) is the least mass of an S €
I (X)) withdS = T'. Similarly, X is said to admit a cone type inequality for I (X)
if there exists C > 0 such that

Fillvol(T') < C diam(spt T)M(T') (2)

forevery T € I (X) with 97 = 0and with bounded support spt 7. Important classes
of spaces admitting cone type inequalities (in every dimension) include: Hadamard
spaces, more generally, geodesic metric spaces with a convex metric, and metric
spaces admitting a convex bicombing [27]; furthermore, Riemannian manifolds with-
out focal points. See Section 8 for more general classes and for details.

It was shown in [13] and [27] that metric spaces X which admit cone type inequal-
ities for I,,(X), m = 1,...,k, admit isoperimetric inequalitics of Euclidean type.
The converse is true for k = 1 for spaces (X, d) in which, for some Q > 0, any two
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points x, x’ in X can be joined by a curve of length at most Qd(x,x"). Fork > 2, it
1s not clear what the precise relationship between admitting isoperimetric inequalities
of Euclidean type and admitting cone type inequalities for L, (X),m = 1,...,k, is.
Note that, for example, (1) is stronger than (2) if 7" has sufficiently small mass and
large diameter.

We turn to the main results of the present paper. For k& € N define the filling
volume function FVg 4, on X by

FVi41(r) ;= sup{Fillvol(T) : T € Ix(X) with 0T = 0and M(T) <r}.  (3)

Note that X admits an isoperimetric inequality of Euclidean type for Ix(X) if and

only if FVg1(r) < Dr < for all » > 0 and for some constant D. Our main result
can now be stated as follows.

Theorem 1.2. Let X be a complete metric space such that, for some Q > 0, any
mwo points x,x" in X can be joined by a curve of length ar most Qd{(x,x"). Let
k € N and suppose X admits cone type inequalities for I, (X) form = 1,..., k. If
k > astk(X) then

FVii1(r) _

limsup — 2 = 0. )
Tk

F—=>0Q r

In other words, X admits a sub-Euclidean isoperimetric inequality for I (X).

Theorem 1.2 seems to be new even for cocompact Hadamard manifolds. For
symimetric spaces of non-compact type a stronger result is known however: They
admit linear isoperimetric inequalities above the rank, thus FV, ((r) < Dr for all
r > 0 for some constant D. First applications of our theorem to the asymptotic
geometry of non-positively curved spaces are given in [20], see also [19]. A simple
consequence of the above theorem is:

Corollary 1.3. Let X be a geodesic metric space which admits a Euclidean isoperi-
metric inequality for 1,(X), that is, has a quadratic isoperimetric inequality for
curves. Then X is Gromov hyperbolic if and only if astk(X) < 1.

While one implication is clear, the other one follows from the theorem above and
the well-known fact, see e.g. [5], that geodesic metric spaces with a subquadratic
isoperimetric inequality for curves are Gromov hyperbolic.

Our next theorem gives a lower bound for the growth of the filling functions below
the asymptotic rank.

Theorem 1.4. Let X be a complete metric space such that, for some ¢ > 0, any two
points x,x" in X ean be joined by a curve of length at most Qd(x,x"). Letk € N
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and suppose X admits isoperimetric inequalities of Euclidean type for 1,,(X ) with
some constants Dy, m = 1,...,k — 1. If k < astk(X) then

FVir1(r) > FVi g1 (X, LX), 7)) > spr b
Jor all v > 0 large enough. Here g > 0 is a suitable constant only depending on
Dy,m=1,...,k—1.

Here FVy4+1(X, L°°(X), r) is defined analogously to FVg1(r) but the filling
volume in X is replaced by the filling volume in L°°(X), see Section 2.2. The proof
of Theorem 1.4 will in fact show that not only the filling volume but also the filling
radius function is bounded from below. As regards the constants & in the theorem,
it can be shown that a geodesic metric space X with asrk(X) > 1 satisfics

oG
lim sup FV2(X, L2(X). 7) > = (5)

F—=00 2 B 5 4

In [30] it is moreover proved that a geodesic metric space X which admits a (coarse)
quadratic isoperimetric inequality for curves and for which (5) fails is Gromov hy-
perbolic and thus all its asymptotic subsets are 1sometric to subsets of real a tree. As
a consequence of Theorems 1.2 and 1.4 we have:

Corollary 1.5. The higher isoperimetric filling functions FVy, detect the asymptotic
rank of complete metric spaces which admit cone type inequalities and for which,
for some Q > 0, any two points can be joined by a curve of length at most Q times
their distance. In particular, they detect the Euclidean rank of cocompact Hadamard
spaces.

Related results have been obtained for symmetric spaces of non-compact type
([6], [24], [16]) and for proper cocompact Hadamard spaces ([29]) for the higher
divergence invariants divg of Brady and Farb.

As mentioned above, symmetric spaces X of non-compact type admit linear
isoperimetric inequalities for I (X) for all & > asrk(X). It is an open problem,
see [14], whether this holds for more general spaces such as for example for all
cocompact Hadamard manifolds. In [25] Papasoglu shows that for a simplicial com-
plex X with H;(X) = H,(X) = 0 and for which every extremal 2-cycle for FV3
has genus at most some fixed g € N, the following holds: If X admits a quadratic
1soperimetric inequality for curves and a sub-Euclidean isoperimetric inequality for
2-cycles then for every ¢ > 0 there exists D, such that

FVi(r) < D,rlte

for every r > 1. In the notation of [15], this says that X admits an isoperimetric
inequality of infinite (i.e. arbitrary large) rank for I,(X). It seems to be unknown
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at present, whether in R?, endowed with a non-positively curved metric, extremal
2-cycles have a uniform bound on their genus.

Our next theorem shows that, under suitable conditions, an isoperimetric inequal-
ity of infinite rank for m-cycles is passed on to (m + 1)-cycles. More precisely:

Theorem 1.6. Ler X be a complete metric space, k, k' € N withk’ < k, and suppose
that X admits a cone type inequality for 1y (X ) for eachm = k', ... k. If X admits
an isoperimetric inequality of infinite rank for Iy (X ) then X admits an isoperimetric
inequality of infinite rank for Iy (X).

For example, if X is geodesic and Gromov hyperbolic it can be shown that there
exists a geodesic thickening X, of X which admits cone type inequalities for L, (X, )
for all m > 1. In particular, X, is Gromov hyperbolic and admits a linear isoperimet-
ric inequality for I (X,). Thus, by the theorem above, X, admits an isoperimetric
inequality of infinite rank for I (X)) for every k > 1. The following problem seems
to be unsolved:

Problem. Let Y be geodesic and Gromov hyperbolic, k£ > 2, and suppose Y admits
cone type inequalities for L,,(Y) form = 1,...,k. Is it true that ¥ admits a linear
isoperimetric inequality for I (Y)?

This is known to be true under suitable conditions on the geometry on small scales,
see [22]. The problem seems to be open however even in the case of Hadamard spaces
that are Gromov hyperbolic but not proper and not cocompact.

One of the main ingredients in the proof of Theorem 1.2 is a ‘thick-thin’ decom-
position for integral currents which was proved in [31], see also Section 4. This
theorem can furthermore be used to establish polynomial isoperimetric inequalities
on the large scale for certain classes of metric spaces, including all simply connected
homogencous nilpotent Lie groups endowed with a left-invariant Riemannian metric.
We will do this at the end of this paper, in Sections 7 and 8.

Acknowledgments. I would like to thank Bruce Kleiner, Urs Lang and Tim Riley
for several discussions on topics related to this paper. [ would moreover like to thank
the referee for some useful comments.

2. Preliminaries
In this section we recall some definitions and facts that are used throughout the paper.

2.1. Lipschitz maps and metric derivatives. Let (X, dy) and (Y, dy) be metric
spaces. Amap ¢: X — Y is said to be Lipschitz continuous if there exists C > 0
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such that
dy (p(x), p(x")) < Cdx(x,x") forall x,x" € X.

If there exists C' > O such that
Cldy(x,x") < dy(p(x), 9(x") < Cdx(x,x) forall x,x" € X

then ¢ is said to be biLipschitz continuous. Given a Lipschitz map ¢: U — X,
where U  R¥ is open, and given v € R¥, the metric directional derivative of ¢ at
z € U in direction v is defined by

md ¢-(v) := lim dlp(z +1rv), ¢(2))

O r

if this limit exists. This notion of differentiability was first introduced and studied
by Kirchheim in [17], who in particular proved the following theorem. A similar
statement was proved by Korevaar—Schoen in [21] around the same time.

Theorem 2.1. Let (X, d) be a metric space and ¢: U — X a Lipschitz map, where
U C R" is open. Then for almost every z € U the metric directional derivative
md ¢, (v) exists for every v € R™. Furthermore, there are compact sets K; C U,
i € N, such that £*(U\ U K;) = 0 and such that the following property holds: For
every i and every ¢ > 0 there exists r(i,€) > 0 such that

d(p(z + v). p(z + w)) —md gz (v — w)| < &lv—w| (6)

forall z € K; and all v, w € R” satisfying |v|, |w| < r(i, &) and z + w € K;.

Here | - | denotes the Euclidean norm. If md ¢, (v) exists for all v € R"™ and
satisfies (6) then md @, is called metric derivative of ¢ at the point z. Clearly, the
melric derivative is a seminorm, and a norm if ¢ is biLipschitz. It is not difficult
to prove that if U C R” is merely Borel measurable then md ¢, can be defined at
almost every Lebesgue density point z € U by a simple approximation argument.
The following is then an easy consequence of the above theorem and the remarks
above.

Corollary 2.2. et Z be a metric space and ¢: K — Z bilLipschitz with K C R”"
Borel measurable and such that £ (K) > 0. Then there exists anorm || - || on R™ with
the following property: For every € > 0 and for every finite set S C R" there exist
r>0andamap . S — Z suchthat . (S,r] - ||) — Z is (1 + &)-biLipschitz.

This corollary will be used repeatedly in our paper.
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2.2. Integral currents in metric spaces. The theory of normal and integral currents
in metric spaces was developed by Ambrosio and Kirchheim in [3] and provides a
suitable framework for studying filling problems in the generality we wish to work in.
In Euclidean space Ambrosio—Kirchheim’s theory agrees with the classical theory of
Federer-Fleming normal and integral currents [11].

Let (X, d) be a complete metric space and k > 0 and let D*(X) be the set of
(k 4+ 1)-tuples (f, w1, ..., m) of Lipschitz functions on X with f bounded. The
Lipschitz constant of a Lipschitz function f on X will be denoted by Lip( f').

Definition 2.3. A k-dimensional metric current T on X is a multi-linear functional
on DX (X ) satisfying the following properties:

@{) If ::rij converges point-wise (o 7; as j — oo and if sup; ; Lip(nij ) < oo then

T(finl,....75ly = T(fm,..., 7).

(i) If {x € X : f(x) # 0} is contained in the union Ule B; of Borel sets B; and
if 7; 1s constant on B; then

T(fim,...,m) =0.
(iii)) There exists a finite Borel measure ¢ on X such that

k
T(fmcoml = [Tt [ 1f1dp @

i=1

for all (f, 71, ..., 7 ) € DF(X).

The space of k-dimensional metric currents on X is denoted by My (X ) and the
minimal Borel measure p satisfying (7) is called mass of 7" and written as ||T'||. We
also call mass of T' the number || 7| (X ) which we denote by M(7"). The support of
T is, by definition, the closed set spt T of points x € X such that ||T||[(B(x,r)) > 0
for all » > 0. Note that currents have by definition finite mass. Recently, a variant
of Ambrosio—Kirchheim’s theory that does not rely on the finite mass axiom (iii) has
been developed by Lang in [23].

Every function # € L'(K,R) with K C R¥ Borel measurable induces an element
of My (R¥) by

om;

O f. .- ) ::[KHfdet (@) d £k

for all (£, mq,...,7%) € DX(R¥). The restriction of T € Mz (X) to a Borel set
A C X is given by

(TLAYfomy, .o ) i=T(f ya, w1, .., 7).
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This expression is well-defined since T' can be extended to a functional on tuples for
which the first argument lies in L>°(X, ||T'||).
If £ > 1and T € My (X) then the boundary of T is the functional

AT(f, 71, s mme—1) =T, fimy, .., h—1)-

It is clear that 07 satisfies conditions (i) and (ii) in the above definition. If 97 also
satisfies (i1} then 7 is called a normal current. By convention, elements of Mg (X )
are also called normal currents.

The push-forward of T € My (X) under a Lipschitz map ¢ from X to another
complete metric space Y is given by

@#T(g3tly"'7rk) :: T(go(pstlo(p7"‘7rko(p)

for (g, 11,....17%) € D¥(Y). This defines a k-dimensional current on Y. It follows
directly from the definitions that (g« T ) = @s(3T).

We will mainly be concerned with integral currents. We recall that an J€ 8
measurable set A C X is said o be countably #* -rectifiable if there exist countably
many Lipschitz maps g; : Bi — X from subsets B; C R¥ such that

ge(aJei(B) =o.

Anelement T € My (X) is called integer rectifiable if there exist finitely many
points xi1,...,x, € X and 64, ..., 0, € Z\{0} such that

T(f) =) 6 f(x)

i=1

for all bounded Lipschitz functions f. A current T € Mg (X ) with &k > 1 is said to
be integer rectifiable if the following properties hold:

(i) ||T|| is concentrated on a countably #¥-rectifiable set and vanishes on H#*-
negligible Borel sets.

(ii) For any Lipschitz map ¢: X — R¥ and any open set U C X there exists
8 € L'(R¥,Z) such that (T L U) = [[A]].

Integer rectifiable normal currents are called integral currents. The corresponding
space is denoted by I (X). Incase X = R¥ is Euclidean space, Iy (X) agrees with
the space of k-dimensional Federer—Fleming integral currents in RY. If A ¢ R¥
is a Borel set of finite measure and finite perimeter then [[x4]] € I (R¥). Here, y4
denotes the characteristic function. If 7" € Iz (X)andifg¢: X — Y isa Lipschitz map
into another complete metric space then psT € I(Y). Moreover, every Lipschitz
chain in a complete metric space X can be viewed as an integral current in X,
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2.3. Generalized filling volume and filling radius functions. Let X, Y be com-
plete metric spaces and suppose X isometrically embeds mto Y. Then the filling
volume of T € Ix(X) in Y is defined as

Fillvoly (T) := inf{M(S) : S € I41(Y),dS = T}

where we agree on inf @ = oc. Incase ¥ = X we have Fillvoly (T') = Fillvol(T').
Furthermore, for r > 0, we set

FVie (X, Y, r) :=sup{Fillvoly (T) : T € It(X),9T = 0,M(T) < r}.
Clearly, FV, (X, X, r) = FVg41(r) and furthermore
Fillvoly (T') < Fillvol(T) and FVgy1(X,Y,r) <FViypi(r).

The left hand sides of both inequalities are smallest for ¥ := L°°(X ). Here, L>(X)
is the Banach space of bounded functions on X with the supremum norm

1/ lloo 1= sup [ f(x)].
xeX

Similarly, the filling radius of 7" € Iz (X) in Y is defined as
Fillrady (T} := inf{o > 0: 35 € Iz (Y) with dS = T, spt S C B(sptT, o)}
and furthermore
FRr+1(X, Y, r) :=supiFillrady (T) : T € Ix(X), 90T = 0,M(T) < r}.

The same obvious inequalities as for the filling volume hold for the filling radius,
namely

Fillrady (T) < Fillrad(T) and FRyy(X.Y,r) < FRi4 (7).

and the left-hand sides of both inequalities are smallest for ¥ := L*(X).

3. Basic properties of the asymptotic rank of a metric space

The following fact gives a somewhat more geometric definition of the asymptotic
rank.

Proposition 3.1. Let X be ametric space. Then astk(X ) is the supremum overn € N
for which there exists an n-dim. normed space 'V, subsets S; C X and a sequence
rj — oo such that (Sj,r j_ld ) = B(0,1) C V in the Gromov—Hausdorff sense,
where B(0, 1) denotes the closed unit ball in V. Here, by convention, the supremum
over an empty set is Q.
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Proof. This is an easy consequence of Corollary 2.2. 0

The properties of asrk (X)) listed at the beginning of the article are a direct conse-
quence of the definition and of Proposition 3.1.

We next show that the asymptotic rank is a quasi-isometry invariant. Let X =
(X,d)and X' = (X', d’) be metric spaces and recall that a map ¢: X — X' is said
to be a quasi-isometric embedding if there exist L > 1 and ¢ > 0 such that

L7(x, y) = Q < d'(p(x). (1) < Ld(x,y) + Q

for all x,y € X. If, in addition, for every x’ € X’ there exists x € X such that
d'(x', p(x)) < O then ¢ is called a quasi-isometry and X and X’ are called quasi-
isometric. It can easily be shown that if ¢: X — X’ is a quasi-isometry then there
exists a quasi-isometry ¢": X’ — X. We now have the following proposition.

Proposition 3.2. Let X and X' be metric spaces and Z an asymptotic subset of X.
If there is a quasi-isometric embedding ¢: X — X' and if Z is compact then there
exists an asymptotic subset Z' of X' which is biLipschitz homeomorphic to Z.

From this we immediately obtain the quasi-isometry invariance of the asymptotic
rank:

Corollary 3.3. If X and X' are metric spaces such that there exists a quasi-isometric
embedding . X — X' then astk(X) < astk(X'). In particular, if X and X' are
quasi-isometric then asrk (X} = asrk(X’).

Proof of Proposition 3.2. Let Z; C X and r; be such that r; — oc and that
(Z;, rj_ld ) converges in the Gromov—Hausdorft sense to (Z, dz). There exists a
metric space ¥ = (¥, dy) and isometric embeddings v, : (Zj,rj_ld) <~ Y and
Y. Z — Y such that

g =dua(Y(Z;),¥(Z)) — 0,

where dg denotes the Hausdorff distance in ¥. Choose a countable dense subset
{z;%ien C Z and for every i € N a sequence z{ € Z; with dy (¥ (z]). ¥ (z:)) <
2g;. After possibly passing to a diagonal subsequence we may assume that for all
m,n € N the limit

1 . ;
0(zZm, zn) i= lim —d'(¢(z7,), ¢(z;))
j—oo ¥

exists. Note that

L_le(Zm: Zn) = Q(Zm: Zn) = LdZ(Zma Zn)
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for all m,n € N. It follows from this and the triangle inequality that o defines a
metric on {z; : i € N} which can be extended to a metric on Z satisfying

L7 Ydz(z.2"y < o(z,2) < Ldz(z,2)) (8)

for all z,z” € Z. Note that, in particular, {z; };cn is dense in Z also with respect to
the metric p. '

Finally, set Z} = {p(z]) :i e N} C X’. We show that (Z]’-, rj_ld’) converges
in the Gromov-Hausdorff sense to (Z, ¢). For this it clearly suffices to show that for
every ¢ > ( there exists jo such that

|0 Gmzn) — ;7 d (p(2]) 0(z)))| < & 9)
forall m,n € N and all j > jo. Let &’ > 0 be small enough, to be determined later,
and choose iy such that {z; : i < iy} is ¢’-dense in Z with respect to the metric dz.
Let jo be such that &; < & and rj_l < & forall j > jo and such that the left-hand
side of (9) is smaller than & whenever m,n < iy and j > jo. Given m,n € N
choose mi, n < ip such that dz(z,,,z7) < & and dz(z,,z7) < &'. We compute for
J = Jo

|0(2m» 20) — 7771 A (9(20,), 9(2]))]
< |0(zm, 2n) — €(Zim- zi)| + l0(zim, 25) — r; ' d ' (p(z7,), 0 (z3))]
+ 17 d (plz). (z0)) — d'(p(25,), p ()]
<2Le 4+ ¢ + rj_lL[d(Zzl, Z,Jﬁ) + d(z,{,zé)] + 2rj_1 0
<2L¢' +¢ + L(2¢' + 8¢;) + 2;»;1 0
< (12L+1+4+20)¢.

Taking & := &/(12L 4+ 1 + 2Q) this establishes (9) and thercfore shows that
(Z J’ rj_ld "} converges in the Gromov—Hausdorff sense to (Z, ¢). Since the iden-
tity map (Z,dz) — (Z, ) is L-biLipschitz by (8), this completes the proof of the
proposition. O

The main reason for using the terminology ‘asymptotic rank’ is its relationship
to the Euclidean rank in the case of proper cocompact Hadamard spaces. For an ac-
count on the theory of non-positively curved metric spaces and in particular Hadamard
spaces, see e.g. [4], [8], [9]. The following result is a direct consequence of Proposi-
tion 3.1 above and of Theorems A, C and D of Kleiner [18].

Theorem 3.4. Let X be a metric space. If X is a Hadamard space then astk(X)
is the maximal geometric dimension of an asymptotic cone of X. If X is a proper
cocompact length space with a convex metric then

astk(X) = sup{n € N : AV n-dim. normed space and . V — X isometric}.
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In particular, if X is a proper cocompact Hadamard space then astk(X ) equals its
Euclidean rank.

For the definition of geometric dimension see [18]. Here a geodesic metric space
X is said to have a convex metric if for every pair of constant-speed geodesic segments
c1,c2: [0, 1] = X the function f +— d(cq(t), c2(¢)) is convex.

4. A decomposition theorem for integral currents

A crucial ingredient in the proof of Theorem 1.2 will be Theorem 4.2 below, which
gives a kind of ‘thick-thin’ decomposition for integral currents. This theorem was
proved 1n [31] and can in fact be used to furthermore establish polynomial 1soperi-
metric inequalities and Theorem 1.6, see Section 7. We start with the following
definition.

Definition 4.1. Letk > 2 and ¢ > 1. A complete metric space X is said to admit an
isoperimetric inequality of rank « for Ir_; (X'} if there is a constant D > 0 such that

EVi(r) < Dlgo(r) (10)

for all ¥ > O, where I , is the function given by

k
FE=T, 0 <r <1,

Ik,a(r) = { L

re—1, 1 <r < o0.

In [15], 6.32, the polynomial bound ra-1 was termed an isoperimetric inequal-
ity of rank greater than «. Here we will use the shorter terminology of rank «.
I[soperimetric inequalities of rank &k for I (X} are exactly those of Fuclidean type.

Now, set A 1= {(k,a) € N x(1,00) : k = 2} U {(1,0)}, let y € (0, o0) and
define auxiliary functions by

FroyF)=yr and Gio(r) =7,
and for (k, o) € A\{(1,0)} by

ko 0o<r<l1,

y-ro,
F r) =
k,Ol,)’( ) {)/ -ra’ 1 < ¥ < OO,

0<r<l,

Rl—  &—

Gra(r) = {

, 1l <r <o

The thick-thin decomposition theorem alluded to above can now be stated as
follows.
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Theorem 4.2. Let X be a complete metric space, (k,a) € A, and suppose in case
k = 2 that X admits an isoperimetric inequality of rank « for Ix_1(X). Then for
every A € (0, 1) there exists y € (0, 1) with the following property. Abbreviate
F = Froyand G := Gy, andlet § € (0,1). For every T € I (X) there exist
Relx(X)and T; € I (X), j € N, such that

o0
T=R+> T
it

and for which the following properties hold:
(1) R = 9T and 3T; = O forall j € N;
(ii) Forall x € spt R\ spt 0T and all 0 < r < min{58G(M(R)), dist(x,spt 9T )}

IRIBGr) = 557D F();

(i) M(T;) < (1 + A)vyM(T) forall j € N, where v := 4 ifk = 1orv :=
max{8%, 5%} otherwise;

(iv) diam(spt 7;) < 4G ()/_1%5k+"‘M(TJ-));

(v) M(R) + 135 3372 M(T;) < M(T).
If ¥ = 1, all statements of the theorem hold for A = 0 as well. For the proof
of Theorem 1.2 we will only need the case @ = k. The general case will be used
to prove new polynomial isoperimetric inequalities in Section 7. For the proof of
Theorem 4.2 we refer to [31].
We will furthermore need the following proposition from [31], see also [3].

Proposition 4.3. Let X be a complete metric space, k > 2, « > 1, and suppose
that X admits an isoperimetric inequality of rank o for Ip_1(X) with a constant
Dy_1 € [1,00). Then for every T € Ix_1(X) with 0T = 0 and every ¢ > O there
exists an S € Ig(X) with 08 = T, satisfyving

M(S) < min {(1 + &)Fillvol{T}, D1 Iz« (M(T))} (11)

and with the following property: Foreveryx € spt S andeveryQ < r < dist(x, spt T')
we have

|S[(B(x,r)) = Fk,a,u(r)

where

: 1 1
:= min s
T B

with a1 ;= max{k, «}.
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A direct consequence of the proposition is the following estimate on the filling
radius.

Corollary 4.4. Let X be a complete metric space, k > 2, « > 1, and suppose
that X admits an isoperimetric inequality of rank « for Ix_1(X). Then for every
T € Ix_1(X) with 0T = 0 we have

WM(T)FT, M(T) < 1,
WM(T)o 1, M(T) > 1,

4 1
ro_ {(Dk—l)k (Dk—1)“}
' i= max ; '
I I

We end this section with the following useful fact.

Filltady (T) < Gg o (" "Fillvoly (T)) < {

where

Lemma 4.5. Ler X be a complete metric space, (k,a) € A, and 0 < ¢, < 1. Set
F:=Fgqand G := Gy, and let R € I (X) be such that 3R = 0 and

IR||(B(x.r)) = F(r)

forall x € spt R and all v € [0,6G(M(R))]. Then there exist constants m € N and
E > 0depending only on k, «, 8, € and a decomposition R = Ry + --- + Ry, with
Ri e Ix(X), dR; = 0, and

(1) ||R;|[(B(x,r)) = F(r)forall x € spt R; and all r € [0,G(M(R))],
(i) M(R) = M(Ry) +--- + M(Rp),
(iii) diam(spt R;) < EG(M(R;)).

It follows from (i) that, in particular,
M(R;) > £ min{8¥, 5%y M(R).

Proof. Seto’ ;= wifk > 2ore’ := 1ifk = 1. Fix x € spt R arbitrary and observe
that
IRI(B(x.t + 27" 8G(M(R))\B(x.1 — 271 6G(M(R)))) = 0

forsome € [38G(M(R)), 2 max{§!7%,817*YG(M(R))]. Thus Ry := RLB(x,1)
satisfies Ry € I (X), dR; = 0 and

IR (|(B(x', 1)) > F(r) (12)
for all x” € spt Ry and all 0 < r < §G(M(R)). In particular, we have
M(R;) > & min{6*, 5% M (R) (13)
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and thus
diam(spt R1) < EG(M(R))

for a constant £ depending only on k,«, d,e. Proceeding in the same way with
R — R one eventually obtains a decomposition R = R; + -+ + R, with the desired
properties. The bound on m clearly follows from (13). O

5. Sub-Euclidean isoperimetric inequalities

In this section we prove the main result of this paper, Theorem 1.2. We begin with
the following simple lemma.

Lemma 5.1, letk > 2, a0 > land 0 < A, 6 < 1. IfL > 0and0 < t; < 6L are

such that
oC
A Z ti < L
i=1
then

5 hea) = 21 (86, 0971 L),

=1

Proof. Pick finitely many integer numbers O =: mg < m| < my < -+ < mj, with
the property that
0L <ty 41+ -+ tm <26L

foreachi =1,..., jo and
o0
>t =6L
n=mj0+1
Then jo < 5 and hence
Jjo 00
Zlka(tl)<zlka(rml 1+1+ +tml)+1ka( Z tn)
i=1 i=1 n=mj0+1

1
= 55 lka(20L) + Ira(8L)

o M max {(28)16%1, (25)“731}11\7,(1 (L). U

Lemma 5.2, Let X be a complete metric space, k > 1, @ > 1, and suppose X admits
an isoperimetric inequality of rank « for I (X). In case k > 2 suppose furthermore
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that X also admits an isoperimetric inequality of rank k for Ix_1(X). Let & > 0
and T € Ii(X) with 0T = 0. If Fillvol(T) > elx41,o(M(T)) then there exists
T’ € I (X ) with 3T = 0 and satisfying the following properties:

(1) Fillvol(T”) = S 1k11,0(M(T")),
(i) M(T") = AM(T),
(iii) diam(spt T’) < BM(T')%,
(V) |T'|(B(x,r)) = Cr¥ forall r € [0, 536M(T")x].
Here, A, B, C, 8 > O are constants depending only on k, o, € and the constants of the

isoperimetric inequalities.

Proof. Set A :=1/3 and

(3 e ( e )“kl
O 1= min {§ —, , ,
8 64D, \64D,

where Dy is the constant for the isoperimetric inequality for I (X). Let T = R +
Z;’;l T; be a decomposition as in Theorem 4.2. It then follows from Lemma 5.1
that

oC
Fillvol(T) < Fillvol(R) + D Y Ti1.a(M(T}))

i=1

< Fillvol(R) + EIHLQ(M(T))

and thus . .
Fillvol(R) > 51k+1,a(M(T)) > 51k+1,a(M(R)). (14)

This together with the isoperimetric inequality for I (X) yields

M(R) > min {(ﬁ)ki{T (ﬁ)%}w’r).

Let R = Ry 4+ ---+ R,, be adecomposition of R as in Lemma 4.5. By (14) and the
special properties of the decomposition there exists an ¢ such that 77 := R; satisfies

Fillvol(T") > glkm, (M(T")).

It is clear from Lemma 4.5 that 7" satisfies all the desired properties. O

We are now ready for the proof of the sub-Euclidean isoperimetric inequality.
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Proof of Theorem 1.2. We argue by contradiction and suppose therefore that

v ¥
lim sup kk—++11() > 2gp >0
F—>00 Pk

for some &y > 0. In particular, there is a sequence 7, € I(X) with 97, = 0 and
such that M(7;,) — o0 and

Fillvol(T,) > eoM(T,p) * (15)

for every m € N. By Theorem 1.2 of [27], X admits an isoperimetric inequality of
Euclidean type for I (X) and, if & > 2 also one for I;_; (X). Therefore we may
assume by Lemma 5.2 that

diam(spt Tyr) < BM(T}) % (16)

and
| T || (B(x, 7)) = Crk (17)

for all x € spt Ty, and all € [0, 56M(T,,) /K], where B, C, § are constants indepen-
dentof m. Wesetr, := M(Tm)% and note that r,,, — 00. We choose S, € Ir41(X)
with 0S,, = T,, and .
k+1
M(Sm) = Dk[M(Tm)] K

and with the volume growth property of Proposition 4.3. We define a sequence
of metric spaces X,, := (X, édx) where dy denotes the metric on X. Setting
Ly = spt.S,, C X,y it follows directly from Proposition 4.3 and (16) and (17) that
the sequence (Z,,, #dx) is uniformly compact. Therefore, by Gromov’s compact-
ness theorem [12] there exists (after passage to a subsequence) a compact metric
space (Z,dz) and isometric embeddings ¢, : (Zn, #dx) — (Z,dz) and such
that ¢, (Z,,) is a Cauchy sequence with respect to the Hausdorff distance. Denote
by S,, the current S,, viewed as an element of Iy 4 (Xp). Since M(gnsS,,) < Di
and M (3(gm#S),)) = 1 we may assume by the compactness and closure theorems
for currents that 45, weakly converges to some S € I 4 ((Z). We first show that
dS # 0. For this we choose x,, € spt S,, arbitrarily and define an auxiliary metric
space Y as the disjoint union | |>°_, X, and endow it with the metric dy in such a
way that dy |x,, xx,, = #dx as well as

1 1
dy (y, ) = —dx(y.xm) + 3+ —dx (¥, xm’)
F Fn/
whenever y € X, and y' € X,y with m” # m. Itis clear that ¥ admits a local cone
type inequality for I; (Y), [ = 1,...,k, in the sense of [28] and that any two points
in Y at distance less than 2 can be joined by a curve of length at most Q times their
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distance. Denote by T, the current T, viewed as an element of Iz (Y') and note that
M(T,,) = 1. Now T, cannot weakly converge to O since otherwise, by Theorem 1.4
in [28], we have Fillvol(T,,) — 0 and, in particular, there exist §m € Ip41(Y) with
S, = T, for all m € N and such that M(§m) — 0. Of course, it is not restrictive

to assume that spt S C Xm. Denote by S, the current Sy, viewed as a current in
X. Then S,, satisfies d.5,, = T}, and

M(S,)

Fm

which contradicts (15). Thus, 7, does not weakly converge to 0 and therefore there
exist & > 0 and Lipschitz maps f, 71,..., 7 € Lip(Y) with f bounded such that

T (fimy,...,mx) =€ forallm e N,

Note that UZ,, C Y is bounded so that the functions m; are bounded on UZ,,.
We define Lipschitz functions f,, and 7 on ¢, (Z,,) by fi(z) := f(p,*(2)) and
n™(z) := mi(p,," (2)) for z € g(Zm). Here, we view @' as a map from ¢(Z,,)
oY = | ];2,; X; with image in X,, C Y. By McShane’s extension theorem there
exist extensions fm, " Z — R of f, and 7]" with the same Lipschitz constants
as f and 7;. By Arzela—Ascoh theorem we may assume that fm and /" converge
uniformly to Lipschitz maps f , 7 on Z. Finally, we abbreviate T, := @7, and
use Proposition 5.1 in [3] to estimate

aS(ﬁﬁjla'vﬁk):m!hm T,,Z(ﬁ?%l,.,]%k)
— lim [T”(fm,n;”,...,ﬁ;g@)+T,;;(f—fm,ﬁl,...,ﬁk)

M—=00
o Ty 00 ) = T s 70 50

ywmﬂﬂmwfuﬁmwﬂ

m—00
i=1

— lim sup Llp(fm)Zf |77 — Am|d||T”||]

m—-0o00
i=1
= &.

This shows that indeed dS # 0 and hence also S # 0. Now, since the Hausdorff
limit Z’ := limg ¢m(Z,,) C Z is an asymptotic subset of X and since spt S C Z’
and S # 0, Theorem 4.5 in [3] shows that there exists a biLipschitz map v: K C
R¥*+1 — Z’ where K is compact and of strictly positive Lebesgue measure. This
is in contradiction with the hypothesis that k& > asrk X and hence this completes the
proof. O
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The arguments in the proof above can easily be used to establish the following
result.

Theorem 5.3. Let k € N and let X be a complete metric space which admits an
isoperimetric inequality of Euclidean type for 1. (X) and, in case that k > 2, also
one for I _1(X). If k > astk(X) then

Vit (X, L(X).r) _

= 0.
k

lim sup
F—00 ¥

Note that in contrast to the main theorem we do not assume here that X admits
cone type inequalities.

6. Lower bounds on the filling radius
In this section we prove the following theorem.

Theorem 6.1. Let X be a complete metric space such that, for some Dy > 0, any
two points x,x" in X can be joined by a curve of length at most Dyd(x,x"). Let
k € N and suppose X admits isoperimetric inequalities of Euclidean type for 1,,(X)
with some constants Dy, m = 1,... k — 1. Ifk < astk(X) then

FRg4+1(r) = FRp 41 (X, L™ (X), 1) = exrk

for all ¥ > 0O large enough and for some e > 0 depending only on Dy, m =
l,....k— 1.

Note that Theorem 1.4 is a consequence of the above since, by Corollary 4.4, we
have y
Fillrady,~ (x)(T) < C[Fillvolycox)(T)]*+1

for some constant C and all T € I3 (X ) with dT = 0.

Proof. Let Z be an asymptotic subset of X and ¢: K € R¥T! — Z a biLipschitz

map with K compact and such that £¥+1(K) > 0. Let || - || be a norm on R¥+!
as in Corollary 2.2 and set V := (R*T1 | -|). Let {vy,....vkq1} C V and
{vl, .-, vg ) C V™ be bases satisfying

||'Ui|| =1 = ||'Ul*|| and U;»k('l)j) = 5ij fOI'ﬂHi,j.

Let @ denote the cube Q := {Zf:ll Aivi 10 <A; <1} Forn=1,....k +1
denote by A(n) the set of increasing functions

af{l,...,n}—=>{1,....k+ 1},
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and by L, the subspace generated by {vy(1). .- ., Vam)} Whenever @ € A(n). Itis
clear that
1< uf™ (ay A AVg(m) <02,

where u77* denotes the Gromov mass*-volume on Ly and ve(1) A -+ A Vg(n) 15 the
parallelepiped spanned by these vectors. Recall that for a compact set K C W in an
[-dimensional normed space the associated integer rectifiable current [K]] € I; (W)
satisfies ||[[K]]||[(A) = uf"(A), see e.g. [30], Proposition 2.7. Fix m € N large
enough (as chosen below) and let @,, denote the n-skeleton of the cubical subdivision

of @ given by
k+1

Qo= QN {2 Y §vi: 6 e L

i=1
if n =0and

Qn =lo=z4+2""LyNQ):z€ &y, € An), 0 C O}

itn e {1,....k + 1}. We furthermore set 0@, = {0 € @, : 0 C JdQ}. Let
s > 0 and ¢ > 0 be arbitrary. By Corollary 2.2 there exists an » > 0 and a (1 + ¢)-
biLipschitz map v : (8Qo, r| - ||) — Z. The definition of asymptotic subset and the
fact that 3@ is a finite set imply the existence of s’ > max{s, 2”2} and a (1 4 2¢)-
biLipschitzmap ¢ : (3@, s'||-|) — X. We write V' := (R¥*+1, s’||-||) and note that
by McShane’s extension theorem, there exists a (1 + 2¢)(k + 1)-Lipschitz extension
n: L®(X) — V' of the map ¥~ ': ¥ (0Q) — V’. In the following, we regard
0, @,,and 3@, as subsets of V’. We associate with d@,, the additive subgroup

Gn={T eL.(V): T =Y cilloill.ci € Z.oy € 3@y} C L (V).

We now construct homomorphisms A, : G, — I,(X)and [, : G, — I,41(V’) for
n=20,1,...,k, with the property that forall T € G,

(i) do Ay = Ap—1 09 whenevern > 1,

(i) M(AR(T)) = C;M(T),
(iii) AT,(T) = T — nAn(T) — Tney (8T) whenever n > 1,

(iv) M(I(T)) < 27" D/ s'M(T),

V) spt(nsAn(T)) C B(spt T, 27" Eps’),

(vi) spt{Tx(T)) C B(sptT,27"Es).

Here, C,, D;,, E,, E, are constants depending only on Dy,...,D,. Forn = 0
we simply set Ag([[x]]) := ws[x]] for each x € 0@Q( and extend Ay to Gy as
a homomorphism. Set furthermore 'y := 0 and note that for n = 0 the above
properties are satisfied with Cj := 1, D{ := 0, Ey := 0, E| := 0. Suppose now that
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An—1 and I',—; have been defined for some n € {1,...,k} and that they have the
properties listed above. In order to define A, let o € 9@, and note that

@)™ < M([[o]) < n2@7"s")".

If n = 1 there exists a Lipschitz curve of length at most (1 + 2¢)Dy27™s" connecting
the points 1 (do). This gives rise to an S € I1(X) with dS = Ao (9[[¢]]) which
satisfies

M(S) < (1 +28) D275 < (1 + 28) DM ([[o]])

and
spt(nsS) C B(o, (1 4+ 28)%(k + 1) D27™s").

We define A; ([[o]]) := S. Clearly, A; satisfy properties (i) and (ii) with C| :=
(1 +2&)Dg and (v) with Eq := (1 + 2&)?(k + 1)Dy. If n > 2 then

A1 (Bllo]) = An—s ([lo]]) = 0

and thus the isoperimetric inequality for I,,—; (X) and Corollary 4.4 imply the exis-
tence of an S € I,(X) with S = A,_1(9[[c]]) and

M(S) < Dy 1 [M(Any QLo]IN]™ T < CLR™s) < CM([o])).
where C, := Dn_1[2n(n — I)LEIC,;_I]%, and

spL(mS) C B(0 [Enet + /(14 26)(k + Din — D2 @nCy) 7T [275).

We set Ax([[¢]]) := S and extend A, to G, linearly and note that properties
(1), (1) and (v) are sausfied (after the obvious choice of E,). This completes the
construction of A,. In order to define [',, n > 1, let again o € d@, be arbitrary.
Setting

T":= [loll = nAn (lo]D) — Ta—1 @llo])

one easily checks that
aT" = dlo]] — m (BA, ([o])) — 0T»—1 @llol) =0 and M(T") < D"M([[o]),

where D” 1= {1+[(1 4+ 2&)(k + D)]" C, +2n(n— "t p! }. Using the isoperi-

n—1
metric inequality for I, (V') and Corollary 4.4 we findan S € I, 41 (V') withdS = T’

and
n+

nl S Z_mﬁn(D”)n+l A+l

wonom s'M(([o])

M(S) < D,[M(T")]

and
spt(nsS) C B(o, [En+ E,_; + ﬁ’(D”)%ﬁ]z—msf),
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where D, is the isoperimetric constant for I, (V') and fi’ is the constant from Corol-
lary 4.4 for V’. We define T, ([[o]]) := S and extend it linearly to G,. Clearly, ',
satisfies the properties (iii), (iv) and (vi) with suitable choices of D/, and E;. This
concludes the construction of the homomorphisms A, and I', forn = 0,1,...,k
with the desired properties.

Letnow [[Q]] € Iy (V') be the integral current associated with Q endowed with
the orientation vy A -+ A Vg and set T := Ay (9[[Q]]). By property (ii) we have

M(T) < 2(k + 1)CLk 3 (s')*.
Given an S € Ix4 (L% (X)) with S = T we compute

(sS4 L I2ID) = n#(95) + (T ([ 21
= A QI Q21D) + ATk M 2ID)
= 2],

where the last equality follows from property (iii). We therefore obtain
i i
M(7S) > M([Q]) — M(Tx B[QM) > [1 —2'"(k + 1)k > D} J(s )+
and since .S was arbitrary we conclude

=21k + 1)kI D]
[(1+ 2e)(k + 1)]F+!

Fillvolyco(xy (T) > L

From this and the isoperimetric inequality for Iz (X) it follows that

1—21-m(k + kD]
Del(1 4 28)(k + D]FH!

a1
) (Y < M(T) < 2(k + 1)k%c,;(s’)k.

Furthermore, by the choice of {vy,...,ve11}, we have
Fillrad(3[[Q]]) = As’

for some constant A > 0 only depending on k. We conclude that

Fillrad (T) > )
1irady oo 5.
L= =0 200k - 1)

Choose now m € N sufficiently large to conclude the proof of the theorem. O
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7. Polynomial isoperimetric inequalities and the proof of Theorem 1.6

In this section we show how the decomposition theorem, Theorem 4.2, can be used
to establish polynomial isoperimetric inequalities with exponent different from the
Euclidean one. This will allow to prove Theorem 1.6.

The following definition generalizes the notion of cone type inequalities.

Definition 7.1. Letk € N and v, ¢ > 0. A complete metric space X is said to admit
a diameter-volume inequality of type (v, o) for I (X) if there exists C € (0, o0) such
that for every T € I (X) with a7 = 0 and bounded support

Fillvol{T') < C diam(spt T)M(T') (18)
if diam(spt 7) < 1 and
Fillvol{T) < C[diam(spt T')]"M(T)* (19)
otherwise.

Diameter-volume inequalities of type (1, 1) are exactly cone type inequalities.
On the other hand, easy examples of spaces admitting diameter-volume inequalities
of type (v, 1) are simply connected homogeneous nilpotent Lie groups of class v,
endowed with a left-invariant Riemannian metric, and more generally, metric spaces
all of whose subsets B with R := diam B < oc can be contracted along curves of
length at most A max{R, R"} and which satisfy a weak form of the fellow traveller
property (similar to that of asynchronous combings in geometric group theory). For
precise statements in this direction see Section 8.

Theorem 7.2. Let X be a complete metric space, k € N, v,p0 > 0, and suppose X
admits a diameter-volume inequality of type (v, ) for i (X). If k = 1 set oy := 1.
If k > 2 then suppose that X admits an isoperimetric inequality of rank oy for
I 1 (X) for some a1 > 1. If v + oQp—1 > ap—1 then X admits an isoperimetric
inequality of rank
Ck—1
V4 Q0k—1 — Of—1

for 1 (X)) with a constant which depends only on k,v,p,ar—1 and the constants
from the isoperimetric inequality for Ixp_1(X) and the diameter-volume inequality

for I (X).

o =1+

The definition of isoperimetric inequality of rank o was given in Section 4. The
statement of the theorem can be reformulated as follows: If X admits an isoperimetric
inequality for Ix_; (X)) with exponent & > 1 then

FViy1(r) < Drot"~u
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for all > 1 and for a suitable constant D. Theorems 3.4.C and 4.2.A in [13] and
Theorem 1.2 in [27] are special cases of the above theorem withv = 1 and o1 = k.
Note also, that Theorem 1.6 stated in the introduction is a direct consequence of
Theorem 7.2. For simply connected homogeneous nilpotent Lie groups, Theorem 7.2
yields:

Corollary 7.3. Let X be a simply connected homogeneous nilpotent Lie group of
class v, endowed with a left-invariant Riemannian metric. Then for every k > 1
there exists a constant D such that
ok
FVig1(r) < Dr' T it

forallr > 1.

For jet space Carnot groups, which are particular examples of simply connected
homogeneous nilpotent Lie groups, Young has recently obtained in [32] better bounds
for FVg4q.

Proof of Theorem 7.2. Setd ;= A ;= 1/5 and set furthermore « ;= Oincase k = 1
and « := og_; otherwise. Abbreviate F := Fy 4, and G := Gy o, where y is the
constant of Theorem 4.2. Let T € Ix(X) with 07 = 0 and let a R, T; be given
as in Theorem 4.2. Throughout this proof, the numbers (i) through (v) will refer to
the properties listed in Theorem 4.2. Furthermore all the constants F; that appear
will depend only on k, «, ¥ unless stated otherwise. Set Ty := R. After possibly
applying Lemma 4.5 we may assume that

diam(spt Tj) < E,G(M(T}))

for all j > 0 and for a constant £;. Suppose first that M(7') < 1. Then, by (v), we
have M(7T;) < 3/2forall j > 0, so that

diam(spt 7)) < EZM(TJ-)%

for some constant I5. It follows from the diameter-volume inequality that for each
J = Othere exists an S; € Iy (X) with dS; = T; and

M(S)) < EsM(T) 4
for some E3 depending only on k, o, y and Cy, v, ¢. This is clear if diam(spt 7;) < 1.
If, on the other hand, diam(spt 7;) > 1, then we have M(7;) > E;* and from this
the inequality readily follows. Finally, we have

k41 k41

2 M) = E3§OM(”)W - E3[;0M(7}>] T w2 Mt

J=0
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Therefore, Z?:o S; 1s a Cauchy sequence with respect to mass and therefore con-
verges to some S € Ix (X)), which clearly satisfies S = T and

k+1
k41

M(s) = YoMy = B[ 5] T ma
=0

This proves the theorem it M(T) < 1. In case M(T') > 1 define J :={j > 0:
diam(spt 7;) > 1}. If j € J then, by the diameter-volume inequality, there exists an
Sj € Iy 1(X) with BSJ' = TJ and

M(S;) < CeM(T))a e,

On the other hand, if j ¢ J then, again by the diameter-volume inequality, there
exists an S; € Ix4;(X) with dS; = T; and

M(S;) < Ci diam(spt T)M(T}) < CeM(Ty).

Since v + ¢o > @ and M(T') > 1 we have

o0
D OM(S) < G Y M(T)=*e + G ) M(T)
j=0 jelr e

<a[Tmap] "+ lama)
jeJ

37ate .
szck[ﬂ M(T)="e,

Itnow follows exactly as above that Z;-‘ _p Sj convergesinmasstosome .S € Ixyq(X)
which has the desired properties. This concludes the proof. O

8. Appendix: Metric spaces admitting cone type and diameter-volume
inequalities

Let (X, d) be a metric space, B C X with diam B < oc¢, and 4, H > 0. Suppose
there exists a Lipschitz map ¢: [0, 1] x B — X with the following properties:

(i) There exists xg € X such that ¢(0, x) = xg and ¢(1,x) = x forall x € B.
(ii) The lengths of the curves ¢ — ¢ (¢, x), x € B, are bounded above by 4.

(iti) For every x € B there exists a relatively open neighborhood U, C B of x
and a continuous family ¢,/, x’ € U, of reparametrizations of [0, 1] such that
ox(t) =t and

d(p(t, x), plox (1), x")) < Hd(x,x") forall x’ € Uy andall s € [0, 1].
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Here, a map v: [0,1] — [0, 1] is said to be a reparametrization of [0, 1] if it is
continuous, non-decreasing and satisfies v(0) = O and v(1) = 1. We call ¢ as above
a Lipschitz contraction of B with parameters (/, H).

Definition 8.1. Let X be a metric space and i, H: [0, 00) — [0, o¢) continuous
functions. If every subset B C X with R := diam B < oo has a Lipschitz contraction
with parameters (h{(R), H(R)) then X is said to admit generalized combings with
length function / and distortion function H.

Simple examples of spaces admitting generalized combings are given as follows:
Normed spaces, CAT(0)-spaces and, more generally, geodesic metric spaces with
convex metric (see Section 3 for the definition) admit generalized combings with
length function #(R) := R and distortion function H(R) = 1. Simply connected
homogencous nilpotent Lie groups of class ¢, endowed with a left-invariant Rieman-
nian metric, admit generalized combings with length function

h(R) := Amax{R, R}

and distortion function H(R) = L for constants A, L, see [26]. We now prove the
following proposition.

Proposition 8.2. Let X be a complete metric space, T € Iy (X) a cycle with bounded
support and h, H > 0. Suppose there exists a Lipschitz contraction ¢ of B := spt T
with parameters (h, H). Then there exists S € lp4+1(X) with S = T and such that

M(S) < [k(k + D]EhH*M(T).

Before turning to the proof we mention the following immediate consequence of
the proposition. Given v > 1, u > 0and A, L > 0 define

A 0<r<l L 0<r<1
hy(r):= d =7= and H,(r) := =r=
Ar' 1 <r <o Lr# 1 <r < oc.

We have:

Corollary 8.3. Let X be a complete metric space. If X admits generalized combings
with length function h, and distortion function H,, then X admits a diameter-volume
inequality of type (v + ki, 1) for 1. (X ) for every k > 1. In particular, if v = 1 and
i = 0 then X admits a cone type inequality for Iy (X).

For the definition of volume-diameter inequalities see Section 7.
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Proof of Proposition 8.2. By Theorem 4.5 of [3] it is enough to consider the case
T = v4[[]] for a biLipschitz map ¥ : K ¢ R¥ — X and # € LY(K.Z). Set
B := sptT and let ¢ be a Lipschitz contraction of B. Set S := ¢x([0, 1] x T),
where the product [0, 1] x T of an interval with 7 is defined as in [27], and note that
Sel(X)and dS = T. Let f and 7y, ..., be Lipschitz functions on X
with f bounded and such that Lip(sz;) < 1 forall /. We define ¢(r, z) := (¢, ¥ (2))
fort € [0,1and z € K and @ := (mq,...,7Tky1). Let (z,z) € [0,1] x K be
such that 7 o @ is differentiable at (¢, z) with non-degenerate differential, which we
denote by Q, ¥ is metrically differentiable at z in the sense of [17] and the curve
v:(t) := @(¢, z) is metrically differentiable at 1. We may assume without loss of
generality that 77 o (7, z) = 0. Denote by P the orthogonal projection of R**+1 onto
the orthogonal complement of O (R x {0}). We claim that

[P(Q(0,v))|| < vk + 1H md y;(v)

for all v € R¥*. In order to see this fix v € R¥\{0} and choose, for each r > 0
sufficiently small, some 7, with ¢ = @y (z4rv)(#), Where o, denotes the family of
reparametrizations of [0, 1] around v (z). Itis easy to see that |r, — ¢| < Cr for some
constant C and all r > 0 sufficiently small. It then follows that

IPQ.v)| =l | P(r o p(0. 9z + ro)
ol BN + Pl o plir YD
< Lip(e) imsup-d(p(t. (= + ro). p(tr. ¥ (2))

N0
< Vk+ 1H md v, (v).

This proves the claim and furthermore yields

|det O] < (k + 1)5 H*Jy (md(y2) )y (md ).

We use this, the area formula in [17] and Lemma 9.2 and Theorem 9.5 in [3] to
conclude

|S(f,7T1,---,7Tk+1)|

< f |6(2) f(§(t. 2)) det (D) (w0 G| LX (2, 2)
[0,1]xK

< (k+ l)ngf 16(2) (ot ¥ N1 md(y2) )i (md ) d £ (1, 2)

[0,1]xK

< [k(k + 1)]’2‘ka

[0,1]x

Y | S (@, NI (md(yy 1)) (L | TN, %)
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and thus .
IS| < [k(k + D]2 H*pulg (e, x)d (L' x | T|)]

with g(z, x) := J1(md(yy —1())¢). This completes the proof. O

We finally mention that diameter-volume inequalities can also be established for
spaces with nice local geometry on which asynchronously combable groups with
polynomial length functions act properly and cocompactly by isomelries. See for
example Chapter 10 of [10] or Part II of [7].
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