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The Lagrangian Conley conjecture

Marco Mazzucchelli

Abstract. We prove a Lagrangian analogue of the Conley conjecture: given a 1-periodic Tonelli
Lagrangian with global flow on a closed configuration space, the associated Euler–Lagrange
system has infinitely many periodic solutions. More precisely, we show that there exist
infinitely many contractible integer periodic solutions with a priori bounded mean action and
either infinitely many of them are 1-periodic or they have unbounded period.
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1. Introduction

An old problem in classical mechanics is the existence and the number of periodic
orbits of a mechanical system. As it is well known, there are two dual formulations
of classical mechanics, namely the Lagrangian one and the Hamiltonian one. If
a system is constrained on a manifold, say M, then it is described by a possibly
time-dependent) Lagrangian defined on the tangent bundle of M or, dually, by a

Hamiltonian defined on the cotangent bundle of M. A classical assumption is that a

Lagrangian function LW R TM R is Tonelli with global flow. This means that

L has fiberwise superlinear growth, positive definite fiberwise Hessian, and every
maximal integral curve of its associated Euler–Lagrange vector field has all of R as

its domain of definition. The Tonelli class is particularly important in Lagrangian
dynamics: in fact, whenever a Lagrangian function is fiberwise convex, its Legendre
transform defines adiffeomorphism between the tangent and cotangent bundles of the
configuration space if and only if the Lagrangian function belongs to the Tonelli class.

In other words, the Tonelli Lagrangians constitute the broadest family of fiberwise
convex Lagrangian functions for which the Lagrangian–Hamiltonian duality, given
by the Legendre transform, occurs. Furthermore, the Tonelli assumptions imply
existence and regularity results for action minimizing orbits joining two given points
on the configuration space. For a comprehensive reference on Tonelli Lagrangians,
we refer the reader to the forthcoming book by Fathi [Fa].

The problem of the existence of infinitely many periodic orbits, for Hamiltonian
systems on the cotangent bundle of closed manifolds, is a non-compact version of the
celebrated Conley conjecture [Co], which goes back to the eighties. In its original
form, the conjecture states that every Hamiltonian diffeomorphism on the standard
symplectic torus T2n has infinitely many periodic points. Under a non-degeneracy

assumption on the periodic orbits, the conjecture was soon confirmed by Conley
and Zehnder [CZ2], and then extended to aspherical closed symplectic manifolds in
1992 by Salamon and Zehnder [SZ]. The full conjecture was established in 2004
by Hingston [Hi] for the torus case, and in 2006 by Ginzburg [Gi] for the aspherical
closed case. Other related results are contained in [FS], [GG], [Gü], [HZ], [Sc], [Vi2].

In the Lagrangian formulation, the periodic orbits are extremal points of the
Lagrangian action functional, and several sophisticated methods from Morse theory
may be applied in order to assert their existence. However, these methods only
work for classes of Lagrangians that are significantly smaller than the Tonelli one.
Along this line, in 2000 Long [Lo2] proved the existence of infinitely many periodic

orbits for Lagrangian systems associated to fiberwise quadratic Lagrangians on
the torus Tn. More precisely, he proved the result for C3 Lagrangian functions

LW R=Z TTn R of the form

L.t; q; v/ D hA.q/v;vi C V.t; q/; 8.t; q; v/ 2 R=Z TTn ;
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where AW Tn GL.n/ takes values in the space of positive definite symmetric
matrices, h ; i is the standard flat Riemannian metric on Tn and V W R=Z Tn R
is a C3 function. Recently, Lu [Lu] extended Long’s proof in many directions, in
particular to the case of a general closed configuration space. Other related results
concerning autonomous Lagrangian systems are contained in [CT], [LL], [LW].

In 2007, Abbondandolo and Figalli [AF] showed how to apply some techniques
from critical point theory in the Tonelli setting. They proved that, on each closed
configuration space with finite fundamental group, every Lagrangian system associated

to a 1-periodic Tonelli Lagrangian with global flow admits an infinite sequence of
1-periodic solutions with diverging action. In this paper, inspired by their work and

by Long’s one, we address the problem of the existence of infinitely many periodic
solutions of a 1-periodic Tonelli Lagrangian system on a general closed configuration
space.

1.1. Main result. Our main result is the following.

Theorem 1.1. Let M be a smooth closed manifold, LW R=Z TM R a smooth
1-periodic Tonelli Lagrangian with global flow and a 2 R a constant greater than

max
q2M

²Z
1

0
L.t;q; 0/ dt³: 1.1)

Assume that only finitely many contractible 1-periodic solutions of the Euler–
Lagrange system of L have action less than a. Then, for each prime p 2 N, the
Euler–Lagrange system of L admits infinitely many contractible periodic solutions
with period that is a power of p and mean action less than a.

Here it is worthwhile to point out that the infinitely many periodic orbits that we
find are geometrically distinct in the phase-space R=Z TM of our system, and the
mean action of an orbit is defined as the usual Lagrangian action divided by the period
of the orbit.

Theorem 1.1 can be equivalently stated in the Hamiltonian formulation. In fact,
it is well known that the Legendre duality sets up a one-to-one correspondence

² LW R=Z TM R
Tonelli

³ ² H W R=Z T M R
Tonelli

³;

where two correspondent functions L and H satisfy the Fenchel relations

H.t;q; p/ D max®p.v/ L.t;q; v/ j v 2 TqM¯; 8.t; q; p/ 2 T M;

L.t; q; v/ D max®p.v/ H.t;q; p/j p 2 TqM ¯; 8.t; q; v/ 2 TM:
1.2)

Here, the definition ofTonelliHamiltonian is thecotangent bundleanalogue of the one
of Tonelli Lagrangian: the HamiltonianH

W R=Z T M R isTonelli when it has
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fiberwise superlinear growth and positive definite fiberwise Hessian. The Legendre
duality also sets up a one-to-one correspondence between the contractible)
integerperiodic solutions of the Euler–Lagrange system of L and the contractible)
integerperiodic orbits of the Hamilton system of the dual H. Therefore Theorem 1.1 can be
translated into the following.

Theorem 1.2 Hamiltonian formulation). Let M be a smooth closed manifold,

H W R=Z T M R a smooth 1-periodic Tonelli Hamiltonian with global flow
and a 2 R a constant greater than

min
q2M

² Z
1

0 qM ¹H.t; q;p/ºdt³:min
p2T

Assume that only finitely many contractible 1-periodic solutions of the Hamilton
system of H have Hamiltonian) action less than a. Then, for each prime p 2 N,
the Hamilton system ofH admits infinitely many contractible periodic solutions with
period that is a power of p and Hamiltonian) mean action less than a.

H be the Hamiltonian flow of H, i.e. if W R T M is a HamiltonianLet ˆt

curve, thenˆt
H .0// D t/ for each t 2 R. A Hamiltonian curve is -periodic,

for some integer if and only if its starting point .0/ is a -periodic point of the
Hamiltonian diffeomorphism ˆ 1

H D ˆ i.e.
H

ˆH B : : : BˆH

„ ƒtim‚es …

.0// D .0/:

Therefore, Theorem 1.2 readily implies the Conley conjecture forTonelli Hamiltonian
systems on the cotangent bundle of a closed manifold.

Corollary 1.3. Let M be a smooth closed manifold and H W R=Z T M R a

1-periodic Tonelli Hamiltonian with global flow ˆt
H

Then the Hamiltonian
diffeomorphism ˆ1

H has infinitely many periodic points.

We shall prove Theorem 1.1 by a Morse theoretic argument, inspired by a work
of Long [Lo2]. The rough idea is the following: assuming by contradiction that

the Euler–Lagrange system of a Tonelli Lagrangian L admits only finitely many
integer periodic solutions as in the statement, then it is possible to find a solution
whose local homology persists under iteration, in contradiction with a homological
vanishing property analog to the one proved by Bangert and Klingenberg [BK] for
the geodesics action functional).

Under the Tonelli assumptions we need to deal with several problems while
carrying out the above scheme of the proof. These problems are mainly due to the fact
that a functional setting in which the Tonelli action functional is both regular say
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C1) and satisfies the Palais–Smale condition, the minimum requirements to perform
Morse theory, is not known. To deal with these lacks, we apply the machinery of
convex quadratic modifications introduced by Abbondandolo and Figalli [AF]: the
idea consists in modifying the involved Tonelli Lagrangian outside a sufficiently big
neighborhood of the zero section of TM, making it fiberwise quadratic there. If we
fix a period 2 N and an action bound, a suitable a priori estimate on the -periodic
orbits with bounded action allows to prove that these orbits must lie in the region
where the Lagrangian is not modified. Some work is needed in order to apply this
argument in our proof, since the mentioned a priori estimate holds only in a fixed
period while we look for orbits with arbitrarily high period.

Moreover, we have to deal with some regularity issues in applying the machinery
of critical point theory to the action functionals of the modified Lagrangians. In fact,
the natural ambient to perform Morse theory with these functionals is the W 1;2 loop
space, over which they are C1 and satisfy the Palais–Smale condition. However,
all the arguments that involve the Morse lemma such as the vanishing of the local
homology groups in certain degrees) are valid only for C2 functionals. We will
show that these arguments are still valid, developing an analog of the classical broken
geodesic approximation of the loop space: we shall prove that the action sublevels
deformation retract onto finite dimensional submanifolds of the loop space, over
which the action functionals are C2.

1.2. Organization of the paper. In Section 2 we set up the notation and we give
most of the preliminary definitions and results. In the subsequent three sections we
deal with Lagrangian functions that are convex quadratic-growth the precise definition

is given in Section 2.2). In Section 3 we introduce a discretization technique for
the action functional. In Section 4 we prove an abstract Morse-theoretic result, which
will be applied to the action functional. In Section 5, we prove a vanishing result for
elements of the relative homology groups of pairs of action sublevels under the iteration

map. The three sections 3, 4 and 5 can be read independently from one another,

with the only exception of Section 4.4, which requires Section 3. In Section 6 we
introduce the machinery of convex quadratic modifications of Tonelli Lagrangians,
and we apply it to build suitable local homology groups and to prove a homological

vanishing result for the Tonelliaction. Finally, in Section 7 we prove Theorem 1.1.

Acknowledgements. I am indebted to AlbertoAbbondandolo for many fruitful
conversations. This work was largely written when I was a visitor at Stanford University.
I wish to thankYakov Eliashberg for his kind hospitality.
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2. Preliminaries

Throughout the paper, M will be a smooth N-dimensional closed manifold, the
configuration space of a Lagrangian system, over which we will consider an arbitrary
Riemannian metric h ; i h ; i.

2.1. The free loop space. We recall that a free loop space of M is, loosely speaking,

a set of maps from the circle TW D R=Z to M. Common examples are the
spaces C.TIM/ or C1.TIM/. For our purposes, a suitable free loop space will be

W 1;2.TIM/, which is the space of absolutely continuous loops in M with
squareintegrable weak derivative. It is well known that this space admits an infinite dimensional

Hilbert manifold structure, for the reader’s convenience we briefly sketch this
argument here see [Kl, Chapter 1] for more details). First of all, we recall that the
inclusions

C1.TIM/ W 1;2
TIM/ C.TIM/

are dense homotopy equivalences. For each 2 W 1;2.TIM/ we denote by
W 1;2. TM/ the separable Hilbert space of W 1;2-sections of the pull-back vector
bundle TM. Its inner product, that we denote by

hh ; ii is given by

hh ; ii W D
Z

1

0
h t/; t/i t/ C hrt ; rt i t/ dt; 8 ; 2 W 1;2 TM/;

where rt denotes the covariant derivative with respect to the Levi-Civita connection
on the Riemannian manifold M; h ; i / Now, let > 0 be a constant smaller than
the injectivity radius of M; h ; i / and U W D ®v 2 TqM jq 2 M; jvjq < ¯ We

define a bijective map

exp
W W 1;2 U / U W 1;2

TIM/
as

exp / t/ W Dexp. t//; 8 2 W 1;2 U /; t 2 T;

whereW 1;2. U / W 1;2. TM/ is the openset of sections that take values inside
U Then, the above mentioned differentiable structure on W 1;2.TIM/ is induced
by the atlas ®exp 1

W U W 1;2. U / j 2 C1.TIM/¯ The tangent space of

W 1;2.TIM/ at a loop is given by W 1;2. TM/, and the above defined
hh ; ii is a

Hilbert–Riemannian metric on W 1;2.TIM/. By means of this metric, W 1;2.TIM/
turns out to be a complete Hilbert–Riemannian manifold.

Remark 2.1. Notice that, whenever a smooth loop is contractible, by means of a

trivialization of TM we can identify W 1;2. U / with an open neighborhood of
0 in the Hilbert space W 1;2.TIRN /.
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For each 2 N, let TOE WD R= Z. Extending the definition given before,
we introduce the -periodic free loop space W 1;2.TOE IM/, which is a complete
Hilbert–Riemannian manifold with respect to the metric hh ; ii given by

1
hh ; ii WD

Z
0

h t/; t/i t/ C hrt ;rt i t/ dt;

8 2 W 1;2 T
OE

IM/; ; 2 W 1;2 TM/:

For each n 2 N, we define the nth-iteration map

OEn

W W
1;2 T

OE

IM/ W 1;2 TOEn

IM/
by OEn / WD

OEn for each 2 W 1;2.TOE IM/, where OEn is given by the
composition of with the n-fold covering map of the circle TOE Analogously, for each

2 W 1;2.TOE IM/, we define the nth-iteration map

‰
OEn

W W 1;2 TM/ W 1;2 OEn TM/;

which is a linear isometric embedding. It is plain to verify that exp OEn B‰
OEn

D
OEn

B exp and d OEn / D ‰
OEn which implies that OEn is a smooth isometric

embedding.

2.2. Lagrangian settings. The elements of the tangent bundle TM will be denoted
by q; v/, where q 2 M and v 2 TqM. LetLW T TM Rbea smooth 1-periodic
Lagrangian. We will be interested in integer periodic solutions

W R M of the
Euler–Lagrange system of L, which can be written in local coordinates as

d

dt

@L
@vj

t; t /; P.t//
@L
@qj

t; t/; P.t// D 0; j D 1; :: : ;N: 2.1)

L W TM ' TM the associated Euler–Lagrange flow, i.e.We denote byˆt

ˆt
L .0/; P.0// D t /; P.t //;

where
W

OE0; t M is a solution of 2.1).
In this paper we will consider two classes of 1-periodic Lagrangian functions. A

smooth Lagrangian LW T TM R is called Tonelli when:

T1) the fiberwise Hessian of L is positive definite, i.e.

N

X
i;jD1

@2L
@vi @vj

t; q; v/ wiwj > 0;

for all t;q; v/ 2 T TM and w D PN
iD1 wi

@

@qi 2 TqM with w ¤ 0;
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T2) L is fiberwise superlinear, i.e.

lim
jvjq!1

L.t;q; v/
jvjq D1;

for all t;q/ 2 T M.
Moreover, we will always require that each Tonelli Lagrangian L further satisfies:

T3) the Euler–Lagrange flow of L is global, i.e. ˆL W R TM TM.
The second class of Lagrangians that we will be interested in consists of smooth

functions LW T TM R satisfying:

Q1) there is a positive constant `0 such that

N

X
i;jD1

@2L
@vi @vj

t; q; v/ wiwj `0jwj
2q;

for all t;q; v/ 2 T TM and w D PN
iD1 wi @

@qi 2 TqM;

Q2) there is a positive constant `1 such that

@2L
@vi @vj

t; q; v/ `1;

@2L
@ qi @vj

t; q; v/ `1.1 C jvjq/;

@2L
@qi @qj

t; q; v/ `1.1 C jvj
2
q/

for all t;q; v/ 2 T TM and i; j D 1; : : : ; N

In the following we will informally refer to this latter class as the class of convex

quadratic-growth Lagrangians. Notice that, up to changing the constants `0 and `1,

the above conditions Q1) and Q2) are independent of the choice of the Riemannian

metric and of the system of local coordinates used to express them. Moreover,
assumption Q1) implies that L is a Tonelli Lagrangian, hence this second class is
contained in the first.

For each 2 N, wedefine themean action functionalAOE
W W 1;2.TOE IM/ R

by

AOE / D
1 Z

0
L.t; t /; P.t// dt:

In the following we will simply call AOE the mean action or just the action, and in
period 1 we will omit the superscript, i.e. A WD AOE1 Since for all n 2 N we have
AOEn

B
OEn

D AOE ifwe seeW 1;2.TOE IM/ as asubmanifold ofW 1;2.TOEn IM/via
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the embedding OEn then AOE is the restriction of AOEn to W 1;2.TOE IM/. It is well
known that the -periodic solutions of the Euler–Lagrange system 2.1) are precisely
the extremalsofAOE These extremals turn outtobe smooth, as it is guaranteed by the
Tonelliassumptions. If the involved LagrangianLis of convex quadratic-growth, the
associated action functional AOE has good properties: the fact that L grows at most
quadratically guarantees that AOE is C1 and twice Gateaux-differentiable, while the
fact that L grows at least quadratically implies that AOE satisfies the Palais–Smale
condition see [Be] or [AS2, Propositions 2.2 and 2.5]). However, AOE is C2 if and

only if the restriction of L to each fiber of TM is a polynomial of degree at most 2
see [AS2, Proposition 2.3]).

Remark 2.2. For simplicity, in this paper, all the Lagrangian functions are assumed
to be smooth, i.e. C1. This assumption can be easily weakened, but then one would
have to care about technical issues due to the fact that the solutions of the Euler–
Lagrange system would not be C1 anymore they are Cr whenever the Lagrangian
is Cr

2.3. The Conley–Zehnder–Long indexpair. LetLW T TM Rbe a 1-periodic
Tonelli Lagrangian. We denote by @vL.t; q; v/ 2 TqM the fiberwise derivative of L
at t; q; v/, which is given in local coordinates by

@vL.t; q;v/ D
N

X
jD1

@L
@vj

t; q; v/dqj :

Under the Tonelli assumptions it is well known that the Legendre transform LegW T
TM T T M, given by

Leg.t; q;v/ D t;q; @vL.t; q;v//; 8.t; q;v/ 2 T TM;

is a diffeomorphism see [Fa, Theorem 3.4.2]). This diffeomorphism allows to define
a Hamiltonian H W T T M R by

H.t; Leg.t;q; v// D @vL.t;q; v/v L.t; q; v/; 8.t; q; v/ 2 T TM:

The functions L and H are said to be Legendre-dual, and they fulfill the Fenchel
relations 1.2).

The cotangent bundle T M, whose elements will be denoted by q; p/, has a

canonical symplectic form given in local coordinates by

D
N

X
jD1

dqj ^ dpj:
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The time-dependent) Hamiltonian vector field XH is defined as usual by XH ³ D
dH, and its flow ˆt

H is called the Hamiltonian flow of H. It is well known that this
latter is conjugated to the Euler–Lagrange flow ˆt

L by the Legendre transform. In
other words, a curve

W
OE0; M is a solution of the Euler–Lagrange system of

L if and only if the curve ; / W
OE0; T M, where t/ WD @vL.t; t/; P.t//,

is an integral curve of the Hamiltonian vector field XH. In particular, there is a one-to-

one correspondence between the -periodic Euler–Lagrange orbits of L and the
-periodic Hamiltonian orbits of H.

Let TverT M denote the vertical subbundle of TT M, i.e.

Tver
q;p/T M D ker.d q; p//; 8.q; p/ 2 T M;

where
W

T M M is the projection of the cotangent bundle onto the base

manifold. Consider a -periodic solution of the Euler–Lagrange system of L
and its Hamiltonian correspondent D ; @vL. ; ; P//. If is contractible, is
contractible as well, and there exists a symplectic trivialization

W T
OE

R2N ' TT M

that maps the vertical Lagrangian subspace VN WD ¹0º RN R2N to the vertical
sub-bundle TverT M, more precisely

T
OE

V N / D TverT M; 2.2)

see [AS1, Lemma 1.2] for a proof. By means of this trivialization, the differential of
the Hamiltonian flow along defines a path

W
OE0; Sp.2N/ in the symplectic

group, given by

t/ WD t; / 1
B dˆt

H .0// B .0; /; 8t 2 OE0; :

Notice that .0/ is the identity matrix, hence has a well-defined Conley–Zehnder
index / 2 Z. We denote by / 2 N [ ¹0º the geometric multiplicity of 1 as

an eigenvalue of in particular, we set / D 0 if 1 is not an eigenvalue of

Remark 2.3. Here, we are using the generalized notion of Conley–Zehnder index
that is due to Long, see [Lo1]. In case / D 0, the index / coincides with the
usual Conley–Zehnder index, see [CZ], [SZ].

The pair /; // does not depend on the chosen symplectic trivialization
as long as this latter satisfies 2.2), see [AS1, Lemma 1.3]. Hence, we can

define the Conley–Zehnder–Long index pair of the periodic orbit as /; // WD

/; //. This pair satisfies the following iteration inequalities

n O / N
OEn /;

OEn / C
OEn / n O / C N; 8n 2 N 2.3)
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where N D dim.M/ as before, and O / 2 R is mean Conley–Zehnder index of
given by

O / D lim
n!1

OEn /
n

:

We refer the reader to [LL1, Theorem 1] or [LL2, Theorem 1.1] for more details on
these inequalities.

If the Lagrangian L also happens to be convex quadratic-growth, as we have

already remarked in the previous section, its action functional AOE is C1 and twice
Gateaux differentiable over the loop space W 1;2.TOE IM/. In this case, / is equal
to the Morse index of AOE at while / is equal to the nullity of AOE at i.e. to
the dimension of the null-space of the Gateaux–Hessian of AOE at see [Vi1], [LA]
or [Ab] for a proof.

3. Discretizations for convex quadratic-growth Lagrangians

Throughout this section, LW T TM R will be a 1-periodic convex quadraticgrowth

Lagrangian, with associated mean action AOE 2 N. In order to simplify
the notation, we will work in period D 1, but everything goes through in every
integer period.

The W 1;2 functional setting for the action functional A presents several
drawbacks. First of all, the regularity that we can expect for A is only C1;1, at least if
we assume to deal with a general convex quadratic-growth Lagrangian. This
prevents the applicability of all those abstract results that require more smoothness, for
instance the Morse lemma from critical point theory. Moreover, the W 1;2 topology
is sometimes uncomfortable to work with. In fact, in several occasions it may be
desirable to deal with a topology that is as strong as the C1 topology, or at least as the
W 1;1 topology. This would guarantee that the restriction of the action functional A
to a small neighborhood of a loop only depends on the values that the Lagrangian
assumes on a small neighborhood of the support of the lifted loop ; P/ in TM. In
the W 1;1 functional setting, the action functional A is smooth, but unfortunately its
sublevels do not satisfy any compactness condition such as the Palais–Smale condition),

which makes that functional setting inadequate for Morse theory. In order to
overcome these difficulties, in this section we develop a discretization technique that
is a generalization to Lagrangian systems of the broken geodesics approximation of
the path space see [Mi, Section 16] or [Kl, Section A.1] for the Riemannian case,

and [Ra] for the Finsler case).

3.1. Uniqueness of the action minimizers. Given an interval OEt0; t1 R, we
say that an absolutely continuous curve

W
OEt0; t1 M is an action minimizer
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with respect to the Lagrangian L when every other absolutely continuous curve

W OEt0; t1 M with the same endpoints of satisfies

Z
t1

t0
L.t; t/; P.t// dt Z

t1

t0
L.t; t/; P t//dt:

It is wellknownthat theaction minimizers aresmooth solutions of the Euler–Lagrange
system 2.1). The existence of an action minimizer joining two given points of

M is a known result that holds even for Tonelli Lagrangians, and it is essentially
due to Tonelli see e.g. [BGH] or [Fa, page 98] for a modern treatment). A more
ancient result, that goes back toWeierstrass, states that every sufficiently short action
minimizer is unique, meaning that it is the only curve between its given endpoints
that minimizes the action see [Fa, page 106] or [Ma, page 175]). However, in
this paper, we shall need the following stronger result that holds only for convex
quadratic-growth Lagrangians.

Proposition 3.1. Let LW T TM R be a convex quadratic-growth Lagrangian.
There exist 0 D 0.L/ > 0 and 0 D 0.L/ > 0 such that, for each real interval
OEt0; t1 R with 0 < t1 t0 0 and for all q0; q1 2 M with dist.q0; q1/ < 0,

there is a unique action minimizer with respect to L) q0;q1 W OEt0; t1 M with

q0;q1 t0/ D q0 and q0;q1 t1/ D q1.

Proof. For each absolutely continuouscurve
W

OEt0; t1 M, we denote byAt0;t1. /
its action with respect to L), i.e.

At0;t1. / D
Z

t1

t0
L.t; t/; P t//dt 2 R [ ¹C1º:

Up to summing a positive constant to L, we can assume that there exist two positive
constants ` < ` such that

` jvj
2
q L.t; q; v/ ` jvj

2
q C 1/; 8q 2 M; v 2 TqM: 3.1)

Consider two points q0; q1 2 M and two real numbers t0 < t1. We put

WD dist.q0; q1/; WD t1 t0:

Since W 1;2.OEt0; t1 IM/ is dense in the space of absolutely continuous maps from
OEt0; t1 to M and since the action minimizers are smooth, a curve q0;q1 as in the
statement is an action minimizer if and only if it is a global minimum of At0;t1 over
the space

W t0;t1
q0;q1 D ® 2 W 1;2 OEt0; t1 IM/ j t0/ D q0; t1/ D q1¯:
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Therefore, all we have to do in order to prove the statement is to show that, for and

sufficiently small, the functional At0;t1 jW t0;t1 admits a unique global minimum.
q0;q1

Consider an arbitrary real constant > 1. By compactness, the manifold M
admits a finite atlas U D ® W U RN j D 1; : : : ; u¯ such that, for all 2
¹1;: : : ; uº q; q0 2 U and v 2 TqM, we have

1 q/ q0/ dist.q; q0/ q/ q0/ ; 3.2)

1
jd q/vj jvjq jd q/vj ; 3.3)

where we denote by j j the standard norm in RN and by j jq the Riemannian norm in
TqM as usual. Moreover, we can further assume that the image U / ofevery chart
is aconvex subset ofRN e.g. a ball). Let Leb.U/ denote theLebesgue number1 of the
atlasUand consider the twopointsq0;q1 2 M of the beginningwith dist.q0; q1/ D
By definition of Lebesgue number, the Riemannian closed ball

B.q0; Leb.U/=2/ D ¹q 2 M j dist.q; q0/ Leb.U/=2º

is contained in a coordinate open set U for some 2 ¹1; : : : ; uº Therefore, if we
require that Leb.U/=2, the points q0 and q1 lie in the same open set U

Let r W
OEt0; t1 U be the segment from q0 to q1 given by

r.t/ D
1 t1 t

q0/ C
t t0

q1/ ; 8t 2 OEt0; t1 :

By 3.1), 3.2) and 3.3) we obtain the following upper bound for the action of the
curve r

At0;t1.r/ ` Z
t1

r.t/dt C ` max
t0

jPr.t/j
2

r.t/ C
t2OEt0;t1

°jPr.t/j
2

` 2 j q1/ q0/j
2

C ` 4 dist.q0; q1/2

C

` 4
2

C D C
2

C ;

where the positive constant C D ` 4 does not depend on q0; q1 and OEt0; t1 This
estimate, in turn, gives as an upper bound for the action of the minima, i.e.

min
2W

t0;t1
q0;q1

®At0;t1. /¯ C
2

C ;

1We recall that, forevery open coverUofa compact metricspace, there exists apositivenumber Leb.U/ > 0,
the Lebesguenumber ofU, such that every subset of the metric space of diameter less than Leb.U/ iscontained
in some member of the cover U.
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therefore the action sublevel

Ut0;t1
q0;q1 D Ut0;t1

q0;q1 q0;q1 jAt0;t1. / C
2

; / D ² 2 W t0;t1
C ³ 3.4)

is not empty and it must contain a global minimum q0;q1 of the action the existence
of a minimum is a well-known fact that holds even for Tonelli Lagrangians, see

[Fa, page 98]). All we have to do in order to conclude is to show that, for and

sufficiently small, the sublevel Ut0;t1
q0;q1 D Ut0;t1

q0;q1 ; / cannot contain other minima
of the action.

By the first inequality in 3.1) we have

Z
t1

t0
jP t/j

2
t/dt ` 1At0;t1. /; 8 2 W t0;t1

q0;q1 ;

and this, in turn, gives the following bound for all 2 Ut0;t1
q0;q1

max
t2OEt0;t1

dist. t0/; t//2 Z
t1 2

Z
t1

t0
jP t/j t/dt

t0
jP t/j

2
t/dt

` 1At0;t1. / C` 1 2
C

2/:

Therefore all the curves 2 Uq0;q1 ; / have image inside the coordinate open set

U M provided and are sufficiently small, more precisely for

2
C

2 `
4C

Leb.U/2: 3.5)

This allows us to restrict our attention to the open set U From now on we will
briefly identify U with U / RN so that

q0 q0/ 2 RN; q1 q1/ 2 RN:

Without loss of generality we can also assume that q0 q0/ D 0 2 RN On the
set U U / we will consider the standard flat norm j j of RN and the norms

k kL1 k kL2 and k kL1 will be computed using this norm. We will also consider

L as a convex quadratic-growth Lagrangian of the form

LW T U / RN R

by means of the identification

L.t; q; v/ L.t; 1 q/; d 1 q//v/:
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Now, consider the following close convex subset of W 1;2.OEt0; t1 IRN/

C t0;t1
q0;q1 D C t0;t1

q0;q1 ; / D ² 2 W 1;2 OEt0; t1 IR
N/

t0/ D q0 D 0; t1 L2 C` 1
2

/ D q1; kPk
2

C ³: 3.6)

L1 kPk
2Since k k

2
L2 for and sufficiently small all the curves 2 C t0;t1

q0;q1 have
support inside the open set U Moreover, by 3.1), 3.3) and 3.4), we have

kPk
2
L2

Z
t1

t/dt ` 1At0;t1. / C` 1
2

t0
jP t/j

2
C ; 8 2 Ut0;t1

q0;q1;

that implies Ut0;t1
q0;q1 C t0;t1

q0;q1 Since we know that a minimum q0;q1 of the action

exists and all the minima lie in the closed convex subset C t0;t1
q0;q1 W 1;2.OEt0; t1 IRN /,

in order to conclude that q0;q1 is the unique minimum we only need to show that the
Hessian of the action is positive definite on C t0;t1

q0;q1 provided and are sufficiently
small, i.e. we need to show that there exist 0 > 0 and 0 > 0 such that, for all

2 .0; 0/ and 2 .0; 0 we have

HessAt0;t1. /OE ; > 0; 8 2 C t0;t1
D C t0;t1 1;2 N

q0;q1 q0;q1 ; /; 2 W0 OEt0; t1 IR /:
3.7)

Notice that the above Hessian is well defined, since At0;t1 is C1 and twice Gateaux
differentiable. In 3.7), we have denoted by W 1;2

0 OEt0; t1 IRN / the tangent space of
C t0;t1

q0;q1 at i.e.

W 1;2
0

OEt0; t1 IR
N / D ® 2 W 1;2 OEt0; t1 IR

N/ j t0/ D t1/ D 0¯:

Consider arbitrary 2 C t0;t1
q0;q1 and 2 W 1;2

0 OEt0; t1 IRN /. Then, we have

HessAt0;t1. /OE ;

D
Z

t1

t0
h@

2vvL.t; ; P/P ;
P iC 2h@

2 qqL.t; ; P/ ; i dtvqL.t; ; P/ ; P i C h@
2

Z
t1

t0
`0 jP j

2 dt Z
t1

t0
2`1.1 C jPj/ j j jP j dt

„ DƒW‚I1 …

Z
t1

t0
`1.1 C

2
jP j

2/ j j
2 dt ;

„ DƒW‚I2 …

where `0 and `1 are the positive constants that appear in Q1) and Q2) with respect
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to the atlas U. Now, the quantities I1 and I2 can be estimated from above as follows

I1 2`1 k kL1 kP kL1 C jPj jP j L1

p2` kP kL2
p1 kP kL2 CkPkL2kP kL2

D 2` kP k
2

1 Cp kPkL2 ;L2

I2 `1
2

k k
2

L2 `1
2

kP k
2

L2 Ck k
2
L1kPk

2
L2

2
C kPk

2
L2 ;

and, since by 3.6) we have

L2 C` 1
2

kPk
2

C ;

we conclude

HessAt0;t1. /OE ;

`0kP k
2
L2 I1 I2

L2 `0 2`1 q C` 1
C 1 C / `1

2 C` 1
C 1 2

C
2/

„ DW
Fƒ.‚ ; / …

kP k
2 :

Notice that the quantity F. ; / is independent of the specific choice of the points

q0; q1 and of the interval OEt0; t1 but depends only on D dist.q0; q1/ and D t1 t0.
Moreover, there exist 0 > 0 and 0 > 0 small enough so that for all 2 .0; 0/ and

2 .0; 0 the quantity F. ; / is positive. This proves 3.7).

Now, we want to remark that the short action minimizers q0;q1 given by Proposition

3.1, depend smoothly on their endpoints q0 and q1. If 0 is the constant given
by Proposition 3.1, we denote by

0
the open neighborhood of the diagonal

submanifold of M M given by

0 D ¹ q0; q1/ 2 M M j dist.q0;q1/ < 0º:

Proposition 3.2. With the notation of Proposition 3.1, for each real interval OEt0; t1
R with 0 < t1 t0 0 the assignment

q0;q1/ 7! q0;q1 W
OEt0; t1 M 3.8)

defines a smooth map
0 C1.OEt0; t1 IM/.

Proof. Since the action minimizers are smooth, 3.8) defines a map

0 C1.OEt0; t1 IM/;
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and we just need to show that the dependence of q0;q1 from q0;q1/ is smooth. If
t1 t0 2 .0; 0 and q0;q1/ 2 0 in the proof of Proposition 3.1 we have already
shown that the minimizer q0;q1 W

OEt0; t1 M has image contained in a coordinate
neighborhood U M that we can identify with an open set of RN The curve

q0;q1 is a smooth solution of the Euler–Lagrange system of L, therefore

L B ˆt0ˆt
L/ 1 q0; v0/ D q0;q1 t/; Pq0;q1 t//; 8t 2 OEt0; t1 ;

where v0 D Pq0;q1 t0/ and ˆt
L is the Euler–Lagrange flow associated to L see

Section 2.2). We define

L B ˆt0Qt
WD B ˆt

L/ 1
W U0 RN U ; 8t 2 OEt0; t1 ;

where U0 U is a small neighborhood of q0, and
W RN RN RN is the

projection onto the first N components, i.e. q;v/ D q for all q; v/ 2 RN RN
We claim that

dQt1.q0; v0/.¹0º RN / D RN : 3.9)

In fact, assume by contradiction that 3.9) does not hold. Then, there exists a nonzero
vector v 2 RN such that

d

ds sD0
Qt1.q0; v0 C sv/ D 0:

If we define the curve
W

OEt0; t1 RN by

t/ WD

d

ds sD0
Qt q0;v0 C sv/;

then t0/ D t1/ D 0, and is a solution of the linearized Euler–Lagrange system

d
dt

@
2vvL.t; q0;q1; Pq0;q1/ P C @

2vqL.t; q0;q1; Pq0;q1/
@

2
qvL.t; q0;q1 ; Pq0;q1/P @

2
qqL.t; q0;q1 ; Pq0;q1/ D 0:

This implies that HessAt0;t1. q0;q1/OE ; D 0, which contradicts the positive
definitiveness of HessAt0;t1. q0;q1/ see 3.7) in the proof of Proposition 3.1). Therefore,
3.9) must hold.

By the implicit function theorem we obtaina neighborhoodUq0;q1 RN RN of

q0; q1/, a neighborhood Uv0 RN of v0 and a smooth map V0 W Uq0;q1 Uv0 such

that, for each q00; q01; v00/ 2 Uq0;q1 Uv0 we have Qt1.q00; v00/ D q01 if and only if
v00 D V0.q00; q01/. Then, we can define a smooth map from Uq0;q1 to C1.OEt0; t1 IU /
given by

q00 ; q01/ 7! q
0

0;q
0

1
; 3.10)
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where for each t 2 OEt0; t1 we have

q0

0;q
0

1
t/ D Qt

q00 ;V0.q00;q01//:

In order to conclude we only have to show that the map in 3.10) coincides with the
one in 3.8) on Uq0;q1 provided this latter neighborhood is sufficiently small, i.e. we
have to show that q

0

0;q
0

1
is the unique action minimizer joining q00 and q01 for each

q00; q01/ in a sufficiently small neighborhood Uq0;q1 of q0; q1/. This is easily seen

as follows. By construction, the curves q0

0;q0

1
are critical points of the action At0;t1

over the space W t0;t1
q

0

0;q
0

1
being solutions of the Euler–Lagrange system of L. By the

arguments in the proof of Proposition 3.1, each of these curves q0

0;q0

1
is the unique

action minimizer joining its endpoints if and only if it lies in the convex set C t0;t1
q0

0 ;q0

1

defined in 3.6). We already know that q0;q1 D q0;q1 2 C t0;t1
q0;q1 Since the map

in 3.10) is smooth, for q00 ; q01/ close to q0; q1/ we obtain that the curve q 0

0 ;q 0

1
is

C1-close to q0;q1 D q0;q1 and therefore q0

1 2 C t0;t1
0 ;q 0

q0

0;q
0

1

3.2. The discrete action functional. Let 0 D 0.L/ and 0 D 0.L/ be the
positive constants given by Proposition 3.1, and let k 2 N be such that 1=k 0.

We define the k-broken Euler–Lagrange loop space as the subspace ƒk D ƒk;L
W 1;2.TIM/ consistingof those loops

W T M such thatdist. i /; iC1// <k k 0
and

jOEi= k;.iC1/=k is an action minimizer for each i 2 ¹0; : :: ; k 1º Notice that,
by propositions 3.1 and 3.2, the correspondence

7! .0/; 1
kk ; : : : ; k 1

defines a diffeomorphism between ƒk and an open subset of the k-fold product

M M. Thus, ƒk is a finite dimensional submanifold of the W.TIM/, which
implies that the W 1;2 and W 1;1 topologies coincide on it.

We define the discrete action functional Ak as the restriction of A to ƒk, i.e.

Ak WD Ajƒk :

NotethatAk is smooth, sinceAis smooth onW 1;1.TIM/ andƒk W 1;1.TIM/.
Moreover, the next proposition implies that, for each action value c 2 R, there is
a sufficiently big discretization pass k 2 N such that Ak satisfies the Palais–Smale
condition in the c-sublevel.

Proposition 3.3. For each c 2 R there exists kN D kN.c/ 2 N such that, for each

k kN, the closed sublevel A 1
k 1;c is compact.
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Proof. Consider the compact subset of ƒk defined by

k/; iC1k // 0=2; 8i 2 ¹1; :: : ;k 1º¯:Ck WD ® 2 ƒk j dist. i

In order to prove the statement, we just need to show that

lim
k!1

min ¹Ak. / j 2 @Ckº DC1:
Up to summing a positive constant to L, we can assume that there exists a constant

` > 0 such that L.t; q; v/ ` jvj2q for every t; q; v/ 2 T TM. Then, consider an
arbitrary 2 @Ck. For some i 2 ¹0; : : : ; k 1º we have that

k/; iC1
k // D 0=2;dist. i

and therefore we obtain the desired estimate

Ak. / Z iC1/=k

i= k
L.t; t /; P.t// dt Z iC1/=k

i=k
` j P t/j

2
t/ dt

k ` Z iC1/=k

i=k jP t/j t/ dt
2

k /; iC1
k //2k ` dist. i

k `. 0=2/2:

Each critical point of the action functional A belongs to the k-broken Euler
Lagrange loop space ƒk, up to choosing a sufficiently big k, and in particular it is a

critical point of the discrete action Ak. It is easy to verify that the converse is also
true, namely that the critical points of the discrete action Ak are smooth solutions of
the Euler–Lagrange system of L. The next statement discusses the invariance of the
Morse index and nullity under discretization.

Proposition 3.4. Consider a contractible W T M that is a smooth solution of
the Euler–Lagrange system of L. Then, for each sufficiently big k 2 N, the Morse
index and nullity pair of A and Ak at are the same.

We will split the proof of this proposition in several lemmas, which will take the
remaining of this subsection. First of all, since the statement is of a local nature, let
us adopt suitable local coordinates in the loop space. Being a smooth contractible
loop, we can consider the chart of W 1;2.TIM/ given by

exp 1
W U W 1;2 TM/ ' W 1;2

TIR
N /;

see Section 2.1 for the notation. Let U be a small neighborhood of the origin in RN
and let

W T U RN T TM be the embedding defined by

t; q; v/ D t; exp t/.q/; d.exp t//.q/v C
d
dt

exp t/.q/ ;

8.t; q; v/ 2 T U RN :
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The pulled-back Lagrangian L B W T U RN R is again convex quadraticgrowth,

since conditions Q1) and Q2) are invariant with respect to coordinate
transformations of the form up to changing the constants `0 and `1 in the definition).
Moreover, the pulled-back functional A B

exp is the Lagrangian action functional
associated to the convex quadratic-growth Lagrangian L B i.e.

A B exp / D
Z

1

0
L B t; t /; P t// dt:

From now on, we will simply writeAand L forABexp and LB respectively, so

that will be identifiedwith the point 0 in the Hilbert spaceW 1;2.TIRN /. Moreover,
for each k 2 N such that belongstoƒk, we identify an open neighborhood of in)
the k-broken Euler–Lagrange loop space ƒk with a finite dimensional submanifold
of W 1;2.TIRN/ containing 0.

We introduce the quadratic Lagrangian LW T RN RN R given by

L.t;q; v/ D
1
2 ha.t/v; vi C hb.t/q;viC

1

2 hc.t/q; qi;

8.t;q; v/ 2 T RN RN ;
3.11)

where, for each t 2 T, a.t /, b.t/ and c.t/ are the N N matrices defined by

aij t/ WD

@2L
@vi @vj

t; 0; 0/; bij t/ WD

@2L
@vi @qj

t; 0; 0/; cij t/ WD

@2L
@qi @qj

t;0;0/:

A straightforward computation shows that the Euler–Lagrange system associated to

L is given by the following linear system of ordinary differential equations for curves
in RN

a R C b C Pa bT / P C Pb c/ D 0: 3.12)

This is precisely the linearization of the Euler–Lagrange system of L along the periodic

solution 0. The 1-periodic solutions
W T RN of 3.12) are precisely

the critical points of the action functional AW W 1;2.TIRN / R associated to L,
given as usual by

A. / D
Z

1

0
L.t; t /; P t// dt; 8 2 W

1;2
TIR

N /:

The following lemma characterizes the elements of the tangent space of the
kbroken Euler–Lagrange loop space ƒk at 0.

Lemma 3.5. The tangent space T0ƒk is the space of continuous and piecewise
smooth loops W T RN such that, for each h 2 ¹0; : : :; k 1º the restriction

jOEh=k;.hC1/= k is a solution of the Euler–Lagrange system 3.12).
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Proof. By definition of tangent space, every 2 T0ƒk is a continuous loop
W T

RN given by

t/ D
@

@s sD0
†.s; t/; 3.13)

for some continuous † W ; / T RN such that, for all h 2 ¹0; : : : ; k 1º
the restriction †j. ; / OEh= k;.hC1/=k is smooth, †.s; / 2 ƒk for all s 2 ; / and

†.0; / 0. Namely † is a piecewise smooth variation of the constant loop 0 such
that the loops †s D †.s; / satisfy the Euler–Lagrange system of L in the intervals
OEh=k; h C 1/=k for all h 2 ¹0; : : : ; k 1º i.e.

@2vvL.t;†s;†P s/†R s C @2vqL.t;†s;†P s/†P s

vtL.t;†s;†P s/ @qL.t;†s;†P s/ D 0C @2

By differentiating the above equation with respect to s in s D 0, we obtain the
Euler–Lagrange system 3.12) for the loop as before, satisfied on the intervals
OEh=k; hC1/=k for all h 2 ¹0; : : :; k 1º Vice versa, a continuous loop W T
RN whose restrictions jOEh=k;.hC1/= k satisfy 3.12) is of the form 3.13) for some †
as above, and therefore it is an element of T0ƒk.

The null-space of the Hessian of A at 0 can be characterized as follows.

Lemma3.6. The null-spaceof HessA.0/consistsof those smooth loops
W T RN

that are solutions of the Euler–Lagrange system 3.12).

Proof. For every ; 2 W 1;2.TIRN/ we have

HessA.0/OE ; D
Z

1

0
ha P; PiC hb ; PiC hb

T
P ; iC hc ; i dt D dA. / :

Therefore is in the null-space of HessA.0/ if and only of it is a critical point of A,
that is ifandonly if it isa smooth) solutionof theEuler–Lagrange system 3.12).

As a consequence of Lemmas 3.5 and3.6, the null-space of HessA.0/ is contained
in T0ƒk, and therefore it is contained in the null-space of the Hessian of the discrete
action HessAk.0/. This inclusion is actually an equality, as shown by the following.

Lemma 3.7. HessA.0/ and HessAk.0/ have the same null-space, and in particular
A and Ak have the same nullity at 0.

Proof. We only need to show that any curve 2 T0ƒk that is noteverywhere smooth
cannot be in the null-space of HessAk.0/. In fact, since is always smooth outside
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the points h
k for h 2 ¹0; : : : ; k 1º for each 2 T0ƒk we have

HessAk.0/OE ; D
k 1

X
hD0

Z hC1/=k

h=k
ha P; PiC hb ; PiC hb

T
P ; iC hc ; i dt

D
k 1

X
hD0

Z hC1/=k

h=k
h a R b P Pa P

Pb C bT
P C c ; i dt

„ ƒD‚0 …

C

k 1

X
hD0

ha P C b ; i
hC1/=k/

h=k/C

D
k 1

X
hD0

ha.
h / P

h/OE
h

k P k
C/ ; h

k k/i: 3.14)

C/ ¤ P
hBy assumption, we have that P

h
k / for some h 2 ¹0; : : : ;k 1º andk

therefore

a.h C / P
h/OE

h
k P k / ¤ 0:k

Here, we have used the fact that the matrix a.h
k/ is invertible, since the Lagrangian

L satisfies Q1) see Section 2.2). Now, consider 2 T0ƒk given by

l
k/ D

´a.h C / P
h/OE

h
k P k / ; l D h;k

0; l2 ¹0; :: : ;k 1º; l ¤ h:

By 3.14), we have

HessAk.0/OE ; D a.h /
C
/ P

h/OE

h
k P k k

2

¤ 0;

and therefore we conclude that is not in the null-space of HessAk.0/.

In order to conclude the proof of Proposition 3.4 we only need to prove the
invariance of the Morse index under discretization.

Lemma 3.8. For all k 2 N sufficiently big, the functionals A and Ak have the same

Morse index at 0.

Proof. For every 2 W 1;2.TIRN / we have

HessA.0/OE ; D
Z

1

0
ha P ; Pi C hb ; Pi C hb

T
P ; i C hc ; i dt

D 2 Z
1

0
L.t; t /; P t// dt D 2 A. /:

3.15)
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Let 0/ be the Morse index of A at 0. By definition, there exists a 0/-dimensional
vector subspace V W 1;2.TIRN/ over which HessA.0/ is negative definite, i.e.

HessA.0/OE ; < 0; 8 2 V n ¹0º: 3.16)

By density, for each k 2 N sufficiently big we can choose V to be composed of
k-piecewise affine curves. Namely we can choose V such that, for each 2 V we
have

hCt
k/ C t hC1

k / D .1 t/ h
k /; 8t 2 OE0;1 ; h 2 ¹0; :: : ; k 1º: 3.17)

Now, let us define a linear map KW V T0ƒk as K. / D Q
where

Q
is the unique

element in T0ƒk such that h
k / D Q

h
k / for each h 2 ¹0; :: : ;k 1º Notice that

K is injective. In fact, if K. / D 0, we have h
k / D 0 for each h 2 ¹0; :: : ;k 1º

and, by 3.17), we conclude D 0. Hence zV D K.V / is a 0/-dimensional vector
subspace of T0ƒk.

In order to conclude we just have to show that HessAk.0/ is negative definite
over the vector space zV To this aim, consider an arbitrary

Q 2 zV n ¹0º and put

D K 1. Q / 2 V n ¹0º For each h 2 ¹0; : :: ; k 1º the curve Q jOEh= k;.hC1/=k is
an action minimizer with respect to the Lagrangian L, and therefore A. Q / A. /
By 3.15) and 3.16) we conclude

HessAk.0/OE

Q ; Q D 2A. Q / 2 A. / D HessA.0/OE ; < 0:

3.3. Homotopic approximation of the action sublevels. We want to show that the
sublevels of the action A deformation retract onto the corresponding sublevels of the
discrete action Ak, for all the sufficiently big k 2 N. To begin with, we need the
following.

Proposition 3.9. For each > 0 and c 2 R there exists N D N L; ; c/ > 0 such
that, for each 2 W 1;2.TIM/ with A. / < c and for each interval OEt0; t1 R
with 0 < t1 t0 N we have dist t0/; t1// <

Proof. Up to summinga positive constant to theconvex quadratic-growth Lagrangian

L, we can always assume that there exists ` > 0 such that

L.t; q; v/ ` jvj
2
q ; 8.t; q; v/ 2 T TM:

Then, let us consider an arbitrary 2 W 1;2.TIM/ such that A. / < c. For each
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interval OEt0; t1 R with 0 < t1 t0 1 we have

dist t0/; t1//2 Z
t1 2

t1 t0/ Z
t1

t0
jP t/j t/dt

t0
jP t/j

2
t/ dt

t1 t0/Z
t1

t0
` 1L.t; t /; P t// dt t1 t0/` 1A. /

< t1 t0/` 1c:

Hence, for N D N L; ; c/ WD
2 `c 1, we obtain the claim.

From now on, we will briefly denote the open sublevels of the action A and of
the discrete action Ak by

A/c WD A 1
1; c/; Ak/c WD A 1

k 1; c/; 8c 2 R:

Let 0 D 0.L/, 0 D 0.L/ and
N D N L; 0; c/ be the positive constants given by

Propositions 3.1 and 3.9, and consider the integer

kN D kN.L; c/ WD max ² 1

0
;

1

N

³ 2 N:

We fix an integer k kN and we define a retraction r W A/c Ak/c in the following
way: for each 2 A/c, the image r. / is the unique k-broken Euler–Lagrange loop
such that r. / i

k/ D i
k / for each i 2 ¹0; : :: ; k 1º see Figure 1 a). Then, we

define a homotopy RW
OE0; 1 A/c A/c as follows: for each i 2 ¹0; : : : ; k 1º

s 2
OE i ; iC1 and 2 A/c, the loopR.s; / is defined asR.s; /jOE0;i=k D r. /jOE0;i=kk k

R.s; /jOEs;1 D jOEs;1 andR.s; /jOEi= k;s is theuniqueaction minimizer with respect to
the LagrangianL)with endpoints i

k/ and s/, see Figure1 b). By Proposition 3.9,
the homotopy R and the map r are well defined and we have A.R.s; // A. / for
every s; / 2 OE0; 1 A/c. Moreover R is a strong deformation retraction. In fact,
for each 2 A/c we have R.0; / D R.1; / D r. / and, if already belongs to

Ak/c, we further have R.s; / D for every s 2 OE0; 1
If c1 < c2 c, the same homotopy R can be used to show that the pair

A/c2; A/c1/ deformation retracts strongly onto Ak/c2; Ak/c1 /. Furthermore, if
2 W 1;2.TIM/ is a critical point of A with A. / D c, up to increasing k we have

that belongs to ƒk, and we can extend R to a strong deformation retraction of the
pair A/c [ ¹ º; A/c/ onto Ak/c [ ¹ º; Ak/c/ such that R.s; / D for every
s 2 OE0; 1 Summing up, we have obtained the following.

Lemma 3.10. i) For each c1 < c2 < 1 there exists kN D kN.L; c2/ 2 N and, for
every integer k kN, a strong deformation retraction of the pair A/c2 ; A/c1 onto

Ak/c2; Ak/c1
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ii) For each critical point of A with A. / D c, there exists kN D kN.L;c/ 2
N and, for every integer k kN, a strong deformation retraction of the pair

A/c[ ¹ º; A/c/ onto Ak/c[ ¹ º; Ak/c/.

.0/ .0/

r. / R.s; /
1
5 /1

5/

2
5 /2

5 /

3
5 /3

5 /

4
5/4

5/

s/

a) b)

Figure 1. a) Example of a loop solid line) and the corresponding r. / dashed line), for the
case of the geodesics action functional on the flat R2, i.e. L.t; q; v/ D v2

C v 2 and k D 5.1 2
b) Homotoped loop R.s; / solid line).

Let be a critical point of A with critical value c D A. / For every integer

k kN.L; c/ we have that belongs to the k-broken Euler–Lagrange loop space ƒk
and therefore it is a critical point of the discrete action Ak as well. We recall that the
local homology groups of A at are defined as

C A; / D H A/c [ ¹ º; A/c/ ;

where H denotes the singular homology functor with an arbitrary coefficient group
the local homology groups of the discrete action functional Ak at are defined

analogously). The above Lemma 3.10 ii) has the following immediate consequence.

Corollary 3.11. For each integer k > kN.L; c/ the inclusion

W Ak/c [ ¹ º; Ak/c/ A/c [ ¹ º; A/c/ 3.18)

induces the homology isomorphism
W

C Ak; / ' C A; /

It is well known that the local homology groups of a C2 functional at a critical
point are trivial in dimension that is smaller than the Morse index or bigger than the
sum of the Morse index and the nullity see [Ch, Corollary 5.1]). By Lemma 3.10 ii),
we recover this result for the C1 action functional AW W 1;2.TIM/ R, at least
for contractible critical points.
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Corollary 3.12. Let
W T M be a contractible loop that is a critical point of the

action functionalAwith Morse index / andnullity / Then, the local homology
groups C A; / are trivial if is less than / or greater than / C /

Proof. For each sufficiently big k 2 N, is also a critical point of the discrete
action Ak. By Proposition 3.4, up to increasing k we have that A and Ak have the
same Morse index and nullity pair /; // at By the above Corollary 3.11,
up to further increasing k we have C Ak; / ' C A; / Since Ak is smooth,
the local homology groups C Ak; / are trivial if is less than / or greater than

/ C / and the claim follows.

4. Local homology and embeddings of Hilbert spaces

In this section we will prove an abstract Morse-theoretic result that might be of
independent interest, and then we will discuss its application to the action functional
of a convex quadratic-growth Lagrangian. The result will be an essential ingredient
in the proof of the Lagrangian Conley conjecture.

Let usconsider anopensetUof a HilbertspaceE and aC2 functionalF
W U R

that satisfies the Palais–Smale condition. Let E be a Hilbert subspace of E such

that U WD U\E ¤ ¿ and rF y/ 2 E for all y 2 U This latter condition is
equivalently expressed via the isometric inclusion J W E E as

rF / B J D J B r.F B J/: 4.1)

Let x 2 U be an isolated critical point of F that sits in the subspace E and let
us further assume that the Morse index F ;x/ and the nullity F ;x/ of F at x
are finite. We denote by H D H.x/ the bounded self-adjoint linear operator on E
associated to the Hessian of F at x, i.e.

HessF x/OEv;w D hHv; wiE ; 8v; w 2 E: 4.2)

We require that H is a Fredholm operator, so that the functional F satisfies the
hypotheses of the generalized Morse lemma see [Ch, page 44]).

Throughout this section, for simplicity, all the homology groups are assumed to
have coefficients in a field F in this way we will avoid the torsion terms that appear

in the Künneth formula). We recall that the local homology groups of the functional
F at x are defined as C F ; x/ D H F /c [ ¹xº; F /c/, where c D F x/ and

F /c WD F 1. 1; c/. If we denote by F W U R the restricted functional

F jU thenx is a critical point ofF as well and the local homologygroupsC F ; x/
are defined analogously as H F /c [ ¹xº; F /c/. The inclusion J restricts to a

continuous map of pairs

J W F /c [ ¹xº; F /c/ F /c [ ¹xº; F /c/:
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In this way, it induces the homology homomorphism

J W
C F ; x/ C F ;x/:

The main result of this section is the following.

Theorem 4.1. If the Morse index and nullity pair of F and F at x coincide, i.e.

F ; x/; F ; x// D F ; x/; F ; x//;
then J is an isomorphism of local homology groups.

The proof of this theorem will be carried out in Section 4.3, after several preliminaries.

The reader might want to skip the remaining of Section 4 beside Section 4.4)
on a first reading.

Remark 4.1. One might ask if Theorem 4.1 still holds without the assumption 4.1).
This is true in case x is a non-degenerate critical point: briefly, a relative cycle that
represents a generator ofC F ;x/.F ; x/also represents agenerator of C F ;x/.F ; x/,
and all theother localhomology groupsC F ; x/andC F ;x/, with ¤ F ; x/ D

F ; x/, are trivial. However, in the general case, assumption 4.1) is necessary, as

it is shown by the following simple example. Consider the functional F W R2 R
given by

F x;y/ D y x2/.y 2x2 /; 8.x; y/ 2 R2 :

The origin 0 is clearly an isolated critical point of F and the corresponding Hessian
is given in matrix form by

HessF .0; 0/ D
0 0
0 2

: 4.3)

Now, let us consider the inclusion J W R R2 given by J.x/ D x; 0/, namely the
inclusion of the x-axis in R2. The Morse index of F at the origin is 0 and coincides
with the Morse index of the restricted functional F B J Analogously, the nullity of

F and F B J at the origin are both equal to 1. However the gradient of F on the

x-axis is given by

rF x; 0/ D .8x3; 3x2/; 8x 2 R;

hence condition 4.1) is not satisfied, i.e. rF / B J ¤ J B r.F B J/. The local
homology groups of F and F BJ at the origin are not isomorphic and consequently

J is not an isomorphism). In fact, by examining the sublevel F /0 see Figure 2),

it is clear that the origin is a saddle for F and a minimum for F B J Therefore we
have

C F ;0/ D
´F; D 1;

0; ¤ 1;
C F B J; 0/ D

´F; D 0;

0; ¤ 0:
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x

y

0

Figure 2. Behaviour of F x; y/ D y x2/.y 2x2 / around the critical point 0. The shaded
region corresponds to the sublevel F /0 D F 1

1; 0/.

Remark 4.2. Also the hypothesis of C2 regularity of the involved functional is
essential in order to obtain the assertion of Theorem 4.1. In fact, let us modify the
functional F of the previous remark in the following way

F x;y/ D y x2/.y 2x2/ C 3x6 arctan y
x4

; 8.x; y/ 2 R2:

This functional is C1 and twice Gateaux differentiable, but it is not C2 at the origin,
which is again a critical point of F The Hessian of F at the origin is still given by
4.3), but the gradient of F on the x-axis is now given by

rF x;0/ D .8x3;0/; 8x 2 R;

hence condition 4.1) is satisfied, i.e. rF /BJ D J Br.F BJ/, where J W R R2
is given by J.x/ D x;0/. The Morse index and nullity pair of F at the origin is
.0; 1/ and coincides with the Morse index and nullity pair of F B J at 0. Moreover,
0 is a local minimum of F B J which implies

C F B J; 0/ D´F; D 0;

0; ¤ 0;

However, the origin 0 2 R2 is not a local minimum of the functional F In fact,
a straightforward computation shows that 0 is a local maximum of the functional

F restricted to the parabola y D
3
2x2, namely 0 2 R is a local maximum of the

functional

2x2
Dx 7! F x; 3 1

4
x4

C 3x6 arctan
3

2x2
:

This readily implies that C0.F ; 0/ D 0 ¤ C0.F B J; 0/, which contradicts the
assertion of Theorem 4.1.
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4.1. The generalized Morse lemma revisited. In order to prove Theorem 4.1, we
need to give a more precise statement of the generalized Morse lemma. Everything
that we will claim already follows from the classical proof see [Ch, page 44]). In
order to simplify the notation, fromnowonwewill assume, without loss of generality,
that x D 0 2 E and hence U E is an open neighborhood of 0. According to the
operatorH associated to the Hessian ofF at thecriticalpoint0, we havean orthogonal
splittingE D EC°E °E0, whereEC [resp. E ] is a closed subspace in whichH
is positive definite [resp. negative definite], while E0 is the finite-dimensional kernel
of H. We denote by P W E E the linear projector onto E WD EC ° E
On E n¹0º we introduce the local flow‚H defined by‚H.s; .0// D s/, where

W s0; s1/ E n ¹0º with s0 < 0 < s1) is a curve that satisfies

P s/ D
H s/

kH s/kE
; 8s 2 s0; s1/: 4.4)

We also set ‚H.0; 0/ WD 0. Then, the generalized Morse lemma may be restated as

follows.

Lemma 4.2 Generalized Morse lemma revisited). With the above assumptions on

F there exists an open neighborhood V Uof 0, a homeomorphism onto its image

W V; 0/ U;0/

and a C1 map

W V \E 0; 0/ E ;0/;

such that the following assertions hold.

i/ For each v 2 V, if we write v D v0 C v according to the splitting E D
E0 ° E we have

F B v/ D F v0
C v0/

„ DWFƒ0‚.v0/ …

2 Hv ; v E

„ DWFƒ‚v / …

C
1 :

ii/ The origin 0 is a critical point of both F 0 and F
iii/ The map is implicitly defined by

P rF v0
C v0// D 0; 8v

0
2 V \ E0 ;

.0/ D 0:

iv/ The homeomorphism is given by

1 v/ D v0
C‚H. v v0//; v v0//; 8v D v0

C v 2 V/;



218 M. Mazzucchelli CMH

where is a continuous function defined in the following way: for each v D
v0 C v that belongs to its domain, v/ is the only real number satisfying

j v/j < kv kE ;

F v C v0/ F v0
C v0/ D F ‚H. v/; v //:

4.2. Naturality of the Morse lemma. Let H be the bounded self-adjoint linear
operator onE E associated to theHessian of the restricted functionalF D F jE
at 0. Then

HjE D H : 4.5)

In fact, by condition 4.1), we have

H B J D d.rF /.0/ B J D d..rF / B J /.0/ D J B d.r.F //.0/ D J B H :

„JBƒr.‚F /…

In particular H is a Fredholm operator on E If we denote by E D E 0 °
E C ° E the orthogonal splitting defined by the operator H equation 4.5)
readily implies that

E 0 E0; E C EC; E E ; 4.6)

and moreover, ifwedenotebyP W E E the orthogonalprojector ontoE D
E C°E this latter turns out to be the restriction of the projector P W E E
to E i.e.

P jE D P : 4.7)

The hypothesesof thegeneralizedMorse lemmaare fulfilled by both the functional

F and its restriction F The following is the long list of the symbols involved in the
statement of Lemma 4.2, and we write in the subsequent line the corresponding list
of symbols involved in the statement referred to the restricted functional F :

E ; E0; P ; V; ‚H; ; ; ; F 0; F ;
E ; E 0; P ; V ; ‚H ; ; ; ; F 0; F :

We want to show that, under the hypotheses of Theorem 4.1, the decomposition
F CF 0 of F given by the generalized Morse lemma, restricts to the corresponding
decomposition F C F 0 of F

Lemma 4.3. i) If F ; 0/ D F ; 0/, then E D E
ii) If F ; 0/ D F ; 0/, then E0

D E 0.
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Proof. The claims follow at once from 4.6), since

dim E D F ; 0/ D F ; 0/ D dim E ;

dim E 0
D F ;0/ D F ;0/ D dim E0:

Proposition 4.4. If F ; 0/ D F ; 0/, the following equalities hold on some

neighborhood of the critical point 0 where the involved maps are defined):

i/ D
ii/ jE D

Proof. By Lemma 4.3 ii), the domainsof the maps and areopen neighborhoods
of 0 in E0

D E 0. Up to shrinking these neighborhoods, we can assume that
both and have common domain V0 E0. By Lemma 4.2 iii) we have

.0/ D .0/ D 0, and all we have to do in order to conclude the proof of i) is to
show that, for each v0 2 V0 n ¹0º the maps v0/ and v0/ are implicitly defined
by the same equation, that is

P rF v0
C v0 // D 0 D P rF v0

C v0// :

This is easily verified since, by 4.1) and 4.7), we have

P rF v0
C v0 /// D P rF v0

C v0/// D 0:

For ii), up to shrinking the domains of and we can assume that they are
maps of the form W V Uand W V U where V D V\E Being and

homeomorphisms onto their images, we can equivalently prove that 1
D

1

on the open set V / U To begin with, notice that 4.5) readily implies that

the flow ‚H is the restriction of the flow‚H to E n ¹0º i.e.

‚H. ;v / D ‚H ;v /; 8v 2 E n ¹0º:

By Lemma 4.2 iv) and since D for each v D v0 C v 2 V / we have

1 v/ D v0
C‚H. v v0//; v v0//;

1 v/ D v0
C‚H. v v0 //;v v0 //:

Hence, in order to conclude the proofof ii) we just need to showthat, for each v in the
domain of we have v/ D v/. This is easily verified since, by Lemma 4.2 iv),

v/ and v/ are implicitly defined by the same equation

1
2

H ‚H. v/; v /;‚H. v/; v / E D F v C v0/ F v0
C v0/

D
1

2
H ‚H. v/; v /;‚H. v/; v / E :

Corollary 4.5. If F ; 0/ D F ; 0/ then F jE D F and F 0
D F 0
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4.3. Local homology. Beforegoing to the proofofTheorem 4.1,weneed toestablish
anothernaturality property, this time for the isomorphism between the local homology
of F at 0 and the homology of the corresponding Gromoll–Meyer pairs. For the
reader’s convenience, let us briefly recall the needed definition applied to our setting.
We denote byˆF the anti-gradient flow of F i.e.

@ˆF

@t
t;y/ D rF ˆF t;y//; ˆF .0; / D idE :

A pair of topological spaces W; W / is called a Gromoll–Meyer pair for F at the
critical point 0 when

GM1) W E is a closed neighborhood of 0 that does not contain other critical
points of F ;

GM2) if F .0/ D c, there exists > 0 such that OEc ;c/ does not contain critical
values of F and W \ F /c D ¿;

GM3) if t1 < t2 are such that ˆF t1; y/;ˆF t2;y/ 2 W for some y 2 E, then

ˆF t; y/ 2 W for all t 2 OEt1; t2 ;
GM4) W D ¹y 2 W jˆF 0; 1/ ¹yº/ E nWº is a piecewise submanifold

of E transversal to the flow ˆF
It is always possible to build a Gromoll–Meyer pair W; W / for F at 0, and we

have H W;W / ' C F ; 0/, see [Ch, page 48].

Lemma 4.6. Let W; W / be a Gromoll–Meyer pair for F at 0. Then, the following
holds.

i/ The pair W ;W / WD W \ E ;W \ E / D J 1.W/; J 1.W // is a

Gromoll–Meyer pair for F D F jE at 0.

ii/ Consider the restrictions of J W E E given by

J W F /c [ ¹xº; F /c/ F /c [ ¹xº; F /c/;
J W W ; W / W; W /:

These restrictions induce the homology homomorphisms

J W C F ;0/ C F ; 0/ and J W H W ;W / H W;W /:
Then, there exist homology isomorphisms W ;W / and W;W / such that the
following diagram commutes.

C F ; 0/
J

W ;W / '
C F ;0/

' W;W /

H W ; W / J H W; W /
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Proof. Part i) just requires the straightforward verification that the pair W ;W /
satisfies conditions GM1),…,(GM4). Part ii) requires to examine the isomorphism
between the homology ofa Gromoll–Meyer pair and a corresponding local homology
group we refer the reader to [Ch, page 48] for more details on what we claim). The
point, here, is to show that this isomorphism is given by the composition of homology
isomorphisms induced by maps, so that the assertion follows from the functoriality
of singular homology.

Notice that, by the assumption 4.1), the anti-gradient flow ˆF of F restricts on

E to the anti-gradient flow ˆF of the restricted functional F We introduce the
sets Y and Y given by

Y WD ˆF OE0; 1/ W/ ;
Y WD ˆF OE0; 1/ W / D ˆF OE0; 1/ W / D Y \E ;

and we consider the following diagram.

C F ;0/
J C F ; 0/

'
H Y \ F /c [ ¹0º;Y \ F /c/

'

'
H Y \ F /c [ ¹0º; Y \ F /c/

'
H Y ; Y \ F /c/ H Y; Y \ F /c/

H W ; W / J

' '
H W; W /

In this diagram, all the arrows are homology homomorphisms induced by inclusions.
Moreover,all theverticalarrows are isomorphisms this fact is provedbyanti-gradient
flow deformations and excisions), and we define the isomorphisms W ;W / and

W;W / as the composition of the whole left vertical line and right vertical line
respectively. By the functoriality of singular homology, this diagram is commutative,
and the claim of part ii) follows.

After these preliminaries, let us go back to the proof of Theorem 4.1. First of all,
if we assume F ; 0/ D F ;0/, Corollary 4.5 implies that F 0

D F 0 Hence the
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inclusion J restricts to the identity map on the pair

F 0/c [ ¹0º; F 0/c/ D F 0/c [ ¹0º; F 0/c/;

and therefore

C F 0; 0/ D C F 0 ; 0/: 4.8)

For the Morse functionals F and F we have the following result.

Lemma 4.7. If F ;0/; F ; 0// D F ; 0/; F ; 0// then the inclusion J,
restricted as a map

J W F /c [ ¹0º; F /c/ F /c [ ¹0º; F /c/; 4.9)

induces the homology isomorphism J W C F ;0/ ' C F ; 0/.

Proof. The fact that J restricts to a map of the form 4.9) is guaranteed by Corollary

4.5. Moreover, Lemma 4.3 i) guarantees that E D E Hence J further
restricts to a homeomorphism

JQW E \ F /c [ ¹0º;E \ F /c/ ' E \ F /c [ ¹0º; E \ F /c/;

and we obtain the following commutative diagram of inclusions.

F /c [ ¹0º; F /c/ J F /c [ ¹0º; F /c/

k

E \ F /c [ ¹0º;E \ F /c/
JQ

'

k

E \ F /c [ ¹0º; E \ F /c/

It is well known that k and k are homotopy equivalences. Therefore J D k B JQ B

k / 1 is a homology isomorphism.

Proof of Theorem 4.1. The homeomorphisms and obtained by the Morse lemma
induce local homology isomorphisms and such that the following diagram
commutes.

C F ;0/ J C F ;0/

C F ; 0/C F 0 J

' '
C F 0

C F ; 0/
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Hence, we only need to prove that the lower horizontal homomorphism J is an
isomorphism. We consider Gromoll–Meyer pairs W ; W / and W0; W0/ for F
and F 0 respectively at 0, so that the cross product of these pairs, which is

W; W / WD W W0 ; W W0/[ W W0//;
is a Gromoll–Meyer pair for F 0

C F at 0. Then, by Lemma 4.6, we obtain
Gromoll–Meyer pairs for the functionals F F 0 and F 0

CF at 0 respectively as

W ;W / WD W \E ;W \ E / D J 1 W /; J 1 W //;
W0;W0 / WD W0 \E ; W0 \E / D J 1 W0/; J 1 W0//;
W ;W / WD W \E ; W \ E / D J 1 W/; J 1 W //

and, together with the Künneth formula, we obtain the following commutative
diagram.

C F ; 0/C F 0 J

W ;W / '

C F 0
C F ; 0/

' W;W /

H W ; W / J

KRunneth '

H W; W /

' KuRnneth

H W ;W /

H W0 ; W0 /

J J
H W ;W /

H W0; W0/

;W0

H F ;0/

H F 0; 0/

J J

'

W /;W W0 / ' W ;W

H F ;0/

H F 0; 0/

/ W0;W0' /

The commutativity of the upper and lower squares follows from Lemma 4.6, while
the commutativity of the central square follows from the naturality of the Künneth
formula see for instance [Ha, page 275]). By 4.8) and Lemma 4.7, the lower
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horizontal homomorphism J J is an isomorphism, and so must be all the others

horizontal homomorphisms.

4.4. Application to the Lagrangian action functional. We conclude this section
showing that the abstract Theorem 4.1 applies when J is the iteration map and F is
the mean action functional associated to a convex quadratic-growth Lagrangian. To
be more precise, the action functional does not fulfill the hypotheses of Theorem 4.1,

since it is not C2 in general the C2-regularity is needed by the generalized Morse
lemma). However, we can still obtain the assertions of Theorem 4.1 by means of the
discretization technique developed in Section 3.

Let LW T TM R be a convex quadratic-growth Lagrangian with actionAOE

and let
W

TOE M be a contractible -periodic solution of the Euler–Lagrange
system ofL(namely, a contractible critical point ofAOE withAOE / D c. In order
to simplify the notation, let us assume that D 1.

Proposition 4.8. Let n 2 N be such that /; // D
OEn /; OEn //. Then the

iteration map OEn restricted as a map of pairs of the form

OEn

W A/c [ ¹ º; A/c/ AOEn /c [ ¹ º; AOEn /c/;

W
C A; / ' C AOEn ; OEn /induces the homology isomorphism OEn

Proof. By Corollary 3.11, for all k 2 N sufficiently big, the inclusion

W Ak/c [ ¹ º; Ak/c/ A/c [ ¹ º; A/c/

induces an isomorphism in homology. Now, let ƒOEn

k be the n-periodic analogue

of the k-broken Euler–Lagrange loop space ƒk see Section 3.2). Namely, ƒOEn

k
is the subspace of W 1;2.TOEn IM/ consisting of those loops

W
TOEn M such

that dist. i
k/; iC1

k // < 0 and
jOEi=k;.iC1/=k is an action minimizer for each

i 2 ¹0; : : :; nk 1º here, 0 is the constant given by Proposition 3.1). We denote

by AOEn

k
the restriction of AOEn to ƒOEn

k Notice that the iteration map restricts as a

continuous map of pairs of the form

OEn

W Ak/c [ ¹ º; Ak/c/ AOEn

k /c [ ¹ º; A
OEn

k /c/: 4.10)

Moreover, as before, the inclusion

OEn

W A
OEn

k /c [ ¹ º; AOEn

k /c/ AOEn /c [ ¹ º; AOEn /c/
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induces an isomorphism in homology, and the following diagram commutes.

C A; /
OEn

C AOEn ; /

C Ak; /
OEn

' OEn'
C A

OEn

k ; /

By Proposition 3.4, up to choosing a sufficiently big discretization pass k 2 N, the
Morse index and nullity of the critical points of the action functional do not change
under discretization. Therefore, all we have to do in order to conclude the proof of the
proposition is to establish the analogous claim for the restricted iteration map 4.10).

Applying the localization argument of Section 3.2 around we can assume that

our convexquadratic-growthLagrangian function has the formLW T U RN R,
where U is an open neighborhood of the origin in RN and the corresponding action
and mean action have the form AW W 1;2.TIU/ R and AOEn

W W 1;2.TOEn IU/
R. In this way we identify with the point 0 2 W 1;2.TIU/. Notice that the claim
that we are proving is precisely the assertion of the abstract Theorem 4.1 when F is
the discrete mean action A

OEn

k and J is the iteration map OEn All we have to do in
order to conclude is to verify that Theorem 4.1 applies in our situation.

First of all, we recall that an open neighborhood U ƒk of 0 can be
identified with an open set of RNk by the diffeomorphism

k /;: : : ; k 1
k / ; 8 2 U :7! .0/; 1

Analogously, we can identify an open neighborhood U ƒ
OEn

k of OEn

0 with an

open set of RNnk by the diffeomorphism

nk /; : : : ; nk 1
nk / ; 8 2 U:7! .0/; 1

With these identifications, the iteration map OEn is the restriction of an injective linear
map RNk RNnk, that we still denote by OEn given by

OEn w/ D w; : : :; w/; 8w 2 RNk :

„ nƒtim‚es…

This map is an isometry with respect to the standard inner product hh ; ii on RNk and
the inner product

hh ; ii
OEn on RNnk obtained multiplying by n 1 the standard one,
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i.e.

hhw;zii D
k 1

X
jD0

wj ; zj ; 8w D w0; : :: ; wk 1/;
z D z0; : : : ; zk 1/ 2 RNk;

hhw0; z0ii
OEn

D
1

n

nk 1

X
jD0

w0j; z0j ; 8w0 D w00; :: : ;w0
nk 1/;

z0 D z00; : : : ; z0
nk 1/ 2 RNnk;

where h ; i denotes the standard inner product of RN
Now, in orderto conclude, the last hypothesis ofTheorem 4.1 that mustbe verified

is the condition expressed in 4.1), that in our setting becomes

rA
OEn

k
OEn / D

OEn

B rAk. /; 8 2 U ; 4.11)

where the gradients of the action functionals Ak and A
OEn

k
are computed with respect

to the above inner products on RNk and RNnk.
For each 2 U and 2 T ƒk, we have

dAk. / D
k 1

X
hD0

Z hC1/=k

h=k
h@vL.t; ; P/; Pi C h@qL.t; ; P/; i dt

D
k 1

X
hD0

D@vL.h
k ; h

k /; P
h // @vL.h
k k ; h

k /; P
hC

//; h
k k /E :

This computation, together with Lemma 3.5, shows that rAk. /W T RN is the
element of T ƒk given by

rAk. / h / D
h h C

@vL. ; /; P h // @vL.h ; h /; P
h //;k k k k k k 8h 2 ¹0; : : : ;k 1º:
k

Analogously, for each 2 T OEn ƒOEn

k we have

dAOEn

k
OEn / D

1
n

n 1

X
lD0

k 1

X
hD0

D@vL. h
k ; h

k /; P h //k

k ; h
k /; P h@vL.h C

//; h
k k C l/E;

and, from this computation, equation 4.11) readily follows.
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5. Homological vanishing under iteration

In this section we prove that the elements of the homotopy and homology groups of
pairs of sublevels of the action functional associated to a convex quadratic-growth
Lagrangian) are killed by the nth-iteration map, for n that is a sufficiently big power
of any given positive integer. This result was proved in the particular case of the
geodesics action functional by Bangert and Klingenberg [BK, Theorem 2], and then
extended by Long [Lo2, Section 5] to more general Lagrangian systems. Long’s
proof relies on an ad hoc homology theory, which he calls Finite Energy Homology,
in order to dealwith technical issues concerning the regularity of the involvedsingular
simplices. Here, weprovide a proof that makes use of the standard singular homology
theory.

Consider a convex quadratic-growth Lagrangian LW T TM R with
associated action AOE 2 N. As usual, let us put D 1 in order to simplify
the notation. We denote by W 1;2

contr.TIM/ W 1;2.TIM/ and, more generally, by
W

1;2
contr.TOEn IM/ W 1;2.TOEn IM/, the connected component of contractible loops.

Notice that the iteration map restricts to a map

OEn

W W 1;2
contr.TIM/ W 1;2

contr.T OEn

IM/:
Fromnowonwe will implicitlyconsider the action functionalsAandAOEn restricted to
Wcontr.

1;2
TIM/ and Wcontr.

1;2
TOEn IM/ respectively. In particular, all the action sublevels

will be contained in this latter sets.

Theorem 5.1 Homological vanishing). Let c1 < c2 1, where the sublevel

A/c1 is not empty, and let OE 2 H A/c2 ; A/c1 /. Then, for any integer p 2,

there exists Nn D Nn.L; OE ; p/ 2 N that is a power of p such that
OE

Nn
OE D 0 in

H AOE Nn /c2; AOE Nn /c1 /.

Since OEn

B
OEm

D
OEnm for each n; m 2 N, the assertion of this theorem can

be rephrased as follows: for each n 2 N that is a sufficiently big power of the given

p 2 N, we have OEn
OE D 0 in H AOEn /c2 ; AOEn /c1 /.

The proof of Theorem 5.1 is based on a homotopic technique that is essentially
due to Bangert see [Ba, Section 3] or [BK, Theorem 1]). We recall that a homotopy

F W
OE0; 1 X; U/ Y; W / is said relative U when F.t; x/ D F.0; x/ for all

t; x/ 2 OE0; 1 U. For each q 2 N, we denote by q the standard q-simplex in Rq.

Lemma 5.2. Let c1 < c2 1and W
q; @ q/ A/c2 ; A/c1/ be a singular

simplex, i.e. OE 2 q..A/c2 ; A/c1/. Then, there exists
Nn D Nn.L; / 2 N and, for

every integer n Nn, a homotopy

B OEn

W
OE0; 1 q ; @ q/ AOEn /c2 ; AOEn /c1/ relative @ q;
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which we call Bangert homotopy, such that B
OEn

.0; / D
OEn

WD
OEn

B and

.1; q/ AOEn /c1 In particular, OEn

B
OEn

OE D 0 in q..AOEn /c2; AOEn /c1/.

Proof. First of all, let us introduce some notation. For each path
W

OEx0; x1 M,
we denote by x W

OEx0; x1 M the inverse path

x x/ D x0 C x1 x/; 8x 2 OEx0; x1 :

If we consider a second path
W

OEx00; x01 M with x1/ D x00 /, we denote by

W OEx0; x1 C x01 x00 M the concatenation of and namely

x/ D
´ x/; x 2 OEx0; x1 ;

x x1 C x00/; x 2 OEx1; x1 C x01 x00 :

Now, consider a continuous map
W

OEx0; x1 W 1;2.TIM/, where OEx0; x1
R. For each n 2 N, we define OEn

WD
OEn

B W OEx0; x1 W 1;2.TOEn IM/.
Now, we want to build another continuous map hni

W
OEx0; x1 W 1;2.TOEn IM/ as

explained in the following. To begin with, let us denote by evW W 1;2.TIM/ M
the evaluation map, given by

ev. / D .0/; 8 2 W 1;2
TIM/:

This map is smooth, which implies that the initial point curve evB W
OEx0;x1 M is

uniformly) continuous. In particular, there exists a constant D / > 0such that,
for each x; x0 2 OEx0; x1 with jx x0j we have that dist.ev B x/; ev B x0// is
less than the injectivity radius ofM. Here, wehave denoted by “dist” the Riemannian
distance on M with respect to its fixed Riemannian metric). Now, for each x;x0 2
OEx0;x1 with 0 x0 x we define the horizontal geodesic x0

x W
OEx; x0 M as

the shortest geodesic that connects the points ev B x/ and ev B x0/. Notice that, by
Proposition 3.2, this geodesic depends smoothly on its endpoints. Then, let J 2 N
be such that x0CJ x1 x0C.J C1/ For each x 2 OEx0; x1 we further choose

j 2 N such that x0 Cj x x0 C.j C1/ and we define the horizontal broken
geodesics x

x0 W OEx0; x M and x1
x W OEx;x1 M by

x0
x0C2x

x0 WD
x0C

x0C
x
x0Cj

;

x
x0C.jC2/x1

x WD x0C.jC1/
x0C.jC1/

x1
x0CJ :

We define a preliminary map Qhni
W

OEx0; x1 W 1;2.TOEn IM/ in the following way.
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For each j 2 ¹1; : : :; n 2º and y 2 OE0;
x1 x0

n
we put

Qhni.x0 C y/ WD
OEn 1 x0/ x0Cny

x0 x0 C ny/ x0Cny
x0 ;

n x1 x0/ C y WD
OEn j 1 x0/ x0CnyQhni x0 C j

x0 x0 C ny/
x1
x0Cny

OEj x1/ x1
x0 ;

Qhni x0 C
n 1

x0Cny
OEn 1 x1/ x1

x0Cny
:

n x1 x0/ C y WD x0 C ny/ x1

For each x 2 OEx0; x1 we reparametrize the loop Qhni.x/ as follows: in the above
formulas, each fixed part x0/ and x1/ spends the original time 1, while themoving
parts x0 C ny/ and the pieces of horizontal broken geodesics share the remaining
time 1 proportionally to their original parametrizations. We define hni

W
OEx0; x1

W 1;2.TOEn IM/ as the obtained continuous path in the loop space see the example
in Figure 3 a)).

For each x 2 OEx0; x1 we define the pulling loop y x/ W T M as the loop
obtained erasing from the formula of Qhni.x/ the fixed parts x0/ and x1/ and

reparametrizing on OE0; 1 see the example in Figure 3 b)). Notice that y is
independent of the integer n 2 N and, for each x 2 N, the action A.y x// is finite and
depends continuously on x. In particular we obtain a finite constant

x2OEx0;x1
°A.y x// D max

x2OEx0;x1
C. / WD max ²Z

1

0
L t; y x/.t/;

d

dt
y x/.t/ dt³ < 1;

and, for each n 2 N, the estimate

AOEn hni.x//
1
n

h.n 1/ max ¹A. x0//; A. x1//º C A.y x//i
max ¹A. x0//; A. x1//º C

C. /
n

:

5.1)

Now, let L Rq be the straight line passing through the origin and the barycenter
of the standard q-simplex q Rq. According to the orthogonal decomposition
Rq D L?°L, we can write the elements of q as z D y; x/ 2 L?°L. For each

s 2 OE0; 1 we denote by s q the rescaled q-simplex, given by ¹sz j z 2
q
º Varying

s from 1 to 0 we obtain a deformation retraction of q onto the origin of Rq. For
each y; x/ 2 s q, we denote by OEx0.y; s/; x1.y; s/ L the maximum interval
such that y;x0/ belongs to s q for all x0 2 OEx0.y; s/;x1.y; s/ see Figure 4).

Consider the q-singular simplex of the statement. For each n 2 N, we define

the homotopy B
OEn

W
OE0; 1 q W 1;2.TOEn IM/ by

B OEn s;z/ WD
´ y; /jOEx0.y;s/;x1.y;s/ /hni.x/; z D y; x/ 2 s q;

OEn z/; z 62 s q;
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h4i.0/

4y/

a)

b)

0 y < 1=4

h4i.1
4 C y/

0 y < 1=4

h4i.1/

h4i.y/

OE4 .0/

OE3 .0/

OE2 .0/

4y/

4y/

4y/

4y/ .1/

OE4 .1/

y y/
0 y < 1=4

y j
4 C y/

0 y < 1=4, j 2 ¹1;2º

y 3
4 C y/

0 y < 1=4

Figure 3. a) Description of h4i
W

OE0;1 W 1;2 T OE4

IM/, obtained from a map
W

OE0; 1

W 1;2
TIM/. Here, for simplicity, we are assuming that the diameter of OEx0; x1 / is less than

the injectivity radius of M, so that the horizontal geodesics are not broken. The arrows show
the direction in which the loop 4y/ is pulled as y grows. b) Description of the map of pulling
loops y W

OE0;1 W 1;2 TIM/.
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L L

x1.y;s/

s q q

y x0.y;s/

Figure 4

for each s; z/ 2 OE0; 1 q. This homotopy B
OEn is relative @ q, for

B OEn s; z/ D
OEn z/; 8.s;z/ 2 OE0; 1 @ q ;

and clearly B
OEn OEn.0; / D Take > 0 such that

max A. z// c2 ; max
z2 q

z2@ q
A. z// c1 :

For each s 2 OE0;1 n 2 N and z D y; x/ 2 s q, by the estimate in 5.1) we have

AOEn BOEn s;z// max ¹A. x0.y; s///;A. x1.y;s///º C
C. y; /jOEx0.y;s/;x1.y;s/ /

n
;

while, for each z 2
q

n s q, we have

AOEn B OEn s; z// D A. z//:

In particular, there exists a finite constant

C. / WD max ®C. y; /jOEx0.y;s/;x1.y;s/ / js 2 OE0; 1 ; y; x/ 2 s q¯
such that, for each n 2 N and s;z/ 2 OE0; 1 q, we have

AOEn B OEn

s; z// max
w2 q ¹A. w/º C

C. /
n

c2 C
C. /

n
;

AOEn B OEn .1; z// max
w2@ q ¹A. w/º C

C. /
n

c1 C
C. /

n
:

These estimates prove that, for n sufficiently big, the homotopy B
OEn

satisfies the
properties stated in the lemma.
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Remark 5.1. In Section 6.2 we will need the following observation. Assume that the
singular simplex of Lemma 5.2 has W 1;1-bounded image, i.e. there exists a real

xR0 such that

sup
z2 q

ess sup

t2T

² d

dt z/.t/
z/.t/

³ xR0:

haveW 1;1-bounded image aswell, and this boundThen the Bangert homotopiesB
OEn

is uniform in n Nn.L; / In other words, there exists a real xR xR0 such that, for
every integer n Nn.L; / we have

sup
s;z/2OE0;1 q

ess sup

t2TOEn

² d

dt
s; z/.t/B OEn

B
OEn

s;z/.t/
³ xR:

Proof of Theorem 5.1. We denote by †. / the set of singular simplices in together
with all their faces, and by K N the set of nonnegative integer powers of p, i.e.

K D ¹pn j n 2 N [ ¹0ºº The idea of theproof is to apply Lemma 5.2 successively to
all the elements of †. / More precisely, for each singular simplex W

q A/c2

that belongs to †. / we will find Nn D Nn.L; ; p/ 2 K and a homotopy

P
OE

Nn

W
OE0; 1 q AOE

Nn /c2 ;

such that

i) P
OE

Nn .0; / D
OE

Nn

ii) P
OE

Nn .1; q/ AOE Nn /c1

iii) if q/ A/c1 then P
OE

Nn s; / D
OE

Nn for each s 2 OE0; 1

iv) P
OE

Nn

BFi D P
OE

Nn ; Fi // for each i D 0; : : : ; q, where Fi W

q 1 q is the

standard affine map onto the i th face of q.

For each n 2 K greater than Nn, we define a homotopy P
OEn

W
OE0; 1 q AOEn /c2

D
OEn= Nn

BP
OE

Nnby P
OEn

This homotopy satisfies the analogous properties i),…,(iv)
in period n. Notice that property iv) implicitly requires that Nn.L; ; p/ Nn.L; B

Fi;p/ for each i D 0; : : : ; q.
Now, assume that such homotopies exist and put

Nn D Nn.L; OE ; p/ WD max ¹Nn.L; ; p/ j 2 †. /º 2 K:

Then, we have a family of homotopies fP
OE

Nn

j 2 †. /g satisfying the above
properties. Therefore, a classical result in algebraic topology basically, a variation of
the homotopic invariance of singular homology, see [BK, Lemma 1]) implies that

OE
Nn

OE D 0 in H AOE Nn /c2; AOE Nn /c1/.
In order to conclude theproof, we only need tobuild theabove homotopies. We do

it inductively on the degreeof the relative cycle If is a 0-relative cycle, then†. /
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is simply a finite set of contractible loops that is contained in A/c2 Let 2 †. / be

one of these loops. If 2 A/c1 we simply set Nn D Nn.L; ; p/ WD 1 andP
OE

Nn s/ WD
for each s 2 OE0; 1 If 62 A/c1 since we are assuming that A/c1 is non-empty,

we can find a continuous path
W

OE0; 1 ; ¹0; 1º/ W
1;2

contr.TIM/; A/c2/ such that

.0/ D and .1/ 2 A/c1 By Lemma 5.2, for every integer n Nn.L; / there
exists a Bangert homotopy

B
OEn

W
OE0; 1 OE0; 1 ; ¹0; 1º/ W 1;2

contr.T OEn

IM/; AOEn /c2/ relative ¹0; 1º

such that B
OEn

.0; / D
OEn and B

OEn

.1; OE0; 1 / AOEn /c2 Then, we set

Nn D Nn.L; ;p/ WD minfn 2 Kj n Nn.L; /g
and we define the map P

OE

Nn

W
OE0;1 AOE Nn /c2 as P

OE
Nn

WD B
OE

Nn .1; / see Figure 5.

OE Nn .1/

B
OE

Nn
OEnN P

OEnN

OE Nn

Figure 5

In case is a q-relative cycle, with q 1, we can apply the inductive hypothesis:
for every nonnegative integer j < q and for each j -singular simplex 2 †. /
we obtain Nn.L; ; p/ 2 K and, for every n 2 K greater or equal than

Nn.L; ; p/,
a homotopy P

OEn satisfying the above properties i),…,(iv). Now, consider a
qsingular simplex 2 †. / If q/ A/c1 we simply set

Nn D Nn.L; ; p/ WD 1

and P
OE

Nn s; / WD for each s 2 OE0; 1 Hence, let us assume that q/
6 A/c1

We denote by Nn0 D Nn0.L; ; p/ the maximum of the Nn.L; ;p/’s for all the proper
faces of For each n 2 K greater or equal than Nn0, every proper face of
has an associated homotopy P

OEn

W
OE0; 1 q 1 AOEn /c2 For technical reasons,

s; / D P
OEn

let us assume that P
OEn 1

2 ; / for each s 2 OE
1
2 ; 1 Patching together the

homotopies of the proper faces of we obtain

P OEn

2
@ q/ [ ¹0º

q/ AOEn /c2 ; 8n 2 K; n Nn0;W
OE0; 1

such that P
OEn

.0; / D
OEn and P

OEn

; Fi // D P
OEn

BFi
for each i D 0; : : : ; q. By

retracting OE0;
1
2

q onto OE0; 1
2

@ q/[.¹0º q/ we can extend the homotopy
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P
OEn to the whole OE0;

1
2

q, obtaining

P
OEn

2
q AOEn /c2 ; 8n 2 K; n Nn0: 5.2)

W
OE0; 1

Notice that P
OE

Nn0 1
2 ; / is a singular simplex of the form

P OE
Nn0

2 ; /W

q ; @ q/ AOE
Nn0 /c2; AOE

Nn0 /c1 /:1

Let us briefly denote this singular simplex by
Q

By Lemma 5.2, there exists Nn00 2 K
greater or equal than Nn.L; Q / and a Bangert homotopy

B
OE

Nn00

Q
W

OE0; 1 q; @
q / A

OE
Nn0 Nn00 /c2 ; A

OE
Nn0 Nn00 /c1/ relative @

q ;

such that B
OE

Nn00

Q
.0; / D Q

OE
Nn00 D P

OE

Nn0 Nn00

2 ; / and B
OE

Nn001
Q

.1; q/ AOE Nn0 Nn00 /c1

Finally, we set Nn D Nn.L; ; p/ WD Nn0 Nn00 and we build the homotopy P
OE

Nn

W
OE0; 1 q

AOE Nn /c2 extending the one in 5.2)byP
OE

Nn s; / WD B
OE

Nn00

Q
.2s 1; / for each s 2 OE

1
2 ;1

6. Convex quadratic modifications

Throughout this section, LW T TM R will be a Tonelli Lagrangian with
associated action AOE 2 N. We want to show how several techniques from the W 1;2

Morse Theory of the action functional still apply in the Tonelli case. This will require
some work, since the Tonelli action functional AOE is not even continuous on the

W 1;2 loop space.

First of all, notice that the Tonelli assumptions and the compactness of M imply
that L is uniformly fiberwise superlinear namely, the limit in T2) is uniform in
t;q/ 2 T M). In fact, if H is the Hamiltonian that is Legendre dual to L see

Section 2.3) and k > 0, for each t; q; v/ 2 T TM we have

jpjq k ¹p.v/ H.t;q; p/º max
jpjq k ¹p.v/º max

jpjq k ¹H.t;q; p/º

k jvjq max ®H.t0; q0; p0/ j t0; q0; p0/ 2 T T M; jp0jq0 k¯:

L.t; q;v/ max

In particular, if we put C.L/ WD max®H.t;q; p/ j t; q; p/ 2 T T M; jpjq 1¯
we get

L.t; q;v/ jvjq C.L/; 8.t; q; v/ 2 T TM:

Following Abbondandolo and Figalli [AF, Section 5], for each realR > 0we say that
a convex quadratic-growth Lagrangian LR W T TM R is a convex quadratic
R-modification or simply an R-modification) of the Tonelli Lagrangian L when:
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M1) LR.t; q; v/ D L.t;q; v/ for each t; q; v/ 2 T TM with jvjq R,

M2) LR.t; q; v/ jvjq C.L/ for each t; q; v/ 2 T TM.
It is always possible to build a convex quadratic modification of a given Tonelli
Lagrangian see [AF, page 637]). For eachR > 0, we will denote by LR an arbitrary
R-modification of the Tonelli Lagrangian L with associated action

A
OE

R W W 1;2 T
OE

IM/ R

for each 2 N, i.e.

A
OE

R / D
1 Z

0
LR.t; t/; P t// dt; 8 2 W 1;2 T

OE

IM/:

As before,we will simply writeAR forA
OE1

R Notice that, if W
TOE M is asmooth

-periodic solution of the Euler–Lagrange system of L andR > maxfj P.t/j t/ j t 2
TOE g, then is a critical point of A

OE

Moreover, the Hessian of A
OE

at dependsR R
only on L, since L and LR coincide along the lifted curve ; P/ W

TOE TM. In

particular, the Morse index and nullity pair /; // ofA
OE

R at is independent of
the chosen R, and in fact coincides with the Conley–Zehnder–Long index pair of

Oneof the important features ofconvex quadratic modifications is givenby the
following a priori estimate, that is due toAbbondandoloandFigalli see [AF, Lemma5.2]
for a proof).

Lemma 6.1. For each
Qa > 0 and

Q 2 N, there exists zR D zR. Qa; Q/ > 0 such

that, for any R-modification LR of L with R > zR and for any 2 ¹1; : : : ; Qº
the following holds: if is a critical point of A

OE

R
such that A

OE

R / Qa, then

maxfjP.t/j j t 2 TOEt/ g R.z In particular, is a -periodic solution of the

Euler–Lagrange system of L, and AOE / D A
OE

/R

6.1. Convex quadratic modifications and local homology. Let be a contractible
integer periodic solution of the Euler–Lagrange system associated to the Tonelli
Lagrangian L. In order to simplify the notation, we assume that the period of is 1, so

that it is a map of the form
W T M. We fix a real constantU > 0 such that

U > max
t2T

®j P t/j t/¯; 6.1)

and we consider a U-modificationLU ofL. Notice that, by 6.1), is a critical point
of AU with AU / D A. /

Now, for each k 2 N sufficiently big, we consider the k-broken Euler–Lagrange
loop space ƒk D ƒk;LU associated to LU see Section 3.2), and we denote by AU;k
its discrete action, i.e. AU;k D AU jƒk We recall that ƒk is a finite dimensional
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submanifold of W 1;2.TIM/ and, in particular, its topology coincides with the one

induced as a subspace of W 1;1.TIM/. Therefore, we can define an open set Uk
ƒk by

Uk WD n 2 ƒk max
t2T

fjP t/j t/g < Uo:

Notice that, for k 2 N sufficiently big, belongs to Uk. Moreover, the action AU
coincides with the Tonelli action A on the open set Uk. This allows us to define the
discrete Tonelli action Ak W Uk R by

Ak WD AjUk D AU jUk D AU;kjUk :

SinceAU;k is smooth, we readily obtain that the discrete Tonelli actionAk is smooth
as well. Moreover, the germ of Ak at turns out to be independent of the chosen U
and of the chosen U-modification LU of L, as stated by the following.

Lemma 6.2. Consider a real constant R U, an R-modification LR of L with
associated discrete action AR;k and a sufficiently big k 2 N so that both AR;k and

AU;k are defined. Then, there exists Vk Uk that is an open subset of both ƒk;LU
and ƒk;LR and that contains In particular AkjVk D AU;kjVk D AR;kjVk

Proof. The Lagrangian functions LU and LR coincide on a neighborhood of the
supportof the liftedcurve ; P/ W T TM. Therefore the k-broken Euler–Lagrange
loops of LU and LR that are close to are the same, and the claim follows.

Now, let c D Ak. / D A. / By Corollary 3.11 and the excision property, for
each k kN.LU ; c/, the inclusion

k W Ak/c [ ¹ º; Ak/c/ AU /c [ ¹ º; AU/c/

induces the local homology isomorphism

k W
C Ak; / ' C AU ; /: 6.2)

For each R-modification LR of L, with R > U, the action AR coincides with Ak
on Uk. Hence, we also have an inclusion

jk W Ak/c [ ¹ º; Ak/c/ AR/c [ ¹ º; AR/c/:

A priori, this inclusion might not induce an isomorphism in homology. However, we
have the following statement.

Lemma 6.3. The inclusion jk induces the homology isomorphism

jk W C Ak; / ' C AR; /:
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Proof. Notice that, for eachh 2 N, we haveUk Uhk. Since hk k kN.LU ;c/,
by Corollary 3.11 and the excision property, the inclusion

hk W Ahk/c [ ¹ º; Ahk/c/ AU /c [ ¹ º; AU /c/

induces the homology isomorphism hk W
C Ahk; / ' C AU ; / analogously

to k in 6.2). We define an inclusion h that factorizes k as in the following diagram.

Ak/c [ ¹ º; Ak/c/ k

h

AU /c [ ¹ º; AU /c/

Ahk/c [ ¹ º; Ahk/c/

hk

This inclusion induces the homology isomorphism

h D hk / 1
B k W C Ak; / ' C Ahk; /:

Now, let us consider the R-modification LR of L. By Lemma 6.2, for each h 2 N,
we know that there exists an open neighborhood Vhk Uhk of that is also an open
subset of ƒhk;LR and in particular AhkjVhk D AR;hkjVhk D ARjVhk Applying
once more Corollary 3.11 and the excision property, we obtain that the inclusion

j 0

hk W AhkjVhk/c [ ¹ º; AhkjVhk /c/ AR/c [ ¹ º; AR/c/:

induces an isomorphism in homology. Finally, consider the following diagram of
inclusions.

Ak/c [ ¹ º; Ak/c/

jk
h /

Ahk/c [ ¹ º; Ahk/c/
jhk

AR/c [ ¹ º; AR/c/

AhkjVhk /c [ ¹ º; AhkjVhk/c/

/

j 0

hk

excision
inclusion /
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We already know that the inclusions marked with / induce isomorphisms in
homology. Therefore, jhk and jk also induce isomorphisms in homology.

Remark 6.1. As a consequence of the above lemma, we immediately obtain that the
local homology groups C AR; / do not depend up to isomorphism) on the chosen
real constant R U and on the chosen R-modification LR.

6.2. Convex quadratic modifications and homological vanishing. All the
arguments of the previous section can be carried out word by word in an arbitrary period
n 2 N. Briefly, we introduce the open set

k WD
n 2 ƒOEnUOEn

k
max

t2TOEn
fjP t/j t/g < Uo

and we define the discrete mean Tonelli action as

A
OEn

k
W UOEn

k WD AOEn

jUOEn

k R:

Then lemmas 6.2 and 6.3 go through. Notice that the image of Uk under the
nthiteration map OEn is contained in U

OEn

k Now, consider1 c2 > c1 D c D A. /
and let us assume that is not a local minimum of A. For each R U, we have the
following diagram of inclusions.

Ak/c1 [ ¹ º; Ak/c1/
OEn

A
OEn

k /c1 [ f
OEn

g; A
OEn

k /c1/

OEn

AR/c2; AR/c1/
OEn

AOEn

R /c2 ; A
OEn

R /c1/

This latter, in turn, induces the following commutative diagram in homology.

C Ak; /
OEn

C AOEn

k ; OEn /

OEn

H AR/c2; AR/c1/
OEn

H AOEn

R /c2 ; A
OEn

R /c1/
Since is not a local minimum of the action functional A, the sublevel AR/c1 is
not empty. Hence, the homological vanishing Theorem 5.1) guarantees that for each
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OE 2 C Ak; / and p 2 N, there is Nn D Nn.LR; OE ; p/ 2 N that is a power

of p such that
OE

Nn

B
OE D 0. Here, we want to remark that we can choose

Nn

independent of R.

Proposition 6.4. With the above assumptions, consider OE 2 C Ak; / and p 2 N.
Then, there exist Rx D R.x L; OE ;p/ > 0 and

Nn D Nn.L; OE ; p/ 2 N that is a power of

p such that, foreveryrealR R,x wehave
OE

Nn

B
OE D 0 inH A

OE

Nn / ; A
OE

Nn

c2 /c1/.R R
Equivalently, we have that

OE
Nn

OE 2 ker
OE

Nn

Proof. We denote by †. / the set of singular simplices in together with all
their faces, and by K N the set of nonnegative integer powers of p, i.e. K D
¹pn j n 2 N [ ¹0ºº Notice that, for each q-singular simplex 2 †. / we have

q/ Uk, and in particular

sup
z2 q

ess sup

t2T

² d
dt z/.t/

z/.t/
³ U: 6.3)

Hence, we can proceed along the line of the proof of the homological vanishing
Theorem 5.1): for each q-singular simplex 2 †. / we get

Nn D Nn.L; ; p/ 2 K
and, for every n 2 K greater or equal than Nn, a homotopy

W
OE0; 1 q W 1;2P

OEn

contr.T
OEn

IM/;
such that

i) P
OEn

.0; / D
OEn

ii) AOEn P
OEn

s; z// < c2 for each s;z/ 2 OE0; 1 q,

iii) AOEn P
OEn

.1; z// < c1 for each z 2 q,

iv) if A. z// < c1 for each z 2 q, then P
OEn

s; / D
OEn for each s 2 OE0; 1

v) P
OEn

; Fi // for each i D 0; : : : ; q, where Fi W

q 1 q is the
BFi D P

OEn

standard affine map onto the i th face of q.

Notice that, by 6.3) and remark 5.1, there exists a real constant xR.L; ; p/ > 0 such
that

sup
s;z/2OE0;1 q

ess sup

t2TOEn

² d

dt
s; z/.t/

P OEn
P OEn

s;z/.t/
³ xR.L; ; p/:

Now, we define

Nn D Nn.L; OE ;p/ WD max ¹ Nn.L; ; p/ j 2 †. /º;
xR D xR.L; OE ;p/ WD max ® xR.L; ; p/ j 2 †. /¯;
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and we consider an R-modification LR of R, with R xR. Then, the family of
homotopies fP

OE

Nn

j 2 †. /g which we have built satisfies the following properties:

for each q-singular simplex 2 †. / the homotopy P
OE

Nn has the form

W
OE0; 1 q A

OE

NnP
OE

Nn

R /c2 ;

and moreover

i) P
OE

Nn .0; / D
OE

Nn

ii) P
OE

Nn .1; q/ A
OE

Nn

R /c1

iii) if q/ AR/c1 then P
OE

Nn s; / D
OE

Nn for each s 2 OE0; 1

iv) P
OE

Nn

BFi D P
OE

Nn ;Fi // for each i D 0; : : : ;q.

As in the proof of Theorem 5.1, by [BK, Lemma 1] we conclude that
OE

Nn

B
OE D 0

in H A
OE

Nn

R /c2; A
OE

Nn

R /c1 /.

7. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Throughout the proof, we will adopt the
same notation of the previous section. Inparticular, wewill implicitly assume that the

mean actionfunctionalsAOEn

R of theR-modifications ofL, for each n 2 N andR > 0,

will be defined on the connected component of contractible loops W
1;2

contr.TOEn IM/
W 1;2.TOEn IM/. Moreover, all the homology groups that will appear from now on
are assumed to have coefficients in the field Z2.

Let us fix a prime p 2 N. We will denote by K N the set of non-negative
integer powers of p, i.e. K D ¹pn jn 2 N [ ¹0ºº We will proceed by contradiction,
assuming that theonly contractible periodic solutions of theEuler–Lagrange system of
Lwith period in K and mean action less than a the constant chosen in the statement)
are

1; : : : ; r :

Without loss of generality, we can assume that all these orbits have period 1 D p0.
This can be easily seen in the following way. If pn is the maximum of their basic

periods and, in particular, they are allpn-periodic) we can build a Tonelli Lagrangian

LzW T TM R by time-rescaling of L as

Lz.t; q; v/ WD L.pn t; q;p nv/; 8.t; q; v/ 2 T TM:

For each j 2 N, a curve Q W R M is a j-periodic solution of the Euler–Lagrange
system of Lz if and only if the reparametrized curve

W R M, given by t/ WD
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Q.p nt/ for each t 2 R, is a pnj-periodic solution of the Euler–Lagrange system of
L. Moreover, Q and have the same mean action with respect to the Lagrangians

Lz and L respectively).
We recall that N is the dimension of the closed manifoldM. For eachR > 0 and

n 2 N, the homology of the sublevel AOEn

R /a is non-trivial in degree N, i.e.

HN AOEn

R /a/ ¤ 0; 8R > 0; n 2 N: 7.1)

This is easily seen as follows. First of all, notice that the quantity in 1.1) is finite
due to the compactness ofM) and may be interpreted in the following way: for each

integer n 2 N, if we denote by OEn

W M W 1;2
contr.TOEn IM/ the embedding that maps

a point to the constant loop at that point, the quantity in 1.1) is equal to the maximum
of the functional AOEn

B
OEn

W M R. By our choice of the constant a, we have

AOEn

R B
OEn q/ D AOEn

B
OEn q/ < a; 8q 2 M;

therefore OEn can be seen as a map of the form OEn

W M AOEn

R /a. We denote

by evW W 1;2.TIM/ M the evaluation map, defined by ev. / D .0/ for each

2 W 1;2.TIM/. Since M is an N-dimensional closed manifold and we consider
homology groups withZ2 coefficients, we havethatHN.M/ is non trivial. Therefore,

the following commutative diagram readily implies that OEn is a monomorphism, and
the claim follows.

HN AOEn

R /a/
ev

idM
0 ¤ HN.M/

OEn

' HN.M/

Now, we want to show that there exists 2 ¹ 1; : : : ; rº having mean Conley–
Zehnder index O / equal to zero see Section 2.3). In fact, assume by contradiction
that

O v/ > 0 for each v 2 ¹1; : : : ; rº By the first iteration inequality in 2.3), there
exists n 2 K such that

OEn

v / > N; 8v 2 ¹1; : : : ; rº: 7.2)

By Lemma 6.1, if we choose a real constant R > zR.a; n/, we know that the only
critical points of AOEn

R in the open sublevel AOEn

R /a are
OEn

1 ; : :: ;
OEn

r By 7.2) and

Corollary 3.12, the local homology of A
OEn

R at the
OEn

v ’s vanishes in degree N, i.e.

CN A
OEn

R ; OEn

v / D 0; 8v 2 ¹1; : : : ; rº:



242 M. Mazzucchelli CMH

Then, by the Morse inequality

dim HN AOEn

R /a/
r

X
vD1

dim CN AOEn

R ; OEn

v /;

we readily obtain that HN A
OEn

R /a/ D 0, which contradicts 7.1).
Hence we can assume that 1; : : : ; s, with 1 s r, are periodic solutions

with mean Conley–Zehnder index equal to zero, while sC1; : : : ; r if s < r) are
the ones with strictly positive mean Conley–Zehnder index. By the second iteration
inequality in 2.3), we have

OEn

v / C
OEn

v / N; 8n 2 K; v 2 ¹1; : : : ; sº:

In particular OEn

v /;
OEn

v / 2 ¹0;: : : ; N º for each n 2 K and v 2 ¹1; : : :; sº and

therefore we can find an infinite subset K0 K such that

OEn

v /;
OEm

v //; 8n; m 2 K0; v 2 ¹1; : : : ;sº:v /;
OEn

v // D
OEm

For each n; m 2 K0 with n < m and for each real R > maxfjPv.t/j v.t/ j t 2
T; v 2 ¹1; : : : ; sºg, Corollary 4.8 guarantees that the iteration map OEm=n induces
the homology isomorphism

OEm=n
W

C AOEn

v / ' C AOEm

R ;
OEn

R ; OEm

v /; 8v 2 ¹1; :: : ;sº: 7.3)

Ifs < r, by the first iteration inequality in 2.3), there exists n 2 K0 big enough so

that the periodic solutions sC1; : : :; r with strictly positive mean Conley–Zehnder
index satisfy

OEn

v / n O v/ N > N; 8v 2 ¹s C 1; : : :rº:

By Corollary 3.12, for each realR > maxfj Pv.t /j v.t/ j t 2 T; v 2 ¹s C 1;: : : ; rºg,
we have CN AOEn

R ;
OEn

v / D 0 for each v 2 ¹s C 1; : : : ;rº If s D r we just set n WD 1.

If we further takeR > zR.a; n/, where zR.a; n/ is the constant given by Lemma 6.1,

the Morse inequality

0 ¤ dim HN A
OEn

R /a/
r
X
vD1

dim CN A
OEn

R ; OEn

v / D

s

X
vD1

dim CN A
OEn

R ; OEn

v /

implies that there is a 2 ¹ 1; : : : ; sº such that

CN A
OEn

R ;
OEn / ¤ 0:



Vol. 86 2011) The Lagrangian Conley conjecture 243

At this point, let us assume without loss of generality that 1 2 K0 this can be achieved
by time-rescaling, as we discussed at the beginning of the proof). Then, by 7.3), we
have

OEn

W
C AR; / ' C AOEn

R ; OEn / ¤ 0; 8n 2 K0: 7.4)

Now, we apply our discretization technique as in Section 6.1: we chooseU > 0 as

in 6.1) and we get the discrete mean Tonelli action functional AOEn

k W UOEn

k R, for
some k 2 N sufficiently big and for every n 2 N. For each R U, the homology
isomorphism induced by the iteration map in 7.4) fits into the following commutative
diagram.

C Ak; /
OEn

'
C A

OEn

k ; OEn /

'
C AR; /

OEn

' C AOEn

R ; OEn /

In this diagram, the vertical arrows are isomorphisms induced by inclusions see

Lemma 6.3). Therefore, the iteration map induces a homology isomorphism

OEn

W
C Ak; / ' C AOEn

k ;
OEn / ¤ 0; 8n 2 K0:

Let c1 D A. / and let > 0 be small enough so that c2 WD c1 C < a and there
are no v 2 ¹ 1;: : : ; rº with A. v/ 2 c1;c2/. By Lemma 6.1, for every n 2 K0

and R > zR.a; n/, the action functional AOEn

R does not have any critical point with
critical value in c1;c2/. This implies that the inclusion

A
OEn

R /c1 [ ¹ º; A
OEn

R /c1/ A
OEn

R /c2; A
OEn

R /c1/

induces a monomorphism in homology see [Ch, Theorem 4.2]), and therefore the
inclusion

OEn

W AOEn

k /c1 [ ¹ º; AOEn

k /c1/ AOEn

R /c2 ; A
OEn

R /c1 /;

induces a monomorphism in homology as well. Summing up, for eachR > zR.a; n/
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and n 2 K0, we have obtained the following commutative diagram.

0 ¤ CN Ak; /
OEn

'
OE1

CN AOEn

k ; OEn /

OEn

HN AR/c2 ; AR/c1/
OEn

HN AOEn

R /c2 ; AOEn

R /c1/
This diagram contradicts the homological vanishing Proposition 6.4). In fact, since
the local homology group CN Ak; / is nontrivial and N > 0, is not a local
minimum ofAk. Foreachnonzero OE

2 CN Ak; / thereexist xR D xR.L; OE ; p/ 2
R and Nn D Nn.L; OE ; p/ 2 K such that, for each real R xR and for each n 2 K
greater or equal than Nn, we have

OEn

B
OE1

OE D
OEn=

Nn

B
OE

Nn

B
OE1

OE

„ ƒD‚0 …

D 0;

therefore
OEn

OE 2 ker
OEn
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