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The Lagrangian Conley conjecture

Marco Mazzucchelli

Abstract. We prove a Lagrangian analogue of the Conley conjecture: given a l-periodic Tonelli
Lagrangian with global flow on a closed configuration space, the associated Euler—Lagrange
system has infinitely many periodic solutions. More precisely, we show that there exist in-
finitely many contractible integer periodic solutions with a priori bounded mean action and
either infinitely many of them are 1-periodic or they have unbounded period.
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1. Introduction

An old problem in classical mechanics is the existence and the number of periodic
orbits of a mechanical system. As it 1s well known, there are two dual formulations
of classical mechanics, namely the Lagrangian one and the Hamiltonian one. If
a system is constrained on a manifold, say M, then it is described by a (possibly
time-dependent) Lagrangian defined on the tangent bundle of M or, dually, by a
Hamiltonian defined on the cotangent bundle of M. A classical assumption is that a
Lagrangian function &£: R x TM — R is Tonelli with global flow. This means that
£ has fiberwise superlinear growth, positive definite fiberwise Hessian, and every
maximal integral curve of its associated Euler—Lagrange vector field has all of R as
its domain of definition. The Tonelli class is particularly important in Lagrangian
dynamics: in fact, whenever a Lagrangian function is fiberwise convex, its Legendre
transform defines a diffeomorphism between the tangent and cotangent bundles of the
configuration space if and only if the Lagrangian function belongs to the Tonelli class.
In other words, the Tonelli Lagrangians constitute the broadest family of fiberwise
convex Lagrangian functions for which the Lagrangian—-Hamiltonian duality, given
by the Legendre transform, occurs. Furthermore, the Tonelli assumptions imply
existence and regularity results for action minimizing orbits joining two given points
on the configuration space. For a comprehensive reference on Tonelli Lagrangians,
we refer the reader to the forthcoming book by Fathi [Fal.

The problem of the existence of infinitely many periodic orbits, for Hamiltonian
systems on the cotangent bundle of closed manifolds, is a non-compact version of the
celebrated Conley conjecture [Co], which goes back to the eighties. In its original
form, the conjecture states that every Hamiltonian diffeomorphism on the standard
symplectic torus T2" has infinitely many periodic points. Under a non-degeneracy
assumption on the periodic orbits, the conjecture was soon confirmed by Conley
and Zehnder [CZ2], and then extended to aspherical closed symplectic manifolds in
1992 by Salamon and Zehnder [SZ]. The full conjecture was established in 2004
by Hingston [Hi] for the torus case, and in 2006 by Ginzburg [Gi] for the aspherical
closed case. Other related results are contained in [FS], [GG], [Gii], [HZ], [Sc], [Vi2].

In the Lagrangian formulation, the periodic orbits are extremal points of the La-
grangian action functional, and several sophisticated methods from Morse theory
may be applied in order to assert their existence. However, these methods only
work for classes of Lagrangians that are significantly smaller than the Tonelli one.
Along this line, in 2000 Long [Lo2] proved the existence of infinitely many peri-
odic orbits for Lagrangian systems associated to fiberwise quadratic Lagrangians on
the torus T". More precisely, he proved the result for C3 Lagrangian functions
£:R/Z xTT" — R of the form

L(,q,v) = (Alg)v,v) + V(t,q), V(r,q,v) e R/ZxTT",
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where A: T" — GL(n) takes values in the space of positive definite symmetric
matrices, (-, -) is the standard flat Riemannian metricon T* and V: R/Z xT"* — R
is a C3 function. Recently, Lu [Lu] extended Long’s proof in many directions, in
particular to the case of a general closed configuration space. Other related results
concerning autonomous Lagrangian systems are contained in [CT], [L.L], [LW].

In 2007, Abbondandolo and Figalli [AF] showed how to apply some techniques
from critical point theory in the Tonelli setting. They proved that, on each closed con-
figuration space with finite fundamental group, every Lagrangian system associated
to a 1-periodic Tonelli Lagrangian with global flow admits an infinite sequence of
1-periodic solutions with diverging action. In this paper, inspired by their work and
by Long’s one, we address the problem of the existence of infinitely many periodic
solutions of a 1-periodic Tonelli Lagrangian system on a general closed configuration
space.

1.1. Main result. Our main result is the following.

Theorem 1.1. Let M be a smooth closed manifold, £: R/Z x TM — R a smooth
L-periodic Tonelli Lagrangian with global flow and a € R a constant greater than

1
max {[ L(t,q,0) dt}. (1.1)
geM 0

Assume that only finitely many contractible 1-periodic solutions of the Euler—
Lagrange system of £ have action less than a. Then, for each prime p € N, the
Fuler—Lagrange system of &£ admits infinitely many contractible periodic solutions
with period that is a power of p and mean action less than a.

Here it is worthwhile to point out that the infinitely many periodic orbits that we
find are geometrically distinct in the phase-space R /Z x TM of our system, and the
mean action of an orbit is defined as the usual Lagrangian action divided by the period
of the orbit.

Theorem 1.1 can be equivalently stated in the Hamiltonian formulation. In fact,
it is well known that the Legendre duality sets up a one-to-one correspondence

L:R/ZxTM — R H:R/Z xT*M — R
Tonelli — Tonelli ’

where two correspondent functions £ and J¢ satisfy the Fenchel relations

H(t,q. p) = max {p(v) —£(t.q,v)|v e TqM}, Y(t.q,p) e T*M,

(1.2)
£(r,q.v) = max {p(v) — H(t.q. p) | p € TZM}, Y(t,q.v) € TM.

Here, the definition of Tonelli Hamiltonian is the cotangent bundle analogue of the one
of Tonelli Lagrangian: the Hamiltonian # : R/Z x'T* M — R is Tonelli when it has
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fiberwise superlinear growth and positive definite fiberwise Hessian. The Legendre
duality also sets up a one-to-one correspondence between the (contractible) integer-
periodic solutions of the Euler—Lagrange system of £ and the (contractible) integer-
periodic orbits of the Hamilton system of the dual #. Therefore Theorem 1.1 can be
translated into the following.

Theorem 1.2 (Hamiltonian formulation). Let M be a smooth closed manifold,
H:R/Z xT*M — R a smooth 1-periodic Tonelli Hamiltonian with global flow
and a € R a constant greater than

1
— min min {H#(t,q, drg.
min {fo pET;M{ (t,q. p)} }
Assume that only finitely many contractible 1-periodic solutions of the Hamilton
system of H have (Hamiltonian) action less than a. Then, for each prime p € N,
the Hamilton system of # admits infinitely many contractible periodic solutions with
period that is a power of p and (Hamiltonian) mean action less than a.

Let ®%, be the Hamiltonian flow of #, i.e. if I': R — T*M is a Hamiltonian
curve, then ®%,(I'(0)) = I'(¢) for eachr € R. A Hamiltonian curve I' is r-periodic,
for some integer , if and only if its starting point I"(0) is a t-periodic point of the
Hamiltonian diffeomorphism ®z = &}, i.e.

Dy o...0Dgp(l(0) = T(0).

T times

Therefore, Theorem 1.2 readily implies the Conley conjecture for Tonelli Hamiltonian
systems on the cotangent bundle of a closed manifold.

Corollary 1.3. Let M be a smooth closed manifold and J . R/Z x T*M — R a
1-periodic Tonelli Hamiltonian with global flow ®%,. Then the Hamiltonian diffeo-
morphism <I>‘1;,€ has infinitely many periodic points.

We shall prove Theorem 1.1 by a Morse theoretic argument, inspired by a work
of Long [Lo2]. The rough idea is the following: assuming by contradiction that
the Euler—Lagrange system of a Tonelli Lagrangian £ admits only finitely many
integer periodic solutions as in the statement, then it is possible to find a solution
whose local homology persists under iteration, in contradiction with a homological
vanishing property (analog to the one proved by Bangert and Klingenberg [BK] for
the geodesics action functional).

Under the Tonelli assumptions we need to deal with several problems while car-
rying out the above scheme of the proof. These problems are mainly due to the fact
that a functional setting in which the Tonelli action functional is both regular (say
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C!y and satisfies the Palais—Smale condition, the minimum requirements to perform
Morse theory, is not known. To deal with these lacks, we apply the machinery of
convex quadratic modifications introduced by Abbondandolo and Figalli [AF]: the
1dea consists in modifying the involved Tonelli Lagrangian outside a sufficiently big
neighborhood of the zero section of TM, making it fiberwise quadratic there. If we
fix a period 7 € N and an action bound, a suitable a priori estimate on the -periodic
orbits with bounded action allows to prove that these orbits must lie in the region
where the Lagrangian is not modified. Some work is needed in order to apply this
argument in our proof, since the mentioned a priori estimate holds only in a fixed
period t, while we look for orbits with arbitrarily high period.

Moreover, we have to deal with some regularity issues in applying the machinery
of critical point theory to the action functionals of the modified Lagrangians. In fact,
the natural ambient to perform Morse theory with these functionals is the W12 loop
space, over which they are C'! and satisfy the Palais—Smale condition. However,
all the arguments that involve the Morse lemma (such as the vanishing of the local
homology groups in certain degrees) are valid only for C? functionals. We will
show that these arguments are still valid, developing an analog of the classical broken
geodesic approximation of the loop space: we shall prove that the action sublevels
deformation retract onto finite dimensional submanifolds of the loop space, over
which the action functionals are C2.

1.2. Organization of the paper. In Section 2 we set up the notation and we give
most of the preliminary definitions and results. In the subsequent three sections we
deal with Lagrangian functions that are convex quadratic-growth (the precise defini-
tion is given in Section 2.2). In Section 3 we introduce a discretization technique for
the action functional. In Section 4 we prove an abstract Morse-theoretic result, which
will be applied to the action functional. In Section 5, we prove a vanishing result for
elements of the relative homology groups of pairs of action sublevels under the itera-
tion map. The three sections 3, 4 and 5 can be read independently from one another,
with the only exception of Section 4.4, which requires Section 3. In Section 6 we
introduce the machinery of convex quadratic modifications of Tonelli Lagrangians,
and we apply it to build suitable local homology groups and to prove a homologi-
cal vanishing result for the Tonelli action. Finally, in Section 7 we prove Theorem 1.1.

Acknowledgements. | am indebted to Alberto Abbondandolo for many fruitful con-
versations. This work was largely written when [ was a visitor at Stanford University.
I wish to thank Yakov Eliashberg for his kind hospitality.
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2. Preliminaries

Throughout the paper, M will be a smooth N -dimensional closed manifold, the
configuration space of a Lagrangian system, over which we will consider an arbitrary
Riemannian meltric {-,-). {-, ).

2.1. The free loop space. We recall that a free loop space of M is, loosely speak-
ing, a set of maps from the circle T: = R/Z to M. Common examples are the
spaces C(T'; M) or C*°(T; M). For our purposes, a suitable free loop space will be
WL2(T; M), which is the space of absolutely continuous loops in M with square-
integrable weak derivative. It is well known that this space admits an infinite dimen-
sional Hilbert manifold structure, for the reader’s convenience we briefly sketch this
argument here (see [Kl, Chapter 1] for more details). First of all, we recall that the
inclusions
Co(T: M) c WHA(T: M) < C(T: M)

are dense homotopy equivalences. For each y € WL2(T; M) we denote by
W12(y*TM) the separable Hilbert space of W !-2_sections of the pull-back vector
bundle y*TM . Its inner product, that we denote by {(-,-)),, is given by

1
(8. Ohy: =[0 [(EO. L0y + (VE Vi) ] drt, VE L e W TM),

where V; denotes the covariant derivative with respect to the Levi-Civita connection
on the Riemannian manifold (M, (-,-).}). Now, let € > 0 be a constant smaller than
the injectivity radius of (M, (-,-).),and Uc: = {v ceTyM|geM, vy < e}. We
define a bijective map

exp,, Wi2(y*U) — U, € WH(T; M)

as
(exp, £)(1): =exp((r). VEe WH(y*Uo). €T,

where W 12(y*U,) € W12(y*TM) is the open set of sections that take values inside
U.. Then, the above mentioned differentiable structure on W1-2(T; M) is induced
by the atlas {exp;l: U, > WE2(y*Uy) |y € COO(T;M)}. The tangent space of
WL2(T; M) ataloop y is given by W12 (y*TM ), and the above defined {(-,-)). is a
Hilbert—Riemannian metric on W »2(T; M). By means of this metric, W 1-2(T; M)
turns out to be a complete Hilbert—Riemannian manifold.

Remark 2.1. Notice that, whenever a smooth loop v is contractible, by means of a
trivialization of y*TM we can identify W -2(y*U,) with an open neighborhood of
0 in the Hilbert space W-2(T:RY).
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For each € N, let Tl := R/¢Z. Extending the definition given before,
we introduce the t-periodic free loop space WH2(T: M), which is a complete
Hilbert—Riemannian manifold with respect to the metric {{-, -)). given by

€201 [ [60. 600+ (V. VD]
vy e WHH(TEL M), £.¢6 € WH2(p*TM).
For each n € N, we define the n'™-iteration map
pl w2l pry < w2 (Tl ap)

by w1 (y) := yI*l for each y € WL2(TI; A1), where p!™ is given by the com-
position of ¥ with the n-fold covering map of the circle T, Analogously, for each
y € WI2(TEL M), we define the n™-iteration map

ol w204 TM) < W2y ar,
% ¥y

which is a linear isometric embedding. It is plain to verify that exp, i owlrl =
VAL exp,, and dyl(y)y = Wil which implies that ¥ is a smooth isometric
embedding.

2.2. Lagrangian settings. The clements of the tangent bundle TM will be denoted
by (g,v),whereq € M andv € TyM. Let£: T xTM — R beasmooth 1-periodic
Lagrangian. We will be interested in integer periodic solutions y: R — M of the
Fuler—Lagrange system of £, which can be written in local coordinates as

d 0L

& By (6 y (1), J/(t))——(f yhyth =0, j=1....N. 21

We denote by &% : TM =5 TM the associated Fuler—Lagrange flow, i.e.
P (¥ (0), p (@) = (y (1), 7(1)),

where y: [0,7] — M is a solution of (2.1).
In this paper we will consider two classes of 1-periodic Lagrangian functions. A
smooth Lagrangian £: T x TM — R is called Tonelli when:

(T1) the fiberwise Hessian of £ is positive definite, i.e.

Nooa2e

dv; dv;
lJ_

(t,q,v) w;w; > 0,

forall (r,q.v) € T x TM and w = E{‘;lwi% e T,M with w # 0;
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(T2) £ is fiberwise superlinear, i.c.

i L(t,q,v)
im ——— =

vlg—~oo  |vlg

2

forall (r,q) € T x M.
Moreover, we will always require that each Tonelli Lagrangian £ further satisfies:
(T3) the Euler—Lagrange flow of £ is global, i.e. ®¢: R xTM — TM.
The second class of Lagrangians that we will be interested in consists of smooth
functions £: T x TM — R satistying;

(Q1) there is a positive constant £, such that

L
Z m(r,q,v) w;w; > Eo|w|§,

forall (t,q,v) € T x TM and w = EzN=1wia% € T,M;

(Q2) there is a positive constant £ such that

PEE
dv; dv;
EE
dg; dv;
2

£ 2
— < £i(1

forall (t,q,v) e TxTM andi,j =1,...,N.

In the following we will informally refer to this latter class as the class of convex
quadratic-growth Lagrangians. Notice that, up to changing the constants £, and £1,
the above conditions (Q1) and (Q2) are independent of the choice of the Riemann-
ian metric and of the system of local coordinates used to express them. Moreover,
assumption (Q1) implies that &£ is a Tonelli Lagrangian, hence this second class is
contained in the first.

Foreach r € N, we define the mean action functional A7 : W12(TI: My - R
by

(tvq’v) S El,

([,q,'l)) = El(l + |U|q)7

A = [ 2y soa

In the following we will simply call A the mean action or just the action, and in
period 1 we will omit the superscript, i.e. A := A, Since for all # € N we have
Aoyl = A7l ifwesee WT2(TI: M) as a submanifold of W-2(T 7 M) via
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the embedding "], then Al is the restriction of AT to WL2(TI: M. Ttis well
known that the r-periodic solutions of the Euler—Lagrange system (2.1) are precisely
the extremals of A", These extremals turn out to be smooth, as it is guaranteed by the
Tonelli assumptions. If the involved Lagrangian £ is of convex quadratic-growth, the
associated action functional 47 has good properties: the fact that £ grows ar most
quadratically guarantees that A is C! and twice Gateaux-differentiable, while the
fact that £ grows ar least quadratically implies that A satisfies the Palais—Smale
condition (see [Be] or [AS2, Propositions 2.2 and 2.5]). However, Al is €2 if and
only if the restriction of £ to each fiber of TM is a polynomial of degree at most 2
(see |[AS2, Proposition 2.3]).

Remark 2.2. For simplicity, in this paper, all the Lagrangian functions are assumed
to be smooth, i.e. C°. This assumption can be easily weakened, but then one would
have to care about technical issues due to the fact that the solutions of the Fuler—
Lagrange system would not be C *° anymore (they are C” whenever the Lagrangian
is C).

2.3. The Conley-Zehnder-Longindex pair. Let£: T xTM — R bea 1-periodic
Tonelli Lagrangian. We denote by 9, £(7, ¢, v) € T; M the fiberwise derivative of £
at (¢, g, v), which is given in local coordinates by

aNEE
duL(t,q,v) = Z W(i,q, v)dg;.
j=1 "7

Under the Tonelli assumptions it is well known that the Legendre transform Leg: T x
TM — T x T*M, given by

Leg(t,q,v) = (t,q,d,L£(t,q,v)), V(t,q,v) €T xTM,

18 a diffeomorphism (see [Fa, Theorem 3.4.2]). This diffeomorphism allows to define
a Hamiltonian #: T xT*"M — R by

H(t, Leglt,q,v)) = 0, L(t,q,v)v— £(t,q,v), V(r,q,v) €T xTM.

The functions &£ and # are said to be Legendre-dual, and they fulfill the Fenchel
relations (1.2).

The cotangent bundle T* M, whose elements will be denoted by (g, p), has a
canonical symplectic form o given in local coordinates by

N

w = quj Adp;.
f=1
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The (time-dependent) Hamiltonian vector field X g 1s defined as usual by X 10 =
dJ¢, and its flow @7, is called the Hamiltonian flow of #. It is well known that this
latter is conjugated to the Euler—Lagrange flow &/, by the Legendre transform. In
other words, a curve y: [0, 7] — M is a solution of the Euler-Lagrange system of
£ if and only if the curve (y, p): [0, 7] — T* M, where p(r) := d, L(¢, y(r), y(1)),
is an integral curve of the Hamiltonian vector field X g . In particular, there is a one-
to-one correspondence between the r-periodic Euler-Lagrange orbits of £ and the
7-periodic Hamiltonian orbits of J€.
Let TV"T* M denote the vertical subbundle of TT* M, i.e.

o I M = ker(dt*(q. p)). V(g.p) € T*M,

where t*: T*M — M is the projection of the cotangent bundle onto the base
manifold. Consider a r-periodic solution y of the Euler—Lagrange system of £
and its Hamiltonian correspondent I' = (y, d, L, y. y)). If y is contractible, I" is
contractible as well, and there exists a symplectic trivialization

¢ T« RN = T*TT* M

that maps the vertical Lagrangian subspace VV := {0} x RN < R2¥ (o the vertical
sub-bundle I'*TY"T* M, more precisely

H (T x VVy = T*1verT* M, (2.2)

see [AS1, Lemma 1.2] for a proof. By means of this trivialization, the differential of
the Hamiltonian flow along I' defines a path Iy : [0, 7] — Sp(2/N) in the symplectic
group, given by

Ty(t) = ¢p(r, )" od® (T(0) 0 p(0,-), Vrel0,1].

Notice that I'y (0) is the identity matrix, hence I'y has a well-defined Conley—Zehnder
index 1(I'y) € Z. We denote by v(T'y) € N U {0} the geometric multiplicity of 1 as
an eigenvalue of I'y (in particular, we set v(I'y) = 0if 1 is not an eigenvalue of I'y ).

Remark 2.3. Here, we are using the generalized notion of Conley—Zehnder index
that is due to Long, see [Lol]. Incase v(I'y) = O, the index ¢ (I'y ) coincides with the
usual Conley—Zehnder index, see [CZ], [SZ].

The pair (¢(I'y ), v(I'y)) does not depend on the chosen symplectic trivialization
¢, as long as this latter satisfies (2.2), see [AS1, Lemma 1.3]. Hence, we can de-
fine the Conley—Zehnder—Long index pair of the periodic orbit y as (¢(y), v(y)) :=
(1(I'g), v(I'y)). This pair satisfies the following iteration inequalities

ni(y)—N < u(y™h,

] . ! Vn e N (2.3)
")y +v(y"™) <ni(y) + N,
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where N = dim(M ) as before, and i(y) € R is mean Conley—Zehnder index of y,
given by
(7]
') = tim .

n—00 n

We refer the reader to [LLL1, Theorem 1] or [LL2, Theorem 1.1] for more details on
these inequalities.

If the Lagrangian £ also happens to be convex quadratic-growth, as we have
already remarked in the previous section, its action functional A7 is C! and twice
Gateaux differentiable over the loop space W L2 (T [7]; A1), In this case, ((y) is equal
to the Morse index of A at y, while v(y) is equal to the nullity of AT at y, i.e. to
the dimension of the null-space of the Gateaux—Hessian of 4 at y, see [Vil], [LA]
or [Ab] for a proof.

3. Discretizations for convex quadratic-growth Lagrangians

Throughout this section, £: T x TM — R will be a 1-periodic convex quadratic-
growth Lagrangian, with associated mean action A7, v € N. In order to simplify
the notation, we will work in period r = 1, but everything goes through in every
integer period.

The W2 functional setting for the action functional # presents several draw-
backs. First of all, the regularity that we can expect for # is only C 1!, at least if
we assume to deal with a general convex quadratic-growth Lagrangian. This pre-
vents the applicability of all those abstract results that require more smoothness, for
instance the Morse lemma from critical point theory. Moreover, the W12 topology
is sometimes uncomfortable to work with. In fact, in several occasions it may be
desirable to deal with a topology that is as strong as the C ! topology, or at least as the
W12 topology. This would guarantee that the restriction of the action functional A
to a small neighborhood of a loop y only depends on the values that the Lagrangian
assumes on a small neighborhood of the support of the lifted loop (y, y) in TM . In
the W12 functional setting, the action functional # is smooth, but unfortunately its
sublevels do not satisfy any compactness condition (such as the Palais—Smale condi-
tion), which makes that functional setting inadequate for Morse theory. In order to
overcome these difficulties, in this section we develop a discretization technique that
is a generalization to Lagrangian systems of the broken geodesics approximation of
the path space (see [Mi, Section 16] or [KI, Section A.1] for the Riemannian case,
and [Ra] for the Finsler case).

3.1. Uniqueness of the action minimizers. Given an interval [fy, ;] C R, we
say that an absolutely continuous curve v: [fo,t1] — M is an action minimizer
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with respect to the Lagrangian &£ when every other absolutely continuous curve
C: [tg, t1] — M with the same endpoints of y satisfies

fn f .
| o s [ eeio.gow
0 0

Itis well known that the action minimizers are smooth solutions of the Euler-Lagrange
system (2.1). The existence of an action minimizer joining two given points of
M 1is a known result that holds even for Tonelli Lagrangians, and 1t is essentially
due to Tonelli (see e¢.g. [BGH] or [Fa, page 98] for a modern treatment). A more
ancient result, that goes back to Weierstrass, states that every sufficiently short action
minimizer is unique, meaning that it is the only curve between its given endpoints
that minimizes the action (see [Fa, page 106] or [Ma, page 175]). However, in
this paper, we shall need the following stronger result that holds only for convex
quadratic-growth Lagrangians.

Proposition 3.1. Letr £: T x TM — R be a convex quadratic-growth Lagrangian.
There exist €9 = €o(L) > 0 and po = po(L) > 0 such that, for each real interval
[to, 1] C R with O < t1 —to < €o and for all qo,q1 € M with dist(go,q1) < po,
there is a unique action minimizer (with respect to £) V40,4, [to. t1] — M with

Yq0.91 (o) = qo and Yao.q1 (11) = q1.

Proof. For each absolutely continuous curve £ : [fg, t1] — M, we denote by A1 (Z)
its action (with respect to £), i.e.

AO(E) = /t 1 E(1,8(), E))dt € R U {400).

Up to summing a positive constant to &£, we can assume that there exist two positive
constants £ < £ such that

Clv]2 < £(r.q.v) <€(vl; + 1), VYgeMuveT,M. (3.1)
Consider two points gg, g1 € M and two real numbers 7y < f1. We put
p = dist(go,q1), € :=1 —to.

Since W12([ty, 1;]; M) is dense in the space of absolutely continuous maps from
[0, 1] to M and since the action minimizers are smooth, a curve 4,4, as in the
statement is an action minimizer if and only if it is a global minimum of A% 'l over
the space

Wit = {¢ € W2 (1o, n]: M) | ¢(t0) = qo. (1)) = @1}
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Therefore, all we have to do in order to prove the statement is to show that, for p and

e sufficiently small, the functional A1|, .., admits a unique global minimum.
q0-91
Consider an arbitrary real constant ¢ > 1. By compactness, the manifold M

admits a finite atlas U = {¢o: Uy — RY |a = 1,...,u} such that, for all & €
{1,...,u},q,q" € Uy and v € T, M, we have

1 | ¢alq) — ¢algh)] < distg. q") < it |¢alq) — duld’)|, (3.2)

p da(q)v] < uly < plda(g)v]. (3.3)

where we denote by || the standard norm in R™ and by ||, the Riemannian norm in
T, M asusual. Moreover, we can further assume that the image ¢,, (U, ) of every chart
is a convex subset of R¥ (e.g. aball). Let Leb(11) denote the Lebesgue number! of the
atlas U and consider the two points o, g1 € M of the beginning with dist{(go, ¢1) = p.
By definition of Lebesgue number, the Riemannian closed ball

B(qo.Leb(W)/2) = {q € M |dist(q.q0) < Leb(U)/2}

is contained in a coordinate open set Uy, for some « € {1,...,u}. Therefore, if we
require that p < Leb()/2, the points g and ¢ lie in the same open set U, .
Let r: [tg, 1] — Ugq be the segment from g to g; given by

 —
€

il

r(t) = ¢3! ( —éfo ¢a(f1’1)) . Vit €to, 1]

By (3.1), (3.2) and (3.3) we obtain the following upper bound for the action of the
curve r

AL () < ([:1 (D)7 dr + 6) <t (6 max {[ ()7} + 6)

4 t€fto.]

(M2|¢a<q1>—¢a<qo>|2 +€) -7 (M4dist(QO,Q1)2 +€)

IA
o |

€ €

2 2
€ €

where the positive constant C = £u* does not depend on gy, ¢, and [y, 7;]. This
estimate, in turn, gives as an upper bound for the action of the minima, i.e.

S|

=

2
min {Ato,n (é-)} 24 (P_ L 6) ,
Zewé%’fqll €

1We recall that, for every open cover U of a compact metric space, there exists a positive number Leb (1) > 0,
the Lebesgue number of U, such that every subset of the metric space of diameter less than Leb(11) is contained
in some member of the cover U.
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therefore the action sublevel
2
Jol
U, = U 6.0 = (e Wi A4 <¢ (Sl s

is not empty and it must contain a global minimum y,, 4, of the action (the existence
of a minimum is a well-known fact that holds even for Tonelli Lagrangians, see

[FFa, page 98]). All we have to do in order to conclude is to show that, for p and €

A fot t0st : o
sufficiently small, the sublevel Uqy.q, = Ugp.q, (0, €) cannot contain other minima

of the action.
By the first inequality in (3.1) we have

Al .
/ EO)2edr < £TTAAQ), VL e W,

o

and this, in turn, gives the following bound for all £ € U’

LS 2 no
s dinc0).20F < ([ E0koar) <e [ ok
< €£_1¢>4)t0’t1(§) < Cg—l(pZ_i_éZ)'

Therefore all the curves ¢ € U, .4, (0, €) have image inside the coordinate open set
Uy € M provided p and € are sufficiently small, more precisely for

14
2 §a & 2
P +e ac Leb(11)~. (3.5)

This allows us to restrict our attention to the open set U,. From now on we will
briefly identify U, with ¢ (U,) < RY, so that

g0 = palqo) € RN, g1 = ¢ulq1) e RV,

Without loss of generality we can also assume that go = ¢o(g0) = 0 € RV, On the
set Uy = ¢o(Uy) we will consider the standard flat norm | - | of RY | and the norms
| 1lz1s || - |2 and || - ||z.o will be computed using this norm. We will also consider
£ as a convex quadratic-growth Lagrangian of the form

LT % ¢e(Uy) xRY >R
by means of the identification

£(t.q.v) = L. ¢y (q).dgp;  (da(g))v).
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Now, consider the following close convex subset of W 12 ([ry, 11]; R™Y)

90,91 90,91

Cofl = B0 (g ) = {§ = Wl’z([fo,fl];RN)‘

2
: (P
(o) = 0 =0, £0) = an, 18 = e (T e ) | G0
Since ||Z]|3 < €| |17, for p and € sufficiently small all the curves ¢ € €0 have
support inside the open set U,. Moreover, by (3.1), (3.3) and (3.4), we have

P
€

" 1,
813 <1t [ OB < pt A0 0 SuCﬁ‘l( +e), VE e uln
0]

q0.41°

. . 0.4 10,81 . -y ]
that implies Ugyq, € Cqo.q,- Since we know that a minimum Yy, 4, of the action

exists and all the minima lie in the closed convex subset €070, € W12 ([tg, £1]; RY),
in order to conclude that 4,4, 18 the unique minimum we only need to show that the
Hessian of the action is positive definite on €0}, provided p and « are sufficiently
small, i.e. we need to show that there exist pp > 0 and ¢p > O such that, for all

o € (0, pp) and € € (0, €], we have

Hess A" (D)[o,0] > 0, V¢ e €0l =€l (p,e), o € Wy ([to.n1]: RY).
(3.7)

Notice that the above Hessian is well defined, since #40-! is C'! and twice Gateaux
differentiable. In (3.7), we have denoted by Wol’2 ([to. 11]; RY) the tangent space of
Cod atl,ie.

Wy (lto, ] RY) = {o € Wh ([t n;RY) [0(0) = 0/(11) = 0}.
Consider arbitrary ¢ € €0 and o € W, >([t, 21]; R™). Then, we have
HessA*1 ()]0, o]

= j; 1 ((831;;&([, é'v ;)Ua G) + Z(S%qi(tv é'v é)ga G) + (azqi(f, é-, 5)6,0)) dl

0

n 41 . 4 R
zf £o|c'r|2dr—[ 251(1+M|§|)|G||<'7|dr—f 0L+ 2IEP) ol r,
4 1

0 0 to

=. 11 =. ]2

where £y and £ are the positive constants that appear in (Q1) and (Q2) with respect
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to the atlas U. Now, the quantities /, and I, can be estimated from above as follows
)
< 26u/el6lza (Vellolze + 1€l 1161122 )
= 2116132 (e + VEIENLz).
o<ty (Jo)2, + ol E12.) < a6 125 (€2 + €ld2. ).

and, since by (3.6) we have

1 <26l (161 + 121161

2

: P
Ié1 < nert (Se).
we conclude

HessA"1 (¢)]o, o]

> Loll6|7, — 11— I

> (16122 (b0 — 21 (YrCLT +1) (0 + &) = E1? (WCLT + 1) (0> + ).

=: F(p, €)

Notice that the quantity F(p, €) is independent of the specific choice of the points
qo,q1 and of the interval [#p, 71], but depends only on p = dist(gg,q1) and e = t; —1p.
Moreover, there exist pp > 0 and €p > 0 small enough so that for all p € (0, pg) and
€ € (0, €g] the quantity F(p, €) is positive. This proves (3.7). O

Now, we want to remark that the short action minimizers y,, 4, , given by Propo-
sition 3.1, depend smoothly on their endpoints go and g1. If pp is the constant given
by Proposition 3.1, we denote by A, the open neighborhood of the diagonal sub-
manifold of M x M given by

Ay, = 1(g0.91) € M x M | dist(gp, 1) < po}-

Propesition 3.2. With the notation of Proposition 3.1, for each real interval [ty, t1] C
R with O < t1 — tyg < €y the assignment

(90-91) = Vgo.q1 - [to. 1] —> M (3.8)

defines a smooth map A,, — C*([ty, t1]; M).

Proof. Since the action minimizers are smooth, (3.8) defines a map
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and we just need to show that the dependence of yy, 4, from (go. g1) is smooth. If
t1 —to € (0,¢ep] and (go.91) € Ay, in the proof of Proposition 3.1 we have already
shown that the minimizer y4,.q4, : [f0. 1] — M has image contained in a coordinate
neighborhood U, € M that we can identify with an open set of RY. The curve
Yg0.q; 18 @ smooth solution of the Euler-Lagrange system of &£, therefore

CDE@ Q @@)_1(%,”0) = (qu,!h(t)a )'/qo,m(t))’ Vi € [to, 1],

where vo = ¥y,.4,(to) and &%, is the Euler-Lagrange flow associated to £ (see
Section 2.2). We define

Qt ‘= o (I)Z‘@ o ((DZ%)—I: Uoll X RN — Uy, Vi€ [[05t1]5

where U, C U, is a small neighborhood of gg, and 7: RY x RY — R¥ is the
projection onto the first N components, i.e. 7(g,v) = ¢ forall (g,v) € RY x RV,
We claim that

d0" (g, vo)({0} x RY) = RV, (3.9)

In fact, assume by contradiction that (3.9) does not hold. Then, there exists a nonzero
vector v € RY such that

d

ds QII(QO,Uo“‘SU) = 0.

5=0

If we define the curve o; [tg, 11] — RY by

R d t
o(t) = 2| 0" @o.vo+sv).

theno (tg) = o(t1) = 0, and o is a solution of the linearized Euler—Lagrange system

d . ) .
dr (aﬁvi(fa Yao.q1» Ya0.q1 )0 + 33qéﬁ(t, Yao.q1» qua(h)‘j)
- 821)5(’,(1‘, Yao.a1+ Vao.q1 )0 — Béq;fi(r, Yao0.41+ Ya0.q1)0 = 0.

This implies that HessA™*1 (y,4,.4,)0, 0] = 0, which contradicts the positive defini-
tiveness of HessoA 01 (v, 4,) (see (3.7} in the proof of Proposition 3.1). Therefore,
(3.9) must hold.

By the implicit function theorem we obtain a neighborhood Uy, 4, € RN xR of
(90, q1), aneighborhood U,,, C R¥ of vy and a smooth map Vy: Uyy.q, — U, such
that, for each (g(),q7.v)) € Ugy,q X Uy, we have Q%1 (g, v,) = g} if and only if
vy = Vo(gp. q7). Then, we can define a smooth map from Uy, 4, to C*([to, 11]: Uy)
given by

0,91

(@0.91) = Lq).q; (3.10)



206 M. Mazzucchelli CMH

where for each ¢ € [ty, 11] we have

Canq, (D) = Q(q0, Vo(g0, 91))-

In order to conclude we only have to show that the map in (3.10) coincides with the
one in (3.8) on Uy, 4, provided this latter neighborhood is sufficiently small, i.e. we
have to show that Zqéaqu is the unique action minimizer joining ¢, and g7, for each
(g4-¢4) in a sufficiently small neighborhood Uy, 4, of (go.q1). This is easily seen

as follows. By construction, the curves é'qé ¢ are critical points of the action A1
0.t
over the space W'}, |
9091
arguments in the proof of Proposition 3.1, each of these curves CCI&‘IE is the unique
action minimizer joining its endpoints if and only if it lies in the convex set ‘C’q?’ql,
0°%1

defined in (3.6). We already know that (.4, = Y40.q1 € ‘(i’,?%:rqll. Since the map
in (3.10) is smooth, for (g;.g7) close to (go.q1) we obtain that the curve é'qé’q/l is

9q
being solutions of the Euler-Lagrange system of £. By the

1 — 10,11
C -close 10 {4q,q1 = Vqo.q1» and therefore £y v € qu),qfl . O

3.2. The discrete action functional. Let € = €p(£) and py = po(L) be the
positive constants given by Proposition 3.1, and let £ € N be such that 1/k < €.
We define the k-broken Euler—Lagrange loop space as the subspace Ay = Ag.x C
W12(T; M) consisting of those loops y : T — M suchthatdist(y(% ). y(£51)) < po
and Y |[i/k,(i+1)/k] 1S an action minimizer for each i € {0,...,k — 1}. Notice that,
by propositions 3.1 and 3.2, the correspondence

v (rO.r (@), v ()

defines a diffeomorphism between Aj and an open subset of the k-fold product
M x---x M. Thus, Ay is a finite dimensional submanifold of the W(T ; M), which
implies that the W2 and W 1% topologies coincide on it.

We define the discrete action functional Ay as the restriction of A to Ag, i.e.

Ak = Ala,.

Note that A is smooth, since #4 is smoothon W1 (T ; M)and Ay € WL(T; M).
Moreover, the next proposition implies that, for each action value ¢ € R, there is
a sufficiently big discretization pass k € N such that 4y satisfics the Palais—Smale
condition in the c-sublevel.

Proposition 3.3. For each ¢ € R there exists k = k(c) € N such that, for each
k > k, the closed sublevel 04)]:1(—00, c| is compact.
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Proof. Consider the compact subset of Ag defined by
Cr := {y € A |dist(y(£), y(5F1)) < po/2, Vi € {1,....k —1}}.

In order to prove the statement, we just need to show that

lim min{Ag(y) |y € dCL} = +0oc.
k—o0

Up to summing a positive constant to &£, we can assume that there exists a constant
£ > Osuch that £(r,q9,v) > £|v|§ for every (¢,q,v) € T x TM. Then, consider an
arbitrary y € dCx. Forsome i € {0,...,k — 1} we have that

dist(y (7). v(55H) = po/2.

and therefore we obtain the desired estimate

G+D/k ' i+1)/k o
Ayl = [/k 20, y(0), 7)) dt > f/k £ )P dr

i+1)/k 2 . s
5 kﬁ( [/k PO dr) > k Ldist(y (L), y (L))
> k£ (p0/2)2. -

Each critical point y of the action functional 4 belongs to the k-broken Euler
Lagrange loop space Ag, up to choosing a sufficiently big &k, and in particular it is a
critical point of the discrete action #y. It is easy to verify that the converse is also
true, namely that the critical points of the discrete action #Aj are smooth solutions of
the Euler-Lagrange system of &£. The next statement discusses the invariance of the
Morse index and nullity under discretization.

Proposition 3.4. Consider a contractible y: T — M that is a smooth solution of
the Euler—Lagrange system of £. Then, for each sufficiently big k € N, the Morse
index and nullity pair of A and Ay at y are the same.

We will split the proof of this proposition in several lemmas, which will take the
remaining of this subsection. First of all, since the statement is of a local nature, let
us adopt suitable local coordinates in the loop space. Being y a smooth contractible
loop, we can consider the chart of W2(T; M) given by

exp, 't Uy — WAy TM) =~ WHA(T;RY),
see Section 2.1 for the notation. Let U be a small neighborhood of the origin in RY
and let 7,,: T x U x RY < T x TM be the embedding defined by
d
7 (1,,0) = (10309 (@), 0EXD) @0 + 1 XD (@) )
Yit,g,v) e T xU xRV,
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The pulled-back Lagrangian £ o 7, : T x U x R¥ — R is again convex quadratic-
growth, since conditions (Q1) and (Q2) are invariant with respect to coordinate trans-
formations of the form s, (up to changing the constants £, and £; in the definition).
Moreover, the pulled-back functional A o exp,, is the Lagrangian action functional
associated to the convex quadratic-growth Lagrangian £ o m,, i.e.

1 .
Ao exp, (£) = fo £ oy (1 E0).E(D) dr.

Fromnow on, we will simply write 4 and £ for »A cexp,, and £ o ), respectively, so

that y will be identified with the point 0 in the Hilbert space W 12(T ; RY). Moreover,
for each k € N such that y belongs to Ay, we identify (an open neighborhood of y in)
the k-broken Euler—Lagrange loop space A with a finite dimensional submanifold
of W1L2(T; R¥) containing 0.

We introduce the quadratic Lagrangian L: T x RY x RY — R given by

L(t.q.) = 5 {a(0v,0) + (b(0g.9) +5 {c(0g.0).
V(t,q,v) € T xRY xRV,

(3.11)

where, for eachr € T, a(r), b(r) and ¢(z) are the N x N matrices defined by

2 chﬁ 2
£,0,0 bii(t) = 1,0,0), ¢;i(t):=
Bvi 8vj(’ ’ )’ J() 8v,~ aqj'( ) CJ() aqi 8qj

Cl,’j(f) = (I,0,0).
A straightforward computation shows that the Fuler—Lagrange system associated to

L 1s given by the following linear system of ordinary differential equations for curves
o in RY

a5+ b+a—bye+ (b —c)o=0. (3.12)
This is precisely the linearization of the Euler-Lagrange system of £ along the peri-
odic solution y = 0. The 1-periodic solutions o: T — R of (3.12) are precisely

the critical points of the action functional A: W1L2(T;RY) — R associated to L,
given as usual by

1 .
A(E)Z[O L(1,£().6())dr, V& € WH(T;RY).

The following lemma characterizes the elements of the tangent space of the k-
broken Euler—Lagrange loop space Ag aty = 0.

Lemma 3.5. The tangent space ToA is the space of continuous and piecewise
smooth loops . ' — RY such that, foreach h € {0,...,k — 1}, the restriction
O|[h/k,(h+1)/k] IS a solution of the Euler—Lagrange system (3.12).
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Proof. By definition of tangent space, every ¢ € ToAy is a continuous loopo: T —
R¥ given by

d
o(t) = — (s, 1), (3.13)
ds ls=0
for some continuous X: (—e,€) x T — R such that, forall # € {0,...,k — 1},

the restriction X|(—e e)x[h/k.(h+1)/%] 18 smooth, X (s,-) € Ag forall s € (—¢,€) and
3(0,-) = 0. Namely X is a piecewise smooth variation of the constant loop ¢ such
that the loops X; = X (s, -} satisfy the Euler—Lagrange system of £ in the intervals
[h/k,(h + 1)/ k] forallh € {0,... .,k — 1}, 1ie.

aﬁvi(t7 E.Sa ES) i}S + a%qi(ta E.S'a ES) 2']S
+ a%ti(z7 ES’ z].S) - aqcf(ta 2.5‘7 ES) = 0

By differentiating the above equation with respect to s in s = 0, we obtain the
Euler—Lagrange system (3.12) for the loop o (as before, satisfied on the intervals
[h/k,(h+1)/k]forallh € {0,...,k — 1}). Vice versa, a continuous loopo: T —
RY whose restrictions Ok, (h+1)/ k] Satisfy (3.12) is of the form (3.13) for some X
as above, and therefore it is an element of ToA . O

The null-space of the Hessian of #4 at 0 can be characterized as follows.

Lemma 3.6. The null-space of Hess A (0) consists of those smoothloopso: T — RN
that are solutions of the Euler—Lagrange system (3.12).

Proof. Forevery o,& € WY2(T:RY) we have

1 . .
HessA(0)[o, £] = /0 ((a6.€) + (bo.&) + (b7 6.8) + (c0.£))dt = dA(0)E.

Therefore ¢ is in the null-space of Hess4A(0) if and only of it is a critical point of A,
thatis if and only if itis a (smooth) solution of the Euler—Lagrange system (3.12). [

As a consequence of Lemmas 3.5 and 3.6, the null-space of HesssA(0) is contained
in To A, and therefore it is contained in the null-space of the Hessian of the discrete
action HessAg (0). This inclusion is actually an equality, as shown by the following,

Lemma 3.7. HessA(0) and Hess A (0) have the same null-space, and in particular
A and Ay have the same nullity at 0.

Proof. We only need to show that any curve o € To A thatis not everywhere smooth
cannot be in the null-space of Hess#x (0). In fact, since o is always smooth outside
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the points % (forh € {0,...,k — 1}), foreach & € TogA, we have
(h+1)/k ) .
HessAx (0)[0. §] = Z f a (a6.8) + (bo.§) + (b" 6.8) + (co. é)) ds

1]k .
:Z[ gl — b — a8 = he BT & om £
hik

h=0 =0
=l (h+1)/k)~
+ hz:;)(ao + bo, &) .
k—1 N
= (a6} ) — 6 OLER). (3.14)
h=0

By assumption, we have that d(?) - d(%f) for some i € {0,...,k — 1}, and
therefore

a(Blo () =] #0.

Here, we have used the fact that the matrix @ (%) is invertible, since the Lagrangian
£ satisfies (Q1) (see Section 2.2). Now, consider £ € Tog Ay given by

e(ly = aPloE)—c(E). 1 =h,
k 0, 1ef{0,....k—1),1#h.

By (3.14), we have

Py N T
HessoAr (W[, €] = |a()[6 (3 ) —6 (G| #0,
and therefore we conclude that ¢ is not in the null-space of Hess g (0). O

In order to conclude the proof of Proposition 3.4 we only need to prove the
invariance of the Morse index under discretization.

Lemma 3.8. Forall k € N sufficiently big, the functionals A and Ay have the same
Morse index at (.

Proof. Forevery o € WL2(T; RY) we have

HessA(0)[o, o] = [1 ((a 6,6)+ (bo,6)+ (bL 6,0) + (co, U)) dr
0 (3.15)

1
= 2/ L(t,o(t),6(t))dr =2 A(0).
0
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Let ¢(0) be the Morse index of 4 at 0. By definition, there exists a ¢(0)-dimensional
vector subspace V' € WL2(T; RY) over which Hess# (0) is negative definite, i.e.

HessA(0)[o, 0] <0, Vo e V\ {0} (3.16)

By density, for each k¥ € N sufficiently big we can choose V' to be composed of
k-piecewise affine curves. Namely we can choose V' such that, for eacho € V, we
have

oty =(1—-t)o(®)+to(EL), Veel0,1], he{0,....k—1}. (3.17)

Now, let us define a linearmap K: V — ToAg as K(o) = &, where & is the unique
clement in ToAg such that o(%) = 6(%) for each h € {0,...,k — 1}. Notice that
K is injective. In fact, if K(o) = 0, we have a(%) =0foreachh € {0,... .k — 1}
and, by (3.17), we conclude ¢ = 0. Hence V = K (V) is a ¢(0)-dimensional vector
subspace of ToAX.

In order to conclude we just have to show that Hessx (0) is negative definite
over the vector space V. To this aim, consider an arbitrary & € V \ {0} and put
o = K1) € V\{0}). Foreach h € {0,...,k — 1)} the curve O\[h/k,(h+1)/k] 18
an action minimizer with respect to the Lagrangian L, and therefore A(c) < A(o).
By (3.15) and (3.16) we conclude

HessAx (0)[c, 0] = 2 A(6) < 2 A(o) = HessA(0)[o, o] < O. O

3.3. Homotopic approximation of the action sublevels. We want to show that the
sublevels of the action 4 deformation retract onto the corresponding sublevels of the
discrete action Ay, for all the sufficiently big & € N. To begin with, we need the
following.

Propesition 3.9. For ecach p > 0 and ¢ € R there exists € = e(£, p,c) > O such
that, for each ¢ € WL2(T: M) with A(L) < ¢ and for each interval [to,11] C R
with O < t; — 1ty < €, we have dist (£(29), C(f1)) < p.

Proof. Up to summing a positive constant to the convex quadratic-growth Lagrangian
&£, we can always assume that there exists £ > 0 such that

L(t.q.v) =L |v]o, V(t.g.v) €T xTM.

Then, let us consider an arbitrary ¢ € W12(T; M) such that A(¢) < c¢. For each
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interval [tg, 11] C R with O < 1 — ty < 1 we have

LS 2 LS
dist@(a)),z(n))zs([ |§(t)|z(r)df) <t-w [ 1EOR,a

0
3

<(ti—1o) | £, (). L) dr < (1 — 1) AQD)

1)
< (t1 — o) e,

Hence, for € = €(£, p,c) := p* £~ !, we obtain the claim. O

From now on, we will briefly denote the open sublevels of the action # and of
the discrete action Ay by

(A)e 1= ATH(—00,0),  (Ak)e 1= AL (—00,¢), Ve eR.

Let pg = po(£), €0 = eo(L) and € = €(&L, py, ¢) be the positive constants given by
Propositions 3.1 and 3.9, and consider the integer

k = lg(é(’,,c) = lrmax{i, i}—‘ e N.
€p) €

We fix an integer k > k and we define aretraction 7 : (A), — (Ag). in the following
way: foreach ¢ € ()., the image (&) is the unique k-broken Euler—Lagrange loop
such that r(é’)(%) = é’(%) foreach /i € {0,...,k — 1}, see Figure 1(a). Then, we
define a homotopy R: [0, 1] x (A)e — (A). as follows: foreachi € {0, ...,k — 1},
5 [, %] and { € (A)¢, theloop R(s, {)isdefinedas R(s. O)|[o.isk] = ¥ (Ol[0,i/k]
R(s, Ol[s.1] = Cls,1and R(s, §)|[i/ 5] is the unique action minimizer (with respect to
the Lagrangian £ ) with endpoints ¢ (,%) and ¢ (s), see Figure 1 (b). By Proposition 3.9,
the homotopy R and the map r are well defined and we have A(R(s, {)) < A({) for
every (s, &) € [0, 1] x (4A).. Moreover R is a strong deformation retraction. In fact,
for each ¢ € (A). we have R(0,¢) = ¢, R(1,¢) = r(&) and, if ¢ already belongs to
(Ak e, we further have R(s, ) = ¢ for every s € [0, 1].

If ;1 < ¢2 < ¢, the same homotopy K can be used to show that the pair
((A)¢, . (A)c, ) deformation retracts strongly onto ((#Ag )¢, , (#Ak )¢, ). Furthermore, if
y € WH2(T; M) is a critical point of # with A(y) = ¢, up to increasing k we have
that v belongs to Ay, and we can extend R to a strong deformation retraction of the
pair ({(A)e U {y}, (A)c) onto ((Ag)e U {y}, (Ar)e) such that R(s, y) = y for every
s € [0, 1]. Summing up, we have obtained the following.

Lemma 3.10. (i) For each ¢y < ¢y < oc there exists k= lg(éﬁ, c2) € N and, for
every integer k > k, a strong deformation retraction of the pair ((04))62, (A)Cl) onto

((Ak)ess (Ak)e, ).
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(i) For each critical point y of A with A(y) = c, there exists k =k(£,c)e
N and, for every integer k > k, a strong deformation retraction of the pair

((A)e Uiy} (A)e) onto ((Ar)e ULy}, (Arde).

Figure 1. (a) Example of a loop ¢ (solid line) and the corresponding # () (dashed line), for the
case of the geodesics action functional on the flat R?, i.e. £(f,¢,v) = v% + v%, and k£ = 5.
(b) Homotoped loop R(s, £) (solid line).

Let y be a critical point of A with critical value ¢ = #A(y). For every integer
k = k(£, c) we have that y belongs to the k-broken Euler—Lagrange loop space Ag
and therefore it is a critical point of the discrete action A as well. We recall that the
local homology groups of A at y are defined as

Ca(A,y) = Ha (A)e U{y} (A)e)

where H.. denotes the singular homology functor with an arbitrary coefficient group
(the local homology groups of the discrete action functional 4 at y are defined
analogously). The above Lemma 3.10 (ii) has the following immediate consequence.

Corollary 3.11. For each integer k > k(¥ ¢) the inclusion
vt ((Arde UAy) (Arde) = ((A)e Uy} (A)e) (3.18)

induces the homology isomorphism t,. . Cy (A, y) Sy Cal b, 7).

It is well known that the local homology groups of a C? functional at a critical
point are trivial in dimension that is smaller than the Morse index or bigger than the
sum of the Morse index and the nullity (see [Ch, Corollary 5.1]). By Lemma 3.10 (ii),
we recover this result for the C! action functional #A: W12(T; M) — R, at least
for contractible critical points.
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Corollary 3.12. Lety: T — M be a contractible loop that is a critical point of the
action functional A with Morse index ((y) and nullity v(y). Then, the local homology
groups Cy (A, v) are trivial if x is less than ((y) or greater than ((y) + v(y).

Proof. For each sufficiently big k € N, y is also a critical point of the discrete
action 4. By Proposition 3.4, up to increasing k we have that 4 and 4y have the
same Morse index and nullity pair (¢(y}, v(y))} at y. By the above Corollary 3.11,
up to further increasing k¥ we have Cyo{Ag, y) =~ Ci(s,y). Since Ay is smooth,
the local homology groups C. (A, v) are trivial if = is less than ¢(y) or greater than
((y) + v(y), and the claim follows. O

4. Local homology and embeddings of Hilbert spaces

In this section we will prove an abstract Morse-theoretic result that might be of
independent interest, and then we will discuss its application to the action functional
of a convex quadratic-growth Lagrangian. The result will be an essential ingredient
in the proof of the Lagrangian Conley conjecture.

Letus consider an open set U of a Hilbert space E and a C 2 functional # : U — R
that satisfies the Palais—Smale condition. Let Ee be a Hilbert subspace of E such
that Ue := U N Eq # @ and VF (y) € Eq for all y € U,. This latter condition is
equivalently expressed via the isometric inclusion J: Eq — FE as

(VF)Yod =J o V(F oJ). “4.1)

Let x € U be an isolated critical point of % that sits in the subspace FE,, and let
us further assume that the Morse index «(F, x) and the nullity v(F,x) of ¥ at x
are finite. We denote by H = H(x) the bounded self-adjoint linear operator on E
associated to the Hessian of ¥ at x, i.e.

Hess# (x)[v,w] = (Hv,w)p, Vv,wekE. 4.2)

We require that A is a Fredholm operator, so that the functional ¥ satisfies the
hypotheses of the generalized Morse lemma (see [Ch, page 44]).

Throughout this section, for simplicity, all the homology groups are assumed to
have coefficients in a field F (in this way we will avoid the torsion terms that appear
in the Kiinneth formula). We recall that the local homology groups of the functional
F at x are defined as Co(F,x) = Hy ((F)e U {x}, (F)¢), where ¢ = F(x) and
(F)e := F Y (—o0,c). If we denote by Fo: U, — R the restricted functional
Flu, . then x is a critical point of %, as well and the local homology groups Cx (Fa, x)
are defined analogously as Hi.((Fe). U {x}, (Fa).). The inclusion J restricts to a
continuous map of pairs

J: ((Fo)e Ulx}, (Fade) = ((Fle U{x}, (F)e).
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In this way, it induces the homology homomorphism
Jo: Co(Fa,x) = Cu(F . x).
The main result of this section is the following.

Theorem 4.1. If the Morse index and nullity pair of ¥ and ¥, at x coincide, i.e.
((F,x),v(F,x)) = ((Fo,x),v(Fe, x)),

then J is an isomorphism of local homology groups.

The proof of this theorem will be carried out in Section 4.3, after several prelimi-
naries. The reader might want to skip the remaining of Section 4 (beside Section 4.4)
on a first reading.

Remark 4.1. One might ask if Theorem 4.1 still holds without the assumption (4.1).
This is true in case x is a non-degenerate critical point: briefly, a relative cycle that
represents a generator of C,z vy (Fa. x) also represents a generator of Cy gz ) (F ., x),
and all the other local homology groups C.(Fe., x ) and C,. (F, x), withx # (F,x) =
((F., x), are trivial. However, in the general case, assumption (4.1) is necessary, as
it is shown by the following simple example. Consider the functional ¥ : RZ — R
given by
Flx,y)=(y—xHy—2x%), V(x,y)eR%

The origin 0 is clearly an isolated critical point of ', and the corresponding Hessian
is given in matrix form by

HessF (0,0) = { 8 (2) } 4.3)

Now, let us consider the inclusion J : R < R? given by J(x) = (x,0), namely the
inclusion of the x-axis in R2. The Morse index of & at the origin is 0 and coincides
with the Morse index of the restricted functional o J. Analogously, the nullity of
F and ¥ o J at the origin are both equal to 1. However the gradient of ¥ on the
x-axis 1s given by

VF(x,0) = (8x%,—3x%), VxeR,

hence condition (4.1) is not satisfied, i.e. (VF)o J # J o V(F o J). The local
homology groups of ¥ and ¥ o J at the origin are not isomorphic (and consequently
J is not an isomorphism). In fact, by examining the sublevel (¥ ), (see Figure 2},
it is clear that the origin is a saddle for ¥ and a minimum for ¥ o J. Therefore we
have

F =1 ¥ =0
C*(?,O) = ’ * ’ C*(ffrv o] J’O) = ’ * ’
0, =#1, 0, ==#0.
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yJ

Figure 2. Behaviour of # (x, ¥) = (y — x?)(y — 2x?) around the critical point 0. The shaded
region corresponds to the sublevel (¥)g = F ! (—o0, 0).

Remark 4.2. Also the hypothesis of C? regularity of the involved functional is
essential in order to obtain the assertion of Theorem 4.1. In fact, let us modify the
functional ¥ of the previous remark in the following way

F(x,v) = (v —x2)(y —2x%) + 3x% arctan (14) . VY(x,y)eR2%
by
This functional is C'! and twice Gateaux differentiable, but it is not C? at the origin,
which is again a critical point of . The Hessian of # at the origin is still given by
(4.3), but the gradient of ¥ on the x-axis is now given by

V#(x,0) = (8x%,0), Vx eR,

hence condition (4.1) is satisfied, i.e. (VF)oJ = JoV(F o J), where J: R < R?
is given by J(x) = (x,0). The Morse index and nullity pair of F at the origin is
(0, 1) and coincides with the Morse index and nullity pair of # o J at 0. Moreover,
0 is a local minimum of ¥ o J, which implies

F, %=0,

Gl 8 J0) =
g ) {0, % £ 0,
However, the origin 0 € R2 is not a local minimum of the functional . In fact,
a straightforward computation shows that ¢ is a local maximum of the functional
F restricted to the parabola y = %xz, namely 0 € R is a local maximum of the
functional
1 3
> F (x,3x%) = ——x* + 3x%arctan | — | .
X (x 5X ) 4x + 3x )
This readily implies that Co(F,0) = 0 # Cy(F o J,0), which contradicts the
assertion of Theorem 4.1.
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4.1. The generalized Morse lemma revisited. In order to prove Theorem 4.1, we
need to give a more precise statement of the generalized Morse lemma. Everything
that we will claim already follows from the classical proof (see [Ch, page 44]). In
order to simplify the notation, fromnow on we will assume, without loss of generality,
thatx = 0 € E and hence U C E is an open neighborhood of 0. According to the
operator H associated to the Hessian of # at the critical point 0, we have an orthogonal
splitting E = ET@E~ @ E®, where E T [resp. E " |is aclosed subspace in which H
is positive definite [resp. negative definite], while E° is the finite-dimensional kernel
of H. We denote by P*: E — E* the linear projector onto E* := E* @ E™.
On E £\ {0} we introduce the local flow © g defined by O (s, 0 (0)) = o (s), where
o1 (s0.51) — EE\ {0} (with sy < 0 < s1) is a curve that satisfies

Hao(s)

") = THe o)

Vs € (s9,81)- 4.4)

We also set ®g (0, 0) := 0. Then, the generalized Morse lemma may be restated as
follows.

Lemma 4.2 (Generalized Morse lemma revisited). With the above assumptions on
F, there exists an open neighborhood 'V < U of 0, a homeomorphism onto its image

d: (V,0) — (U,0)
and a C' map
v (VN E®, 00— (E%,0),

such that the following assertions hold.

(i) For each v € 'V, if we write v = v° + v¥ according to the splitting E =
E° @ E*, we have

Fopv)y=5F (vo + W(vo)) —|—%(Hvi,vi)E .

=500 =FTut)

(ii) The origin 0 is a critical point of both F° and F=.

(iii) The map  is implicitly defined by
PENVF +vy") =0 Ve VNE°,
w(0) =0.

(iv) The homeomorphism ¢ is given by

¢ W) =" + B (r(v — Y (")), o= — (7)), Vo =10"+0vF € p(V),



218 M. Mazzucchelli CMH

where T is a continuous function defined in the following way: for each v =
v? + v that belongs to its domain, t(v) is the only real number satisfying

l7(v)| < [[v* | E.
Fo+v))—F (°+v0")) = FEOp(t(),v5)).

4.2. Naturality of the Morse lemma. ILet H, be the bounded self-adjoint linear
operator on Eo C FE associated to the Hessian of the restricted functional ¥, = ¥ |,
at 0. Then

H|g, = He. 4.5)
In fact, by condition (4.1), we have

Hold =d(VF)0)oJ =d(VF)oJ)0) = J o d(V(F))(0) = J o H,.
JoV(Fe)

In particular H, is a Fredholm operator on Ee. If we denote by Ee = Eo’ &
Eo" @ Eo the orthogonal splitting defined by the operator H,, equation (4.5)
readily implies that

E.O g E07 E.+ g E+:~ E._ g E_7 (4'6)

and moreover, if we denote by P.F: Eq — E4* the orthogonal projectoronto Ee* =
Eo" @ E, ™, this latter turns out to be the restriction of the projector P*: E — E*
to Ee, i.c.

PE|g, = PE. (4.7)

The hypotheses of the generalized Morse lemma are fulfilled by both the functional
F and its restriction F,. The following is the long list of the symbols involved in the
statement of Lemma 4.2, and we write in the subsequent line the corresponding list
of symbols involved in the statement referred to the restricted functional F,:

E*, E°, P VvV, @m, ¢ ¢ 1 F° FE
E.:l:a E.Oa P‘ia PV-, ®HQ7 gb‘v 'ln[fia f., 3:’07 \(}7:&

We want to show that, under the hypotheses of Theorem 4.1, the decomposition
FE 4+ F00f 7, given by the generalized Morse lemma, restricts to the corresponding
decomposition F,.& + FL of ..

Lemma 4.3. (i) If «(F,0) = ((F,,0), then E- = Eo .
(i) If v(F,0) = v(F..0), then E° = E,°.
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Proof. The claims follow at once from (4.6), since
dmEe™ = t(Fe,0) = «(F,0) =dim E ",
dim Eg° = v(F.,0) = v(F,0) = dim E°. O

Proposition 4.4. If v(F,0) = v(F,,0), the following equalities hold (on some
neighborhood of the critical point 0 where the involved maps are defined):

(1) ’(llf = w‘:

Proof. By Lemma4.3 (ii), the domains of the maps v and v, are open neighborhoods
of 0in E° = E,°. Up to shrinking these neighborhoods, we can assume that
both v and ¥, have common domain V° ¢ E°. By Lemma 4.2 (iii) we have
Y (0) = ¥4(0) = 0, and all we have to do in order to conclude the proof of (i) is to
show that, for each v® € V2 \ {0}, the maps v, (v?) and v (v°) are implicitly defined
by the same equation, that is

PE(NVF @ + 9 (")) =0=PH(VF " + v (2")).
This is easily verified since, by (4.1) and (4.7), we have

PEVF (0 + 9 (0°) = PE(VF(° + v (")) = 0.

For (i1), up to shrinking the domains of ¢ and ¢., we can assume that they are
maps of the form¢: V — U and pe: Vo — U, where Vo = VN E,. Being ¢ and
¢« homeomorphisms onto their images, we can equivalently prove that ¢~! = ¢!
on the open set po(Ve) C Ue. To begin with, notice that (4.5) readily implies that
the flow @, is the restriction of the flow O to E¢™ \ {0}, i.c.

On (-, vY) = O, (vF), Vor e B\ {0).
By Lemma 4.2 (iv) and since ¥ = v, for each v = v’ + v* € ¢,(V,) we have
¢ () ="+ Or (v — ). v* — ¥ (°),
¢o ' (0) = 0" + O (ra(v = Y (")), 0™ — Y (@")).

Hence, in order to conclude the proof of (i1) we just need to show that, for each v in the
domain of 7., we have t(v) = z.(v). This is easily verified since, by Lemma 4.2 (iv),
7(v) and 7,(v) are implicitly defined by the same equation

I

5 (H 0p(x(v),v5), 05 (x(v),95))p = F (v + ¢ (") = F (° + ¥ ()

— %(H O (te(2). v7). O (1 (v). v7)) ;.-
[

Corollary 4.5. Ifv(F,0) = v(Fe,0) then F* g, = FF and F° = FL.
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4.3. Localhomology. Before going to the proof of Theorem4.1, we need to establish
another naturality property, this time for the isomorphism between the local homology
of ¥ at 0 and the homology of the corresponding Gromoll-Meyer pairs. For the
reader’s convenience, let us briefly recall the needed definition applied to our setting.
We denote by &« the anti-gradient flow of ¥, i.e.

B ) = VF (@5 (y)). Pr0.) = ide.

A pair of topological spaces (W, W_) is called a Gromoll-Meyer pair for ¥ at the
critical point 0 when

(GM1) W C E is a closed neighborhood of 0 that does not contain other critical
points of F;

(GM2) it ¥(0) = c, there exists € > 0 such that [¢ — €, ¢) does not contain critical
values of F,and WN (F).— = 7;

(GM3) if 11 < t, are such that © ¢ (t1,y), Pg (12, ¥y) € W for some y € E, then
P (t,y) e Wohorall r € [1q,13];

(GM4) W_={y e W|D#((0,00) x{y}) C E \ W} is a piecewise submanifold
of E transversal to the flow &g .

It is always possible to build a Gromoll-Meyer pair (W, 'W_) for # at 0, and we
have H, (W, W_) >~ C.(F, 0), see [Ch, page 48].

Lemma 4.6. Let (W, W_) be a Gromoll-Meyer pair for ¥ at 0. Then, the following
holds.
() The pair (We, We_) := (W N Eq, W_1N Eq) = (JTY W), J"Y(W_)) is a
Gromoll-Meyer pair for ¥o = ¥ |E, at (.
(i) Consider the restrictions of J . Eq — E given by
T (Fo)e Utx}, (Fode) = (Fe Ufx} (F)e),
J: (We, We_) — (W, W_).
These restrictions induce the homology homomorphisms

Jo: Ca(Fe,0) > Co(F,0) and Jy: He(Wo, We) — Ho(W, W_).

Then, there exist homology isomorphisms ((w, w, ) and t-w w_ ) such that the
following diagram commutes.

I

C*(?‘,O) C*(‘%"O)
L We, We—) | = ~ LW, W)
Hy (W, War) — 2 H (W, W_)
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Proof. Part (i) just requires the straightforward verification that the pair ('W,, W,_)
satisfies conditions (GM1),...,(GM4). Part (ii) requires to examine the isomorphism
between the homology of a Gromoll-Meyer pair and a corresponding local homology
group (we refer the reader to [Ch, page 48] for more details on what we claim). The
point, here, 1s to show that this isomorphism is given by the composition of homology
isomorphisms induced by maps, so that the assertion follows from the functoriality
of singular homology.

Notice that, by the assumption (4.1), the anti-gradient flow ® & of F restricts on
E4 to the anti-gradient flow ®#, of the restricted functional #,. We introduce the
sets ¥ and ¥, given by

Y .= Dz ([0, 00) x W),
Yo 1= g, ([0,00) x We) = Oy ([0, 00) x We) =Y N E,,

and we consider the following diagram.

Cs«(F.,0)

Cu(F,0)

12
12

Hi (He N (Fa)e UL0}, Yo N (Fo)e) — = H (Y N (F): U{0L Y N (F)e)

12
12

Hy (Ye, Yo N (Fa)e) He (¥, Y N {(F)c)

12
12

Hy (Wa, Wa_) o

H. (W, W_)

In this diagram, all the arrows are homology homomorphisms induced by inclusions.
Moreover, all the vertical arrows are isomorphisms (this factis proved by anti-gradient
flow deformations and excisions), and we define the isomorphisms ¢y, w,_) and
((w,w_) as the composition of the whole left vertical line and right vertical line
respectively. By the functoriality of singular homology, this diagram is commutative,
and the claim of part (i1) follows. O

After these preliminaries, let us go back to the proof of Theorem 4.1. First of all,
if we assume v(F,0) = v(Fe,0), Corollary 4.5 implies that F° = FL. Hence the
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inclusion J restricts to the identity map on the pair
(F))e UL0Y, (F))e) = (FO)e U0}, (FO)0),
and therefore
Co(FL,0) = C(F°,0). (4.8)
For the Morse functionals .= and * we have the following result.

Lemma 4.7. If (i(F,0),v(F,0)) = ((Fe,0), v(F,, 0)) then the inclusion J, re-
stricted as a map

T ((FE)e U0} (FF)e) = (F5)e U0}, (FF)o), 4.9)
induces the homology isomorphism J,: C+(F=, 0) = C.(F*,0).

Proof. The fact that J restricts to a map of the form (4.9) is guaranteed by Corol-
lary 4.5. Moreover, Lemma 4.3 (i) guarantees that Eq~ = E~. Hence J further
restricts to a homeomorphism

T (E™0(FHe UL E™ N (FEH) —(E~ N (FH U0} E™ N (F5),).
and we obtain the following commutative diagram of inclusions.

J

(FHe U{0}, (F5)e) € (FF)e U{0}, (F5)e)

ke |~ k|~

S~

(E7N{(FF) UL0L E™ N (F5)e) (E7N(F5)e U{0LE™N(FF),)

12

It is well known that k. and k are homotopy equivalences. Therefore J. = ku o Ji o
(kex )1 is a homology isomorphism. O

Proof of Theorem 4.1. 'The homeomorphisms ¢ and ¢, obtained by the Morse lemma
induce local homology isomorphisms ¢, and ¢ such that the following diagram

commutes.
I

C*(IFMO) C*(j:70)
Qo | = = | ¢«

Jx
Co(FO+ FE0) — > C(F'+ F£,0)
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Hence, we only need to prove that the lower horizontal homomorphism J, is an
isomorphism. We consider Gromoll-Meyer pairs (W*, W¥) and (W°, W) for F+
and F° respectively at 0, so that the cross product of these pairs, which is

(W, W_) := (WE x WO, (WE x WO U (WE x W),

is a Gromoll-Meyer pair for F° + F* at 0. Then, by Lemma 4.6, we obtain
Gromoll-Meyer pairs for the functionals 7=, #0 and £° + .= at 0 respectively as

(WE, WE) = (WE N E,, WENEy) = (JTUWE), JH(WE)),
(WO, WE ) := (WO N Ee, WO N Eo) = (JUWY), T7H(W?)),
(We, Wa_) := (WN Eq, W_1N Eg) = (J 1 (W), J7H(W_))

and, together with the Kiinneth formula, we obtain the following commutative dia-
gram,

¥
Cu(FE+ FFE,0) Co(FO+ F£,0)
U We, We—) | = >~ LW, W)
Ha (Wa, Wa_) i Ha (W, W_)
Kunneth | == 2 | Kunneth
Ha(WE, Wit) H. (WE, W)
Je @ Js
® ®
H, (W2, W0 ) H, (WO, W?)
LowE wE ) Blwd wd ) | ~ |t qpdy @ w0 w0
o+ g+
H.(F*.0) P H.(F*,0)
® — ®
H.(FL,0) H.(%",0)

The commutativity of the upper and lower squares follows from Lemma 4.6, while
the commutativity of the central square follows from the naturality of the Kiinneth
formula (see for instance [Ha, page 275]). By (4.8) and Lemma 4.7, the lower
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horizontal homomorphism J, ® J, is an isomorphism, and so must be all the others
horizontal homomorphisms. O

4.4. Application to the Lagrangian action functional. We conclude this section
showing that the abstract Theorem 4.1 applies when J is the iteration map and ¥ is
the mean action functional associated to a convex quadratic-growth Lagrangian. To
be more precise, the action functional does not fulfill the hypotheses of Theorem 4.1,
since it is not C?2 in general (the C2-regularity is needed by the generalized Morse
lemma). However, we can still obtain the assertions of Theorem 4.1 by means of the
discretization technique developed in Section 3.

Let £: T xTM — R be a convex quadratic-growth Lagrangian with action 4]
and let y: Tl — M be a contractible z-periodic solution of the Euler-Lagrange
system of £ (namely, a contractible critical point of A) with A7 (y) = ¢. In order
to simplify the notation, let us assume that T = 1.

Proposition 4.8. Ler n € N be such thar (1(y), v(y)) = ((y!™), v(y")). Then the
iteration map w[”], restricted as a map of pairs of the form

Pl (A)e U} (A)) = (A U (y). (Al)e),
induces the homology isomorphism wl: Cy (A, y) =, C. (Al plr]y,

Proof. By Corollary 3.11, for all £ € N sufficiently big, the inclusion

2 ((Arde ULy} (Are) = ((A)e Uy}, (A)e)

induces an isomorphism in homology. Now, let A,[f] be the n-periodic analogue
of the k-broken Euler-Lagrange loop space Ay (see Section 3.2). Namely, A,[(”]
is the subspace of W12(T: M) consisting of those loops ¢: T — M such
that dist( (%),;‘ (%)) < po and C|[i/k.(i+1)/k] 1S an action minimizer for each
i €1{0,...,nk — 1} (here, pg is the constant given by Proposition 3.1). We denote

by A,E"] the restriction of A™ to A,E”]. Notice that the iteration map restricts as a
continuous map of pairs of the form

W ((Ar)e ULph (Ar)e) <= (A, U {y), (AP, (4.10)

Moreover, as before, the inclusion

1 (A U ) (ADe) = (A U ), (AP)
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induces an isomorphism in homology, and the following diagram commutes.

p i

Ca (. 7) Cu( Al y)

Ly

! y
Ci(Ar, 7) CalAp. )

By Proposition 3.4, up to choosing a sufficiently big discretization pass k € N, the
Morse index and nullity of the critical points of the action functional do not change
under discretization. Therefore, all we have to do in order to conclude the proof of the
proposition is to establish the analogous claim for the restricted iteration map (4.10).

Applying the localization argument of Section 3.2 around y, we can assume that
our convex quadratic-growth Lagrangian function has the form £: T xU xRY — R,
where U is an open neighborhood of the origin in RV, and the corresponding action
and mean action have the form #4: W'2(T;U) — R and AM: wi2(TH. Uy —
R. In this way we identify y with the point 0 € W12(T; U). Notice that the claim
that we are proving is precisely the assertion of the abstract Theorem 4.1 when F is
the discrete mean action A,E”] and J is the iteration map ¥, All we have to do in
order to conclude is to verify that Theorem 4.1 applies in our situation.

First of all, we recall that an open neighborhood Us C Ay of y = 0 can be
identified with an open set of RV¥ by the diffeomorphism

£ (LG, L), Vo e U,

Analogously, we can identify an open neighborhood U C A,[("] of yI"l = 0 with an
open set of RV"¥ by the diffeomorphism

o> (0(0),0%),...,0(”@;1 ) Vo e U.

With these identifications, the iteration map ! is the restriction of an injective linear
map RV* < RN7K_that we still denote by ¥, given by

yHw) = (w,...,w), YweRNF
Af—/

n times

This map is an isometry with respect to the standard inner product {(-, -)) on R¥* and
the inner product {{-, -H on RY#¥ obtained multiplying by »~! the standard one,
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ie.
k_l Yw = (w Wi—1)
_ o = (Wo, ..., Wk—1),
«w’Z»_Z O(wj,z]), z = (20,...,2k_1) € RVK,
J:
k—1
17 Yw' = Ww),...,w )
/r[n]:_E: I 0> Wpk—1/r
«w ,Z» " (w],ZJ)v 7/ :(Zé)v---sz;ik_l)ERNnks

Jj=0

where (-, -) denotes the standard inner product of RV .
Now, i order to conclude, the last hypothesis of Theorem 4.1 that must be verified
is the condition expressed in (4.1), that in our setting becomes

VA ) = o VALD), VT e UL, @.11)

where the gradients of the action functionals 4 and A,E”] are computed with respect
to the above inner products on RV* and RV74,
For each { € U, and & € Tz Ay, we have

k—1

(h+1)/k L. .
IADE=Y fh L (Gesd b+ Gate s do)a

h=0
k—1

= Y (BB L, L) — B2 (. G E ).
h=0

This computation, together with Lemma 3.5, shows that VoA (£): T — R¥ is the
element of T¢ A given by

VA = B (2. 0. CE -0, (2. 2. EE)). Yhe{o,... .k—1}.
Analogously, for each o € T;[n]Ag‘] we have
n—1k—1

dAM )y o = %Z > (avi(%, {EINCDY

1=0 h=0
— o2 e EG o+ D),

and, from this computation, equation (4.11) readily follows. O



Vol. 86 (2011) The Lagrangian Conley conjecture 227
5. Homological vanishing under iteration

In this section we prove that the elements of the homotopy and homology groups of
pairs of sublevels of the action functional (associated to a convex quadratic-growth
Lagrangian) are killed by the n'-iteration map, for n that is a sufficiently big power
of any given positive integer. This result was proved in the particular case of the
geodesics action functional by Bangert and Klingenberg [BK, Theorem 2], and then
extended by Long [Lo2, Section 5] to more general Lagrangian systems. Long’s
proof relies on an ad hoc homology theory, which he calls Finite Energy Homology,
in order to deal with technical issues concerning the regularity of the involved singular
simplices. Here, we provide a proof that makes use of the standard singular homology
theory.

Consider a convex quadratic-growth Lagrangian £: T x TM — R with as-
sociated action A1, 7 € N. As usual, let us put 7 = 1 in order to simplify
the notation. We denote by W2 (T; M) < W2(T; M) and, more generally, by
w2 (T My ¢ wih2(T W M), the connected component of contractible loops.
Notice that the iteration map restricts to a map

I W (T3 M) > Wt (TV; 21,
From now on we will implicitly consider the action functionals # and A™ restricted to
W2 (T M) and W22 (17 M) respectively. In particular, all the action sublevels
will be contained in this latter sets.

Theorem 5.1 (Homological vanishing). Let ¢; < c3 < oo, where the sublevel
(A)c, is not empty, and let [i1] € Hy({(A)c,. (A)e, ). Then, for any integer p > 2,
there exists it = n(&L,[u], p) € N that is a power of p such that glf,x[(ﬁ] [] = 0 in
Ha (A, , (AF)e)).

Since ™ o wlm = lrml for cach n,m € N, the assertion of this theorem can
be rephrased as follows: for each » € N that is a sufficiently big power of the given
p € N, we have y:["[u] = 0 in Hy (A, (A1), ).

The proof of Theorem 5.1 is based on a homotopic technique that is essentially
due to Bangert (see [Ba, Section 3] or [BK, Theorem 1]). We recall that a homotopy
F:[0,1] x (X, U} — (Y, W) is said relative U when F(t,x) = F(0, x) for all
(t,x) € [0,1] x U. For each g € N, we denote by A? the standard g-simplex in R,

Lemma 5.2. [etc; < ¢y < ocoando: (A1, 0AT) — ((A)c,, (A)e,) be a singular
simplex, i.e. [0] € myg((A)ey, (A)e,). Then, there exists i = i(£,0) € N and, for
every integer n > n, a homotopy

BIM: 10,1 x (A9, 3A9) — (A, (AM))  relative DAY,
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which we call Bangert homotopy, such that B([,n] 0, = o = ¢y o5 and
B([,n](l, AT C (,A,[”])cl. In particular; 1/r,x[<n] [c] =0in nq((A[”])C2, (A[”])cl).

Proof. First of all, let us introduce some notation. For each path «: [xg, x1] &> M,
we denote by @ [xp, x1] — M the inverse path

ad(x) = alxg + x1 —x), Vx € [xg,x1]

If we consider a second path 8: [x{, x]] — M with «(x;) = B(x]), we denote by
o e f: [xg,x1 + x] — x,] = M the concatenation of ¢ and 8, namely

e B(x) = {a(x), x € [xo, x1],

Blx —x1+%5), x € [x1, %1 + %) — %)

Now, consider a continuous map @ : [xg, x;] — W12(T; M), where [xg, x;] C
R. For each n € N, we define 8" := ¢ 6 09: [xg,x;] — WLHTP: Ar).
Now, we want to build another continuous map 6" : [xg, x1] — WL2(T P M) as
explained in the following. To begin with, let us denote by ev: WL(T; M) — M
the evaluation map, given by

ev(t) = £(0), VEeWLH(T; M).

This map is smooth, which implies that the initial point curve evo 8 : [xg, x1] — M is
(uniformly) continuous. In particular, there exists a constant p = p(8) > 0 such that,
for each x, x’ € [xg, x1] with |x — x’| < p, we have that dist(ev o #(x),evo 6(x)} is
less than the injectivity radius of M . Here, we have denoted by “dist” the Riemannian
distance on M (with respect to its fixed Riemannian metric). Now, for each x, x" €
[x0, x1] with 0 < x' —x < p, we define the horizontal geodesic 6);/: [x,x'] — M as
the shortest geodesic that connects the points ev o 8(x) and ev e 8(x’). Notice that, by
Proposition 3.2, this geodesic depends smoothly on its endpoints. Then, let J € N
be such that xo + Jp < x1 < xg+ (J + 1)p. Foreach x € [xg, x{] we further choose
j € N such that xo + jpo < x < x¢ + (J + 1)p, and we define the horizontal broken
geodesics 07 @ [xo,x] — M and 67" : [x,x1] — M by

2
0y =050 000 2 e 0 67

xo+p xo+jp’
x1 . gxo+(+Dp g gro+tU+De o o g¥1
Ot =0y ¢ on-i-(j-i-l)p 1108 9x0+J/0'

We define a preliminary map 6 ; [xo, x1] — WE2(T]; A1) in the following way.
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Foreach j € {1,...,n —2}and y € [0, *=°] we put

é(n)(xO +y):= 9["_1](360) . H;Cc))Jrny e 0(xg+ny)e 9§g+ny,

gin) (Xo + 4 (xy — x0) + y> = =i~y o ;07" @ B(x0 + ny)
2 9§5+ny
O™ (xo + "=L(x1 — x0) + ) 1= O(xp + ny) e B iy ® ol (x1) 9xo+ny

o 8l1(x ) o 971’

For each x € [xp, x1], we reparametrize the loop 6 (x) as follows: in the above
formulas, each fixed part &(x() and 8(x1 ) spends the original time 1, while the moving
parts 6(xo + ny) and the pieces of horizontal broken geodesics share the remaining
time 1 proportionally to their original parametrizations. We define 8% : [xg,x1] —
W12(T"]; M) as the obtained continuous path in the loop space (see the example
in Figure 3 (a)).

For cach x € [xg,x1], we define the pulling loop Q(x) T — M as the loop
obtained erasing from the formula of 6’(”>(x) the fixed parts #(xy) and 9(x1) and
reparametrizing on [0, 1] (see the example in Figure 3 (b)). Notice that 8 is inde-
pendent of the integer n € N and, for each x € N, the action A(@ (x)} is finite and
depends continuously on x. In particular we obtain a finite constant

C(0):= max {A@(X)} = max {/01éﬁ(t,a(x)(t),%é(x)(t))dt}<oo

x€[x0,x1] x€[x0,x1]

and, for each n € N, the estimate

APV G () = (0 — 1) max (ABCx0), AGCD) + ABC) ]
" e (9) (5.1)

< max {A(0(x0)), AB(x1))} + —=

Now, let . € R be the straight line passing through the origin and the barycenter
of the standard g-simplex A? C R9. According to the orthogonal decomposition
RY = L+ @ L, we can write the elements of A? as z = (y, x) € L' @ LL. For each
s € [0, 1] we denote by sA? the rescaled ¢-simplex, given by {sz | z € A?}. Varying
s from 1 to 0 we obtain a deformation retraction of A4 onto the origin of RY. For
each (y,x) € sA9, we denote by [xo(y,s),x1(y,s)] € L the maximum interval
such that (y, x") belongs to sA? for all X’ € [xo(y,s),x1(y,s)] (see Figure 4).

Consider the g-singular simplex ¢ of the statement. For each n € N, we define
the homotopy BY: [0, 1] x A4 — W12(T: A1) by

B[n]( ) — (U(ya ')|[xo(y,s),xl(y,s)])(n>(x)7 zZ = (y,x) e SAY,
¢ " oll(z), z & sAY,
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\\ 9 (0)

J
8141(0)

\ /\E 64 ()

/ \_J~ o<y<i/

8131(0) 8(4y)

N LY ey
JT T s
8121(0) 9(4y; 8(1)

\\ 9(4)(1)
J

9”[4](1)

- -~ Ay
- O0<y<l1/4

8(4y)
el 9(% + )
e 0<y<1/4,je{l,2}
6(4y)
62 + y)
0<y<l1/4

Figure 3. (a) Description of 64 : [0, 1] — W1-2(T™: M), obtained from a map 6: [0, 1] —
W1-2(T; M). Here, for simplicity, we are assuming that the diameter of 6([xq, x1]) is less than
the injectivity radius of M, so that the horizontal geodesics are not broken. The arrows show
the direction in which the loop #{4y) is pulled as y grows. (b) Description of the map of pulling

loops 6 [0,1] = WL2(T; M).
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L
N
x1(y,s)
xO(ys S) \ \
s c A4
Figure 4

for each (s, z) € [0, 1] x A?. This homotopy B is relative 3A4, for
B (s, z) = ol"l(z), V(s,z) € ]0,1] x dAY,
and clearly BY(0,-) = o] Take € > 0 such that

max Ao (2)) Sca—¢, max Al(z) e -

Foreachs € [0,1],n € Nand z = (y, x) € sA%, by the estimate in (5.1) we have

APIBI (s, 2)) < max (o (xo(y, ))), A (x1 (3, )} + C(U(ys')|[XO’;J’,S),X1(J’,S)])7
while, for each z € A9\ sAY, we have
AP(BLI (5. 2)) = Ao (2)).
In particular, there exists a finite constant

C(o) := max {C(a (¥, Nixow.9) 1) |5 € [0, 1], (¥, x) € sAT}

such that, for each n € N and (s, z) € [0, 1] x A?, we have

Al (B (s,2)) < max (Al (w)}+ Q <cp—e+ C,(f)a
[”](B[”](l z)) < max {Ao(w)} + — ( ) 1— €+ Cia)-

These estimates prove that, for n sufficiently big, the homotopy B([,"] satisfies the
properties stated in the lemma. O
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Remark 5.1. In Section 6.2 we will need the following observation. Assume that the
singular simplex ¢ of Lemma 5.2 has W 1 _bounded image, i.e. there exists a real

R’ such that
} < R'.
o(z)(2)

Then the Bangert homotopies B([,n] have W 1**_bounded image as well, and this bound
is uniform in #n > a(£, o). In other words, there exists a real R > R’ such that, for
every integer n > n(L, o), we have

zeA? teT

d
sup €ss sup {‘a o(z)(t)

< R.

d
sup ess sup ‘— B([,”] (s,2)(1)
dr BY (5,2)(0)

(5.2)€[0.1]xA? reTn]

Proof of Theorem 5.1. We denote by X (1) the set of singular simplices in u together
with all their faces, and by K < N the set of nonnegative integer powers of p, i.e.
K = {p"|n € N U{0}}. The idea of the proofis to apply Lemma 5.2 successively to
all the elements of X (). More precisely, for each singular simplex o : A? — (A),,
that belongs to X (), we will find n = 1 (£, o, p) € K and a homotopy

P [0,1] x A? — (A,

such that
@ P,) = ol
(i) PI(1 A7) C (A,
(iii) if o (A?) C (A)e,, then P (s, ) = ol for each s € [0, 1],

(iv) P(E'E]FZ_ = Pf‘](-, F;(-)) foreachi = 0,...,q, where F;: A?"! — A9 is the
standard affine map onto the /" face of A4,

For each n € K greater than 7, we define a homotopy P(E”] 1 [0,1] x A7 — (a%[”])c2
by Pi”] = yl/al g Pi"l]. This homotopy satisfies the analogous properties (i),...,(iv)
in period n. Notice that property (iv) implicitly requires that n (£, o, p) > n(£,0 o
F;, p)foreachi =0,...,q.

Now, assume that such homotopies exist and put

n=n(L,[u], p):=max{n(L,o, p)lo e X(un)} e K.

Then, we have a family of homotopies {Po[rn] |o € 3(u)} satisfying the above prop-
erties. Therefore, a classical result in algebraic topology (basically, a variation of
the homotopic invariance of singular homology, see [BK, Lemma 1]) implies that
W] = 0in Hy (AP, (A,
In order to conclude the proof, we only need to build the above homotopies. We do
itinductively on the degree of the relative cycle p. If s is a O-relative cycle, then X (i)
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is simply a finite set of contractible loops that is contained in (#4).,. Lety € X () be
one of these loops. If y € (A)., wesimplysetn = a(L, y, p) := land P,E'_l] (s) =y
for each s € [0, 1]. If y & (+A).,, since we are assuming that (A)., is non-empty,
we can find a continuous path T": ([0, 1],{0, 1}) — (Wl’2 (T; M), (A)c,) such that

['0) = yand I'(1) € (A).,. By Lemma 5.2, for evelc“;mirnteger n > n(L,I) there
exists a Bangert homotopy
BI: 0, 1] x (10, 11,40, 1}) — (W2 (T M), (AP),)  relative {0, 1)
such that Bl[—"] 0,-) = 'l and Ban](l, [0,1]) < (A).,. Then, we set
n=n(L,y,p):=min{n €eK|n >n(£, )}
and we define the map P,Eﬁ]: [0, 1] — (A, as P)Eﬁ] r— B)[,’_’](l, 1), see Figure 5.

=T

. 7] (7]
rlal BF py”

Figure 5

In case yu is a g-relative cycle, with g > 1, we can apply the inductive hypothesis:
for every nonnegative integer j < ¢ and for each j-singular simplex v € X(u)
we obtain 71(£, v, p) € K and, for every n € K greater or equal than n(£, v, p),
a homotopy P,,[”] satisfying the above properties (1),...,(iv). Now, consider a g-
singular simplex ¢ € X(u). If 6(A?) C (A)., we simply setn = n(L,0,p) =1
and P(P’] (s,-) := o for each s € [0, 1]. Hence, let us assume that 6 (A9) ¢ (A),.
We denote by i’ = #/(£, o, p) the maximum of the (£, v, p)’s for all the proper
faces v of 0. For each n € K greater or equal than »’, every proper face v of o
has an associated homotopy P,,[”]: [0,1] x A9 — (A[”])cz. For technical reasons,
let us assume that P (s,-) = P,,[n](%, ) for each s € [, 1]. Patching together the
homotopies of the proper faces of o, we obtain

Pl (0, 1] x 9AT) U ({0} x AT) — (A, VneK, n> 7,

such that 2P0,y = o and PY(-, Fi() = P(E’Z]Fi for eachi = 0,....q. By
retracting [0, 7] x A? onto ([0, 3] x IAY) U ({0} x A7) we can extend the homotopy
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M (o the whole [0, 3] x A9, obtaining
Pl 0, L1 x A7 — (Al Ve eK, n>7 (5.2)
Notice that Pfﬂ] (%, -} is a singular simplex of the form
PFIG. )1 (AT.0A7) — (AP D)y, (AP,

Let us briefly denote this singular simplex by &. By Lemma 5.2, there exists 1" € K
greater or equal than 7 (£, ) and a Bangert homotopy

BIT: [0, 1] x (A, 0A%) — (AFF), (AFF),)  relative DAY,

such that B (0, ) = 5171 = pF™1(L .y and BP1(1, A7) C (A7), . Fi-
nally, wesetn = n(L, 0, p) ;= n'n" and we build the_l},omotopy Pi”]: [0, 1]x A? —
(e>4>[”])c2 extending the onein (5.2) by Pi”] (s,°):= B(ET” ](23—1, -)yforeachs € [%, 1].

O

6. Convex quadratic modifications

Throughout this section, £: T x TM — R will be a Tonelli Lagrangian with asso-
ciated action A", ¢ € N. We want to show how several techniques from the W1-2
Morse Theory of the action functional still apply in the Tonelli case. This will require
some work, since the Tonelli action functional 4 is not even continuous on the
W12 loop space.

First of all, notice that the Tonelli assumptions and the compactness of M imply
that &£ is uniformly fiberwise superlinear (namely, the limit in (T2) is uniform in
(t,q) € T x M). In fact, it # is the Hamiltonian that is Legendre dual to £ (sce
Section 2.3) and k > 0, foreach (¢,¢,v) € T x TM we have

L(t,g,v) > max {p(v)—H({, q, p}} > max {p(v)} — max {H(,q, p)}
|plg <k Ipla<k

lplg <k

> k |v], — max {Jt’(t’,q’, Y, q, pYyeT xT*M, |p'ly < k}.

In particular, if we put C(£) := max {J(r,q. p) | (t.q, p) € T x T*M, |p|, < 1},
we get
£(t,q,v) = |vlg — C(£), V(,q.,v)eT xTM.

Following Abbondandolo and Figalli [AF, Section 5], for each real R > 0 we say that
a convex quadratic-growth Lagrangian £g: T x TM — R is a convex quadratic
R-modification (or simply an R-modification) of the Tonelli Lagrangian £ when:
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(M1) £g(r,q,v) = £(r,q,v) foreach (1,q,v) € T x TM with |v|, < R,
M2) £r(t,q,v) = |v], — C(L) foreach (r,q,v) € T x TM.
It 1s always possible to build a convex quadratic modification of a given Tonelli

Lagrangian (see [AF, page 637]). For each R > 0, we will denote by £ g an arbitrary
R-modification of the Tonelli Lagrangian £ with associated action

AL wi2(TE A1) > R

foreachr € N, i.e.
AR = f R L), FO) Ve € WIA(TH: b,
0

As before, we will simply write 4 g for AL, Notice that, if y: TIF — M is asmooth
r-periodic solution of the Euler—Lagrange system of &£ and R > max{|y(t)|,q) | €
Ty, then y is a critical point of A[;]. Moreover, the Hessian of ,A[;] at y depends
only on £, since £ and £z coincide along the lifted curve (y, y): T — TM. In
particular, the Morse index and nullity pair (¢(y), v(y)) of 94’[13] at y is independent of
the chosen R, and in fact coincides with the Conley—Zehnder-Long index pair of y.

One of the important features of convex quadratic modifications is given by the fol-
lowing a priori estimate, that is due to Abbondandolo and Figalli (see [AF, Lemma 5.2]
for a proof).

Lemma 6.1. For each @ > 0 and T € N, there exists R = R(a,T) > 0 such
that, for any R-modification £ of £ with R > R and for any v € {1,...,7},
the following holds: if y is a critical point of A;E,g] such that AB;]()/) < a, then
max{|y ()|, |t € T < R, In particular, y is a t-periodic solution of the
Euler—Lagrange system of £, and A9 (y) = Ag](y).

6.1. Convex quadratic modifications and local homology. et y be a contractible
integer periodic solution of the Euler—Lagrange system associated to the Tonelli La-
grangian £. In order to simplify the notation, we assume that the period of y is 1, so
that it is a map of the form y: T — M. We fix a real constant U > 0 such that

U > max {[y (Ol - (6.1)

and we consider a U -modification &£ of &£. Notice that, by (6.1), y is a critical point
of Ay with Ay (y) = A(y).

Now, for each k € N sufficiently big, we consider the k-broken Euler-Lagrange
loop space Ax = Ay z,, associated to Ly (see Section 3.2), and we denote by Ay
its discrete action, i.e. Ayx = Aula,. We recall that Ag is a finite dimensional
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submanifold of W12(T; M) and, in particular, its topology coincides with the one
induced as a subspace of W (T ; M). Therefore, we can define an open set Uy C
Ak by

Uy := {Z € Ak ‘ rrr%{li(f)k(z)} < U}-

Notice that, for k¥ € N sufficiently big, y belongs to Ux. Moreover, the action Ay
coincides with the Tonelli action # on the open set Uy . This allows us to define the
discrete Tonelli action Ar: U — R by

cA)k = o4>|°uk = AU|uk = AU,kl‘le-

Since Ay ¢ is smooth, we readily obtain that the discrete Tonelli action Ay is smooth
as well. Moreover, the germ of A at v turns out to be independent of the chosen U
and of the chosen U-modification £y of £, as stated by the following.

Lemma 6.2. Consider a real constant R > U, an R-modification £ of £ with
associated discrete action AR . and a sufficiently big k € N so that both AR . and
Ay k are defined. Then, there exists Vi C Uy that is an open subset of both A £,
and A, g » and that contains y. In particular Ag |y, = Avu kv, = ARk|v,-

Proof. The Lagrangian functions £y and £ g coincide on a neighborhood of the
supportof the lifted curve (y, y): T — TM . Therefore the k-broken Euler-Lagrange
loops of £y and £ g that are close to y are the same, and the claim follows. O

Now, let ¢ = Ag(y) = A(y). By Corollary 3.11 and the excision property, for
each k > k(£ . ), the inclusion

e ((Ar)e ULy, (Ar)e) = ((Av)e ULy, (Au)e)
induces the local homology isomorphism
st Ca(ohk, 7) —> Cal(Au. ¥). (6.2)

For each R-modification &£ g of £, with R > U, the action 4 g coincides with Ay
on U. Hence, we also have an inclusion

Jit ((Arde ULy) (Arde) = ((AR)e Uy} (AR)e)-

A priori, this inclusion might not induce an isomorphism in homology. However, we
have the following statement.

Lemma 6.3. The inclusion ji induces the homology isomorphism

jk* o (cA)k, )/) i> C*(cA)R: )/)
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Proof. Notice that, foreach /s € N, wehave U, C Upg. Sincehk > k > k(£y,c),
by Corollary 3.11 and the excision property, the inclusion

it ((Ani)e Uy}, (Ank)e) = ((Au)e ULy}, (Au)e)

induces the homology isomorphism tpz 4 @ Cu(Apk, ¥) = C«(Ay, y), analogously
to tx in (6.2). We define an inclusion Ay, that factorizes (¢ as in the following diagram.

(Ar)e U {1}, (Ar)e) © ”C ((Au)e U {y), (Av)e)

thi

((Ani)e ULy}, (Apide)

This inclusion induces the homology isomorphism

Ah>x< = (Lhk*)_l O lfx: C*(fA’k’ )/) i> Cs (Ahk, )/)

Now, let us consider the R-modification £ of £. By Lemma 6.2, for each /7 € N,
we know that there exists an open neighborhood Vi C Uy of y thatis also an open
subset of Apk g ,, and in particular Apg|v,, = Arak|v,, = Ar|v,,. Applying
once more Corollary 3.11 and the excision property, we obtain that the inclusion

Tk ((Anklvy)e UL (Anklvyede) = ((AR)e U {y}, (AR)e).

induces an isomorphism in homology. TFinally, consider the following diagram of
inclusions.

((Ar)e Uiy}, (Ar)e)

A | () e
((An)e Uy} (Anrde) © = (AR)e UL}, (AR)e)
excision (€))]
. . (%)
inclusion j]{lk

oy

((‘A)hkh)hk )C U {y}’ (‘A)hk|'vkk)c)
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We already know that the inclusions marked with () induce isomorphisms in ho-
mology. Therefore, jur and ji also induce isomorphisms in homology. O

Remark 6.1. As a consequence of the above lemma, we immediately obtain that the
local homology groups C. (A g, v} do not depend (up to isomorphism) on the chosen
real constant R > U and on the chosen R-modification £ g.

6.2. Convex quadratic modifications and homeological vanishing., All the argu-
ments of the previous section can be carried out word by word in an arbitrary period
n € N. Briefly, we introduce the open set

and we define the discrete mean Tonelli action as

A plely el R
k oy U™ =

Then lemmas 6.2 and 6.3 go through. Notice that the image of Uy under the n®-
iteration map ¥ is contained in ‘U.L”]. Now, consider o0 > ¢; > ¢1 = ¢ = A(y),
and let us assume that y is not a local minimum of #. For each R > U, we have the
following diagram of inclusions.

(AR)e, U {¥) (Ar)e) € (A, U i, (Al )

0 p[n]

w[n]

(AR)ess (AR)e,) © (A, (Al

This latter, in turn, induces the following commutative diagram in homology.

wl

Cu (A7) Cu (A ylnl)

% p&”]

[n]
Ha((AR)es (AR)e,) — > H, (A, (A, )

Since y is not a local minimum of the action functional #4, the sublevel (Ag)., is
not empty. Hence, the homological vanishing (Theorem 5.1) guarantees that for each
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(1] € Cul(Ag, y) and p € N, thereis n = n(&Lpg,[p], p) € N that is a power

of p such that tlf* o px[p] = 0. Here, we want to remark that we can choose n
independent of R.

Proposition 6.4. With the above assumptions, consider [j1] € Cy (A, y)and p € N.
Then, there exist R = R(L,[u], p) > Oandn = n(L,[p], p) € N that is a power of

p suchthat, for everyreal R > R, we have w* Op*[,u] = 0inH, (((A,[H])CZ, (,A)[n])cl)

Equivalently, we have that w[n] (1] € ker p[n].

Proof. We denote by X(u) the set of singular simplices in j together with all
their faces, and by K C N the set of nonnegative integer powers of p, i.e. K =
{p"|n € N U{0}}. Notice that, for each g-singular simplex ¢ € X(u) we have
o (A7) C Uy, and in particular

} < U. (6.3)
o(z)(t)

Hence, we can proceed along the line of the proof of the homological vanishing
(Theorem 5.1): for each g-singular simplex 0 € X(u) we getn = n(£,0,p) € K
and, for every n € K greater or equal than 7, a homotopy

d
sup ess sup {‘E o(z)(t)

zeAY teT

Pl o 1] x AY — w12 (T pp),

contr

such that
@ P, = ol
i) AP (s, 2)) < es foreach (s, z) € [0, 1] x AY,
(i) AM(PI(1,2)) < ¢ foreach z € A9,
(iv) if A(0(2)) < ¢1 foreach z € A, then P (s.-) = o] for each s € [0, 1],

(v) Pgﬁ]Fi = Pi”](-, F;(-)) foreachi = 0,...,q, where F;: A?"! — A9 is the
standard affine map onto the /" face of AY.

Notice that, by (6.3) and remark 5.1, there exists a real constant R(£, o, p) > 0 such
that

d
sup ess sup {‘_pén] (s,2)(¢)
(s.0)€[0,1]xA? zeln |IdE

} < E(i,a, p).
P (s, 2y

Now, we define

n=n(L,[pu], p) :=max {n(L, o0, p)|lo e Z(u)}
R =R(£.[u]. p):=max {R(£,0,p) |0 € ()},
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and we consideg an R-modification £z of R, with R > R. Then, the family of
homotopies {Pi”] | € X(u)} which we have built satisfies the following properties:
for each g-singular simplex o € X (), the homotopy Pé"] has the form

P [0,1] x AT — (A,

and moreover
@ P, = ol
(i) P, A7) C (AR,
(i) if 0 (A7) C (AR)e,. then PY(s.-) = o for each s € [0, 1],
) P = PY Fi())foreachi =0,....q.

o

As in the proof of Theorem 5.1, by [BK, Lemma 1] we conclude that w}kﬁ] opg[p] =0
in He (A, , (ARDc). O

7. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Throughout the proof, we will adopt the
same notation of the previous section. In particular, we will implicitly assume that the

mean action functionals A[};] of the R-modifications of &£, foreachn € Nand R > 0,

will be defined on the connected component of contractible loops Wcl);ﬁl T M)
WL2(T; M. Moreover, all the homology groups that will appear from now on
are assumed to have coefficients in the field Z-.

Let us fix a prime p € N. We will denote by K C N the set of non-negative
integer powers of p,i.e. K = {p" |n € N U {0}}. We will proceed by contradiction,
assuming that the only contractible periodic solutions of the Euler—Lagrange system of
&£ with period in K and mean action less than a (the constant chosen in the statement)
are

yl,...,y;-.

Without loss of generality, we can assume that all these orbits have period 1 = pY.
This can be easily seen in the following way. If p" is the maximum of their basic
periods (and, in particular, they are all p”-periodic) we can build a Tonelli Lagrangian
£: T xTM — R by time-rescaling of &£ as

L(t.q,v) = L(p".,q, p™v), Y(.,q.v)eT xTM.

Foreach j € N,acurve y: R — M is a j-periodic solution of the Euler-Lagrange
system of &£ if and only if the reparametrized curve y: R — M, given by y(¢) :=
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y(p~"t) foreachr € R, is a p” j -periodic solution of the Euler-Lagrange system of
£. Moreover, y and y have the same mean action (with respect to the Lagrangians
Fand £ respectively).

We recall that N is the dimension of the closed manifold M. For each R > 0 and
n € N, the homology of the sublevel (A[Ig])a is non-trivial in degree N, i.e.

Hy ((AZh,) #0, VR>0neN. (7.1)

This 1s easily seen as follows. First of all, notice that the quantity in (1.1) is finite
(due to the compactness of M ) and may be interpreted in the following way: for each
integer n € N, if we denote by (™ M < W12 (T M) the embedding that maps
a point to the constant loop at that point, the quantity in (1.1) is equal to the maximum
of the functional A" o [71: M — R. By our choice of the constant @, we have

Ao gy = APl o gy <a, Vg eM,

therefore (/"] can be seen as a map of the form s Mo ((AE’;])@. We denote
by ev: WL2(T: M) — M the evaluation map, defined by ev(¢) = £(0) for each
¢ e WH2(T; M). Since M is an N -dimensional closed manifold and we consider
homology groups with Z, coefficients, we have that Hy (M ) is non trivial. Therefore,
the following commutative diagram readily implies that L[ "lisa monomorphism, and
the claim follows.

Hy (A,

y e

0 £ Hy (M) g Hy (M)

~

Now, we want to show that there exists y € {y1,..., yr} having mean Conley—
Zehnder index 7(y) equal to zero (see Section 2.3). In fact, assume by contradiction
thatZ(yy) > Ofor each v € {1, ..., r}. By the first iteration inequality in (2.3), there
exists n € K such that

yMy > N o vee{l,. .. r). (7.2)

By Lemma 6.1, if we choose a real constant R > R(a,n), we know that the only

critical points of A[Ig] in the open sublevel (A[n])a are y" .y By (7.2) and

(7] (n],

Corollary 3.12, the local homology of A, at the y,; *’s vanishes in degree N, i.e.

CyAB Yy —o, vee(l,....r).
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Then, by the Morse inequality

dim Hy (AF)a) < > dimCy (Al yIM),

v=1

we readily obtain that Hy ((A[Ig])a) = 0, which contradicts (7.1).

Hence we can assume that yq,...,ys, with 1 < s < r, are periodic solutions
with mean Conley—Zehnder index equal to zero, while ys44q,...,y, (it s < r) are
the ones with strictly positive mean Conley—Zchnder index. By the second iteration
inequality in (2.3), we have

L(y[n]) —I—V(Va[;n]) <N, VneK,vell,..., s}

In particular ((¥), v(y!™) € {0,..., N} foreachn € K and v € {1,...,s), and
therefore we can find an infinite subset K’ < K such that

) = (™M), Yam e K, vell,. .. s).

For each n,m € K’ with n < m and for each real R > max{|yy(1)|,, )|t €
T, v € {1,...,s}}, Corollary 4.8 guarantees that the iteration map /" induces
the homology isomorphism

mial. o (A YUy 2o Al iy v el s (13)

If s < r, by the first iteration inequality in (2.3), there exists n € K’ big enough so
that the periodic solutions Y541, ..., ¥ with strictly positive mean Conley—Z¢ehnder
index satisfy

L(y[”]) >ni(yy)—N>N, Vvel{s+1,...r}

By Corollary 3.12, for each real R > max{|y,(t)|,,y [t € T, v e{s+1,...,r}},
WehaveCN(eAE’;],yl[;”]) = Oforeachv € {s + 1,...,r}. Ifs = rwejustsetn := 1.

If we further take R > R(a,n), where R(a, n) is the constant given by Lemma 6.1,
the Morse inequality

0 # dim Hy ((A),) < Zdlm Cy (AR, M) = Zdlm Cw (AR v

v=1 v=1

implies that thereis a y € {y;,..., ys} such that

Cy (Al y") £ 0.
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At this point, let us assume without loss of generality that 1 € K’ (this can be achieved
by time-rescaling, as we discussed at the beginning of the proof). Then, by (7.3), we
have

1 Co(hr.y) —> Co(AB ylly £ 0, Wi e K. (7.4)

Now, we apply our discretization technique as in Section 6.1: we choose U > 0 as
in (6.1) and we get the discrete mean Tonelli action functional AL”] : u,[f] — R, for
some k € N sufficiently big and for every n € N. For each R > U, the homology
isomorphism induced by the iteration map in (7.4) fits into the following commutative
diagram.

vl i
Cu(Ar, ¥) C*(:A;[(]a V[n])

Pt i
Culhr. ) = Cu (Al )

In this diagram, the vertical arrows are isomorphisms induced by inclusions (see
Lemma 6.3). Therefore, the iteration map induces a homology isomorphism

. Cy(r, y) —> CulAl yP 20, Vi e K.

Let ¢; = #A(y) and let € > 0 be small enough so that ¢; := ¢; + € < « and there
are no yy € {y1,...,yr} with A(yy) € (c1,¢2). By Lemma 6.1, for every n € K’

and R > R(a,n), the action functional A[I’{] does not have any critical point with
critical value in (cy, ¢2). This implies that the inclusion

(A U ), (Alh ) (b, (Al )

induces a monomorphism in homology (see [Ch, Theorem 4.2]), and therefore the
inclusion

P (A, U ) (AFD) < (AR, (AR,

induces a monomorphism in homology as well. Summing up, for each R > R(a, n)
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and n € K’, we have obtained the following commutative diagram.

[n]

¥
0 # Cw (Ar,¥) - Cy (AL, yl)
I it
Al

Hy ((AR)ess (AR)er) Hy (A2, (AL)),)

This diagram contradicts the homological vanishing (Proposition 6.4). In fact, since
the local homology group Cp (A, y) is nontrivial and N > 0, y is not a local
minimumof Ay. Foreachnonzero[u] € Cy (Ag, ¥), thereexist R = R(E. [u]. p) €
R and i = a(£,[p], p) € K such that, for each real R > R and for each n € K
greater or equal than #, we have

o ) = e oyl e W) = o,
=0

therefore wi[u] e ker pl.
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