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Maslov class rigidity for Lagrangian submanifolds via Hofer’s
geometry

Ely Kerman and Nil I. Sirik¢i*

Abstract. In this work, we establish new rigidity results for the Maslov class of Lagrangian
submanifolds in large classes of closed and convex symplectic manifolds. Our main result estab-
lishes upper bounds for the minimal Maslov number of displaceable Lagrangian submanifolds
which are product manifolds whose factors each admit a metric of negative sectional curvature.
Such Lagrangian submanifolds exist in every symplectic manifold of dimension greater than six
or equal to four.

The proof utilizes the relations between closed geodesics on the Lagrangian, the periodic
orbits of geometric Hamiltonian flows supported near the Lagrangian, and the length minimizing
properties of these flows with respect to the negative Hofer length functional.

Mathematics Subject Classification (2010). 53D40, 37145.
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1. Introduction

Among the fundamental rigidity phenomena in symplectic topology are restrictions
on Lagrangian submanifolds that are undetectable by topological methods. In this
work we establish such restrictions which are expressible in terms of the Maslov
class. All the Lagrangian submanifolds we consider are assumed to be connected,
compact and without boundary.

The first symplectic restrictions on Lagrangian submanifolds were discovered in
|Gr], where Gromov proves that there are no exact Lagrangian submanifolds of R?”
equipped with its standard symplectic form w,,. This result can be rephrased as the
fact that the symplectic area class

wk - (R, L) — R,

which is defined by integrating «w,, over smooth representatives, is nontrivial for any
Lagrangian submanifold L of (R?", w,,).

*This research was partially supported by a grant from the Campus Research Board of the University of
IMineis at Urbana-Champaign.
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Another type of restriction on Lagrangian submanifolds involves the Maslov class.
Recall that for a Lagrangian submanifold L of a symplectic manifold (M, ), the
Maslov class is a homomorphism

Mﬁaslov: nZ(M’ L) —= Za

that measures the winding of TL in TM along loops in L.! The minimal Maslov
number of L is the smallest nonnegative integer Ny, such that ul (72(M, L)) =
NpZ. As an application of his proof of the Weinstein conjecture for (R?"*, wa,),
Viterbo established the first restrictions on the Maslov class in the following result.

Theorem 1.1 ([Vil]). Let L be a closed Lagrangian submanifold of (R*", w,,). If
L is a torus, then Ny, isin [2,n + 1]. If L admits a metric with negative sectional
curvature then Ny = 2.

A Lagrangian submanifold L. C (M, w) is called monotone if the symplectic area
class and the Maslov class are proportional with a nonnegative constant of propor-
tionality, i.e., o = Auk for some A > 0. In this case, restrictions on the two
classes are related and one can relax the assumptions on the intrinsic geometry of L
needed in Theorem 1.1. The first rigidity results for the Maslov class of monotone
Lagrangians were obtained for (R?", w,,) by Polterovich in [Pol]. Later, in [Oh],
Oh introduced a spectral sequence for Lagrangian Floer theory and used it to establish
similar rigidity results for displaceable monotone Lagrangian submanifolds in more
general ambient symplectic manifolds.? Indeed, monotone Lagrangian submanifolds
are the natural setting for the construction of Lagrangian Floer homology. This ho-
mology vanishes if the Lagrangian submanifold is displaceable, and its grading is
determined by the Maslov class. Oh observed that if the Lagrangian Floer homology
of L C (M,w) exists, e.g., it N > 2, then it can not vanish unless ¥y, is less than
% dim M + 2. This strategy to obtain rigidity results for the Maslov class has been
generalized, refined and exploited in many recent works, see for example [Al], [Al],
[Bi], [BCi], [BCo], [Bu], [FOOO].

The primary goal of the present work is to obtain rigidity results for the Maslov
class away from settings where Lagrangian Floer homology can be used. In particular,
our assumptions on the symplectic area class and the Maslov class only involve their
values on my(M ) rather than 7o (M, L). We also avoid the use of holomorphic
discs with boundary on the Lagrangian submanifold. Hence, we do not need to
manage or avoid codimension one bubbling phenomena. Instead of Lagrangian Floer
theory, our argument utilizes two results from the study of Hofer’s length functional
for Hamiltonian paths. The first of these results, due to Sikorav, 1s the fact that

I'The precise definition is given in §4.2.1.
>Note that a symplectic manifold which admits a monotone Lagrangian submanifold is itself monotone in
the sense of [F1].
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the Hamiltonian flow generated by an autonomous Hamiltonian with displaceable
support, does not minimize the Hofer length for all time. In particular, Sikorav’s
result implies that the flow of an autonomous Hamiltonian which is supported near
a displaceable Lagrangian submanifold is, eventually, not length minimizing. The
second result from Hofer’s geometry involves the following theme: if a Hamiltonian
path 18 not length minimizing then it has a contractible periodic orbit with additional
special properties, see for example [Ho2], [Kel], [KL], [LMcD], [McD], [McDSI].
Here, we use the version of this phenomena established in [Kel] which states that if a
Hamiltonian flow is not length minimizing then it has contractible periodic orbits with
spanning discs such that the corresponding action values and Conley—Z¢hnder indices
lie in certain intervals. By applying these results to reparameterizations of perturbed
cogeodesic flows that are supported near a displaceable Lagrangian submanifold, we
detect nonconstant periodic orbits with spanning discs for which the corresponding
Conley—Zehnder index 1s % dim M. Uulizing an identity which relates this Conley—
Zehnder index to the Morse index of the corresponding perturbed geodesic and the
Maslov index of the spanning disc, we obtain the rigidity results for the Maslov class
stated below.

1.1. Statement and discussion of results. Throughout this work, we will denote our
ambient symplectic manifold by (M, w}) and its dimension will be 2n. Lagrangian
submanifolds will be denoted by L and will always be assumed to be connected,
compact and without boundary.

We will consider symplectic manifolds which are either closed or convex and have

the following two additional properties. We assume that the index of rationality of
(M, w),

(M, o) ZA@iTIZIEM){w(A) | @(4) > 0},

is positive.> Such a manifold is said to be rational. We will also assume that there is
a (possibly negative) constant v such that ¢;{A4) = vw(A) forevery A in m2(M). A
symplectic manifold with this property will be called proportional.

Recall that L is displaceable if there is a Hamiltonian diffeomorphism ¢ of (M, o)
such that ¢ (L) N L = @.* For example, for any symplectic manifold (M, w), every
Lagrangian submanifold of the product (M x R% @ @ w,), is displaceable.® A
Lagrangian submanifold of a rational symplectic manifold (M, @) is said to be easily
displaceable if it can be displaced by a Hamiltonian diffeomorphism ¢ }{ that is the

30ur convention is that the infimum over the empty set is equal to infinity.

4Here, Hamiltonian diffeomorphisms on convex symplectic manifolds are generated by compactly supported
Hamiltonian flows, see §2.2.

*Note that if (M, ®) is compact, then (M X R?,w @ w») is convex. This basic example is a primary
motivation for our consideration of the class of convex symplectic manifolds.
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time one flow of a Hamiltonian H whose Hofer norm,

1 1
| H || :f maxH(t,p)dt—/ min H(z, p) dt,
0 peEM 0 pPEM

is less than (M, w)/2. In other words, L is easily displaceable if its displacement
energy,
e(L.M,w) = igf{||H|| | ¢y (L) N L =0},

is less than r (M, w)/2.

If (M, w) is weakly exact, i.e., |, ar) = O, then the index of rationality is infinite
and the notions of displaceable and easily displaceable 1.agrangian submanifolds are
equivalent. The simplest example of a symplectic manifold which is not weakly exact
is the two-sphere with an area form. In this case, every Lagrangian submanifold
is either monotone and nondisplaceable or is easily displaceable. The following
example shows that being easily displaceable is actually a stronger condition than
being displaceable.

Example 1.2. Let © be an area form on S? with total area equal to one. Consider
the symplectic manifold

(W, w;) = (5* x S%, 0 @ (1 + o)),

where «; 1s an increasing sequence of positive rational numbers which converges to
an irrational number o, Let L C $2 be an embedded circle which divides S2 into
two regions of unequal #-area. For every j, the Lagrangian submanifold L = LxL
of (W,w;) is displaceable. We will show that the indices of rationality r (W, w;)
converge o zero, whereas the displacement energy of L in (W, w;) is uniformly
bounded away from zero. Hence, for sufficiently large values of j the Lagrangian
submanifold L C (W, w;,) is displaceable but not easily displaceable.

Forall j wehave O < r(W, w;) < a; < a. Passing to asubsequence, if necessary,
we may therefore assume that lim;j . r (W, w;) exists. Since wqo 1= ¥ @ (1 + )9,
and « is irrational, the limit r (W, we ) is Zero.

To obtain the uniform lower bound on the displacement energies e(L, W, w;),
we use a deep theorem from [Ch]. Assume that the symplectic manifold (M, @)
admits an w-compatible almost complex structure J such that the metric w( -, J, ) is
complete. Denote by §, the space of nonconstant .J -holomorphic spheres in M, and
let O be the set of nonconstant J-holomorphic discs in M with boundary on L. The
quantities

h(M,w,J) = mjn[ utw
S2

ues
and

hp(M,L,w,J) :min[ v
ved Jp2
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are well defined and positive. In [Ch], Chekanov proves that
e(L,M,») > min{h(M,w, J), hip(M, L, w, J)}. (1)

Now choose a ¥ -compatible almost complex structure JonS2andsetJ = J&.J.
Note that J is w;-compatible for each j and the spaces § and O do not depend on
j . Hence,

Hm AW, ;. J) = h(W. a0, J) > 0

J—roo
and
lim Aip(W,L,w;,J) =hp(W, L, @0, J) > 0.
j—oe
It then follows from inequality (1) that the displacement energies e(L, M, w;) are
bounded uniformly away from zero.

As in Theorem 1.1, we need to make some assumptions on the metrics which our
Lagrangian submanifolds admit. A manifold L is said to be split hyperbolic if it is
diffeomorphic to a product manifold

L=P x--x P,

such that each of the factors P; admits a metric with negative sectional curvature.
Our convention will be to label the factors of L so that dim P; < dim P; 4.

Note that the set of split hyperbolic manifolds is strictly larger than the set of
manifolds which admit metrics of negative sectional curvature. This follows from a
theorem of Preissmann [Pr], which states that no (nontrivial) product manifold admits
a metric of negative sectional curvature. More importantly, Lagrangian submanifolds
which are both displaceable and split hyperbolic, are somewhat ubiquitous.

Lemma 1.3. There is an (easily) displaceable, split hyperbolic Lagrangian subman-
ifold in every (rational) symplectic manifold with dimension four or with dimension
greater than six.

Proof. The product of a Lagrangian embedding into R*™ and a Lagrangian immer-
sion into R?" is homotopic to a Lagrangian embedding into R20"+%) (see, [AL],
Proposition 1.2.3, p. 275). In [Gi], Givental constructs Lagrangian embeddings, into
R*, of compact nonorientable surface with Euler characteristic equal to zero modulo
tour. The Gromov—Lees Theorem implies that one can find a Lagrangian immersion
of any hyperbolic three-manifold into (R®, wg). By taking products of such examples,
it follows that there is a split hyperbolic Lagrangian submanifold of (R2", w,,) for
n = 2 and all » > 3. The lemma then follows easily from Darboux’s theorem. [
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Remark 1.4. In contrast to the split hyperbolic case, there are more subtle obstruc-
tions to the existence of Lagrangian submanifolds which admit metrics of negative
sectional curvature. A result of Viterbo states that there can be no such Lagrangian
submanifold in any uniruled symplectic manifold of dimension greater than or equal
to six, [Vi3], [EGH]. Hence, there are no splithyperbolic Lagrangian submanifolds of
(R®, we). 1tis not known to the authors whether there exists a displaceable hyperbolic
Lagrangian submanifold in any six-dimensional symplectic manifold.

We are now in a position to state the main result of the paper.

Theorem 1.5. Let (M, w) be a rational and proportional symplectic manifold of
dimension 2n which is either closed or convex. If L is an easily displaceable La-
grangian submanifold of (M, w) which is split hyperbolic, then Ny, < n + 2. 1If, in
addition, L is orientable, then Ny, < n + 1.

More precisely, we prove that if L = Py x --- x Py is (un)orientable, then there
is an element [w] € 7, (M, L} such that

dim Py — 1 < pl . ((w]) <n+ 1(+1).

One can not expect similar bounds to hold for the minimal Maslov number of
general Lagrangian submanifolds. Consider, for example, the quadric

M={lz,...20 1] CCP" ! |22+ 422 =22},

which is both rational and proportional when equipped with the symplectic form
inherited from € P**!. The real quadric L C M is a Lagrangian sphere with
minimal Maslov number N; = 2n.°

On the other hand, for displaceable Lagrangian submanifolds, the bounds in Theo-
rem 1.5 are nearly sharp. In particular, in [Pol], Polterovich constructs examples of
orientable monotone Lagrangian submanifolds of (R?", w,,) with minimal Maslov
number k for every integer k in [2, n].

For the special class of displaceable Lagrangians considered in Theorem 1.5, one
might expect stronger restrictions on the Maslov class similar to those obtained for
(R?", way) in Theorem 1.1 and by Fukaya in [Fu]. Indeed, this is the case if one
makes further assumptions on (M, ®). In the sequel to this paper, we will study
Maslov class rigidity for displaceable Lagrangians in closed symplectic manifolds
which are symplectically aspherical. In that setting, we will obtain finer rigidity
statements as well as rigidity statements for a larger class of Lagrangian submanifolds
which includes Lagrangian tori.

The authors are grateful to Paul Biran for pointing this example out to them.
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1.2. Organization. In the next section, we recall the definitions and basic results
concerning convex symplectic manifolds, Hamiltonian flows, the Hofer length func-
tional, and Sikorav’s curve shortening method. In Section 3, we construct and study
a special Hamiltonian H;, which is supported in a small neighborhood of our La-
grangian submanifold L. We then establish a relation between the Conley—Zehnder
mdices of the nonconstant contractible periodic orbits of H; and the Maslov indices
of their spanning discs in Section 4. In Section 5, we state a result, Theorem 5.1,
which relates the length minimizing properties of Hy, to its periodic orbits. Together
with the previous results, this is shown to imply Theorem 1.5. The proof of Theo-
rem 5.1 is contained in Section 6, and some generalizations of our main result are
described in Section 7.

2. Preliminaries

2.1. Convex symplectic manifolds. A compact symplectic manifold (M, w) is said
to be closed if the boundary of M, dM , is empty. Itis called convexif dM is nonempty
and there is a 1-form « on dM such that de = w|yy and the form o A (do)* ™!
is a volume form on dM which induces the outward orientation. Equivalently, a
compact symplectic manifold (M, ) is convex if there is a vector field X defined
in a neighborhood of dM which is transverse to dM, outward pointing, and satisfies
Lxw = w. For some ¢; > 0, the vector field X can be used to symplectically
identify a neighborhood of dM with the submanifold

M., = OM x (—¢o.0],

equipped with coordinates (x, 7) and the symplectic form d(e*«). We will use the
notation M, = dM x (—e,0] for 0 < € < «y.

A noncompact symplectic manifold (M, @) is called convex if there is an exhaust-
ing sequence of compact convex submanifolds M; of M,ie, M C My C---C M

and
M =M.
J

2.2. Hamiltonian flows. A function H € C®(S! x M) will be referred to as a
Hamiltonian on M. Here, we identify the circle S with R/Z and parameterize it
with the coordinate ¢ € [0, 1]. Set H;(-) = H(r,-) and let C{°(S! x M) be the space
of Hamiltonians H such that the support of d H, is compact and does not intersect 0M
for all # € [0, 1]. Each H € C{°(S! x M) determines a 1-periodic time-dependent
Hamiltonian vector field Xz via Hamilton’s equation
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The time-r flow of Xpg, ¢%;, is defined for all # € [0, 1] (in fact, for all ¥ € R). The
group of Hamiltonian diffeomorphisms of (M, @) is the set of time-1 flows obtained
in this manner,

Ham(M,w) = {¢p = ¢5 | H € CO(S' x M)

Remark 2.1. In this work, we are only concerned with compact Lagrangian sub-
manifolds which are displaceable by Hamiltonian diffeomorphisms. By definition,
Hamiltonian diffeomorphisms are trivial away from a compact set. Hence, it suffices
for us to prove Theorem 1.5 for closed symplectic manifolds and compact convex
symplectic manifolds. In particular, the noncompact convex case can be reduced to
the compact convex case by restricting attention to some element M; of an exhausting
sequence for M, for sufficiently large j.

In the case of a compact convex symplectic manifold we will also consider Hamil-
tonian flows which are nontrivial near dM but which are still defined for all ¢+ € R.
A function f € C° (M) is said to be admissible if for some € in (0, €y] we have

S M (x,7) = ae”" + b, (2)

where a and b are arbitrary constants and a < 0.
A Hamiltonian H € C®(S! x M) is called pre-admissible if for some € in (0, €]
we have
H|giup, (t,x,7) =ae™™ + b(1), 3)

where a is again a negative constant and 5(r} is a smooth 1-periodic function. We
will refer to a as the slope of H. The prescribed behavior of H on M implies that
its Hamiltonian flow is defined for all r € R. In particular, consider the Reeb vector
field R on dM which is defined uniquely by the following conditions:

o(R(x}),v(x})) =0 and w(X(x), R(x}) =1
forall x € oM and v € T oM. If H has the form (3) on M., then
Xg(t.x,7) = —aR(x) forall (r,x,7) e S' x M.,

and so the level sets {r = constant} in M, are preserved by ¢}, .

Let Tr be the minimum period of the closed orbits of R. We say that a pre-
admissible Hamiltonian H is admissible if its slope a satisfies —a < Tg. If (M, ) is
closed, then the space of admissible functions on M is simply C °° (M } and the space
of admissible Hamiltonians is C*°(S! x M). For simplicity, in either the closed or
convex case, we will denote the space of admissible Hamiltonians by C® (ST x M).

For any Hamiltonian flow ¢}, defined for ¢ € [0, 1], we will denote the set of
contractible 1-periodic orbits of ¢4, by # (H). Note that it (M, ») is compact and
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convex and H is in C°(S' x M) orin C®(S' x M), then the elements of P (H )
are contained in the complement of M, for some € € (0, €g].

Anelement x(t) € £ (H) is said to be nondegenerate if the linearized time-1 flow
dpj,: TyyM — Ty@yM does not have one as an eigenvalue. If every element of
P (H) is nondegenerate we will call H a Floer Hamiltonian.

2.3. The Hofer length functional and Sikorav curve-shortening. Following [Hol],
the Hofer length of a Hamiltonian path ¢, is defined to be

length(z) = || H]|

1 1

:[ max H, dr—/ min H; dt
0o M 0o M

= |H|IT+ [|H|".

When M is compact, then a Hamiltonian H in C°(S1 x M) or C (St x M) is

normalized 1f
[ Ht Cl)n = O
M

forevery ¢ in [0, 1]. If the generating Hamiltonian H is normalized, then the quantitics
|H||* and || H ||~ provide different measures of the length of ¢}y called the positive
and negative Hofer lengths, respectively.

For a path of Hamiltonian diffeomorphisms v, with ¥¢ = id, let [+] be the class
of Hamiltonian paths which are homotopic to v, relative to its endpoints. Denote the
set of normalized Hamiltonians which lie in C§°(S! x M) and generate the paths in

[r] by
Ce(Ye]) = {H € C(S' x M) | f3y Hi o™ =0, [ply] = [¥:]}.

The Hofer semi-norm of [1,] is then defined by
p(lp:D) =~ nf  {|[H]}.

HeCS([y1)

The positive and negative Hofer semi-norms of [v,] are defined similarly as

= _ : =+
PO =, dnf I

Note that if
1H || > o®([p4)),

then ¢4, fails to minimize the (positive/negative) Hofer length in its homotopy class.
The displacement energy of a subset U C (M, w) is the quantity

¢(U. M.0) = inl{p([y:]) | Yo = id and Y1 (U) N U=a,
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where U denoles the closure of U. The following result relates the negative Hofer
semi-norm and the displacement energy. It is a direct application of Sikorav’s curve
shortening technique and the reader is referred to Lemma 4.2 of [Ke2] for the entirely
similar proof of the analogous result for the positive Hofer semi-norm.

Proposition 2.2. Let H € C{°(S x M) be a time-independent normalized Hamil-
tonian that is constant and equal 1o its maximum value on the complement of an open
set U C M. If U has finite displacement energy and ||H ||~ > 2e(U), then

1
IH]™ > p~(lguD + 5||H||+.

In other words, the Hamiltonian path ¢}y does not minimize the negative Hofer length
in its homotopy class.

3. A special Hamiltonian flow near L

In this section we construct a special Hamiltonian 7, whose Hamiltonian flow is
supported in a tubular neighborhood of L. The nonconstant contractible periodic
orbits of this flow project to perturbed geodesics on L. As well, the Hamiltonian path
qb}{L fails to minimize the negative Hofer length in its homotopy class.

3.1. Perturbed geodesic flows. We begin by recalling some relevant facts about
geodesic flows on L. For now, we assume only that L is a closed manifold without
boundary. Let g be a Riemannian metric on L, and consider the energy functional
of g which is defined on the space of smooth loops C*°(S!, L) by

1
Eglq(1)) :[o %||q"(t)||2dt.

The critical points of €, Crit(€,), are the closed geodesics of g with period equal
to one. The closed geodesics of g with any positive period T > 0 correspond to the
1-periodic orbits of the metric %g, and are thus the critical points of the functional
& Lg

The Hessian of &, at a critical point g (r) will be denoted by Hess(Eg4),. As is
well known, the space on which Hess(& ), is negative definite is finite-dimensional.
It’s dimension is, by definition, the Morse index of g and will be denoted here by
Inorse (¢ ). The kernel of Hess (€ ) 15 also finite-dimensional, and is always nontrivial
unless L 1s a point.

A submanifold D C C*°(S!, L) which consists of critical points of &, is said to
be Morse-Bott nondegenerate if the dimension of the kernel of Hess(&g ), is equal
to the dimension of D for every ¢ € D. An example of such a manifold is the
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set of constant geodesics of any metric on L. This is a Morse—Bott nondegenerate
submanifold which is diffeomorphic to L. The energy functional &, is said to be
Morse—Boitt if all the 1-periodic geodesics are contained in Morse—B ott nondegenerate
critical submanifolds of &,. Note that if &, is Morse-Bott, then so is & 1 for any

T > 0.

Example 3.1. If g is a metric with negative sectional curvature, then the nonconstant
1-periodic geodesics occur in Morse—Bott nondegenerate S ! -families. In particular,
the unparameterized geodesics of g are 1solated. The Morse index of every 1-periodic
geodesic 1s zero.

Example 3.2. Let L = Py x --- x Py be a split hyperbolic manifold as defined in
Section 1.1. Let g; be a metric on P; with negative sectional curvature and set

g=81+ " +g-

The nonconstant 1-periodic geodesics of g occur in Morse—Bott nondegenerate crit-
ical submanifolds whose dimension is no greater than 1 4 dim P> + --- 4 dim Py.
The Morse index of these closed geodesics is again zero.

3.1.1. Potential perturbations. It will be useful for us to perturb a Morse—Bott
energy functional &, so that the critical points of the resulting functional are nonde-
generate. We restrict ourselves to perturbations of the following classical form

1
Lo
v @) = [ (G140~ Vea@) ar
where the function V: S! x L — R is assumed to be smooth. The critical points of
&,y are solutions of the equation

th —l— Vg V(f, Q) = 07 (4)

where V, denotes covariant differentiation in the g-direction with respect to the Levi-
Civita connection of g, and V. V is the gradient vector field of V' with respect to g.
We refer to solutions of (4) as perturbed geodesics.

Theorem 3.3 ([We]). There is a dense set Vieg(g) C C®(S! x L) such that for
V' € Vieo(g) the critical points of €4 y are nondegenerate.

When a Morse-Bott functional €, 1s perturbed, the critical submanifolds break
apart into critical points. For a small perturbation V itis possible to relate each critical
point of &g,y to a specific critical submanifold of &€, , and to relate their indices. Here
is the precise statement.
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Lemma 3.4. Let &, be Morse—Bott and let Crit?(E,) = HleDj be the (finite,
disjoint) union of all critical submanifolds of &, with energy less than a. Let € > 0
be small enough so that the €-neighborhoods of the D; in C>(S1, L) are disjoint.
If V€ Vieo(g) is sufficiently small, then each nondegenerate crifical point q(t) of

Eq,v, with action less than a, lies in the e-neighborhood of exactly one component
Dj of Crit?(€g). Moreover,

IMorse (Q) = [IMorse(Dj)s IMorse (Dj) + dlm(D])] 5

Proof. For a proper Morse-Bott function on a finite-dimensional manifold the proof
of the lemma 1is elementary and requires only the generalized Morse Lemma which
yields a normal form for a function near a Morse—Bott nondegenerate critical sub-
manifold. As we now describe, the present case is essentially identical to the finite-
dimensional one. Let &, be the extension of &, to the space A(S!, M) of loops in
L of Sobolev class W12, This space of loops is a Hilbert manifold and the critical
point sets Crit(&€,) and Crit(&,) coincide, as do the corresponding Morse indices.

Let g be a critical point of ég which belongs (o a critical submanifold D. By the
Morse—Bott assumption, the nullity of Hess(Eg )4, is equal to the dimension of D.

Moreover, the only possible accumulation point for the eigenvalues of Hess(€ ¢)q 18
one, [KI], Theorem 2.4.2. Hence, there are only finitely many negative eigenvalues
and the positive eigenvalues are uniformly bounded away from zero. Using the gen-
eralized Morse Lemma for Hilbert manifolds from [Me], see also [K1], Lemma 2.4.7,
the result then follows exactly as in the finite-dimensional case. O

3.2. Hamiltonian geodesic flows. Consider the cotangent bundle of L, T7L,
equipped with the symplectic structure d6 where 6 is the canonical Liouville 1-
form. We will denote points in 7*L by (g, p) where g is in L and p belongs to 7.7 L.
In these local coordinates, 6 = pdqg and so df = dp A dg.

The metric g on L induces a bundle isomorphism between 7L and the cotangent
bundle 7*L and hence a cometric on T*L. Let K,: T*L — R be the function
Kq(q.p) = %H p|1>. The Legendre transform yields a bijection between the critical
points of the perturbed energy functional &, y and the critical points of the action
functional

Ak, 4v: C¥(S', T*L) > R

defined by
1
A () = [ (Ke = Vexede= [ o
0

The critical points of A g, +y are the 1-periodic orbits of the Hamiltonian K, + V on
T*L. It x(tr) = (g(r), p(r)) belongs to P (K g+ V'), thenits projection to L is a closed
1-periodic solution of (4) with initial velocity ¢(0) determined by g{(g (0}, -) = p(0).
Moreover, x (¢} is nondegenerate if and only if ¢(7) is nondegenerate,
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3.3. A perturbed geodesic flow supported near L. We now assume that L is a
Lagrangian submanifold of (M, @) as in the statement of Theorem 1.5. In particular,
L is easily displaceable and split hyperbolic. We equip L with the metric g from
Example 3.2 and remind the reader that the energy functional for this metric is Morse—
Bott.

Consider a neighborhood of the zero section in 7 *L of the following type

Ur={g.p) eT°L||pll <r}

By Weinstein’s neighborhood theorem, for sufficiently small » > 0, there is a neigh-
borhood of L in (M, w) which is symplectomorphic to U,. We only consider values
of r for which this holds, and will henceforth identity U, with a neighborhood of L
in (M, w). For a subinterval I C [0, r), we will use the notation

Ur={g.p) el ||pllel}

Proposition 3.5. For sufficiently small r > 0, there is a normalized and admissible
Hamiltonian Hy: S' x M — R with the following properties:

(H1) The constant 1-periodic orbits of Hj, correspond to the critical points of an
admissible Morse function F on M. Near these points the Hamiltonian flows
of Hy and co I’ are identical for some arbitrarily small constant ¢y > 0.

(H2) The nonconstant 1-periodic orbits of Hy, are nondegenerate and contained in
Ui j5+8.2r/5—-8) U Uar/s48.4r/5—8) for some O < 6 < r/5. Each such orbit
projects to a nondegenerate closed perturbed geodesic q(t). Moreover, if T is
the period of q, then q can be associated to exactly one critical submanifold D
of & Lg and

IMorse (Q) € [IMorse (D)’ IMorse (D) + dlm(D)]

(H3) There is a point Q € L C M which is the unique local minimum of Hp (¢, -)
forallt €0, 1]. Moreover,

1
|HL|~ = — [0 HL(t, 0)di > 2¢(U,). )

(H4) The Hofer norm of Hy, satisfies

2e(Uy) < [[HL|| < r(M, w). (6)

Proof. The construction of Hy, is elementary but somewhat involved. We divide the
process into four steps. Some of the constituents of Hjy which are defined in these
steps will be referred to in later sections.
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Step 1: A geodesic flow supported near L.

Letv = v(A, B,C,r): [0, +o¢) — R be a smooth function with the following
properties:

*» v=—Aon|0,r/5];

« vV, v/ >00n(r/52r/5);

» v =Conl2r/53r/5];

e« v/ >0andv” < Oon (3#/5,4r/5);

* v=DBonl[4r/5, +).
Define the function K, on T*L by

v([[pl) it (g, p)isin Uy,
K, (g, =
@) {B otherwise.

Since L 1s easily displaceable, for sufficiently small » > O we have
e(Uy) < r(M,w)/2.
Choose the constant A so that
2¢e(U,) < A < r(M,w). (7)
Restricting r again, if necessary, we can choose the constant B so that

Vol(U,)

O0<B <A .
Vol(M ~ U,)

For these choices of r, A and B, we can construct v, as above, so that K, is normalized
and satisfies
2e(Uy) < ||Ky|| < (M, ). (8)

We may also choose the positive constant C so that it is not the length of any closed
geodesic of g.

The Hamiltonian flow of K, is trivial in both U, ;5 and the complement of Uy, 5.
Hence, each nonconstant 1-periodic orbit x(r) = (g(¢), p(r)) of K, is contained in
Urjs,4r/5) Where

Xk, (g, p) = (v ﬁ|}|f|)|”))XKg (4. p).

Our choice of C implies that all nonconstant orbits of K, occur on the level sets
contained in U, /5 2;/5) O U(zr/5.45/5), Where v 1s convex or concave, respectively.
In fact, these nonconstant orbits lie in

Ut i518,20/5-8) Y Uarf548,4r/5-6)
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for some /5 > § > 0. This follows from the fact that K, equals zero along the
boundary of Uy /5 2,/5) U Uzr/s,4r/5).

Step 2: A Morse function isolating L.

Let Fo: M — R be an admissible Morse—Bott function with the following prop-
erties:

* The submanifold L is a critical submanifold with index equal to 0.

* On U,, we have Fy = fo(||p||) for some increasing function fp: [0,7] — R
which is strictly convex on [0, 27 /5), linear on [27/5, 37 /5], and strictly concave
on (3r/5,r].

» All critical submanifolds other than L are isolated nondegenerate critical points
with strictly positive Morse indices.

Such a function is easily constructed by starting with the square of the distance
function from L with respect to a metric which coincides, in the normal directions,
with the cometric of g inside U,. This distance function can then be deformed
within U, to obtain the first and second properties above. Perturbing the resulting
function away from U,, one can ensure that it is Morse there. Then performing some
elementary handle slides and cancelations away from U, as in [Mi], one can get rid
of all other local minima.

Let F7,: L — R be a Morse function with a unique local minimum at a point Q
in L. Choose a bump function 6 : [0, +00) — R such that 6(s) = 1 for s near zero
and 6(s) = O fors > r/5. Leto = &(||p||) be the corresponding function on M
with support in U, ;5 and set

F=Fy+e -0-Fp.

For a sufficiently small choice of €7, > 0, F 1s a Morse function whose critical points
away from U, /5 agree with those of F and whose critical points in U, /5 are precisely
the critical points of F7, on L C M (see, for example, [BH], p. 87).
Step 3: Pre-perturbation.

For ¢y > 0, consider the function

Hy =K, +c¢yF.
By construction, we have
—A+coF on U, s,
Ho = (v +cofo)lpl)  onUpsars),
B+ cF elsewhere.

From this expression it is clear that each Hy is a Morse function with Crit(Hy) =
Crit(F). As well, Q is the unique local minimum of Hy. Moreover, when ¢g is
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sufficiently small, the nonconstant 1-periodic orbits of Hy, like those of K,,, are
contained in

Ur/s5+8,2r/5-8) Y UBr/5468,4r/5-8)
for some r/5 > § > 0.

Step 4: Perturbation of Hy.

The function Hy has properties (H1), (H3) and (H4). To obtain a function with
property (H2) we must perturb Hy so that the 1-periodic orbits of the resulting Hamil-
tonian are nondegenerate.

Let N # be a critical submanifold of 4 g, which is contained in the level set || p|| =
p. Denote the projection of N° to L by D?. Then D” is a Morse—Bott nondegenerate
set of periodic geodesics with period ((v’ + co fy )(p))_l. Alternatively, D can be
viewed as a collection of 1-periodic geodesics of the metric (v' + co fj)(p)g. We
will adopt this latter point of view.

There are finitely many critical submanifolds of A g,. We label the submanifolds
of 1-periodic closed geodesics which appear as their projections by

[BF | f = Lot

Theorem 3.3 implies that the set of potentials

ﬂ rvreg((vf + COf()/)(pj)g)

j=1,..t

is dense in C*°(S! x L). We can choose a V in this set which is arbitrarily small with
respect to the C*°-metric. By Lemma 3.4, the projection, ¢(z), of each 1-periodic
orbit x(¢) of v(Kg + V) is then nondegenerate and lies arbitrarily close to (within a
fixed distance of ) exactly one of the ij and satisfies

IMorse (Q) € [IMorse (Djpj ), IMorse (DJ'OJ) + dlm(DfJ )] )
Given such a V we define Vy: ST x M — R so that

Vo — Vit,q) inUgpris548,3r/5-5)
0 —_—
0 on the complement of Uz, /5 37/5)-

Clearly, the function ¥y, like V itself, can be chosen to be arbitrarily small. We then
define Hy, by

v+ o o) (Y3112 + Volt.g. p)) for (@, p) in Ugarss, ).
Ho(q. p) otherwise.

Hi(t.q.p) =
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This function has properties (H1)—(H4) as desired. It only remains to normalize Hj .
Adding the function
1
0

to Hy, we get a normalized Hamiltonian. Since Hy, is a small perturbation of K,
this new Hamiltonian still has properties (H1)—(H4). For simplicity, we still denote
itby Hp. O

3.4. Additional properties of H;.. Let H be a Floer Hamiltonian. A spanning disc
for a 1-periodic orbit x in P(H) is a smooth map w: D* C C — M such that
w(e?™') = x(r). The action of x with respect to w is defined as

Agx,w) = /01H(t,x(r))dt—/‘;)2 wrw.

A spanning disc also determines a homotopy class of trivializations of x*TM and
hence a Conley—Zehnder index ptcz(x, w). This index is described in §4.2.2. We
only mention here that it is normalized so that for a critical point p of a C2-small
Morse function, and the constant spanning disc w,(z) = p, we have

1
I{LCZ(py wp) = 5 dlmM - IMorse(p)-

The following result provides a simple criterion for recognizing nonconstant pe-
riodic orbits of the Hamiltonian H;, on (M 2", w) constructed in Proposition 3.5.

Lemma 3.6. If x is a contractible 1-periodic orbit of Hj, which admits a spanning
disc w such that —||Hp, ||~ < Apg, (x,w) < |Hp||" and prez(x, w) = n, then x is
nonconstant.

Proof. Arguing by contradiction, we assume that x(¢) = P for some point P in M.
The spanning disc w then represents an element [w] in 75 (M ), and we have

1
A g, (x,w) =[0 Hy(t, P)ydt — w([w]).

By property (H1), the point P corresponds to a critical point of 7 and the Hamiltonian
flow of H; and ¢ I are identical near P. The normalization of the Conley—Zehnder
index then yields

)U’CZ(xs U]) =Ll IMorse(P) + 2C1([UJ]) (9)

If w(Jw]) = 0, then the proportionality of (M, ) implies that ¢q([w]) = 0.7 It
then follows from (9) that the Morse index of P must be zero. This implies that

"This is the only point where we use the assumption that (M, @) is proportional.
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P = @, since @ is the unique fixed local minimum of Hj,. However, the action of
Q with respect to a spanning disc w with w([w]) = 0is equal to —||Hz|~. This is
outside the assumed action range and hence a contradiction.
We must therefore have w([w]) # 0 and thus, by the definition of » (M, @) and
property (H4),
jo((wD| = r(M. @) > [|Hg||.

If @([w]) > 0, then
1
Aggy fon, ) = f Hy(t. P)di — || Hy |
0

1
_ f Hy(i. P)di — |He|* — |Ho|”
0
< —||Hpl|~

which 18 again outside the assumed action range.
For the remaining case, @ ([w]) < 0, we have

1 1
i, (x, w) zf Hy(t, P)di + | Hy| zf Hi(, PYdi + | Ho|l* + | Hyl~.
0 0

Hence, either A g, (P, w) > |[Hy||T or P = Q. Both of these conclusions again
contradict our hypotheses, and so x must be nonconstant. O

Periodic orbits meeting the previous criteria will be detected using the techniques
developed 1 [Kel] to study length minimizing Hamiltonian paths. The following
mtermediate result will be crucial in applying these methods.

Lemma 3.7. There is a normalized admissible Hamiltonian G, on M such that

(1) the admissible Hamiltonian path qbé;L is homotopic to ¢;IL relative fo its end
points;

) IGLl™ < [HL]"

Proof. First we note that inequality (8) and Proposition 2.2, together imply that the
path gbf(v does not minimize the negative Hofer length in its homotopy class. Hence,
there is a normalized Hamiltonian G, in C(f’o([gb}(v ]) such that

1K = 1G]l +2¢ (10)

for some ¢ > 0.
Now consider the Hamiltonian flow ¢, © (¢k, )~ which is generated by the
Hamiltonian

F, = Hp, — Ky o i, o ()"
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By construction, Hj, is arbitrarily close to K, in the C*-topology. Hence, F;, is also
arbitrarily close to zero in the C*°-topology.
The Hamiltonian flow

b, © (Dk,) " o dG, (11)

1s generated by the normalized Hamiltonian
G =F,+Gyo(gh) "

Since F, = Hy, — B near the boundary of M and G, belongs to CS(S! x M), we
see that G, 1s also admissible. The flow of Gy, is homotopic to qbeL via the homotopy
of admissible Hamiltonian flows

s = P, © ($5x,) 7 0By
Finally, by choosing || Hz, — Ky || ¢ to be sufficiently small, we have

IGLI™ = 1507 + Gl
s IEIT + 1K =28
< HLl™ + 1AL = Kol + [[Fol™ =28
< |HLlI” = ¢ N

4. Index relations

Let x be a 1-periodic orbit of Hy, with spanning disc w. In this section we establish
an identity, (21), which relates the Conley—Z¢hnder index of x with respect to w, the
Maslov index of w, and the Morse index of the perturbed geodesic determined by x.
For a split hyperbolic Lagrangian submanifold L, this identity yields crucial bounds
for the Maslov index of w which depend on the dimensions of the factors of L and the
Conley—Zehnder index of x with respect to w. The results presented in this section
are not new, but we were unable to find a reference for all of them which was suitable
for our purposes.

4.1. Basic indices. There are two classical versions of the Maslov index in sym-
plectic linear algebra (see, for example, [McDSal]). The first of these indices is
defined for continuous loops in A, the set of Lagrangian subspaces of (R?", ws,,).
We denote this index by punasov. As noted by Arnold in [Ar], it can be defined as
an intersection number. We now recall the generalization of this interpretation from
[RS].

Letn: S' — A,, be aloop of Lagrangian subspaces and let VV € A, be a fixed
reference space. One calls o € S! a crossing of 5 (with respect to V) if 7(zy) and
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V intersect nontrivially. At a crossing #y, one can define a crossing form Q{(zy) on
n(ty) NV as follows. Let W € A, be transverse to 1{ty). Foreach v in n(tp) NV
we define, for ¢ near 7¢, the path w(r) in W by

v+ w(t) € ni).
We then set p
0(0)() = | _ w(v.w(®)).
The crossing fy is said to be regular if Q (ty) is nondegenerate. If all the crossings of
n are regular then they are isolated and the Maslov index is defined by

Pnastod(7: V) = Y sign(Q(0)), (12)

teSt

where ‘sign’ denotes the signature and the sum is over all crossings. This integer 1s
independent of the choice of V' (as well as the choices of W at each crossing).

The second classical Maslov index is defined for continuous loops y: S! —
Sp(2n) where Sp(2n) is the group of 2r x 2n real matrices which preserve w,,. We
denote this integer by m(y) and refer the reader to [McDSal] for its definition. We
note that it is related to the Maslov index for loops of Lagrangian subspaces in the
following way. Recall that the graph of a matrix A € Sp(2n), 4, is a Lagrangian
subspace of the product R** = R?" x R*" equipped with the symplectic form
wan X (—wan). Toaloop y(¢) in Sp(2n) one can then associate a loop of Lagrangian
subspaces ' ;) in R*". In this case,

217’1()/) = )uMaslov(Fy)- (13)

One can also define a Maslov-type index for certain paths in Sp(2n). This was
first defined by Conley and Zehnder in [CZ]. Let Sp*(2n) be the subset of Sp(2n)
which consists of matrices which do not have one as an eigenvalue. Set

Sp(2n) = {® € C°([0,1]. Sp(2n)) | ®(0) = id, (1) € Sp*(2n)}.

The Conley—Zehnder index associates an integer, jicz(P), to any path ® in Sp(2n).
It can be defined axiomatically, and the relevant axioms for the present work are as
follows.

Homotopy invariance. The index pcy is constant on the components of Sp(2n);
Loop property. If y € Sp(2n) satisfies y(0) = (1), then

pezy o @) = 2m(y) + pcz(P)
for every ® € Sp(2n);

tiri

Normalization. The Conley—Zehnder index of the path /™ in Sp(2) is one.®

8This normalization differs by a minus sign from the one used in [Kel].
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4.2. Nonlinear versions of the basic indices. The basic indices described above
can be used to define useful indices in a variety of nonlinear settings. We recall three
such examples which will be used in the proof of Theorem 1.5.

4.2.1. The Maslov class of a Lagrangian submanifold. We begin with the defi-
nition of the Maslov class, ul . .: 72(M, L) — Z, of a Lagrangian submanifold
L of (M, ). Any continuous representative w : (D?,39D?) — (M, L) of a class in
ma(M, L) determines a symplectic trivialization of ¢*(TM) = ¢* (T T*L), where
g(t) = w(e*™). Let
Oy ST xR — g*(TT*L).

be such a (rivialization. Recall that the vertical subbundle Vert of T(T™L) is a
Lagrangian subbundle. The trivialization ®,, then yields a loop

M (1) = Py (1) 71 (Vert(g (1))

of Lagrangian subspaces of R?". One then defines
I“Lﬁaslov([w]) = /’LMaSIOV(nLU)'

4.2.2. Contractible periodic orbits of Hamiltonian flows. One can also define a
Conley—Zehnder index for the contractible nondegenerate periodic orbits of a general
Hamiltonian flow. Let H be a Hamiltonian on (M, ®) and let x: S! — M be
a contractible and nondegenerate 1-periodic orbit of Xgy. A spanning disc for x,
w: D? — M, determines a symplectic trivialization

Dp: ST xR - x*(TM).
The Conley—Zehnder index of x with respect to w is then defined by
fez (X, w) = fieg ((I)w (’f)_l e (dgb;{)x(o) o Oy (O))

By the homotopy invariance property of the Conley—Zehnder index, pey(x, w)
depends only on the homotopy class of the spanning disc w, relative its boundary.
Changing this homotopy class by gluing a representative of the class A € (M ) to
the map w, in the obvious way, has the following effect

ez (x, A#u) = pez(x, u} + 2c1(A).

The normalization of ptcz implies that if p is a critical point of a C%-small Morse
function H, and w,(D?) = p is the constant spanning disc, then

I
MCZ(pv wp) = EdlmM - IMorse(p)'

This fact was used in the proof of Lemma 3.6.
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4.2.3. Closed perturbed geodesics.. Finally, we recall the definition of a Conley—
Zehnder index associated to closed orbits of perturbed geodesic flows. Consider a
Hamiltonian H : S' x T*L — R of the form

1
H(t,q.p) = §||p||2 + V(. q),

and let x(r) = (g(r), p{(r)) be a nondegenerate 1-periodic orbit of H. Recall from
Section 3.1 that the projection ¢ () is a perturbed geodesic, i.e., a critical point of the
energy functional

1
& = [ (FWOF +Veqge)d

As such, g has a finite Morse index, Iy (¢) which is the number of negative eigen-
values of the Hessian of €, at ¢, counted with multiplicity.

To define an index of Conley—Zehnder type for x, one does not use a symplectic
trivialization of x*(7*L) determined by a spanning disc. Instead, as we describe
below, one uses an intrinsic class of trivializations which are determined by a global
Lagrangian splitting of 77*L. This yields a Conley—Zehnder index for both con-
tractible and noncontractible orbits in T*L which we will refer to as the internal
Conley—Zehnder and will denote by u%.

For any point xo = (g9, po) € T*L, the Levi-Civita connection for the metric g
determines a splitting

Ty, (T*L) = Hor(xp) & Vert{xy)

into horizontal and vertical subbundles. The vertical bundle Vert(xy) is a Lagrangian
subbundle and is canonically isomorphic to 7, L. The horizontal bundle Hor(xo) is
canonically isomorphic to T, L and is also Lagrangian, [K1]. Hence we can identify
x*(TT*L) with g*(TL) & g™ (T*L). Note that while the symplectic vector bundle
x™(TT™L) is always trivial, the factors ¢*(T'L) and ¢*(T*L) need not be.

If g*(TL) is trivial, e.g., if L is orientable, then a trivialization ¥ : S' x R" —
q*(TL) determines a trivialization U of Ty(y "L = Ty) L & T,y L as follows,

Wi S'XR"XR" - TynL & T, L

W (r) 0 v
(“““”F’(<) <w@wy*)(w)

The internal Conley—Zehnder index of x is then defined by

LX) = pez (V)™ o (dly) o) © W(0)).

This index does not depend on the choice of the trivialization v (see Lemma 1.3 of
[AS]).
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When ¢*(TL) is nontrivial, we proceed as in [We]. Consider a map v : [0, 1] x
R”* — ¢*(TL) such that

w(1) =¥ (0) o Ey, (14)
where £1: R" — R”"isthe diagonal » xn matrix with diagonal (—1, 1, ..., 1}. Equip
R"™ x R™ with coordinates (xi,...,Xy, V1,--., ¥n), and extend ¢ to a symplectic

trivialization

W: ST XR" X R" — Ty L & Ty L

(t. v, w) > (‘”g) (W())*)_l) U(1) (:j))

where U(r) is the rotation of the x; yj-plane in R"™ x R"™ by —txr radians. Again, we
set

) = eV ()™ o (ddfy) ) © V().
and note that this index is also independent of the choice of the initial trivialization
Y satistying (14).

4.3. Relations between indices. The first relation we discuss is between the internal
Conley—Zehnder index of a nondegenerate 1-periodic orbit x(r) = (g (¢}, p(t)) of the
Hamiltonian H(t,q, p) = 3||p||* + V(t,q) on (T*L,d#), and the Morse index of
the closed perturbed geodesic g (¢). The following result was proven by Duistermaat
in [Du]. An alternative proof, as well as the extension to the nonorientable case, is
contained in [We].

Theorem 4.1 ([Du], [We)). Ler x(r} = (q(r), p(t)) be a nondegenerate 1-periodic
orbitof H(t,q, p) = %Hp”2 + V(t,q). If g*(TL) is trivial then

P (X) = Dytorse(q)- (15)

Otherwise, ‘
Mglé(x) = IMorse(Q) = [ (16)

By construction, each nonconstant 1-periodic orbit x of Hj is also a reparam-
eterization of a closed orbit of a Hamiltonian on 7*L of the form H(z,q, p) =
%H p||* + V(t,q). Hence, one can associate to x an internal Conley—Zehnder in-
dex as well as a Morse index for its projection to L. Recall that x lies either in
Urj548,2r/5—8) Where v is convex, or Uz, /54.6.4r/5—5) Where v is concave. In the
latter case, the identities above must be shifted in the following way.

Corollary 4.2. Ifx(r) = (g(r), p(t)) is a 1-periodic orbit of Hy, in Uz /5452, /5-8),
then equations (15) and (16) hold. If x is contained in Uz, /54§ 4r/5-5), then we have

E(x) = Tyore(q) — 1. (17)
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if g*(TL) is trivial, and ‘
Mglé(x) = IMorse(Q) — & (18)

otherwise.

Proof. A proof of the shift in the concave case is contained in Proposition 2.1 of

[Th]. [

Suppose that x € & (Hp ) is contractible in M and w is a spanning disc for x. One
can then define ptcz(x, w) as well as % (x). Moreover, w determines a unique class
in 72(M, L) and hence a Maslov index L ([w]). These indices are related by
the following identity which was first established by Viterbo in [Vil] for (M, w) =
(R2", wan). We include a (different) proof, in the general case, for the sake of
completeness.

Proposition 4.3. Let x(t) = (q(¢), p(t)) be a nonconstant 1-periodic orbit of Hp.
Then for any spanning disc w of x we have

fez(x, w) = HEX) + Haguge ((w])-

Proof. Let
Byt ST xR — x*(TT*L)

be a trivialization determined by the spanning disc w. Let
W ST xR — g*(TT*L).
be a trivialization of the type necessary to compute 1'% (x). That is,

i (x) = pez(W ()™ o (dply) o) © ¥(0)).

We may assume that
®(0) = ¥(0).

Using the loop property of the Conley—Zehnder index and identity (13), we get

pez(x, w) = pez(Puw (1)~ o (dg)x(o) © Pw(0))
= ez (o ()7 0 W(1) 0o W(1) ™! o (doppg)x(0) © W(0) 0 W(0) ™! 0 By (0))
= ez (o ()™ o W(1) o W(1) ™! o (dp)x(0) © W(0))
= 8 (%) 4 2m (@ (1)1 0 W(1))

int

= MCZ(X) + )U’Maslov(FCDw(t)*IO‘Il(t))'
Since faastor (@ (1) (Vert(q (1)) = pl . ([w]), it remains to prove that

“Maslov(rcbw (t)*1 olIJ(t)) = MMaslov((Dw ([)_1 (Vert(q (t)))
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Choose V; = {0} x R* C R?" and note that for the trivialization ¥ we have
W (r)(Vy) = Vert(g(r)). Hence, it suffices to show that

,uMaslov(FCIJw (t)_lo\ll(t)) = :uMaslov((I)w (t)_l o \I’(I)(VO)) (19)

Using the recipe for the Maslov index described in §4.2.1, we will verify (19) by
proving that

)U’Maslov(r(l)w(t)—lo\l!(t); VO X VO) — :uMaslov(q)w (t)_l > \I’(I)(Vo), VO)

By homotoping the trivializations ®,, and W, if necessary, we may assume that
all of the relevant crossings are regular. Note that 7 is a crossing of 'y, ()~ 10w
with respect to ¥y x Vy if

(v, Dy (1)L o W(r)(v)) € Vo x Vo

for some nonzero v € R?". Similarly, 7 is a crossing of ®,,(r)~! o W(¢)(Vy) with
respect to Vy if there is some nonzero v € ¥y such that

@y, (1)~ o W) (v) € Vo

Hence, the crossings are identical.

It remains to show that at each crossing the signatures of the relevant crossing
forms are equal. For simplicity we fix a crossing 7o and set T1(z) = ®,,(1)~! o W(z).
We also choose a v € Vj such that IT{zp){(v) is in V.

Fix a Lagrangian complement W of V. The first crossing form evaluated at
(v, II(zp)v) is

0 (10) (v, TL(t0)) = 2 & w2n (v, T{t0)), D(10)),
where w () is a path in W x W defined by the condition
(v, TL(to)v) + W(r) = (v(r). [I(r)v(r)) (20)
for some path v(r) in R%” with v(0) = v. From (20) we get

Q(10)(w, (t0)v) = —w2, (v, B(0)) + w2 (M(10)v. [(t0)v)
+ w2, (IT(1o)v, II(1p)0(0))
= wan(T1{t0)v, IL(1o)v).

Similarly, the second crossing form at 7o, when evaluated at IT{zg)v, yields

Q(10)(I(19)v) = w2, (T (10 )v, W (0}).
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Here, w(z) is a path in W defined, for ¢ near zero, by the condition
[I(tp)v + w(r) = II(H)v(r),
and v () is now a path in V}. In this case

Q(10)(I1(t)v) = wan(I(to)v. TI{t0)v) + w24 (I (fo)v, TL(t0)(0))
= wan (M (to)v, TI{tg)v)

since both IT(zp)v and IT(#)v(0) belong to the Lagrangian subspace IT{zo)(1).
Clearly, the isomorphism of domains (v, IT{#p)v) > I1(fp)v takes the first crossing
form to the second and so they have the same signature, as desired. O

4.4. Cumulative bounds on the Maslov class. Let x(r) = (g(¢), p(¢)) be a non-
constant 1-periodic orbitof Hy,, andlet w be a spanning disc for x. Using the relations
above, we now obtain bounds on iy ([w]). By Corollary 4.2 and Proposition 4.3
we have

1k o (0] = ez (2, W) — Iyorse (@) (F D (1),

where the first (+1) contributes only if ¢* TM is not orientable and the second (+1)
contributes if x i contained in Uiz, /545 4r/5-8)-

Applying Lemma 3.4 to Example 3.2 we see that ¢ 1s a closed perturbed geodesic
whose Morse index satisfies

Ivorse(q) € [0, 1 4+ dim Py + - -+ + dim Py ]. 2D
Overall, we then have

Proposition 4.4. Let x(t) = (g(t), p(¢)) be a contractible 1-periodic orbits of Hy,
and let w be a spanning disc for x. Then

k

pez(row) — 1= 3 dim Py < g (W) < pezGeow)(+ DD, (22)
j=2

where the first (+1) contributes only if g* T M is not orientable and the second (+1)
contributes if x is contained in U3, /548 4r/5-5)-

5. Hamiltonian paths which are not length minimizing and the proof of
Theorem 1.5

Theorem 1.5 follows from the index inequalities of Proposition 4.4 and the fact,
established in Lemma 3.7, that H; does not minimize the negative Hofer length
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functional. The missing ingredient, which we describe in this section and prove in
the next, is a theorem which relates the failure of an admissible Hamiltonian path to
minimize the negative Hofer length to its 1-periodic orbits.

Let 4 be the space of smooth compatible almost complex structures on (M, w).
Recall that for a compact, convex symplectic manifold (M, @), there is a vector field
X defined in a neighborhood of dM which is transverse to dM, outward pointing,
and satisfies £xw = w, see §2.1. In this case, we say that J € ¢ is admissible if

(J1) w(X(x), J(x)v) =0forall x € oM and v € T, 0M,
(J2) w(X(x),J(x)X(x)) = 1forall x € IM;
(J3) £xJ = 0 on M, for some € > 0.

If (M,w) is closed then every J € ¢ is admissible. In either case, the space of
admissible almost complex structures will be denoted by .

For J in &, let #(J) be the infimum over the symplectic areas of nonconstant
J -holomorphic spheres in M. Set

h = sup h(J).
Jegd

The constant 7 is strictly positive and is greater than or equal to r (M, ).

Theorem 5.1. Let (M, w) be a symplectic manifold of dimension 2n which is either
closed or compact and convex. Let H be an admissible Floer Hamiltonian on M,
such that |H|| < h. If ¢}, does not minimize the negative Hofer seminorm in its
homotopy class, then there is a l-periodic orbit x of H which admits a spanning disc
w such that

fez(x, w) =n

and
—||H|” < Ag(x,w) < |H|T.

When (M, w) is closed, this result follows immediately from the main theorem of
[Kel]. In the next section, we present the proof for the case when (M, @) is convex.
This proof also works in the closed case but yields weaker results than those in [Kel].

5.1. Proof of Theorem 1.5 assuming Theorem 5.1. Before proving Theorem 5.1,
we first show that it implies Theorem 1.5. In Lemma 3.7 we proved that ¢ does
not minimize the negative Hofer length in its homotopy class. By construction, we
also have
|HL|| < r(M,w) < h.
Hence, Theorem 5.1 implies that there is a 1-periodic orbit x of H; which admits a
spanning disc w such that
frez(x, w) = n
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and
—|Hp||” < Ag(x.w) < |H|".

It follows from Lemma 3.6 that x must be nonconstant. By Proposition 4.4, the
Maslov index of the class [w] then satisfies

dim Py — 1 < o (WD) < n(+1)(+1). (23)

The lower bound dim P; — 1 is greater than zero since the dimension of P; must
be at least two in order for it to admit a metric of negative sectional curvature. The
upper bound is at most n 4 1 if L is orientable and at most n 4 2 otherwise. Hence,
inequality (23) implies the desired bounds on Ny.

6. Proof of Theorem 5.1

In this section we prove Theorem 5.1 under the assumption that (M, @) is compact
and convex.

6.1. Overview. Let f: M — R be a Morse function on M which is admissible in
the sense of Section 2.2. Fix ametric/ on M so that the Morse complex (CM.( /), dz)
is well defined. Here, CM.(f) is the vector space over Z, which is generated by
the critical points of f and is graded by the Morse index. The boundary map d, is
defined by counting solutions of the negative gradient equation

Yy =-Vaf(y) (24)

More precisely, dy, counts, modulo two, the elements of the spaces

m(p,g)/R:={y:R—>M|y=-Vuf(y)y(=oc) = p, y(+0) = q}/R,

where p and g are critical points of f* with Iy () = Intorse(¢) + 1, and R acts by
translation on the argument of y. The homology of the Morse complex is independent
of both the admissible Morse function f and the metric /, and is isomorphic to
H (M, oM : Z>).

For a Floer Hamiltonian H we will define a chain map

®: CM(f) — CM(f)

which counts rigid configurations that consist of solutions of (24) and perturbed
holomorphic cylinders which are asymptotic at one end to elements of P (H). If
|H| < A, then one can prove that ® is chain homotopic to the identity. The fact
that the Morse homology group Ho(M, dM : Z,) is Z will then yield an element
x € P{H) which contributes to one of the configurations counted by ®. This will be
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the desired periodic orbit of . In particular, if the path ¢7, does not minimize the
negative Hofer length in its homotopy class, then this orbit will admit a spanning disc
with respect to which its Conley—Zehnder index is equal to % dim M, and its action
satisfies the required bounds.

In the next five sections we recall the relevant Floer theoretic tools following the
presentation of [Kel]. The proof of Theorem 5.1 is then contained in Section 6.7.

6.2. Homotopy triples and curvature. Let 5? ¢1 be the space of smooth S!-families
of admissible almost complex structures in fp’\ . A smooth R-family of Hamiltonians
Fyin C*(S! x M) or elements in g g1 will be called a compact homotopy from F~
to FT, if there is an n > O such that

F—, fors < —n,
F7T, fors>n.

A compact homotopy H of Hamiltonians with H~ = 0 is called admissible it HT
1s admissible 1n the sense of §2.2, and for some € > 0 and all s > —» we have

Hy|giup (t.x,7) = a(s)e™™ + b(s,1) (25)
with
a(sy <0
and
da <0
ds —

Fix an admissible Floer Hamiltonian / and an admissible family of almost com-
plex structures J in fg1. A homotopy triple for the pair (H, J) is a collection of
compact homotopies

Jg = (HS’ KS7 JS)7
such that
* H; is an admissible compact homotopy from the zero function to H;

» K, is a compact homotopy of Hamiltonians in CS°(S! x M) from the zero
function to itself;

» Jg 1s a compact homotopy in 5? g1 from some J ™ to J.
The curvature of the homotopy triple # = (Hj, K, Jy) is the function k(#): R x
S x M — R defined by

K(J6) = D, Hy — 0, K, + {Hy, Ky}
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The positive and negative norms of the curvature are, respectively,

|me+=[ s (IO, 5. 0] ds s,
BxS1 peM
and
& (F)|~ = —f min & (F)(s, 1, p) ds dt.
RxS1 peM

6.3. Floer caps. Given a homotopy triple # = (H;, K;, J) for (H, J), we con-
sider smooth maps u: R x S! — M, which satisfy the equation

Byu — X, () + T (u)(Du — X, () = 0. (26)

The energy of a solution u of (26) is defined as

Eu) = [R . a)(u)(asu — Xk, (1), Js(dsu — XKS(M))) ds dt.

If this energy is finite, then
u(+o0) := lim u(s,t) = x(t) € P(H)
§—>0Q

and
u(—oc) := lim u(s,t) = pe M,
§——00

where the convergence is in C°(S!, M) and the point p in M is identified with the
constant map ¢ — p. This asymptotic behavior implies that if a solution u of (26)
has finite energy, then it determines an asymptotic spanning disc for the 1-periodic
orbit u(+o0) = x. More precisely, for sufficiently large s > 0, one can complete
and reparameterize u|[_, ¢ to be a spanning disc for x in a homotopy class which is
independent of s.

The set of left Floer caps of x € P (H) with respect to H# is

L(x; H)y={ue COMR xS, M) | usatisfies (26) , E(u) < 0o, u{+o0) = x}.

For each u € £(x; #) we define the action of x with respect to u by

Arg(x,u) = [01 H(t, x(t)) dt—fR utw.

xS

A straight forward computation yields

0< E(u)=—Ag(x,u) —|—/R . k(H)(s,t,u(s,t))dsdr. (27)
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Each left Floer cap u € £(x; #) also determines a unique homotopy class of trivi-
alizations of x™ (7T M) and hence a Conley—Zehnder index picz(x, u).
For any function of the form F(s, -), we set

Fs,) = F(=s,").

Given ahomotopy triple # = (H,, Ky, Jg), we will also considermapsv: R x S! —
M which satisfy the equation

e
dsv + X?S(v) + Js(v)(dv — XH<—S(U)) = Q. (28)
In this way, we obtain for each x € P (H) the space of right Floer caps,
R(x: ) ={veC®RxS" M)|vsatisfies (28), E(v) < o0, v(—00) = x}.

Every right Floer cap v € R{x; #) also determines an asymptotic spanning disc
for x,
(s, 1) = v{=s,1).

The action of x with respect to % is defined as

Ag(x, V) = folH(t,x(t)) dt—fR T,

xS1

and it satisfies the inequality

0<E®W) =Agx, ) +[ K (JE)(s, 1,0 (s, 1)) ds dt. (29)
RxS!

The Conley—Zehnder index of x with respect to v is denoted by pez(x, ).

6.4. Cap data and compactness. For the starting data (H, J), we will choose a
pair of homotopy triples
H = (ngn JfR)'

This will be referred to as our cap data. The norm of the curvature of H is defined to
be

e D] = [l (RN + Nl (FEL)) T

We will use H to define three classes of perturbed holomorphic cylinders. Two
of these classes are the left Floer caps with respect to #;,, £(x, #1,), and the right
Floer caps with respect to #g, R(x, Hg). These are used to construct the map P.
The third class of perturbed holomorphic cylinders that we consider are called Floer
spheres. These are defined in Section 6.6 where they are used to construct the desired
chain homotopy between ® and the identity map. For each of the three classes of
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perturbed holomorphic cylinders there are three possible sources of noncompactness.
We need to avoid two of these sources, and in this section we describe how this is
accomplished.

The first source of noncompactness to be avoided is the possibility that a sequence
of curves can approach the boundary of M. This possibility has already been pre-
cluded by the admissibility conditions on #;, and #r. Consider the case of left Floer
caps. For #;, = (H;, K, Jg), we note that the admissibility conditions on H; and
Jy, and the fact that K belongs to C°(S* x M) for all s € R, imply that for some
€ > 0 equation (26) restricts to S! x M, as

deu + Jo(u)(Q,u + a(s)R(u)) = 0. (30)

Here, each J; satisfies conditions (J1)-(J3). The function a(s) is determined by Hj,
as in (25), and so we have a(s) < 0 and % < 0. If 7: M, — R is the function
T(t,x) = e and u is a solution of (30), then a straight forward computation yields

A(T ou) = w(dsu, J(u)dsu) — Z—j(T ou),

(see [Vi2] or Theorem2.1 of [FS]). Since the righthand side is nonnegative, the Strong
Maximum Principle implies thatif 7 oy attains its maximum then it 1s constant, [GT].
Hence, no left Floer cap u € £(x; #,) enters M, and no sequence of left Floer caps
can approach dM . The arguments for right Floer caps and the Floer spheres defined
in Section 6.6, are entirely similar and are left to the reader.

The other source of noncompactness that we wish to avoid is bubbling. To achieve
this we will exploit the following fact: the energy of the Floer caps and Floer spheres
that we consider is bounded above by ||« (H)|||. Using the assumption from Theo-
rem 5.1 that || H || < A we will construct cap data H for which we have the curvature
bound A

lle D < [[H| < #. (31)

As we now describe, this condition allows us to avoid bubbling by simply restricting
our choices of the almost complex structures which appear as part of the cap data H.

The following result is a simple consequence of Gromov’s compactness theorem
for holomorphic curves.

Lemma 6.1 ([Kel]). Foreveryd > Othereis anonempty open subset 35 C 3’ (M, w)
such that for every J € 5,’5 we have h(J) > h— 8.

Since | H || < A, we can set

_h—|H|
2
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and let 5’,’\ 5H be an open setin é’\ as described in Lemma 6.1. We will assume {rom now
on that the almost complex structures which appear in the families in H all belong
to gSH This implies that any bubble which forms from a sequence of Floer spheres,
must be a J-holomorphic sphere w: S? — M for some J € 355' Inequality (31)
implies that for this J we have

W)= b (b~ IH ) > D))

As mentioned above, the energy of our Floer spheres is bounded above by |||« (H}|].
This implies that the energy of the bubble w is less than |||« (H)||| and hence %(.J).
By the definition of %(.J), the bubble w must therefore be trivial. Thus, if H satisfies
(31) and if the families of almost complex structures appearing in H take values in
5(5H , then no bubbling occurs for sequences of Floer caps or Floer spheres that are
defined using H.

We also note, that since g OH ig open we can achieve transversality for our spaces
of Floer caps and Floer spheres , which can therefore be assumed to be manifolds of
the expected dimensions, [FHS].

6.5. Specific cap data. We now specity cap data H = (J#,, # ) for (H, J), where
J takes values in gSH and H is a Hamiltonian as in Theorem 5.1, i.e., || H || < f and
¢4 does not minimize the negative Hofer length in its homotopy class. This cap data
will satisfy the curvature bound (31). It will be assumed throughout, that the families
of almost complex structures appearing in H take values in 5,’511’

Let b: R — [0, 1] be a smooth nondecreasing function such that b(s) = 0 for
s < —land b(s) = 1 fors > 1. Let #, be a linear homotopy of the form

Hy, = (b(s)H,0,J1 ;).
For this choice, « (#7) = b'(s)H and we have
e (FENT = [1H ™ (32)

Fix an admissible Hamiltonian G such that ¢7, is homotopic to ¢y, , relative its
endpoints, and |G ||~ < ||H||”. Note that H and G have the same slope, ag, because
they generate the same time one map and are admissible.

We now use the Hamiltonian G to construct 4 g. We start with a linear homotopy
triple for G of the form

= (b(5)G,0, Jy).

Let Fy be the normalized Hamiltonian which generates the Hamiltonian flow ¢, o
(¢, ) G)—1 oy g+ straightforward computation shows that the slope of Fy does
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not depend on s. Set

0 fors < —1;
- b(s)G for—1<s < 1;
H, =
Fy », forl <s <3
H, for s > 3.

This is an admissible compact homotopy from the zero function to A . In particular,
we have

d ;

() = b(s)ag <0,

ds
where again aq 1s the common slope of G and H.

Let o; = ¢ly o (p5) L. The map Y: C®(S!, M) — C®(S!, M), defined by

T(x(1)) = @e(x (1)), (33)
takes contractible loops to contractible loops and hence Y (P(G)) = P (H). Now
consider the family of contractible Hamiltonian loops

Qs = ¢;§S ® (Qbi(s)(;)_l-

For each value of s, 05,; 15 a loop based at the identity, and

1d, fors < 1;
Osi = 1F, , 0 @)1, forl<s <3
Ptyo(ph)~',  fors >3,

From g, we obtain the family of normalized Hamiltonians, 4, € C(§’°(S1 x M),
defined by

ds(0s5,:(P)) = Xa, (05, (P))-
Set o N
Hr = (Hs, Ks. Jrs) = (Hy, As. dog o Jg 0 d{05})).

Itis casy to verify that # g is ahomotopy triple for (H, J) where J = g,0J tod(o;1)
and J T = limg— o0 Js. It also follows from Proposition 2.7 of [Kel] that

e (FERF = 1l (34)

The following result 1s proved as Propositions 2.6 in [Kel].

Proposition 6.2. The map Y defined on R(x: ) by Y(v(s,1)) = O—s(V(s, 1)) isa
bijection onto R(Y (x); HR) for every x € P(G), and

nez(e, 5 = (TG, T )
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and .-
Ag(x, V) = Ay (T (x), T(v)).

The curvature identity (34) yields

I (R = llle NI~
= —f b(s)(min G (¢, p)) ds dt
Bx Sl peM
=Gl

Hence, by (32) we have
le DIl = e (FHIT + llc(FERI™
= |H|T+ Gl
< [|H|
< k.
6.6. The map ®. lLet H = (H7,, ) be the cap data for (H, J) constructed in the

previous section. For each critical point p of f we consider the following two spaces
of half-trajectories of the negative gradient equation (24):

£(p) = {o: (—00,0] = M | & = =V}, f(@). a(—) = p}
and

r(p) = {B:[0,+00) = M | B = Vi f(B), B(+x) = p}.
Let ¥ (p, x,q; f, H) be the set of tuples

(c,u,v,B) € £{p) x £(x; H1) x R{x; HR) x r(g)

such that
a(0) = u(—o0),
v(+oc) = B(0)
and
[u#v] = 0.

It follows from [PSS] that for generic choices of the families of almost complex
structures appearing in H, the dimension of N (p, x, q; f, H) 15 Ivore (2) — IMorse (9)-

The map ®: CM.(f) — CM.(f), is then defined by setting the coefficient of
g in the image of p to be the number of elements, modulo two, of the set

U #.x.q: £ H).

xeP(H)
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To show that ® is well defined, we must verify that the zero-dimensional spaces

N{(p, x,q; f, H) are compact. The only possible source of noncompactness are bub-

bles which appear on the Floer caps of the configurations in N (p, x,q: f, H). To

avoid this, we only need to show that for each tuple (o, u, v, B) in N (p, x,r; f.H),

both u and v have energy less than or equal to |||« (H)|||. Then, as described in Section

6.4, our choice of almost complex structures in H precludes such bubbling.
Equations (27) and (29) imply that

0= E(u) < —vhp(x,u) + |l (F)I"

and
0< E(v) < g (x, ) — |le(Hp)|l™.

Since [u#tv] = 0, we have Ag (x,u) = Ag(x, v ) and
E(u) < —Ag(x. V) + [[c(FH)ll*
< e (R + lllxc(FeN™
= ||« (HD]]|-
A similar computation implies that E(v) < |||« (H)|||, and so ® is well defined.

Proposition 6.3. The map ©: CM( )} — CM( f) is chain homotopic to the identity.

Proof. The specific cap data, H = (J#, #H ), is used to construct a homotopy of ho-
motopy triples X* = (H s’l K%, J*) for A € [0, +00). The desired chain homotopy

§°7s

is then defined using maps w in C*®(R x S, M) which satisfy the equation
dsw — X a () + T (w)@w — X o (w)) = 0. (35)

To define #* we introduce the notation ¥ = # (s) = (H,, Ky, Js) to emphasize
the s-dependence of #. Set

Hr(s +3) whens <0,

H(s) = {J{,
r(s —3) whens > 0.

For A € [1, +0¢), we then define

Je(s) = {ﬁL(S + C(A)) whens <0,
r(s —C(A)) whens >0,

where C(A) is a smooth nondecreasing function which equals A for A > 1 and is
equal to 3 for A near 1. Finally, for A € [0, 1] we set

H*(s) = (D(AMH}, DOVK]}, 17

s*°s
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for a smooth nondecreasing function D : [0, 1] — [0, 1] which equals zeronear A = 0
and equals one near A = 1. The compact homotopies Js;“ are chosen so that they
equal J? for A near zero and equal J! for A near one.

The fact that J; takes values in 5/,’\ u implies the same for the families JS)L with

A > 1. For A € [0, 1), we choose the families J7 so that they also take values in {;’\ 3
The following properties of A are casily verified:

(1) For each A € [0, +-00), HZ is an admissible compact homotopy from the zero
function to itself.

(2) For each A € [0, +-00), K7 is a compact homotopy in CS°(S! x M) from the
zero function to itself.

(3) There is an € > 0 such that equation (35) restricts to S x M, as
dsw + JH(w)(@,w + a(X,s)R(w)) = 0, (36)
where a(A, s) is determined by H S)“ |m. and satisfies a(A, s} < 0 and ?,—;’ <0.
@ e M = DAl D] for all A € [0,+00).
Solutions of (35) with finite energy are perturbed holomorphic cylinders which
are asymptotic, at both ends, to points in M . In particular, since the perturbations are

compact, each such w can be uniquely completed to a perturbed holomorphic sphere.
We define the space of Floer spheres for H as

£ R()
= {(A,w) € [0, +00) x C(R x S', M) | w satisfies (35), [w] = 0 € 72 (M)}.

Invoking again the Strong Maximum Principle, the third property of # * listed above,
implies that the distance between the images of the maps w in LR(H) and the

boundary of M is bounded away from zero by a positive constant which is independent
of A.
For every (A, w) € £R(H), we also have the uniform energy bound

E(w) = [ o (w — X g (W), J*@gw — X g (w))) ds di
RxS! y s

_ [Rxsl (0(X 2. (), Bw) — (X g3 (w), dw)
+ a)(XKgx (w), Ay (w))) ds dt
=[ K (F) (s, 1, w)ds di
RxS1

< flle (I
= D(A)||lx (1)

< h.
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As described in Section 6.4, this allows us to rule out the possibility of bubbling for
sequences in £R(H).
For a pair of critical points p and ¢ of f, we define N, (p, q) by

o, R, w), B) € £(p) x LR x r(g) | ¢(0) = w(~00), w(+o0) = B(0)}

For generic data, N, (p, ¢) is a manifold of dimension Iyie { 2) — Iviorse (¢ ) + 1, [PSS].
We define the map y: CMy(f) — CM,(f) by setting

x(p) = > #a (N (P94,

ucz(@)=pcz(p)+1

where #;, (N, (p,q)) is the number of components in the compact zero-dimensional
manifold N, (p, ¢), modulo two. To prove that y is the desired chain homotopy, it
suffices to show that for every pair of critical points p and r of f such that Iy (p) =
Inorse (7 ), the coefficient of r in

(id—q)+)(oah+8hox)(p) 37

is zero.

Consider the compactification N, (p, r) of the one dimensional moduli space
N, (p, r). Since the elements of N (p, r)} can not approach the boundary of M and
we have precluded bubbling, it follows from Floer’s gluing and compactness theorems
that the boundary of N} (p, ) can be identified with the union of the following zero-
dimensional manifolds:

(@) m(p,r),
(i) Uyepy M (p,x,r; fH),
(1) UMCZ(CI)=MCZ(P)—1 m(p.q)/R < Ni(g. ),

V) U=z Nalp-q) xm(q.r)/R.

By definition, the number of elements in the sets (i), (iii) and (iv), modulo two,
are the coefficients of r in ©(p), y ¢ dp(p) and 9, o y(p), respectively. The first set
m(p,r)isempty if p # r, and consists only of the constant map when p = r. So,
the number of elements in m{p, r), modulo two, is equal to the coefficient of » in
id(p). As the boundary of the one-dimensional manifold ) (p, r), the total number
of these boundary terms is zero, modulo two. Hence, the coefficient of r in (37) is
zero, and y is the desired chain homotopy. O

6.7. Completion of the proof of Theorem 5.1. For simplicity, we choose the ad-
missible Morse function f on M so that it has a unique local, and hence global,
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minimum at a point P in M. (For a proof that this is always possible see, for ex-
ample, Theorem 8.1 of [Mi].) Since P is the only critical point of f with Morse
index zero, P is a cycle in the Morse complex of f and is the only representative
of Ho(CM( f), d;,) = Z». By Proposition 6.3 we then have ®(P) = P at the level
of chains. Hence, for some x € #(H) there is a a tuple {(«, u, v, ) in the zero-
dimensional space N (P, x, P; f, H). 'The pairs («,u) and (v, ) each belong to
moduli spaces with the same asymptotic behavior. In fact, these moduli spaces are
used in the definition of the Piunikhin—Salamon—Schwarz maps from [PSS], where
their dimensions are computed to be # — fiez(x, 1) and jecz(x, 0 ) — 1, respectively.
Since N (P, x, P; f, H) has dimension zero, the moduli spaces containing (¢, ) and
(v, ) must also be zero-dimensional and so

pea(x,u) = prez(x, V) = n. (38)
The condition that [u#v] = O implies that
Ap(x,u) = Ag(x, <'U_)

By Proposition 6.2 we have

AR X, V) = Ac(YH(x), T (v)),

where Y1 (v) is aright Floer cap in R(Y 1 (x); §) and § is a linear homotopy triple
of the form (b (s)G, 0, Jy). Inequality (29) then implies that

An(x,0) > —[le@I” = G~ > —|H| .
On the other hand, inequality (27) yields
A (x,u) < e (T = [1H]™,

since J€z, 1s the linear homotopy triple (b (s)H, 0, Jy, 5) and

eI = [ Bs)(ma Hee, p)) s do = |H].
Altogether, we have
IH |~ < Ag(x, V) = Ag(xu) < |H| T (39)
Let w be a genuine spanning disc for x which is obtained by reparameterizing

the asymptotic spanning disc u. By (38) and (39), we have jicz(x, w) = n and
|H ||~ < Ag(x,w) < ||H|T, as required.
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7. Generalizations

We end this note by describing some simple generalizations of Theorem 1.5. To begin
with, one expects that these rigidity results should hold for more general classes of
ambient symplectic manifolds. Indeed, one can immediately extend Theorem 1.5 to
products of convex symplectic manifolds or the more general class of splir convex
manifolds defined in [FS].

Theorem 1.5 also holds for more general classes of Lagrangian submanifolds. In
particular, the methods used here only detect those closed geodesics on a Lagrangian
submanifold which are contractible in the ambient symplectic manifold. Hence,
the theorem also holds for easily displaceable Lagrangian submanifolds of the form
L = L1 x Ly, where Ly is split hyperbolic and L, admits a metric which has no
nonconstant contractible geodesics and is incompressible in the sense that the map
m1(La) — 1 (M), induced by inclusion, is an injection.

Combining these observations, we get

Corollary 7.1. Suppose that the symplectic manifold (M, ®) is rational, propor-
tional and either closed or split convex. Let . = 1.1 X Ly be an easily displaceable
Lagrangian submanifold of (M, w) such that L is split hyperbolic and L, is incom-
pressible and admits a metric which has no nonconstant contractible geodesics. Then
Np < 3dimM + 2, and if L is orientable we have Ni, < 5 &im M + 1.
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