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A norm compatible system of Galois cohomology classes
for GSp(4)

Francesco Lemma

Abstract. For a given de Rham p-adic Galois representation M, a conjecture of Perrin-Riou
associates a p-adic I-function for M to a norm compatible system of Galois cohomology classes
in the projective limit 1i<_mnH1 (Q(Zpn), M). We construct such a norm compatible system for

the symplectic group GSp,. Our classes are cup-products of torsion sections of the large elliptic
polylogarithm pro-sheaf; we rely on its norm compatibility and on some computations of weights
in the cohomology of Siegel threefolds of our previous work.

Mathematics Subject Classification (2010). 11M50, 11R23, 11F67.
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Introduction

L-functions are defined as convergent infinite series of complex numbers and their
values atintegers have an algebraic meaning, like in the analytic class number formula
of Dedekind and Dirichlet. In particular, it should be possible to find a p-adic analytic
L-function taking the same values as the archimedean one at some integers. For
example, consider two positive integers ¢ and » prime to an odd prime number p,
and fix a system of primitive p”-th roots of unity ,, such that ¢ = {,—;. The
numbers

é.—a /2 ’021 /2

n

—b b
é-n /2_ n/2

are units of the rings of integers Z[{,] mapped to each other under the norms
Z[Lwm]* — Z[L,]* for n|lm. We owe to Kubota—Leopold and Iwasawa that to this
compatible system of units is associated a (pseudo-)measure d {, on Z; such that

f K, = (B — a*) (1= pF e — k),
ZX

P

for any even positive integer k, where ¢ denotes the Riemann zeta function (see [5],4.2
for details). Via the boundary map coming from the Kummer exact sequence, these
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units should be seen as a norm compatible system of Galois cohomology classes in
the projective limit LiLnnHl (Q(&n). Zp(1)) associated to the Tate motive. Now given

any de Rham p-adic Galois representation M, a conjecture of Perrin-Riou associates
a p-adic L-function for M to a compatible system of classes belonging to the imnverse
limit LiLnnHl(Q(é'pn), M), via p-adic Hodge theory and a p-adic interpolation of
Bloch—Kato exponential maps ([17], Chapitre 4, Conjecture CP(M)).

Only few examples of such systems of cohomology classes are known: for exam-
ple, there 1s the one described above, and the system of Beilinson—-Kato’s elements
defined as K-theoretical cup-products of modular units, and giving rise to the p-adic
L-function of elliptic modular forms ([10], Theorem 16.6(2)).

This note provides another example of such a norm compatible system for the sym-
plectic group in four variables GSp,. The main ingredient is the norm compatibility
of the large elliptic polylogarithm pro-sheaf, due to Wildeshaus, and the computa-
tions of weights in the cohomology of Siegel threefolds of our previous work [15],
Section 2.2. Indeed, the cohomology classes considered here are the p-adic real-
ization of cup-products of Beilinson’s Fisenstein symbols (see [11], Theorem 3.2.1),
which are torsion sections of the elliptic polylogarithm pro-sheaf. In fact, both the
system of cyclotomic units described above and the one of modular units defined in
[10], Section 2.2, can be seen as the p-adic realization of the torsion sections of the
classical and elliptic polylogarithm respectively ([21], TV, Chapter 4, Theorem 4.5,
and [12], Theorem 4.2.9).

In a forthcoming paper we expect to relate our system to the critical values of the
degree four L-function of cuspidal automorphic representations of GSp, as predicted
by the conjecture of Perrin-Riou.

1. Conventions and notations

In this section we fix conventions and notations for the rest of the paper. We advise
the reader to consult this section only according to his needs.

1.1. In this note, we consider a fixed prime number p > 3. Given a Q-scheme of
finite type X, we work in the setting of bounded derived categories Df:’ (X, Qp)of [7],
where the coefficient ring is the field Q,. The category of smooth étale Q,,-sheaves
naturally embeds in the heart of D? (X, Q ) and on the derived categories D2(X,Q )
we have the formalism of Grothendieck’s six functors (£*, f«, fi, f', Hom, ®).

1.2. The large elliptic polylogarithm is an extension of pro-sheaves. For a given
abelian category +, the category pro-+4 of pro-objects of #4 is the category whose
objects are projective systems

A= (Aicr: I?P—> A
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where [ is some small filtered index category. The morphisms are
Hompro—a% ((At )i 5 (Bj)]) = LiLnj hlgi HomeA (At ) Bj)

The category pro-+ is again abelian ([1], A4.5) and a functor F': A — B is extended
to the pro-categories in the obvious way F((A;);) = (F(A4;));. We are interested
in the abelian category Sha (X) of ¢tale sheaves of A-modules over a scheme X.
Given two pro-sheaves (4;) and (B;), we denote by Ext}, ((4;). (B;)) the group of
j-th Yoneda extensions of (A;) by (B;) in the category pro-+#.

1.3. Siegel threefolds. We fix a four-dimensional symplectic space (Vy, ) over Z
and denote by

G = GSp, = {g € GL(V,) | there exists v(g) € G, such that
wigv,gw) =v(g)¥(v,w)forallv,w € Vy4}

the associated symplectic group, with center Z and derived group Sp, = kerv.
Denote by K, a maximal compact subgroup modulo the center Z(R)K. C G(R)
where K/ is a maximal compact subgroup of Sp, (R). The locally compact topologi-
calring of adeles of Q is A = Rx A where Ay = Q®ZandZ = LiLnNZ/NZ. For
every non zero integer N we consider the compact open subgroup K(N) C G(Ar)
kernel of the reduction G(Z) — G(Z/NZ) modulo N. Given a Z[ﬁ]—scheme 5
we consider the set of uples {A4, A, , n} made of an abelian scheme A — S of
relative dimension 2, a principal polarisation A, i.e., an isomorphism A: A — A
with the dual abelian scheme and whose dual is A itself, a primitive N -th root of
unity over S and a principal level N structure, 1.e., an S-group schemes isomor-
phism V4/NVy ® S =~ A[N] with the N-torsion of A, compatible with ¥ and
A in an obvious sense. For N > 3, by a theorem of Mumford (see [16], Chap-
ter 7, Theorem 7.9), the functor S — {A, A, , i} is representable by a smooth and
quasi-projective Z[%, ¢n]-scheme S(N) of dimension 3. Fixing a complex em-
bedding of the abelian extension Q(¢y) generated by AN -th roots of unity, we have
SINC) = GIQ)\(G(A)/K(N)K) ([14], Corollary 3.3). In this note we work
with a fixed complex embedding of the field Q(Cy).

2. The large elliptic polylogarithm: definition and basic properties

Letus present the definition and the basic properties of the large elliptic polylogarithm
pro-sheaf. The following introduction follows closely Section 3 in Kings [12].

In this section S will denote a connected scheme of characteristic zero. By an
elliptic curve over S, we mean a proper and smooth S-group scheme of relative
dimension one. Let w: E — S be such a morphism, with unit sectione: S — E.
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Definition 2.1. A lisse Q,-sheaf ¥ over E is said to be n-unipotent of length n
if it admits a filtration = FY > F! > ... o F" > F**1 = 0 such that
Gr' ¥ = n™§* for some lisse Qp-sheaf §* over S.

Theorem 2.2 ([3], Proposition 1.2.6). Up to unique isomorphism, there is a unique
n-unipotent sheaf é(’,oggf) of length n, together with a section of the fibre at the unit

section 1™ Qp — e*éﬁogg), such that for every n-unipotent sheaf ¥ the map

JT*Hom(éﬁogg), F) — e*F mapping f to f o 1% is an isomorphism.

Definition 2.3. The canonical maps iogg”rl) > éﬁog%”) that map 1*+D (o 10
define the logarithm pro-sheaf

Logp = (éﬁogg))n.

By the universal property of £og, the pull-back R = e*Logy is a ring with
unit (19),, and the ring 7* R acts on Log .

In order to give another very simple description of the logarithm pro-sheaf, con-
sider the multiplication by p/ whichis an étale cover [p/]: E — E over S (recall that
we assumed that S is of characteristic zero). As [p”/]is smooth, of relative dimension
zero, wehave [p/]'Q, = [p/]*Q, = Q, and because [ p/] is finite, hence proper, we
have [p/]: = [p/] for every integer j. For j/ > j,we have [p/'] = [p/] o [p/ ],
hence the image of the counit [p/~/)i[p/"7]'Q, = [p/~/1.Q, — Q, under
[p7]+ is a morphism tr;; : [p/'1.Q, — [p/1:Q,. By [12], Proposition 3.4.2 and
Lemma 3.4.3, we have a canonical isomorphism of pro-sheaves

cc()»OgE = ([pj]*Qp)j7 (2.1)

where the transition maps on the right are given by the tr;-;.
Now let I be the kernel of the augmentation map R — Q,. Denote by j the
open embedding complementary to the unit section

U=X—e(S) ———

N

The restriction of £og g to U will be denoted by £ogy;.

Lemma 2.4 ([3], 1.2.8). The higher direct images of Logy are

0 ifn # 1,

R'ny « Logy =
Bl 1 {I(—l) ifn =1
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By this lemma, the edge morphism in the Leray spectral sequence for Rmy « 18
an isomorphism Ext, (zj; I, Logy (1)) =~ Homg (I, I).

Definition 2.5 ([3], 1.3.5.). The large elliptic polylogarithm
Polp € Bxt}, (n I, £ogy)

is the extension class mapping to the identity map under the above isomorphism.

It is shown in Section 3.2.3 of [12] how to extend to Polg the action of 7* R
on £ogy and 7w* I so that Polp € Extb’ﬂ*ﬁ(n(’}l, Logy;) is an extension class of
* R-modules.

2.1. Functoriality and invariance by torsion sections. Let f: S” — S be a con-
nected scheme over S of characteristic zero. Form the cartesian square

i,

|

S/H’S(v

and let ¢’: S’ — E’ be the unit section of E" and U’ = E’' — ¢’(S"). We denote with
superscripts  the pro-sheaves R’ = ¢"*Logy and I’ = ker(R" — Q) over §’.

Lemma 2.6. We have a canonical isomorphism £ogg, = f'* £ogg and a canonical
isomorphism R' = f*R

Proof. Tor every integer j > 0, as [p/] is an étale cover, hence is proper, we have
the proper base change canonical isomorphism f*[p/].Q, = [p/l.f*Q, =
[p/1.Qp, where [p/] denotes the multiplication by p/ on E’. Using the above
description of the logarithm pro-sheaf, we get the first announced canonical isomor-
phism. Now by functoriality

tﬂ/:e/*xogE, :e/*f/*iogE — (f/oe/)*iogE — (€Of)*f,0gE :f*tR D

Note that the same argument shows that for any isogeny f': £/ — E over S
we also have the canonical isomorphism Logp, = f*Logg. A consequence of
this identity that will be useful in what follows is the invariance of the logarithm by
translation by torsion sections.

Lemma 2.7. Lett: S — E be a torsion section. Then there is a canonical isomor-
phism
t*Logp = e*Logg
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Proof. Let n be the order of r and denote by [#]: £ — E the multiplication by »
over S. We have

t*¥ogp = t*[n]*Logyp = (n]ot)*Logyp = ¢ Logpf. O
Lemma 2.8. There is a canonical isomorphism of extension of pro-sheaves Polg: =
f*Polg
Proof. 'The functoriality of the logarithm (Lemma 2.6) gives rise to a commutative
diagram
Ext)y (75 1, Logy (1)) ——= Extly (w8, I', Logyr (1))
Homg (I, 1) Homg/ (I', I').

As the lower horizontal arrow maps the identity to the identity, we obtain the an-
nounced result, [

f*

2.2. Norm compatibility. This subsection is the most important for our following
application: we recall the norm compatibility property of the large elliptic polyloga-
rithm pro-sheat.

Letus consider an arbitrary elliptic curve 7’: E’ — S, withunit sectione’: S" —
E’ and with complementary open U’ = E’'—¢/(S’). Let f: E’ — E be anisogeny,
with kernel Z and consider U = f~(U). We have a commutative diagram with
carlesian squares:

s Vg lopd pd
\lf f lf
S-S F / U
\n/
Ty
S.

The adjunction map £ogy (1) — j«j*£ogy (1) of restriction to U gives rise to a
map

Eth,(T[E,I, Logy (1)) J—>Ext;7(7r(”},l, f*f*iogU/(l)).
Now by adjunction
Ext}j (5 1, Juj *Eogy. (1)) = Ext%j(j”*nz’},f, j*Eogy (1)
= Ext}; (f*n 5 L. j* Logy, (1) = Bxt}y (n 1. fu) * Logy: (1))
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By the functoriality of the logarithm Log;;» = f*£ogy . the right hand term of the
last Ext! can be written f*f*éfiogU,(l) = fuf*Logy(1). As f is an étale cover
we have the trace map tr: f. f *£og; (1) — Logy (1), so we finally obtain a norm
morphism

Ny =troj*: Ext (nf I, Logy: (1)) — Ext}; (x5 I, Logy (1)) (2.2)

Proposition 2.9 ([21], 111, Chapter 5, Theorem 5.2 and [13], Proposition 2.2.1). For
every isogeny | we have
Nf (JDOZU/) = JDOIU.

2.3. Pull-backs along torsion sections. This subsection entirely relies on [12],
Section 3.5.3. We wish to associate some absolute ¢tale cohomology classes to pull-
backs of the large elliptic polylogarithm along torsion sections.

This can be done in the following way. Let #: E — S be an elliptic curve
and ¢: S — E be a non zero torsion section of . Denote by J€ the relative Tate
module Hom(R!'7.Q,, Q,), by Sym¥# = P, Symk&’{’ its symmetric algebra and
by Sym="J C Symd the ideal P, , Sym* # . Identifying the symmetric algebra
Symd# with the universal envelopping algebra U(H) of the abelian Lie algebra #,
we give to it the structure of a Hopf algebra. Denote by U(H) = [ [4~, Sym* # the
completion of U(JH) along the augmentation ideal. -

As the logarithm is translation invariant along ¢ (Lemma 2.7), we have t* Polg €
Ext%] (1, R(1)). Denote by R = e*cfog(g). The pro-sheaf R = (R™), is a
Hopf algebra ([3], 1.2.10 1v) and we have an isomorphism of Hopf algebras

p™: Symde/Sym>"t1g = Gr=" R

according to [loc. cit.], Proposition 1.2.6. By the structure theorem [4], chapitre 11,
paragraph 1, no. 6, the maps v" lift to an isomorphism of Hopf algebras

v: U(H) = R. (2.3)

Now consider the Koszul resolution

2
0— NF®R=R1)HSR—>1—0

of the Lie algebra 4, where the first mapis (X ®@ v — Yy R X) QU > X @ yu — y @ Xu
and the second is # ® u + hu. By [12], Lemma 3.5.8, the map

Exty (Qp. R(1) = Ext} g (R, R(1)) — Ext} 5(I. R(1))

L Exth p (9 ® R, R(1))
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has a functorial splitting :. Composing with the projection induced by R (1) —
Sym* # (1), we get the absolute cohomology classes

EX = ((b*1* Polp)* € H'(S, Sym* 3¢ (1)). (2.4)

The comparison of these classes with Beilinson’s Eisenstein symbol ([2], Theo-
rem 7.3) 1s given 1n [8], Theorem 2.2 4.

2.4. The compatibility between 2.2 and 2.3. Tet f: E' — E be an isogeny over
Sandt: S — FE bea torsion section. We assume that f is trivial over S, or in other
terms, that we have a cartesian square

’
Llzg

]_[gEGS E'
K |
S ! E

where G is the Galois group of f. Therefore the ré are non zero torsion sections
of E'.

Lemma 2.10. In H'(S, Sym* 3 (1)) we have E* = Y oeeG EZ.
Proof. By the norm compatibility of the polylogarithm (proposition 2.9) we have
EF = ((b*t*Polp)* = 1(b*t* Ny Polpr)F.
Recall that the norm morphism Ny (2.2) is defined by composing the trace map
Extly (1 1. fo f* Logy (1) —> Extly (fy I, Logyy (1))

with the restriction to the inverse image by f of the complementary of the zero section
of E

Exth (n5, I, Logy(1)) —— Exth (el 1. Jo f* Logy (1)
= Bxt} (w1, fu f*Logy (1)).

Bythebasechange ™ fu /™ = (fuly [ )gea = D ge Iy Wehaver™ fi f* Logy =
> geG g Logp . As aconsequence

Ef = 1(b* "Ny Polp)* = > " 1(b* 1} Polp)* = ) Efg O
geG geG
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3. The norm relations

Let N > 3 be an integer and let Y (N} be the modular curve of level N: it is a
smooth affine connected curve over Q(¢y ) representing the functor on Q-schemes
associating to a QQ-scheme S the set of isomorphism classes of triples (£, ey, e3)
where w: E — S is an elliptic curve over S and (e, e;) is a basis of the N -torsion
of E (see [6], IV. 2, for details). The group GL»(Z/N) acts on Y{(N) on the left: for
o= (g Z) € GL2(Z/N), define 6.(E, e1,e2) = (E, e}, €5) where

el _fa b\ (el

es)  \e d)\ex)”
For M, N > 3, the modular curves Y (M, N) are defined as follows: chose a common
multiple L of M and N, define the group

G=1{(*%)€eGL2Z/L): a=1(M), b=0(M), c=0(N), d =1(N)}
(3.1
and
Y(M,N) = G\Y(L),

which is independent of the choice of L. The Q-scheme Y (M, N ) represents the func-
tor associating to a QQ-scheme S the set of isomorphism classes of triples (E, eq, €2)
where w: E — S is an elliptic curve over S and e; and e, are sections of w of
order M and N respectively and such that the map Z/M x Z/N — E defined by
(a,b) — aey + be, is injective. The curves Y(N ) and Y (M, N) carry a universal
elliptic curve E by their very definition.

For every two integers N |N' there is an dtale cover v Y(N') — Y(N)
sending the sections (eq, e3) over Y(N') to (%el, %ez). As we are working with
rational coefficients, the pull-back map

*

1 k Inrw 1 ’ k
H (Y(N), Sym" #(1)) ——— H (Y(N"), Sym" # (1))

is injective. We now define some cohomology classes in |y H (Y(N), Sym* # (1))
as follows: let («, 8) be a non zero element of (Q/Z)? = |y ﬁZ /Z. Choose an

integer N such that No = NB = 0, write (o, f) = (&.2) e YZ/Z = Z/NZ
and define the Eisenstein class

Ef-f,ﬁ = Eélel+bez) e H'(Y(N), Sym* #(1)), (3.2)

where Ef,, Bey 18 the class (2.4). Tn the bigger space [y H' (Y(N), Sym* 7 (1)),

the Eisenstein class does not depend on N .
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Lemma 3.1. Let («, B) € (Q/Z)* — {0,0L.
(i) For any o € GL(Z/N) we have
*k _ ok
o Ea’ﬂ = Ea,’ﬁ,
where (/, ') = («, B)o.

(2) (Distribution property.) For any non zero integer a we have

k k
Efg= Eb,
a/,ﬂ/

where (o', B') range over all elements of (Q/Z)* such that ac’ = o and a8’ = B.

Proof. (1) By functoriality of the splitting ¢« we have
O*Eiﬂ = ((6*b* (cwey + Pes)* Polp)¥
= (b o " (cey + Pey)* Polp)*

= ((b*(c'e; + Bles)* Polp)F.
(i1) follows by taking f = “multiplication by «” in Lemma 2.10. 0l

In what follows, we have to consider Q,-adic étale sheaves on the Shimura vari-
eties associated to finite dimensional algebraic representations of the group underlying
the variety. With this end in view, let us recall the adelic description of the complex
points of the modular curves Y(N). Let Z(R) be the center of GL,(R) and let
L C SLy(R) be a maximal compact subgroup. Write Lo, = Z(R)L. C GL,(R)
for a maximal compact subgroup modulo the center. Consider the kemel L(N) of
the reduction modulo N map GI.,(Z) — GIL,(Z/NZ). With our fixed complex
embedding of Q (¢ ), we have the Shimura variety description of the modular curves

Y(NHC) = GL2(Q@\(GL2(A)/L(N) Loo)-

Now according to (1.10) in [19], we can consider the (Qp-adic étale sheaf on the
Y (N) associated to the standard representation V of GL5 and we have a canonical
isomorphism of (Q,-adic sheaves V = #.

In order to give the definition of the cohomology classes we will consider, let us
first remind about the weights of algebraic representations of GL, and GSp,: we
choose a symplectic basis (e, ez, €3, e4) of (V4, ¥ ) such that

{0 I
)
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where [, denotes the identity matrix of size 2. Hence we have a symplectic isomor-
phism 1V, &V, =~ V4 and the embedding ¢: GL, xg,, GL, — GSp,, the fibre product
being over the determinant, given by

a 0 b O

a b a b 0 a 0 ¥
t[(c d)’(c’ d’)}_ c 0 d 0 (33)

0 ¢ 0 d

Let Ta, resp. Ty, be the diagonal maximal torus of GL3, resp. GSp,. We have

Ty = {diag(a,a_lv) = (a u ), (a,v) € G%z}

0a 1y
and
@1 0 0 0
_ ) 0Oax 0 O 5
T, = qdiag(og. az.0] v, v) =1 ¢ o ol 0 (o, 00,v) € G

00 0 eyly

The group of characters X *(T,) is identified to Z =+ via A(k, ¢) : diag(c, ¢~ 'v) —
oa]fvt and A(k, k', £) : diag(ar, a2, a7 v, a5 'v) > alfozlzc,vt. Write p; = A(1,—1,0)
and p2 = A(0,2,0). Then the roots of T4 in GSp, are R = { +p1, £p2, =(p1 +
/), £(2p1 + p2) } and the positive roots corresponding to the standard Borel are
RT = {p1, p2, p1 + p2. 2p1 + p2 }. For T4, dominants, resp. regular weights are
the A(k, k', t) withk > k' > 0, resp. k > k/ > 0. Dominants, resp. regular, weights
of T, are the A(k, t) with k& > 0, resp. k > 0. The irreducible representation of GIL.,
of highest weight A(k, 1) is the twisted symmetric product Sym*V & det®’ .

Now letk > k’ > Obe two integers and fix a finite dimensional algebraic represen-
tation W* ¥ of GSp, whose restriction .* W** contains the irreducible representation
(Sym*V X Sym* V) @ det®3, that we will simply denote (Sym*V & Sym*' V) (3).
Note that W**" has highest weight A(k, k', 3) hence is unique up to isomorphism.
We will also denote by W* ¥ the lisse étale sheaf over the Siegel threefolds corre-
sponding to Wk according to [19], (1.10). To ¢ is associated a closed embedding,
purely of codimension one

Y(N) xgeey) YIN) — S(N).

in the Siegel modular threefold of level N. Then, the composition of the external
cup-product

HY(Y(N), Sym* V(1)) ® H (Y(N), Sym* V(1))
— HX(Y(N) xg(ty) YN), (Sym*V B Sym*'V)(2))
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of the morphism induced by the inclusion (Sym*V & Symk,V) (2) C FWHRK (-1
and of the Gysin morphism

H2(Y(N) Xy Y(N), WHF (=1)) == HHS(V), WhF)
is a morphism
HY(Y(N), Sym* V(1)) ® H (Y(N), Sym* V(1)) —> H*(S(N), WK,
For any N = 3, we denote by

ENY = 1 (EY o UEK ) € HHS(N)), WFK)

the image of EX /N0 ® E, il 0.1/N under this morphism.
The proof of the followmg proposition is very similar to the one of [10], Propo-
sition 2.3 in the case of GLo.

Proposition 3.2. For every two integers N |N' with the same prime factors the trace
morphism H*(S(N"), WKy — HY(S(N), W*¥') sends EXX' 10 d]%,’N,Elg,k/ where
dy.n' = (N'/N)? is the degree of the étale cover Y(N, N') — Y(N)).

Proof. The Gysin morphism and the trace are induced by the adjunction morphisms
ni' — land fi f* = fi f' — 1 respectively, so by functoriality they commute. As a
consequence it is enough to show that E’l‘/N, o Eé"l/N, is mapped to d]%,’N,E’f/N o

E K 0.1/N under the trace

H2(Y(N') x Y(N'), (Sym*V ® Sym* V)(2))
— HX(Y(N) x Y(N), (Sym*V X Sym* V)(2)).
Denote by p;: Y(N') x Y(N’) — Y(N') the i-th projection. In terms of the usual
cup-product, the external cup product is given by
k
El/N’ o Eo J/NT T P1E1/N’ J Pon J/N
Then, denoting by U the Galois group of fy'n: Y(N') — Y(N), we have

* k
tr(El/N/O L EO 1/Nf) == tr(p1 EI/N" U P2E0 1/Nf)
= Z (o0 x o) (P1E1/Nf Uszo 1/N,)

oxo’eUxU

= Y. loxaVpiEf N Ul x o) p3Eg n)l

oxo’elUxU
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= Y. (PIOTEf N ) U (P30 ES )

oxo’elU xUU
:pl(za EI/NIO))UPZ(ZOJ*EO 1/N’)
ol oecl’

- tr(El/N' o) U tr(Eo 1/N’)

and we are led to show that tr(E’f/N, o) = dN,NfE';‘/N o-
The étale cover fy/n: Y(N') — Y(N) factorsas Y(N') — Y(N,N') — Y(N).
By (3.1) the Galois group of the first cover is

H={(4%)€GLa(Z/N"); a=1(N), b =0(N)}.

Write « = N’/N. As N’ and N have the same prime factors, for any (x, y) €
(Z/oa)2 we can fix an element sx, € GL2(Z/N’) of the form (V% ¥v) with
u=x{@andv = y () and H = {5z (x,y) € (Z/a)*}. Hence the trace map
HY(Y(N'), Sym* V(1)) — HY(Y(N., N), Sym* V(1)) sends E* A

k _ k _ k
Y stnEinoe= 2. EXnisiayie = Eino
(x.3)e(Z/a)? (x.)e(Z/a)?

the first and the second equality follow from Lemma 3.1 (i) and (ii) respectively.
Now consider the second étale cover g: Y(N, N’y — Y(N) factorizing fy’ n.
In H'(Y(N. N}, Sym* V(1)) we have EI/NO — g*E’f/NO hence the trace map

H! (Y(N, N"), Sym* V(1)) — H' (Y(N), Sym* V(1)) sends Ef, , to dnnvEf;y o
]

Now fix an integer N and define

’ 1 ’ ’
gk = ——— EfK e HY(S(Np), WkK)
ni=1 Npi—1 Npi

where dy,i-1 y,i = p* is the degree of the cover Y(Np'™", Np') — Y(Np'™).

gkk gkk

Corollary 3.3. The class o 1 mapped to i1 under the norm map

H*(S(Np"), WKy — H*(S(Np'™Y), wkK),

4. The final result

This section heavily relies on the computations in Section 2.2 of [15]. We wish to
show that our classes define a norm compatible system in the projective limit of Galois
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cohomology groups
limgs1 HY(Q(Ewpr), H (S(Np') @ Q. WHKE))

as predicted by the conjecture of Perrin-Riou. Butletus first recall how the conjecture
of Perrin-Riou associates a p-adic L-function to such a norm compatible system of
Galois cohomology classes: p-adic L-functions live in a certain ring H,, which
we need to introduce first. Let G, = Gal(Q(Epn)/Q) and Goo = 1<i£1nGn. The
cyclotomic character gives an isomorphism k : G > Z;j. Let A be the maximal
finite subgroup of G, then we have the decomposition Goc = A x GL where
Gl =1+ pZ, C Z,. Let u be a topological generator of Gl . The Iwasawa
algebra Z,[[G] is identified with the ring Z,[A][[u — 1]] of formal power series
over the group algebra Z ,[A] in one variable v — 1. For i > 1, let

Hy = {ano,aeA Cn,o0 (U — 1)" € Qp[A][lw — 1]]; limy, |cn,g|pn_"1 =
forallo € A}

where | |, denotes the multiplicative valuation of Q, normalized by |p|, = %. Then
ZplGoo]l CHy CHy C -

Define Ho, = [J;, Hy. Then He is a ring since H; H; C H;; forany i, j > 1.
For any continuous character y of G, we have a ring homomorphism H,, — @,
defined by

Z Cn,oa(u - 1)n —~ Z Cn,UX(U)(X(u) - l)n'

n=>0,0€A n=0,0€A

In the following we consider the usual Fontaine rings Beys C Bgg: recall that they
have a continuous action of Gal(Q, /Q},) and that B,y has a Frobenius ¢ commuting
with the Galois action. Given a p-adic Galois representation M, let Dyp(M) =
(M ® Byg)®Qr/2) and let Derys(M) = (M ® Berys) ¥ (@2/Qp)  We say that M
1s a de Rham representation of Gal(@p /Qp) if dimg, Dyr(M) = dimg, M.

Theorem 4.1 (Perrin-Riou, see [10], Theorem 16.4). Let M be a p-adic represen-
tation of Gal(@p /Qp), ie., a finite dimensional Qp,-vector space endowed with a
continuous Qp-linear action of Gal(@p/(@p). Assume M is de Rham. Let n €
Days(M™(1)) where M™ is the dual Galois representation. Then there exists a
unique homomorphism

Ly LiLnnHl(Qp(é—p”)vM) — Heo

having the following properties for any integer v > 1.
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(1) Letn = 1 and let y: G, — @; be a homomorphism which does not factor
through Gn—1. Then for any x € LiLnnHl (Qp(&pn), M), we have

Ly ) = = DG L) Y x@)loexp™(x—ra)). (27 ) (.

UEGn

Here G(x. {pn) denotes the usual Gauss sum, exp™ denotes the dual exponential map
([10], 9.3), x_, » denotes the image of x under the composite

LiLnnHl(Qp (Epn), M) — LiLnnHl(Qp(gp”)r M(=r)) — H'(Qp (pn), M(=r))

where the first arrow is the product with (({,, ;)8 i>1 and the second arrow is
the canonical projection (so exp™ (x_,.,) is an element of Q({pn) @ Dyp(M(—1)) =
Q(pn) ® Dyr(M)), [, ] is the canonical pairing

(Q(é‘pl) ® DdR(M)) X DcryS(M*(l)) - @p

induced by Dgr(M) X Dgys(M*(1)) — @p and ¢ is the Frobenius.
(2) Assume n = (1 — p~ @) with i € Dyy(M™(1)). Then for any x €
LiLﬂnHl (Qp (Cp”)7 M),

Ly () (k") = (r = Dllexp™ (x—r,0), (1 = p" ¢ D)7'].

According (o this theorem, once the norm compatible system x 1s constructed, one
has the p-adic L-function £, (x) € He. Then the difficult part is to show that this
p-adic L-function interpolates the special values of the usual L-function. This will
be carried over in a forthcoming paper by the explicit computation of the image of our
norm compatible system under the dual exponential, result which is also expected to
yield the non-vanishing of our classes, which is not known for the moment.

In order to obtain first Galois cohomology classes from our elements, we would
like to show that the rank four étale cohomology H*(S(N) ® @, W**'y has no
invariants under the absolute Galois group of Q(Cx ), and then invoke the Hochschild—
Serre spectral sequence. This relies on the following vanishing theorem of Saper: let
G be a connected reductive group over Q, let K be a maximal compact subgroup
of G(R), let Ag be the identity component of a maximal Q-split torus in the center
of G and let I' C G{Q) be an arithmetic subgroup. Write D = G(R)/ K Ag and
X =T\D.

Theorem 4.2 ([20], Theorem 5). Assume X is an arithmetic quotient of a Hermitian
symmetric space of dimension d. Let E be an algebraic irreducible representation
of G with regular highest weight. Then the singular cohomology H'(S, E) with

. . . . d
coefficients in E vanishes fori < 3.



200 F. Lemma CMH

As this theorem is stated for arithmetic quotients of Hermitian symmetric spaces,
let us recall how the Siegel threefolds S(N }(C) are a disjoint union of such: let 4
be Siegel upper half-plane

Hy ={QeMy(O) " Q =2, ImQ > 0}

of complex symmetric matrices of size two whose imaginary part is positive definite.
It is known that € is a Hermitian symmetric space. The symplectic group Sp,(R)
acts transitively on the left on #, via

A B _
(c D).Q:(AQ+B)(CQ+D)1

Let T'(N) = ker(Sp,(Z) — Sp,(Z/NZ}) C Sp,(R). The stabilizer of the matrix
i1> is a maximal compact subgroup of Sp,(R). As the center of Sp, is {4}, note
that 44+ is of the shape D as above. According to [14], Proposition 3.2, we have an
isomorphism of complex analytic varieties

SNH©) = [ TNy

(Z/NZ)*

We also have a similar statement for the modular curves Y (N} when the Siegel upper
half-space is replaced by the Poincaré upper half-space.

The proof of the following Proposition 4.4 also relies on the main theorem of [19]
that we are going to explain now in the needed particular case of GSp,.

4.1. Higher direct images of p-adic sheaves in the Baily—-Borel compactification.
The boundary of the Baily—Borel compactification of a Shimura variety associated
to a group G is stratified by (finite quotients of) Shimura varieties associated to the
Levi subgroups of G. The main result of [19], that is stated at the end of this section,
describes the restriction to a stratum of the higher direct image in the Baily—Borel
compactification of the p-adic ¢tale sheaf associated to an algebraic representation
of G.

Let us first describe the construction of the Baily—Borel compactification of
the Siegel threefolds. We will need the notion of pure and mixed Shimura da-
tum for which we refer the reader to [18], 2. Consider the pure Shimura datum
(GSp,, GSp,(R)/ Koo ) associated to the symplectic group GSp,. For every maximal
parabolic subgroup Q C GSp, there exists a normal subgroup 1 C @ underly-
ing a mixed Shimura datum (P, X1) (Jloc. cit.], 4.11), called a rational boundary
component of (GSp,, GSp,(R)/K). Let W; be the unipotent radical of P; and
let g: Py — G = P/ Wj be the projection on the Levi. Denote by (Gq, ;) the
quotient pure Shimura datum (P, X1}/ Wi ([loc. cit.], Proposition 2.9). There are
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two conjugacy classes of maximal parabolic subgroups of GSp,, namely the ones of

0° =W % (G xGly) = {(AM), ¢ € G, A€GLy, "M =M}, (A1)

o & %k %k
O = Wl % (GLy x G,,) = {(83; {;) e GSp,. aff :ad—bc}. 4.2)
0Oc xd

We also have, with obvious notations PY = W x G, GY = G,, and P} =
W1 % GL,y, G = GL, according to [loc. cit.], 4.25.
Let H* = ]_[( P..%;) J€1, the sum running over all rational boundary components
of (GSp,, GSp,(R)/ K ). We endow H* with the Satake topology ([loc. cit.], 6.2).
Let
S(N)*(C) = GSp, (Q\(H™ x GSp,(As)/K(N)).

Then S(N)*(C) is the analytification of a normal projective Q({n )-scheme S(N)*
([loc. cit.], 8.2). There is an open embedding S(N )(C) — S(N)*(C) which descends
to an open embedding

j:S(N)— S(N)™.

Forn = 0,1 and every g € GSp,(As) let K = gKg™' N PI"(Ay) and
IS(N)(C) = GT@Q@N Y x GY(Ar)/q(KT)).
By [loc. cit.], Section 12.3 (b), the map dS(N ), (C) — S(Ny*(C) descends to
in: 0S(N)y — S(N)™.

Varying n and g we obtain a stratification of the boundary dS(N) = S(N)* — S(N)
by locally closed subschemes. For what follows, note that dS{N ), is of dimension 7.

Theorem 4.3 ([ 19], Theorem 4.2.1). Denote by u the canonical construction of étale
sheaves associated to representations of the group underlying a given Shimura variety
(lloc. cir.], 1.10). Forn = 0, | there exists an arithmetic subgroup Hc C Q" /P{'(Q)
such that

s R™ jup WKy = @ p(HP (He HO (W™ WFK )
prg=m

Remark. In the proof of the following proposition we will quote the results of [15]
where the computations are realized in the framework of mixed Hodge modules,
rather than in the one of étale sheaves. There, Theorem 4.3 is replaced by the anal-
ogous theorem of Burgos—Wildeshaus (see [loc. cit.], Theorem 2.1). The result is
exactly the same but on one shift that occurs in the graduation of the higher direct
images due to the perverse t-structure: for example, as dS{N )g, resp. dS(N )4, is of
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codimension three, resp. two, in S(N)*, the higher direct image i R™ j u(WhE,
resp. i} R™ Je(WEEy in the framework of mixed Hodge modules corresponds to
the higher direct image i R™+3 j, i (WFK'Y, resp. i¥ R™2 j, (W), in our étale
setting.

4.2. The weight computation

Proposition 4.4. Assume k > k' > 0. Then the étale cohomology space H*(S(N) ®

Q. W K'Y has no weight zero. As a conse uence, it has no invariants under the action
4 q
of the absolute Galois group of Q({n).

Proof. Let |
S(N) L5 S(N)* < a8(N)

be the open embedding of SV ) into its Baily—Borel compactification and the reduced
closed imbedding of the boundary. We have an exact sequence of Galois modules

HA(S(N) ® Q, WKF) — HY(S(N) @ Q, WrK)
— H*(OS(N) ® Q,i*Rj Wr¥).

With our assumption on the weight & > &’ > 0, we can apply Theorem 4.2, which,
together with Poincaré duality and the comparison theorem between étale and singular
cohomology, shows the vanishing of the space H* (S(N) ® Q, W*¥'), So itis enough
to show that H*(3S(N) ® Q, i* Rj. W¥**"y has no weight zero. Now let

IS(N)| —> 3S(N) < 3S(N)o

be the open embedding of the strata of dimension one and the reduced closed embed-
ding of the strata of dimension zero respectively in the boundary. We have an exact
sequence of (Galois modules

H*(3S(N); ® Q.iFi*Rj, WFKKY — H*(3S(N) @ Q.i* Rj WKy
> H*(3S(N)o ® Q. ifi*Rj W*¥),

On the one hand, because dS{N ) is of dimension zero we have
H*(IS(N Yo ® Q. i i* Rj W Ky = HO(9S(N)o ® Q. ifi* R* j WK

which has weight > 0 according to [15], Lemma 2.5. On the other hand, we have the
spectral sequence

EDY = HZ(9S(N ) ®Q. i7i* R WFK') = HPTI@S(N)1®Q, ifi* Rju WFF),
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Now Theorem 4.3 and LLemma 2.6 in [15] show that

iFi*ROj W = i  R3j WK = Sym* v (3),

KR WHRK = i R2j WEK = SymF v (3).
Recall that dS(N); is a disjoint union of modular curves. The fact that dS(N ),
18 a non proper curve together with theorem 4.2 imply that the lisse étale sheaves

above have cohomology concentrated in degree one. As a consequence our spectral
sequence gives that

HY(3S(N)1 ® Q. ifi* RjaW5Fy = HL(BS(N)1 ® Q. iFi* R? j,WFK)
= H(BS(N)1 ® Q. Sym* v (3)).

The lisse sheaf V has weight —1, so the sheaf Sym V(3) has weight —k" — 6 and
the étale cohomology space H! (3S(N)1 ® Q, Sym V(3)) has weight smaller than
—k’—6+ 1 hence hasno Welght zero. Asaconsequence H*(9S(N)Q Q. i * Rj W k7
has no weight zero and the proof is complete. O

Corollary 4.5. Assume k > k' > 0. Then we have a canonical isomorphism
H (Q(¢n). H} (S(N) ® Q, WEK)y = H*(S(N), WKFK).

Proof. Considering continuous Galois cohomology, we have the Hochschild—Serre
spectral sequence
EL? = HP(QUon), HI(S(N) © Q. WHH)) = HPH(S(N), WFF)

([9], Corollary 3.4). By Theorem 4.2 and the comparison isomorphism between €tale
and singular cohomology, we have H/(S(N) ® Q, WkK'y = 0 for ¢ < 3. Hence
ES? = 0forg < 3. As a consequence

E2* =ker(d : HY(Q(¢n), H* (S(N) ® Q, WEEy)
— H2(Q(¢n). H3(S(N) ® Q, WrKyy)

and EL? = E}?. But Proposition 4.4 asserts that H*(S(N) ® Q. W**’) has no
weight zero. As a consequence 2 g54 = (} and we have a canonical isomorphism

HY(Q(¢w), H3 (S(V) ® Q, WEKy = HY(S(WV), Wk, O

From Corollary 3.3 and Corollary 4.5 we can now deduce the main result of this
paper.

Proposition 4.6. Let N > 1 be an integer. Assume k > k' > 0. Then we have a
norm compatible system

(Expe) € lime1 H (QUnp) HI (S(Np') © Q. WK,
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