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Uniformly hyperbolic finite-valued SL(2, R)-cocycles

Artur Avila, Jairo Bochi, and Jean-Christophe Yoccoz

Abstract. We consider finite families of SL(2,R) matrices whose products display uniform
exponential growth. These form open subsets of (SL{2, R}V, and we study their components,
boundary, and complement. We also consider the more general situation where the allowed
products of matrices satisfy a Markovian rule.
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1. Introduction

Letw: E — X bea vector bundle over a compact metric space X andlet f: X — X
be a homeomorphism defining a dynamical systems in X. A linear cocycle mover
f is a vector bundle map F: E — E which is fibered over . The most important
example occurs when X us a manifold, f is a diffeomorphism, E is the tangent
bundle TX, and F is the tangent map 7. But it is very profitable to consider larger
classes of linear cocycles, allowing in particular to separate the base dynamics from
the fiber dynamics.

The most powerful tool in the study of linear cocycles is Oseledets’ Multiplicative
Ergodic Theorem; see e.g. [1]. Given a probability measure on X which is invariant
and ergodic under the basic dynamics [, it allows to define Lyapunov exponents and
split accordingly the fiber £, over almost all points of x. In this context, one says
that 7 1s hyperbolic if none of the Lyapunov exponents is equal to zero.

There 1s a stronger notion of hyperbolicity, called uniform hyperbolicity, which
18 of purely topological nature. One requires that £ splits into a continuous direct
sum E° @ E¥, with both E*, EY invariant under F, E°® being contracted under F
and E¥ contracted under F~! (after suitable choices of norms on E).

The easiest non-commutative setting, and one of the most studied, is when £ =
X x R? is trivial and 2-dimensional, and F comes from a continuous map 4: X —
SL(2,R). In this case, one is led to consider the products

A x) . AR forn > 0,

A" ) 1. A %)™ forn < 0. (L

A" (x) = {
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The case where X is atorus and f is anirrational rotation has attracted a lot of attention
in recent years, in particular in connection with the spectral properties of 1-d discrete
Schridinger operators with quasiperiodic potential: see for instance [7], [8], [9] and
references therein. The values of the spectral parameter (energy) corresponding to
uniform hyperbolicity are those 1n the resolvent, and the Lyapunov exponent is the
main tool to study the spectrum.

The case where the base dynamics are chaotic is obviously also important. Starting
from the fundamental work of Furstenberg [10], control of Lyapunov exponents has
been obtained in several more general settings: see [12], [11], [5], [6].

In this work, we will consider, after [13], SL.(2, R)-valued cocycles over chaotic
base dynamics from the point of view of uniform hyperbolicity. More precisely, N
will be an integer bigger than 1, and the base X = X C NZ will be a transitive
subshift of finite type (also called topological Markov chain), equipped with the
shift map o: X — 2. We will only consider cocycles defines by a map A: ¥ —
SL(2,R) depending only on the letter in position zero. The parameter space will be
therefore the product (SL(2, R))¥. The parameters (A1, ..., Ay ) which correspond
to a uniformly hyperbolic cocycle form an open set # which is the object of our
study: we would like to describe its boundary, its connected components, and its
complement. Roughly speaking, we will see that this goal is attained for the full shift
on two symbols, and that new phenomena appear with at least 3 symbols which make
such a complete description much more difficult and complicated.

Let us now review the contents of the following sections.

Associated toa SL(2, R)-valued cocycle A: X — SL(2,R)overabase f: X —
X, we have a fibered map A: X x P! — X x P!. The standard cone criterion says
that A is uniformly hyperbolic iff one can find an open interval 7(x) C P! depending
continuously on x such that A(x){(x) is compactly contained in /( f(x)) for all
x € X. Inour setting, A depends only on the zero coordinate xg of x € X and we
would like for /{x) to do the same. This is in general not possible but nevertheless
a result in this direction exists if one allows several components for 7(x), leading to
the notion of multicone. In the full shift case the result is as follows:

Theorem (Theorem 2.2). A parameter (A1, ..., An) is uniformly hyperbolic (over
the full shift NZ) iff there exists a non-empty open set M # P with finitely many
components having disjoint closures which satisfies AuM C M forl <o < N.

There is a similar statement (Theorem 2.3) for general subshifts of finite type.

Section 3 is dedicated to the case where X is the full shift on two symbols. We
have a rather complete understanding of the hyperbolicity locus #€ in this case. The
simplest components of J€ are the 4 principal components; they consist of parameters
for which the multicone M in Theorem 2.2 is connected and are deduced from each
other by change of signs of the matrices. Next there are the so-called free compo-
nents of J (8 of them), consisting of parameters for which the multicone has two
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components. All the other non-principal components of # are obtained by taking
the preimage of one of the free components by a diffeomorphism of (SL(2,R))?
belonging to the free monoid generated by

F.(A,B) = (A,AB), F_(A,B)= (BA,B).

Moreover, any two distinct components of # have disjoint closures, and any compact
set in parameter space meets only finitely many components of 4. In Subsection 3.8,
the combinatorics and dynamics of the multicones are described for each component
of .

Recall that a matrix 4 € SL(2, R) is said to be hyperbolic (resp. parabolic, resp.
elliptic) if | tr A| > 2 (resp. |tr A| = 2, resp. |tr A| < 2). Denote by &€ the set of
parameters for which there exists a periodic point x € X (of period k) such that
AF (x) is elliptic. Obviously, € is an open set disjoint from #. Avila has proved that
for a general subshift of finite type, the closure of & is equal to the complement of
J€. When X is the full shift on two symbols, we prove the stronger statement that &
and 4 have the same boundary, the complement of their union.

The main result of Section 4 is the following result (for general subshifts of finite

type):

Theorem (Theorem 4.1). Let (Ay, ..., An) belong to the boundary of a component
of H. Then one of the following possibilities hold:

« There exists a periodic point x of T, of period k, such that A*(x) is parabolic.

» There exist periodic points x, v of X, of respective periods k, £, an integern > 0,
and a point z € W (x) N o "W .(y) such that AX(x), AY(y) are hyperbolic
and

A"(2)u (A (x)) = s(A%(y)).

We denote here by u(A) or uy (resp. s{A4) or 54 ) the unstable (resp. stable) direction
of a hyperbolic matrix A. (When A is parabolic and A # +id, we still write 14 = 54
for the unique invariant direction.) The second case in the statement of the theorem
is called a heteroclinic connection. The integers k, £, n occurring in Theorem 4.1 are
actually bounded by a constant depending only on the component of # considered
n the statement. It follows easily that:

Corollary (Corollary 4.5). Every connected component of ¥ is a semialgebraic set.

In the full-shift case, for parameters on the boundary of non-principal components,
no product of the matrices can be equal to 1d. The result we prove in Subsection 4.2,
together with similar results, is actually stronger.

In Subsections 4.5-4.7, we investigate what happens along parameter families
going through a heteroclinic connection. Starting with a single component of
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(for the full shift on 3 symbols), it may happen that the complement of # U & is
locally a smooth hypersurface; butit may also happen that the boundary of the starting
component is accumulated by a sequence of distinct components of F.

In Section 5, we consider from a purely combinatorial point of view the dynamics
on the components of the multicones for positive and negative iteration: this leads to
the concept of combinatorial multicones and monotone correspondences. Necessary
conditions on these objects to come from a matrix realization are introduced. It is
shown that these conditions are also sufficient in the case of the full-shift on two
symbols. An example is provided to show that the conditions are no longer sufficient
for full-shifts with more symbols.

Except for the case of the full-shift on two symbols, many questions are still open
and are discussed in Section 6.

In Annex A.1, a criterium characterizing relative compactness modulo conjugacy
in parameter space is proved: r A; and (r A; A; have to stay bounded.

There is one part of the study of the components of the hyperbolicity locus # which
is only briefly mentioned in this paper, and deserves further work: this is the group
vs monoid question. In the full shift case, a parameter (Ay, ..., Ay ) is hyperbolic if
and only if matrices in the monoid generated by A4, ..., Ay grow exponentially with
word length. For certain components of #€, but not all, it actually implies that the
matrices in the (free) group generated by Ay, ..., Ay grow exponentially with word
length. For instance, for the full-shift on two symbols, this 1s true for non-principal
components, but not true for principal components. In a further paper we plan to
characterize which components have this property for the full-shift on 3 or more
symbols.

Acknowledgements. During the long preparation of this paper, we benefited from
support from CNPq (Brazil), CAPES (Brazil), CNRS (France), the Franco—Brazilian
cooperation agreement in Mathematics. This research was partially conducted during
the period A.A. served as a Clay Research Fellow. J. B. is partially supported by a
CNPq research grant. We thank Paula Porto for helping us with the figures.

2. Multicones

We recall the following result from [13], that says that uniform exponential growth
of the products in (1) guarantees uniform hyperbolicity:

Proposition 2.1. If f: X — X is a homeomorphism of a compact space and
A: X — SL(2,R) is a continuous map, then the cocycle (T, A) is uniformly hy-
perbolic iff there exist ¢ > 0 and A > 1 such that ||A"(x)|| = cA" for all x € %,
n > 0.
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As explained in the Introduction, we consider a general transitive subshift of finite
type ¥ C NZ, where N > 2. This means that there is a N x N matrix (&; ;) of zeros
and ones so that X is formed by the sequences (x; );ez so thatex; ;| = 1 foreveryi,
and the shift transformation restricted to X is transitive.

Given Ay, Az, ..., Ay € SL(2,R), we consider the map (x;)jez € X+ Ay, €
SL(2,R). If the associated cocycle is uniformly hyperbolic then we say that the
N-tuple (Ay, ..., An) is uniformly hyperbolic with respect to the subshift %.

If A € SL(2,R), we also indicate by A the induced map P! — P!, where P! is
the projective space of R2,

Next we describe a geometric condition which 1s equivalent to uniform hyperbol-
icity of a N-tuple. Let us begin with full shifts:

Theorem 2.2. An N-tuple (Aq, ..., Ay) is uniformly hyperbolic w.r.t. the full shift
Y = NZ iff there exists a nonempty open subset M C P with M # P such that'
Ag(M) @ M foreverya € {1,..., N}. We can take M with finitely many connected
components, and those components with disjoint closures.”

A set M satisfying all the conditions in the theorem is called a multicone for (Ay).

Now let X be any subshift of finite type. If « and 8 are symbols in the alphabet
{1,..., N}, we write ¢ — B to indicate that the symbol « can be followed by the
symbol B. The generalization of Theorem 2.2 is:

Theorem 2.3. An N-tuple (A1, ..., An) is uniformly hyperbolic w.r.t. X iff there are
non-empty open sets My, C P, one for each symbol o, with M, # P, and such
that

o — B implies Ag(My) € Mpg.

We can take each M, with finitely many connected components, and those components
with disjoint closures.

A family of sets (M) satisfying all the conditions in the theorem is called a family
of multicones for the N -tuple (Ay).

For any subshift of finite type £ C NZ, we can define the dual subshift £* < NZ
as follows: if &« — B are the allowed transitions for X, then the allowed transitions
for X* are § > «. If (Ay) is a uniformly hyperbolic N -tuple w.r.t. X, with a family
of multicones (M), then the N -tuple (A}!) is uniformly hyperbolic w.r.t. £*, with
family of multicones (M) = (P! ~ A1 (M,)).

1X € Y means that the closure X of X is contained in the interior of ¥.

2Added in proof: After this paper was completed, Bochi and Gourmelon [3] obtained generalizations of
Proposition 2.1 and Theorem 2.2 to arbitrary dimension, replacing uniform hyperbolicity by the existence of a
dominated splitting.
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Let us see that Theorem 2.2 is a corollary of Theorem 2.3: If (A, ) is uniformly
hyperbolic, and M,,’s are given by Theorem 2.3, let M = | J, M. Since AM C
M, # P! we have M # P!. Conversely, given a multicone M we simply take
My, = M for all «.

2.1. Examples. Let X = NZ be the full shift on N symbols. If the matrices A1, ...,
Ay have a common strictly invariant interval, then by Theorem 2.2 (Ay, ..., Ay) 1S
uniformly hyperbolic. Consider the set of such N-tuples; its connected components
are the principal components of the hyperbolic locus #€. By Proposition 3 from [13],
such a component must contain some N -tuple of the form (£ A, ..., =A.), where
tr A« > 2. Hence there are 2%V principal components.

Let ¥ = 27 be the full shift on 2 symbols. For any m > 2, let us show that there
is a uniformly hyperbolic pair (A, B) which has a multicone M with m components,

but no multicone with m — 1 components. Take any hyperbolic matrix A. Choose u,
s € P! such that

s <u <A™ 2y <s <A™ < uy < sy

(for some cyclical order on the circle P 1y, Take a hyperbolic matrix B withup = u,
sp = s. If the spectral radius of B is large enough, it is easy to see that (A, B) has a
multicone M with m components containing respectively the points ug, A(ug), ...,
A™ 2(up), uy. Figure 1 illustrates the case m = 4.

Figure 1. Example of a uniformly hyperbolic pair (A, B} and amulticone. Outer arrows indicate
the action of 4 and B in the components of the multicone. Inner arrows indicate stable and
unstable directions of A, B, and some of their products.
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The examples just described do not exhaust the possibilities for the full 2-shift.
See Figure 2 for a more complicate example. We postpone the description of this and
all other possible examples for ¥ = 2% to Section 3.

Figure 2. Another example of a uniformly hyperbolic pair (A4, B).

Some examples of uniformly hyperbolic 3-tuples are indicated in Figure 3.

Figure 3. Two examples of uniformly hyperbolic 3-tuples (A4, B, C).

An example illustrating the situation of Theorem 2.3, is indicated in Figure 4.
(For another example, see §3.3, especially Figure 5.)
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M3

Figure 4. An example of a 3-tuple (A1, A», A3) that is uniformly hyperbolic with respect to the
subshift on the symbols 1, 2, 3 whose only forbidden transitions are | — 2,2 — 3, and 3 — 1.
The intervals M1, M>, M3 form a family of multicones.

2.2. Proof of the ““if*’ part of Theorem 2.3. Let us first establish some notation to
be used from now on:

Given an ordered basis B = {vy, vp} of R2, we define a bijection Pg: Pl —
R U{oc} by P5'(r) = vy +tva, Pg'(00) = v,. The map Pg is called a projective
chart.

If a, b, ¢, d are four distinct points in the extended real line R U {oc} then we
define their cross-ratio

c—a d-—»~h
b—a d—c

If x, v, z, w are distinct points in the circle P!, we take any projective chart
P: P! - R U {oo} and define the cross-ratio

[x,y.z,w] = [P(x), P(y), P(z), P(w)].

The definition is good because (2) is invariant under Mobius transformations. Of
course, for any A € SL(2,R) we have [x, y,z, w] = [A(x), A(y), A(z), A(w)].
Aset I C P!is called an open interval if it is non-empty, open, connected, and its
complement contains more than one point. A set I C P! is called a closed interval
if either it consists of one point or is the complement of an open interval.
An open interval I can be endowed with the Hilbert metric dy, defined as follows:
If a, b are the endpoints of I then

[ty &, | = e R. (2)

dr(x,y) = |10g[a,x,y,b]| for all distinct x, y € 1.

Recall the following properties of the Hilbert metric: If A € SL(2, R) satisfies
A(I) = J then A takes dy to dy. If J & I are open intervals then the metric of J
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is greater than the metric of /. If, in addition, J &€ [ then the metric of J is greater
than the metric of I by a factor at least A(Z, J) > 1.

Proof of the “if” part of Theorem 2.3. For each symbol «, let d,, be the Riemannian
metric on M, which coincides with the Hilbert metric in each of its components. Let
K be the closure of the union of the sets A, My, where y — «. We can assume that
K, intersects each connected component of M, because otherwise we can take a
smaller M. Let Ly, @ M, be an open set containing K, and with the same number of
connected components as M. Then each component M, ; of My contains a unique
component L, ; of L. Let A = ming ; A(My i, Lgi).

Take an admissible sequence of symbols ¢g — o1 — -+ — o, and let A =
Ay, ... Ag,. It u, v belong to the same component of M, then

n

dy, (Au, Av) < A7"dy, (u, v).

The metrics dy| L, are comparable to the Euclidean metric d on P, Soif u, v belong
to the same component of Ly, we get d(Au, Av) < CA™"d(u,v), where C > 0 is
some constant. This in turn implies that ||A|| > C~1/21%/2_ By Proposition 2.1, we
are done. [l

2.3. Proof of the “only if”” part of Theorem 2.3. Assume the cocycle associated to
(A1,..., Ay)isuniformly hyperbolic. This means that there are continuous functions
e, e¥: ¥ — P! and constants C > 0, A > 1 such that forall x € X:

A(x)e*(x) = e*(ox);,  ||A"(x)v|| < CAT"*||v]| forallv € ¢*(x) and n > 0;
A(x)e"(x) = e"(ox); ||A " (x)v]| < CA™"||v|| forallv € ¢¥(x)and n > 0.

Moreover, e* (x) and e (x) are uniquely determined by those properties, and e¥ (x) #
e’ (x)foreveryx € . Thus, forx = (x;)iecz, e (x)dependsonlyon (..., x_2,x_1),
while ¢® (x) depends only on (xg, x1,...). (Thatis, e¥, resp. e®, is constant on local
unstable, resp. stable, manifolds.)

If « is a symbol, we define the following two compact sets:

K ={e"(x); xo1 = o}, K, ={e’(x); xo = «}.
Notice that if ¢ — f then K} N K;; = @&. Also,
Kj= |J Apki and Kj= | ) AJ'K}.
a; a—f B:a—B

So Kl N A K, = &.
Let us now define two families of sets U, and S, called the unstable and stable
families of cores of (Aq, ..., Ay) as follows:
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* U, is the complement of the union of the connected components of P!~ K¥
that intersect Ay KJ;

s S, is the complement of the union of the connected components of P! ~ K$
that intersect A, 1KY,

It is straightforward to check that the families of cores satisty the following prop-
erties:

(1) Uy, Sy are non-empty compact sets with finitely many connected components;
(i) Uy N AySy = 7;

(iii) every connected component of P~ A, Sy, resp. P~ A7, U, contains a unique
connected component of Uy, resp. Sy

(v) Up> | ) ApUsand Sy > ) A7'Ss.

a,a—pf B:a—A
It follows from these conditions that each U, has the same number & () of connected
components as Sy. We define the rank of the families as the integer ) |, k(c).

Lemma 2.4. Let (A1,..., Ay) € SL(2,R)N. Assume that there exist two families
of sets Uy and Sy (where o runs on the symbols) satisfying properties (1)—iv) above,
and with rank no. Assume also that for every periodic point x € X of periodn < ny,
the corresponding matrix product A" (x) is not £id. Then (A1, ..., Ay) has a family
of multicones (My). Moreover, U, C M, € P!~ A,S,, and each connected
component of P! ~ A, S, contains a unique connected component of My,

Clearly, Lemma 2.4 implies the “only if” part of Theorem 2.3. The reason why we
stated LLemma 2.4 in this generality is that it gives a criterion for uniform hyperbolicity
which will be useful in some other occasions.

Proof of Lemma 2.4. Let V, = P!~ A,S,. Write each V, as a disjoint union
of open intervals V1 U -+ U Vg ko), and write Uy = Uy U -+ U Uy (o) With
Un,i = Uy N Vi

Define a Riemannian metric d, on Vy by taking on each component of V, the
corresponding Hilbert metric. For ¢ > 0, let U, ;(g) denote an e-neighborhood of
Uy, with respect to dy. Alsolet Uy (g) = Uf‘i“l) Uy,i (¢). Notice that if « — § then
Ap - Vo C Vg and hence Ag - Uy(e) C Up(e).

Let x € X besuchthat x_; = x,—1 = a forsome n with 1 < rn < ng. Assume
that A" (x) - Vi C V4,i for some i (or, equivalently, A" (x) - Uy,; C Uy,;). We claim
that then A" (x) - Uy,i(e) € Uy,i(e), for any ¢ > 0. Indeed, the matrix B = A" (x)
18 not +1d, by assumption, nor elliptic, because it leaves the mterval V,; invariant.
Therefore u(B) and s(B) are defined. We have u(B) € Uy, and s(B) ¢ Vau,,
s0 s(B) ¢ Uy, (e). Therefore B is hyperbolic and its restriction to U, ; () strictly
contracts the metric dy,. This proves the claim.
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From now on fix some arbitrary ¢’ > 0. By compactness, there exists a positive
g < ¢ suchthatif x € Xand 1 < n < ng are such that x_; = x,_; = « and
A" (x) - Vi C Vo, for some o and 7, then A" (x) - Uy i {e") C Uy i(e”).

Forn = 0, let

Upey= | A"(x)-Us_ (o).

XEX; Xy =0

Notice that Uy (§) C Uy () if § < & and k > n, and also that Ag Uy (¢) C Uy ™1 ()
ifo — f.

We claim that U, ° (¢') C Uy, (") for any «. Indeed, take x € X with x,,_y = «
and v € Uy | (¢'). By the definition of the rank n¢, there exist 0 < k < £ < ng such
that xg_; = x¢—; and moreover A¥ (x)-vand Al (x)-v belong to the same connected
component of Uy, (&), say Uy, ,.i(¢"). Then

Afx) v e AR (oFx) Uy, L i(e) C Uy, ile)),

and so A" (x) - v € U, (¢"), proving the claim.
At last, take a sequence ¢’ = gp < &) < -+- < g,y = & and let

no—1

M, = U U£(8n+1)7
n=0

for each a. If « — S then

no—1 no—1

ApMy C | ) U™ (enr) € | Ug(en) € Mp.

n=0 n=0

So the family of sets M, has the required properties. [

2.4. The case of full shifts. Here we will give some additional information about
multicones in the specific case of the full shift X = N Z  which interests us most.
In that case, a characterization of uniform hyperbolicity becomes simpler, involving
a single multicone (cf. Theorem 2.2), instead of a family of multicones (cf. Theo-
rem 2.3).

2.4.1. Multicones. Given a uniformly hyperbolic N-tuple (Aq,..., Ay), let e¥,
et NZ — P! be the same maps as in §2.3, and let K%, K* C P! be their
respective images. Notice that these sets are disjoint, K* = |, A¢(K¥), and
K =, A, 1 (K?).
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These sets relate with multicones in the following way: If M is any multicone for
(A1,..., Ay) then

K”:ﬁ U Aiy .. A (M), KS:(O'O) U (A - Ay) T (P~ M).

n=0 ll,,ln n=0 ll,,ln

The proof 18 left to the reader.
Another fact that 1s worth to mention 1s:

Proposition 2.5. Assume that M is a multicone for a uniformly hyperbolic N -tuple
(A1,...,Ayn). Then there exists k such that every product of A;’s of length > k
sends M into a single connected component of M.

Proof TFix amulticone M for (A;...., Ay). Wehave K* C M and K* C P1~ M.
In particular, there is & > O such that the 2e-neighborhood of K* (resp. K*) is
contained in M (resp. P!~ M). Thereis ¢ = c(g) > 1 such thatif B € SL(2,R) is
hyperbolic, the distance between up and sp is at least 4¢, and || B|| > ¢ then B sends
the complement of the e-neighborhood of sp into the e-neighborhood of up. Let k
be such that every product of A4;’s of length > & has norm at least c. Then we are
done. O

2.4.2. Cores. As already mentioned, Theorem 2.2 is a corollary of Theorem 2.3.
Nevertheless, it is worthwhile to see how the proof in §2.3 could be simplified.
Given the hyperbolic N-tuple (A;...., Ay), let K¥, K* c P! be as above.
Define other sets U and S as follows:
» U is the complement of the union of the connected components of P! ~ K* that
intersect K°;
« S is the complement of the union of the connected components of P! ~ K* that
intersect K*.

The set U, resp. S, is called the unstable, resp. stable, core of (A, ..., An). The
following properties are easily checked:

(1) U, S are non-emply compact sets with finitely many components;

(ii) U and S are disjoint, and moreover each connected component of P! ~ S, resp.

P! < U, contains a unique connected component of U, resp. S;

(iiiy A;(U) C U and A;'(S) C S for every symbol .
It follows from these conditions that the sets U/ and S have the same number of
connected components; call this number the rank of the sets.

Remark 2.6. The relation between the cores U, S and the families of cores Uy, S,
considered before is simple: P! ~ U is the union of the connected components of
P! ~ | U, that meet | J S, and analogously for S. In particular, U contains |_J U,
and that oU is contained in ] U,
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The following is a criterium for uniform hyperbolicity (specific for the full shift):

Lemma 2.7. Let (A;, ..., Ay) € SL(2,R)N. Assume that there exist sets U, S C
P! satisfying properties (i)(iii) above. Assume also that for every string of A;’s of
length less of equal to the rank of the sets, the product is different from id. Then
(A1, ..., An) has a multicone M. Moreover, U C M & P! ~ S, each connected
component of P ~ S contains a unique connected component of M.

The proof of Lemma 2.7 is merely a simplification of the proof of Lemma 2.4,
and will be left to the reader. Of course, using Lemma 2.7 one can give a direct proof
of the “only if” part of Theorem 2.2.

2.4.3. Tightness. A multicone M for the N-tuple (A1, ... Ay) will be called right
if the following two conditions hold:

« theset | J; 4; (M) intersects every connected component of M ;
» theset | J; A7 (P! ~ M) intersects every connected component of P!~ M.

(Notice that no condition implies the other.)
Tightness has a simple reformulation in terms of the cores:

Proposition 2.8. A multicone M is tight iff every connected component of M contains
a unique connected component of U and every connected component of P! ~ M
contains a unique connected component of S.

Proof. Fixed a uniformly hyperbolic N -tuple, let K*, K*, U, S be as before. Let M
be a multicone, and let M* = P1 < M.

First, let us prove the “if” part: Assume every connected component of M (resp.
M*) intersects U (resp. S). Since K* C U, each component of M intersects K*.
Now, each point in K™ is the image of another point in K* (and hence in M ) by some
A;. So each component of M intersects some A; (M). With a symmetric argument
for M™* and S we conclude that M is tight.

Now let us prove the “only if” part of the proposition. Assume that the multicone
M is tight. To conclude, it is sufficient to show that every connected component of
M intersects K*, and that every connected component of M * intersects K*. In fact,
by symmetry, we only need to prove the first claim.

Fix a connected component of M, say, M. By the first condition in the definition
of tightness, there exists a connected component My of M such that A; (M) C My
for some 77. Continuing by induction, define components M, and indices i, for all
n > 1sothat A;, , ,(My+1) C M. The number of connected components is finite,
so let k > 1 be the least index such that My = M, for some £ < k. The interval
M, is forward-invariant by 4;,, ... A;_, A;;, 80 it contains the unstable direction
of that product. So M intersects K*. The interval My contains A;, A;, ... A;, (M),
hence it intersects K* as well. This concludes the proof. m
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Remark 2.9. It follows from Proposition 2.8 that a multicone for a uniformly hyper-
bolic N-tuple (Aq, ..., Ax) is tight iff there is no multicone with a smaller number
of connected components.

3. The full 2-shift case

3.1. Statements. Before going into other general results, we study the simplest case:
the full shift on two symbols. Soin this section welet & = 2Z andlet # C SL(2,R)?
denote the associated hyperbolicity locus.

By definition, a connected component of J is called principal if every pair in it
has a multicone consisting of a single interval. Recall from §2.1 that there are four
such components. Let Hy indicate their union.

The next simplest case is when a tight multicone consists on two intervals. So
let Hy C SL(2,R)? denote the (open) set of pairs (4, B) that do not belong to a
principal component, and have a multicone M which is a union of two intervals.

(See Figure 5 for an example of (4, B) € Hyq; M = I, U I, is a multicone.)

In fact (see Proposition 3.4), we have

Hiy = {(A, B) e SL2,R)?*; [w A| > 2, |[w B| > 2,
|tr AB| > 2, r At Bir AB < 0},

and moreover, ;3 has eight connected components. Let us call these as the free
components of #.

Define mappings Fy, F_: SL(2,R)? — SL(2,R)? by
Fi(A,B)= (A4, AB) and F_(A,B)= (BA,B).

These are diffeomorphisms of SL(2, R)?. Let M be the monoid® generated by F
and F_.

Theorem 3.1 (Connected components of #). Every connected component of J is
one of the following:

» cither a principal component;
» or F7Y(H) for some free component H C Hyy C # and some F € M.

Moreover, such components are distinct.

Theorem 3.2 (Boundary of #). A compact subset of SL(2, R)? intersects only finitely
many components of Jt.

The boundary of ¥ is the disjoint union of the boundaries of its components.
Morveover, if (A, B) € 0 then (at least) one of the following holds:

3semigroup with identity
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(1) there is a product of A’s and B’s which is parabolic; or
(1) uy = sp orup = s4.

The second possibility can only occur if (A, B) belongs to the boundary of a principal
component.

Let & C SL(2,R)? be the set of pairs (A, B) such that there exists a product of
A’s and B’s which is elliptic. Of course, € is an open set, disjoint from J. In fact,
& is the complement of J¢, as a consequence of the following result:

Theorem 3.3 (Relation between # and €). dH# = d&€ = (H U €)°.

We are also able to give a precise description of the multicones for all components
of #, see §3.8.

The results above answer all questions of [13] for the full 2-shift. (Namely, the
answers are 1: yes, 1’: no, 2: no, 3, 3', 4: yes.) The solution of Problem 1 can also
be given using the description of §3.8.

The proofs of Theorems 3.1, 3.2, and 3.3 occupy the following subsections.

3.2. Plan of proof. First, let us prove the assertions already made about Hiq4:

Proposition 3.4. We have

Hy = {(A,B) e SL2,R)*; |r A| > 2, |uw B| > 2,

3
|tr AB| > 2, tr Atr Btr AB < 0}. ©)

The set Hyq has eight connected components, and these components have disjoint
boundaries.
The subset of Hiq given by

{(A,B); wA>2,0B>2,tr AB < -2} @)

has two connected components, which are conjugated by an orientation-reversing
automorphism of PL. Fixed a cyclical order on P, we have in one of the two
components that

Up <UBA <SBA <S4 <Uqg <UAB < Sqp < Sp < UpR. (5)

The component of the set in (4) where (5) holds 1s called the positive free compo-
nent. (Of course this definition depends on the choice of an orientation in P!.)

Proof. 1f (A, B) € H;q then modulo sign changes (which do not affect being in either
side of (3)) we can assume that tr A, tr B > 2. The fact that (A, B) does not belong
to a principal component implies that up < s4 < u4 < sp < up for some cyclical
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order on P!, Let M be the multicone for the pair (A, B); write it as union of two
intervals M = I U J. Then one of the intervals, say I, must contain 14 and the other,
up. So uap is contained in 7, and, as it is easy to see, the associated eigenvalue of
AB is negative. This shows that tr AB < —2 so (A, B) belongs to the right-hand
side of (3).

On the other hand, Proposition 5 in [13] and its proof show that the set in (4)
has two connected components with the stated properties. The proof also shows that
pairs (A, B) in that set have a multicone consisting in two intervals. Of course, if
up < s4 < Uy < sp < up for some cyclical order on P! then (A, B) cannot be in
a principal component of J£. So the set in (4) is contained in Hjq. We conclude that
the set in the right-hand side of (3) is also contained in Hy4 and has eight connected
components.

To prove that the connected components of 4 have disjoint boundaries, it suffices
to see that the two components of the set (4) have disjoint boundaries. So assume
(A, B) is a boundary point of both components. Then up = s4 = ug = sp. So
tr A = tr B = 2, and this implies tr AB = 2, a contradiction. [

Given F € M, letus denote Hr = F~'(Hy). Our plan to prove the main results
1s as follows. In §3.3-3.4 we will show:

Proposition 3.5. Forany F e M, Hr C K.
Then in §3.5-3.6 we will prove:

Proposition 3.6. SL(2,R)? is the disjoint union of €, Ho, and | | e H__F Morve-
over, a compact set in SL(2,R)? intersects only finitely many of the sets Hp.

Putting things together, we will prove Theorems 3.1, 3.2, and 3.3 in §3.7.
In §3.8 we will give an alternative proof of Proposition 3.5, by describing explicitly
the multicones.

3.3. Group-hyperbolic pairs. Let (4, B) € SL(2, R)? be given. Let X C 4% be
the (transitive) subshift of finite type where the only forbidden transitions are 1 — 3,
3—1,2— 4,and 4 — 2. Take the 4-tuple (A, A3, A3, A4) = (A, B, A1, B™h),
and consider the usual cocycle map over the subshift. If this cocycle is uniformly
hyperbolic, then we will say the pair (A, B) is group-hyperbolic.

Lemma 3.7. If (A, B) belongs to a free component then (A, B) is group-hyperbolic.

Proof. Without loss, we assume that (A, B) belongs to the positive free component
(so (5) holds). Take four disjoint (open) intervals Iq, I, I3, I4 such that 71 U I, is
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a multicone for (A, B) (over the full 2-shift), /3 U I, is a multicone for (4A~!, B~ 1)
(over the full 2-shift), and

I1 D ua,uapl, 11+ D [sap.sB], 12 D [up,upal, I3 O [spa, s4]-

Figure 5. Group-hyperbolicity of the free component.

Since A(I1), A(I2) € I, we see that A(I4) € I; as well. In the same manner,
we have

A(11U]4U12)@]1, B(12U13U11)@12,
AN ULUIYEL, B Y, UIlLUI)E .

So Theorem 2.3 applies, and our cocycle over the subshift & € 4% is uniformly
hyperbolic. That is, (A, B) is group-hyperbolic. O

3.4. Length comparison. Let [F5 be the free group in two generators a, b. Let |-
be the usual length function on 5, relative to the generators a, b. Let f4, f- be the
homomorphisms of [F; such that f4(a) = a, f+(b) = ab, f_(a) = ba, f_(b) = b.
Notice | fr(w)| < 2|w| for all w € F,. Since f4 and f_ are in fact automorphisms,
it follows that | /7 (w)| > 3|w| forall w € Fs.

Given (4, B) € SL(2, R)?, there is a unique homomorphism (-, (4, B)): F, —
SL(2,R) such that {a, (A, B)) = A and (b, (A, B)) = B. In fact, this gives a
bijection between SL(2, R)? and the set of homomorphisms [F, — SL(2, R).

If f: Fy — [, is a homomorphism then there is a unique map f*: SL(2,R)*> —
SL(2,R)? such that {f(w), (4, B)) = (w, f*(A, B)). The functorial properties
id* =idand (go f)* = f* o g* hold. Also notice that /¥ = Iy and f* = F_.

Proof of Proposition 3.5. Let (A, B) € Hp,where F = Fy 0.0 F, & € {+,—}.
Let (Ag, By} = F(A, B) € Hy. By Lemma 3.7, (A, By) is group-hyperbolic. This
means that there exist ¢, T > 0 such that for every @ € [,

[{@, (Ao, Bo)}|| = ¢ exp(z|]).
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Let f = fe, 020 fep,50 f* = F. For any w € IF,, we have

e, (A, B = (/™ (@), (Ao, Bo))| = cexp (x| fH@)]) = cexp 27 x|w]).

This proves that (A, B) is group-hyperbolic and, in particular, (A, B) is a uniformly
hyperbolic pair w.r.t. the full 2-shift. O

3.5. Twisted pairs. Let us say that (4, B) € SL(2, R)? is straight if (A, B) € Hy,
that is, (A, B) belongs to the closure of a principal component.

Notice that if (A, B) is straight then so are F (A, B) and F_(A, B).

It is easy to see that if there is an open interval which is forward-invariant for both
A and B then (A, B) is straight. The converse is not true: for example, if A # +id
is parabolic then (A4, A_l) is straight, but there is no invariant open interval.

Let us say that a pair (A, B) is twisted if A and B are not elliptic and (A, B) is
not straight.

Let A be non-elliptic, and A # =+id, so uy, s4 € P! are defined. Assume that
an orientation is fixed in P!. Given p € P!, we shall write p < uy < s4 < p to
indicate that p < Ap < uy < s4 < p. This means that there exist A arbitrarily close
(possibly equal) to A such that p < u ; <s; < p. Inthe case A is parabolic we can
define u4 < s4 without mentioning a point p.

Lemma 3.8. Let A, B € SL(2,R) be non-elliptic. Then (A, B) is twisted iff A,
B # +id and for some cyclical order on P! we have

Ug < SB SUR <S4 S HYy. (6)

Proof. 1If A or B equals *id, then (A4, B) is easily seen to be straight. So we can
assume A, B # +id.

The rest of the proof is merely a case-by-case inspection. The following list
exhausts all possible (mutually exclusive) cases, modulo inverting the cyclical order
on P!, or interchanging 4 and B, or replacing (A4, B) by (4™, B~ 1):

1. A and B are hyperbolic:
1.1. ugy =up oruy = sg,
1.2 ugy <up < sp <854 < Uy,
1.3, ug <up <sq <sp <y,
14, ug <sp <up <854 < uy.
2. A hyperbolic and B parabolic:
21, uq = up,

22, ug <up Ssp <S4 < Uy,
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23, ug <sp Sup < 854 < uy.
3. A and B parabolic:
31. ug =up withuy <sq4andsp S up,
32, ug = up withuy <sqandup < sp,
33, ug Fup withuy < sqandsp < up,
34. ug #up withuy <sqandup < sp.
The cases 1.1, 1.2, 1.3, 2.1, 2.2, 3.2, and 3.3 are those where there 1s an invariant
open interval, and hence are straight. In the case 3.1, there is no invariant open

interval, but it is straight nevertheless. The remaining cases, 1.4, 2.3, and 3.4 are
precisely those where condition (6) holds; and none of them can be straight. 0

Lemma 3.9. Let (A, B) satisfy tr A,tr B > 2. Then (A, B) is twisted iff there exists
a basis (called canonical basis for (A, B}) where A, B are written as

(n o« vt oo
) I i S

with i = 1, v > 1 and af < 0. Moreover, y = af only depends on (A, B) and not
on the choice of the canonical basis.

Proof. Let (A, B) be such that tr A, tr B > 2. Introduce coordinates so that u4 =
R(1,0) and up = R (0, 1). Then A and B are in the form (7), with g, v > 1. Write
the other eigendirections as sq4 = R(x, 1) and sp = R(1, v). We have
o .y
X =— = ;
p—p T Ty

Then (6) holds iff xy < 0, that is, iff ¢ff < 0.

We leave the cases where A or B 1s parabolic as exercises to the reader.

For the last remark, notice that «f is a function of tr A, tr B, and tr AB. O

Let us say that (A, B) is free if
|tr A|, |t B|, |t AB|>2, and rAu B trAB <O.
Lemma 3.10. Every free pair is twisted. A pair (A, B) is free iff it belongs to Hy.

Proof. 1f (A, B) is straight then, replacing A by —A or B by — B if necessary, we
have r A, tr B, r AB > 2, 50 (A, B) cannot be free.

If (A, B) is free, say with tr A, tr B > 2,and tr AB < —2, then using a canonical
basis we see that there exist (A, B) arbitrarily close to (4, B) such that tr A, tr B > 2,
andtr AB < —2. O
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Lemma 3.11. Ler (A, B) be twisted. Then exactly one of the following holds:
(i) (A, AB) is twisted.

(ii) (BA, B} is twisted.

(iii) (A, B) is free.

(1v) AB iselliptic.

Proof. 1f (iv) holds then clearly (i), (ii), and (iii) do not hold. It follows from Propo-
sition 3.4 and Lemma 3.10 that if (iii) holds then (i) and (ii) do not hold. Thus we
only have to prove that if (A, B) is twisted and not free and if A B is not elliptic then
either (1) or (i1) holds.

We can assume that tr A, rt B8 > 2. Then r AB > 2. By taking a canonical
basis for (A, B), we may assume that the expressions (7) hold, where we may choose
o > 0and B < 0. Notice that with that basis 14 corresponds to (1,0} and up to
(0, 1). Let us orient P! so that (1,0) < (1,y) < (0,1) if y > 0. For this cyclical
order, (6) holds. It is casy to see that AB # +id.

Assume that tr 4 = 2. Then tr B > 2, otherwise we would have tr AB < 2.
First, let us locate the fixed points of the projective action of AB. It is easy to see
that there is no fixed point in [up, u4] . If there were a fixed point of AB in [ug4, sp]
then the associated eigenvalue would be negative, contradicting tr AB > 2. Souyp,
sap € (sp,up). It easily follows that

Ug < S4B SUABR < 54 S U4,

and so, by Lemma 3.8, (A, AB) is twisted. We have up4 = Buap, Spa = Bsap €
(sp.up). Notice that (#p4, up) is an invariant interval for (BA, B) so that (BA, B)
18 straight. This shows that the lemma holds if ir A = 2. The same argument gives
the case tr B = 2.

We assume from now on that tr A, tr B > 2. In this case we have uy < s <
Up < 854 < Uy.

Let us locate the eigendirections of AB. None can belong to {u4,up, 54,55}
It is immediate that A B cannot have a fixed point in the interval (xp,s4). Neither
can A B have a fixed point in (x4, sp), because otherwise the associated eigenvalue
would be negative, contrary to the assumptions. So each eigendirection of A B must
be in one of the intervals (s4, u4) and (sp, up).

Consider the case that u4 p belongs to (sp,up). Observe that BA sends sp into
the interval (up, sp). It follows that s4 g also belongs to (sp, up), and also

Ug < SAB S UABR < 54 < UY.

So (A, AB) is twisted, by Lemma 3.8. The points up4 = Buyp and spq4 = Bsp
also belong to (sp, up). Theinterval (v p4, up) is invariant for BA and B,so (BA, B)
is straight.
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In the case that 14 p belongs to (s4, u4), thenupy = A 'uyp also belongs (o the
same interval. It follows as in the last case (interchanging the roles of A and B) that
(BA, B)is twisted and (A, AB) is straight. ]

3.6. Dynamics of the monoid. Let /{A, B) = (tr A, tr B,tr AB) and let
¢+(]€, y,Z) = ()C,Z,)CZ - y)7

¢ (x,y,2) = (2,y,yz — x),
Jx,v,z) = x> 4 y2 1 z2 —Xyz.

Proposition 3.12. We have [ o FL = ¢ ol and j o pL = §.

Proof. The first assertion follows from the identity tr A2B = tr A tr AB —1r B. The
second one is straightforward. O

LetJ =jol.
Let (A, B) be twisted with tr A > 2 and tr B > 2, so that in a canonical basis

(n «o (vt oo
=(6n) ()

withp > 1,v>1landy = o < 0. Thentr AB = puv~! 4+ u~'v + y. Thus

tr AB < max(tr A, tr B) + y < max(tr 4, tr B). (8)
Moreover, we have

JAB) =44y —yu—p Ho—vhH >4

Let us say that (A, B) is almost hyperbolic if F(A, B) is a pair of non-elliptic
matrices for every F € M. The following is the key fact we need about the action
of F:

Lemma 3.13. Ler (A, B) be alimost hyperbolic and twisted. Then there exists a
unique F' € M such that the pair F(A, B) is free. Moreover, the length of F in terms
of the generators F,, F_ is < % (J[tr A| +|tr B]) — L.

Proof. We may assume thattr A > 2 and tr B > 2. Let (A, Bo) = (A, B). Assume
that it was defined an almost hyperbolic and twisted pair (Ag, By ), for some & > 0.
Then, by Lemma 3.11, there are 3 possibilities:

either Fy ( Ay, By) is twisted, or F_(Ay, By ) is twisted, or (A, By) is free.  (9)

In the first, resp. second, alternative we set e = -+, resp. e = —,and (Ag 41, Bra1) =
Fo (A, By).
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We claim that the third alternative in (9) holds for some & > 0. If not, we have
an (infinite) sequence of twisted pairs (Ag, Br). Then tr A > 2 and tr B > 2 for
all £ > 0. In a canonical basis we have

—1
_ [ Mk Ck _ (v O
Ap = S, B = :
¢ (0 /Lkl) ) (ﬂk Vk)

My = max(tr Ag,tr B;), myp = min{tr Ag.tr B;), and 1t = (r A + (r By.

Define sequences

Since (Ag, By) is twisted, yr = orBr < 0. So, by (8), { M} } is non-increasing.
Let also
Ap = tgy1 — 2tk + ti1, k> 0.

Using Proposition 3.12, one easily checks that

(tr Ay —2)tr By if (¢k, ek+1) = (+, 1),
Ak = (tr Bk _2)trAk if (Sk’8k+1) = (_7 _)a (10)
tr Ag tr By —tr Ay —tr By if (Ek,8k+1) = (—,—I—) or (—l-,—).

In particular, Ay > (mg — 2)My > 0, so the function k +— 1 is convex. Since
4 < 1 < 2My, we conclude that {7} is non-increasing and Ay — 0 (indeed
> Ap < o0). It follows that limmyg = 2. The proof now splits in two cases:

First case: lim M, > 2. Assume limtr Ay = 2 and limtr By > 2 (the other
possibility being analogous). We get from (10) that ¢, = 4 for all & big enough.
Thus Ag,; = Ay for all big k and tr Ay = 2 for big k. So A, = 0 for big k. Since
{rr} is bounded we have, for all big k, that 7, | = 7 and hence tr By, = tr By.

But tr By = tr By + yr < tr By for big k, contradiction.

Second case: lim My = 2. Then tr Ag, tr By, tr Ax By — 2, s0 J(Ag, Br) — 4.
This contradicts J(Ag, Bx) = J(A, B) > 4.

We conclude that the third alternative in (9) holds for some &k = N, say. That is,
if ' = Fgp 0---0Fg then F(A, B)is free. Such ' € M is unique. Indeed, if
0<j < Nand8 # ¢ then FgoFy; o-+-0Fy (A, B)isstraight. (This follows from
uniqueness in Lemma 3.11.) And F (F(A, B)) and F_(F (A, B)) are also straight.

To complete the proof, we have to bound N. Since tr Ay, r By > 2, and
trAvBy < —2,wehavetyi41 — iy < —4. Forl <k < N wehave Ay > 0and so
tg —tk—1 < —4. Thus to > 4N +ty > 4N + 4,50 N < 1to— 1, as claimed. O

Now we can give the

Proof of Proposition 3.6. First, Hy N Hig = @, and since F (Hp) C Hy, we have
HyN Hp = @ forany F € M. By Proposition 3.5, we have
Hyu | ] HF C J C €.
FeM
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On the other hand, let (A, B) € §°. If the pair (A, B) is straight, then it belongs to
Hy. If it is not, then it is twisted and almost hyperbolic. So Lemma 3.13 gives that
there exists F € M such that (4, B) € Hp. Moreover, F is unique. This shows
that the sets H are disjoint, so the first assertion in the proposition is proved. The
second one follows from the length estimate in Lemma 3.13. n

3.7. Conclusion of the proofs

Proof of Theorems 3.1, 3.2, and 3.3. First let us see that

¥ =Hou | | Hr. (11)
FeM

The D inclusion follows from Proposition 3.5. To show the other inclusion, it suffices,
by Proposition 3.6, to show that 0Hy, dHfp C € forall F € M.

The boundary of Hy is described by Proposition 4 in [13]: if (A, B) belongs to
it then either A 1s parabolic or B 1s parabolic or u4 = sp or up = s4. In any case,
(A, B) € J#°.

By definition of Hiq, if (A, B) belongs to its boundary then at least one of A, B,
or AB is parabolic. It follows that if (A, B) € dHF then there is a product of A’s
and B’s which is parabolic. In particular, (A, B) € J°.

We have proved equality (11) and hence Theorem 3.1.

Notice that the four principal components have disjoint boundaries, and so do the
eight free components (this follows easily from Proposition 3.4.) So, by Proposi-
tion 3.6, the boundaries of the components of # are disjoint, and a compact set in
SL(2,R)? intersects only a finite number of components. It follows that the union of
those boundaries gives all of d.#. This completes the proof of Theorem 3.2.

We have also shown that SL(2,R)? = & U #. To complete the proof of The-
orem 3.3, it suffices to show that #¢ C &. That is an immediate consequence of
LLemma 2 from [13]. L]

Remark 3.14. Our proof of Theorem 3.1 also gave an algorithm to decide whether
a pair (A, B) € SL(2,R)? is uniformly hyperbolic or not (w.r.t. the full 2-shift).
Namely: first, check if both A and B are hyperbolic; second, compulte eigendirections
of A, B to see 1f the pair belongs to a principal component; third, repeat the first step
for all pairs F,, o--+o Fy (4, B), with k < 1 max{|w A|, |tr B|} — 1. (By the way,
this third step can be done without actually computing matrix products, if we use
Proposition 3.12 instead.) The algorithm ends in “finite time”; moreover, given an
upper bound for the size of the matrices, an upper bound for the “running time” of the
algorithm can be given explicitly. An example of §4.7 (see Proposition 4.18) shows
that the situation for the full 3-shift is much more complicated.
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3.8. Description of the multicones. Here we will give another proof of Proposi-
tion 3.5, and also obtain an explicit description of the multicones for the twisted
hyperbolic components.

3.8.1. Let M™ be the monoid on the generators Fy, F_ operating on words in A, B
by the substitutions

Fy: Aw— A, B+ AB,
F_.: A~ BA, B+~ B.

(The monoid M* is opposite to the previously introduced M.) We identify M™ with
@ N (0, 1) via the canonical bijection j: for F € M*, j(F) = p/qif F(AB) has
length ¢ and contains p times the letter B. We have j(id ¢ +) = 1/2.

38.2. For F € M™, with j(F) = p/q, denote by O(»r/q) the set of words of length
g deduced from F(AB) by cyclic permutation. This set can also be described in
the following way: consider the map R, /,: [0,1) — [0,1), x > x + »/qg mod 1;
set (x) = Aif x € [0,1 —p/g) and B(x) = B if x € [1 — p/q, 1); set B(x) =
(H(R;/q(x)))osi<q; the image of ® is O(#/q).

In O(2/q), the first word by lexicographical order is ©(0), the second one is ©(1/q)
and so on until the last word ®(1 — 1/4).

38.3. Let F € M*, with j(F) = »/q; let [Po/q0, P1/41] be the Farey interval with
center 7/q. Recall that

pot+pri=p qo+qi=9q. pigo— poq1 = L. (12)

Then O(ro/q0) is the set of words deduced from F(A) by cyclic permutation, and

O(r1/q,) is similarly the set of words deduced from F(B) by cyclic permutation.

Here, we extend the definition of O(2/q) setting O(9/1) = {A} and O(1/1) = {B}.
It follows from (12) that Rg}q 0) = R;/q; (0) = 1 — /4. Set

O1(7/q) = {O(R;,(0)); 0 <i <q1},
Oy (r/q) = {O(R7,(0); 0 <i < qo};

we have thus defined a partition of O(7/g) ~ {®(0), ©(1 — 1/¢)}.

384. Let F, r/q, Po/q0, P1/q: be as above. We define a cyclical order on O(#7/4) U
O(PO/qO) L O(Pl/ql).

For this cyclical order, the two sets Q(2/q) and O(ro/qq) LI O(P1/4,), both of
cardinality g, alternate. The two intervals bounded by ©(0) and ®(1 — 1/4) are
O(ri/q,) U O1(2/q) and O(ro/qs) L Oy{p/q); moreover the element that succeeds
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®(0) is in the former interval. The order induced on O(#r1/q,) or O1(r/q) is the
lexicographical order, while the order induced on O(ro/q0) or O,(2/¢) in the antilex-
icographical order. See Figure 6 with 2/¢q = 2/5.

BABAA

BAABA ABABA

ABA

ABAARB AABAB

AAB

Figure 6. Order on O(2/5) LU O(1/3) LI O(1/2).

Let us give a more explicit description of this cyclical order:

Lemma 3.15. Let w be an element in O(p/q), and denote by ™, w* the elements
(in O(ro/qo) U O(r1/q1)) which are immediately before and after w for the cyclical
order. Denote by ©, © the maps defined as © with respect to ro/qo, P1/q,. Then
the following holds:

e Ifw = @(R;/q(O)) with0 <i < g thenw™ = ®1(R;1/q1(9)),'

* ifo = ®(R;,[q(1 — Yq)) with 0 < i < qo then o™ = QO(R;,O/(IO(I — 1q0));

 ifw = @(R;Zq(O)) with 0 <i < gg then 0~ = ®O(R;O‘/q0 (O))

* ifo = @(R;/tq(l — gy withO <i < gy then w™ = @1(R;f/ql(1 — 1/g1)).
Proof. From (12) we obtain »1/q; — P/qg = 1/q1q. It follows that given 7, j with
0<1i,j < g, the point R; 14(0) is before R}J) 14(0) (for the usual order in [0, 1)) if
and only if the point R; . (0) is before R; i (0). Therefore the first assertion of
the lemma holds. The others are proven similarly. [

Define some special words
wp = O(2/q), wp=0(rVyg), pw=0(1-"rlg), s0=0(—-rE+tl/).

From the description of the cyclical order, we see that the words respectively starting
with A, starting with B, ending with 4, ending with B form the intervals

40 = [Ba)+,Aa)], B — [Aa)+,Ba)], o4 = wa,wg], o8 = lwp, wy].

Observe that for 0 < 7/g < 1/2, the union of 04 and 40 is the full set O(r/q) L
O(ro/q0) U O(P1/q,), and these intervals intersect at both ends.
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3.8.5. Weassume now that 7/g # 1/2. If /g < 1/2(resp. »/q > 1/2) then we can write
F = FyF (resp. F_F),with F' € M*, j(F') = p/(g—p) (resp. j(F') = @p—a)/p).

Assume for instance that 2/q < 1/2. Write #'/¢’ = »/(g—p), and let [Po/q}, P1/d}]
be the Farey interval which has »'/¢’ as center; we have

/

Py Po 24 p1

9% qo—po 4f @—p1
Lemma 3.16. The image of O(7'/q") U O(Po/q}) LU O(P1/q}) under Fy is exactly the
interval “O; moreover F.. preserves the cyclical orders.

Proof. Consider the map induced by R/, on [0, 1 — »/4); it is equal to

X X+ Plg if0 <x < 1-—2p/y,

X x42r/g—1 ifl—=2p/g<x<1-—r/q.

Conjugating by the homothety of ratio (¢—»r)/q, we obtain R, on [0, 1). This shows
that the image of O(?'/¢’) under Fy is the interval of O(»/q) formed by the words
@(R;/q (0)) such that R;/q (0) € [0,1 — 2/q), i.e., the words that start with 4. The
other conclusions of the lemma are proved similarly. One should observe that for

e =0,1, F1(0.(P'/¢")) is the intersection of F; (O(7'/q’)) with O.(r/q). O

3.8.6. For FF € M*, denote by H;f the set of (4, B) € SL(2,R)? such that
(F(A), F(B)) belongs to the positive free component (which is described by Propo-
sition 3.4).

Proposition 3.17. Let (4, B) € Hf. For any @ € O(r/q) U O(po/q0) U O(r1/qy),
the corresponding matrix is hyperbolic. Moreover, the stable directions s(w) and
unstable directions u{w) are all distinct and are positioned according to the following
rules:

o forany w € O(p/q), s{w) is immediately after u(w);
» forany w € O(po/qy) U O(P1/q,), s{w) is immediately before u(w);

s the restriction of the cyclical order to the u(w) is the cyclical order considered
above.

(It follows from these three rules that the same is true for the restriction to the s(w).)

Proof. The first assertion is clear. If j(F) = 1/2, the cyclical order is the one
described above. Assume j(F) = »r/q # 1/2, for instance »/q < 1/2. We write
F = F.F', rl¢y = r/ig—p) as above. Let A* = A, B’ = AB. We prove the
proposition by induction, thus we may assume that the conclusions are satisfied for
(A, B') € H,. This means that the points {u(w),s(w); o € 10} are all distinct
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and the restriction of the cyclical order to this set is in accordance with the proposition.
Let a: 04 — 40 be the bijection which takes the final letter A into first position;
this map corresponds to A in the sense that

Au(w) = u(aw), As(w) = s(aw), o e 01,

and therefore the restriction of the cyclical order to the set {u(w),s(w); w € 04}
is also in accordance with the proposition. As 40, 04 are intervals which cover
O(r/q) U O(Po/q0) U O(P1/q;) and have non-empty intersection at both ends, the
points {u(w), s{w); @ € O(P/q) L1 O(Po/q0) LI O(P1/q1)} are all distinct and there is
only one cyclical order with the given restrictions, which is the one described in the
proposition. O

3.8.7. Now we give the other proof of Proposition 3.5. It is sufficient to show that
any (A, B) e H ;5 is uniformly hyperbolic. We will apply Lemma 2.7 and therefore
we will define sets U and S satisfying the required conditions.

For w € O(r/q), we define intervals 1* = [u(w ™), u(w)], I3 = [s(w),s(@™)].
LetU = Uueowm Lo S = Uveowsy) To- Then U, S are disjoint compact subsets
with finitely many components which alternate. To apply Lemma 2.7, we need to
check that AU U BU Cc U, A7'S U B~1S C S. Indeed, we have:

« A(I) =1}, forwy < w < wp;

* Aly) C g forwp < @ < wy;

* B(ly) =1, forwp <w < wy;
« B(I}) C I(’;;(l_p/q) for w4 < w < wp.

(The map b: OF — BO is defined analogously as a, by switching a letter B from
the last to the first place.) This proves that AU and BU are disjoint and contained
in U it also follows that no non-trivial product of A, B is equal to id. Similar
formulas hold for A=, B! and the intervals /2. Thus we can apply Lemma 2.7
and conclude that (A, B) is uniformly hyperbolic. The sets U and S are of course
the unstable and stable cores, and the formulas above give the action of A, B on the
components of the associated multicone. Both U and S have ¢ components, and the
set O(2/q) U O(po/q0) LI O(P1/q1) is in canonical correspondence with the connected
components of the complement of U U S': see Figure 7.

4. Boundaries of the components

4.1. A general theorem on boundary points. Again, fix any subshift of finite type
Y C NZ andlet # < SL(2,R)Y be the associated hyperbolicity locus.
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s(BAA) s(BABAA)

w(BAA) W(BABAA)
w(BAABA) w(BA)
S(BAABA) e
S(ABABA)
s(ABA)
SCTBAS w(ABABA)
u(ABAARB) u(AB)
' £
S(ABAAB)

‘ \___/ S(AABAB)
S(AAB)

u(dARB) u{AABAR)

Figure 7. The intervals [ ¥, I1& for r/q = 2/s.

w? s

Given x = (x;)iez € X, we denote

Wi (x)={{zi) € &; z; = x; fori < 0},
Wie.(x) = {(z;) € Z; z; = x; fori > 0}.

The next result describes the boundary points of connected components of .

Theorem 4.1. Let (Ay,..., Ay) belong to the boundary of a connected component
H of . Then one of the following possibilities holds:

(1) There exists a periodic point x € T of period k such that A¥(x) = +id.

(ii) (“parabolic periodic”) There exists a periodic point x € X of period k such
that A*(x) # +id is parabolic.

(i11) (“heteroclinic connection”) There exist periodic points x and y € 2, of respec-
tive periods k and £, such that the matrices A¥ (x) and A*(y) are hyperbolic
and there exist an integer n > 0 and a point z € Wl (x) N o "W .(y) such
that

A"(2) - u(AF (x)) = s(A (). (13)

Furthermore, for each component H, one can give uniform bounds to the numbers
k, £, n that may appear in the alternatives above.

In alternative (iii), there exists a point z = (z;)jez such that z_g_qy = z_1,
Zp+t = Zn,and
Aznil P AZO * u(Azil .. Asz) = S(Azn+€71 . Azn).

That is what we call a heteroclinic connection (provided both A, ... A, , and
Az,yo_y - - Az, are hyperbolic).
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Remark 4.2. In alternative (iii), the periodic points x and y cannot belong to the
same periodic orbit.

Proof. Assume the contrary, so k = £ and x = o/ (y) for some j with0 < j < k.
Then

s(AF(y)) = AM(z2) - u(A*(x)) = A" (2) - A7 () - u(A¥(p))
= A" (67 z) - u(A* ().

So, writing A = A¥(y) and B = A"t/ (077 z), we have that A is hyperbolic and
B -u(A) = s(A). A direct calculation shows that limy,— 4 tr A" B = 0. Therefore
there is m > O such that A™ B = A*m+n+J(a=J z) is elliptic. Since zxmin = 7—;,
this contradicts the assumption that the N -tuple belongs to the boundary of . [

Remark 4.3. If X is the full-shift, and H is a principal component, then by Propo-
sition 4 in [13] one can take » = 0, k = £ = 1 in alternative (iii) of Theorem 4.1.

Remark 4.4. We will see later (Proposition 4.9) that in the case of full shifts, alter-
native (i) in Theorem 4.1 is only possible if H is a principal component.

Theorem 4.1 has the following interesting consequence:
Corollary 4.5. Every connected component of I is a semialgebraic set.

Notice # itself is not semialgebraic, because it has infinitely many connected
components (see Theorem 2.4.5 from [4]).

Proof of the corollary. Of course, SL(2, R)V itself is a (semi) algebraic subset of
R4V,

Let H be a connected component of €. Let K be the upper bound on the numbers
k, £, n that appear in Theorem 4.1. Let S, S,, and S3 be the subsets of SL(2, R)V
formed by the N -tuples that satisfy respectively alternatives (i), (ii), and (iii) of the
theorem, with &, £, n not greater than K.

The set S; U S3 is obviously semialgebraic; let us see that S5 also is. Introduce
variables A, u € R, wy, ws € R?, and rewrite (13) as

Af(x)-wy = Awy, A2 > 1,
AY(Y) -ws = pwa, —1 < p < 1,
AM(z)-wy = wa, w1 #(0,0).

Such relations define a semialgebraic set on SL(2, R)Y x R®, which is sent by the
obvious projection onto S3. Therefore S5 is semialgebraic, by the Tarski—Seidenberg
principle (see [4], Theorem 2.2.1).
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The set S = 57 U S, U S5 is closed, disjoint from A, and contains the boundary
of H. Thus H is a connected component of the semialgebraic set SL(2, R)N ~ S,
and hence is semialgebraic, by Theorem 2.4.5 from [4]. O

To prove Theorem 4.1, we first establish two lemmas. In both of them we assume
that (44, ..., Ay) belongs to the hyperbolic locus, and let Uy, Sy be its unstable and
stable families of cores (see §2.3).

Lemma 4.6. Let 8 be a symbol, and v € d0Upg. Then there exist a symbol o such that
o — fand AEl(v) € dU,.

Proof. Recalling the definition of Ug, we see that the condition v € dUyg is equivalent
to the following:

s

v € Ky and there exist a point w € Ag K7} and an open interval / C P!

such that 9/ = {v,w}and I N Kj = @.

Let v, w, and I be as above. Take x = (x;)iez € X such that x_; = £ and
e"(x) = v. Leta = x_5. Setv’ = AEl(v), w' = AEl(w), and I’ = AEl(I). We
have v’ € K¥, w' € Aa K3, and I' N K = @. We conclude that v/ € dUj,. O

Lemma 4.7. Let v € dUy. Then there exist a periodic point x € X of period k, a
point z € W (x), and an integer m > 0 such that z,,_1 = o and

v = A™(z) - u(A*(x)).

Analogously, if v/ € dS, then there exist a periodic point y € X of period £, a
point w € W (x), and an integer p > 0 such that w_, = « and

v = AP (w) - s(4" ().
Moreover, k, m, £, and p are less or equal than the rank of the families of cores.

Proof. We will prove one half of the lemma. Take v € dU,. Setwy = o and vy = v.
Applying repeatedly LLemma 4.6 we find a sequence ¢y <— &7 < ¢y <— --- such that

Vnt1 = A;nl . A(;Olvo € dU, for every n > 0.

A+1
Letng be the rank of the family U,. By the pigeon-hole principle, there exist integers
mand k such that 0 <m < m + k < ng and o, = 1 and vy = Vy4k. Then
Up 18 fixed by Ag,, - .. A, and so must be the unstable direction of this matrix
product. We also have vg = Ay, ... Aa,,_; - Vm. The lemma follows. O
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Proof of Theorem 4.1. Observe that unstable and stable families of cores vary con-
tinuously with the N-tuple. So if we restrict ourselves to N -tuples in H, the rank ny
of the families of cores is constant.

Now take (Ay,..., Ay) in the boundary of H. Assume that there is no periodic
point x € ¥ of period n < ng for which A”(x) = +id. We will show that then one
of the alternatives (11) or (111) in the theorem holds.

Consider the following finite subsets of P!:

Ur = {A™(z) -u(A*(x)); 1 <k <ng, 0<m < ny,

x =0*x, z € WE(X), Zm—1 = o},

) (14)
Sg ={A7P(w)-s(4*(»)); 1 <L <ng, 0= p < ny,
y=o'y. we W), wp, = B
Notice that
Usc | 4pUy and s;c | ) 4.'S;. (15)

a;a—f B;a—8

(To see this, use for instance thatif x = o*x thenu (A (x)) = Ay [+u (A* (67 1x)).)

Assume that U; N SE £ & for some «, B with @ — B. Then, for some m, x etc
as in (14), we have an equality A™(z) - u(A¥(x)) = A7 (w) - s(A*(y)). Moreover,
we can assume that w = 0"z, where n = m + p. Then A™(z) - u(A*(x)) =
s(A(y)), withz € We ()N W (v). If AF(x) or A*(y) is parabolic, we are in
alternative (ii) of the theorem. Otherwise, both A¥ (x) and A*(y) are hyperbolic and
alternative (iii) holds.

In order to complete the proof of the theorem, we will assume by contradiction that
Uy NSz = @ forevery o, f withe — f. Itfollows from (15) that Uy N Ae Sy =
for every «.

Take asequence (A1(7),..., Ay(i))in H convergingto (A1,..., Ay)asi — oc.
Let Ay(o0) = A,.

Define sets U (i), S, (i) in the same way U, , S were defined, replacing each
Ap with Ag(i). By continuity of the u and s directions for non-elliptic matrices far
from £id, we have that for every large i, U (i) and S (7 ), are close to U and S,
respectively.

Fori € N U {oc}, define other sets Uy (7 ), Si(7) as follows: Uy (7) is the comple-
ment of the union of the connected components of P!~ U* (i ) that intersect A S (i),
and S, (i) is the complement of the union of the connected components of P~ S* (i)
that intersect A, 1UF (i). If I is large enough then U, (7} and S, (i) are respectively
close (with respect to the Hausdorff distance) to Uy (co) and S, (00).

By Lemma 4.7, if / < oo then Uy (/) and S, (7) are precisely the unstable and
stable families of cores of the N -tuple (A, (7 )). It follows from continuity that the sets
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Uy, = Uy(o0), Sp = Sy(o0) also satisfy properties (i)—(iv) of §2.3. By Lemma 2.4,
(Aq ) has a family of multicones, that is, (A,) € #. Contradiction. O

From this point until the end of Section 5, we will be interested only in full shifts.

4.2. Non-principal components. As mentioned in Remark 4.4, we will prove that
no xidentity products exist in the boundaries of non-principal components.

Let us begin with a lemma about pairs of matrices. Recall that a uniformly
hyperbolic pair induces maps ¥, e*: 2Z — P! (see §2.3).

Lemma 4.8. Foreveryc > Othere exists § = §(c) > Owith the following properties.
If (A, B) is a uniformly hyperbolic pair with

|A| <c¢ and ||BFid| <8 (16)

then (A, B) belongs to a principal component. Moreover, the images of the maps e*,
e* are (disjoint closed) intervals I, I, C P,

Proof. Our study of the N = 2 case shows that the boundary of a non-principal
component cannot contain a pair of the form (A, =id). If follows that there exists
& = &(c) such that every hyperbolic pair (A, B) satisfying (16) belongs to a principal
component.

Let us also assume that 6(c) is small enough so that (16) implies

inf [(AEYY (%) + inf [(BEY (x)] > 1.
xeP! xeP!

Now, given a hyperbolic pair (A, B) satisfying (16), let 1,, and /; be disjoint closed
intervals such that 01, = {u4,up} and 3l; = {s4,sp}. By the choice of § > 0, we
have |A(l,)| + |B(1y)| > |I.| (where | - | denotes interval length). Therefore

I, = A(I,) U B(I,).

Let us write Ay = A, A, = B. Given zy € [, there exists x_; € {1,2} and
zy € Iy suchthat Ax | (z1) = zo. Inductively, wefind x_, € {1,2} and z, € [, such
that A, , (z,) = z,—1. We form a sequence x = (x;);ez € 2%, choosing arbitrarily
x; for i > 0. Then it is easy to see that zo = e*(x). This shows that e*(2%) = I,,.
The proof that ¢*(2%) = I, is analogous. O

Let #xp C SL(2,R)Y be the union of the non-principal components.

Proposition 4.9. If an N-tuple is in Fexp then no product of the matrices in the
N -tuple equals £1d.

Furthermore, for every compact subset K of SL(2, RV, there exists a neighbor-
hood V of {id} such that if an N -tuple belongs to K N Jexp then no product of the
matrices in the N -tuple belongsto V.
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Proof. Givenc > 1,letd = 6(2¢) be given by Lemma 4.8. For a compact set of the
form K(c) = {(A1,....Ax) € SL2,R)V; ||4;|| < ¢}, we will take V' as the open
neighborhood of {£id} of size &.

Fix an N-tuple £ € K(c) N Hxp. By contradiction, assume that there exists a
product of the matrices in & which is é-close to £id.

Take &£ = (Ay,...,An) € FHnpcloseto &y. If £ is close enough to &, there exists
a product of the A4;’s, say B, which is §-close to £id.

Fix some cyclical order on P!, Since £ is not in a principal component, there
existi, j,k, £ € {1,..., N} such that

u(A;) <s(Aj) < u(Ax) < s(Ag) < u(4;).

Lemma 4.8 applied to the pair (A;, B) implies that there is an interval containing
u(A;) and u(B), and disjoint from {s(A;), s(A¢)}; in particular u (B) must belong
to the interval (s(A¢), s(A;)). A symmetric argument gives u(B) € (s(A;), s(Ag)).
We reached a contradiction. m

Next, let us prove that connected components of cores associated to a N -tuple in
a non-principal component are non-degenerate intervals:

Lemma 4.10. Fix a non-principal component H < SLQ2.R)YY, and let K C
SL(2,R)N be a compact set. Then there exists 8 > 0 such that for any € € H N K,
each interval composing the unstable or stable cores of & has length at least §.

Proof. Assume that there exists £ € H N K whose unstable core U has a connected
component / which is very small. Recalling Proposition(s) 2.5 (and 2.8), there
exists a product B of matrices in & such that B{UU} C /. Moreover, we can give an
upper bound for || B|| depending on H and K only. If follows that the diameter of
U is small. Consider the shortest closed interval that contains U. That interval is
forward-invariant by each matrix in &. This implies that £ is in a principal component,
contradiction. 1

4.3. Limit cores. The proof of Theorem 4.1 gives some useful information about
the families of cores. We will register that information for later use, however we will
focus on the case of full shifts, where cores are defined differently (see §2.4.2).

The analogue of Lemmas 4.6 and 4.7 for full shifts are the following:

Lemma 4.11. Let (A1,. .., Ayx) be uniformly hyperbolic w.r.t. the full shift, and let
U be the unstable core. For any v € AU, then there exists a symbol i such that
A7 (v) € 9U.

The proof is analogue to that of Lemma 4.6, but let us give it for the reader’s
convenience:
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Proof. Letv € dU;thenv € K¥, sov = e*(x). Let v/ = A7 '(v) where i = x_i;
then v/ = ¢*(o7'(x)) € K*. Since v € dU, there is an open interval I disjoint
from K* with endpoints v and w € K*®. Then the open interval /I’ = Al._l(l ) is
disjoint from K*, has one endpoint v" in K* and the other in K*. This implies that
v e dU. O

From this lemma one easily gets:

Lemma 4.12. Let (A, ..., An) be uniformly hyperbolic w.r.t. the full shift, and let
U and S be the unstable and stable coves. Let v € dU. Then

v=A 'Ail'M(Ajk"'Ajl)

im v -
for some choice of indices. (m can be zero, meaning that v = u(A; ... A;).)
Analogously, if v’ € 3S then

r . 4—1 —1
for some choice of indices. (p can be zero.) Moreover, k, m, £, and p are less or
equal than the rank of U.

Using the last lemma, one shows:

Proposition 4.13. Let H be a connected component of the hyperbolic locus relative
to the full shift on N symbols. For eachi € N, let (A1(i),..., An({)) € H have
unstable core U(i ) and stable core S(i). Suppose that (A1(7), ..., An{7)) converges
to some (Ay, ... AN) in the boundary of H asi — oo. Also assume every product of
the A;’s of length less or equal than the rank of the cores is different from tid. Then
the sets U(i )y and S(i } converge (with respect to the Hausdorff distance) as i — o0,
say to sets U and S. Moreover, the intersection U M S is finite and non-empty.

We call the sets U and S given by the proposition the limit cores of (Ay,..., An).

If H is anon-principal component then, by Proposition 4.9, the no =id assumption
in Proposition 4.13 is satisfied; hence the limit cores are well-defined for each point
in the boundary of H. Moreover, we have:

Proposition 4.14. If an N -tuple belongs to the boundaries of two different non-
principal components, then the respective limit cores are precisely the same.

However, we do not know if the boundaries of two different components can meet.

Proof of the proposition. Fix an N-tuple (A1, ..., Ay) in the closure of a non-prin-
cipal component H. Let U and S be the limit cores with respect to H .
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Let K¥ be the set of all points of the form up or Q(up), where P and Q are
products of the A;’s. (Recall that up is defined, by Proposition 4.9.) Analogously,
let K2 be the set of all sp and @' (sp). Then K¥ < U and K C S. Also, by
Lemma 4.12, dU C KY and 39S C K.

We claim that no point in K¥ is isolated. Indeed, consider a point x = Q{up).
By Lemma 4.10, 0U, and hence K¥, contains at least 4 points. In particular, we can
find y € K¥ different from u p and from sp. The sequence Q P"(y) is contained in
K} ~ {x} and converges to x. This shows that x is not isolated. Symmetrically, no
point in K7 is isolated.

It follows from these facts that the complement of the union of the connected
components of P! ~ K¥ (resp. P! ~ K2) that intersect K¢ (resp. K¥) is precisely U
(resp. S). This procedure describes U and S without referring to 1, so the proposition
follows. O

4.4. An addendum for the full 2-shift. In the light of the general results about
boundaries obtained so far, let us come back to the case of the full rwo-shift and give
some additional information complementing Theorem 3.2:

Proposition 4.15. Let H be a non-principal connected component of the hyperbolic
locus relative to the full shift on two symbols. Then the following holds:

(1) No Zidentity products exist for a pair on the boundary of H.
(i) No heteroclinic connection occurs on the boundary of H.

(i11) There are only three words (other than their cyclic permutations and powers)
that can become parabolic on the boundary of H.

Proof. Let H be a twisted component. Assertion (i) follows from Proposition 4.9,
For (Ay, A1) € H,thecores U and S are described precisely in §3.8.7 —in particular,
we have the following:

(a) The sets dU and 9S are respectively formed by unstable and stable directions
of certain “special” products of Agp’s and A;’s.

(b) If points v € AU and w € 35 are “neighbors” (in the sense that there is an
open interval with endpoints v and w that does not meet U U ) then they are
respectively the unstable and stable directions of the same “special” product of
Aop’sand Aq’s.

(¢) There are three words 1n the letters Ag and A, which are not powers and that
form, together with their cyclic permutations, the full list of special words that
need to be considered in (b) and (c).

(d) No connected component of U intersects both Ag(U) and A1(U).
It follows from (d) and Lemma 4.11 that:
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(e) Forevery v € U there exist a unique i € {0, 1} such that A; ' (v) € 3U.
Repeated application of (e) gives:

(f) For any vy € dU, there exists a unique sequence i1, f», ...in {0, 1} such that
Vjt1 = Ai_jl('l)j) c dU.
Now it follows from (a) that:

(g) For any vy € 90U, if v; is the sequence given by (f) and £ is the least positive
integer such that vy € {vg,...,v¢—1} then vy = vy.

Now let (Ag, A1) be in the boundary of A, and let U and S be the limit cores
given by Proposition 4.13 (which are well-defined because H is not principal). By
Lemma 4.10, U and S have the same number of components as before taking the
limit, and none of these components is a point. It follows that Properties (d) and (¢)
above are also true for the limit cores. Property (f) follows from (e). So (g) makes
sense for the limit cores, and it is true by continuity.

Any vy € U equals u(P) where P = A;, ... A;, and the indices 7; are as in
(f) and (g). The word P is not a power, and so is one the special words alluded in
(a)—(c). Let wg € a5 be the neighbor of vg. (Precisely, we define wg as vg if vy € S,
otherwise we let wy € .5 be so that there 1s an open interval with endpoints vy and
wy that does not intersect U U S'.) We infer from property (b) that wo = s(P). In
particular, vo € S implies that P is parabolic.

Now, suppose vy is also given by Ru{Q), where @ and R are words in the letters
Ap and A;, with R allowed to be the empty word (corresponding to id product).
It follows from uniqueness in (f) that the infinite words RQQ @ ... and PPP ...
must coincide. In particular, Q is (as a word) a power of a cyclic permutation of P.
Therefore @ is parabolic (as a matrix) if and only if so is P.

By contradiction, assume there is a heteroclinic connection Ru(Q) = s(P’), for
some products P’, O, R, of Ay’s and A;’s. Then vy = Ru(Q) belongsto U N S.
Therefore, as we have seen, Q has to be parabolic. This is forbidden by definition
of heteroclinic connection, so assertion (ii) of the theorem 1s proved. Assertion (ii1)
follows similarly. O

4.5. An example of heteroclinic connection. In this subsection, we introduce what
is probably the simplestexample of heteroclinic connection for a principal component.
The base dynamics is full-shift on 3 symbols. The component H of the hyperbolicity
locus # is the one that contains triples (A, B, C) such that (A, B) € H (the positive
free component for the full-shift on two symbols) and C = —AB; such triples are
indeed obviously uniformly hyperbolic. The associated stable and unstable cores
have two components.

Proposition 4.16. A triple (A, B, C) belongs to H iff the following conditions are
satisfied:
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(i) (A4.B) € HY;
(i) rC > 2;

(iil) the stable and unstable directions for C satisfy

Sq4 < UC < S4B, UAB < SC < Up, Sq<Ugc <S¢c <Up,

(iV) Sy < CMB < U(C.

Clgy —

Figure 8. A possible situation for (A, B,C) € H in Proposition 4.16; the cores are indicated.

Proof. Let H be the set of parameters defined by the 4 conditions in the proposition.
Clearly, H is open in (SL(2,R))3. Tt is also clear that the boundary of H does not
intersect the hyperbolicity locus #, and that H contains s any triple (4, B, —AB) with
(A, B) € HZ. To prove that H = H, we prove that # is connected and contained
in J.

To see that H is connected, we fix (A,B) € HY .4 and check that the set of C
satisfying (ii), (iii), (iv) is connected. Indeed, the set of positions for (u.,s.) in
Pl x P! determined by (iii) is connected, and for any such position, condition (iv) is
equivalent to some condition tr C' > k (> 2). This proves that H is connected.

Let (A, B,C) € H. Define

Ugc = [min(uy, Cup), max(uqp,uc)l, Sq=[min(sgq, A~ sc ), s4],
Up = [up,max(upy4, Buc)], Spc = [min(s4p, sc), max(sp, C_lsA)],
U=Uyc UUpg, S=84USpc.
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We have then

AU)YU CU) C Uyc, BU) C Up,
B YSYucYS) c Spe, ATH(S) C Sy.

It follows from Lemma 2.7 that (A, B, C) is uniformly hyperbolic (with cores U, .S).
The proof is now complete. O

We have seen in the proof of the proposition that for fixed A, B, uc, s¢ sat-
isfying (i), (ii), (iii), the set H is determined by a condition tr C > k for some
k =k(A, B,uc,sc) > 2. If we take C = C, we still have a triple (A, B, Cy) such
that (i), (ii), (iii) are satisfied and Coup = s4. In a neighborhood V' of (A, B, Cy) in
(SL(2,R))?, the equation Cup = s4 determines a smooth hypersurface contained
n the boundary of H . This part of the boundary of H corresponds to a heteroclinic
connection.

We will investigate in the next two subsections what happens on the side of the
hypersurface not contained in H. We already know from Proposition 6 in [13] that
the other side V ~ H intersects the elliptic locus & (the (open) set of triples that have
an elliptic product.) In the sequel we will construct two examples displaying different
phenomena near boundary points:

« In one example (Proposition 4.17) we have V ~ H C €.

 Inanother example (Proposition 4.18), any neighborhood V' intersects infinitely
many hyperbolic components.

For convenience, we will assume that sy < u¢c < uy and sp < s, < up (as in
Figure 8).

4.6. Heteroclinic connection with elliptic products on the other side. Let H C
SL(2,R)? be the hyperbolic component introduced in §4.5.

Proposition 4.17. There there exist a point (Ay, By, Co) in the boundary of H, and
a neighborhood V- C SL(2,R)? of (Ao, By, Co) such that the following holds:

» If(A,B,C)e VNadH then C -u(B) = s(A).

« If(A,B,C) € V~H then (A, B,C) € & (thatis, there exists an elliptic product
of A, B, and Cs).

For another example with similar properties, see Proposition 7 in [13].
Proof. Fix numbers A, 6, and v such that

A2 +1 2
)L2_1<9<m, v > f. (17)

1< A <1442,
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Define three matrices in SL(2, R):

- A 0 (A 60.—2AY 0 -1
AO_(—Q(}L—A‘l) A‘l)’ BO_(O At ) CO_(1 v+v_1)'

All matrices have traces > 2. The stable and unstable directions are ordered as
follows:

u(Bo) = ((1)) < 5(Ag) = ((f) < u(Cy) = (_lv) < u(Ag) = (_19)
< s(By) = (_91_1) < $(Cy) = (_VI_I) < u(By).

Also, Cy(u(By)) = s{Ap). Finally, due to one inequality in (17) we have
tr AgBy = A2 — 02X —A"H2 + 172 < 2.

We conclude that (Ao, Bo, Co) belongs to the boundary of the hyperbolic component
H described in §4.5. Let V be a small neighborhood of this 3-tuple such that V ~ H =
(A, B.C)e V; u(B) < C -u(B) < s(A)}. To complete the proof, we will show
that this set is contained in &, provided V' is small enough.

For any (A4, B,C) € V ~ H, take a basis of R? close to the canonical basis
and formed by vectors collinear to # (B}, s(A), so that the matrices of A, B, and C

become
L A 0\  p_ [k BGa-27Y
A=A —AThH AT —\0 At ’

_ft —1+1td
c=(i )
for certain numbers A1 and 1> close to A, 8; and @ close to €, d close to v + v71,

and 1 close to zero. Since u(B) < C(u(B)) < s(A), t must be positive.
We are going to look for elliptic products of the form A™CB". So we write

W (A0 . (e
A _(—éll(nﬂ Ar"’)’ . _(02 ?25”)’

with xi1(m) = 61 (AT — AT™) and & (n) = 62(A] — AZ™). A computation gives

and

w AMCB" = ATAS — & (m)tEa(n) — E1(m) (=1 + td)AS"
+ A" E(n) + A dAS"
= —v(m,n)t +u(m,n),
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where
v(m,n) = ATA5(616: — 1) (1 + O + A5°M), (18)
u(m, n) = O A" + BATTAL + OAT"A™). (19)

Choose a sequence {my, ny ) (depending on A, and A, only) starting at {(mg, ng) =
(0, 0), such that for all k, (mg 41, nx+1) 1S either (my + 1,ng) or (mg, ng + 1), and

Ayt < ATRASTE < . (20)

Write v = v(myg, ng), up = u(mg,ng). Assuming V is sufficiently small, there is
some constant k (not depending on (A, B, C) in V') such that vy > 0 and uz > 2
for every k > ky.

Let

§ = max (|[A1 — Al, [ — A|, |61 — 6], |62 — 0], |[d —v—v7"|).

(Notice that ¢ does not appear above.) Let @5(1) indicate a quantity that goes to zero
as 8§ — 0. It follows from (18), (19), and (20) that

Bl _ A+ 0Os(l), 26+ 0s(1) <up <6+ )L_l) + 0s(1). (21)

For k > k, define intervals

Ur —2 up + 2
IkZ(Olk,ﬁk)Z( k2 Tk )

Uk Uk
Each I depends on Ay, A,, 61, 65, and d, but not on t. Also,
| tr A"« CB"™ | <2 iff € I.

We claim that if § is sufficiently small then I N Iz # @ forall k > ky. Indeed,
using (21), we get

% _ =2 Ve OO HATH=2 0 o
Br+1 g1 +2 v T 20 +2 ’

Gt Mer1—=2 v 00 +ATH-2 1 o) 23)
Br U +2  Vpy1 20 +2 A

From the assumption 8 < 2/(A — 1) in (17), it follows that the right-hand side of
(22) is strictly less than 1 + @g(1). The same is true for the (smaller) right-hand side
of (23). Thus we have shown that if k¥ > k¢ and & is small enough then o < Br+1
and @41 < P, in particular I N Ix+1 # @. Hence for small 8, we have

| 7 = (liminf ey, sup Bic) D (0, Bry)-
b= k=ko

ks e
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The number B, has a positive lower bound on V. Therefore, reducing the neighbor-
hood V of (4, By, Cp) if necessary, we have that for any (4, B, C) € V ~ H, there
exists some k > ko such that the corresponding ¢ belongs to the corresponding /.
This means that the matrix A”* CB"* is elliptic, showing that (A, B, C') belongs to
the elliptic locus &. O

4.7. An example of accumulation of components. Again consider the hyperbolic
component A for the full shift in three symbols that was introduced in §4.5.

Proposition 4.18. There existsapatht — (A, B, C(t)) with the following properties:
(i) (A,B,C(t)) € H fort < 0.

(ii) At the parametert = 0, the heteroclinic connection C(0) - up = s4 occurs; in
particular, (A, B, C(0)) belongs to 0H.

(itii)) There exists a sequence of hyperbolic components H;, all different, and a se-
quence t; > O converging to 0 as i — oo such that (A, B, C(t;)) € H; for
alli.

(iv) There exist a sequence s; > 0 converging to Qasi — oo such that (A, B, C(s;))
belongs 1o the elliptic locus € for all i.

Proof. Take (A, B) in the positive free component of the full 2-shift. Assume that
the order in P! is so that

Up <S4 <Ug < Sp <Up.
Take points p, g € (1 p4,Sp4) such that
Uupg < BA-qg < p<q < spa.- (24)
Define the following cross-ratios (recall formula (2) from §2.2):
o = [ug, p.q,54], B =I[up, BAq. p,sp]. (25)
Then «, B > 1. We claim that the choices of 4, B, p, g can be made so that
-1 —-1)>1. (26)

Indeed, if B is replaced with BT with T > 1 (keeping A fixed) then (4, B) remains
in the free component; moreover (24) still holds keeping p, ¢ (and hence «) fixed. If
T is large enough then so is f and (26} is satisfied.

If u, v are the spectral radii of A, B, respectively, we also assume that

logv
log pt

¢ Q. (27)
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Take any smooth path r — C(t) such that
rC(r) > 2, scu) € (5B, up), ucy) € (sa,ugq) forallr,

and 5
C0) - up = s4, gC(x)-uB\t:O <o0. (28)

(Inparticular, C(¢)-up belongs to (s4, u ¢ ),resp. (sc, s4) for small negative, resp. pos-
itive 7.) By Proposition 4.16, (A, B, C(t)) belongs to H for all small ¢ < 0. So
assertions (1) and (11) of the statement hold.

Next define (disjoint) intervals
I, = B" -[Bp, BAq], J,=A""-[p.q] forintegersn,m > 0.
Define also
1} =[up,B" ' 4q] forn > 0.

(See Figure 9.)

In the manifold P! we take charts using euclidian angle; these serve to com-
pute derivatives and speak of length of intervals. Let k > 0 be the derivative of
C(0): P! - P! atup. By (26), we can find & > 0 such that

(@ — DB = D(1 = 2ke) > 1. (29)

We claim that
|1,
| Tin; |

i

there are sequences n;, ni; 1 +oo such that k! — 2¢ < <k l—s (30)

Indeed, there is a projective chart (see §2.2) P: P! — R U {oc} such that P o B o
P71(t) = v72¢. It follows that the limit lim v*"|*| exists. Analogously, the

n——+oco

limit lirJrrl 2™ J,| exists. By (27), for any N the set {2
m—-1+0oo

dense in R ;. So (30) follows.
Define also intervals

2% m, n > N}is

Jo = [B""1Aq. B"pl, I, =[A""q.s4]. (31)
Next we claim that if 7 1s large enough and 7 is sufficiently close to zero then

1C() - Ly | < [T (32)
Q@) - T | > . (33)
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Afmq

FER T

BAq P

Figure 9. A “non-strict” multicone for (A, B, C(4;)).

On the one hand, |C(¢) - 1, |/|1;,| — k asi — oo and t — 0. So, by (30),

C()y-1*
lim sup €0 -y <k l—g) <1,
i—=o0, t—0 |Jmf|

proving (32). On the other hand, it is easy to see that

J J,
¢—1= lim b” ﬁ—1=1m|”|

m—+o00 |];;<1|7 n—>+oo|],;"|'

So we can write

C@ty-J J,.
lim inf &4 2 i = i lim inf |~n’|
i—00, t—0 |If;k’li i—00 |I?;k’ii

|7,
ny

= (@ — 1)(B — Dk liminf

—00 |Jmi|

CMH

“T—C()-B"p
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> (a—D(B— (k™' —28)  (by (30)
> 1 (by (29)),

proving (33).
Now, it follows from (28), (32), and (33) that for every sufficiently large 7, there
exists a small #; > O such that

C(t;) -I:i € Jym, and C(4)-In,—1 € (s4,uc). (34)

Indeed, it is sufficient to take # such that C(z;) maps the right endpoint of 77 inside
the interval J;,; and close to its right endpoint. (See Figure 10.)

Inl'fl

Figure 10. Proof of (34).

Next we claim that for every sufficiently large 7, the 3-tuple (A, B, C(y;)) is
uniformly hyperbolic. For simplicity of writing, let 7 be fixed and let n = n;,
m =m;, C = C(t;). Let V = V; be the interval [C(¢;) - B" p, Ag]. The set (sce
Figure 9)

Ui:I;:iu[ni_lu---uloufou---u.]miUVi (35)

18 mapped 1nside 1itself by each of the maps A, B, and C. Indeed, the intervals are
mapped into themselves as follows:

¥ Iy o oo Ly Jo S o Ay V
AV V. vV LV OV By o dyq V
BlI* I Iy ... &K I & .. &
Cldw V. V. ..V V V .V v

We want to apply Lemma 2.7 with U = U; given by (35); thus we need to define
also a set S = S;. We will make use of the symmetry of the example. Define a new
family of triples

(A, B,C(t))y =(B~ L, A7, c()™).
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We claim that the new triples meets all the requirements we imposed on (A, B, C(t)),
if we consider on P! the reverse cyclical order. Indeed, let p = p and ¢ = BAg.
Define new cross-ratios &, f as in (25) (but with reversed order); then ¢ = f and
B = «, so the new (26) still holds. Other conditions as (27) and (28) are easily
checked. Consider the new families of intervals I, Jj,, I - (it is convenient to swap
the letters in the indices); then 1, is the gap between J,, and J,,41 and J, is the
gap between [, and /,4,. (In particular the notation (31) is coherent.) The relevant
condition on m;, n;, t; 18 (34). Its dual version is:

Cti)™ Iy €Jm and C(t:) ' Imj—1 € (sc.up). (36)

An inspection of Figure 10 shows that it is true. Let V, = [Ag, C(t;)~ LA™ p]. Then
the set .S; = I* U I . [ vmn ) Io U Jo U U J ;U V 1s sent inside itself for
A~!, B~ and C(ri)_l.

This still not good if we want to apply Lemma 2.7 because S; is not disjoint from
U;. To remedy that, it suffices for each i to make Jy slightly smaller (making sure
(36) is still satisfied) and modify the definition of .S; accordingly. In this way we can
apply the lemma and conclude that (A, B, C(;)) is hyperbolic.

Next, we claim that:

-2 itk > 1 £ > 1,
k620 = wC@)Biak]< 2 Thzmitlandbzm+1 o,
> 2 otherwise.

Although the proof 1s not difficult, we prefer to postpone it to §5.4. Recall from (30)
that the sequences (#;) and (m;) are strictly increasing. Then it follows from (37)
that (A, B, C(t;)) and (A4, B, C(t;)) do not belong to the same connected component
of #€ if i # j. This proves assertion (iii) of the proposition.

At last, by (37) again, for every i there exists s; between t; and ;41 such that
tr C(s;) BTl 4™+l = 0,50 (A, B, C(s;)) belongs to the elliptic locus. This proves
the last assertion of the proposition. O

Remark 4.19. With a little additional work, one can find the unstable and stable cores
for (A, B, C(¢;)); they are given by the subintervals below (again we write n = n;,
m = m;, C = C(t;) for simplicity):

[up, w(B"T1am 1y c 17, [s(B"T1AmTL1CY, C7lsy) Ty,
[B"A™Cup, u(B"A"TICRY C I,_1, [s(B"A™TICB), B~1C1s4] C Jo_y,

[BA" Cug, u(BA"T1CB™)] C I, [s(BA™T1CB™), B™"C 's4] c Jo.
[A”Cug, u(AmCB" 1 A)] C Jo. [s(A"CB*T14), A7'B"CLsy] C I,
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[ACug, u(ACB" ' A™) C Jpym_1. [s(ACB"T1 4™y, A= B "C\sy] C L1,
Cug, u(CB"T1 A"+ c J,,,, s(CB" T amth s 0c Ik,

i
[CB" A" Cup, u(A"TICB"THlcV, [s(A"TICR™), ¢ la™™B"C s V.

In particular, the rank of the cores for the component H; is m; + n; + 3; so we get
another proof that H; # H; if i # j.

5. Combinatorial multicone dynamics

5.1. The setting

5.1.1. A pair of combinatorial multicones is a finite cyclically ordered set M which
is partitioned into 2 disjoint subsets M, M, of the same cardinality which are met
alternately according to the cyclic ordering. The subset M is the stable combinatorial
multicone, the subset M, 1s the unstable combinatorial multicone in the pair. The
integer g = #M; = #M,, = %#M is the rank of M .

5.1.2. A correspondence on M is a subset of M x M.
Given two correspondences C, C’ on M, their product C o C”’ is defined by

C oC" = {(x,z): there exists y € M such that (x,y) € C, (y,z) € C'}.

This composition law is obviously associative; the diagonal in M x M is an identity
(both left and right). Thus correspondences form a monoid.

5.1.3. LetC be acorrespondence on M. We say that C is monotonic if the following
properties hold:

e C C (Ms X Ms) L (Mu XMu);

» CN(MsxM;)isthe graph {(Cs{(xy), x5); x5 € Mgtofamap Cs: My — M,

» CN(M,xM,)isthegraph {(x,, C,(x,)); x, € My tofamapC,: M,, > M,,;

» C can be endowed with a cyclic ordering such that the element next to (x, y)
is either (x*t7,y) or (xT, y*) or (x, y*1), where xT (resp. y*, xT+, yT1)
denotes the element next to x (resp. to y, x*, y¥).

Observe that the cyclic ordering on C is uniquely defined by the latter property:
if for instance (x,y) € M, x M,,, then either x™ belongs to the image of C; and
the next element is (x T, y1), or it is not the case and the next element is (x+ 7, y).
Similarly, if (x, v) € My x M, then the next element is (x*, y ™) if y* € Im C,,,
and (x, y ™) otherwise.

The last condition (existence of the cyclic ordering) in the definition of mono-
tonicity may be reformulated as follows:
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o for (x,, vy) € C N (M, x M) we must have x,7 = Cy(y,[) if x;} € ImC;
and y, = C,(x ) if x;7 & Im Cy;

o for (x4, y5) € C N{(Myx My) we musthave yJ = C,(x})if y € Im C, and
Xy = Cs(y;_+) if y;_ ¢ Im C,.

Obviously, a monotonic correspondence must satisfy
#C =#M = 2 1k(M),
1 <#ImC; = #Im C,, <rk(M).

5.1.4. Examples
» The diagonal (or identity) correspondence is monotonic.
e letay, e My, a, € M,; set
Cag.a, = My x{ay} U {as} x M

(i.e., Cs, Cy are the constant maps with values ay, a, respectively). This cor-
respondence is monotonic and is called a constant correspondence (with values
ag, ay ). The left or right composition of a monotonic correspondence with any
constant correspondence is a constant correspondence.

* See Figures 11 and 12 for more examples.

5.1.5. Elementary properties

5.1.5.1. The composition C o C’ of monotonic correspondences is monotonic.

Proof. 1et Cy, Cy, C;, C}, be the maps associated with C, C’. From the definition
of the composition law, we see that C « C' € (M x M) U (M, x M,,} with

(C o CyN (M x M) = {(Cs o Ci(xs), Xs); X5 € Ms},
(C @ C/) N (Mu X Mu) = {(xuv C;; G Cu(xu)); Xy € Mu}-

Let (xy,zy) € (C o CY N (My x My); set yy, = Cy{xy), so we have z, = C/ (yy).

o If x ¢ ImCy, then also x; ¢ ImCy o C. and we have y, = C,(x 1),
zy = Cl o Cy(xT).

« Assume x;7 € Im Cy; then xF = Cys(y) if and only if y € M, is between
yu = Cy(xy,) and Cy(x, 7). If no such y belongs to Im C/, we must have

CL/i (Cu (x;_—i_)) = C'L/t (Cul(xu)).
Otherwise, let s be the first y in Im C] between y,, and C,, (x;7 7); we have

Culys) = CuCulan)) = 2w, ys = Cilzy), X = Co(Cy(2)).
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Figure 11. Two (constant) monotonic correspondences A and B (related to a free uniformly
hyperbolic pair). The rank of M is 2. The borders of the square should be identified in a
torus-like way. Circles and squares denote points in M,, x M,, and M x M, respectively.

Figure 12. Two monotonic correspondences A and B (related to the situation of Figure 2). The
rank of M is 5.

We have checked the first half of the condition for the existence of the cyclic
ordering on C o C’; the other half is checked in a symmeltric way. O

5.1.5.2. We have seen that
#ImC; =#ImC,,.

In particular, Cy 1s a constant map iff C,, 1s a constant map; in this case, the values of
Cy and C,, are independent.

However, when Cy is not a constant map, there is at most one monotonic corre-
spondence C such that C N (M x M) is the graph of Cs. (And similarly when we
exchange the roles of Cy and C,,.) More precisely, such a monotonic correspondence
exists if and only if the map Cy 1s monotonic (increasing) in the following sense: For
any x; € M, either Cy(xJT) = C;(x;) or there is no point of the image of Cj
strictly between Cy(xy) and Cy(x}T); we then have x;- = Cy(x,) for x, € M,
between Cs (x;) and Cy{xFT).
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5.2. Free monoids of monotonic correspondences

5.2.1. We have seen that the monotonic correspondences on a pair of combinatorial
multicones M = M LI M,, form a monoid that we denote by € (M ).

Let N > 1 andlet Fy be the free monoidon N generators. Let : Fy — €(M)
be a morphism, uniquely determined by the images C W .., ™ of the canonical
generators of Fy.

5.2.2. 'The morphism is called hyperbolic if there exists £ > 1 such that the image
of any word of length > £ in the generators is a constant correspondence.

5.2.3. The morphism is called righr if we have

N N
Jmc? =M, and | JimC® = M.

i=1 i=1

A justification for this definition and terminology is the following: assume for
instance that some x;, € M,, does not belong to any Im C,f), 1 <i < N;then we
have

CO)T) =CcD(x)T) foralll <i < N.

Consider the pair of combinatorial multicones M’ = M| U M,, where M| = M, ~
{x;} and M is deduced from M by identifying (x!,)~ with (x/)*; M’ is equipped
with the obvious cyclic ordering. One can define in an obvious way correspondences
C@ 1 <i < N onM’, and the study of the morphism ®: Fy — € (M) reduces
to a morphism &': Fy — €(M’) with a smaller pair of combinatorial multicones.

5.2.4. We would like to analyze tight hyperbolic morphisms.

For N = 1, a morphism is tight iff the correspondence C (V) is invertible, and then
it cannot be hyperbolic except in the trivial case where the rank 1s 1.

In §5.5, we will determine all tight hyperbolic morphisms when N = 2.

5.3. Relation with matrices. Let us see how a uniformly hyperbolic N -tuple of
matrices induces a tight hyperbolic morphism.

Let (A1,...,Ax) € SL(2,R)" be uniformly hyperbolic. Let U and S be re-
spectively the unstable and stable cores. Let M,,, resp. M, be the set of connected
components of U, resp. S. Give M = M,, U M the cyclic order induced from P!,
Then M is a pair of combinatorial multicones.

Foreachi = 1,...,N,let C@ be the subset of (M,, x M,,) LI (M x M) formed
by the pairs (x, v) such that 4;{(x) Ny # @.

Lemma 5.1. Each CY is a monotonic correspondence. Moreover, the morphism
O: Fy — C(M) determined by CV, ..., C™N) is tight and hyperbolic.
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(The same ® could also be obtained from a tight multicone M and its dual P!~ M
in an obvious way, see Proposition 2.8.)

Proof of the lemma. Fix i, and letus show that C @ is monotonic. First, if (x,, vy ) €
CO N (M, x M,,) then 4; (x,) C vy, 50 x,, uniquely determines y,. Write y,, =
C,Si)(xu). Analogously, if (x, y) € CW N (My x M) then A;l(ys) C Xy, SO Vs
determines x; = Cs(i)(ys).

Next, let (x,, y,) € C¥ N (M, x M,,). In the case that x; ¢ Im P then we
must have C;Ei)(xj ) = w. (Because if CLEi)(x:{ +y £ P (x,) then there would
exist a point in the unstable core S between the intervals C;Ei)(xu) and CLEi)(x,‘,;|r DR
this point would be sent by Ai_1 into a point in S between x,, and x, ™, and hence
in x;7, contradicting the fact that x;” & Im ) And in the case that x,m €lIm cl
then we must have C)(y1) = x. (Indeed, x is the C image of some z; if
zs = v, we are done; otherwise y,! is between the U-interval y,, and S-interval zg;
then the interval A; 1(y;") is between A; 1 (yy) D xu, and A5 1(z;) C x;, and so it
must be contained in the interval x;7, showing that x;7 = C’(y1).) This proves
“one half” of the monotonicity of C @ and the other half is completely analogous.

The induced morphism @ is clearly tight, while hyperbolicity follows from Propo-
sition 2.5. o

In view of the lemma, we call ® the morphism induced by (A1, ..., Ay). Exam-
ples from Figures 11 and 12 are induced by matrices.

Sometimes we call these data (that 1s, the morphism @) the combinatorics of
(Aq,..., Ayn). The combinatorics is an invariant in the sense that in remains the
same inside each connected component of . (More precisely, if two N -tuples
belong to the same connected component then they induce conjugate morphisms. )

Let us very briefly return to the topic of the boundary of the hyperbolic compo-
nents:

Theorem 5.2. Non-principal components of # with different combinatorics have
disjoint boundaries.

Proof. For each N-tuple in the boundary of a non-principal component H , the limit
cores are defined (by Propositions 4.9 and 4.13). These limit cores induce a tight
hyperbolic morphism @ in an obvious way. In fact ® is the same (ie, conjugate to
the) morphism determined by the component 7 itself. Now, if the N -tuple belongs
also to the boundary of another component Hy, then the limit cores relative o0 H
are exactly the same as before, by Proposition 4.14. It follows that / and H; have
the same combinatorics. n
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5.4. Winding numbers

5.4.1. The winding numbers for a uniformly hyperbolic NV-tuple. As mentioned
above, the combinatorics ®: Fy — € (M) is an invariant on #. A much more
elementary invariant was introduced in [13]; it is the map 7: Fy — {+1,—1} that
gives the signs of the traces.

Here we will introduce another elementary (in the sense that it does not depend
on the multicones) invariant called the winding number;itisamapn: Fy — Z.

Fix a cyclic order on P!, and identify P! with R/Z via an orientation-preserving
homeomorphism. So any A € SL(2, R) induces an orientation-preserving homeo-
morphism A: R/Z — R/Z. Then we can lift A with respect to the covering map
R — R/Z and obtain a homeomorphism A: R — R.

Now, let a uniformly hyperbolic N-tuple (A1,..., Ay) be given. Since each A;
18 hyperbolic, it has a unique lift A; whose graph intersects the diagonal of R?. Given
aword @ = A;; ... A;, its winding number n(w) is defined as the only integer »
such that

/fij o---o/fil(xo) = xp +n forsome x; € R.

It is clear that the winding number map n: Fy — Z is an invariant, ie, it depends
only on the connected component of # the hyperbolic N -tuple is in.

Let us see that the trace signs 7 essentially depend only on n. More precisely,
if tr Ay, ..., tr A; are all positive, then the sign of tr A;; ... A; is (—1)"*, where n is
the winding number of the word. To see this fact, first notice that if we substitute
the covering map R — R/Z = P! with the double covering S' — P! along the
definition of the winding number, then we obtain the invariant » mod 2. And the
relation between that invariant and signs of eigenvalues 1s (ransparent.

To give an example, let us compute the winding numbers for the positive free
component of SL(2,R)?. Consider a word  in the letters A and B that contains
both (otherwise the winding number is zero). Notice that the winding number of a
word 1s left invariant by cyclic permutations. (That 1s a general fact.) So we can
assume the word is of the form @ = A% Bf1gk2 B2 Akm Bt with all k;, £;
positive. Then the winding number of @ is —m. (The winding numbers are opposite
for the free component obtained from the positive by conjugation with an orientation-
reversing linear map.)

Let us pause our general discussion to give the:

Completion of the proof of Proposition 4.18. We need to prove (37). Letk, £ > 0
and consider the matrix C(z;)B* A*. Notice that its expanding direction is in V if
£ < n; andin J,,, otherwise. Looking at the action of the lifts on that fixed point, we
see that if K > m; 4+ 1 and £ > n; 4 1 then the winding number of is —1, otherwise
it is zero. m
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5.4.2. Combinatorial definition of winding numbers. Fix a pair of combinatorial
multicones M, and let ¢ be its rank. Identify M with Z/24z via some bijection that
preserves the cyclic orders; such identification will remain fixed in the sequel. Let
x € Z + X € Z/247 be the quotient map.

A subset C of Z? is called a lifted correspondence if there exists a monotonic
correspondence C on M such that the following properties hold:

e if (x,y) € C then (%, ) € C;

» there is a bijection between Z and C such that if we endow C with the order
induced from Z then the element nextto (x, y}is (x + 2, y},or (x + 1,y + 1),
or (x, y + 2), according to whether the element in C next to (x, y)is (x1TF, ),
or (T, y%),or (x, yTT).

We also say Cisa lift of C. Notice C is invariant by the translation of Z? by
(29,2q), in other words, C=C+ (2q,2q). Also notice that if C, Cy are two lifts
of the same monotonic correspondence C then there is an unique n € Z such that
C, = C + (2¢qn,0).

Composition of lifted correspondences is defined in a similar manner as for mono-
tonic correspondences. Associativity holds (the proof is similar). Also, the composi-
tion of lifts is a lift of the composition of two monotonic correspondences.

If a monotonic correspondence C is hyperbolic (in the sense that some power of it
18 a constant) then for every lift C of C thereis a unique # € Z such that C contains
a point of the form (x, x 4+ 2¢gn); such number # is called the height of C.

Now let &: Fy — €(M) be a tight hyperbolic morphism. Let ai,...,ay be
the canonical generators of Fy, and let the correspondences CV, ..., C™Y) be their
respective images by ®. Let C @) be the unique lift of C@ of height zero.

The winding number n{w) of a word @ = a;; ...a;, in Fy is the height of the

lifted correspondence Cl)o..coC, The winding number of the empty word is
defined as zero.

(Notice that winding numbers do not depend on the identification between M and
Z/ 2¢7.)

It is easy to see that if the morphism ®: Fy — €(M) is induced by a hyperbolic
N -tuple, then our two definitions of winding numbers give the same results.

5.4.3. A non-vanishing property

Lemma 5.3. If the rank of M is bigger than 1 then there is a word w such that
m(w) = £1.

Proof. Tt follows immediately from the definition of the winding number that, for
any word o and any letter a;, one has

|n(wa;) —n(w)| <1, |n(ag;o)—n(w)] < 1.
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On the other hand, let ey, ¢,, €3, ¢4 be elements of M such that
e1,e3€ Mg, ey, eqaeM,, e1 <ey<esz<ey <ej.

As @ is hyperbolic and tight, there exist words wi; and ws4 such that the image of
w12 1s the constant correspondence C,, ., and the image of w34 i Cese,. We claim
that

n(wiaw3s) = n{wiz) + nlwss) — 1. (38)
Indeed, let C,, ¢, and Cp,e, be the lifts of C,, o, and C,.,, whose heights are n(w15),
n(wsg), respectively. Take integers ky < ky < k3 < k4 such that k; = e; and

k4 — k1 < 2q. Then
(k2. ka +2¢(n(@3s) — 1)) € Coney,  and  (ka.ka + 2 1(w12)) € Corer.
Therefore
(k2. k2 4+ 2q(n(w12) + n(wss) — 1)) € Ceren © Cenes
proving (38). The lemma now follows at once. [

Lemma 5.3 has the following consequence: If we restrict ourselves to N -tuples
(A1,..., Ay) withtr Ay, ..., tr Ay all positive, then there is a unique component of
J¢ where all products of A;’s have positive trace, namely the principal component.
This answers positively Question 1’ of [13].

5.5. Tight hyperbolic morphisms for N = 2. The aim of this section is to prove
the following result:

Proposition 5.4. Every tight hyperbolic morphism ®: > — € (M) is induced by
some uniformly hyperbolic pair of matrices.

5.5.1. When the rank of M is 1, there is only one monotonic correspondence on M,
namely the identity (ie, the diagonal in M x M ). Therefore, for any N > 1, there is
exactly one morphism ®: Fy — €(M). It is tight and hyperbolic.

From now on, we assume that the rank ¢ of M 1is at least 2.

5.5.2. Fix some tight hyperbolic morphism ®: 5 — €(M) and write A, B instead
of CW €@ for the images of the generators of F.

Lemma 5.5, There exist two distinct points x§0), x§1) in M such that

A,(x) = 4, D), B(x™) = B, (V).

Similarly, there exist two distinct points xf,o), x,gl) in M,, such that

Ay = A,  Bulwly = Byl
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Remark 5.6. We will see later that {x(O) 51)}, {x,go), xul)} are uniquely determined
by these properties.

Proof of the lemma. We prove the first half of the lemma. Take two distinct points x;,
x§ in M. If the conclusion of the lemma does not hold, one can construct inductively
arbitrarily long words w such that

[ (w)]s(x5) 7 [Pw)]s (),

which contradicts hyperbolicity. [
55.3. Let x§0), (1), x,go), xul) be as in Lemma 5.5. Renaming if necessary x( ) and
x§ ), we can assume that the image of A,, contains a point between x( ) and x(l).

Lemma 5.7. The image of A, is the set of points in M, between x( ) and xgl) The

(1) and x(o).

image of By, is the set of points in M, between x
Proof. As Aj (x§0)) =A (xgl)) it follows from the definition of monotonicity that
there cannot be any point of the image of A, between x(l) and x(o) Therefore, as

M,, = Im A, UIm B, every pointin M,, between x(l) and xso) belongs to the image
of B,. Exchanging A,,, B,, we get all the conclusions of the lemma. O

In the same manner, after renaming if necessary x,,(,o), xf,l), we see that Im Ay is
the set of points in M between x(l) and x(o) while Im By is the set of points in M
between x( ) (1)

and x,, .
It follows immediately from Lemma 5.7 that x(o) X §1 ), x,go) A x,gl) are now uniquely

defined.
5.5.4. Next we identify invariant intervals for the maps A, By, As, Bs.

Lemma 5.8. We have A, ([x,go),xul)]) C [x,go),xul)] andszmtlarly u([xf,l),xu )]) C
.50 A, 5O € 6O 5O By, 5P € 1O, 0]

Proof. We prove the first statement. As the image of A”%! is contained in the image
of A%, we deduce from the hyperbolicity of ® that there exists x* € M,, such that
Ay (x¥) = x™ and Im A? = {x™} for large n. If one had x™ ¢ [xf,o),xul)] then
one would have A4;'(x*) = {x*}, which is not compatible with Im A% = {x*}.
Therefore x* € [x;‘”, xul)] and A, ([xf,‘”, xul)]) = 4x*}. O
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Fix A 4 W Fix By,

[l

Gy |
xl(lo) ’

(1)
Fix Ay, \ <’/F1x B

Figure 13. The pair of multicones M for /¢ = 2/s.

5.5.5. Recall that we have denoted ¢ = #M,, = #M the rank of M. Let us denote
p=#ImB, =#Im B;, hence qg— p=#ImA, =#ImA;.

If g = 2 then p = 1; both A and B are constant correspondences and these are the
dynamics associated to the free components. We will therefore assume that ¢ > 2.
By exchanging A and B we can assume that p < 4/2.

Lemma 5.9. One has p < 4/2 and x,go), xil) € Im A,.

Proof. Tm A,, and [xf,l), Xy )] N M, are intervals in M,, with respective cardinalities

g— p and g — p+ 1; therefore atleast one of the two points xf,o), xul) belongs toIm A,,,

and exactly one if ¢ = 2 p. Assume that only one of the points xfto), xul) belongs to

Im A,,. Starting with xo, x;, € M, with xo # x;, {x0, x{} # {x,,(,o),xul)} we can
construct sequences (Xn)n>0, (Xn)n>0 in M, such that x, # x, and x, = Cpx,_1,

= C,x,,_, for some C, € {A, B}: indeed one can never have {x,_1,x,_,} #
{x,flo), xul)} as both x,_4, x;,_, belong to Im C,,_;. Such sequences would contradict

hyperbolicity. Therefore the lemma 18 proved. O

5.5.6. Letus summarize what we know so far about the correspondences A4, B. (See
Figure 14 for /g = 2/5.)
As a subset of M x M, A is made of

* a horizontal segment from (xf,o), Fix A, ) to (xl(tl), Fix A,);
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Fix Ay, ‘ @ 4

Fix By Y ,,,,,,,, o

a1 JRxas 0 Fixa,
Fix By Fix By,

Figure 14. The correspondences A and B for r/q = 2/5.

+ a vertical segment from (Fix A;, xs(l)) to (Fix Aj, x§0));

* twodiagonal segments from (x,gl), Fix A,,) to (Fix Aj, x§1)) and from (Fix A, x§0))
to (x,go), Fix Ay).
Here we have
A o ) p 1) g (O o R 0)
xl(to) <Fix A, < xl(ll), x§1) < Fix A; < xs(o).
Similarly, B is made of
* a horizontal segment from (xf,l), Fix B,) to (xfto), Fix By);
* a vertical segment from (Fix By, x§0)) to (Fix By, xgl));

* two diagonal segments from (x,go), Fix By, ) to (Fix By, xs(o)) and from (Fix Bg, xs(l))
to (x{V, Fix By).
We also have

xhgl) < Hx B, < xhgo), xl(lo) < Hx By < x,gl).

We would like to show that ¢ and p are relatively prime and that (A, B) is obtained
from the component described in Subsection 3.8 (or its mirror image). This will be
done by induction on ¢, the case ¢ = 2 having been checked already.

Changing the cyclic orientation if necessary, we may also assume that

xL(tO) < Fix A, < Fix By < x,gl).
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Observe that the pair (A, B) is completely determined by the following data (besides
p.q):

* the number py := #(M, N [x,ff’), Fix Ay,));

* the number gy := po + #(M; N [x§0), Fix By));

» the number § := #(Fix A, Fix By).

Indeed these numbers determine the relative positions of x,f,o) , xf,l) X §O), X s(l), Fix A,

Fix As, Fix By, Fix B on M. Setting p; = p — po, g1 = ¢ — qo, we have

p1 = #(M,, N [Fix Ay, xD)),
g1 = p1 + #(M, N [Fix By, x{)).

For the component described in Subsection 3.8, one checks that pg = po, go = g0,
P1 = P1. 41 = q1, 6 = 0, where »/q is the Farey center of the Farey interval
[P0/q0. P1/q1]. We have to prove these relations in our case.

5.5.7. From A, B we will construct a new par of combinatorial multicones M’ =
M U M of rank ¢’ := g — p, and two monotone correspondences A’, B on M’
which generate a tight hyperbolic morphism. Applying the induction hypothesis will
allow us to conclude.

We define M’ := MU M), where M, :=Im A,, = (x{?, x{Vy N My, and M|
is obtained from M by collapsing the interval [x§1), x§0)] N M into a point denoted
by X’. We write  for the canonical map from M, to M. Observe that A, is constant
on [xgl), x§°)] N M, with value Fix A;. Therefore the composition Ag o 771 is well
defined and is a bijection from M to Im A. (This shows that the asymmetry of the
definition of M’ is only apparent.)

We equip M’ with the obvious cyclic order inherited from M. We define:

Al = A M, Ay =modAsoml,
B, = A,oByM|, B.=moBjoAson !

One checks easily that this defines monotone correspondences A", B on M’. Let
&": F> — €(M’) be the morphism generated by A", B’.

Let us check that @’ is hyperbolic: for any long enough word w’ in A’, B/, the
unstable part w;, is an even longer word in A,,, By; as ® is hyperbolic, the image is
reduced to a point. This proves that w’ is a constant correspondence.

Let us check that &' is tight. Any x|, € M/ can be written as A, (x,) with
X, € M,; as @ is tight, either x,, € M) and x/, € Im A}, or x,, € Im B,,; as
B,(M,) = Im B,, we have x, € Im B}, in this case. Similarly, let x;, € M/; if
xi € w(Im Ag) then x, € Im A}; if x|, € 7w (Im By) then, as Im By = Im Bs Ay, we
have x| € Im B]. Therefore &' is tight.
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As A, is injective on (xs(l), xs(o)) M M,, and the image of this set is disjoint from

A, (Im A,), we have
#Im A, =#Ilm A, — p =q —2p,
and therefore (as Im A}, N Im B,, = &)
pli=ImB,=p, #ImA, =q —p'.

We will apply the induction hypothesis to the tight hyperbolic morphism &’ and
therefore we have to identify the parameters py,, g, 8" for this morphism.
We have

A (x0) = 4 (x{V) = Fix 4,,,
BLx" = BT,
therefore Fix A], = Fix A, and p), = po. Let xé(o), xé(l) be the points in M such

that A, (xi?) = x, 4,y = xV (if Fix Ay, # x{ then x/ is uniquely
determined by this condition; if Fix Ay = x{ then we take x/) = Fix A,). Tt is

easy to see that JT(JC;(O)) £ Jr(va(l)). We have then
AL () = A (V) = ¥,
B! ((x/Yy) = B/ (w(x!V)) = n(Fix By).

This shows that g, = go— po. Fix B = m(Fix B,) andsod’ = §. From the inductive
hypothesis, we must have 6’ = 0, g, = q{,, p{, = pj,» where [ro/q}, ®'=r)/(q'—q})] 18
the Farey interval with center »’/¢’. But then we have also § = 0, po = po. o = qo.
This 1s the end of the proof of Proposition 5.4.

5.6. Non-realizable multicone dynamics. Here we will show that Proposition 5.4
does not extend to every N:

Proposition 5.10. There exists a tight hyperbolic morphism ®: ¥y — € (M) which
is not induced by any uniformly hyperbolic N -tuple.

Recall our definition of cross-ratio (2) from §2.2. It may be useful to bear in mind
that 1 < [a,b,c,d] <ocifa <b <c¢ <d (< a)(where < is the cyclic ordering
on R U {oo}). The following lemma compares certain cross-ratios:

Lemma 5.11. Take eight distinct points in P! with
a <a<b<b < <ec<d<d (<d).

Thenla’,b',c’,d"] <a,b,c,d].
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¢’ b

d a’

Figure 15. Cross-ratio comparison.

Proof. Using an orientation-preserving projective chart (see §2.2) we can identify
P! with the extended line R U {oc}, and also assume that d’ = oc. Then

c—a d—b c—a c—d c/_ai:[a’,b’,c’,d’]- 0
a

b B—n - b b B

la,b,c,d] =

Proof of Proposition 5.10. Consider a pair of combinatorial multicones M = M, U
M, of order 15. Write the unstable combinatorial multicone as

M,={o<a<b<w<c<d<fB<f <d <o<d <o <b < <o <al

Let maps Ay, By, Cu: My, — M, be defined by:

Xy |@ o« w ¢ d B p d o 4 & b I o
Ay(xy) |0 B a o o o w o w © w © ® O O
Bylxy) |/ & B ¢ ¢ d d o o o o o o o o
Culxy) |0 o o o o o o o o o o o o B o

The maps above are monotonic in the sense of §5.1.5.2. Therefore there exist unique
correspondences A, B, C on M whose respective u-maps are Ay, By, Cy, respec-
tively.

Choose some constant correspondences C (4), e C™) guch that the morphism
® determined by 4, B, C,C®, ..., C™) i tight.

Let us see that the morphism is hyperbolic. We only need to consider products
of the correspondences A, B, C, because the others are constant. Inspecting the
following diagram, one sees that any product of length > 4 of the maps A4, By, Cy
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Figure 16. The unstable combinatorial multicone. We will compare cross-ratios of the four
rectangles 0, AQ, BQ, CBQ.

1s constant:
.0, B} o)
/ ) \/
: ~
¥
B
R AW LI e A > {o}
~ N e
By - [ TN -
W > {w'}

Since any correspondence is constant iff so is its unstable map, we conclude that the
morphism & is hyperbolic.

By contradiction, assume that the morphism & is induced by some hyperbolic
N -tuple. Then there 1s a tight multicone composed of 15 intervals, and each element
& € M, corresponds to one of those intervals, say /.

With abuse of notation, let A, B, C indicate the first three matrices of the N -tuple.
Choose four points in the circle: a € 1,, b € Iy, c € 1., d € I;. Then their images
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by A belong respectively to Ig, Iy, 1y, 1. SO
Ab) <a<b < A(c) < A(d) <c <d < A(a) (< A(b)),
and therefore Lemma 5.11 gives
[b,c.d,a]l =[A(b), A(c), A(d), A(a)] < [a.b,c.d].

On the other hand, defining ¢’ = B(a) € 1,7, b’ = B(b) € Iy, ¢/ = Bc) € I+,
d’ = B(d) € 14, then

Cla)<b <’ <Cl)<C()<d <a <Cd) (< Cd)),
and so, using Lemma 5.11 again,
@, b.c.d] =[a',b,c'.d'| <[b,c/,d",a'l =[b,c,d,a].
We have reached a contradiction. O

5.7. Non-linear realization of multicone dynamics. We will now see that any
combinatorial multicone dynamics has a non-linear realization.

Given N homeomorphisms fi, ..., fy: P! — P!, we define a skew-product
homeomorphism F: NZ x P! — NZ x P! over the shift 0: N2 — NZ by

(@, x) = (0(@). o (¥)).

Proposition 5.12. Let CV, ..., CV) pe correspondences on a pair of combinatorial
multicones M. Then there exist

« orientation-preserving diffeomorphisms f1, ..., fx: P! — P!,
* a family of disjoint closed intervals Iz C PL, for £ € M, such that the order
inherited from M is compatible with an orientation of the circle P!

with the following properties:
(1) Foreach& € M, we have f;(I¢) € Icigi)(é.) and f|I¢ < 1.

(ii) Foreach& € My, we have f,71(I;) € Ics(f)@) and (f;,7VY|1; < 1.

(i) If F : NZ x P! <= is the skew-product homeomorphism induced by the f;’s
then its non-wandering set Q(F) is the union of two disjoint compact F-in-
variant sets Ag and A, contained respectively in NZ x U§ em, le and N £xg

UgeMu Ig.
(iv) If the morphism ®: Fy — €(M) induced by the correspondences CW’s is
hyperbolic then the F-invariant sets Ay, and A are topologically transitive.

(v) If the morphism ® is tight then Q(F) intersects NZ x I¢ for every & € M.



Vol. 85 (2010) Uniformly hyperbolic finite-valued SL.(2, R)}-cocycles 875

Proof. LetC M, c™Mpe correspondences on a pair of multicones M .

Choose a family /¢, indexed by & € M, of disjoint closed intervals contained in
the circle P!, all with the same positive length, and such that the order inherited from
M is compatible with an orientation of the circle.

Fix somei = 1, ..., N. Foreach n € Im Cf), there exist a unique connected
component Jn(l) of P! ~ I—lé - I that contains all the intervals 7, such that

(x,n) e CY c M x M. We have
P'= || u [] 2 (39)

geim Cy el C,\"”

Analogously, for each £ € Im C§i), there exist a unique connected component J s(i)
of PY~ LI, 1 ¢t Iy that contains all the intervals 7, for which (¢, y) € € @ In

addition, .
pl= || 70 || I (40)
gcim " netm €Y

Let f;: P! — P! be an orientation-preserving diffeomorphism such that

fi(dd Iy =1, foralln e ImCP, fi(7g) =l I forall & e ImCL.

Then for each £ € M,,, wehave f;(l¢) C ﬁ(cl Jf(fllﬁ)i)(é)) = Iczii)@). Also, f; canbe
chosen (o be linear in /¢. Analogously, foreach § € M, we have f,71(1¢) C chgw@),
and we can take fi_1 | I¢ linear. Then the maps f; satisfy properties (i) and (ii) of the
proposition.

Define two disjoint subsets of P! by S = | |¢cps, fe and U = | Jecpq, Te. Next
we claim that for any 7,

fiPr<s)cuUu, fYP'\U)CS. (41)

Indeed, if x € P!~ S then by (39) x belongs to J for some 77 € ImC”. In
particular, f;(x) € I, proving the first part of (41). The second part follows by
symmetry.

It follows from (41) that all points in NZ x (P! ~ (U U S)) are wandering. Hence
assertion (iii) holds.

Now assume the morphism @ is hyperbolic. Given symbols iy, ..., i,—1, the set
fi, oo fio(P1~ S) is contained in the union of the intervals /¢ such that &

belongs to the image of CLE”_D o---0 CLSO). So & becomes uniquely determined if »
is large enough. By the contraction property (i), we get that

dist (F"(w, x), F"(w, y)) —— 0 uniformly for @ € NZ x,yePl~5.

n——+o0
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Using this, it is easy to show that the F-invariant set{ ),,.., F" (N Z % U is topologi-
cally transitive. In particular, this set must be equal to Q(F) N (NZ x U), that is, A,.
Analogously, one shows that Ay, = ()., F"(NZ x S) is topologically transitive.
This proves part (iv).

The simple proof of assertion (v) is left to the reader. O

n>0

6. Questions

The questions and problems proposed in [13] are solved for the full 2-shift, but for
the general case many questions remain unanswered. To summarize:

Question or Problem from [13] | Full 2-shift General case

QI (trace signs) yes unknown

P1 (trace signs) easy now —use §3.8, §5.4 | unknown

Q1’ (trace signs X principal) no no — see §5.4.3

P2 (principal) - unknown

Q2 (boundary) no no, if Q3’ is “yes” — see Theorem 4.1
Q3 (boundary) ves no (in general) — see Proposition 4.18
Q3’(boundary) yes unknown

Q4 (elliptic products) yes unknown

We will recall and discuss some of those questions, and also propose new ones.
We return to the general situation where X is some subshift of finite type, and #
is associated hyperbolic locus.
6.1. Boundaries of the components

Question 1. Are the boundaries of the connected components of # disjoint?

A result that goes 1n the direction of answering (positively) Question 1 1s Theo-
rem 5.2.

Question 2 (Question 3’ in [13]). Is the union of the boundaries of the components
equal to the boundary of 47

A positive answer to Question 2 would answer Question 2 from [13] negatively
(using Theorem 4.1).

Question 3. If v: [a,b] — SL(2,R)¥ is an analytic curve, does the set y~1(9#)
necessarily have countably many components?
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A negative answer to Question 3 would answer Question 2 negatively (because
the components of # are semialgebraic).

6.2. Elliptic products. Denote by & C SL(2,R)" the set of N-tuples such that
there exists a periodic point for the subshift over which the corresponding product is
an elliptic matrix.

It is shown in [13] that & = #°.

Question 4 (Question 4 in [13]). Is # = &°? Equivalently, is 0# = 08 =
(H U E?

We remark that € is connected: see Proposition A.3 in the Appendix.

6.3. Unboundedness of the components. Let us say that a set Z < SL(2, R)" is
bounded modulo conjugacy if there exists a compactset K C SL(2, R)" such thatev-
ery N-tuplein Z is of the form (RA;R™!,....RAy R 1), forsome (A;,..., Ay) €
K and R € SL{2, R). Otherwise, we say that Z is unbounded modulo conjugacy.

Question 3. Is every connected component of # unbounded modulo conjugacy?

Theorem A.1 in the Appendix says that a set of N -tuples (A4, ..., Ay) is bounded
modulo conjugacy iff the traces of A;’s and A; A;’s are all bounded. Motivated by it,
we pose a stronger version of Question 5:

Question 6 (for full shifts). Are all functions r A; and r A; A; unbounded in each
component?

If A 1s a uniformly hyperbolic N -tuple w.r.t. some subshift 2, we define its (least)
hyperbolicity rate as

p(A) = liminf min { [|A"(x)]|"/"; x € ¥ has period n}.
n—0o00
Of course, p(A) > 1.
Question 7. Is p unbounded in each component?

A positive answer (o Question 7 implies positive answers o Questions 5 (because
of Theorem A.1) and 6 (because p(A) is a lower bound for the modulus of the trace
of any product of the matrices in the N-tuple A).

It is casy to see that p is unbounded in principal components (for full shifts, of
course). The case & = 27 is also easily settled:

Proposition 6.1. For the case of the full 2-shift, the answer to Question 7 is positive.
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Proof. 1t suffices to see that p is unbounded on non-principal components.

First consider a free component /. Let X be the subshift on four symbols con-
sidered in §3.3. If (4,B) € H, then (4, B, A~', B~!) is uniformly hyperbolic
with respect to X; see Lemma 3.7; let px(A4, B) indicate the hyperbolicity rate of
(A, B, A™', B~1) with respect to X. It is easy to see that px (and in particular, p) is
unbounded in H .

Now, consider any other component Hp = F~!(H), where F € M. Given r >
1, take (Ag, By) € H with ps(Ag, Bg) > 7, and let (4, B) = F~1(4y, By) € HF.
In the notations of §3.4 we have that there exist ¢ > 0 such that

{w, (Ao, Bo)}|| = cexp(r|w|) forevery w € 5.
As in the proof of Proposition 3.5, it follows that

l{w, (4, B))|| > cexp (2% t|w|) forany w € Fy
(where k depends only on F). Therefore

p(A, B) > 1|in|11nf e, (A, B))||M1! > exp (27% 7).
w|[—>00
Hence p is unbounded on H . ]

6.4. Topology of the components

Question 8. What are the possible homotopy types of the hyperbolic components?
What about the elliptic locus &?

In the case of the full 2-shift, each component has the homotopy type of a circle.
In Appendix A.2, we show that & is connected.

6.5. Combinatorial characterization of the components. Assume the subshift is
full in NV letters.

Anuniformly hyperbolic N -tuple induces a multicone M in the sense of Section 5,
and a tight hyperbolic morphism ©.

Recall that if two uniformly hyperbolic N -tuples belong to the same connected
component then they have the same combinatorics, in the sense the respective mor-
phisms ® are conjugalte.

Question 9. Does the combinatorics characterize the connected components of #,
modulo reflections (Aq,..., Ay} > (£Aq,...,£AN)?

In the case = = 2%, our description of the multicone dynamics (see §3.8) gives
a positive answer to Question 9.
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Appendices

A.l1. A compactness criterion for finite families of matrices in SL(2, R) modulo
conjugacy. Let K be acompact subset of SL.(2, R). Then thereexists C = C(K) >
0 such that, forany A, B € K,

[r 4] < C, |twAB| <C.

This also holds if A, B belong to some conjugate R~ KR, R € SL(2,R). We prove
that the converse is true:

TheoremA.1. Let C > 0. There exists a compact set K = K(C') with the following
property: If Ay, ..., Ay € SL(2, R) satisfy

[tr ;] <C, 1<i <N, (42)
|tr 4, A;] <C, 1<i<j<N, (43)

then there exists R € SL(2,R) such that RA;R™' ¢ K for1 <i < N.

Remark A.2. Tt follows that if the inequalities (42), (43) are satisfied over a subset
Z of SL(2,R)" then there is a compact set K < SL(2, R)" such that the union of
conjugacy classes of elements of K covers Z. This result does nor hold for infinite
families (A4;);en. More precisely, consider in SL(2, R)N the product topology. If
f:N — N is any map, let 4] = (}/@). Let Z ¢ SL2,R)N be the set of
Al = (Aif)ieN for all possible /. We have trAif =1r AifAJf = 2foralli, j, f.
On the other hand, given any compact set K  SL(2, R)N, there exist ¢; > 0 such
that (B;) € K implies || B;|| < ¢; forevery i € N. Now, if f: N — N is such
that /(i)/c; — oo then A7 € Z does not belong to any conjugacy class of elements
of K.

Proof of Theorem A.1. Write

We have
Xit; — Viz; = 1 foralli, (44)
|x; + 1| <C foralli, (45)
|.Xfl')Cj + L+ viz; + iji| <C foralli < j. (46)

We want to find a common conjugacy after which all coefficients are bounded by
C, = C(C).
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We start with a particular case.
Special case: Assume that we have moreover

|x;| < C, foralli, (47)

for some C5 depending only on C'. We will then conjugate all A; by the same diagonal
matrix. Observe that from (44), (45), (46), (47), we get (for some C3 = C3(C))

lt;| < C3 forall i, (48)
|yi Zi | < C3 for all i, (49)
|inj —+ iji| < (3 foralli < j. (50)
From (49), (50) we also get
\yiziyjzj| < C3 foralli < j, (51)
|yizj| < Cy foralli,j. (52)

Let ) 12
0 B X; Vi
Rj = (0 /1—1) , A= RAAiR;Ll - ()L_le,- 1 l)-

From (52), we have
max | y;| - max |z;| < Cy.
i J

Thus we can choose A such that

max A%y;| < C41/2,
H

max [A 72z < C41/2
1

2

which concludes the proof in the special case.
Let S = ( °%8, 83 Write SgA; S5t = (2%2; fi"((g))). We have

—sinf cos
x;(0) = x; cos? 6 4+ 1;8in% 6 + (y; + z;) sin & cos 6.
We want to prove that there exists C; = C,(C) and 8 such that
|x; (F)| < Cy foralli. (53)

Indeed, in this case we are reduced to the special case above. From (45), we see that
(53) is equivalent to

X; Cos 28 + Yi t Zi

sin26| < C5 forall ;. (54)
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Observe that
xF0) + y2(0) + z2(0) + 1} (0) = r Sy A; '4; S5t
does not depend on 6. We can assume that
Xt yi bz > xf 4 yF Fzi 4 1F foralli > 1.

Choose € such that

y1+ z1

X1 €08 26 + sin26 = 0.

Replacing A; by Sy A; S, ", we can assume that

|)C1| = s

881

(55)

(56)

(57)

We will show that (44), (45), (46), (56), (57) together imply (47). Actually, we only

need (46) fori = 1,1i.e.,
|x1xi + 1t + vizi + yi21| < (C foralli > 1.
Observe first that from (44), (45), (57) we get

|t1| < 2C,
|y121| f 1 -|—4C2

Replacing if necessary all A; by ‘A;, we can assume that
[¥1] = [z1]
From (57), (39), (60), (61), we have
xf 4+ zf + 1§ < Cs = C5(C).
From (55), we then get
max (|, |yil,|zil; [t} < |y1] + Ce.

In particular,
\vizi| < [yizi| + Clz1| = C7

and thus, from (58),
|mix; + ity + viz] £ G+ €.

From (45), (59) we also have

|t1ti -+ [1Xi| < 2C2

(58)

(59)
(60)

(61)

(62)

(63)

(64)

(65)

(66)
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and therefore, using (57), (59), (65),
\vizi] < Ca(|x;| + 1). (67)

If |v1] < €Y, we conclude directly from (63) that |x;| < C2. Assume therefore that
|v1] is large. Then, from (67) we have

1
7 < Gyt (68)
| ¥1]
We have also, from (63), (45),
\vil < |y1| + Ce,
1] = |xi| = C.
Therefore, from (44),
xi| ([xi] = C) = 1+ [yiz]
+ C
<12 )
|y1l
S C9|xi|a
which gives finally (47). O

A.2. Connectivity of the elliptic locus. Recall that in the case of the full shift in N
symbols, & denotes the (open) subset of SL(2, R)" formed by the N -tuples which
have an elliptic product.

Proposition A.3. & is connected.

Let Rg € SL(2,R) denote the rotation by angle &. The proof of connectivity of
& needs the following:

LemmaA.4. Fix By,..., B, € SL(2,R), and let
FO)=u (BleBzRg w8 h BnRg).
Then for every parameter 8 for which | F(8)| < 2 we have F'(6) # 0.

Proof. 'This lemma is essentially proved in [2]. Complexification gives a rational
function Q(z) such that Q(e'?) = F(8) for real 6. Moreover, Q(z) = P(z)/z"
where P(z) is a polynomial of degree at most 2x.

First assume that the matrices B; satisfy

BiRyBsRy ... B,Ry # +id forall 8 € R, (69)
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A topological argument then gives that the intersection of Q ~!([—2, 2]) with the unit
circle S! has at least 2n connected components — this is Lemma 10 in [2]. On the
other hand, Q restricted to S! is real-valued and thus each connected component of
St~ 071([-2,2]) contains at least one zero of Q'(z) = (zP'(z) —nP(z))/z"T1.
It follows that all the zeros of Q' are simple and contained in S' ~ Q~1([-2, 2)).
Moreover, O~ ([—2, 2]) consists of exactly 2n intervals in S, each with length at
least 4| Q'|S | 2.

Now it follows by a perturbation argument that even if condition (69) is not
satisfied, all the zeros of Q' are simple and contained in S! ~ Q~1((—2,2)). This
concludes the proof of the lemma. O

Proof of Proposition A.3. Tirst notice that the set of elliptic matrices is connected,
that is, the proposition is true for N = 1.

Now let N > 2. Take (A1, ..., An)1n &, so some product 4;, ... A;,, is elliptic.
To prove the proposition, it suffices to find a path ¢ € [0, 1] — (A4;(¢)); in & starting
from (A;) such that A, (1) is elliptic for some £. Let £ be any of ji,..., j,. We can
assume some j; is different from £, because otherwise there is nothing to prove.

Take a path ¢ € [0, 1] — Ag(¢) starting at Ay and ending at some elliptic matrix.
Let A;(r,0) be equal to RgA; it i # £, and Ay(t,0) = Ag(r). Also, let F(z,8) be
the trace of A; (¢,8)... A4, (¢.0). Lemma A.4 (together with the assumption that
some j; is different from £) guarantees that %—g # 0 when |F| < 2. Therefore the
differential equation %F (t, 6(r)) = 0 with initial condition #(0) = 0 has a solution
6(r) defined for ¢ € [0, 1]. Consider the patht +— (A; (1)) where A; (t) = A; (¢, 8(1)).
The path is contained in & because the trace of A; (¢)... A, (¢) is constant; also,
Ag (1} is elliptic. So we are done. O
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