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Une minoration du minimum essentiel sur les variétés abéliennes

Aurélien Galateau

Résumé. On étend a la codimension générale la minoration du minimum essentiel sur les va-
riétés abéliennes obtenue dans [(GalO8], sous une conjecture concernant leurs idéaux premiers
ordinaires. Cette minoration est optimale “a & prés” en le degré de la sous-variété et rend in-
conditionnelle la démonstration, par Viada, de la conjecture de Zilber—Pink pour une courbe
plongée dans une puissance de courbe elliptique.

Abstract. We extend to the general codimension the lower bound for the essential minimum on
abelian varieties found in [Gal08], under a conjecture about ordinary primes in abelian varieties.
This lower bound is the best expected, “up to an £7, in the degree of the subvariety and completes
Viada’s proof of the Zilber—Pink conjecture for a curve embedded in a power of an elliptic curve.

Classification mathématique par sujets (2010). 11G10, 11181, 14G40.

Mots clés. Bogomolov, variété abelienne, minoration, hauteur.
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1. Introduction

On poursuit dans ce travail la minoration de la hauteur normalisée sur les variétés
abéliennes commencée dans [Gal08], dont on généralise le résultat principal en codi-
mension quelconque. Commengons par rappeler les origines de notre probleme. Soit
C une courbe algébrique de genre g > 2 définie sur Q et plongée canoniquement
dans sa jacobienne J(C'). On note £ le fibré en droites associé et h ¢ la hauteur de
Néron—Tate sur J{C). En 1981, Bogomolov conjecture :

Théoréme A (Ullmo). 11 existe ¢ > 0 tel que {x € C(Q), l;;g(x) < &} soit fini.

Plus généralement, soit V' une sous-variété d’une variété abélienne A munie d’un
fibré en droites £ ample et symétrique. Ici et dans la suite de 1’article, les variétés
considérées sont définies sur @ et irréductibles. Onnote h ¢ la hauteur de Néron-Tate
associée a ce fibré. On dit que V' est de rorsion si IV est la translaté d’une sous-variété
abélienne par un point de torsion. Une courbe algébrique de torsion est en particulier
de genre 1. On définit aussi, pour V' un fermé de Zariski inclus dans A :
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Définition 1.1. Le minimum essentiel de V' est
(V) = inf(e > 0,V®) = V(@)
o V(#) = {x € V(Q), he (x) < 8}et Wz est son adhérence de Zariski.
On peut alors étendre aux sous-varictés des variétés abéliennes le théoreme A :

Théoréeme B (Zhang). Soit V une sous-variété stricte d’une variété abélienne A (ie.,
V & A). Le minimum essentiel de V' est nul si et seulement si V' est de torsion.

Le résultat analogue est vrai si on remplace A par un tore (¢f. [Zha92]) ou plus
généralement par une variété semi-abélienne (¢f. [DPO0O]).

1.1. Versions quantitatives du probleme de Bogomolov. Ces conjectures étant
démontrées, on peut s’intéresser 4 une version quantitative, en précisant ¢ dans le
théoreéme A ou en minorant le minimum essentiel d’ une variété qui n’est pas de torsion.
Grice au théoréme des minima successifs démontré par Zhang (dans [Zha93]), cect
revient a minorer la hauteur canonique d™une telle variété. Depuis les travaux de
Bombieri et Zannier (voir [BZ95] pour le cas torique et [BZ96] pour le cas abélien),
on sait qu’on peut espérer obtenir une borne “uniforme” pour le minimum essentiel,
ne dépendant que du degré de V' et de la variéeé abélienne A. Remarquons que pour
obtenir de telles minorations, on doit exclure les translatés de sous-variétés abéliennes
par des points qui ne sont pas de torsion. En effet, si V' = x + B & A, le minimum
essentiel est relié a la hauteur de la projection de x dans le quotient A/ B (pour plus de
détails, voir [Lit99]) et on peut le faire tendre vers O en fixant le degré et 1a dimension
de V.

On définit d’abord un invariant plus fin que le degré, approprié aux techniques
diophantiennes :

Définition 1.2. Soit V un fermé de Zariski strict de S une variété semi abélienne
munie d’un fibré en droites ample £. On appelle indice d’obstruction de V, noté
we(V),

wg (V) = inf{deg¢(Z)},

ou I'infimum est pris sur I’ensemble des hypersurfaces (non nécessairement irréduc-
tibles) de S contenant V.

Remarque. Suivantnotamment [DHOO], on pourrait définir I’indice d’obstruction de
V comme I’infimum des deg ¢ (Z)'/°m(Z) gur Jes fermés Z de S contenant V. Ce
choix estplus fin que celui de la définition 1.2, etles méthodes diophantiennes utilisées
ici le font intervenir naturellement. Cependant, la descente finale employée dans notre
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article impose de travailler avec des hypersurfaces ; de plus, on est amené a définir
dans cette descente un indice d’obstruction plus compliqué qu’on compare 4 1’indice
d’obstruction initial, ce qu’on ne peut faire de fagon optimale qu’en codimension 1.
En vertu d’un théoréeme de Chardin (corollaire 2.2 de [Cha88]), les théorémes C et
1.1 ci-dessous sont encore vrais avec cetle définition alternative.

Dans [ADO3], Amoroso et David donnent une majoration quasi-optimale en I’in-
dice d’obstruction d’une sous-variété 1 d’un tore. Dans un schéma d’approximation
diophantienne, 1ls utilisent les propriétés de ramification des corps cyclotomiques,
qu’ils traduisent en un résultat métrique leur permettant d’extrapoler une fonction
auxiliaire nulle sur V. Par le plongement standard G, < P" (sur @), dont le fibré
en droites associé est noté £, on dispose d’une hauteur 2 ¢ sur les points de G7, et
d’un minimum essentiel 25 sur les sous-variéiés de Gy, Ils démontrent alors :

Théoreme C. Soit V une sous-variété stricte de G}, de codimension k qui n’est
contenue dans aucun translaté d’un sous-tore strict de G, On a

c(n)
wg (V)

ot ¢(n) est un réel strictement positif et A(k) = (9(3k)k+1Hk,

AEV) > x (log (3wz (M) %,

Ce théoreme est optimal aux termes logarithmiques pres (voir la conjecture 1.2
de [ADO3], et la remarque qui suit), comme le résultat de Dobrowolski (¢f. [Dob79])
sur le probleme de Lehmer el ses généralisations.

Dans le cas des variétés abéliennes, on dispose déja de résultats quantitatifs, mais
la dépendance en le degré est moins bonne. On cite ic1 une version faible du théoreme
principal de [DPO2], obtenue en comparant le rayon d’imjectivité a la hauteur de A
suivant le lemme 6.8 de cette méme référence :

Théoreme D. Soit A une variété abélienne de dimension g > 2 définie sur Q,
principalement polarisée par un fibré en droites £ ample et symétrique, et V une
sous-variété de A qui n’est pas translaté d’une sous-variéré abélienne. 1l existe alors
une fonction explicite et strictement positive C(g) telle que

A e58 C(g)
e (V)= 1 1 2(g+1)2"
dstimax{l, he(A)}8T degy (V)2(s+D)

oir d est le degré d’un corps de définition de A et h¢(A) est la hauteur projective de
Uorigine de A dans le plongement associé i £1°,

Cette minoration est monomiale inverse en le degré, alors que dans le cas to-
rique, elle est linéaire inverse en 1’indice d’obstruction (aux termes logarithmiques
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pres), ce qui, par le corollaire 2 de [Cha88] 2, correspond a une minoration en
deg , (V)™ 1/eodimV) Remarquons enfin que I’hypothése du théoréme D (V' n’est pas
un translaté de sous-variété abélienne stricte) est plus faible que son analogue torique
dans le théoreme C (V' n’est pas incluse dans un translaté de sous-tore strict), et que
cette différence se ressent des qu’on obtient des résultats comparables au théoreme C.

1.2. Résultats et applications. Soit A une variété abélienne définie sur K un corps
de nombres, munie d’un fibré en droites £ ample et symétrique. Pour A un modele
entier de A sur Ok, on commence par poser I’hypothése suivante :

Hypothese H. 11 existe une densité positive de premiers p de O en lesquels le
p-rang de la fibre spéciale Ay est égal a g.

Sous cette hypothese, on a démontré dans [Gal08] I'analogue du théoreme C en
petite codimension (k < 2). Le but de ce travail est de généraliser & la codimension
quelconque ce résultat. Suivant une idée nouvelle d’Amoroso (voir [Amo07]), on
modifie les arguments de transcendance, ce qui permet d’insérer un principe de tiroirs
dans la combinatoire du lemme de zéros. Grice a ce raffinement, on peut mettre en
place la technique de descente, ce qui n’était possible qu’en codimension 2 dans notre
travail précédent. On démontre ici :

Théoreme 1.1. On suppose qu’il existe un modele entier A de A vérifiant H. Soit V
une sous-variété stricte de codimension k quelconque dans A. Si V n’est contenue
dans aucun translaté d’une sous-variété abélienne stricte de A, on a

Cz(A)
wz (V)

ot Cg(A) est un réel strictement positif dépendant de (A, £) et A(k) = (5g(k +
1))k+1-

APV 2 x (log (3 degg (1)) ",

Remarque. — La constante A(k) obtenue avec ce nouveau schéma de preuve est
sensiblement meilleure que celle du théoreme C.

— La minoration obtenue est optimale aux facteurs logarithmiques pres. En effet,
si on considére [p]~'V, pour V non incluse dans une sous-variété de torsion et p
un nombre premier tel que [p]~V soit irréductible (cette condition est réalisée sauf
pour un ensemble fini de premiers), onadegy ([p] 1 V) = p2®m(Vdeg . (V) — oo,
alors que

AP VIwe(pI7V) < 4T (V)we (V).

— Les difficultés rencontrées dans la mise en ceuvre de la descente (qu’on doit
ici initialiser avec la variété V' plutot qu’avec une hypersurface Z réalisant wz (V),
comme ¢’est le cas pour les tores) expliquent la présence de deg ¢ (V') dans les facteurs
logarithmiques.
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Par un argument de projection (voir la démonstration du corollaire 5 dans [Rat04],
qui s’adapte a I’identique ici), on déduit du théoreme 1.1 :

Corollaire 1.2. S’il existe un modéle entier A de A vérifiant H, pour toute sous-
variété V stricte de A qui n’est pas de torsion, on a

Ce(A)

~ €88 —A(s—dim(V))
e (V) 2 deg o (V)1/(s—dim(V) x (log (3 degi(V))) ’

ot x + B est la plus petite sous-variété de torsion contenant V, s est la dimension
de B et Cl,(A) est un réel positif qui ne dépend que de (A, £).

En appliquant I'inégalité des minima successifs (voir infra, 2.2 pour cette inégalité
et pour la définition de % sur les sous-variétés de A), on a aussi :

Corollaire 1.3. S’il existe un modéle entier de A vérifiant I’hypothése H, pour toute
sous-variété V stricte et irréductible de codimension k > 2 dans A qui n’est contenue
dans aucun translaté d’une sous-variété abélienne stricte de A, on a

he(V) = CE(A),
ot C 4 (A) est un réel strictement positif dépendant de (A, £).

La seule restriction qui empéche d’obtenir une minoration inconditionnelle est
donc I'hypothese H. Elle esten fait 1’ objet de 1a conjecture suivante (voir [Pin98],§ 7) :

Conjecture E. Pour toute variété abélienne A définie sur Q, il existe un corps de
définition K de A et un modéle entier A de A sur Ok vérifiant I’ hypothése H.

Sous cette conjecture, la minoration du théoreme 1.1 est vérifiée pour toutes les
variétés abéliennes définies sur Q. En dimension 1, pour une courbe elliptique E,
le résultat est connu (voir [Ser68], chapitre IV, 13 et la théorie de la multiplication
complexe). La validité de I’hypothese H a été étendue aux surfaces abéliennes par
les travaux de Katz et Ogus (¢f. [Ogu82], § 2.7, en remarquant par le théoreme de
Chebotarev que les premiers de degré 1 ont une densité positive). L'hypothese H est
encore vraie pour les variéiés abéliennes a multiplications complexes (voir [BS04],
partic 5). Des conditions suffisantes, portant sur les groupes de monodromie Gy
(associés a chaque nombre premier /) de la variété abélienne, ont été données par
Noot (voir [No095],§ 2) puis Pink ([Pin98], § 7).

Une telle minoration du minimum essentiel s’applique au probleme de I'inter-
section d’une variété avec des sous-groupes algébriques, en direction de conjectures
formulées de fagon indépendante par Zilber sur les variétés semi-abéliennes, et Pink
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sur les variétés de Shimura mixtes (voir [Zil02] et [Pin05], conjectures 1.2 et 1.3).
Pour S un sous-ensemble de A(Q), on note

Se={x+y x€S, yeAQ), he(y) <e},

ainsi que

J€=UH,

codimH >2

la réunion portant sur tous les sous-groupes algébriques de A (éventuellement réduc-
tibles) ayant la codimension prescrite. On garde les mémes définitions avec le tore
G, (défini sur Q)ala place de A. En utilisant le théoréme C, Habegger a démontré
le résultat suivant (voir [Hab08]) :

Théoréeme F. Soit C une courbe dans G}, qui n’est pas incluse dans le translaté
d’un sous-torve strict. Alors il existe ¢ > 0 tel que C(Q) N FH, est fini.

Ce théoreme a permis a Maurin de démontrer la conjecture de Zilber pour une
courbe plongée dans un tore (¢f. [Mau08]) :

Théoreme G. Soit C une courbe algébrique irréductible de G, non incluse dans un
sous-groupe algébrique strict (éventuellement réductible). Alors C(Q) N H est fini.

Il améliore ainsi le résultat principal de 1’article fondateur de Bombieri, Masser
et Zannier (¢f. [BMZ99]). Dans le cadre abélien, des estimations de type Lehmer
sur les points de petite hauteur permettent de traiter le cas des variétés abéliennes a
multiplication complexe (voir [Via03], [RVO03], [Rat08] et [Car08]).

Soit E une courbe elliptique définie sur Q, g > 2 un entier et ' un sous-groupe de
E# de rang fini. Le théoréme 1.1 rend désormais inconditionnel le résultat de Viada

(cf- [Via08a]) :

Théoréme H. Soir C une courbe algébrique incluse dans ES.
— Si C n’est pas incluse dans un sous-groupe algébrique strict, il existe £ > O tel
que C(Q) N K, soit fini.
— 8i C n’est pas incluse dans un translaté de sous-variété abélienne stricte, il
existe & > 0 tel que C(Q) N (H + T,) soit fini.

Le premier point de ce théoreme implique la conjecture de Zilber pour les courbes
plongées dans une puissance de courbe elliptique. En raffinant son argument, Viada a
depuis obtenu des résultats pour une sous-variété générale d’une puissance de courbe
elliptique (voir [ViaO8b]).
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1.3. Plan de Particle. La preuve du théoréme 1.1 est une adaptation du nouveau
schéma de transcendance utilisé par Amoroso dans [Amo07]. Elle est écrite dans le
formalisme classique de la géométrie diophantienne. La deuxieme partie rassemble
quelques rappels sur les variétés abéliennes. On y introduit notamment le plongement
étiré, qui permet de négliger la constante de comparaison entre la hauteur projective et
la hauteur de Néron—Tate. On construit aussi un bon ensemble de premiers de densité
positive.

Dans la troisieme partie, on choisit une base de dérivations adaptée, puis on
démontre un lemme clé p-adique sur les points de torsion des variétés abéliennes.
On transporte ensuite cette propriété a un polyndme en les coordonnées affines de
la variétés abélienne. Dans la partie suivante, on en déduit une inégalité entre les
fonctions de Hilbert d’un fermé avec multiplicité, et de ce méme fermé translaté
par un sous-groupe de torsion bien choisi, sans la multiplicité. Par un bon choix de
parametres, on trouve une section non triviale nulle sur ce translaté. L’ application
couplée d’un lemme de zéros de Philippon et d’un principe de tiroirs nous donne une
inégalité concernant le degré d’un fermé obstructeur.

Si cette inégalité ne nous permet pas encore de conclure, elle amorce la phase
de descente qui constitue la cinquieme partie de ce travail. Cette technique est clas-
sique dans les travaux diophantiens visant a minorer les hauteurs, mais le cas des
variétés abéliennes est plus difficile, en I’absence d’un relévement du Frobenius en
caractéristique nulle. On a cherché ici a “simuler combinatoirement” le Frobenius,
ce qui explique qu’on travaille, deés la transcendance, avec des fermés de Zariski non
nécessairement irréductibles.

Remerciements. Je tiens a remercier Sinnou David pour son aide constante pendant
que je travaillais a ce probleme, et le rapporteur dont les remarques m’ont permis
d’améliorer significativement la rédaction de cet article.

2. Préliminaires sur les variétés abéliennes

Commencons par quelques rappels concernant la hauteur et le plongement étiré sur
les variétés abéliennes. On fixe pour toute 1a suite une variété abélienne A munie de
&£ un fibré en droites ample et symétrique, et définie sur K un corps de nombres. On
suppose que A vérifie I’hypothése H et on fixe 4 un modele entier de A sur O tel
que pour une densité positive d’idéaux premiers v de Ok, la fibre spéciale #A, soit
ordinaire.

2.1. Choix de la constante. La minoration que ['on a en vue fait intervenir une
constante dépendant de la variété abélienne A, de £, mais aussi d’un certain nombre
de choix portant sur (4, £) : une base de H°(A, £), une base du tangent de 4 en 0,
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un modele entier 4 donné par ’hypothese H. Par abus de langage, on dira qu’une
telle constante ne dépend que de A.

On introduit d’abord des constantes ¢y, ..., c1s ne dépendant que de A, puis
on choisit une constante Cp, ne dépendant que de A, grande devant les constantes
c1,-.-,C15 dans un sens que le cours de la preuve rendra explicitable. La constante
C¢(A) du théoréme 1.1 s’exprimera alors simplement en fonction de Cy :

Ce(A) := C;2H®,

la dimension g pouvant méme &tre remplacée par la codimension k& de V. Toutes
ces constantes sont calculables mais notre méthode ne permet pas d’améliorer la
dépendance en la hauteur de A du théoreme D. En effet, la constante Cyp est déja
au mieux monomiale en /¢(A) et le choix de la fonction A donne un exposant
particuliérement mauvais pour /g (A).

2.2. Quelques définitions. Soit » un entier positif, K un corps de nombres et x :=

[x0 : -+ : xu] un point de P”*(K). On définit la hauteur projective de x par la formule
suivante :
1
h(x) = ——— Y nylog (max{|xolu..... |%u|u}).
K- Q] veM(K)

ou M(K) désigne I’ensemble des places de K. Les n, ct les valeurs absolues sont
choisis de telle sorte que 1a formule du produit soit satisfaite :

VyeK. y#0: [] Il =1,
veM(K)

et que, pour tout p nombre premier et v|p ona |ply = p~!. La formule donnant la
hauteur ne dépend pas du choix d’un corps de définition K de x, ni du choix d’un
représentant de x (par la formule du produit).

On a fixé une variété¢ abélienne A munie de £, un fibré en droites ample et
symétrique, et définie sur K, un corps de nombres. Quitte 2 considérer £%3, on
peut supposer que £ est projectivement normal et tres ample. 11 définit donc un
plongement de A dans un espace projectif P* et on fixe dés a présent une base de
sections (¥p,...,Y,) de & sur A, ainsi qu'une base (f1...., fg) du tangent en O.
Via ce plongement, pour tout point x € A(K), on peut définir sa hauteur projective
qu’on note /¢ (x). On définit aussi sa hauteur de Néron-Tate, donnée par la formule

hg(x) = Jim @,

ou [n] désigne I'isogénie de multiplication par n, pour n € N*, Cette fonction hauteur
vérifie les propriétés suivantes :
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—h 2(x) = O si et seulement si x est un point de torsion de A ;
— la hauteur est quadratique :

Vxe A(K), ne N: he(n]x) = n2hse(x):

— il existe une constante c; ne dépendant que de A telle que
Vx e AK):  |he(x)—he(x)] < c1.

Via le plongement projectif de A associé a £, on peut définir le degré relativement
4 £ d’une sous-variété V' de A, qu'on note deg ¢ (V') (voir [Har77]), puis son indice
d’obstruction we (V') (voir la définition 1.2).

Soit V une sous-variété de A. La hauteur projective de V relativement a £, notée
he(V), est définie comme la hauteur de la forme de Chow qui lui est associée via le
plongement projectif. On construit ensuite la hauteur normalisée h « (V') par passage

a la limite : P Vd v
ho) — im0V dege (V)
ntoo  n2degg ([n]V)

Cette limite existe et la hauteur ainsi construite généralise la hauteur de Néron—Tate
pour les points de A (voir [HSOO], page 450, et [Phi95]). On peut aussi définir la
hauteur d une variété par 1’approche arakelovienne (cf [BGS94], partie 3). Ces deux
notions coincident, si on fait le choix de la norme L2 pour les places archimédiennes
dans la définition de la hauteur projective. Le théoréme des minima successifs dé-
montré par Zhang (dans [Zha95]) implique les inégalités suivantes :

Théoréme 2.1. Soit V une sous-variété de A de dimension d. Alors,

1 he(V hae(V
) _ ey < h2V)
d + 1dege(V) deg¢ (V)

2.3. Le plongement étiré. On aura besoin de rendre négligeable la constante de
comparaison entre hauteur projective et hauteur canonique sur A. On résout géné-
ralement ce probléme en utilisant le plongement étiré. Soit M un entier strictement
positif. On rappelle que I’isogénie de multiplication par M sur A est notée [M] et on
définit ¢y -

A— AxA,
x — (x, [M]x),
qui induit par Segre un plongement de A dans un espace projectif P™, le plongement
ériré.
Le plongement étiré a €t utilisé pour la premiére fois par Laurent dans le cadre
du probléme de Lehmer elliptique (cf. [LLau83]). Le principe en est le suivant : les
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techniques diophantiennes utilisent la hauteur projective, et le minimum essentiel fait
intervenir la hauteur de Néron—Tate associée au plongement. On sait que la différence
entre ces deux hauteurs est bornée mais la hauteur de Néron-Tate, qu’on prendra
proche du minimum essentiel au cours de la preuve, peut étre tres petite. Il y a donc une
perte d’information sur la hauteur projective. Le plongement étiré multiplie la hauteur
par un parameltre assez grand, qui rend négligeable la constante de comparaison.

On note M le fibré en droites 77 £ ® 7y &L sur A x A, o my et m, sont les
projections canoniques de A x A sur chaque facteur. Par produit tensoriel, on déduit
delabase (Yo, ...,Y,)de HY(A, £)unebase Z := (Zy,.... Z,)de H(Ax A, M).
On note aussi M| 4 la restriction de M a A via le plongement étiré. On a

Mg = LIV,

Cet isomorphisme suggere le lemme suivant, qui indique la variation de la hauteur et
du degré par ¢y .

Lemme 2.2. Si x est un point de A(K), on a
ha(x) = (M2 + Dhg ().
Si V est une sous-variété de A, on a
degy (V) = (M? + ¥ deg g (V).

Preuve. La premiere partie du lemme suit de la définition de ¢ps par quadraticité de la

hauteur. La deuxieme partie est démontrée, par exemple, dans [Phi95], proposition 7.
O

2.4. Une premiére sélection de nombres premiers. Pour obtenir le lemme p-
adique crucial dans ce travail, on devra faire un certain nombre d”hypotheses sur le
premier p avec lequel on travaille. Les deux premiéres ne sont pas tres restrictives et
concernent les translations et dérivations sur les coordonnées projectives des variétés
abéliennes.

Lemme 2.3. [l existe des formes bi-homogenes de degré (2,2) sur les coordonnées
projectives représentant [’addition sur A, et données par une famille finie de coef-
ficients (g; )iy telle que pour une constante c, ne dépendant gue de A, pour tout
p = ¢a, tout premier v|p de Ok, on a

Yiel: |gilv=1Ll

Preuve. Voir [LLR85] ou [DP02], proposition 3.7, en remarquant qu’on a choisi £
projectivement normal. O
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Un second résultat concernant les dérivations nous servira pour montrer que les
coefficients du développement de Taylor d’un polynome en les coordonnées affines
sont v-entiers, pour les idéaux premiers v considérés. On rappelle qu’on a fixé une
base (f1...., fg) dutangent de A en 0.

Lemme 2.4. [l existe des dérivations (91, . . ., dg) sur A, définissant une base (ey, . . .,
eg) du tangent en O, telles que pour une constante c3 ne dépendant que de A, pour
tout premier p > c3, v| p idéal premier de Ok, on a les propriétés suivantes :

— le changement de variable de (f1... ., fg) vers (e1,...,eg) est a coefficients
dans Ok, et 'image de (e1,. .., eg) par la réduction modulo v est encore une
base du tangent en 0 de Ay ;

— pour tout systeme de coordonnées affines (v, ..., Vn) définies sur un ouvert
de A (par la non-annulation d’une des sections Yy fixées précédemment), on a

Vi<i<g, 1<j<n: 09y :Zas;’éyayﬂ,
a.pB

§ aw ded ‘
avec, pour tout (¢, B,1, J), aajﬂ est v-entier.

Preuve. Voir [Gal08], théoreme 2.6, qui résume I’argument de [Dav91], théoreme4.1,
ou la hauteur des coefficients est bornée explicitement en fonction de A dans le cas du
plongement théta. Précisons que les coefficients de la matrice de 1 application induite
sur le tangent en O par ce choix de dérivations sont dans K et ont une hauteur bornée
uniquement en fonction de A (dans le cas du plongement théta, voir le lemme 1.4.14
de [Dav89]). Quitte a multiplier les nouveaux parametres par un entier assez grand
(borné uniquement en fonction de A et du choix de coordonnées affines), on obtient
une base a coefficients dans Ok . Le déterminant de la matrice de passage de lanouvelle
base par rapport a (f1,..., fg) est encore de hauteur bornée par une constante ne
dépendant que de A. [

Par abus de langage, on notera encore (91, .. ., dg) la base de dérivations en 0 et
(f1,...,1g) le systeme de parametres qui lui correspond par dualité. On ne pourra
travailler directement avec cette base de dérivations mais on 8’y ramenera grice a la
construction suivante.

Lemme 2.5. [l existe un ensemble fini (t1,y, ..., 1g,v)vev de systémes de paramétres
en 0 définis sur des ouverts (O, )yev tels que A(K) = | ), cp Ov.

Preuve. Si x € A(K) est différent de 0, il existe un hyperplan passant par x et
évitant 0, associé  une section s, € H%(A, £), et un hyperplan évitant a la fois x et
0, défini par I’annulation d’une section s, € H°(4, £) . En multipliant le syst@me de
parametres (1, . . . t) par une puissance tensorielle suffisante de s, /s’ , on obtient un
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nouveau systeme de parametres en 0 défini sur un ouvert ¢, contenant x. Le lemme
suit par compacite. O

Pour toutv € 'V, ondéfinit par dualité une base (01,y, - . . , dg,v) de dérivations en0.
Comme V est fini, il existe une constante ¢4 telle que pour p > c4 et w|p, les coeffi-
cients de toutes les matrices de passage de (d1,...,9g) versles (01,p, ..., dg,v)vev
(qui sont définis sur une extension finie de K) soient w-entiers et, des coordonnées
affines étant fixées sur chaque @, que leurs valeurs en O, qui sont bien définies,
soient w-entieres. On peut maintenant définir I’ensemble de premiers avec lesquels
on travaillera :

Définition 2.1. Soit #,4 I’ensemble des premiers p > max{c;, ¢3, ¢4} non ramifiés
dans Ok tels qu’il existe un idéal premier v| p de O g pourlequel #4,, a bonne réduction
ordinaire. Cet ensemble est de densité positive par choix du modele.

3. Points de torsion et estimations p-adiques

Dans cette partie, on donne des estimations p-adiques concernant certains points de
torsion sur les variétés abéliennes. On commence par obtenir des propriétés concer-
nant les parametres en 0 d’un point de torsion bien choisi, puis on transfeére ces
propriétés a des coordonnées affines (associées 4 un ouvert affine contenant le point
de torsion) en utilisant les propri¢iés des dérivations algébriques.

3.1. Dérivations. On fixe ici une base de dérivations en tout point de A, qui nous
permettra de transporter des estimations p-adiques sur un systeme de parametres vers
des estimations portant sur les coordonnées affines. Dans la partie suivante, on aura
besoin de ce contexte différentiel pour comparer la fonction de Hilbert d’un fermé
de Zariski X avec multiplicité et la fonction de Hilbert d’un translaté de X par un
sous-groupe de torsion.

On s’est donné une base de parametres (71, ... .fg) de A enI’origine, duale de la
base (d1,...,dg) dutangent de A en 0. Si x € A, on obtient une base de parametres
locaux en x :

(f10T—x,....lg 0T_yx),

ou 7_, désigne la translation par —x sur A. Cette base de parametres correspond a une
base du tangentde A en x, qu’onnote (91 x, ..., dg x). Pourk = (kq,..., kg) € N&,
on définit

g
k| =) ki et k!=ki!.. kgh

i=1
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et les “dérivées divisées” sur A,

1 k
o = A 0o B
Remarquons que 1’application induite par [M ] sur le tangent de A en O est la multi-
plication par M ; I'image de (d,...,dg) sous la multiplication par M fournit une

base de dérivations de ¢pr(A) en 0 qu’on peut donc expliciter (voir [DHO0], 4 pour
plus de détails) ; par 1a suite, on se ramenera systématiquement a des dérivations de
A en composant des sections de M| 4 avec le plongement étiré.

Si T > 1 est un entier et B est un idéal homogene définissant un fermé X de A
dans le plongement étir€, la puissance symbolique BT de B estI'idéal engendré par
les polyndmes F € Q[Z] nuls sur X 2 un ordre au moins 7', dans le sens suivant :

Vxe X, VkeNétq k| <T—1: *Fogy) =0.

Siv € 'V, on définit de méme 8’;,1,, pour x € Aetk € N¥. Par linéarité, le fait
qu’un polynéme s’annule a un ordre donné en x ne dépend pas du choix de la base
de dérivations en x.

3.2. Coordonnées affines des points de torsion sur une variété abélienne. Soit
p € P4, unidéal premier v|p de Ok tel que A, soit ordinaire, un point de p-torsion
PdeAet(ty,.... 1g,) unsysteme de parametres bien défini en P. On a le lemme
suivant :

Lemme 3.1. Si P se réduit sur O modulo w, pour un idéal premier w|v dans un corps
de définition de P, on a

Vi<i<g: |ti,v(P)|w = p—l/p'

Preuve. 11 8’agit du corollaire 2.9 de [GalO8], 1a seule différence étant la convention
faite sur les normes w-adiques. [

On passe maintenant d une propricté sur les parametres a une propriété concernant
les sections globales de M4 sur A. Soit 7" un entier et o € A(K). On suppose que
le point de p-torsion P se réduit sur O modulo w, ot w|v est une place d’un corps de
définition de P, de « et des parametres (71,y. ... ,¢g,). Onnote 7, la translation par
« et on choisit un ouvert affine @, contenant P associé a des coordonnées affines :

(¥i,..-\ Vn)
Soitaussi F une section globale d une puissance de M 4, a coefficients v-entiers sur la
base de sections de M |4 en tout degré formée par restriction & partir de (Zy, . .., Zp,),

par projective normalité. On suppose que F est nulle en @ a un ordre au moins 7" :

VkeNf tq [k|<T—1: 3% (Fogu)=0.
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Proposition 3.2. Avec le choix des coordonnées affines (y1,..., yn), ona
|Fogpr(a+ P)|w < p~ 172,
Preuve. Soit F := F o ¢ps. Par le choix de coordonnées affines,
x — F(o + x)

estune fonction rationnelle sur A bien définie en 0. En notant 21 I’ anneau des fonctions
sur A, mt1’idéal maximal associé al’origine et 2y, lelocalisé de W en O, ona l’injection

Ny > Ay =~ K[[f1vs-- - gl

qui associe a une fonction réguliere sur un voisinage de O son développement de
Taylor en les parametres (¢1,,,...,%g,v). Soit k € N&. Commengons par démontrer
que 0% | F' le terme d’ordre k dans le développement en série de Taylor de F en o,
est w-entier. Par construction, on a la formule

8§’vﬁ = 8’;(}701'&) = 8’;(FO¢M 0 Ty).

On peut supposer que les coordonnées projectives de « sont w-entieres (quitte a
multiplier par un entier assez grand). En it€rant le lemme 2.3, on voit donc que ¢ps
et t, sont donnés sur les coordonndes projectives par des polyndémes a coefficients
w-entiers. Il suit que sur 1’ouvert considéré, F o 74 est un polyndéme 2 coefficients
w-entiers en les coordonnées affines :

(yl,. % ,yn)

Ensuite, pour tout mondme unitaire ! (! € N” quelconque) en les coordonnées
affines (y1,. ... ya), les dérivées divisées 0% (y?), pour k € N¥, sont w-entiéres par
le choix des dérivations dans le lemme 2.4, qui sont d’une part algébriques et d’autre
part a coefficients w-entiers. Tl en va de méme pour les 3% (y*) en vertu du lemme 2.5.

La série de Taylor considérée converge donc (pour la norme w-adique) sur la
“boule unité”

{x, sup { |tiv(X)|w} < 1}’

l<i<g
et par le lemme 3.1, elle converge en £. On a donc, dans une complétion w-adique,
Fla+P)y= Y ok F-1,(P)*
kcN&

Puisque F estnulle al’ordre 7" en «r, 1a proposition suit du lemme 3.1, de la w-intégrité
des coefficients de cette série formelle, et de 1’inégalité ultramétrique. O
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4. Section nulle sur une réunion de translatés de la variété

Suivant la stratégic de [Amo07], on utilise la propriété p-adique démontrée dans le
paragraphe précédent de facon “équivariante”, dans le but de comparer deux fonc-
tions de Hilbert, celle d’un fermé X avec multiplicité 7', et celle du translaté de X
par un sous-groupe de torsion sans multiplicité. Cette méthode donne directement
I’existence d’une section nulle sur des translatés de V', alors que la précédente (voir
[ADO3]) commence par trouver une section nulle sur V' avec forte multiplicité avant
d’extrapoler aux translatés. Cette approche plus “intrinseque” simplifie la preuve de
la fagon suivante (ces trois points étant liés) :
— on peut se contenter de considérer les points de p-torsion pour un seul pre-
mier p ;
— on n’est plus obligé d’itérer “I’extrapolation” en translatant plusieurs fois par
des groupes de torsion;
— on utilise un lemme de zéros plus simple.

4.1. Le choix des parameétres. Soit X un fermé de Zariski strict de A, d’indice
d’obstruction wg (X ). On introduit un certain nombre de paramétres dépendant de
wg(X) etde A. On rappelle (voir 2.1) que Cy est une constante ne dépendant que de
A, grande devant toutes les constantes du probleme (ne dépendant que de A). Soit A
un parametre vérifiant I’inégalité suivante :

A(X) > Colog (3wg (X)).

La présence de Cy dans ce parametre permettra souvent de simplifier les calculs
en ¢liminant les constantes dans les termes ayant une dépendance logarithmique en
wg (X). La méthode diophantienne fournira in fine une minoration de 1 3°(V )wg (V)
dépendant explicitement de A(V'), pour V vérifiant les hypothéses du théoréme 1.1 ;
on optimisera cette minoration en prenant A(1") de I’ordre de log (deg P (V)).

On choisit d’abord p € P4 ayant une dépendance d’ordre logarithmique en
wg (X) dans le sens suivant :

log(p) < cslog(A),

ollonaposé:cs := (5g(g+1))¢+1 (ceci étant imposé par le choix du nombre premier
dans le paragraphe 5.1). Soit v|p un idéal de Ok de bonne réduction ordinaire (un
tel idéal existe, par définition de P4 ).

On suppose dans toute cette partie que le minimum essentiel de X est majoré de
la fagon suivante :

log(p)

,aess (X) < S R R
. Apwg(X)

(1)
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On poursuit avec ’entier 7" définissant la multiplicité. I”argument p-adique qu’on
va utiliser impose que 7" soit plus grand que lofgﬁﬁ, et I’ajustement des parametres
(pour comparer les fonctions de Hilbert, puis pour le lemme de zéros) force que T’

soit en fait de I’ordre de ce quotient. On prend donc

h= [10259)]'

Lacomparaison des “fonctions de Hilbert” fait intervenir le parametre L etimpose
que celui-ci soit assez petit (de I’ordre d’une constante). Le choisir assez grand permet
de prendre M ? plus petit (puisque ¢’est le produit LM ? qui intervient typiquement
dans la preuve), donc d’améliorer la minoration du minimum essentiel. Cect nous
incite a prendre

L o= [t

Remarquons que le contexte du plongement étiré “décale” les parametres : le choix
de I’entier L du cas torique correspond grosso modo 3 M? dans le cas abélien.

Cet entier M doit étre assez grand pour que la comparaison des “fonctions
de Hilbert” considérées donne 1’existence d’une section non-nulle (majoration de
I’“exposant de Dirichlet” selon la terminologie diophantienne, voir par exemple
[DHOO0], 5.3). On doit ensuite le prendre assez petit pour obtenir une bonne ma-
jJoration du degré d’un “fermé obstructeur” apres utilisation du lemme de z€ros :

(prx(X)) sk

M = .

log(p)

L’inégalité (1) permet alors que la hauteur des petits points de X dans le plon-

gement étiré soit bornée, ce qui suffit puisqu’on travaille avec la hauteur projective,
dont la différence a la hauteur de Néron—Tate est bomée par une constante.

Remarque. Onpourrait aussi choisir une stratégie Iégerement différente, et construire
une section de M sur A x A non-nulle sur un translaté de X (ce qui est fait par exemple
dans [DHO00]). Avec un autre choix de parametres, en particulier L (r&s proche de M2,
on montrerait qu’une telle section est non-nulle sur I'image de A par le plongement
éuré, et que la dimension de I’espace des sections sur A x A est correctement minorée.,
Cette méthode donne ici des résultats comparables.

4.2. Comparaison de “fonctions de Hilbert”. On rappelle qu’on a fixé une base
Z .= (Zy....,Z;)desectionsde M sur Ax A (voir 2.3). L’'image par le plongement
étiré du fermé X est définie par un idéal homogéne B C Q[Z]. On pose

Ker[p](”) ={x € A[p], x =0 (mod v)}.
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On note aussi pour simplifier
X':= X + Ker[p]™,
¢t I’image de ce fermé par le plongement étiré est définie par un idéal homogene 28/,

Définition 4.1. Si 3 est un idéal définissant un sous-schéma de ¢y (A) (non né-
cessairement réduit ou irréductible), on note H(3, L) la dimension de I’image du
morphisme de restriction :

re: HO(A MEL) — [QIZ)/3],,.
f— 1fls.

La proposition suivante est I’analogue de la proposition 2.1 de [Amo07] et consti-
tue le point clé de cette approche équivariante.

Proposition 4.1. On a I’inégalité suivante :
HE, L) <2H®BD, L),
Preuve. Soit 8 un réel positif tel qu’on ait
) <0<
cect étant possible par (1) et choix de M. On commence par considérer I’ensemble
X(6) = {x € X(K), hg(x) < 6},

Cet ensemble est Zariski-dense dans X et ’ensemble X’(9) = X(6) + Ker[p]™ est
Zariski-dense dans X’. Pour simplifier les notations, on pose

h:=HE®,L) et I:=H®, L -HSD L)

On peut de plus supposer que 4 > 1, la proposition étant déja démontrée sinon.
Posons
S = Ker (ry}),

et filtrons cet espace vectoriel. Pour tout d € N*, on définit
Sq:=1{F e H'(A, ME"). Vx € X'(8). [K(x): K] =d : F(x) = 0}.

Les Sy forment une suite décroissante de sous-espaces vectoriels de H%(A, MﬁL )
(dont la dimension est finie). L'intersection des Sy étant égale a S, cette suite est
stationnaire A partir d"un certain rang. On a alors, pour un entier dy assez grand,

Sap ={F € S,¥x € X'(8) : F(x) =0}.
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Comme X'(6) est Zariski-dense dans X', on a
S = Sy,

Les points de X' (#) étant définis sur une extension de degré au plus dy sont en nombre
fini par le “théoreme de Northcott”. On note (x;)1<i <4, €es points. On choisit aussi
(Qj)12)<jo, une base de H%(A, Ma]“) formée de mondmes en les Z; de degré L (le
plongement étant projectivement normal). De plus, pour tout 1 <7 < ip, on choisit
o; € X(6) et P; € Ker[p]™ tels que : x; = o + P;.

On note S+ Iorthogonal de S dans H°(A, MﬁL ) pour la structure euclidienne
usuelle avec le choix de la base (Q;)1<;<j,. Cet orthogonal est de dimension /,
engendré par les (Q ' (x,-))l.’j. On peut donc trouver / points et # multi-indices tels
que (quitte a renuméroter)

%) ;= det (Qj(xi))lsi,jsh # 0.

Remarquons que ce déterminant est défint dans un espace projectif par plongements
de Segré et Véronese, et que son annulation a donc un sens. On peut de plus choisir
un ouvert affine pour chaque x; = «; + P; et on choisit I’ouvert donné par la
proposition 3.2 pour le point P; dans les calculs qui suivent. Les (Q; )<<, sont
deux-a-deux distincts et par la non-annulation du déterminant, ils engendrent un
espace vectoriel de dimension /. On considere la projection

7: Veet(Q1..... Qn) — [QIZ1/BT],.

qui n’est autre que la restriction de ro(ry a I'espace de sections considéré. Son noyau
est de dimension au moins 7. Ceci signifie qu’il existe /#’ sections en degré L linéai-
rement indépendantes :

h
Ge= 8kj Q. k=11,

F=i

nulles sur X a un ordre au moins 7. On prend désormais K’ une extension finie de
K sur laquelle X et les coordonnées des points de Ker|[ p](”) sont définis, et w|v une
place ultramétrique de K’. Quitte a faire des opérations élémentaires sur la matrice
(gk.j )k, j» on peut alors supposer

h—k+1
Ge= ) &k Qi
j=1
et, pour tout | <k </h/,

gk jlw <1 sij<h—k+1,
lgkjlw =1 sij=h—k+1.
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En utilisant ces propriétés, on remplace les 4’ demiéres colonnes de la matrice
(Q; (xi))lgi,jgh par les colonnes :

Crk := “(Gr(x1),...,G(xp)), 1<k <k,

en substituant d’abord € a la derniére colonne, puis C, a ’avant-derniére, et ainsi
de suite. Si on note ' le nouveau déterminant, on a alors :

D = Dl

Les polyndmes G sont nuls a un ordre au moimns 7" en tous les points «;, pour
1 <7 < hetils sont a coefficients w-entiers. On est donc en situation d’utiliser la
proposition 3.2 qui donne, pour | <i <hetl <k <h,

_T
G (xi)ly < p 2.

On peut maintenant majorer | 2’|, en développant successivement le déterminant
selon les /2" derniéres colonnes. Sur la i-¢me ligne de chacune des 7 — £ premicres
colonnes, on majore la norme de chaque coefficient par

max{l, |29 (X Mw,- - - |Zm(xz')|w}L=

ou (z1,...,2,) est un systéme de coordonnées affines sur un ouvert contenant x;.
Le systeme de coordonnées dépend du point, mais on omettra de préciser cette dé-
pendance puisque la majoration fera vile apparaitre la hauteur, qui ne dépend pas
du choix des coordonnées affines. On trouve finalement, par la formule donnant le
déterminant en fonction de ses coefficients (sur les & — 2’ premiéres colonnes) et
I’inégalité ultramétrique :

h
_nr
Dl = [ < p "7 [ max{l, 21w - -+ |2m x|}

i=1

Si w est une autre place de K', on se contente d’estimations triviales et, dans le cas
archimédien, la formule des déterminants fait cette fois intervenir le facteur A!. On a

h
| Dy < h! 1_[ max{1, [z1(x; )|w,-. -, |Zm(xi)|w}L-

i=1

On &crit la formule du produit, dans sa version logarithmique, pour le déterminant
D qui est défini sur le corps K’ :

g<_ T log(p)
T [K:Q]

+ hlog(h) + hL max {ha(x)}-
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On utilise ensuite la comparaison entre hauteur projective et hauteur de Néron—Tate
(voir 2.2) et la variation de la hauteur par plongement étiré (voir le lemme 2.2) :

T log(p)
(K : Q]
cl?

Puis, pour une constante cg ne dépendant que de A, comme L = [ 0 ] :

< hlog(h) + 2hL(M?8 + ;).

!

— < o0 L 10g(h).
h — c6%0 T log(p) og(h)
On majore le terme log(/) en utilisant I’inclusion triviale
Im(re) C HO(A, Mﬁl’),
ce qui donne
log(h) < e7log(LM?),

pour une constante ¢ ne dépendant que de A (par le théoréme de Hilbert—Serre). On
en déduit, par choix des parametres (voir 4.1) et pour une constante cg ne dépendant
que de A4 :

/
T cgC?P P jog(LM?
h =S T log(p) 08( )

log(LM?

< cgco”ziog(ZA )

< C02/310g(A) I C02/310g(60£(X))
2A 2A

< 1

—_ 27

la constante Cy €tant prise suffisamment grande. La proposition est donc entierement
démontrée, par les définitions de £ et #2’. O

4.3. Utilisation du lemme de zéros. On montre qu’avec le choix des paramétres,
et la comparaison des fonctions de Hilbert faite précédemment, il existe une section
nulle sur X', le translaté de X parun sous-groupe de torsion. Puis a I’aide d’un lemme
de zéros classique de Philippon, on en déduit une inégalit€¢ impliquant le degré d’une
variélé obstructrice. Cette indgalité ne permet pas de conclure et on devra recourir a
un argument de descente. A cette fin, on raffine le lemme de zéros avec un principe
de tiroirs pour montrer que la variété obstructrice contient une bonne proportion de
composantes du fermé algébrique d’origine, si celui-ci n’est plus irréductible.

Corollaire 4.2. 11 existe une section de £ sur A en degré L(M? + 1), non nulle, qui
s’annule sur X'.
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Preuve. On va en fait démontrer qu’il existe une section de M4 en degré L, non
nulle sur A, qui s’annule sur X’. Ceci impliquera le corollaire par I’isomorphisme

Mg > £®(M2+1)'

On commence par majorer le membre de droite dans 1’inégalité de la proposi-
tion4.1. On choisit d’abord une hypersurface Z contenant X, réalisant wg (X ) et asso-
ciée A un idéal €. Suivant un calcul de géométrie différentielle classique (1’ *“astuce de
Philippon—Waldschmidt”, voir par exemple [PW88], lemme 6.7, [DHO0], lemme 5.1
ou [Gal08], proposition 5.1), on obtient :

HBD 1y < HED Ly < TH(G, L).

Par le théoreéme de Chardin et le lemme 2.2, on a, pour une constante ¢y ne dépendant
quede A :

H(G, L) < dimg [Q[Z]/€], < co(LM?)¥  wg(X).

Par ailleurs, la dimension de I’espace des sections est minorée de la fagon suivante
(en utilisant le théoréme de Hilbert—Serre), pour ¢ ne dépendant que de A :

dimg (H(A, MED)) = cro(LM?)*.

Si toute section de M4 sur A en degré L nulle sur X’ est identiquement nulle , on a
I’inégalité

cro(LM?)* < H®', L) < 2H(BD, L) < 2¢T (LM wg(X).
Et pour une constante ¢y ne dépendant que de A :
LM? < e Tog(X).
Le choix des parametres donne

1 1/2AP0)£(X)<CMAPCU£(X)
47% log(p) T log(p)

ce qui est absurde. Le corollaire est donc entierement démontré. [

On dit qu'un fermé Z de A est incomplétement défini par des formes de degré
< L si toutes les composantes de Z sont des composantes de A N Z(/), ot [ estun
idéal homogene dont I'image modulo 2 (I'idéal de définition de A) est engendrée par
des polyndmes de degré < L. On a la version faible de la proposition 3.3 de [Phi86] :
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Lemme 4.3. Si Z est un fermé de A de codimension k' incomplétement défini par
des formes de degré < L, il existe un réel c1, ne dépendant que de A tel que

degI(Z)l/k/ < ClzL.

Ce lemme nous permet d’obtenir le résultat suivant concernant un “fermé obs-
tructeur”.

Proposition 4.4. Soit ny le nombre de composantes irréductibles de X . Il existe un
[fermé équidimensionnel Z contenant au moins my composantes irréductibles de X,
o my est le plus petit entier supérieur ou égal any /g, tel que

1k _ A?pog(X)

degy (Z + Ker[p]™) /" < log(p)

Preuve. 1.e corollaire 4.2 donne I’existence d’une section non nulle F de £ en degré
L(M? + 1) nulle sur X + Ker[p]™). Considérons 1’ensemble algébrique W défini
par les équations

F(x+P)=0, P eZKer[p]™.

On a une décomposition de W en fermés équidimensionnels,

ou 7 désigne la codimension de W;. De plus, il suit de la définition de W que
Vi<i<g: W,=W, +Ker[p]™.

Le fermé W contient X, donc chaque composante irréductible de X est incluse dans
une composante irréductible de W et le principe des tiroirs de Dirichlet nous garantit
qu’il existe ig tel que W, contient m > my composantes irréductibles de X .

Notons Z le fermé W, et k’ sa codimension. Par le lemme 2.3, le fermé Z est
incomplétement défini par des équations de degré au plus 2L (M2 + 1). Le lemme 4.3
nous donne donc :

degI(Z)l/kl < 2612LM2

A X
= 2612C01/2 jlpa);(ﬁ() )
ogLp

- A?pwg(X)
log(p)

Comme Z = Z + Ker[p]™, la proposition est entierement démontrée. O
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5. Descente finale

Pour finir la démonstration du théoreme 1.1, on va d’abord préciser la proposition
précédente, en choisissant un bon nombre premier p. Le résultat obtenu avec X = V
ne nous permet pas encore de conclure, car il manque une hypothese de coprimalité
entre la partie discrete du stabilisateur du fermé obstructeur (qui est une variété dans ce
cas) et le premier p. On fait donc une descente dont le principe est le suivant : on itere
la proposition 4.4 avec une suite de fermés construits a partir de V, et ’hypothese de
coprimalité en décalé ; on obtient I’égalité des dimensions entre deux crans successifs,
ce qui permet alors de ramener I’hypothese de coprimalité au méme niveau et d’obtenir
enfin une contradiction.

5.1. Choix du premier. On va d’abord fixer le premier p. Celui-ci doit avoir une
dépendance logarithmique en wg (X ), pour que la minoration du minimum essentiel
ait la précision espérée ; on a d’ailleurs eu besoin de faire cette hypothese “raisonna-
ble” dans le paragraphe 4.1. Dans la descente, on construira des suites de premiers de
plus en plus petits et suffisamment espacés. On commence par définir deux nouveaux
parametres utiles dans la mise en place de la descente, un réel positif p qui permet
de quantifier le choix de p, et un entier strictement positif R qui sert a fixer 1’hypo-
thése de coprimalité dont nous aurons besoin. On fait donc les hypotheses suivantes
concernant ces deux parametres :

A = max {Cylog ((3degy (X)), log(R)} et 2<p < (5g(k + 1))k+1.

On rappelle que nx est le nombre de composantes irréductibles de X et my est
le plus petit entier supéricur ou égal 2 ny /g. On obtient la “quasi contradiction” :

Proposition 5.1. On suppose que X n’est pas incluse dans le translaté d’une sous-
variété abélienne et que son minimum essentiel est majoré de la facon suivante :

1
AP’

iy (X) wg(X) <

Alors il existe un nombre premier p, un idéal premier v|p de Ok de bonne réduction
ordinaire pour A, et un fermé équidimensionnel Z, de codimension k' > 1, contenant
au moins my composantes de X, tels que

— [D’entier p est premier avec R et

— < p < A’
3 =P =

— on a l'inégalité

)1/k’

deg¢ (Z + Ker[p]™ < A pwe(X).
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Preuve. 11 s’agit essentiellement de démontrer qu’il existe un premier p € P4 pre-
mier 4 R et vérifiant les inégalités annoncées. Notons 14 le nombre de premiers p
de P4 vérifiant

AP[2 < p < AP,

et n g le nombre de premiers de 4 divisant R. Les premiers de &4 sont en densité
c13 > O fixée avec A, et comme A > Cy, quitte a prendre cette constante assez
grande, le théoréme des nombres premiers nous donne

AP
MA > C]3——————
A =B3 Toe(A)
de plus, on a
R > 1_[ pvp(R)z 1_[ p > "R,
PEP 4 PEFP 4
On trouve donc
AP log(R)

_ -~ _
A nR_Cl33plog(A) log(2)

S
= 3plog(A)  log(2)
> c134;

car p > 2, et avec Cp assez grande. Pour la méme raison et comme ¢yj3 > 0, 0n a
finalement
ma—ng > 1.

L’existence d’un premier p € P vérifiant I’encadrement prescrit et ne divisant pas
R est donc acquise.

Pour appliquer la proposition précédente, il reste a voir que 1’hypothese faite ici
sur le minimum essentiel est plus restrictive que (1). La majoration de p donne

L1 <10g(p).

PFX) 02(X) < gy < 50—

On peut donc appliquer la proposition 4.4, qui donne 1I’existence du fermé Z vérifiant
les propriétés annoncées. L

Remarque. Expliquons maintenant I’idée qui va guider la fin de la preuve. On prend
X = V une variéé irréductible qui n’est pas incluse dans le translaté d’une sous-
variété abélienne stricte de A. Une version simplifiée de la procédure diophantienne
employée jusqu’ici donne, pour V irréductible, I'existence d’un fermé obstructeur
Z lui aussi irréductible de codimension £’ > 1 contenant un translaté de V, et
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d’un premier p vérifiant les inégalités de la proposition 5.1. On aimerait imposer
I’hypothese
p +[Stab(Z) : Stab(Z)°],

ot Stab(Z) désigne le stabilisateur de Z, et Stab(Z)° la composante connexe de
Stab(Z) contenant I’ origine. Dans ce cas, le groupe quotient Stab(Z)/Stab(Z)°, qui
se reléve dans Stab(Z), ne contiendrait pas d’élément d’ordre p, et on aurait

pg

(v)y _
deg (Z + Ker[p] ) ~ |Ker[p]® N Stab(Z)?|

degi (Z)v

seule la composante neutre du stabilisateur intervenant au dénominateur. De plus, la
variété Z, contenant un translaté de V', n’est pas incluse dans un translaté de sous-
variété abélienne, ce qui entraine :

Ker[p]™ 1 Stab(Z)°] < pim(Sub(2)°) < pe—k'-1

On aurait donc ) nr
AP (degy (2))F < 282w (V).

Une contradiction suivrait immédiatement en prenant p = 3k, et en utilisant [Cha88],
2, corollaire 2 pour extraire une hypersurface Z contenant Z de degré

deg e (Z) < c1adegq (Z)VF,

pour une certaine constante c14. On obtiendrait finalement, pour une constante Cg (A)
ne dépendant que de A4,

Cg(A)

iz (V) = o2 (V)

log (3deg (1)) .

5.2. Descente en codimension générale. La construction précédente ne permet
pas de conclure, et on est amené a itérer, au plus & fois, la derniere proposition.
Cet argument de descente a déja €té utilisé par Amoroso et David dans [AD99] et
dans [ADO3]. 1 est ici compliqué par I’absence d’isogénies relevant le Frobenius en
caractéristique nulle. Son absence pousse a le “reconstituer combinatoirement” en
travaillant avec des réunions de translatés, et ceci explique qu’on ait écrit la partie
diophantienne avec des fermés de Zariski au lieu de variétés. On va donc itérer la
construction du fermé Z donné par la proposition 5.1 (et en déduire I’existence
d’une bonne variété), en faisant 4 chaque étape une hypothese de coprimalité entre
I’entier p et le stabilisateur du fermé construit au cran précédent. On pourra de plus
imposer un “emboitement” entre ces variétés et on démontrera qu’il existe une suite de
variétés ainsi construites associée a une suite de dimensions qui n’est pas strictement
croissante. La comparaison des degrés, avec I’hypothese de coprimalité, permettra
cette fois-ci de conclure.
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Commengons par préciser les parametres propres a la descente. Posons :

Vi<i<k p =g+ D)

les p; sont décroissants avec 7. Notons aussi

Pi = Api,

A(V) = €7 log((3dege (V).

On fixe une variété V' qui n’est pas incluse dans un translaté de sous-variété abélienne
stricte de A. On va itérer la proposition 5.1 au plus & fois, en employant le paramétre
pi 4 lai-eme élape. Le parametre P; permettra d’encadrer le premier p; construit.
On remarque que le choix des p; et de A est cohérent avec les hypotheses faites au
début de 5.1.

Il nous faut un nouvel indice d’obstruction pour traiter la perte de composantes
dans le lemme de zéros (dont on a gardé une proportion d’au moins ﬁ par un
principe de tiroirs). S1 2 est un sous-ensemble fini de A et V' une sous-variété de A,

on commence donc par noter :

ay (X) := nombre de composantes distinctes de V' + .

Définition 5.1. On définitl’indice d’obstructionde V relativement a un sous-ensemble
fini X de A :

o ay (X)
a);g(V, E) = ACIEITF\;:&@ {mdegi(Z)},
V+ACZ

ou Z est une hypersurface (pas nécessairement irréductible).

Cette définition permet de prendre en compte la perte de translatés de V' en com-
pensant cette perte par une chute du degré de la variété obstructrice correspondante.
On construit des suites de variétés ayant les propriétés suivantes :

Définition 5.2. Soit W(1’) I’ensemble des quadruplets (s, p, X, W) ou s estun entier
telque 1 <s <k, p=1{(p1,..., ps) estun s-uplet de nombres premiers tels que

. P;
Vi<i<s: TSpifPi,
I'ensemble £ = (X!, ..., X%) est un s-uplet de sous-ensembles finis de 4 et W =
(Wo, ..., Ws)estun (s + 1)-uplet de sous-variétés strictes et irréductibles de A avec

V = W, et les propriétés suivantes.
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— Pour tout 1 < i < s, ’entier p; est premier avec [Stab(W;_1) : Stab(W;_1)°];
il existe v, | p;, un premier de Qg en lequel 4 a bonne réduction ordinaire ; X
est un ensemble non vide tel que

W1+ X C W,

— Onpose Vy = V etpour tout 1 <i < s, on définit :
Vii=V 4+ 2 4. 43 et A= Ker[p]®7.
Alors on a

(oeWI._l(Ai)

— = deg (W
aw_ (T g (W:)

1/codim(W;) ¢
) < p,-a);g(V,-_l)(A (P; 41 ...Pk)g).

— Onala“relation de récurrence” entre indices d’obstruction, pourtout 1 <7 < s
et C AL

we(V.E + + 74+ T7) < A’ piwg (Via).
Remarque. Au sujet du dernier point, on convient que sii = 1,
21 WAPPPE Zi—l + Fi — Fi.

Le lemme suivant rassemble quelques propriétés immédiates des éléments de
W(V).
Lemme 5.2. Si (s, p. X, W)e W(V)erl <i <s,0na
Vic W et wz(Vi) < pfwe(Vie1).
Preuve. 1'inclusion découle de la définition 5.2 par une récurrence immeédiate. Soit
Z une hypersurface, pas nécessairement irréductible, contenant V;_; et réalisant

a);g(Vi_l). Ona .
V; C Z + A

puis . ,
we (Vi) < dege(Z + A') < |A'|dege(Z) < pPwg (Vio1). o

Notons :
Wo (VY ={(s, p. X, W) e W), dim(Wy) < --- < dim(W;)}.

Si on trouve un quadruplet (s, p, X, W) € W\ 'W,, la comparaison des degrés aux
variétés de méme dimension permet de trouver une contradiction ;
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Proposition 5.3. On a l’égalité¢ Wy(V) = W(V).

Preuve. Supposons par I’absurde qu’il existe (s, p, X, W) € W(V)\ Wy(V). On
peut donc trouver 1 <7 < s tel que :

dim(W;_) = dim(W;) et W_, + X' C W,.

On observe d’abord que pour tout 0 < j < s, W; contient un translaté de V. Comme
V' n’est inclus dans aucun translaté d’une sous-variété abélienne stricte, il en va donc
de méme pour W;.

Par irréductibilité de W;, on observe que aw, (X'} = 1. Comme p; est premier
avec [Stab(W;_1) : Stab(W;_,)°], les éléments du groupe Stab(W;_;)/Stab(W;_)",
qui se reléve dans Stab(W;_1), ne sont pas d’ordre p;. On a donc

|A7]
|A? N Stab(W;_1)|
_ [Ker{p)®)
|Ker[p;]®1) N Stab(W; _1)°]
o |
i -~ 14codim (W;)

dim (Stab(W; _1)0) — ©7 ’
i

aw; (AL) =

la derniere inégalité provenant du fait que W;_ n’est pas un translaté de sous-variété
abélienne. On en déduit :

pi(pidegs (W;—1))

Mais par choix des parameétres,

Hem) o piog(Vic)A®(Pigy ... Pr)®.

pour # € R. Enremarquant que les p; sont une suite géométrique et que g > 2,ona:

ku = —p;k /codim(W,_1) + 6k + kg(pi+1 + -+ pr)
< —p; + Skgpi+1
< —=5(k + 1)gpi+1 + 5kgpi+1 < 0.

Par le lemme 5.2, ona V;_; C W;_, ce qui entraine, par le théoreme de Chardin et
le choix de A :
we(Vis1) < A wg(Vi_y).

Puisque I’indice d’obstruction est non nul, on en déduit une contradiction. O
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5.3. Un dernier argument géométrique. Dans le paragraphe précédent, on avait
seulement besoin de savoir que V' n’est pas incluse dans un translaté de sous-variété
abélienne. On suppose désormais :

|

5 (V |4 )
e (V)ywe (V) < A(Sg(k+1))k+l

La preuve du théoreme 1.1 sera achevée si on réussit a démontrer la négation de la
proposition 5.3, a savoir :

Proposition 5.4. Ona Wy (V) # W().

Commencons par quelques préliminaires. A un élément (s, p, X, W) de ‘W, on
peut associer la suite de longueur s 4 1, croissante, des dimensions des W;. On
commence par construire un ordre total sur ces suites. Soient v = (v;)o<i<s €t
v" = (v))o<i<s deux suites croissantes d’entiers positifs.

Définition 5.3. Onditque v < v’ 81 (v;)o<i<min{s.s’} < (V})0<i<min{s,s’} pOUI I’ordre
lexicographique ou, en cas d’égalité, sis > s’

Remarque. Siune suite est la tronquée d’une autre suite, elle est plus grande selon
cet ordre (il y a un renversement des inégalités).

La proposition 5.4 se démontre par un argument de descente : on prend un élément
(s,p, X, W) € Wo(V) associé a une suite minimale, et on construit un nouvel
élément (s’, p/, X', W'y dans 'W(V'), associé 4 une suite strictement inférieure ; cet
¢lément est alors nécessairement dans W{1') \ Wy (V).

Comme il n’y a qu’un nombre fini de suites de k + 1 entiers entre O et k, les suites
croissantes de dimensions associées aux éléments de Wy (V') sont en nombre fini,

Lemme 5.5. On a Wo(V') # 8.

Preuve. Compte tenu de la proposition 5.3, on peut se contenter de trouver un élément
dans 'W(1”). On remarque d’abord, par le lemme 2.1 (ii) de [DHOO] :

log ([Stab(V) : Stab(V)°]) < log (degg (Stab(V))) < glog (dege (V) < A.

La procédure diophantienne (proposition 5.1) avec X = V et R = [Stab(V) :
Stab(V)°] donne I’existence d’un entier p; tel que :

b
2_P1 1s

et d’un fermé W, contenant W, + A! tel que :

degi(Wl)l/COdim(Wl) < plAwa(V)'



804 A. Galateau CMH

De plus, le premier p; est premier i [Stab(Wy) : Stab(W;)°] par construction.

La relation de récurrence entre indices d’obstruction, pour tout I'! C A, vienten
extrayant une hypersurface Z; contenant W par le théoréme de Chardin ([Cha88],
2, corollaire 2) :

wg(V.T1) < dege(Z1) < p1A wg (V).

La constante de comparaison entre les degrés dans le théoreme de Chardin est €éliminée
en remplagant A2 par A3, O

On peut donc choisir une suite minimale pour I’ordre <, associée a un quadruplet
(s, p, X, W). Le lemme technique suivant montre comment construire 1’élément
(s', p', X', W) en utilisant le théoréme de Bézout. 1l restera ensuite & prouver que
ce quadruplet est encore dans ‘W(1').

Lemme 5.6. I] existe un entier % < psy1 < Pgyq premier avec [Stab(Wy) :
Stab(W;)°], un indice 1 < s’ < s + 1, un sous-ensemble 35" de AY et une sous-
variété L stricte et irréductible, dont le degré vérifie

k

aw, (AY)

o, (E5)

aw,, | (A)

d gy —————
ege(Zy) < N

deg;ﬁ (Ws")ps’wi(vs’—l)(A6p§+1 v p:qg_H)v

et telle qu’on ait 'inclusion
Wy + E° C Zy,

avec
codim(Zy ) = codim(Wy) + 1,

en posant les conventions : codim(Wy11) = 0, dege (Wyy1) = 1er 5T = ASTL

Remarque. Avec la définition de I’ordre <, on vient bien de construire une suite de
dimensions “plus petite” :

(dim(Wp). ..., dim(Wy_1),dim(Zy)) < (dim(Wy). ..., dim(W)).

Preuve. On va utiliser la proposition 5.1 avec

p=psr1 el R=[Stab(W): Sub(W)°I [ | pi-

i=1

On pose
To=2%'4... 4+ =,
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puis on prend X tel qu’il existe Z contenant V' + X et vérifiant

(Xv(zg)
we(V,Xp) = dee(Z).
2V, Zp) 2y (2) 2(Z)
On choisit alors
X=V+ 3.

Le fermé X ¢étant réunion d’un nombre fini de translatés de V' par des points de
hauteur nulle, on a

AEO0) = A5 O).
De plus, le lemme 5.2 1téré donne
wg(X) < weg(Vy) < pi ... pfoe(V) < PY ... P§ ox(V).

Il en résulte

0 (XNAFX) < Pf ... PRog(VAF V)

< A¥,
ou

w=— gk + DY £ glpr + -+ py)

< —Gglk + 1Y 4 glo1 + -+ psr1) — Pst1
< p1(2g —5g(k + 1)) — ps+1
< _1 i ps+1.

L’hypothése de la proposition 5.1 est donc vérifie avec p = ps+1. De plus :
Colog(Bwgz (X)) < Co(glog Py + -+ + glog Ps + log(Bwg (V))) < A(V).
On majore ensuite log(R), en remarquant que
log(R) < log deg (Stab(Ws)) + log(Py) + - -- + log(Py),

puis de la méme fagon que dans la preuve du lemme 5.5 :
1
log(R) = (dim(W;) + 1) log (dege (Ws)) + S A(V)

1
< g(g(log A +log Py + -+ log i) + glog (we (Vs-1))) + SA(V)
< A(V).
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La proposition 5.1 donne donc I’existence d’un entier

P s+1

2
strictement positif, d’un fermé de Zariski équidimensionnel Z, de codimension k’,
tel que le nombre de composantes distinctes de X dans Zg soit supérieur ou égal a

GVT(E), et vérifiant I’inégalité suivante :

< ps+1 < Py,

/K

degge (Zo + ASH) < A pgy1og(X).

De plus, le théoréme d’interpolation de Chardin permet d’extraire une hypersurface
Z, équidimensionnelle mais pas nécessairement irréductible, contenant Zg + AST!
telle que, pour une constante c¢1s ne dépendant que de A4,

- 1k
degy (Z) < c1sdegy (Zo + A1) < c15A” pyy1wg (X). (2)

On peut maintenant démontrer 1’inégalité entre les indices d’obstruction au “cran
s + 17. Remarquons que si I'* 1 est un sous-ensemble quelconque de AT1, ona

ay(Zo + 5t
oy (% £ o)

ay (Zo)ay (ISt!
< Apy, B0y )
ay (Xay (I's+1)

we(V,Zo+ Tt < g deg ¢ (Z)

wge(V + X).

On a fait apparaitre les facteurs oy (I'* 1) en remarquant que les points de I'* ! sont
d’ordre premier aux ordres des points de £, pour tout 1 < 7 < s. On utilise alors les
propriétés fines des nouveaux indices d’obstruction, et la définition de X, qui garantit
I’existence d’une hypersurface Z contenant V 4 X telle que

o >
we(V + %) > oz (V. To) = a2 O)d 0,(Z) > o O)wx(v ).
OlV( ) OlV(Z)
On en déduit I’inégalité suivante :
wz(V, o+ ) < AP ps 1wz (V + o). 3)

Premier cas. L’hypersurface Z contient Wy 4+ AS*t1. On prend une composante irré-
ductible Z 4 de Z “au-dessus de la moyenne” dans le sens suivant. 11 existe ystl
un sous-ensemble fini et non-vide de A**! tel qu’on ait

W, + £ ¢ Zoyg,
et que

degy(Zss1) _ omy (B4

- . 4
deog(Z) ~ aw, (5 @
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Sionnote Z = L g Zp la décomposition de Z en composantes irréductibles et
si =B est I’ensemble des x € 2511 tels que x + Wy C Zg, on a en effet

Ypdege(Zp) _ Lpom (ZF)
degy(Z) o (I ’

et 'existence de Zg4q vérifiant (4) suit. [’inégalité du lemme est alors démontrée
avec s’ = s + 1, en remarquant que A*T! = X5t ;

——o——deg e (Zs11) < A’ psi02(X) < A pyirog (V).

Deuxiéme cas. Le fermé Z ne contient pas
WS‘ +AS+1 - WS £ 2S+1'

Remarquons que translater Z ne change rien a son degré. Soit s’ le plus grand entier
< s tel qu’il existe un ensemble 'Y avec (quitte a translater Z par un point de torsion)

Wy_1+T% CZ,
vérifiant que

awy (T 1 av(®),
aw, (5)  2gav(Zo)’

et tel que cette propriété soit vérifiée pour tout entier < s, Comme V = Wy, la
construction de Z garantit que s* > 1 (la perte de composantes au premier cran ne
peut &tre plus grande que la perte totale).

Cette clause technique tient au fait que la variété obstructrice dans le lemme de
z€ros ne contient pas nécessairement toutes les composantes de V' + 2, mais une
proportion importante par un principe de tiroirs. On a donc introduit le sous-ensemble
3 de Xg qu’on ne contrdle pas et (5) montre que la perte de composantes dans la
descente est limitée. Elle sera compensée par les propriét€s des indices d’obstruction
en jeu.

Au cran suivant, on observe en particulier que

(5)

Wy + Es"+1 % Z,
et on peut supposer sans perte de généralité que
W £ Z.

Par construction, il existe un sous-ensemble ¢ de =% vérifiant (5). Les deux fermds
= . 4 . ~ v
Wy et Z contiennent alors Wy + I'® (voir la définition 5.2). Comme W est
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irréductible et n’est incluse dans aucune des composantes de Z, qui sont toutes de
codimension 1, I’intersection Wy N Z est un fermé ¢quidimensionnel de dimension
dim( W) — 1 et contient encore le fermé Wyr—y + ¥ De plus, son degré est majoré
par le théoreme de Bézout (quitte a sommer les degrés sur toutes les composantes
irréductibles de Z) :

degy (Wer N Z) < degg(Wy)degy (Z).

On choisit alors, comme dans le premier cas, une composante irréductible Zg de
. . . q- . . e p
cette intersection “meilleure que la moyenne”, ¢’est-a-dire telle qu’il existe 2% avec

Wo1 + 5 C Zy,
et qu’on ait I'inégalité suivante :

degi (Zs’) < OlT/VkS.ffl (is,)
degi (WS/ M Z) N aWS/,l(Fs,) '

On en déduit :
aw,_, (A*) aw,_ (A%) ( s ap(Zo) )
— = —degy(Zy) <« ————dego(Wy)| A we(X)).
w5 g2(Zs) < aw,_, (57) g2 (Wy) Ps+1 o {E) 2(X)

A ce stade, on utilise les remarques précédant (3), en rappelant que X = V 4+ X :

0;];((220)) we(X) < wg(V, Xp).

De plus, soit Z contenant un certain V + A et réalisant wg (V, X! +--- + Z“"). On
a alors, quitte a considérer un translaté de Z et en faisant une majoration grossiere :

oy (Eo)
ay (A)

Il reste enfin a utiliser la relation de récurrence de la définition 5.2 :

CU;@(V, EO) <

degi(z) S pf/_|_1 .. .p§w£(V, El —|— eee _I_ ES,)'

wg(V.E 4 4+ 3%) < A powg (Vor_y).

En mettant bout a bout ces inégalités, 1l vient
aw,_ (A)
aWS’—l (is,)

- OJWS,,l(AS/)
B C(VVSl_I (ES )

dege(Zy)

deg:f,(Ws’)ps’wi(Vs’—l)(AGP§+1 ~--p§+1)- O
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La proposition 5.4 sera prouvée si on parvient a démontrer que la nouvelle suite
(s, 1", X', W) construite dans le lemme précédent est dans W(V) :

Lemme 5.7. La suite (s', 1", %', W') est dans W(V).

Preuve. Rappelons que la nouvelle suite est définie par
¥ o= (x ..., 2L S,

el
= Wo,...,Wy_1.Zy).

Le premier point est toujours vérifié par construction.
Démontrons le second point pour i = s’, les autres cas étant inchangés. Si s” #
s+ 1,ona

AW, (ASI)
ﬁdegi(zs/)
C(WS/,]_(E )

< aWS’f1(AS,)

B Wy (ES,)
codim (W,
< (pyrwg (Vo) A®(Pyryy ... P)%) W) pywg (Vi) AS (pyrti ... pys1)®
codim(Z /)
< (Psfw;t: (s, Vs’—l)A6(Ps’+1 ‘- Pk)g)

puisque dans ce cas : codim(Zy) = codim{Wy) + 1. Si s’ = s + 1, la majoration
du lemme 5.6 donne directement le résultat.

Enfin, la “relation de récurrence” entre indices d’obstruction est trivialement réa-
lisée pour i # s';pouri = s = s+ 1, c’est I'inégalité (3); et pour i = s’ et
s’ # s+ 1,il n’y arien & montrer. O

dege (Wi ) psrg (VS’—l)A6(ps’+1 . Ps+1)8

>

Preuve du théoreme 1.1. Soit V' une sous-variété stricte de A qui n’est pas incluse
dans un translaté de sous-variété abélienne stricte de A. Par les propositions 5.3 et
5.4, la variété V contredit I’inégalité suivante :

fig (V) wg(V) <

AGgk+1)* 17
avec A = CZlog(3deg¢(V)). On en déduit

Ce(A)
wz (V)

ou A(k) = (5glk + 1)l et Ce(A) = u(g) , qui ne dépend que de A. O

A (V) = x (log(3degy (V) %),
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