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Une minoration du minimum essentiel sur les variétés abéliennes

Aurélien Galateau

Résumé. On étend à la codimension générale la minoration du minimum essentiel sur les
variétés abéliennes obtenue dans [Gal08], sous une conjecture concernant leurs idéaux premiers
ordinaires. Cette minoration est optimale “à " près” en le degré de la sous-variété et rend
inconditionnelle la démonstration, par Viada, de la conjecture de Zilber–Pink pour une courbe
plongée dans une puissance de courbe elliptique.

Abstract. We extend to the general codimension the lower bound for the essential minimum on
abelian varieties found in [Gal08],under a conjecture about ordinary primes inabelian varieties.
This lower bound is thebest expected,“up to an"”, in the degree of thesubvariety and completes
Viada’s proof of the Zilber–Pink conjecture for a curve embedded in a power of an elliptic curve.

Classification mathématique par sujets 2010). 11G10, 11J81, 14G40.

Mots clés. Bogomolov, variété abelienne, minoration, hauteur.

Keywords. Bogomolov, abelian variety, lower bound, height.

1. Introduction

On poursuit dans ce travail la minoration de la hauteur normalisée sur les variétés
abéliennes commencée dans [Gal08], dont on généralise le résultat principal en
codimension quelconque. Commençons par rappeler les origines de notre problème. Soit
C une courbe algébrique de genre g 2 définie sur xQ et plongée canoniquement

dans sa jacobienne J.C/. On note L le fibré en droites associé et hOL la hauteur de
Néron–Tate sur J.C/. En 1981, Bogomolov conjecture :

Théorème A Ullmo). Il existe " > 0 tel que fx 2 C.Qx /; hOL.x/ "g soit fini.

Plus généralement, soit V une sous-variété d’une variété abélienne A munie d’un
fibré en droites L ample et symétrique. Ici et dans la suite de l’article, les variétés

considérées sont définies surQx et irréductibles. On note hOL la hauteur de Néron–Tate
associée à ce fibré. On dit que V est de torsion si V est la translaté d’une sous-variété
abélienne par un point de torsion. Une courbe algébrique de torsion est en particulier
de genre 1. On définit aussi, pour V un fermé de Zariski inclus dans A :
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Définition 1.1. Le minimum essentiel de V est

O
ess

L V / D inff > 0; V. /Z D V.xQ/g;

Z est son adhérence de Zariski.où V. / D fx 2 V.Qx /; hOL.x/ g
et V. /

On peut alors étendre aux sous-variétés des variétés abéliennes le théorème A :

Théorème B Zhang). Soit V une sous-variété stricte d’une variété abélienne A ie.,
V ¨ A). Le minimum essentiel de V est nul si et seulement si V est de torsion.

Le résultat analogue est vrai si on remplace A par un tore cf. [Zha92]) ou plus
généralement par une variété semi-abélienne cf. [DP00]).

1.1. Versions quantitatives du problème de Bogomolov. Ces conjectures étant
démontrées, on peut s’intéresser à une version quantitative, en précisant " dans le

théorèmeAouen minorant le minimumessentield’une variété qui n’est pas de torsion.
Grâce au théorème des minima successifs démontré par Zhang dans [Zha95]), ceci
revient à minorer la hauteur canonique d’une telle variété. Depuis les travaux de

Bombieri et Zannier voir [BZ95] pour le cas torique et [BZ96] pour le cas abélien),
on sait qu’on peut espérer obtenir une borne “uniforme” pour le minimum essentiel,
ne dépendant que du degré de V et de la variété abélienne A. Remarquons que pour
obtenir de tellesminorations,on doit exclure les translatés de sous-variétés abéliennes
par des points qui ne sont pas de torsion. En effet, si V D x C B ¨ A, le minimum
essentiel est relié à la hauteurde la projection de x dans le quotient A=B pour plus de

détails, voir [Lit99]) et on peut le faire tendre vers 0 en fixant le degré et la dimension
de V

On définit d’abord un invariant plus fin que le degré, approprié aux techniques
diophantiennes :

Définition 1.2. Soit V un fermé de Zariski strict de S une variété semi abélienne
munie d’un fibré en droites ample L. On appelle indice d’obstruction de V noté

L.V /,
L.V / D inffdegL.Z/g;

où l’infimum est pris sur l’ensemble des hypersurfaces non nécessairement irréductibles)

de S contenant V

Remarque. Suivant notamment [DH00], on pourrait définir l’indice d’obstruction de

V comme l’infimum des degL.Z/1=codim.Z/ sur les fermés Z de S contenant V Ce
choix estplusfinque celuide la définition 1.2,et les méthodes diophantiennes utilisées
ici le font intervenir naturellement. Cependant, la descente finaleemployée dansnotre
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article impose de travailler avec des hypersurfaces ; de plus, on est amené à définir
dans cette descente un indice d’obstruction plus compliqué qu’on compare à l’indice
d’obstruction initial, ce qu’on ne peut faire de façon optimale qu’en codimension 1.
En vertu d’un théorème de Chardin corollaire 2.2 de [Cha88]), les théorèmes C et

1.1 ci-dessous sont encore vrais avec cette définition alternative.

Dans [AD03], Amoroso et David donnent une majoration quasi-optimale en l’indice

d’obstruction d’une sous-variété V d’un tore. Dans un schéma d’approximation
diophantienne, ils utilisent les propriétés de ramification des corps cyclotomiques,
qu’ils traduisent en un résultat métrique leur permettant d’extrapoler une fonction
auxiliaire nulle sur V Par le plongement standard Gnm Pn sur xQ), dont le fibré
en droites associé est noté L, on dispose d’une hauteur hL sur les points de Gnm et

d’un minimum essentiel
O

ess

L sur les sous-variétés de Gnm Ils démontrent alors :

Théorème C. Soit V une sous-variété stricte de Gnm de codimension k qui n’est
contenue dans aucun translaté d’un sous-tore strict de Gnm On a

O

ess

L V / c.n/
L.V /

log 3!L.V / k/;

où c.n/ est un réel strictement positif et k/ D .9.3k/.kC1//k:

Ce théorème est optimal aux termes logarithmiques près voir la conjecture 1.2
de [AD03], et la remarque qui suit), comme le résultat de Dobrowolski cf. [Dob79])
sur le problème de Lehmer et ses généralisations.

Dans le cas des variétés abéliennes, on dispose déjà de résultats quantitatifs, mais
la dépendance en le degré est moins bonne. On cite ici une version faible du théorème

principal de [DP02], obtenue en comparant le rayon d’injectivité à la hauteur de A
suivant le lemme 6.8 de cette même référence :

Théorème D. Soit A une variété abélienne de dimension g 2 définie sur xQ,

principalement polarisée par un fibré en droites L ample et symétrique, et V une
sous-variété de A qui n’est pas translaté d’une sous-variété abélienne. Il existe alors
une fonction explicite et strictement positive C.g/ telle que

O

ess

L V / C.g/
dgC1 maxf1; hL.A/ggC1degL.V /2.gC1/2

;

où d est le degré d’un corps de définition de A et hL.A/ est la hauteur projective de

l’origine de A dans le plongement associé à L 16.

Cette minoration est monomiale inverse en le degré, alors que dans le cas
torique, elle est linéaire inverse en l’indice d’obstruction aux termes logarithmiques
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près), ce qui, par le corollaire 2 de [Cha88] 2, correspond à une minoration en

degL.V / 1=codim.V /. Remarquons enfin que l’hypothèse du théorème D V n’est pas

un translaté de sous-variété abélienne stricte) est plus faible que son analogue torique
dans le théorème C V n’est pas incluse dans un translaté de sous-tore strict), et que
cette différence se ressent dès qu’on obtient des résultats comparables au théorème C.

1.2. Résultats et applications. Soit A une variété abélienne définie sur K un corps
de nombres, munie d’un fibré en droites L ample et symétrique. Pour A un modèle
entier de A sur OK, on commence par poser l’hypothèse suivante :

Hypothèse H. Il existe une densité positive de premiers p de OK en lesquels le

p-rang de la fibre spéciale Ap est égal à g.

Sous cette hypothèse, on a démontré dans [Gal08] l’analogue du théorème C en

petite codimension k 2). Le but de ce travail est de généraliser à la codimension
quelconque ce résultat. Suivant une idée nouvelle d’Amoroso voir [Amo07]), on
modifie les arguments de transcendance, ce qui permet d’insérer un principe de tiroirs
dans la combinatoire du lemme de zéros. Grâce à ce raffinement, on peut mettre en

place la technique de descente, ce qui n’était possible qu’en codimension 2 dans notre
travail précédent. On démontre ici :

Théorème 1.1. On suppose qu’il existe un modèle entier A de A vérifiant H. Soit V
une sous-variété stricte de codimension k quelconque dans A. Si V n’est contenue
dans aucun translaté d’une sous-variété abélienne stricte de A, on a

O
ess

L V / CL.A/
L.V /

log 3 degL.V / k/;

où CL.A/ est un réel strictement positif dépendant de A; L/ et k/ D .5g.k C
1//kC1.

Remarque. – La constante k/ obtenue avec ce nouveau schéma de preuve est

sensiblement meilleure que celle du théorème C.
– La minoration obtenue est optimale aux facteurs logarithmiques près. En effet,

si on considère OEp 1V pour V non incluse dans une sous-variété de torsion et p
un nombre premier tel que OEp 1V soit irréductible cette condition est réalisée sauf

pour un ensemble finide premiers), on adegL.OEp 1V / D p2codim.V /degL.V/! 1,
alors que

L OEp 1 V /!L.OEp 1V / O
ess

O
ess

L V /!L.V /:
– Les difficultés rencontrées dans la mise en oeuvre de la descente qu’on doit

ici initialiser avec la variété V plutôt qu’avec une hypersurface Z réalisant L.V /,
comme c’est le cas pour les tores) expliquent la présence de degL.V / dans les facteurs
logarithmiques.
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Par un argument de projection voir la démonstration du corollaire 5 dans [Rat04],
qui s’adapte à l’identique ici), on déduit du théorème 1.1 :

Corollaire 1.2. S’il existe un modèle entier A de A vérifiant H, pour toute
sousvariété V stricte de A qui n’est pas de torsion, on a

O
ess

L V /
C0L A/

degL.V /1=.s dim.V //
log 3 degL.V / s dim.V//;

où x C B est la plus petite sous-variété de torsion contenant V s est la dimension
de B et C0L A/ est un réel positif qui ne dépend que de A; L/.

En appliquant l’inégalité des minima successifs voir infra, 2.2 pour cette inégalité
et pour la définition de hO sur les sous-variétés de A), on a aussi :

Corollaire 1.3. S’il existe un modèle entier de A vérifiant l’hypothèse H, pour toute
sous-variété V stricte et irréductible de codimension k 2 dansAqui n’est contenue
dans aucun translaté d’une sous-variété abélienne stricte de A, on a

hOL.V / C00L A/;

où C00L A/ est un réel strictement positif dépendant de A; L/.

La seule restriction qui empêche d’obtenir une minoration inconditionnelle est

donc l’hypothèse H. Elleest en fait l’objet de la conjecture suivante voir [Pin98], § 7) :

Conjecture E. Pour toute variété abélienne A définie sur xQ, il existe un corps de
définition K de A et un modèle entier A de A sur OK vérifiant l’hypothèse H.

Sous cette conjecture, la minoration du théorème 1.1 est vérifiée pour toutes les
variétés abéliennes définies sur xQ. En dimension 1, pour une courbe elliptique E,
le résultat est connu voir [Ser68], chapitre IV, 13 et la théorie de la multiplication
complexe). La validité de l’hypothèse H a été étendue aux surfaces abéliennes par
les travaux de Katz et Ogus cf. [Ogu82], § 2.7, en remarquant par le théorème de
Chebotarev que les premiers de degré 1 ont une densité positive). L’hypothèse H est

encore vraie pour les variétés abéliennes à multiplications complexes voir [BS04],
partie 5). Des conditions suffisantes, portant sur les groupes de monodromie Gl
associés à chaque nombre premier l de la variété abélienne, ont été données par

Noot voir [Noo95],§ 2) puis Pink ([Pin98], § 7).
Une telle minoration du minimum essentiel s’applique au problème de

l’intersection d’une variété avec des sous-groupes algébriques, en direction de conjectures
formulées de façon indépendante par Zilber sur les variétés semi-abéliennes, et Pink
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sur les variétés de Shimura mixtes voir [Zil02] et [Pin05], conjectures 1.2 et 1.3).
Pour S un sous-ensemble de A.xQ/, on note

S" D fx C y; x 2 S; y 2 A.Qx /; hOL.y/ "g;

ainsi que

H D [codimH 2

H;

la réunion portant sur tous les sous-groupes algébriques de A éventuellement réductibles)

ayant la codimension prescrite. On garde les mêmes définitions avec le tore

Gnm défini sur xQ) à la place de A. En utilisant le théorème C, Habegger a démontré
le résultat suivant voir [Hab08]) :

Théorème F. Soit C une courbe dans Gnm qui n’est pas incluse dans le translaté
d’un sous-tore strict. Alors il existe " > 0 tel que C. xQ/\H" est fini.

Ce théorème a permis à Maurin de démontrer la conjecture de Zilber pour une

courbe plongée dans un tore cf. [Mau08]) :

Théorème G. Soit C une courbe algébrique irréductible de Gnm non incluse dans un
sous-groupe algébrique strict éventuellement réductible). Alors C. xQ/\H est fini.

Il améliore ainsi le résultat principal de l’article fondateur de Bombieri, Masser
et Zannier cf. [BMZ99]). Dans le cadre abélien, des estimations de type Lehmer
sur les points de petite hauteur permettent de traiter le cas des variétés abéliennes à

multiplication complexe voir [Via03], [RV03], [Rat08] et [Car08]).

SoitE une courbe elliptique définie sur xQ, g 2 un entier et un sous-groupe de

Eg de rang fini. Le théorème 1.1 rend désormais inconditionnel le résultat de Viada
cf. [Via08a]) :

Théorème H. Soit C une courbe algébrique incluse dans Eg.
– Si C n’est pas incluse dans un sous-groupe algébrique strict, il existe " > 0 tel

que C. xQ/ \ H" soit fini.
– Si C n’est pas incluse dans un translaté de sous-variété abélienne stricte, il

existe " > 0 tel que C.xQ/ \ H C "/ soit fini.

Le premier point de ce théorème implique la conjecture de Zilber pour les courbes
plongées dans une puissance de courbe elliptique. En raffinant son argument, Viada a

depuis obtenu des résultats pour une sous-variété générale d’une puissance de courbe
elliptique voir [Via08b]).
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1.3. Plan de l’article. La preuve du théorème 1.1 est une adaptation du nouveau
schéma de transcendance utilisé par Amoroso dans [Amo07]. Elle est écrite dans le

formalisme classique de la géométrie diophantienne. La deuxième partie rassemble
quelques rappels sur les variétés abéliennes. On y introduit notamment le plongement
étiré, quipermet de négliger la constante de comparaison entre la hauteur projective et

la hauteur de Néron–Tate. On construit aussi un bon ensemble de premiers de densité
positive.

Dans la troisième partie, on choisit une base de dérivations adaptée, puis on

démontre un lemme clé p-adique sur les points de torsion des variétés abéliennes.
On transporte ensuite cette propriété à un polynôme en les coordonnées affines de
la variétés abélienne. Dans la partie suivante, on en déduit une inégalité entre les
fonctions de Hilbert d’un fermé avec multiplicité, et de ce même fermé translaté
par un sous-groupe de torsion bien choisi, sans la multiplicité. Par un bon choix de

paramètres, on trouve une section non triviale nulle sur ce translaté. L’application
couplée d’un lemme de zéros de Philippon et d’un principe de tiroirs nous donne une
inégalité concernant le degré d’un fermé obstructeur.

Si cette inégalité ne nous permet pas encore de conclure, elle amorce la phase
de descente qui constitue la cinquième partie de ce travail. Cette technique est
classique dans les travaux diophantiens visant à minorer les hauteurs, mais le cas des

variétés abéliennes est plus difficile, en l’absence d’un relèvement du Frobenius en

caractéristique nulle. On a cherché ici à “simuler combinatoirement” le Frobenius,
ce qui explique qu’on travaille, dès la transcendance, avec des fermés de Zariski non
nécessairement irréductibles.

Remerciements. Je tiens à remercier Sinnou David pour son aide constante pendant
que je travaillais à ce problème, et le rapporteur dont les remarques m’ont permis
d’améliorer significativement la rédaction de cet article.

2. Préliminaires sur les variétés abéliennes

Commençons par quelques rappels concernant la hauteur et le plongement étiré sur
les variétés abéliennes. On fixe pour toute la suite une variété abélienne A munie de

L un fibré en droites ample et symétrique, et définie sur K un corps de nombres. On
suppose que A vérifie l’hypothèse H et on fixe A un modèle entier de A sur OK tel
que pour une densité positive d’idéaux premiers v de OK, la fibre spéciale Av soit
ordinaire.

2.1. Choix de la constante. La minoration que l’on a en vue fait intervenir une

constante dépendant de la variété abélienne A, de L, mais aussi d’un certain nombre
de choix portant sur A; L/ : une base de H0.A; L/, une base du tangent de A en 0,



782 A. Galateau CMH

un modèle entier A donné par l’hypothèse H. Par abus de langage, on dira qu’une
telle constante ne dépend que de A.

On introduit d’abord des constantes c1; : :: ; c15 ne dépendant que de A, puis
on choisit une constante C0, ne dépendant que de A, grande devant les constantes

c1; : : : ; c15 dans un sens que le cours de la preuve rendra explicitable. La constante

CL.A/ du théorème 1.1 s’exprimera alors simplement en fonction de C0 :

CL.A/ WD C
2 g/

0 ;

la dimension g pouvant même être remplacée par la codimension k de V Toutes
ces constantes sont calculables mais notre méthode ne permet pas d’améliorer la
dépendance en la hauteur de A du théorème D. En effet, la constante C0 est déjà

au mieux monomiale en hL.A/ et le choix de la fonction donne un exposant

particulièrement mauvais pour hL.A/.

2.2. Quelques définitions. Soit n un entier positif, K un corps de nombres et x WD
OEx0

W W xn un point de Pn.K/. On définit la hauteur projective de x par la formule
suivante :

h.x/ WD
1

OEK
W Q Xv2M.K/

nv log maxfjx0jv; : : : ; jxnjvg ;

où M.K/ désigne l’ensemble des places de K. Les nv et les valeurs absolues sont

choisis de telle sorte que la formule du produit soit satisfaite :

8y 2 K; y ¤ 0 W Yv2M.K/
jyj

nv
v D 1;

et que, pour tout p nombre premier et vjp on a jpjv D p 1. La formule donnant la

hauteur ne dépend pas du choix d’un corps de définition K de x, ni du choix d’un
représentant de x par la formule du produit).

On a fixé une variété abélienne A munie de L, un fibré en droites ample et

symétrique, et définie sur K, un corps de nombres. Quitte à considérer L 3, on

peut supposer que L est projectivement normal et très ample. Il définit donc un
plongement de A dans un espace projectif Pn et on fixe dès à présent une base de
sections Y0; : : : ;Yn/ de L sur A, ainsi qu’une base f1; : : : ;fg/ du tangent en 0.
Via ce plongement, pour tout point x 2 A.Kx/, on peut définir sa hauteur projective
qu’on note hL.x/. On définit aussi sa hauteur de Néron–Tate, donnée par la formule

hOL.x/ WD lim
n!1

hL.OEn x/
n2

;

où OEn désigne l’isogénie de multiplication par n, pour n 2 N Cette fonctionhauteur
vérifie les propriétés suivantes :
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– hOL.x/ D 0 si et seulement si x est un point de torsion de A;
– la hauteur est quadratique :

8x 2 A.Kx/; n 2 N W hOL.OEn x/ D n2
hOL.x/I

– il existe une constante c1 ne dépendant que de A telle que

8x 2 A.Kx/ W jhL.x/ hOL.x/j c1:

Via le plongement projectif de A associé àL, on peut définir le degré relativement
à L d’une sous-variété V de A, qu’on note degL.V / voir [Har77]), puis son indice
d’obstruction L.V / voir la définition 1.2).

Soit V une sous-variété de A. La hauteur projective de V relativement à L, notée

hL.V /, est définie comme la hauteur de la forme de Chow qui lui est associée via le

plongement projectif. On construit ensuite la hauteur normalisée hOL.V / par passage

à la limite :

hOL.V / D lim
n!C1

hL.OEn V / degL.V /
n2 degL.OEn V /

:

Cette limite existe et la hauteur ainsi construite généralise la hauteur de Néron–Tate

pour les points de A voir [HS00], page 450, et [Phi95]). On peut aussi définir la
hauteur d´une variété par l’approche arakelovienne cf [BGS94], partie 3). Ces deux
notions coïncident, si on fait le choix de la norme L2 pour les places archimédiennes
dans la définition de la hauteur projective. Le théorème des minima successifs
démontré par Zhang dans [Zha95]) implique les inégalités suivantes :

Théorème 2.1. Soit V une sous-variété de A de dimension d. Alors,

1
d C 1

hOL.V /
degL.V / O

ess

L V /
hOL.V /

degL.V /
:

2.3. Le plongement étiré. On aura besoin de rendre négligeable la constante de
comparaison entre hauteur projective et hauteur canonique sur A. On résout
généralement ce problème en utilisant le plongement étiré. Soit M un entier strictement
positif. On rappelle que l’isogénie de multiplication parM sur A est notée OEM et on

définit M :

A A A;
x 7 x;OEM x/;

qui induit par Segre un plongement de A dans un espace projectif Pm, le plongement
étiré.

Le plongement étiré a été utilisé pour la première fois par Laurent dans le cadre
du problème de Lehmer elliptique cf. [Lau83]). Le principe en est le suivant : les
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techniques diophantiennes utilisent la hauteur projective, et le minimum essentiel fait
intervenir la hauteur de Néron–Tate associée au plongement. On sait que la différence
entre ces deux hauteurs est bornée mais la hauteur de Néron–Tate, qu’on prendra
procheduminimumessentielau coursde lapreuve,peut être trèspetite.Ilya donc une
perte d’information sur la hauteur projective. Le plongement étiré multiplie lahauteur
par un paramètre assez grand, qui rend négligeable la constante de comparaison.

On note M le fibré en droites 1 L 2 L sur A A, où 1 et 2 sont les
projections canoniques de A A sur chaque facteur. Par produit tensoriel, on déduit
de la base Y0; : : :; Yn/ deH0.A; L/ une baseZ WD Z0; : : : ;Zm/ deH0.A A; M/.
On note aussiMjA la restriction deM à A via le plongement étiré. On a

MjA ' L M2C1/:

Cet isomorphisme suggère le lemme suivant, qui indique la variation de la hauteur et

du degré par M.

Lemme 2.2. Si x est un point de A.Kx/, on a

hOM.x/ D M 2
C 1/hOL.x/:

Si V est une sous-variété de A, on a

degM.V / D M 2
C 1/dim.V / degL.V /:

Preuve. La première partiedu lemmesuitde la définition de M par quadraticité de la
hauteur. La deuxième partie est démontrée, par exemple, dans [Phi95], proposition 7.

2.4. Une première sélection de nombres premiers. Pour obtenir le lemme
padique crucial dans ce travail, on devra faire un certain nombre d’hypothèses sur le

premier p avec lequel on travaille. Les deux premières ne sont pas très restrictives et

concernent les translations et dérivations sur les coordonnées projectives des variétés
abéliennes.

Lemme 2.3. Il existe des formes bi-homogènes de degré .2;2/ sur les coordonnées
projectives représentant l’addition sur A, et données par une famille finie de
coefficients gi/i2I telle que pour une constante c2 ne dépendant que de A, pour tout
p c2, tout premier vjp de OK, on a

8i 2 I W jgi jv D 1:

Preuve. Voir [LR85] ou [DP02], proposition 3.7, en remarquant qu’on a choisi L
projectivement normal.
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Un second résultat concernant les dérivations nous servira pour montrer que les
coefficients du développement de Taylor d’un polynôme en les coordonnées affines
sont v-entiers, pour les idéaux premiers v considérés. On rappelle qu’on a fixé une
base f1; : : : ; fg/ du tangent de A en 0.

Lemme2.4. Ilexiste des dérivations .@1;: : : ; @g/ surA,définissantune base e1;: : : ;
eg/ du tangent en 0, telles que pour une constante c3 ne dépendant que de A, pour
tout premier p c3, vjp idéal premier de OK, on a les propriétés suivantes :

– le changement de variable de f1; : : : ; fg/ vers e1; : :: ; eg/ est à coefficients
dans OK, et l’image de e1; : : : ; eg/ par la réduction modulo v est encore une
base du tangent en 0 de Av ;

– pour tout système de coordonnées affines y1; : : : ; yn/ définies sur un ouvert
de A par la non-annulation d’une des sections Yk fixées précédemment), on a

81 i g; 1 j n W
@iyj DX;

ai;j
; y y ;

avec, pour tout ; ; i;j /, ai;j
;

est v-entier.

Preuve. Voir[Gal08], théorème2.6, qui résume l’argument de[Dav91], théorème4.1,
où la hauteur des coefficients est bornée explicitement en fonction de A dans le cas du

plongement théta. Précisons que les coefficients de la matrice de l’application induite
sur le tangent en 0 par ce choix de dérivations sont dans K et ont une hauteur bornée
uniquement en fonction de A dans le cas du plongement théta, voir le lemme 1.4.14
de [Dav89]). Quitte à multiplier les nouveaux paramètres par un entier assez grand
borné uniquement en fonction de A et du choix de coordonnées affines), on obtient

une base àcoefficients dansOK.Le déterminant de lamatricede passagede la nouvelle
base par rapport à f1;: : : ; fg/ est encore de hauteur bornée par une constante ne

dépendant que de A.

Par abus de langage, on notera encore .@1; : : : ; @g/ la base de dérivations en 0 et

t1; : : : ; tg/ le système de paramètres qui lui correspond par dualité. On ne pourra
travailler directement avec cette base de dérivations mais on s’y ramènera grâce à la

construction suivante.

Lemme 2.5. Il existe un ensemble fini t1; ; : : : ; tg; / 2V
de systèmes de paramètres

en 0 définis sur des ouverts O / 2V tels que A.Kx/ D
S 2V O

Preuve. Si x 2 A.Kx/ est différent de 0, il existe un hyperplan passant par x et

évitant 0, associé à une section sx 2 H0.A;L/, et un hyperplan évitant à la fois x et

0, défini par l’annulation d’une section s0x 2 H0.A; L/ En multipliant le système de

paramètres t1; : : : tg/ par une puissance tensorielle suffisante de sx=s0x on obtient un
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nouveau système de paramètres en 0 défini sur un ouvert Ox contenant x. Le lemme
suit par compacité.

Pour tout 2 V, ondéfinit par dualité une base .@1; ; : : : ; @g; /de dérivations en0.
Comme V est fini, il existe une constante c4 telle que pour p c4 et wjp, les coefficients

de toutes les matrices de passage de .@1; : : : ; @g/ vers les .@1; ;: : : ; @g; / 2V
qui sont définis sur une extension finie de K) soient w-entiers et, des coordonnées

affines étant fixées sur chaque O que leurs valeurs en 0, qui sont bien définies,
soient w-entières. On peut maintenant définir l’ensemble de premiers avec lesquels
on travaillera :

Définition 2.1. Soit PA l’ensemble des premiers p maxfc2;c3; c4g non ramifiés
dansOK tels qu’il existe un idéal premier vjp deOK pour lequelAv a bonneréduction
ordinaire. Cet ensemble est de densité positive par choix du modèle.

3. Points de torsion et estimations p-adiques

Dans cette partie, on donne des estimations p-adiques concernant certains points de
torsion sur les variétés abéliennes. On commence par obtenir des propriétés concernant

les paramètres en 0 d’un point de torsion bien choisi, puis on transfère ces

propriétés à des coordonnées affines associées à un ouvert affine contenant le point
de torsion) en utilisant les propriétés des dérivations algébriques.

3.1. Dérivations. On fixe ici une base de dérivations en tout point de A, qui nous
permettra de transporter des estimations p-adiques sur un système de paramètres vers
des estimations portant sur les coordonnées affines. Dans la partie suivante, on aura
besoin de ce contexte différentiel pour comparer la fonction de Hilbert d’un fermé
de Zariski X avec multiplicité et la fonction de Hilbert d’un translaté de X par un

sous-groupe de torsion.
On s’est donné une base de paramètres t1; : : : ;tg/ de A en l’origine, duale de la

base .@1; : : : ; @g/ du tangent de A en 0. Si x 2 A, on obtient une base de paramètres
locaux en x :

t1 B x; : : : ; tg B x/;

où x désigne la translation par x surA. Cette base de paramètrescorrespond à une
basedu tangent deAen x, qu’onnote .@1;x; : : : ; @g;x/. Pour k D k1; : :: ; kg/ 2 Ng,
on définit

jkj D
g

XiD1

ki et k D k1Š: : : kgŠI
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et les “dérivées divisées” sur A,

@k
x WD

1

k
@k1

1;x B B @
kg
g;x:

Remarquons que l’application induite par OEM sur le tangent de A en 0 est la
multiplication par M ; l’image de .@1; : : :; @g/ sous la multiplication par M fournit une
base de dérivations de M.A/ en 0 qu’on peut donc expliciter voir [DH00], 4 pour
plus de détails) ; par la suite, on se ramènera systématiquement à des dérivations de

A en composant des sections deMjA avec le plongement étiré.
Si T 1 est un entier et B est un idéal homogène définissant un fermé X de A

dans le plongement étiré, la puissance symboliqueB.T / deBest l’idéal engendré par
les polynômes F 2 xQOEZ nuls sur X à un ordre au moins T dans le sens suivant :

8x 2 X; 8k 2 Ng t.q. jkj T 1 W
@kx.F B M/ D 0:

x; pour x 2 A et k 2 Ng. Par linéarité, le faitSi 2 V, on définit de même @k

qu’un polynôme s’annule à un ordre donné en x ne dépend pas du choix de la base
de dérivations en x.

3.2. Coordonnées affines des points de torsion sur une variété abélienne. Soit
p 2 PA, un idéal premier vjp de OK tel que Av soit ordinaire, un point de p-torsion

P de A et t1; ; : : : ; tg; / un système de paramètres bien défini en P. On a le lemme
suivant :

Lemme 3.1. Si P se réduit sur 0 modulo w, pour un idéal premier wjv dans un corps
de définition de P, on a

8 1 i gW jti; P/jw p 1=p:

Preuve. Il s’agit du corollaire 2.9 de [Gal08], la seule différence étant la convention
faite sur les normes w-adiques.

Onpasse maintenant d’unepropriétésur lesparamètres à une propriété concernant
les sections globales de MjA sur A. Soit T un entier et 2 A.Kx/. On suppose que
le point de p-torsion P se réduit sur 0 modulo w, où wjv est une place d’un corps de

définition de P, de et des paramètres t1; ; :: : ; tg; / On note la translation par

et on choisit un ouvert affine O contenant P associé à des coordonnées affines :

y1;: : :; yn/:

SoitaussiF unesection globale d’unepuissancedeMjA,à coefficients v-entiers sur la
basede sections deMjA en tout degré formée par restriction à partir de Z0; :: : ;Zm/,
par projective normalité. On suppose que F est nulle en à un ordre au moins T :

8 k 2 Ng t.q. jkj T 1 W
@k

; F B M/ D 0:
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Proposition 3.2. Avec le choix des coordonnées affines y1; : : : ;yn/, on a

jF B M. C P/jw p T=p:

Preuve. Soit Fz WD F B M. Par le choix de coordonnées affines,

x 7 Fz. C x/

estune fonction rationnelle surAbien définieen 0. En notantAl’anneau des fonctions
surA,ml’idéal maximalassociéà l’origineetAm le localisé deAen 0,ona l’injection

Am yAm ' KOEOEt1; ; : :: ; tg; ;

qui associe à une fonction régulière sur un voisinage de 0 son développement de

Taylor en les paramètres t1; ; :: : ; tg; / Soit k 2 Ng. Commençons par démontrer
que @k

; Fz, le terme d’ordre k dans le développement en série de Taylor de Fz en
est w-entier. Par construction, on a la formule

@k
; Fz D @k Fz B D @k F B M B :

On peut supposer que les coordonnées projectives de sont w-entières quitte à

multiplier par un entier assez grand). En itérant le lemme 2.3, on voit donc que M
et sont donnés sur les coordonnées projectives par des polynômes à coefficients
w-entiers. Il suit que sur l’ouvert considéré, Fz B est un polynôme à coefficients
w-entiers en les coordonnées affines :

y1;: : :; yn :

k

Ensuite, pour tout monôme unitaire yl l 2 Nn quelconque) en les coordonnées
affines y1; : : : ; yn/, les dérivées divisées @k.yl /, pour k 2 Ng, sont w-entières par
le choix des dérivations dans le lemme 2.4, qui sont d’une part algébriques et d’autre
part à coefficients w-entiers. Il en va de même pour les @ yl/ en vertu du lemme 2.5.

La série de Taylor considérée converge donc pour la norme w-adique) sur la

“boule unité”

°
x; sup

1 i g
f jti; x/jwg < 1 ;

et par le lemme 3.1, elle converge en P. On a donc, dans une complétion w-adique,

Fz. C P/ D Xk2Ng

@k
; Fz t P /k:

PuisqueF est nulleà l’ordreT en la propositionsuitdu lemme 3.1,de law-intégrité
des coefficients de cette série formelle, et de l’inégalité ultramétrique.
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4. Section nulle sur une réunion de translatés de la variété

Suivant la stratégie de [Amo07], on utilise la propriété p-adique démontrée dans le

paragraphe précédent de façon “équivariante”, dans le but de comparer deux fonctions

de Hilbert, celle d’un fermé X avec multiplicité T et celle du translaté de X
par un sous-groupe de torsion sans multiplicité. Cette méthode donne directement
l’existence d’une section nulle sur des translatés de V alors que la précédente voir
[AD03]) commence par trouver une section nulle sur V avec forte multiplicité avant
d’extrapoler aux translatés. Cette approche plus “intrinsèque” simplifie la preuve de
la façon suivante ces trois points étant liés) :

– on peut se contenter de considérer les points de p-torsion pour un seul
premier p ;

– on n’est plus obligé d’itérer “l’extrapolation” en translatant plusieurs fois par

des groupes de torsion ;
– on utilise un lemme de zéros plus simple.

4.1. Le choix des paramètres. Soit X un fermé de Zariski strict de A, d’indice
d’obstruction L.X/. On introduit un certain nombre de paramètres dépendant de

L.X/ et de A. On rappelle voir 2.1) que C0 est une constante ne dépendant que de

A, grande devant toutes les constantes du problème ne dépendant que de A). Soit
un paramètre vérifiant l’inégalité suivante :

X/ C0 log 3!L.X/ :

La présence de C0 dans ce paramètre permettra souvent de simplifier les calculs
en éliminant les constantes dans les termes ayant une dépendance logarithmique en

L.X/. La méthode diophantienne fournira in fine une minoration de
O

ess

L V /!L.V /
dépendant explicitement de V /, pour V vérifiant les hypothèses du théorème 1.1 ;
on optimisera cette minoration en prenant V / de l’ordre de log degL.V /

On choisit d’abord p 2 PA ayant une dépendance d’ordre logarithmique en

L.X/ dans le sens suivant :

log.p/ c5 log. /;

où onaposé: c5 WD .5g.gC1//gC1 ceci étant imposé par lechoixdunombrepremier
dans le paragraphe 5.1). Soit vjp un idéal de OK de bonne réduction ordinaire un

tel idéal existe, par définition de PA).
On suppose dans toute cette partie que le minimum essentiel de X est majoré de

la façon suivante :

O

ess

L X/ <
log.p/
p!L.X/

: 1)
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Onpoursuit avec l’entier T définissant la multiplicité.L’argument p-adique qu’on
va utiliser impose que T soit plus grand que p

log.p/ et l’ajustement des paramètres

pour comparer les fonctions de Hilbert, puis pour le lemme de zéros) force que T
soit en fait de l’ordre de ce quotient. On prend donc

T WD
p

log.p/
:

La comparaisondes “fonctions de Hilbert” fait intervenir le paramètreLet impose
que celui-cisoitassezpetit de l’ordre d’une constante).Lechoisir assez grand permet
de prendre M2 plus petit puisque c’est le produit LM2 qui intervient typiquement
dans la preuve), donc d’améliorer la minoration du minimum essentiel. Ceci nous
incite à prendre

L WD C
1=2
0 :

Remarquons que le contexte du plongement étiré “décale” les paramètres : le choix
de l’entier L du cas torique correspond grosso modo à M2 dans le cas abélien.

Cet entier M doit être assez grand pour que la comparaison des “fonctions
de Hilbert” considérées donne l’existence d’une section non-nulle majoration de

l’“exposant de Dirichlet” selon la terminologie diophantienne, voir par exemple

[DH00], 5.3). On doit ensuite le prendre assez petit pour obtenir une bonne
majoration du degré d’un “fermé obstructeur” après utilisation du lemme de zéros :

log.p/

1=2

#:M WD " p!L.X/

L’inégalité 1) permet alors que la hauteur des petits points de X dans le
plongement étiré soit bornée, ce qui suffit puisqu’on travaille avec la hauteur projective,
dont la différence à la hauteur de Néron–Tate est bornée par une constante.

Remarque. Onpourraitaussi choisir une stratégie légèrement différente, et construire
une section deMsurA Anon-nullesur un translaté deX ce qui est faitpar exemple
dans [DH00]).Avec un autre choix de paramètres, enparticulier L très proche deM2,
on montrerait qu’une telle section est non-nulle sur l’image de A par le plongement
étiré, et que la dimension de l’espacedessections surA Aest correctement minorée.
Cette méthode donne ici des résultats comparables.

4.2. Comparaison de “fonctions de Hilbert”. On rappelle qu’on a fixé une base

Z WD Z0; : :: ; Zm/ desections deMsurA A(voir 2.3). L’image par leplongement
étiré du fermé X est définie par un idéal homogène B xQOEZ On pose

KerOEp v/
WD fx 2 AOEp ; x 0 mod v/g:
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On note aussi pour simplifier

X0
WD X C KerOEp v/;

et l’image de ce fermé par le plongement étiré est définie par un idéal homogène B0.

Définition 4.1. Si I est un idéal définissant un sous-schéma de M.A/ non
nécessairement réduit ou irréductible), on note H.I; L/ la dimension de l’image du

morphisme de restriction :

rI W H0 A;M L
jA / xQOEZ I L ;

f OEf I :

La proposition suivante est l’analogue de la proposition 2.1 de [Amo07] et constitue

le point clé de cette approche équivariante.

Proposition 4.1. On a l’inégalité suivante :
H.B0;L/ 2H.B T /; L/:

Preuve. Soit un réel positif tel qu’on ait

O

ess

L X/ < <
1

M2 I

ceci étant possible par 1) et choix de M. On commence par considérer l’ensemble

X. / D fx 2 X.Kx/; hOL.x/ g:

Cet ensemble est Zariski-dense dans X et l’ensemble X0. / D X. /CKerOEp
v/ est

Zariski-dense dans X0. Pour simplifier les notations, on pose

h WD H.B0; L/ et h0
WD H.B0; L/ H.B T /; L/:

On peut de plus supposer que h0 1, la proposition étant déjà démontrée sinon.
Posons

S WD Ker rB0/ ;

et filtrons cet espace vectoriel. Pour tout d 2 N on définit

Sd WD
°
F 2 H 0 A; M L

jA
/; 8x 2 X0. /; OEK.x/ W K d W F.x/ D 0 :

Les Sd forment une suite décroissante de sous-espaces vectoriels de H0.A; M L
jA

/
dont la dimension est finie). L’intersection des Sd étant égale à S, cette suite est

stationnaire à partir d’un certain rang. On a alors, pour un entier d0 assez grand,

Sd0 D °
F 2 S; 8x 2 X0. / W F.x/ D 0 :
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Comme X0. / est Zariski-dense dans X0, on a

S D Sd0 :

Les points deX0. / étant définis sur une extension de degré au plus d0 sont en nombre
fini par le “théorème de Northcott”. On note xi /1 i i0 ces points. On choisit aussi

Qj/1 j j0 une base deH0 A; M L
jA

formée de monômes en les Zj de degré L le

plongement étant projectivement normal). De plus, pour tout 1 i i0, on choisit

i 2 X. / et Pi 2 KerOEp v/ tels que : xi D i C Pi
On note S? l’orthogonal de S dans H0 A;M L

jA
pour la structure euclidienne

usuelle avec le choix de la base Qj/1 j j0 Cet orthogonal est de dimension h,
engendré par les Qj xi/ On peut donc trouver h points et h multi-indices telsi;jque quitte à renuméroter)

D WD det Qj xi / 1 i;j h ¤ 0:

Remarquons que ce déterminant est défini dans un espace projectif par plongements
de Segré et Véronese, et que son annulation a donc un sens. On peut de plus choisir
un ouvert affine pour chaque xi D i C Pi et on choisit l’ouvert donné par la

proposition 3.2 pour le point Pi dans les calculs qui suivent. Les Qj /1 j h sont

deux-à-deux distincts et par la non-annulation du déterminant, ils engendrent un
espace vectoriel de dimension h. On considère la projection

W
Vect Q1; : : : ; Qh xQOEZ B T /

L;

qui n’est autre que la restriction de rB.T / à l’espace de sections considéré. Son noyau
est de dimension au moins h0. Ceci signifie qu’il existe h0 sections en degré L
linéairement indépendantes :

Gk D
h

XjD1

gk;j Qj; kD 1; :: : ;h0;

nulles sur X à un ordre au moins T On prend désormais K0 une extension finie de

K sur laquelle X et les coordonnées des points de KerOEp v/ sont définis, et wjv une
place ultramétrique de K0. Quitte à faire des opérations élémentaires sur la matrice
gk;j /k;j on peut alors supposer

Gk D
h kC1

XjD1
gk;j Qj ;

et, pour tout 1 k h0,

jgk;j jw 1 sij < h k C 1;

jgk;j jw D 1 si j D h k C 1:
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En utilisant ces propriétés, on remplace les h0 dernières colonnes de la matrice

Qj xi/ 1 i;j h
par les colonnes :

Ck WD
t Gk.x1/; : : : ; Gk.xh/ ; 1 k h0;

en substituant d’abord C1 à la dernière colonne, puis C2 à l’avant-dernière, et ainsi
de suite. Si on note D0 le nouveau déterminant, on a alors :

jD0jw D jDjw:
Les polynômes Gk sont nuls à un ordre au moins T en tous les points i pour
1 i h et ils sont à coefficients w-entiers. On est donc en situation d’utiliser la

proposition 3.2 qui donne, pour 1 i h et 1 k h0,

jGk.xi/jw p
T
p :

On peut maintenant majorer jD0jw en développant successivement le déterminant
selon les h0 dernières colonnes. Sur la i-ème ligne de chacune des h h0 premières
colonnes, on majore la norme de chaque coefficient par

maxf1; jz1.xi/jw;: : : ; jzm.xi/jwg
L;

où z1; : :: ; zm/ est un système de coordonnées affines sur un ouvert contenant xi
Le système de coordonnées dépend du point, mais on omettra de préciser cette
dépendance puisque la majoration fera vite apparaître la hauteur, qui ne dépend pas
du choix des coordonnées affines. On trouve finalement, par la formule donnant le

déterminant en fonction de ses coefficients sur les h h0 premières colonnes) et

l’inégalité ultramétrique :

jDjw D jD0jw p h0 T
p

h

YiD1
maxf1; jz1.xi /jw;: : : ; jzm.xi/jwg

L:

Si w est une autre place de K0, on se contente d’estimations triviales et, dans le cas

archimédien, la formule des déterminants fait cette fois intervenir le facteur hŠ. On a

jDjw hŠ

h

YiD1
maxf1; jz1.xi/jw;: : : ; jzm.xi/jwg

L:

On écrit la formule du produit, dans sa version logarithmique, pour le déterminant

D qui est défini sur le corps K0 :

0
h0T

OEK
W Q

log.p/
p C h log.h/ C hL max

1 i hfhM.xi/g:
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On utilise ensuite la comparaison entre hauteur projective et hauteur de Néron–Tate

voir 2.2) et la variation de la hauteur par plongement étiré voir le lemme 2.2) :

h0T

OEK
W Q

log.p/
p

h log.h/ C 2hL.M 2
C c1/:

Puis, pour une constante c6 ne dépendant que de A, comme L D C
1=2
0 :

h0

h
c6C

1=2
0

p
T log.p/

log.h/:

On majore le terme log.h/ en utilisant l’inclusion triviale

Im.rB0/ H 0 A; M L
jA

;

ce qui donne
log.h/ c7 log.LM2/;

pour une constante c7 ne dépendant que de A par le théorème de Hilbert–Serre). On
en déduit, par choix des paramètres voir 4.1) et pour une constante c8 ne dépendant
que de A :

h0

h
c8C

1=2
0

p
T log.p/

log.LM2/

c8C
1=2
0

log.LM2/
2

C 2=3
0

log. /
2 C C 2=3

0
log.!L.X//

2
1
2 ;

la constante C0 étant prise suffisamment grande. La proposition est donc entièrement
démontrée, par les définitions de h et h0.

4.3. Utilisation du lemme de zéros. On montre qu’avec le choix des paramètres,
et la comparaison des fonctions de Hilbert faite précédemment, il existe une section
nulle surX0, le translaté deX par un sous-groupe de torsion. Puis à l’aide d’un lemme
de zéros classique de Philippon, on en déduit une inégalité impliquant le degré d’une
variété obstructrice. Cette inégalité ne permet pas de conclure et on devra recourir à

un argument de descente. À cette fin, on raffine le lemme de zéros avec un principe
de tiroirs pour montrer que la variété obstructrice contient une bonne proportion de
composantes du fermé algébrique d’origine, si celui-ci n’est plus irréductible.

Corollaire 4.2. Il existe une section de L sur A en degré L.M2 C1/, non nulle, qui
s’annule sur X0.
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Preuve. On va en fait démontrer qu’il existe une section de MjA en degré L, non
nulle sur A, qui s’annule sur X0. Ceci impliquera le corollaire par l’isomorphisme

MjA ' L M2C1/:

On commence par majorer le membre de droite dans l’inégalité de la proposition

4.1.On choisit d’abord une hypersurfaceZ contenantX, réalisant!L.X/et associée

à un idéal C. Suivant un calcul de géométrie différentielle classique l’“astuce de

Philippon–Waldschmidt”, voir par exemple [PW88], lemme 6.7, [DH00], lemme 5.1
ou [Gal08], proposition 5.1), on obtient :

H.B T /;L/ H.C T /; L/ TH.C; L/:

Par le théorème de Chardin et le lemme 2.2, on a, pour une constante c9 ne dépendant
que de A :

H.C; L/ dim
xQ

xQOEZ C L c9 LM2 g 1
L.X/:

Par ailleurs, la dimension de l’espace des sections est minorée de la façon suivante
en utilisant le théorème de Hilbert–Serre), pour c10 ne dépendant que de A :

jA
/ c10 LM 2 g

dim
xQ H0 A;M L :

Si toute section deMjA sur A en degré L nulle sur X0 est identiquement nulle on a

l’inégalité

c10 LM2 g H.B0; L/ 2H.B T /; L/ 2c9T LM 2 g 1
L.X/:

Et pour une constante c11 ne dépendant que de A :

LM 2 c11T!L.X/:

Le choix des paramètres donne

1

4
C1= 2

0
p!L.X/
log.p/

c11 p!L.X/
log.p/

;

ce qui est absurde. Le corollaire est donc entièrement démontré.

On dit qu’un fermé Z de A est incomplètement défini par des formes de degré

L si toutes les composantes de Z sont des composantes de A\Z.I /, où I est un

idéal homogène dont l’image modulo A l’idéal de définition de A) est engendrée par
des polynômes de degré L. On a la version faible de la proposition 3.3 de [Phi86] :
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Lemme 4.3. Si Z est un fermé de A de codimension k0 incomplètement défini par
des formes de degré L, il existe un réel c12 ne dépendant que de A tel que

degL.Z/1=k0

c12L:

Ce lemme nous permet d’obtenir le résultat suivant concernant un “fermé
obstructeur”.

Proposition 4.4. Soit nX le nombre de composantes irréductibles de X. Il existe un
fermé équidimensionnel Z contenant au moins mX composantes irréductibles de X,
où mX est le plus petit entier supérieur ou égal à nX=g, tel que

degL Z C KerOEp v/ 1=k 0 2p!L.X/
log.p/

:

Preuve. Le corollaire 4.2 donne l’existence d’une section non nulle F de L en degré

L.M2 C 1/ nulle sur X C KerOEp v/. Considérons l’ensemble algébrique W défini
par les équations

F.x C P/ D 0; P 2 KerOEp v/:

On a une décomposition de W en fermés équidimensionnels,

W D [1 i g

Wi;

où i désigne la codimension de Wi De plus, il suit de la définition de W que

81 i g W Wi D Wi C KerOEp v/:

Le fermé W contient X, donc chaque composante irréductible de X est incluse dans

une composante irréductible de W et le principe des tiroirs de Dirichlet nous garantit
qu’il existe i0 tel que Wi0 contient m mX composantes irréductibles de X.

Notons Z le fermé Wi0 et k0 sa codimension. Par le lemme 2.3, le fermé Z est

incomplètement défini par des équations de degré au plus 2L.M2C1/. Le lemme 4.3
nous donne donc :

degL.Z/1=k0

2c12LM2

2c12C
1=2
0

p!L.X/
log.p/

2p!L.X/
log.p/

:

Comme Z D Z C KerOEp v/, la proposition est entièrement démontrée.
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5. Descente finale

Pour finir la démonstration du théorème 1.1, on va d’abord préciser la proposition
précédente, en choisissant un bon nombre premier p. Le résultat obtenu avec X D V
ne nous permet pas encore de conclure, car il manque une hypothèse de coprimalité
entre la partie discrète dustabilisateur du ferméobstructeur quiest une variété dans ce

cas) et le premier p. On fait donc une descente dont le principe est le suivant : on itère
la proposition 4.4 avec une suite de fermés construits à partir de V et l’hypothèse de

coprimalité endécalé ; on obtient l’égalitédes dimensions entre deux cranssuccessifs,
ce qui permet alors de ramener l’hypothèsede coprimalitéaumêmeniveauetd’obtenir
enfin une contradiction.

5.1. Choix du premier. On va d’abord fixer le premier p. Celui-ci doit avoir une

dépendance logarithmique en L.X/, pour que la minoration du minimum essentiel
ait la précision espérée ; on a d’ailleurs eu besoin de faire cette hypothèse “raisonnable”

dans le paragraphe 4.1. Dans la descente, on construira des suites de premiers de
plus en plus petits et suffisamment espacés. On commence par définir deux nouveaux
paramètres utiles dans la mise en place de la descente, un réel positif qui permet
de quantifier le choix de p, et un entier strictement positif R qui sert à fixer l’hypothèse

de coprimalité dont nous aurons besoin. On fait donc les hypothèses suivantes
concernant ces deux paramètres :

max
°
C0 log .3degL.X/ ; log.R/ et 2 5g.k C 1/ kC1:

On rappelle que nX est le nombre de composantes irréductibles de X et mX est
le plus petit entier supérieur ou égal à nX=g. On obtient la “quasi contradiction” :

Proposition 5.1. On suppose que X n’est pas incluse dans le translaté d’une
sousvariété abélienne et que son minimum essentiel est majoré de la façon suivante :

O

ess

L X/ L.X/ <
1

C1
:

Alors il existe un nombre premier p, un idéal premier vjp de OK de bonne réduction
ordinaire pour A, et un fermé équidimensionnelZ, de codimension k0 1,contenant
au moins mX composantes de X, tels que

– l’entier p est premier avec R et

2
p I

– on a l’inégalité

degL Z C KerOEp v/ 1= k 0

< 2p!L.X/:



798 A. Galateau CMH

Preuve. Il s’agit essentiellement de démontrer qu’il existe un premier p 2 PA
premier à R et vérifiant les inégalités annoncées. Notons m le nombre de premiers p
de PA vérifiant

2 p ;

et nR le nombre de premiers de PA divisant R. Les premiers de PA sont en densité

c13 > 0 fixée avec A, et comme C0, quitte à prendre cette constante assez

grande, le théorème des nombres premiers nous donne

m c13
3 log. / I

de plus, on a

R Yp2PA

p p.R/

Yp2PA

p 2nR:

On trouve donc

m nR c13
3 log. /

log.R/
log.2/

c13
1

3 log. /
1

log.2/
c13 I

car 2, et avec C0 assez grande. Pour la même raison et comme c13 > 0, on a

finalement

m nR 1:

L’existence d’un premier p 2 PA vérifiant l’encadrement prescrit et ne divisant pas

R est donc acquise.
Pour appliquer la proposition précédente, il reste à voir que l’hypothèse faite ici

sur le minimum essentiel est plus restrictive que 1). La majoration de p donne

O

ess

L X/ L.X/ <
1

C1

1

p
log.p/

p
:

On peut donc appliquer la proposition 4.4, qui donne l’existence du fermé Z vérifiant
les propriétés annoncées.

Remarque. Expliquons maintenant l’idée qui va guider la fin de la preuve. On prend

X D V une variété irréductible qui n’est pas incluse dans le translaté d’une
sousvariété abélienne stricte de A. Une version simplifiée de la procédure diophantienne
employée jusqu’ici donne, pour V irréductible, l’existence d’un fermé obstructeur

Z lui aussi irréductible de codimension k0 1 contenant un translaté de V et
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d’un premier p vérifiant les inégalités de la proposition 5.1. On aimerait imposer
l’hypothèse

p - OEStab.Z/ W Stab.Z/0 ;

où Stab.Z/ désigne le stabilisateur de Z, et Stab.Z/0 la composante connexe de

Stab.Z/ contenant l’origine. Dans ce cas, le groupe quotient Stab.Z/=Stab.Z/0, qui
se relève dans Stab.Z/, ne contiendrait pas d’élément d’ordre p, et on aurait

degL Z C KerOEp v/
D

pg

jKerOEp
v/ \Stab.Z/0j

degL.Z/;

seule la composante neutre du stabilisateur intervenant au dénominateur. De plus, la

variété Z, contenant un translaté de V n’est pas incluse dans un translaté de
sousvariété abélienne, ce qui entraîne :

jKerOEp
v/ \ Stab.Z/0j pdim.Stab.Z/0/ pg k0 1:

On aurait donc
k 0

degL.Z/ 1= k 0

< 2 2 L.V /:

Une contradiction suivrait immédiatement en prenant D 3k,et en utilisant [Cha88],
2, corollaire 2 pour extraire une hypersurface zZ contenant Z de degré

degL. zZ/ c14degL.Z/1=k0
;

pour une certaine constante c14. On obtiendrait finalement,pour une constanteCL.A/
ne dépendant que de A,

O
ess

L V /
CL.A/
L.V /

log 3degL.V / 4k
:

5.2. Descente en codimension générale. La construction précédente ne permet
pas de conclure, et on est amené à itérer, au plus k fois, la dernière proposition.
Cet argument de descente a déja été utilisé par Amoroso et David dans [AD99] et

dans [AD03]. Il est ici compliqué par l’absence d’isogénies relevant le Frobenius en

caractéristique nulle. Son absence pousse à le “reconstituer combinatoirement” en

travaillant avec des réunions de translatés, et ceci explique qu’on ait écrit la partie
diophantienne avec des fermés de Zariski au lieu de variétés. On va donc itérer la

construction du fermé Z donné par la proposition 5.1 et en déduire l’existence
d’une bonne variété), en faisant à chaque étape une hypothèse de coprimalité entre

l’entier p et le stabilisateur du fermé construit au cran précédent. On pourra de plus
imposer un “emboîtement” entre ces variétéset on démontrera qu’ilexiste une suite de
variétés ainsi construites associée à une suite de dimensions qui n’est pas strictement
croissante. La comparaison des degrés, avec l’hypothèse de coprimalité, permettra
cette fois-ci de conclure.



800 A. Galateau CMH

Commençons par préciser les paramètres propres à la descente. Posons :

81 i k; i WD 5g.k C 1/ kC1 i
I

les i sont décroissants avec i Notons aussi

Pi WD i ;

où

V / D C 2
0 log..3degL.V //:

On fixe une variété V qui n’est pas incluse dans un translaté de sous-variété abélienne
stricte de A. On va itérer la proposition 5.1 au plus k fois, en employant le paramètre

i à la i-ème étape. Le paramètre Pi permettra d’encadrer le premier pi construit.
On remarque que le choix des i et de est cohérent avec les hypothèses faites au
début de 5.1.

Il nous faut un nouvel indice d’obstruction pour traiter la perte de composantes
dans le lemme de zéros dont on a gardé une proportion d’au moins 1

gC1
par un

principe de tiroirs). Si † est un sous-ensemble fini de A et V une sous-variété de A,
on commence donc par noter :

V .†/ WD nombre de composantes distinctes de V C †:

Définition 5.1. Ondéfinit l’indiced’obstructiondeV relativementà un sous-ensemble
fini † de A :

ƒ †;ƒ¤;VCƒ Z
²

V .†/L.V;†/ WD inf
V ƒ/

degL.Z/³;

où Z est une hypersurface pas nécessairement irréductible).

Cette définition permet de prendre en compte la perte de translatés de V en
compensant cette perte par une chute du degré de la variété obstructrice correspondante.

On construit des suites de variétés ayant les propriétés suivantes :

Définition 5.2. SoitW.V / l’ensemble des quadruplets s; p;†; W /où s est un entier
tel que 1 s k, p D p1; : : : ; ps/ est un s-uplet de nombres premiers tels que

8 1 i s
W

Pi
2

pi Pi ;

l’ensemble † D .†1; : : : ; †s/ est un s-uplet de sous-ensembles finis de A et W D
W0; : : : ; Ws/ est un s C1/-uplet de sous-variétés strictes et irréductibles de A avec

V D W0, et les propriétés suivantes.
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– Pour tout 1 i s, l’entier pi est premier avec OEStab.Wi 1/ W
Stab.Wi 1/0 ;

il existe vi jpi un premier de OK en lequel A a bonne réduction ordinaire ; †i
est un ensemble non vide tel que

Wi 1 C †i Wi :

– On pose V0 D V et pour tout 1 i s, on définit :

Vi WD V C †1
C C†i et ƒi

WD KerOEpi vi /:

Alors on a

Wi ƒi/1

Wi .†i/1

degL.Wi/
1=codim.Wi /

pi!L.Vi 1/ 6
PiC1 : : : Pk/g :

– On a la “relation de récurrence” entre indices d’obstruction, pour tout 1 i s
et i ƒi :

L.V;†1
C C†

i 1
C

i/ 3pi!L.Vi 1/:

Remarque. Au sujet du dernier point, on convient que si i D 1,

†1
C C†

i 1
C

i
D

i :

Le lemme suivant rassemble quelques propriétés immédiates des éléments de

W.V /.

Lemme 5.2. Si s;p;†; W / 2 W.V / et 1 i s, on a

Vi Wi et L.Vi / pg
i L.Vi 1/:

Preuve. L’inclusion découle de la définition 5.2 par une récurrence immédiate. Soit
Z une hypersurface, pas nécessairement irréductible, contenant Vi 1 et réalisant

L.Vi 1/. On a

Vi Z C ƒi
I

puis

L.Vi / degL.Z C ƒi/ jƒi
jdegL.Z/ p

g

i L.Vi 1/:

Notons :

W0.V / D f.s; p;†; W / 2 W.V /; dim.W0/ < < dim.Ws/g:

Si on trouve un quadruplet s; p;†; W / 2 W n W0, la comparaison des degrés aux
variétés de même dimension permet de trouver une contradiction :
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Proposition 5.3. On a l’égalité W0.V / D W.V /.

Preuve. Supposons par l’absurde qu’il existe s; p;†; W / 2 W.V / n W0.V /. On
peut donc trouver 1 i s tel que :

dim.Wi 1/ D dim.Wi/ et Wi 1 C†i Wi :

On observe d’abord que pour tout 0 j s, Wj contient un translaté de V Comme

V n’est inclus dans aucun translaté d’une sous-variété abélienne stricte, il en va donc
de même pour Wj

Par irréductibilité de Wi on observe que Wi 1.†i/ D 1. Comme pi est premier
avec OEStab.Wi 1/ W

Stab.Wi 1/0 les éléments du groupe Stab.Wi 1/=Stab.Wi 1/0,

qui se relève dans Stab.Wi 1/, ne sont pas d’ordre pi On a donc

Wi 1 ƒi / D
jƒi j

jƒi \ Stab.Wi 1/j
vi /

D
jKerOEpi j

jKerOEpi
vi / \ Stab.Wi 1/0j

pg
i

pdim.Stab.Wi 1/0/
i

p1Ccodim.Wi/
i ;

la dernière inégalité provenant du fait que Wi 1 n’est pas un translaté de sous-variété
abélienne. On en déduit :

pi pidegL.Wi 1/
1=codim.Wi/ pi!L.Vi 1/ 6

PiC1 : : : Pk/g :

Mais par choix des paramètres,

p 1=codim.Wi /
i

6
PiC1 : : : Pk/g 2 u;

pour u 2 R. En remarquant que les i sont une suite géométrique et que g 2, on a :

ku D ik=codim.Wi 1/ C 6k C kg. iC1 C C k/
i C 5kg iC1

5.k C 1/g iC1 C 5kg iC1 < 0:

Par le lemme 5.2, on a Vi 1 Wi 1, ce qui entraîne, par le théorème de Chardin et

le choix de :
L.Vi 1/ u=2 L.Vi 1/:

Puisque l’indice d’obstruction est non nul, on en déduit une contradiction.
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5.3. Un dernier argument géométrique. Dans le paragraphe précédent, on avait
seulement besoin de savoir que V n’est pas incluse dans un translaté de sous-variété
abélienne. On suppose désormais :

O

ess

L V / L.V / <
1

.5g.kC1//
kC1 :

La preuve du théorème 1.1 sera achevée si on réussit à démontrer la négation de la

proposition 5.3, à savoir :

Proposition 5.4. On a W0.V / ¤ W.V /.

Commençons par quelques préliminaires. À un élément s; p;†; W / de W, on
peut associer la suite de longueur s C 1, croissante, des dimensions des Wi. On
commence par construire un ordre total sur ces suites. Soient v D vi/0 i s et

v0 D v0i/0 i s0 deux suites croissantes d’entiers positifs.

Définition 5.3. On dit que v v0 si vi /0 i minfs;s
0

g < v0i/0 i minfs;s
0

g
pour l’ordre

lexicographique ou, en cas d’égalité, si s s0.

Remarque. Si une suite est la tronquée d’une autre suite, elle est plus grande selon
cet ordre il y a un renversement des inégalités).

La proposition 5.4 se démontrepar un argument de descente : on prend un élément

s; p;†; W / 2 W0.V / associé à une suite minimale, et on construit un nouvel
élément s0;p0;†0; W 0/ dans W.V /, associé à une suite strictement inférieure ; cet

élément est alors nécessairement dans W.V / nW0.V /.
Comme il n’y a qu’un nombre fini de suites de kC1 entiers entre 0 et k, les suites

croissantes de dimensions associées aux éléments de W0.V / sont en nombre fini.

Lemme 5.5. On a W0.V / ¤ ;:
Preuve. Compte tenude laproposition5.3, on peut se contenter de trouverun élément
dans W.V /. On remarque d’abord, par le lemme 2.1 ii) de [DH00] :

log OEStab.V / W
Stab.V /0 log degL.Stab.V // g log degL.V / :

La procédure diophantienne proposition 5.1) avec X D V et R D OEStab.V / W

Stab.V /0 donne l’existence d’un entier p1 tel que :

P1

2
p1 P1;

et d’un fermé W1 contenant W0 C ƒ1 tel que :

degL.W1/1=codim.W1/ p1 2 L.V /:
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De plus, le premier p1 est premier à OEStab.W0/ W
Stab.W0/0 par construction.

La relation de récurrence entre indices d’obstruction, pour tout 1 ƒ1, vient en
extrayant une hypersurface Z1 contenant W1 par le théorème de Chardin ([Cha88],
2, corollaire 2) :

L.V; 1/ degL.Z1/ p1 3 L.V /:
La constante de comparaisonentre lesdegrésdans le théorèmede Chardinest éliminée
en remplaçant 2 par 3.

On peut donc choisir une suite minimale pour l’ordre associée à un quadruplet
s; p;†; W /. Le lemme technique suivant montre comment construire l’élément
s0; p0;† 0; W 0/ en utilisant le théorème de Bézout. Il restera ensuite à prouver que

ce quadruplet est encore dans W.V /.

Lemme 5.6. Il existe un entier PsC1
2 psC1 PsC1 premier avec OEStab.Ws/ W

Stab.Ws/0 un indice 1 s0 s C 1, un sous-ensemble z†
s 0

de ƒs
0

et une
sousvariété Zs 0 stricte et irréductible, dont le degré vérifie

Ws0 1 ƒs
0

/
Ws 0 1

z†
s0/

degL.Zs 0/ Ws0 1 ƒs
0

/
Ws0 1.†s0/

degL.Ws0/ps0!L.Vs0 1/. 6pg
s0

C1
: : : p

g

sC1 /;

et telle qu’on ait l’inclusion

Ws0 1 C z†
s0

Zs0 ;

avec

codim.Zs0/ D codim.Ws0/ C 1;

en posant les conventions : codim.WsC1/ D 0, degL.WsC1/ D 1 et †sC1 D ƒsC1.

Remarque. Avec la définition de l’ordre on vient bien de construire une suite de

dimensions “plus petite” :

dim.W0/; : : : ;dim.Ws0 1/;dim.Zs0/ dim.W0/; : : : ;dim.Ws/ :

Preuve. On va utiliser la proposition 5.1 avec

D sC1
et R D OEStab.Ws/ W Stab.Ws/0

s

YiD1

pi :

On pose

†0 D †1
C C†

s;
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puis on prend † tel qu’il existe Z contenant V C † et vérifiant

L.V;†0/ D
V .†0/
V .†/

degL.Z/:

On choisit alors

X D V C †:
Le fermé X étant réunion d’un nombre fini de translatés de V par des points de

hauteur nulle, on a

O

ess

L X/ D O
ess

L V /:
De plus, le lemme 5.2 itéré donne

L.X/ L.Vs/ pg
s L.V / P g

1 : : : pg
1 : : : P g

s L.V /:

Il en résulte

L.X/ O

ess

L X/ P g
s L.V / O

ess
1 : : : P g

L V /
u;

où

u D .5g.k C 1//kC1 C g. 1 C C s/

.5g.k C 1//kC1 C g. 1 C C sC1/ sC1

1 .2g 5g.k C 1// sC1

< 1 sC1:

L’hypothèse de la proposition 5.1 est donc vérifiée avec D sC1. De plus :

C0 log.3!L.X// C0 g logP1 C Cg logPs C log.3!L.V // V /:

On majore ensuite log.R/, en remarquant que

log.R/ logdeg Stab.Ws/ C log.P1/ C Clog.Ps/;

puis de la même façon que dans la preuve du lemme 5.5 :

log.R/ dim.Ws/ C 1/ log degL.Ws/ C
1

2
V /

g g log C logPs C ClogPk C g log L.Vs 1/ C
1

2
V /

V /:
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La proposition 5.1 donne donc l’existence d’un entier

PsC1
2 psC1 PsC1;

strictement positif, d’un fermé de Zariski équidimensionnel Z0, de codimension k0,

tel que le nombre de composantes distinctes de X dans Z0 soit supérieur ou égal à
V .†/
g et vérifiant l’inégalité suivante :

degL Z0 C ƒsC1 1=k0

< 2
psC1!L.X/:

De plus, le théorème d’interpolation de Chardin permet d’extraire une hypersurface

zZ, équidimensionnelle mais pas nécessairement irréductible, contenant Z0 C ƒsC1
telle que, pour une constante c15 ne dépendant que de A,

degL. zZ/ c15degL Z0 C ƒsC1
1= k 0

c15 2
psC1!L.X/: 2)

On peut maintenant démontrer l’inégalité entre les indices d’obstruction au “cran

s C 1”. Remarquons que si sC1 est un sous-ensemble quelconque de ƒsC1, on a

L.V;†0 C sC1/ g
V .†0 C sC1/

V .† C sC1/
degL. zZ/

3
psC1

V .†0/ V sC1/

V .†/ V sC1/
L.V C †/:

On a fait apparaître les facteurs V sC1/ en remarquant que les points de sC1 sont

d’ordre premier aux ordres des points de †i pour tout 1 i s. On utilise alors les
propriétés fines des nouveaux indices d’obstruction, et la définition de †, qui garantit
l’existence d’une hypersurface Z contenant V C † telle que

L.V C †0/ L.V;†0/ D
V .†0/

V .†/
degL.Z/ V .†0/

V .†/ L.V C †/:

On en déduit l’inégalité suivante :

L.V;†0 C sC1/ 3
psC1!L.V C †0/: 3)

Premier cas. L’hypersurface zZ contient Ws CƒsC1. On prend une composante
irréductible ZsC1 de zZ “au-dessus de la moyenne” dans le sens suivant. Il existe z†sC1

un sous-ensemble fini et non-vide de ƒsC1 tel qu’on ait

Ws C z†sC1
ZsC1;

et que

degL.ZsC1/
degL. zZ/

Ws z†sC1/

Ws.†sC1/
: 4)
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Si on note zZ D S
Z la décomposition de zZ en composantes irréductibles et

si †. / est l’ensemble des x 2 †sC1 tels que x C Ws Z on a en effet

degL. zZ/ D P
Ws .†. //

P
degL.Z /

Ws .†sC1/ D 1;

et l’existence de ZsC1 vérifiant 4) suit. L’inégalité du lemme est alors démontrée
avec s0 D s C 1, en remarquant que ƒsC1 D †sC1 :

Ws.†sC1/

Ws z†sC1/
degL.ZsC1/

3
psC1!L.X/ 3

psC1!L.Vs/:

Deuxième cas. Le fermé zZ ne contient pas

Ws C ƒsC1 D Ws C †sC1:

Remarquons que translater zZ ne change rien à son degré. Soit s0 le plus grand entier
s tel qu’il existe un ensemble s

0

avec quitte à translater zZ par un point de torsion)

Ws0 1 C
s0

zZ;
vérifiant que

Ws0 1
s0

/
Ws 0 1.†s 0/

1

2g
V .†/
V .†0/I

5)

et tel que cette propriété soit vérifiée pour tout entier s0. Comme V D W0, la

construction de zZ garantit que s0 1 la perte de composantes au premier cran ne
peut être plus grande que la perte totale).

Cette clause technique tient au fait que la variété obstructrice dans le lemme de

zéros ne contient pas nécessairement toutes les composantes de V C †0, mais une

proportion importante parun principede tiroirs. On a donc introduit le sous-ensemble

† de †0 qu’on ne contrôle pas et 5) montre que la perte de composantes dans la
descente est limitée. Elle sera compensée par les propriétés des indices d’obstruction
en jeu.

Au cran suivant, on observe en particulier que

Ws0 C †s
0

C1 ª zZ;

et on peut supposer sans perte de généralité que

Ws0 ª zZ:
Par construction, il existe un sous-ensemble s0

de †s 0

vérifiant 5). Les deux fermés

Ws0 et zZ contiennent alors Ws0 1 C
s0

voir la définition 5.2). Comme Ws0 est
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irréductible et n’est incluse dans aucune des composantes de zZ, qui sont toutes de

codimension 1, l’intersection Ws0 \ zZ est un fermé équidimensionnel de dimension
dim.Ws0/ 1 et contient encore le fermé Ws 0 1 C

s 0

De plus, son degré est majoré
par le théorème de Bézout quitte à sommer les degrés sur toutes les composantes
irréductibles de zZ) :

degL Ws 0 \ zZ degL.Ws 0/degL. zZ/:

On choisit alors, comme dans le premier cas, une composante irréductible Zs0 de

cette intersection “meilleure que la moyenne”, c’est-à-dire telle qu’il existe z†
s 0

avec

Ws0 1 C z†s
0

Zs0 ;

et qu’on ait l’inégalité suivante :

degL.Zs0/
degL Ws 0 \ zZ

Ws 0 1 z†
s

0

/
Ws0 1

s0/
:

On en déduit :

Ws0 1
ƒs

0

/
Ws 0 1 z†

s0/
degL.Zs 0/ Ws0 1

ƒs
0

/
Ws0 1.†s0/

degL.Ws0/ 3
psC1

V .†0/
V .†/ L.X/ :

A ce stade, on utilise les remarques précédant 3), en rappelant que X D V C † :

V .†0/

V .†/ L.X/ L.V;†0/:

De plus, soit Z contenant un certain V C ƒ et réalisant L.V;†1 C C†s0

/. On
a alors, quitte à considérer un translaté de Z et en faisant une majoration grossière :

L.V;†0/
V .†0/
V ƒ/

degL.Z/ pg
s L.V;†1

C C†
s 0

s0

C1
: : : pg /:

Il reste enfin à utiliser la relation de récurrence de la définition 5.2 :

L.V;†1
C C†

s
0

/ 3ps0!L.Vs0 1/:

En mettant bout à bout ces inégalités, il vient

Ws0 1
ƒs

0

/
Ws0 1 z†s

0/
degL.Zs0/

Ws0 1
ƒs

0

/
Ws0 1.†s0/

degL.Ws0/ps0!L.Vs0 1/ 6pg
s 0

C1
: : :pg

sC1
:
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La proposition 5.4 sera prouvée si on parvient à démontrer que la nouvelle suite
s0; l0;†0; W 0/ construite dans le lemme précédent est dans W.V / :

Lemme 5.7. La suite s0; l 0;†0; W 0/ est dans W.V /.

Preuve. Rappelons que la nouvelle suite est définie par

† 0

D .†1; :: : ;†s0 1; z†
s0

/;

et

W 0

D W0; : : : ; Ws0 1;Zs0/:
Le premier point est toujours vérifié par construction.

Démontrons le second point pour i D s0, les autres cas étant inchangés. Si s0 ¤
s C 1, on a

Ws0 1 ƒs
0

/
Ws0 1

z†s
0/

degL.Zs0 /

Ws0 1 ƒs
0

/
Ws 0 1.†s0/

degL.Ws0/ps0!L.Vs 0 1/ 6 ps0

C1 : : : psC1/
g

ps0!L.Vs0 1/ 6 Ps 0

C1 : : : Pk/g
codim.Ws0 /ps0!L.Vs0 1/ 6 ps0

C1 :: : psC1/
g

ps0!L.ls0; Vs0 1/ 6
Ps 0

C1 : : :Pk/g
codim.Zs0/ ;

puisque dans ce cas : codim.Zs0/ D codim.Ws 0/ C 1. Si s0 D s C 1, la majoration
du lemme 5.6 donne directement le résultat.

Enfin, la “relation de récurrence” entre indices d’obstruction est trivialement
réalisée pour i ¤ s0 ; pour i D s0 D s C 1, c’est l’inégalité 3) ; et pour i D s0 et

s0 ¤ s C 1, il n’y a rien à montrer.

Preuve du théorème 1.1. Soit V une sous-variété stricte de A qui n’est pas incluse
dans un translaté de sous-variété abélienne stricte de A. Par les propositions 5.3 et

5.4, la variété V contredit l’inégalité suivante :

O
ess

L V / L.V / <
1

.5g.kC1//
kC1 ;

avec D C20 log.3degL.V //. On en déduit :

O

ess

L V / CL.A/
L.V /

log.3degL.V /// k/;

où k/ D .5g.k C 1//kC1 et CL.A/ D
1

C2 g/
0

qui ne dépend que de A.
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