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The non-triviality of the Grope filtrations of the knot and link
concordance groups

Peter D. Horn™

Abstract. We consider the Grope filtration of the classical knot concordance group that was
introduced by Cochran, Orr and Teichner. Our main result is that each successive quotient in
this filtration has infinite rank. We also establish the analogous result for the Grope filtration of
the concordance group of string links consisting of more than one component.
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1. Introduction

We work in the smooth category. A knot is an oriented, smooth embedding of the
circle in the three-sphere. Two knots are isotopic if there is a smooth isotopy of the
three-sphere taking one knot to the other. Isotopy is a three-dimensional notion of knot
equivalence. In this paper, we study a four-dimensional notion of knot equivalence
called concordance. Two knots Ky and K are concordant if there exists a smooth
embedding of an annulus A = S x[0, 1]into S3x[0, 1] suchthat AN(S3x{i}) = K;
fori = 0,1. One can check that 1sotopic knots are concordant, and one can find
counterexamples to the converse. Given two knots, one can combine them via the
connect sum operation, denoted #. See [Rol76, p. 39] for more details. The set
of knots modulo concordance, equipped with the connect sum operation, forms an
abelian group. We wish to study this concordance group €.

In [COTO3], Cochran, Orr, and Teichner introduced two filtrations of the knot
concordance group by subgroups. The (r)-solvable filtration

e CFps CF,C--CFICFygsCFyCE

is defined by K € ¥, if Mg, the closed 3-manifold obtained by zero-framed surgery
on S3 along K, bounds a 4-manifold W whose intersection form on H, is a direct
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sum of hyperbolic pairs, even when homology is considered with twisted coefficients
coming from the quotient of r1 (W) by its n-th derived subgroup. Precise definitions
will be provided in Section 2. A slice knot lies in F, for all n € %N. In this light,
the maximum » for which K € F, but K ¢ #, 5 is a measure of how close K is to
being a slice knot.

The other, more geomeltric filtration defined in [COTO3] 1is the Grope filtration

i C G5 CG C o CGChsCGHCE

which is defined by K € §, if K bounds a Grope of height # in D%, A grope is a
2-complex that will be defined in Section 2. As in the (n)-solvable filtration, a slice
knot lies in G, for all n, and so the largest » for which K € G, but K ¢ G, 5 is some
measure of how far K is from being slice.

The non-triviality of the (n)-solvable filtration has been a topic of study since
its introduction. That %, /%, 5 has infinite rank was proved by Jiang in [Jia81] for
n = 1, by Cochran, Orr and Teichner in [COT04, Theorem 4.1] for n = 2, and by
Cochran, Harvey and Leidy in [CHLO9, Theorem 8.1] for all #n. Our main result is
an analogous statement for the Grope filtration.

Theorem 5.2. Foreveryn > 2, 6, /G, 5 has infinite rank.

Our main result improves upon previous results regarding the non-triviality of
the Grope filtration. For example, Cochran and Teichner proved in [CTO7, Theorem
1.4] the existence of knots of infinite order in §,,/§, 5. Since §,4+2, C F, [COTO03,
Theorem 8.11], we are able to adapt Cochran, Harvey and Leidy’s technique [CHLO9]
to prove that no non-trivial linear combination of these knots lies in #, 5, hence not
ing,y25.

For the Grope filtration of the group of m-component string links with m >
1, Harvey showed in [Har08, Theorem 6.13] that for all n, §," /)" , contains an
infinitely generated subgroup. Let B, denote the subgroup of §/" whose elements
are boundary links. Combining [HarO8, Theorem 6.13] and [CHOS, Theorem 4.4],
it is known that for each m > 1 and n > 2, the abelianization of 8§}/ BE", | 5
has infinite rank. We improve the result by narrowing the index gap, arriving at what
should be the optimal result.

Theorem 6.2. For eachm > 1 and n > 2, the abelianization of BG,' /| BE,' s has
infinite rank; hence G."' /| G1"'s contains an infinitely generated subgroup.

2. Definitions

If G is a group, the derived series of G is defined recursively by G = G and
GEtD = [GW GD). The rational derived series of G is defined recursively by
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setting G,EO) = G and
Gt ={g e G:g* e[GP,GY), forsome k > 0}.

Let M be closed, connected, orientable 3-manifold. Recall from [COTO3] the
definition of an (n)-solution for M,

Definition 2.1. A smooth, spin4-manifold W with 0W = M is an (n)-solution for M
if the inclusion-induced map i : H; (M) — H; (W) is an isomorphism and if there
are embedded surfaces L; and D; (with product neighborhoods) fori = 1,...,m
that satisfy the following conditions:

(1) the homology classes {[L1].[D1].....[Lu],[DPm]} form an ordered basis for
Hy (W),

(2) the intersection form (Hz (W), ) with respect to this ordered basis 1s a direct
sum of hyperbolics,

(3) L; N Djisempty if i # j,
(4) foreachi, L; and D; intersect transversely at a point, and

(5) each L; and D; are (n)-surfaces, i.c., m{L;) C 7 (W)™ and 71 (D;) C
T (W)™,

If, in addition, 71(L;) C w1 (W)®*D for each i, we say W is an (n.5)-solution
for M.

There is a slight generalization of n-solvability, called rational n-solvability. For
the purposes of this paper, it suffices to know that an n-solution is also a rational #-
solution. If the above conditions hold except for the isomorphism on first homology,
W is called an (n)-bordism for M .

If a closed, orientable 3-manifold bounds an (x)-solution, we say M is (n)-
solvable. A knot K in S? is said to be an (n)-solvable knot if 0-surgery on K is
(n)-solvable.

As in [COTO3], the set of all (n)-solvable knots is denoted 5, where it was
shown that these F,, filter the topological knot concordance group T, i.e., the ¥,
form a nested series of subgroups of €:

{O}C"'C.{}’Vn‘sc.{f—’ynC"'C$1_5C?1 C Fos CFyCE.

The following definition is modified from the definition in [FT95]:

Definition 2.2. A grope is a special pair (2-complex, base circle). A grope has a
height n € %N. A grope of height 1 is precisely a compact, oriented surface > with
a single boundary component (the base circle). For n € N, a grope of height n + 1
is defined recursively as follows: let {o;, 8; : 1 = 1,..., g} be a symplectic basis of
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curves for X, the first stage of the grope. Here g is the genus of 2. Then a grope of
height n + 1 is formed by attaching gropes of height » to each ¢; and B; along the
base circles.

A grope of height 1.5 is formed by attaching gropes of height 1 (i.e. surfaces) to
a Lagrangian of a symplectic basis of curves for 2. That is, a grope of height 1.5 is
a surface with surfaces glued to ‘half” of the basis curves (i.e. the ¢;). In general,
a grope of height n 4+ 1.5 is obtained by attaching gropes of height » to the «; and
gropes of height n + 1 to the §;.

Given a 4-manifold W with boundary M and a framed circle y C M, we say that
y bounds a Grope (note the capital ‘G’) in W if y extends to a smooth embedding of
a grope with its untwisted framing. That is, parallel push-offs of Gropes can be taken
in W. Knots in S? are always equipped with the zero framing.

Cochran, Orr, and Teichner [COTO03] also defined the Grope filtration of €. The
set of all knots that bound Gropes of height # in D* is denoted G, , which is a subgroup
of €. Observe the following connection between gropes and the derived series: if a
curve £ bounds a (map of a) grope of height # in a space X, then [£] € 7 (X)™. It
was shown in [COTO3, Theorem 8.11] that §,,4, C F, (foralln € %N).

We will also use a few definitions from [CTO7].

Definition 2.3. An annular grope of height n 1s a grope of height » that has an extra
boundary component on its first stage. We say that the two boundary components
of an annular grope cobound an annular grope. Two knots Ky and K are height n
Grope concordant if they cobound a height » annular Grope G in S x [0, 1] such that
GN(S3x{i}) = K; fori = 0, 1. For example, if K is height n Grope concordant to
a slice knot, then K € §,. The capital ‘G’ in ‘annular Grope’ indicates the untwisted
framing.

Let G be a height # Grope in S? x [0, 1] bounded by a knot K C S3 x {0}. The
union of sets of basis curves for each n-th stage surface of G is called a ser of tips
for G. If the tips lie on annuli in S3 x [0, 1] that are disjoint from each other and
disjoint from the Grope (except at the tips) and the other boundary components of
the annuli lie in §3 x {1}, we say ‘the tips are isotopic’ to the link determined by the
other boundary components of these annuli (a link in S3 x {1}).

A capped Grope 1s the union of a Grope and a disjoint union of discs where the
boundaries of the discs form a full set of tips of the Grope. The interiors of these discs
must not intersect the Grope except perhaps on one of the boundary components of
the Grope’s first stage. These discs are called the ‘caps’ of the Grope. For example,
if K bounds a capped Grope, the caps are allowed to hit K.

The construction of our examples relies on a technique known as infection. Let
R be a fixed knot or link and K be a fixed knot in S3. Suppose « is a simple closed
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curve in $3 — R such that « is itself the unknot. Some number m of strands of R
pierce the disc bounded by «. Let R(x, K) denote the knot obtained by replacing
the m trivial strands of R by m strands ‘tied into the knot K.” See Figure 1. More
precisely, one obtains R (¢, K) by removing a regular neighborhood of « and gluing
in S — K in such a way that identifies the meridian of « with the longitude of K and
the longitude of « with the meridian of K. We say R(«, K) is the result of infecting
R by K along «.

]

" ID—] «

Figure 1. Infecting R by K along a.

Let (H, J) denote the zero-framed, ordered Hopf link in the complement of a
knot or link R in Figure 2. Surgery on (H,J) is homeomorphic to S? [Kir78,
§4, Proposition 2], so the image of R after performing this Hopf surgery is a new
knot or link in 3. By sliding the strands of R (that pass through J) over H and
cancelling the Hopf pair, one sees the effect of Hopf surgery in Figure 2. We will use
the terminology ‘performing the handle cancellation J — H’ to mean ‘performing
(H, J) Hopf surgery.” This convention matches [CTO7, p. 350].

R

11l L
O&Jﬁ%

Figure 2. The effect of a Hopf surgery.

3. Knots bounding Gropes of height n + 2

Fix anm > 1. Foreach n > 1, we will construct a knot K by infecting a seed knot
R along certain curves in 71(S3 — R)(V by a knot K"~ Roughly speaking, we
construct a height n 4 2 Grope bounded by K7 in two stages. First we prove each
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K1 bounds a height n + 1 Grope whose tips are isotopic to meridians of K%~!.
When we infect R by K71 we will see that the tips of this Grope are isotopic to the
infection curves, which we will then prove bound capped Gropes of height 1. Gluing
these height 1 capped Gropes onto the tips of the height n + 1 Gropes for K
(and gluing a few annuli and slice discs) will result in a height # + 2 Grope bounded
by K7.

3.1. The infecting knots P,,. Let P, be the knot defined in Figure 3. A priori, we
have described Py, as a knot in some closed, oriented 3-manifold that is the image of
U after performing O-surgery on the (10 4 4m)-component link in Figure 3. Using
Kirby’s calculus of framed links (see, for example, [GS99, Chapter 5]), one can check
that this 3-manifold is S 3.

0 }ijm
Ter-G

\\49

m
Figure 3. A surgery description of Fy,.

Proposition 3.1. Fach P,, cobounds with the unknot a height 2 annular Grope in
3 x [0, 1] whose tips are isotopic to a set of disjoint copies of the meridian of Py,.

Proof. We claim that Figure 5 depicts a height 2 annular grope in S ? between P, and
U. Let L denote the (10 4 4m)-component link L = (Hy, ..., Ho44.,) in Figure 4,
the link L 1s isotopic to the link defining P, in Figure 3. In Figure 4, we have shaded
in some punctured surfaces bounded by the components Hy, H4, and Hg. Once we
perform O-surgery on L, these punctured surfaces will become closed surfaces, and
these surfaces will be used to construct a height 2 Grope.

We perform 2m 4 2 handle cancellations,
H7 — Hs, Hg— Hg, Hiz — Hyp, Hiz— Hyy,
Hgyam — Hepam, Horam — Hypam,

to arrive at Figure 5 (ignore the U and shaded parts for now). What remains is a
6-component link N = (Hy, Hy, Hy, H3, Hy, Hy). Let N7 denote the link N —
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H9+4m H7 1 am

Figure 4. The link L.

Figure 5. A height 2 Grope concordance from the unknot U to Py,.
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{Hy, Hi};, N’ consists of two separated Hopf links, thus O-surgery on N’ (denoted
S?V,) is homeomorphic t0 S 3. Let U be the knot in Figure 5 that deviates only slightly
from P,. The resulting knot U after O-surgery on N’ is the unknot in S3 = S5,
since U does not hit the discs bounded by H;, Hs and Hs.

There is a punctured annulus in S3 bounded by U and P,y; the lightest shade
of grey in Figure 5 is part of this annulus. The other part of this annulus has been
collapsed to simplify the diagram. To the puncture, glue one boundary component
of a tube. Push this annulus over H, and glue the other boundary component to the
circle where H, punctures the torus on which Hy lies (second darkest shade of grey
in Figure 5). So far we have a height 1 (and genus 1) annular grope between P, and
the unknot in S3.

One may take the obvious symplectic basis elements for the aforementioned torus,
tube them over H, and H3 and attach them to punctured the surfaces for H, and Hg
(the darkest shade of grey in Figure 5). Recall that after zero surgery on the link, Hy
and Hy lie on closed surfaces. Now we have a height 2 annular grope in S between
P, and the unknot. Figure 5 shows that the tips of this annular grope are isotopic to
meridians of Py,.

One can push the U boundary of component of this annular grope in the positive
I direction and the P,, boundary component in the negative / direction to arrive at
the desired result. O

3.2. The seed knot R and the infection curves. Our examples are inspired by
Cochran, Harvey and Leidy’s family J,. They construct their family inductively by
infecting the 946 knot along the curves « and B in Figure 6. Note that the obvious tori

Figure 6. The infection curves @ and 8, and homotopic infection curves «’ and B’.
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in S3 —9,¢ bounded by « and B intersect. For our construction of the Gropes for K el
it is necessary that our infection curves bound disjoint surfaces in the complement of
946. We homotope « and B to arrive at different infection curves ¢’ and §’.

Let R = 94¢. By Figure 7, the curves ¢’ and £’ bound tori that are disjoint and
that miss R. The torus bounded by o’ has a symplectic basis x1, x, (the curve x,
has been 1sotoped off of the torus) of curves that inherit the zero framing from the
torus. The torus bounded by B’ has a similar symplectic basis yq, y2. It is clear
from Figure 7 that the curves x1, x2, ¥1, v2 bound disjoint discs that hit the knot R
transversely. Thus, ¢’ and 8’ bound disjoint capped tori in the complement of R.

Figure 7. Infection curves bound disjoint capped tori.

3.3. Knots bounding Gropes of height n 4+ 2. We now describe our family of knots
K for n,m > 1 with the property that K" € §,1,. Recall R = 946, and o’ and
B’ be from Figure 6. The curves o’ and B’ bound punctured tori that are disjointly
embedded in S® — R. Let K} denote R infected along o’ and A’ by our knot P,,.
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Define K71 by infecting R along o and B’ by K. Observe that g(K”,) < 3 since
o' and B’ miss a genus three Seifert surface for R.

Proposition 3.2. Let R be a knot in S>, a an unknotted curve in S> — R. If K and J
are knots that are height n Grope concordant, then the results of infection R(a, K)
and R(«, J) are height n Grope concordant.

Sketch of Proof. The knots R(«, K) and R(w, J) differ by what happens inside a
fixed ball D3:
IS BN RN
AT
AL, Dy
/ i ! |
| K 1| J |

\ 7\ !
\ / \ /
\ V N P

e e T

Let (D3, m K) denote the left-hand side of this diagram, i.e., a 3-ball with m arcs
tied into K. Since K and J are height n Grope concordant, so are (D3,m K)
and (D3, m J). We see this by slitting a height n Grope concordance from K to
J, which turns it into a ‘height » slit Grope concordance’ from one knotted arc to
another. Taking parallel copies of this slit Grope concordance in D3 x [0, 1] yields
G, the ‘height » slit Grope concordance’ in D? x [0, 1] from (D3, m K) x {0} to
(D3, m J) x {1}. We simply glue this G to (R — (R N D3)) x [0, 1] w arrive at a
height » Grope concordance from R(w, K) to R(«, J). O

Proposition 3.3. Ler R = 946 and K} be defined as above. Then K}, is height 3
capped Grope concordant fo R.

Proof. For simplicity, let K = K} . K is R infected along o’ and 8’ by Pp,. We will
first concentrate on the infection along the ¢’ curve. Let K’ denote R infected along
o' by P,,. We will infect along 8’ later, arriving at K. Consider a diagram for the
link R, «’. The knot K" can be described by replacing the infection curve with the
framed (10 + 4m)-component link that defines P,,. Figure 8 depicts this operation.
One may form a new knot L by pulling the 2 strands of K’ out of the upper-right-
most O-framed curve in Figure 8. This is an ‘2-stranded analogue’ of what is done in
Figure 5. As in Proposition 3.1, there is a punctured annulus in S? between K’ and
L (1t 1s punctured twice). These punctures are 2 parallel copies of a meridian of the
0-framed curve through which we pulled the 2 strands of K’. Float these punctures
downward in the / direction so that each puncture is in a different S3 x {*} level. To
cach puncture, one can glue the height 2 Grope for P, described in Proposition 3.1.
As before, the tips of the Grope in the S3 x {x} level are isotopic to parallel copies
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e
T @ =

m

Figure 8. The knot K’ as infection on R.

of the infection curve ¢’ x {x}. Now, we may float each of these ¢’ x {x} disjointly
down to the S? x {1} level. Since each of the pieces of the Grope (and the tips)
miss K’ and L, we may glue L x [0, 1] to this Grope. The result is a height 2 Grope
concordance from K’ x {0} to L x {1} whose tips are disjointly isotopic to parallel
copies of o’ x {1}.

We claim that L 1s m fact R. The proof of this fact is similar to the proof that
the U from Figure 5 and Proposition 3.1 is the unknot. Namely, we have expressed
L as surgery on separated Hopf links, and for each of these Hopf pairs, L does not
pass through one of the components. Thus, performing the surgery does not change
L locally, and away from the surgery link, L is identically R.

At this point we have proven K" = R(¢/, Py,) is height 2 Grope concordant to R,
and the tips of this Grope concordance (which we name G ) are isotopic to parallel
copies of o’. We can view K as K'(f’, Py). An argument similar to the one above
yields a height 2 Grope concordance (which we name H ) between K and K’ whose
tips are isotopic to parallel copies of /. Wecanglue H C S3x[0,1]toG C S3x][1, 2]
and float the tips of H down through S? x [1,2] so that they miss G. In order to
jJustify this, we recall from the proof of Proposition 3.2 that G was constructed by
gluing pieces of R x I (which miss £’) to something that lived in D3 x I, where
o' C D3 and B’ was contained in S* — D3, Thus, G N (B’ x[1,2]) = @. We see
that J := G U H U (B x[1,2]u---U B x[1,2])is a height 2 Grope concordance
between KL and R with punctured caps, and these punctures are parallel copies of
B’ union parallel copies of o’ such that the punctures lie in (S3 — R) x {2}. The
result is a height 2 Grope concordance between K = K} and R whose tips are the
union of parallel copies of ¢’ and parallel copies of £’. A schematic of J is depicted
in Figure 9, with n = 0. Pushing further down into S3 x [2, 3], we can glue parallel
copies of the capped tori to the copies ¢’ and B’. The reader will recall that these
capped tori miss R. Since we attached a capped torus to each tip of J, we are left
with a height 3 capped Grope concordance between K1 and R, as desired. O
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Theorem 3.4. For eachn,m > 1, K}, is height n + 2 capped Grope concordant to
R = 946. In particular, K", bounds a Grope of height n + 2 in D*.

Proof. We induct on n. The claim is true in the case n = 1 by Proposition 3.3.
Assume that the claim is true for K.

By definition K"*! is R infected along o’ and B’ by K. As in the proof of
Proposition 3.3, we first concentrate on the infection along «’. Let K = R(¢/, KI1).
By the inductive hypothesis on K7, and by Proposition 3.2, K" and R = R(«, unknot)
are height n 4 2 Grope concordant. This Grope concordance is built using the height
n + 2 capped Grope concordance L between K and R. Each cap of L hits R
transversely, and removing neighborhoods of the intersection points from the cap
yields a planar surface with boundary equal to a tip of L and copies of the meridian of
R. The meridians of R can float along L to be meridians of K. Under the infection
of R along «’ by K, the meridian of K7, is identified with (the longitude of a regular
neighborhood of) &’. Let G denote the union of L and these planar surfaces reaching
out from the tips. By the ‘punctures of G,” we mean the punctures of these punctured
caps, each of which is a copy of ¢'.

As for the infection along o', between K"+ = K’(B, K) and K’ there is a
height » 4 2 Grope concordance H with punctured caps whose punctures are copies
of B’. Since infecting along S’ is a local operation near ', H misses &’ x [0, 1].

We now describe the height n + 3 capped Grope concordance between K7t!
and R. Figure 9 shows a schematic of the ultimate Grope. We start with the height
n + 2 Grope concordance H between K™+ and K. Tmagine that H is embedded in
S3 x[0,1] sothat H N S3 x {0} = KT and H N S3 x {1} = K’. The punctures
of H are parallel copies of B/ in S3 x {1}, Now imagine that G, which is the Grope

S

\_/

copies of ¢’ copies of B’

Figure 9. A schematic of the height n 4 2 Grope concordance, J, from K,’:[H to R.
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concordance between K’ and R, isimbeddedin $3 x[1,2] so that G NS3x {1} = K’
and G N S? x {2} = R. The punctures of G are parallel copies of ¢’ in S3 x {2}.
We claim that we can ‘float down the punctures of H’ into the S3 x {2} level while
missing G. A justification of this was given in the proof of Proposition 3.3. We see that
J:=GUHU(P x[1,2]u---up x|[1,2])is a height n 4+ 2 Grope concordance
between K1 and R with punctured caps, and these punctures are parallel copies of
B’ union parallel copies of «’ such that the punctures lie in (S — R) x {2}.

Since e’ and A’ bound disjoint capped torus in S — R, we can glue parallel copies
of the capped torus (in > x [2, 3]) to J along the punctures of J. To summarize, we
have attached capped surfaces to each tip in the height » 4+ 2 Grope concordance J.
What we have is a height » + 3 capped Grope concordance between K1 and R.
We have proven the inductive step, and the claim is true for all s. O

At this point, we have constructed an infinite family of knots in §,, for each
n > 0. Before we show that each family generates an infinite-rank subgroup of
Gn+2/5n+2.5, we compute the classical signatures of our infecting knots Py,.

4. Caclulation of p-invariants

We now calculate the classical signatures of the P, and discuss why they are linearly
independent. The linear independence of these invariants will ultimately guarantee
that no linear combination of the K7, lies in §,42 5. A proof of this will be outlined
in Section 3.

Given a knot P, a Seifert matrix V for P, and a unit complex number « (which
is not a root of the Alexander polynomial of P ), one may form the Hermitian matrix
(1—w)V +(1—a)VT. Letop(w) denote the signature of this matrix. This function
is called the Levine—Tristram signature function of P and does not depend on the
choice of the Seifert matrix V. This function op: S' € C — Z is locally constant
away from roots of the Alexander polynomial of P. Let po( P ) denote the average of
op over S1,ie.,

po(P) =[Slop<w)dw c R

where the circle is normalized to have unit length. We call po(P) the classical
signature of P.

Lemma 4.1. The classical signature of Py, is given by po (Pp) = 2 —2 97’“ where
2 3/m-1
23/m

Om is the number satisfving cos (6y,) = and 0 < 6, < 7.

Proof. Let E,, denote the exterior of P,,. Recall that Py, is defined by surgery on the
link in Figures 3 and 4. Depicted in Figure 10 is that link, isotoped for convenience.
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ayia )

|

Figure 10. The surgery link defining Py, .

After performing the handle cancellations

Hy—H,, H;— Hs, Hg— Hs, Hiz— Ho,
His—Hy, Hgyam— Héram. Hojam — Hyiam.

we arrive at the link in Figure 11. Thus, we can describe FE,, as the image of S 3_U
after O-surgery on the two component link { Hg, H>} as in Figure 11. This link is the
result after performing O-surgery on all components of the link in Figure 3 except for
the bottom-most two. As discussed in the proof of Proposition 3.1, the link { Hy, H2}
is a link in S'°3.

As in [Rol76, §7.C], we can compute the Alexander module of £, using these
surgery nstructions. Let « denote a lift of Hg 1n the infinite cyclic cover of U, and
let B denote the lift of H, that links o once. Let T denote a generator of the group of
covering translations. Recall that the matrix

% ( a+ ez (@, T'a) ! Yieg K, BT )
Yiepk(B. ')’ b+ Yiez o k(B TB)

wherea+3 "7y Ik(a, 7 @) equals the framing of Ho andb+3Y ",z 1oy Ik(B, 7' B)
equals the framing of H, is a presentation matrix for the Alexander module of E,,.

Displayed in Figure 12 is the link {U, Hy, H,} after an isotopy. Figure 13 depicts
the infinite cyclic cover of E,,.
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U
r/'-—ﬂ Fjﬂ—ﬁ FJ‘ A
—’ u
2
Ho
N j
S
m
Figure 12. An isotopic image of the link from Figure 11.
From Figure 13, one computes the Alexander matrix to be
A_(m(Z—t—t_l) 1 )
- 1 P24+ H 46 )
The Alexander polynomial of P, is
20m — 1
Am(1) = det ) = m((t3 Sy 62 )+ 150+ — m—)

Recall that py of a knot is equal to the integral of the Levine—Tristram signature
function over the unit circle (normalized to have length one), and that this function
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1) e
(N2
.

Figure 13. The infinite cyclic cover of Ey,.

is constant away from the roots of the Alexander polynomial. We claim that the

polynomial A,,(¢) has exactly two roots on the unit circle, namely e*% where
3
cos (B) = 2 2“/3)_3”%1 and 0 < 6,, < ;. After proving this claim, we can conclude the
signature of A is +2 when substituting r = —1, thus pg (Pp) =2 —2 97’”.
It is easy to verify that e* %7 are roots of A,,(r) and that A, (r) factors as

2Ym—1 4 \(2, .
m([—W‘l‘[ )(t + 1t —14+

: )(t+t_1)+6+

2 1
Y Y m) =

Assume that 'Y, where i € R, is a root of the second factor in Equation (1).
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Then v must satisfy the equation

: 1 2
4(cosy)? — (8 CoS 4 = (.
cos = (84 g Jeomy 4 gt
The quadratic formula yields cos ¢ = Nﬁ“;—\/ln_ij‘ﬁ. This implies that v ¢ R, and
we conclude that A, (7) has no other roots on the unit circle. O

Lemma 4.2. There is a subsequence of Pp,; of the knots Py, whose set of classical
signatures is linearly independent over Q).

Proof. ByLemmad4.1,itissufficientto find aset {t,; };"; , thatis linearly independent
over Q. Let5 = p; < py < p3 < --+ be a sequence of prime integers satisfying
pj =1 (mod 4) forall j, and setm; = é(pj —1)® € Z. It was shown in [COT04,

Proposition 2.6] that {8y, }52 | is linearly independent over Q. O

As a consequence of the additivity of the classical signature, we can immediately
prove Theorem 5.2 for the case n = 0.

Proof that §, /8, 5 has infinite rank. Proposition 3.1 implies that cach P, bounds a
Grope of height 2. The family { P, } generates an infinite-rank subgroup of §,/% 5.
By [COTO3, Theorem 1.1], a knot lies in $, 5 if and only if it is algebraically slice. It
is well-known that pg vanishes on algebraically slice knots and is additive under the
connect sum operation. By the linear independence of {po( Py, )} (Lemma 4.2) and
these remarks, any non-trivial linear combination of the P, cannot lic in &, 5. [

5. Algebraic invariants

We outline a proof that K, (or a subsequence of similar knots) are linearly independent
in §y42/80+2.5. The following arguments are adapted from Cochran, Harvey and
Leidy’s proof that £, / %, 5 has infinite rank (cf. [CHLO09, Theorem 8.1]).

Before the proof, a brief review of von Neumann p-invariants is in order. A
more thorough treatment can be found in [CTO7]. Given a closed 3-manifold and
a homomorphism ¢: 71 (M) — I' where I' is any group, one can define the von
Neumann p-invariant p(M,¢) € R. For a fixed M, Cheeger and Gromov have
proven the existence of a constant Cps such that |[p(M,¢: m1(M) — T')| < Cps for
all homomorphisms ¢ and groups I' [CG85].

Cochran, Orr and Teichner [COTO03, Lemma 5.9] have shown that if W is a 4-
manifold with W = M, and if ¢: 71 (M) — T factors through ¢: (W) — T,
then

p(M,$) = oD (W, ) — o (W)
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where @ (W, ¢) is the L@ -signature associated to ¢ : 1 (W) — [ ando (W) is the
ordinary signature of W. We refer the reader to [COT03, Section 5] for the rigorous
definition of & (W, ¢). These von Neumann p-invariants are commonly referred to
as ‘signature defects.” Oftentimes one requires that I' be a poly-torsion-free-abelian
group (PTFA). This acronym will appear in the sketch of the proof of our main result
for the sake of correctness, but its precise definition 1s not crucial to understanding
the main idea of the proof.

Definition 5.1. Let K be aknotin S and G = m; (Mg). The real number p(K) is
the ‘“first-order signature’ given by the von-Neumann p-invariant

p(Mg.¢: G — G/GP).
Theorem 5.2. Forn > 0, §,12 /8,125 has infinite rank.

Remark 1. As stated, our main result is not the strongest possible assertion. We pro-
duce an infinite family of knots in G, > whose members bound smooth embeddings
of gropes. This family is a subsequence of { K, }7°_,, or possibly a subsequence of
a related family (see the proof below for a discussion). A result (JCHL09, Theorem
8.1]) of Cochran, Harvey and Leidy implies that no non-trivial linear combination
of these knots is even topologically (xn.5)-solvable, hence does not bound even a
topologically flat embedding of a height n 4 2.5 grope in D*. To avoid unnecessary
reproduction of previous results, we will give a brief outline of the proof and refer
the reader to [CHLO9] for the details. We merely push through the proof given by
Cochran, Harvey and Leidy, just to verify that their argument may be used to show
that no non-trivial linear combination of the K7, lic in #, s, hence not in §,,45 5.

Sketch of proof for the case n > 1. First, we must find a genus one ribbon knot R
with p(R) # 0. If p(946) # 0, we can set R = 94¢. Otherwise, we can tie one band
of 946 1nto the right-handed trefoil knot, as shown in Figure 14; the result, R, 1s a
ribbon knot with p(R) # 0.

Second, we must find an infinite set & of knots P, such that no non-trivial ratio-
nal linear combination of {pg ( Py, )} is a rational multiple of p(R). This family P is
an infinite subset of the family { P, } defined in Section 3.1. These pp-invariants are
the classical signatures discussed in Section 4. Our Lemma 4.2 provided a subfam-
ily of the P, with linear independent classical signatures, but now we require that
{po (Pm)} U {p(R)} is linearly independent. Using elementary linear algebra, one
can show that this set is linearly independent (after possibly taking a subsequence
of Pp).

For each n > 0, we define a family of knots {K : m > 1} C §,4». This family
is defined as in Section 3.3, except using the knot R as the seed knot. It should
be noted that (possibly) having tied a trefoil in one of the bands does not affect the
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Figure 14. Tying one band of 344 into a trefoil.

conclusions of any of the results in Section 3. In particular, these K7, lie in G, 15.
For notational simplicity, let K,% = Loy

Now we must prove that no non-trivial linear combination of the knots K7, is
(even rationally) (n.5)-solvable. Since §,425 C F, 5, it will follow that no such
combination of these knots lies in &, 43 5, hence these knots are linearly independent
in §,42/8,+2.5. Suppose that a finite sum K = #_ Jm K}, is rationally (n.5)-
solvable. We may assume that j; > 0. We construct a family of 4-manifolds W; and
reach a contradiction. Let us abbreviate Mgz = M.

Consider W, with boundary My LI My U M. Recall that My = Mo =

Mp,. Let 7 = w1 (W,) and consider ¢p: 7 — JT/JT,E”H). Then by property (3) of
Proposition 5.3,

p(Mp,. o)+ p(Mp, . dp) + p (MR. ) = p (W, ) == Cpm po (Pm) (2)

where C; > Oand ¢ : 71 (Mg) — /7" TV is induced by inclusion (and similarly

for ¢o and ¢g/). By property (2) of Proposition 5.3, ji (w1 (Mp,)) C 7™, im-
plying that the restrictions ¢, and ¢+ factor through the respective abelianizations.
Additionally by property (2), at least one of these coefficient systems is non-trivial.
Hence, by Proposition 5.3,

p(MPpgbot’) +:0(MP1’¢ﬂ’) = € Do (Pl)
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where € is equal to one or two. Thus we can simiplify equation 2 to yield

(€+C1)po(P1)+ Y Copo(Pm) =—p(Mg.$r) 3)

m>1

where € + C1 > 1. Also by property (2) of Proposition 5.3,
Ju (1 (MR)) C 77V

s0 ¢r factors through G/G® where G = 7 (Mg). Since ker(¢pr) € GV, ¢p is
determined by the kernel, denoted A, of the induced map

dr: GP /6P = im(ppr).

A is a submodule of the Alexander module GV/G® . Since the Alexander poly-
nomial of R is (2t — 1)(¢r — 2), the product of two irreducible coprime factors, the
Alexander module of R has only four submodules: the trivial submodule, A itself,
and {«) and {B’). One can examine these four possibilities for A and conclude that
p (Mg, ¢ppr) € {0, p(R)}. Combining this with equation 3, we have

(€ +C1) po (P1) + D Cmpo (Pm) = Co p(R)

m=>1

where Cy € {0, 1}. Since € + C; > 1, we have written a multiple of p(R) as a
non-trivial linear combination of {py ( Py, )}, a contradiction. m

Proposition 5.3 (Proposition 8.2 of [CHLO9]). If K is rationally (n.5)-solvable,
then for each O <i < n, there is a 4-manifold W; with the following properties. Let
7 = m (W)
(1) W, is a rational (n)-bordism where, fori < n, 0W; = M{ and 0W, = M{) L
M{) U Mpg;
(2) under the inclusion(s) j : Mln_i C W, — W,
Je: T (MPT) C 7,
and for each i (at least one of the copies of ) M C dW,,
T (nl(Mf_i)) =t Jr(i)/ﬂr(iJrl)
and under the inclusion j: Mp C oW, — W,
jei (m(Mp)) =Z C x"7V /7™

(3) for any PTFA coefficient system ¢: w1 (W;) — T with F,,(”H) =1,
p@Wi ) = of” Wig) =0 (W) = =) Cm po (Pro)
m
for some integers Cy, (depending on ¢) with C; > Q.

We refer the reader to [CHLO9] for a proof of this proposition.
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6. String links

We now turn our attention to generalizing our main result to links. We follow the
notation of [Har08]. Let €(m) denote the group of m-component string links modulo
concordance (the group operation is concatenation). If L € €(m), let L denote the
closure of L; L is obtained by attaching the m-component trivial string link to the
ends of L in the obvious way. Let §" denote the subset of € (1) defined by L € §"
if the components of L bound disjoint Gropes of height n in D*. It can be shown
that the Grope filtration of € (m)

0c---cgr.Ccg C---C 8 CE" CC(m)

is a filtration of € (m) by normal subgroups. If B(m) denotes the subgroup of € (m)
consisting of boundary string links, we define 87" = §" N B(m).

There is also the (n)-solvable filtration of € (m}), whose definition we omit, that
is related to the Grope filiration by § , C F" foralln € 3N. Let BF) =
F N B(m).

Remark 2. For each n € Z, Harvey [HarO8, Definition 3.11] defined a link invariant
pn(L) € R. If L is a knot and n = 0, then Harvey’s po(L) is equal to the classical
signature discussed in Section 4. The salient features of these p,, are listed below:

(1) [Har08, Corollary 6.7] For each » > O and m > 1, p,: B(im) — R is a
homomorphism,

(2) [CHO8, Theorem 4.4] p, (L) vanishes forall L € 8F'-.

(3) |HarO8, Theorem 5.8]If T is the identity element of 8B {m ), n an unknotted circle
in the complement of T thatlies in w1 (D2 x [ —T)™® —z (D?*x I =T)"+D and
T'(n, K} denotes T infected along 7 by the knot K, then p, (T'(n, K)) = po(K),
where po(K) is the classical signature discussed in Lemma 4.2.

Harvey proved that the Grope filtration of the string link concordance group is a
non-trivial filtration.

Theorem 6.1 (6.13 of [HarO8] and 4.4 of [CHO8]). For eachn > 1 and m > 2,
the abelianization of BG), | BG '\ 5 has infinite rank; hence BG,' | BG,', | 5 is an
infinitely generated subgroup of 6" /G | s.

With our knots P, € §,, we are able to close the index gap.

Theorem 6.2. For each n > 2 and m > 2, the abelianization of B8,/ BG, ", s has
infinite rank; hence B, | BEY, 5 is an infinitely generated subgroup of 8" /)", .
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Proof. Forn = 2,let Ly denote the m-component boundary string link whose closure
is the union of the (7 — 1)-component trivial link and the knot P as defined in Sec-
tion 3.1. Since Py € >, the components of the closure of Lx bound disjoint Gropes
of height 2, m — 1 of which are discs. Thus Ly € 8§75 The linear independence of
the Ly in BG5'/BEGS 5 follows from the argument below when n > 3.

Assumen > 1. We prove the statement forn+2. Let F denote the free group on m
generators, and T be the trivial m-component string link, so that F = 7y (D?*x1—T).
Pick an element [] € F®™ — F*+D By [CT07, Lemma 3.9], we may pick an
embedded curve 7 in D? x I — T that bounds a disk in D? x I and that bounds a
Grope of heightn in D2x I —T. Let S, = {T(n, Px) : Py as defined in Section 3.1}
where T'(n, K) is defined by item 3 of Remark 2. Since 5 € F1), there are disjoint
surfaces bounded by the components of 7" that miss the curve n. Thus each L € S,
is a boundary string link. Since Py € §,, we have that if L € S, then Le -
Thus, S, C BE;,.

By items 1 and 2 of Remark 2, pp42: B, ,/ B, , s — R is a well-defined
homomorphism. By item 3 of Remark 2, the image of S, under this homomorphism
is pn4+2(Sy) = {po(Pr)}, which contains a Q-linearly independent subset of R by
Lemma 4.2. The conclusion follows. [
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