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1. Introduction

In this paper we show that rotation cycles on S! for a proper holomorphic map
f: A — A share several of the analytic, geometric and topological features of
simple closed geodesics on a compact hyperbolic surface.

Dynamics on the unit disk. Tet A = {z € C : |z] < 1}. Ford > 1let 8By =
A= denote the space of all proper holomorphic maps f: A — A of the form

=1, .
rer =21 (1_—)

lai| < 1. Every degree d holomorphic map g : A — A with a fixed point in the disk
can be put into the form above, by normalizing so its fixed point is z = 0.

The maps f € B4 have the property that £|S! is measure-preserving and | f/| >
1 on the circle. Moreover, there is a unique marking homeomorphism ¢y : St - st

*Research supported in part by the NSF.
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that varies continuously with £, conjugates f to pz(z) = z¢%, andsatisfies Pr(z) =z
when f = pg. We define the length on f of a periodic cycle C for py by

L(C, f) =1og |(fT)(2)]. (L1)

where ¢ = |C| and ¢r(z) € C.

The degree of a cycle C i1s the least ¢ > 0 such that p,|C extends to a covering
map of the circle of degree e. We say C is simple if deg(py|C) = 1; equivalently,
it pq|C preserves its cyclic ordering. A finite collection of cycles C; is binding if
deg(l JCi) = d and if | C; is not renormalizable (§7).

In this paper we establish four main results.

Theorem 1.1. Any cvele with L{C, ) < log 2 is simple. All such cycles C; have the
same rotation number, and pg|| ) C; preserves the cyclic ordering of | ) C;.

Theorem 1.2. Every f € B4 has a simple cycle C with L(C, ) = O(d).

Theorem 1.3. Let (C;)] be a binding collection of cycles. Then for any M > 0, the

setof f € By withy | L(Ci, f) < M has compact closure in the moduli space of
all rational maps of degree d.

Theorem 1.4. The closure E C S' of the simple cycles for a given f € 84 has
Hausdorff dimension zero.

See Theorems 4.1, 5.8, 7.1 and 2.2 below.

Hyperbolic surfaces. The results above echo the following fundamental facts about
compact hyperbolic surfaces X of genus g > 1:

(1) The closed geodesics on X of length less than log(3 + 24/2) are simple and
disjoint.
(2) There exists a simple closed geodesic on X with length O(log g).

(3) If (y;)7 is a binding collection of closed curves, then the locus in Teichmiiller
space T, where Y L(y;, X) < M is compact for any M > 0.!

(4) The union of the simple geodesics on X = A /T is a closed set of Hausdorff
dimension one.

See [Bus, §4, §5], [Ker, Lemma 3.1] and [BS] for proofs. Thus simple cycles behave
in many ways like simple closed geodesics.

1A collection of closed curves is binding if their geodesic representatives cut X into disks.
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Rotation numbers and slopes. Next we formulate a more direct connection be-
tween short cycles and short geodesics. Suppose f € By satisfies ¢ = f'(0) =
exp(2wit) # 0. Theactionof { /) on A (with the orbit of z = 0 removed) determines
a natural guotient torus, isomorphic to

X, =C/(Z & Zr) ~ C*/o®.

Let L(p/q, X;) denote the length of a closed geodesic on X in the homotopy
class (—p, g ), for the flat metric of area one. The slope p/g mod 1 which minimizes
L(p/q.X)depends only on f'(0) € A*. Theregions T(p/q) C A* where a given
slope is shortest rest on the corresponding roots of unity, and form a tiling of A™ (see
Figure 1).

V\2/ 3 . 7 ”

Figure 1. Tiling of A* according to the slope of the shortest loop on the torus C* /.

In §6 we will show:
Theorem 1.5. Forany f € By with [/(0) € T(p/q), there is a nonempty collection
of compatible simple cvcles C; with rotation number p/q such that

1 T 1
LI <
L(p/q.X:)? L(C;, f) — L(p/q. X:)?

+ O(d),
and all other cycles satisfy L(C, ) > ez > 0.

(Compatibility is defined in §2.) This result implies Theorem 1.2 and gives an
alternate proof of Theorem 1.1 (with log 2 replaced by €y ); it also yields:
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Corollary 1.6. If a sequence f, € By satisfies L(C, fn) — 0, then f,(0) —
exp(2rwip/q) where p/q is the rotation number of C.

On the other hand, we will see in §3:

Proposition 1.7. If f, € B4 and f,(0) — exp(2wif) where 8 is irrational, then
L(C, f,) — oo for every cycle C.

Thus the cycles of moderate length guaranteed by Theorem 1.2 may be forced to
have very large periods.

Petals. The proof of Theorem 1.5 is illustrated in Figure 2. Consider a map f € B,
with f/(0) = expQnit) € T(1/3), t = 1/3 + i/10. The dark petals shown in the
figure form the preimage A C A of an annulus A in the homotopy class [37 — 1] on
the quotient torus for the attracting fixed point at z = 0. Any two adjacent rectangles
within a petal give a fundamental domain for the action of f. The three largest petals
join z = 0 to the repelling cycle on S labeled by C = (1/7,2/7,4/7). Thus a copy
of A embeds in the quotient torus for the repelling cycle as well; by the method of
extremal length (§5), this gives an upper bound for L(C, f) in terms of L(1/3, X).
(The lower bound comes from the holomorphic Lefschetz fixed-point theorem. )

Figure 2. Petals joining z = 0 to the (1, 2,4)/7 cycleon S!.

Rational maps. Here is a related result from §5 for general rational maps f': C —
C. Let L(f) = inflog|B|, where 8 ranges over the multipliers of all repelling and
indifterent periodic cycles for f.
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Theorem 1.8. If f,, € Raty and L( f,) — oo, then the maps f, have fixed points z,
with f'{(z,) — 0.

Questions. We conclude with some natural questions suggested by the analogy with
hyperbolic surfaces.

(1) Let C be a simple cycle. Is the function L(C, f') free of critical points in 847

(2) Let (C;) be a binding collection of cycles. Does > L(C;, f) achieve its mini-
mum at a unique point f € B;?

(3) Let @8, denote the space rational maps of the form
-1
1@ ==]] (=)
such that [ [ |a:| < 1, ]]|bi| < 1,and J(f) is a Jordan curve. Each f € Q@84

can be regarded as a marked quasiblaschke product, obtained by gluing together
a pair of maps f1, f> € By using their markings on S'.

Does there exist an €; > 0 such for all f € @8y, all cycles of length shorter
than e are simple?

(4) Suppose the cycles (C1, C») are binding. Does the set of f € QB4 with
L(Cy, f1) + L(C,, f2) < M have compact closure in the moduli space of all
rational maps of degree d?

The analogous questions for hyperbolic surfaces and quasifuchsian groups are known
to have positive answers [Ker, §3], [Ot], [Th, Theorem 4.4].

Notes and references. This paper is a sequel to [Mc4] and [Mc5] in which we
construct a Weil-Petersson metric on 8; and an embedding of 8, into the space of
invariant measures for p;(z) = z¢.

Simple cycles in degree two play a central role in the combinatorics of the Man-
delbrot set [DH], [Ke], and are studied for higher degree in [Gol] and [GM]. Extremal
length arguments similar to those we use in §5 are well-known both 1n the theory of
Kleinian groups [Bers, Theorem 3], [Th, Proposition 1.3], [Mcl, §6.3], [Petl], [Mil2]
and rational maps [Pom], [Lev], [Hub], [Pet2]. The quotient Riemann surface of a
general rational map is discussed in [McS]; other aspects of the dictionary between
rational maps and Kleinian groups are presented in [Mc2]. See [PL] for a related
discussion of spinning degenerations of the quotient torus.

2. Simple cycles

In this section we discuss the combinatorics of periodic cycles for the map py(f) =
d -t mod 1, and prove the closure of the simple cycles has Hausdorff dimension zero.
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Degree and rotation number. lLet S! = R/Z. Givena # b € S1,let [a,b] C S!
denote the unique subinterval that is positively oriented from a to b. We write
a < ¢ < bifc € [a,b]. The length of an interval is denoted |/ |.

Let £: S!' — S! be a topological covering map of degree d > 0, and suppose
f(X) = X. The degree of f|X, denoted deg( f|X), is the least ¢ > 0 such that
f1X extends to a topological covering g: S' — S of degree e.

Note that deg( | X) = 1iff f preserves the cyclic ordering of X, in which case
£|X also has a well-defined rotation number p(f|X) € S'. If X is finite then
p(f1X) = p/q is rational and the orbits of f|X have size q.

Example. Suppose X = {xg,x1,...,xs = Xp} inincreasing cyclic order, and f| X
is a permutation; then we have

n—1

deg(f1X) = > I/ Gxi). S i )l-

0

Indeed, an extension of f|X of minimal degree is obtain by mapping [x;, X;+1]
homeomorphically to [ f(x;), f(x;+1)]. The degree is thus a variant of the number
of descents of a permutation (see e.g. [St, §1.3]).

The model map and its modular group. Now fix d > 1, and let py(r) = d -
t mod 1. Any expanding map f: S! — S! of degree d is topologically conjugate
to pg [Sh].

The modular group Mody; C Aut(S*) is the cyclic group of rotations generated
byt +— 1/(d — 1)+ tmod 1; it coincides with the group of (degree one) topological
automorphisms of pgz. Note that Mody acts transitively on the fixed points of py.

Simple cycles. A finite set C C S! is a cycle of degree d if py|C is a transitive
permutation. As in §1, we say a cycle is simple if deg{ ps|C) = 1. Simple cycles
(Cy, ..., Cy) are compatible if deg(pq| | Ci} = 1.

It is elementary to see:

Proposition 2.1. The simple cycles (C1, . .., Cy,) are compatible iff they are pairwise
compatible.

We let €, denote the set of all cycles of degree d, and €;(p/q) C €  the simple
cycles with rotation number p/q.

Portraits of fixed points. The fixed-point portrait [Gol] of a simple cycle C €
€4 (p/q) is the monotone increasing function

o:{l,...,d =2y —=1{0,1,...,q9}
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given by

a(j) =1C N0, j/(d = 1)|.
This invariant specifies how C is interleaved between the fixed points of p4, which
are all of the form j/(d — 1) mod 1.

Basic properties. The following results are immediate from [Gol] (see especially
Lemma 2 and Theorem 7).

(1) A simple cycle C € €4{p/q) is uniquely determined by its fixed-point portrait
o(j }, and all possible monotone increasing functions o () arise.

(2) The number of simple cycles of degree d and rotation number p/q is (d+g_2).
(3) The number of cycles of period g grows like 44, while the number of simple
cycles is O(g971); so most cycles are not simple.

(4) Cycles Cq, Cy € €4(p/q) are compatible iff their fixed-point portraits satisty

o1{(j) £ 02(j) fo1(j) + 1

for0 < j <d — 2, or the same with o1 and o, reversed.

(5) Every maximal collection of compatible cycles has cardinality 4 — 1.

From portraits to cycles. A simple cycle C € €4 can be reconstructed explicitly
from its rotation number p/g and its fixed-point portrait o as follows. Let v be the
‘transpose’ of o, namely the monotone function z: {0,1,...,¢ — 1} — {0, 1,...,
d — 1} given by

o) = 1{j 1 0(j) < i}, 2.1

and let
0 ifo<i — p,and
AOERIOT S
1 otherwise,
where i is taken mod ¢. Then the periodic point givenby r = 0.7/(0)t’'(p)c’'2p) ...
in base d generates C'; indeed, 7 is the ‘first point’ in the cycle C.

Examples. To simplify notation, let (p1/q. ..., pm/q) = (p1,..., pm)/q, and let
o = ny...nq—1 denote the function with values o(j) = n;.

Degree d = 2. In the quadratic case, o is trivial and hence there is a unique
simple cycle C(p/q) for each possible rotation number; e.g.

C(1/2) = (1,2)/3,

C(1/3) = (1,2,4)/7,
C(2/5) = (5, 10,20, 9, 18)/31.
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The only cycle of period < 4 which is not simple is C = (1,2, 4, 3)/5. For period
5 there are two such, namely C and —C where C = (3,6,12,24,17)/31. Any two
distinct quadratic simple cycles are incompatible.

Degree d = 3. In the cubic case pg has two fixed points, 0 and 1/2, and three
cycles of period two, given by

C(1/2,0) =(5,7)/8,

C(1/2,1) =(1,3)/4
and

C(1/2,2) =(1,3)/8.

The first and last are incompatible, while the other pairs are compatible. In general
there are ¢ + 1 cubic simple cycles with rotation number p /g, whose fixed-point
portraits are givenby o (1) = 0, 1,..., g. Only the pairs with adjacent values of o (1)
are compaltible.

Degree d = 4. In the quartic case there are six cycles in €4(1/2), generated by
t = p/l5with p = 1,2,3,6,7 and 11. The compatibility relation between these
cycles 1s shown 1n Figure 3. The four visible triangles give the four distinct triples
of compatible simple cycles with rotation number 1/2. Note that the modular group
Mod, == Z/3 acts by rotations on this diagram.

o =00

01 02

Lr

11 12 22

Figure 3. Compatibility of degree 4 cycles of the form C(1/2, ).

In general €4(p/q) can be identified with the vertices of the g-fold barycentric
subdivision of a (d — 2)-simplex, with the top-dimensional cells corresponding to
maximal collections of compatible cycles.

Sample computation in degree d = 5. To compute C(3/7,013), we first use
equation (2.1) to compute the ‘transpose’ v = 1223333 of ¢ = 013. Note that
the graphs of ¢ and 7, shown in white and black in Figure 4, {it together to form a
rectangle. Evaluating v/ = 1223444 along the sequence ip mod g, i = 0,1,2,...
we obtain the base 5 expansion ¢ = 0.13424245 = 6966/19531 for a generator of C .
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o/t

&ﬁ‘

<
[a—
b
(8}
=
)]
o

Figure 4. The degree 5 simple cycle with rotation number 3/7 and o = 013.

The cycle C, along with the four fixed points of ps, 1s drawn at the right in
Figure 4. Note that o = 013 gives the running total of the number of points of C in
the first three quadrants.

Comparison with simple geodesics. The simple cycles for pg|S! behave in many
ways like simple closed geodesics on a compact hyperbolic surface X = A/T of
genus g, with compatible cycles corresponding to disjoint geodesics. For example,
every maximal collection of disjoint simple closed curves on X has 3g — 3 elements,
just as every maximal collection of compatible cycles for py has d — 1 elements.

It is also known that the endpoints of lifts of simple geodesics lie in a closed set
E < S' of Hausdorff dimension zero [BS]. The analogous statement for simple
cycles is:

Theorem 2.2. The closure E of the union of all simple cycles C C S of degree d
has Hausdor{f dimension zero.

Proof. Let us say a finite set P C S! is a precycle if it is the forward orbit of
preperiodic point x € S! under py;. We say P is simple, with rotation number
p/q.,if pg| P extends to a continuous, monotone increasing map f: S! — S with
rotation number p/g. Then ¢ < n and the periodic part C of P is a simple cycle.

Let Py (n, p/q) denote the set of all simple precycles of length » and rotation
number p/q. The argument that shows [€4(p/q)| = O(g??) can be adapted to
show that | Pz (n. p/q)| = O(n?2) as well.

Now fix N > 0. We claim that every x € E lies within distance O(d V) of a
simple precycle P with |P| < N. To find this precycle, simply increase x contin-
vously until two of the points among x, f(x),..., ¥ (x) coincide. This requires
moving x only slightly, since |(f V) (x)| = d¥.

Thus £ is contained in a neighborhood of diameter O(d ~") of the union Ey
of all simple precycles with |P| < N. Since |Ey| = O(N%*2) grows only like a
polynomial in N, this implies dim(F) = 0. O
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Proof of Theorem 1.4. The Holder continuous conjugacy ¢, between f and p; pre-
serves sets of Hausdorff dimension zero. O

Remark: Invariant measures. The basic properties of simple cycles can also be
developed using the correspondence between invariant measures and covering rela-
tions established in [Mc3]. For example, any union D = | J C; of compatible cycles
in €4(p/q) arises as the support of an invariant measure v for py|S!. Invariant
measures, in turn, correspond bijectively to covering relations (F, S) of degree d. In
the case athand, F(t) = ¢ + p/q mod 1 and S is a divisor on S! of degree d — 1. By
perturbing S so its points have multiplicity one, we obtain a nearby invariant measure
v’ whose support D’ O D is a maximal union of exactly (d — 1) compatible cycles
(property (5) above).

The compactification of the space of Blaschke products by covering relations
(F, S) is discussed in the following section.

Question. Is there a useful notion of intersection number for a pair of cycles?

3. Blaschke products

This section presents basic facts about marked Blaschke products, their derivatives
and their images in the moduli space of all rational maps. See [Mc5] for related
background material.

Blaschke products. Identify S = R/Z with the unit circle in the complex plane,
using the coordinate z = exp{(2zit). Let A = {z : |z| < 1} be the unit disk, and
A™ its n-fold symmetric product.

Givend > 1,let By = A1 denote the space of Blaschke products f: A — A

of the form .
-1
. Z —d;
ro==T1(22)

with @; € A. Note that f extends to a rational map on the whole Riemann sphere,
and £|S? is a covering map of degree d.

A proper holomorphic map g: A — A of degree 4 > 1 is conjugate to some
| € B, iff g has a fixed point.

Derivatives and measure. By logarithmic differentiation, any f € B, satisfies

1_|az|2

_az|2

S =1+ Z (3.1)
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for z € S'. In particular, f|S! is expanding.

More importantly, f|S! preserves normalized Lebesgue measure A on the circle;
equivalently, fi.(dz/z) = dz/z, as can be verified by residue considerations. This
means

D)t =1 (3.2)
fw)=z

forany z € St

Markings. All f € By are topologically conjugate to the model mapping p4(z) =
z%. A marking for f the choice of one such conjugacy, i.e. the choice of a degree
one homeomorphisms ¢: S — S such that

flz)y=¢""opsop(z).

There is aunique marking ¢, which varies continuously in f and satisfies ¢ (z) =
zwhen f = py. Thus B4 can be regarded as the space of marked Blaschke products.

The modular group Mody =~ Z/(d — 1) acts on B, by (a;) — ({a;) where
¢4=1 = 1. Its orbits correspond to different markings of the same map. Thus
f1, f» € B, are conformally conjugate on A iff they are in the same orbit of the
modular group.

Lengths. The canonical marking allows one to label the cycles of f by the cycles
of pg. We define the length on f of acycle C € €4 of period ¢ by

L(C, f) =log|(f9) ()|
for any z € S with ¢¢(z) € C.
Limits of lower degree. The space of Blaschke products has a natural compactifi-

cation By = A=Y whose boundary points (a;) can be interpreted as pairs (F, S)
consisting of a Blaschke product

and a divisor of sources

S= > 1-a €Div(s"),

la;|=1

satisfying deg F + deg S = 4. It is easy to see:
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Proposition 3.1. A sequence f, € By convergesto (F,S) € 08y iff
(1) fa(z) — F(z) uniformly on compact subsets of C - supp S, and
(ii) the zeros Z{ f,) converge to Z(F ) + S as divisors on C.

More generally, the space Raty of degree d rational maps f : C — C has a
compactification Raty =~ P2¢+1 whose boundary points (F, S) are pairs consisting
of arational map F and an effective divisor S € Div(C) with deg(F) +deg(S) = d.
We have f, — (F, S) in Raty iff their graphs satisfy

gr(fu) = gr(F) + S x C

as divisors of degree (1,d) on CxC (ct. [D, §11).

Radial bounds on f’(z). The following elementary observation is useful for study-
ing limits as above.

Proposition 3.2. For any proper holomorphicmap f: A — Aand¢ € S, we have

sup | f/(rO)l < 4Lf7 @I

ref0,1]

Note that we do not require that f(0) = 0. This bound is sharp, as can be seen
by considering f(z) = (z +a)/(1 +az)asa — 1—.

Proof. We can write
d
f2) =€ T Mi(2), (3.3)
1

where M;(z) = (z —a;)/(1 —a;z) and a; € A. Composing with a rotation, we can
also assume that £ = 1. For r € [0, 1] we have
Mi/ (r)
M)

. |1—Cll‘|2

Il —raf?

and therefore
(M (r)| < 4|M;(1)],

since the distance from 1 to ¢; is never more than twice the distance from 1 to ra;,
Differentiating the product (3.3) and using the fact that | [, 2; M; (r}| < 1, we obtain:

£/ < Y IM{(r)] < 43 IM{(1)] = 4] £/ (D).



Vol. 85 (2010) Dynamics on the unit disk: Short geodesics and simple cycles 735

Corollary 3.3. If f, — (F,S) € By, z, € S', zu — z and | f!(z,)| = O(1), then
lim f,(z,) = F(z2).

Proof. Suppose sup| £, (z2)| = M; then for any r < 1 we have

limsup | fn(z,) — F(z)| < limsup | f,(rz,) — F(z)| + 4M(1 — r)
= |F(rz) — F(z)| + 4M(1 —r);

now let r — 1. O

Irrational rotations. As a sample application, we prove the following result stated
in the Introduction:

Corollary 3.4. If f, € By satisfies f,(0) — exp(2wif) where 6 is irrational, then
L(C, fn) — oc for every cycle C.

Proof. Suppose to the contrary that L{C, f,) is bounded for some cycle C. Let
C, C S! be the corresponding periodic cycle for f,. Pass (o a subsequence such
that f, — (F.,S) € 384 and C,, — D C S! in the Hausdorff topology. Then

F(z) = exp(2nif)z and by Corollary 3.3 we have FF(D) = D, contradicting the
irrationality of 6. [

Variants. Here are two useful variants of the results above:

Proposition 3.5. For any proper holomorphic map | : H — Hand x € R, we have

Sl;plf'(x +iy)| = f1(x).

Proposition 3.6. Assume f, € Raly converges to (F,S) € Raty, z, — z, and
|Dfu(zn)|| = O(1) in the spherical metric on C. Then we have

Jn(zn) — F(z)

provided z,, belongs to a circle T, with f, 1(T,) = T,, and inf, diam(T,) > 0.

Proofs. The first result follows directly from the representation f(z) = agz + by +

‘11_1 a;/(b; — z) with a; > 0 and b; € R, and the second follows by the same
argument as Corollary 3.3. O

The maps f,(z) = 1/(1 +nz?) satisfy £,(0) = 0and lim £,(0) = 1 # F(0) =
0; thus some extra hypothesis is needed to interchange limits as in Proposition 3.6.
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Moduli space of rational maps. Let MRaty; = Raty / Aut(@) denote the moduli
space of holomorphic conjugacy classes of rational maps of degree d > 1. A pair
of Blaschke products are conjugate iff they are related by the modular group or by
z > 1/z; thus we have an inclusion

Ba/(Mody xZ/2) — MRaty .
The next result shows this inclusion is almost proper.

Theorem 3.7. If f, — (F,S) € 08By but [ f,] remains bounded in MRaty, then
F(z) = z and supp S is a single point. In particular, we have f,(0) — 1.

Proof. Pass to a subsequence such [ f,] — [g] € MRaty and f, — (F,S) € 084.
Then there are conjugates h, = A, f,A, ! — g. Since f, divergesin 84, A, — 00
in Aut(C). On the other hand, the measures of maximal entropy satisfy t(h,) —
nig) and u( fn) — p(F,S), by [D, Theorem 0.1] (see also [Mc5]). Since pu(g) is
nonatomic, this implies p(F, ') = lim A} (1 (h,)) is supported at a single point. But
supp i(F, S) is F-invariant and includes supp S; thus F(z) = z and supp S = {s}
is itself a single point, L

Example. The sequence f,(z) = z(z + a,)/(1 + anz), witha, = 1 — 1/n, is
divergent in B, but convergent in MRat,. To see this, normalize so the origin is

a critical point instead of a fixed point; then f,(z) is conjugate to /1,(z) = (z% +
ba)/(1 + bpz?),and by = an /2 +an) — 1/3as ap — 1.

4. The thin part of f(z)

Let us define the thin part of f € B4 by
Si (fy=1{zeS':|f ()| <2}

In this section we will show:

Theorem 4.1. For any | € By, the map f|S4,, (/) extends to a degree one home-
omorphism of the circle.

Corollary 4.2. All cycles of f with L(C, [) < log?2 are simple and compatible.

Visual angles. The derivative of

d— —
=TT (7=52)
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can be conveniently analyzed using the hyperbolic visual angle, defined fora,z € A
by

o(z,a) =2arg(z —a) — arg(z).
This is the angle at 2 of the hyperbolic geodesicaz. Forz € St wehavearg(l—az) =
arg(z) — arg(z — a), and thus

d—1

arg(f(2)) = arg(z) + Y a(z,ai), (4.1)
1

(Note this simplifies to arg( f(z)) = 2 arg(z —ay) whend = 2.) Letting ¢ = arg(z)
and ¢ = do/d6, we then obtain

d—1

F'@ =1+ dalz,a) (4.2)
1

forz e ST,

The visual density. The visual density a(z, a) is essentially the Poisson kernel; for
a = r > Qitis given by

1 — 2

a(z,r) =

, 473
1 +7r2—2rcoséb )

where 6 = arg z. Geometrically, (¢(z, @)/2m) d8 is the hitting measure on the circle
for a random hyperbolic geodesic starting at a.
For fixed z € S'!, the level sets of ¢(z, a) are horocycles resting on z. Thus

Ja)={zeS':a(z.a) < 1}

is the large arc cut off by the chord perpendicular to Oa. This follows from the fact
that the horocycle resting on one of the endpoints of J(a) and passing through 0 also
passes through a (see Figure 5).

Proposition 4.3. The visual density &(z,a)|J(a) is strictly convex, and decreases as
a moves radially towards the circle. In other words, we have

d
d(z,a) >0 and —o'e(z,saz)‘s=1 <0

ds
forall z € J(a).
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J{(a)

Figure 5. The arc J(a) where a(z,a) < 1.

Proof. To verify convexity, consider the case where ¢ = r € [0,1). By (4.3), in
this case we have & = (1 — r?)/u where u = 1 + r? — 2r cos . We may assume
6 € (0, 7). Cross-multiplying and differentiating, we obtain

qu=1-—r2,

du + a(2rsinf) =0, and

au + a(4rsinf) + a(2rcos ) = 0.

Since r, u and sin 8 are all positive, we have @ > 0 and & < 0. Comparing the last
two equations, we find the sign of & is the same as the sign of the determinant

2r sin 8 U

D = det (Zr cosf 4rsinf

) = 8r2sin® 6 — 2ru cos 6.
We claim D > O when z € J(r),ie. whenu = |z —r|?> > 1 — r2. The claim is
evident if cos 6 is negative, so assume 6 € (0, w/2); then
u=|z—r* <|z—1 <2(Imz)? = 2sin? 6.
We also have cos 8 = Re(z) < r for z € J(r), and thus:
D > 4r%u — 2r%u > 0,
The proof of the density decreasing property is straightforward. O

Properties of the thin part of . We can now show that f|S4, (f) acts like a
rotation. We first observe:

Proposition 4.4. For any f € By,
(i) the map f|S4., (f) is injective,
(ii) we have S, () C (N J{(a:),
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(iii) Sq, (f) consists of at most (d — 1) disjoint open intervals, and

(iv) Si.. (f) increases as the zeros a; of f move radially towards the circle.

Proof. 1f f(x1) = f(x2) for twodistinct points in Sy, (f), then| f/(x1)|+| f/ (x2)| >
1/2 + 1/2 = 1, which violates the measure-preserving property (3.2) of f; thus
F1S4i, (f) is injective. Equation (4.2) implies (ii). Since | J(S! — J(a;)) has at
most {d — 1) components, so does I = () J(a;). By Proposition 4.3, | f/(z}] is
locally convex on I; thus the intersection of S}, (f) with any component of 7 is
connected, and (ii1) follows. The density decreasing property stated in Proposition
4.3 implies (1v). [

Proof of Theorem 4.1. By moving the points (a;) radially to the circle, we obtain
a smooth 1-parameter family of maps 7, € By, ¢t € [0,1], with fy = f and
f1 = (F,S). Since deg(S) = d — 1, we have deg(F) = 1. Proposition 4.4 implics
that f+|T: = S4..(f¢) is injective, Ts C Ty when s < ¢, and supp S N Ty = §. Thus
for any three distinct points x; € Si. (f), the triple ( f; (x1), f; (x2), f¢(x3)) moves
by isotopy as ¢ increases from O to 1, and converges to F(x1), F(x2), F(x3}) as
t — 1. Since F is a rotation, it preserves the cyclic ordering of the points (x; ), so the
same is true of /. Consequently f extends from Sy, (/) to an orientation-preserving
homeomorphism of the circle. [

5. Bounds on repelling cycles

In this section we show thatevery f € B, hasasimple cycle with L(C, /) = O(d),
and obtain related results for general rational maps.

Moduli and tori. We begin by summarizing some well-known facts about extremal
length on tori.
Any point 7 € H determines a complex torus

X, = C/(Z & Z7)

with a flat metric inherited from the plane, and a distinguished basis (1, 7) for its
fundamental group. Factoring the covering map C — X; through the map &: C —
C* =~ C/Z given by £(z} = exp(2niz), we have

X, =C*/o”

where o = &(7) satisfies 0 < |¢| < 1. The same construction can be made when
—71 € H; then || > 1.

Given a slope p/q € Q U {oo}, let y,/, C X, denote the simple closed geodesic
obtained as the projection of the line R - (r — p/g) from C to X,. Its preimage ¥, /,
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in the intermediate cover C* consists of ¢ arcs joining 0 to oc, cyclically permuted
with rotation number p/gq by z — «z.

Any annulus A4 is conformally equivalent to a right cylinder, which is unique up
to scale. The ratio mod(A) = £/c between the height and circumference of this
cylinder is the modulus of A.

The maximum modulus of an annulus A C X homotopic to y,/4 18 given by

area(X;)  |Im7]|
L(Vp/q7Xr)2 |qr—p|2

(assuming gcd(p,g) = 1). This maximum is realized by taking A = X;\y,/,. The
set of T € H with mod(p/q, X) > m is a horoball of diameter 1/(mg?) resting on
the real axis at p/¢q. For p/qg = 1/0 we have

mod(p/q. X:) = (5.1)

mod(oo, X¢) = |Im z|.

The intersection inequality

r

=
mod(p/q, X¢) mod(r/s, X¢) < (det (p z)) (5.2)

is casily verified by considering the determinant of the lattice Z (g7 — p) & Z(st—r).
This inequality implies:

There is at most one slope with mod(p/q, X;) > 1.

On the other hand we have:

Proposition 5.1. For any t € H, there exists a slope p/q € Q U {oo} such that

mod(p/q. X;) > ~/3/2.

Proof. Since the statement is invariant under the action of S1.>(Z) on H, it suffices
to verify it when t lies in the fundamental domain |z| > 1, |Re ]| < 1/2; and in this
case, we have mod(oc, X;) = Im 1 > +/3/2. O

Rational maps. Now let f: € — C be a rational map of degree d > 1. If z € C
is a point of period g, its multiplier is given by B = (f9) (z). The grand orbit of z
is the set \J; ;.o f " o f7(2).

Suppose f has a fixed point at z = 0 and a periodic point w # 0 with period g.
We say w has rotation number p/q relative to z = 0 if there are arcs (5,-)3_1 cC
joining z = Oto f’(w), meeting only at z = 0, which are cyclically permuted by f
with rotation number p/q.
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Theorem 5.2. Let f be a rational map with an attracting fixed-point at z = 0, with
multiplier

a = f'(0) = expmit) # 0.

Let e be the number of grand orbits of critical points in the immediate basin 2 of
z = 0. Then for each p/q € Q, there exists a repelling or parabolic periodic point
w € JQ such that

(1) the rotation number of w relative to z = 0is p/q; and

(2) its multiplier has the form B = (f9)(w) = exp(—27io), where 0 = O or
Imo o mod{p/q, X¢)

e : (5.3)

In particular, we have

1Al =< (exp (mod(;zaj/rq,Xr)))e' :4)

Proof. Let 2 denote the immediate basin of z = 0 with the grand orbits of all
critical points in 2 and of z = 0 deleted. Then f: Q* — Q7 is a covering map.
Moreover, the holomorphic linearizing map

¢(z) =lima™" f"(z)

is defined for all z € 2%, and satisfies ¢( f(z)) = «f(z). Consequently ¢ descends
to an inclusion of the space of grand orbits ¥ = ©*/( f) into the torus X; = C*/aZ,
making the diagram

Q C*

| |

Q/Nf) =Y — X, =C*/a®

commute. By assumption we have |Y — X;| = e.
Foragiven p/q € Q, the geodesics parallel to y,/, passing through the punctures
of Y cutitinto < e parallel annuli, one of which satisfies

mod(A) > mod(p/q, Xz)/e. (5.5)

Let 6 C A be the core curve of A, and dy C Q% one of its lifts which is incident to
z =0. Letd; = f*(dy). By construction, the arc 4 is invariant under /¢, and 7|8
is a bounded translation in the hyperbolic metric on 2*. Consequently §; must join
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z = 0 to another fixed point w of £ in d$2. By the Snail Lemma [Mill, Lem. 16.2],
w 18 repelling or parabolic.

We have seen that the preimage of y,,, on C* consists of ¢ arcs, cyclically
permuted with rotation number p/q by z > «z. Since ¢ is a homeomorphism near
z = 0, the arcs do, . . ., d5—1 are also cyclically permuted with rotation number p/q
by /. In particular w has rotation number p/q relative to z = 0.

Now suppose w is repelling, with multiplier 8. Choose an injective branch of
™4 defined on a punctured neighborhood U* of w such that f~¢: U* — U™ and

Z=U"/(f"1) =C"/p* = X,.

where ¢ = log(f/2xi). There is a unique choice of the logarithm such that the
invariant arc 8o N U™ descends to a loop isotopic to yp on X,

By construction, A C Y is covered by a strip Ag C 2* which retracts to dg, and
hence we have an inclusion

A= Ag/{f) - Z = X,
in the same homotopy class as y. This implies
mod(0, X;) > mod(A),
and the bound (5.3) follows from equations (5.1) and (5.5). [
Corollary 5.3. If f € Raty has an attracting fixed point with multiplier satisfving
| > exp(—mA/3) = 0.0043. ..,

then it also has a repelling or parabolic cycle with multiplier satisfying
18| < exp(4m/~/3)2472 < 141629472,
Proof. The lower bound on |¢| implies Im(t) = mod(occ, X7) < +/3/2, where

t = (loga)/2mi. Hencemod(p/q, X;) = +/3/2 forsome p/q € Q, by Proposition
5.1. Now apply equation (5.4) and note that e < 2d — 2. O

Corollary 54. If a map f € Raty has an attracting fixed point with multiplier «,
then it also has a repelling or parabolic cycle with multiplier satisfving

18] < (exp(4n/v/3)/|a
Proof. Choose 1 = (loga)/2mi = x + iy with x € [-1/2,1/2]. The previous
corollary shows the desired bound holds when y < +/3/2. For y > +/3/2 we have

xz—l—yz<1_|_<2+
IS W g 8 o

which implies exp(27z/m) < exp(47/~/3)/|a|; thus by (5.4) the desired bound holds
in this case as well. O

|)2d—2'

m = mod(0, X;)™! <
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The bottom of the spectrum. Here is a qualitative consequence of the preceding
corollary.

Let the spectrum S( ) C C be the set of all multipliers S that arise from periodic
points of f € Ratg, and let

L(f) = inf{log|B] : p € S(f) and |B] = 1}.

By the fixed-point formula for rational maps [Mill, Theorem 12.4], the multipliers
of f atits fixed points satisfy

3 ! 1. (5.6)

wi—l

provided no p; = 1; in particular, |p;| < d 4 1 for some j. Thus if f has no
attracting fixed points, it satisfies

L{f) <log(d + 1).

Combining this observation with Corollary 5.4, we obtain:

Corollary 5.5. Let f, € Raty be a sequence of rational maps with L( f,) — oc.
Then the maps f, have fixed points with multipliers o, — 0.

Examples. It is easy to that f,(z) = z? + »? satisfies L(f,) — oo as n — oo,
since its Julia set lies close to +=n. Of course f, has a fixed point at infinity with
multiplier o, = 0.

Parabolics must be included in the definition of L( f) to obtain Corollary 5.5. In
fact, if welet L*(f) = inf{log |B|: B € S(f),|B| > 1}, then fr(z) =z—1/z+n
satisfies L™ ( f,) — oo even though f;, has no attracting fixed point. (The map f, (z)
behaves like the Hecke group (z — —1/z,z + z + n); cf. [Mc3, Theorem 6.2].)

Question. Does Corollary 5.5 remain true if only parabolic and repelling multipliers
are included in the definition of L( f)?

Blaschke products. We now return to the setting of a proper map f: A — A fixing
z = 0. In this case formula (5.6) implies:

Proposition 5.6. The multipliers (Ai)‘f—l of | € By at its fixed points on the circle

satisfy

where a = f/(0).
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Corollary 5.7. If |a| < 1/2, then f has a repelling fixed point with multiplier
satisfving 1 < <1+ (d — 1)/3.

Theorem 5.8. Every f € By has a simple cycle with L{C, ) = O(d).

Proof. Combine Corollaries 5.4 and 5.7. O

6. Short cycles and short geodesics

In this section we use the fixed-point formula for rational maps to obtain the following
more detailed connection between the short cycles for f and the short geodesics on
its quotient torus.

Theorem 6.1. Given f € By with f/(0) = exp(2nit), choose p/q € Q to max-
imize mod(p/q, X¢). Then there exist compatible simple cycles C; with rotation
number p/q, such that

(1) their lengths satisfy
mod(p/q, Xo) <7 Yy L(Ci, )7 <mod(p/q, X:) + O(d);  (6.1)

(2) all other cycles satisfy L(C, f) > eg > 0; and
(3) for anyr > 0, the multipliers of " at its repelling fixed points satisfy

RV
=3 1= 0@ (62)

where the prime indicates that fixed points in | ) C; are excluded.

In qualitative terms, the construction shows:

Corollary 6.2. All cvcles with L(C, ) < €4 arise from short geodesics on the
quotient torus for [.

Tiling of A*. The slope p/g mod 1 appearing in the theorem above depends only
ona = f'(0) € A*. Figure 1 of the Introduction shows the regions T(p/q) C A*
where a given slope maximizes the value of mod(p/q, X;) = mod(p/q, C/a?).
This picture is nothing more than the image, under the covering map £: H — A*
given by £(t) = exp{(2xi ), of the tiling of H by S1.;(Z) translates of the Dirichlet
region
F={reH:|t—n|>=1VnelZ}
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for the cusp T = oo. The tile T'(oc) = £(F) lies in a ball of radius exp(—m+/3) =
1/230 about the origin. In this tile the short curve is y» C X, which lifts to a loop
around z = O rather than a path connecting z = 0 to a periodic point. Thus the length
of v can go to zero without any cycle getting short.

Each remaining tile 7'(p/q) contains a horocycle H resting on the root of unity
exp(2wip/q) € S!. Within a still smaller horocycle H' C H, y,;, becomes very
short, and hence f has a very short cycle with rotation number p/q.

Moduli and multipliers. We begin the proof of Theorem 6.1 by connecting Dio-
phantine properties of o € A* to lengths of geodesics on C*/aZ.

Lemma 6.3. For any ¢ = exp(2rit) € A™ and g > 0, we have

mod(p/q, X¢) T 1—|oz‘3'|2
u = —
p ged(p.q)? q |1 —ail?

+ 0(1).

Proof. First consider the case ¢ = 1, and assume 7 is chosen so | Re 7| < 1/2. Then
we have 2mit ~ 1 — « when either side is small, and hence

Imz 1 —|a|?

d ,Xt: = O(1).
sgme(p ) FE n|1_a|2+ (1)

The general case follows using the fact that

mod(p/q.X:) _ mod(p, X4c)
ged(p, q)? q

Proof of Theorem 6.1. Choose p so that mod(p/q, X;) is maximized. As in Theo-
rem 5.2, by cutting the torus X open along e < d — 1 geodesics parallel to y,,/, we
obtain annuli 4, ..., A, C Y with

mod(p/q. Xz) = Y mod(4,).

Each annulus A;, when lifted to the unit disk, connects z = 0 to a simple cycle C;
for f with rotation number p/g and multiplier 8; > 1.

The lifts of the annuli A; are disjoint, so the cycles C; are compatible. Assume
for the moment they are also distinct. Since two copies of 4; embed in the quotient
torus C*/BZ (one for the inside of the disk and one for the outside), we have

2mod(4;) < 27T 27
mo i) = = :
logﬁi L(Cia f)

The combination of these inequalities yields:

mod(p/q. Xo) <7 ) L(Ci, /)7
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This lower bound also holds when the cycles are not distinct; then we simply have
more annuli A; embedded in a given torus C*/ ﬁjZ.

For the upper bound, let (A;) denote the multipliers of the repelling fixed points
of f4. Note that each cycle C; contributes ¢ fixed points, each with multiplier ;.
Combining Proposition 5.6 and Lemma 6.3, we obtain:

1 —|a9)?

lg~ 1 _lgv ! B
ge=Xr—1 g~ 3-1 —1 gl —a)?

= 7 'mod(p/q, X:) + O(1).

(Again, the prime indicates fixed points in | J C; are excluded.) Since the cycles C;
are compatible, there are no more than d — 1 of them, and hence

2 B; 1— =2 (log;ﬂ,t + 0(1)) = (P L)) + o).

This yields the upper bound in (6.1); and it also implies

1 roo 1

— = O(d).

Y = oW
That is, equation (6.2) holds for r = g.

To obtain (6.2) for other values of r, recall that by (5.2) we have mod(s/r, X;) < 1
whenever s/r # p/q. Thus if ¢ does not divide r, Lemma 6.3 implics

1 — F|2
Z Z A —D7l < T o || supmod(s/r X+ 0(1) = O(1);
r
while for r = ng we obtain

I 1 q 1 I—lo’|>  mod(p/q, X.)
- * = = 0(1),
rZ)Lj—l—l_rZﬁf—l r|l —a”|? mn? +atl)

which again implies (6.2), since (6.1) gives

q 1 1 1 mod(p/q, X+)
?Z Br—1 E(Z nL(C;, f) + 0(1)) - mn2 +01@).

Finally note that equation (6.2) implies L(C, f) > €4 =< 1/d > 0, since any
cycle C of period r and multiplier 8, not among the C;, contributes 1/(8 — 1) to the

sum (1/1) Y (4 — )7L, 0
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7. Binding and renormalization

We conclude by proving the following compactness result.

Theorem 7.1. Let (C;)7 be a binding set of cycles of degree d. Then for any M > 0,
the set of | € By such that Y ; L(C;, f) < M has compact closure in MRat 4.

Corollary 7.2. The set of f € By such that ), L(C;, f) <M and | f'(0) — 1| >
1/M is compact.

Proof. By Theorem 3.7, the only way a sequence f, can diverge in 8, but remain
bounded in MRaty is if f,,(0) — 1. O

Definitions. Sets 4, B C S! are unlinked if they lie in disjoint connected sets;
equivalently, if their convex hulls in the unit disk are disjoint. Amap f: X — X
with X < S is renormalizable if there is a nontrivial partition of X into disjoint,
unlinked subsets X1, ..., X, such that every f(X;) lies in some X;.

We say a collection of degree d cycles Cy, .. ., Cy, is binding it deg(pa| | Ci} =
d and pg4|| ) C; is not renormalizable.

Proof of Theorem 7.1. Suppose to the contrary that we have a sequence f, € By
with >, L(C;, f») < M that is divergent in moduli space. Let

D, =¢;}(UC,») cs?

be the finite f,-invariant set corresponding to the binding cycles. Since f,|S? is
expanding, we have | £/| < e™ on D,,.

Next we conjugalte the entire picture by an affine transformation depending on »,
so that 0 € D, and diam(D,) = 1. Then S! goes over to a circle T, D D,, invariant
by fy, and we still have | £/|D,| < eM.

Pass to a subsequence such that f, — (F,S) € Raty. Since f, diverges in
MRat,, we have deg(F) < d. Passing to a further subsequence, we can find a finite
set D containing zero and a circle 77 C C such that D, — Dand T, — T in the
Hausdorff topology. Note that | D| > 1 since diam D = 1.

By Proposition 3.6, the map f,| D, converges to F|D. Butif |D| = || J C;|, the
map F|(D C T) is combinatorially the same as pg|(|J C; € S1), contradicting our
assumption that deg(py| | J C;) = d. Similarly, if |D| < || C;|, then the collapse
of D, to D provides an invariant partition for |_J C;, contradicting our assumption
that pg|J C; is not renormalizable., O
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Examples. Thesinglecycle C = (3,6, 12,24, 17)/31 indegree 2 is already binding,
as is any cycle of prime order with deg(p4|C) = d.

The first renormalizable cycle in degree 2 is C = (1,2,4,3)/5. Although
deg(p2|C) = 2, L(C, f,) remains bounded as f, € 8- diverges along the sequence
specified by £/(0) = —1+1/n. Indeed, f;? can be renormalized so that C converges
to the cycle of period 2 for G(z) = z — 1/z [Ep]; and thus L(C, f,) — log9. For
more details, see [Mc6, §14].
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