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The large sieve and random walks on left cosets of
arithmetic groups

Florent Jouve

Abstract. Building on Kowalski’s work on random walks on the groups SL.(#, 7)) and Sp(2g, 7.),
we consider similar problems (we try to estimate the probability with which, after k steps, the
matrix obtained has a characteristic polynomial with maximal Galois group or has no nonzero
squares among its entries) for more general classes of sets: in GL.(n, A), where A4 is a subring
of () containing 7 that we specify, we perform a random walk on the set of matrices with fixed
determinant D € A>. We also investigate the case where the set involved is any of the two

left cosets of the special orthogonal group SO(n, m)(Z) with respect to the spinorial kernel
Qn,m)(Z).

Mathematics Subject Classification (2010). Primary 15A36, 15A52, 11N36; Secondary
15A33, 12E05, 11E08.

Keywords. Random walks on arithmetic groups, Property (1), large sieve, polynomials and
orthogonal matrices over finite fields.

Introduction and statement of the results

For G a fixed subgroup of GL(n, QQ), it is natural to wonder what the typical behavior
of anelement g € G chosen atrandom should be. Thatkind of question is investigated
by Kowalskiin [KoSieve, Chapter 7]. Having in mind such intuitive facts as: arandom
element should have, with high probability, an irreducible characteristic polynomial
(or indeed, one with large splitting field) and no square among its entries, Kowalski
shows that the k-th step of a random walk lies in the set of the exceptional elements
of G (i.e., the elements which do not satisfy the desired property) with probability
tending to zero exponentially fast as k& grows to infinity.

In loc. cit., these results are obtained, in the case where G = SL(n,Z) or
Sp(2g,Z) (forn = 2 and g = 2), as an application of the very general large sieve
framework exposed in the first chapters of [KoSieve].

In this paper, we answer the same type of questions (i.e., we try to detect similar
properties) for sets ¥ being either left cosets «S1.(n, A) of GL.(n, A) (wheren = 3and
A is a subring of Q containing Z which we will specify) or left cosets of SO(n, m)(Z)
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forn+m = 6and nm # 0(i.e., we will fix an indefinite quadratic form with signature
(n,m) when seen as defined over a (n 4+ m)-dimensional space over R) with respect
to the normal subgroup €2(rn, m)}(Z) (which is to be defined later). The method used
1s that of the “coset sieve” described by Kowalski in [KoSieve, Chapter 3.3] (see
also [KoZeta] where that idea already appears to study properties of the numerator
of zeta functions of curves over finite fields).

Let us now define what is needed to give the precise statements for the main
results of this paper. The first kind of subgroups G of GL(#n, Q) we consider are of
the type G = GL(n, A) where, if & denotes a (possibly infinite} set of primes with
complement having positive Dirichlet density, then A is taken to be equal to the ring
Z[1/P] which is the smallest subring of @ containing 7Z in which every p € P is
invertible. The left coset to which we apply large sieve techniques in that first case is
a fixed element of GL(n, A)/SL(n, A).

We also consider the case where G is the subgroup of integral points of a special
orthogonal group. For n +m = 6, let (M, Q) be a quadratic module over Z such
that, seen over R, the quadratic form Q is indefinite with signature (7,m). The
group of automorphisms of M preserving @ can be seen as the subgroup of integral
points (denoted O(rn, m)}(Z)) of the algebraic group O(n, m)/Q. We will restrict
ourselves to the case where G = SO(n, m)(Z), the subgroup of integral points of the
algebraic group SO(n, m)/Q. In SO(n, m)(Z) lies the normal subgroup Q(n, m }(Z)
(see [HM, Section 7.2C, pp. 422-424] where that subgroup is denoted O'(M)). A
precise definition for that group will be given in Section 2 in the case where M is a
vector space over a finite field and in Section 3.1 in the general case. However, (0
state our results, the important thing is that the fixed coset we consider in that case
corresponds to an element in the quotient SO(n, m(Z)/ Q(n,m)(Z) (an abelian
quotient; see [HM, 7.2.21]).

In the sequel we emphasize the case where (M, Q ) is a free hyperbolic module over
Z (see [HM, p. 197]),i.e., M isa Z-module of rank 2n equipped with a quadratic form
¢ (with attached bilinear form denoted /) such that there exists a basis of isotropic
vectors X = {x1,..., X2,) with respect to which the matrix of / is

0 Id
Matxh = (Id 0) ,
where the inner blocks are n x n matrices.

Seen over R, such a quadratic form has signature (#,#n) and we will restrict
ourselves to such quadratic forms to state Theorem 1 (which is a sample of Theorem 18
in which the case of more general quadratic modules is handled).

The question of the irreducibility of the characteristic polynomial of an element
chosen “at random”, in one of the two types of groups we have just described is only
relevant if no trivial factorisation pattern is imposed by the definition of the groups.
If we only suppose that g € GL(n, A), there is no a priori imposed factor for the
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characteristic polynomial P, (T) = det(T — g), but things are different if g is an
orthogonal matrix. Indeed P, verifies in that case the functional equation

P (T) = det(—g)TN P, (%) (1)

where g is assumed to be a N x N matrix.
Therefore it seems natural to wonder about the factorisation properties of the
reduced characteristic polynomial which is defined by

det(T — g)/(T — det(g)) if Nis odd,
det(T — g)gea = s det(T — g)/(T* — 1) if N is even and det(g) = —1,
det(T — g) otherwise.

Here, the matrix g will always lie in the special orthogonal group attached to Q,
so that in the case where N is even, we will always have det(T — g)eq = det(T —g).
Notice moreover that the degree Nyeq of det(T — g)req 18 always even.

Now, with the above notation, let G be the group GL.(n, A), for n = 3 (resp.
SO(n,n)(Z), for n = 3), and G¥ the normal subgroup SL.(n, A) (resp. Q2(n,n}Z))
of G. Let S be a symmetric generating system for G# (i.e., for any s € S, we have
s~1 € §). Notice here that we do not assume G¢ (o be finitely generated. In other
words S could well be infinite (but still countable). Let (ps)ses be a sequence of
strictly positive real numbers indexed by S satisfying > " ¢ ps = 1 and py = py—1
for any s € S. Finally let « be a fixed element of G.

Suppose a probability space (W, X, P) is given and let ( Xy )¢ be the (left invariant)
random walk on the left coset « G¢ defined by

Xo=0o, Xet1 = Xibrs1,

where (& )x=1 is a sequence of independent uniformly distributed random variables
with values in S and law

P& =s) =P =51 =p, foranyseS.

Our main result quantifies the speed of rarefaction of “non-typical” elements
reached by the k-th step of the random walk as k grows. In order to state it in a
unified way, the reduced polynomial det(7T — g },.q denotes, in the first case, nothing
but the usual characteristic polynomial det(7T — g); while in the second case, the ring
A denotes nothing but the ring Z. A “weak” version of our result can be stated as
follows.

Theorem 1. With notation as above, there exists a 81 > 0 such that for all k = 1 we
have
P(det(T — X )rea € A[T] is reducible) << exp(—pik),
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with 1 depending only on the underlying algebraic group G/Q, on the generating
set S and on the sequence (p;)s (i.e., on the distribution of the &.). Moreover the
implied constant depends only on G and the density of & in the set of all rational
prime numbers (in the case where G = GL(n, Z[1/P])).

There exists a B > O such that for all k = 1, we have

P(an entry of the matrix Xy is a square in A) < exp(—pak),

with the same dependency for B, as for B1 and the same dependency for the implied
constant as in the previous case.

In the above statement, the underlying algebraic group is SL(n) in the case G =
GL(n, Z[1/P]) (with n = 3) and SO(n,n) it G = SO(n, n)(Z) (with n = 3).

Of course the second statement of Theorem 1 is only a very special case of the kind
of properties that can be investigated using large sieve techniques. In Section 3, we
give a more general statement of the above theorem in which the common points of
the properties that are likely to be successfully studied via our method appear clearly.

Acknowledgement. This paper contains the main part of the author’s PhD Thesis.
The author is grateful to his PhD adivsor E. Kowalski for generously sharing his deep
ideas on sieve methods.

1. Estimates for the large sieve constants

In this section we will often need to refer to results coming from the large sieve
techniques exposed in the appendix. So, before getting into the proof of Theorem 1,
the reader might either want to check the appendix or assume Propositions 26 and 27
(which are self-contained statements) to be true and postpone the reading of the whole
appendix.

With notation as in Propositions 26 and 27, let A be a set consisting of odd primes
(with the additional condition AN P = @ if G = GL(n, Z[1/P])) and let £* be the
finite subset of A consisting of the elements smaller than a given integer L = 1.

In both Propositions 26 and 27 (note that it is natural to emphasize the case where
the sets ©¢ are conjugacy invariant as the estimates are improved when using this
special property), the heart of the large sieve method lies in the following inequality

P (pe(Xi) & ©p forallf < L) < A(Xy, LYH™ !, (2)

where
H =Y "10(G§|— @)

<L
fehA
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1s the saving factor which depends only on the sieving sets ®; and where we denote
A( Xy, L) for the constant A of Propositions 26 and 27 with the above choice of £*.
In this section though, we focus on the large sieve constant A( Xy, L) for which we
give an upper bound in the case where G is one of the two groups that Theorem 1
deals with.

The possibility to obtain the sort of quantitative information stated in Theorem 1 for
the random walk (X} ) defined in the introduction depends crucially on the sharpness
of the upper bound we can find for the large sieve constants involved. It1is not realistic
to hope for any useful explicit bound without any assumption on the group G we are
working with. As the sums (17) and (19) involve representations of the group G (that
factor through finite groups), the fact that Lubotzky’s Property (t) comes into play is
not surprising. Letus first review some definitions and facts concerning that property.

1.1. Lubotzky’s Property (r). We firstrecall the definition of the property, as stated
in [LZ, 1.4] or [Lu, p. 49].

Definition 2. et G be a topological group and N = {N,}; a family of normal finite
index subgroups of G, indexed by a set /. The group G has Property (t) with respect
to N if there exists a finite set S and & > 0 such that for any unitary irreducible
continuous representation p of G on a Hilbert space J€ satisfying ker(p} O N; for
some 7 and that leaves no nonzero vector invariant, we have

max |[p(s)v —v|| > g||v]],
SES

for all nonzero v € #. The pair (g, .5) is called a (7)-constant for G and S is called
a (r)-set for G.

Note that Kazhdan’s Property (T) is defined in the exact same way except for the
fact that p need not factor through some prescribed subgroup. Thus, as is obvious
from the definition, Lubotzky’s Property is a “weak” version of Kazhdan’s. That
means of course that any group with Property (T) also has Property (t) with respect
to any family of its finite index subgroups. However, that property is indeed strictly
weaker. For instance SL(2, Z) does not have (T) (see [HV, Proposition 6, p. 34]) but
has () with respect to the family of its congruence subgroups

((d) = ker(pg: SLQ2.Z) — SL(2,Z/dZ))) 15,-

That last fact though does not come for free, as it requires Selberg’s result on the
eigenvalues of the hyperbolic laplacian acting on L2 (T (d)\H) (see, e.g. [Lu, 4.4]).

Remark. A useful combinatorial interpretation for Property (7 ) is the following: if G
is a group and S is a subset of G, recall that the Cayley graph € (G, S) is the oriented
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graph with vertex set equal to the set of elements in & and where x is connected to y
if there exists an s € S such that xs = y. If we suppose that S is symmetric, then
€ (G, S) can be considered as a non oriented graph and if S spans G, that graph is
connected. Now with these two additional assumptions, the fact that G has Property
() with respect to a family &' = {N;}; of subgroups is equivalent to the property of
expansion of the family of Cayley graphs (€(G/ N;, S;)):, where for each i, S; is the
projection of S to the corresponding quotient. More generally a graph X = (V, E)
is said to be a d-expander graph (where § > 0), if for any subset 4 of V' containing
less than one half of the elements of V', the number of vertices in V' \ A which
are neighbors of elements of A is at least §| A|. Moreover, the expansion ration § is
explicitly related to the (t)-constant for G with respect to &". The notion of expander,
born in the 1970’s in order to solve problems linked to networks, has motivated lots
of mathematical researches. The beautiful constructions of such families that can be
found in [Chung], [Mo] or [LLPS], rely heavily on deep mathematical tools.

If G is finitely generated (which is the case in the applications developed by
Kowalski in [KoSieve, Chapter 7]) and has Property (7) with respect to &, it can
be shown that any generating set S can be chosen to be the (r)-set for G (see [LZ,
Proposition 1.2] or [Lu, Theorem 4.3.2]). For the applications we have in mind,
however, we need to work with groups which are not necessarily finitely generated
(this is obviously the case for SL(n, Z[1/P]) if & is infinite). The following result,
explained by M. Burger, shows that in this case, we can also choose a (7)-set among
the elements of a generating system for G.

Proposition 3. Let G be a group with Property (1) with respect to a family of finite
index subgroups N = {N;};. Let S be a generating system for G, then there exists
a finite subset Sy of S which is a (t)-set for G.

Proof. Let F be a (finite) (7)-set for G and § > 0 such that (8, F) is a (r)-constant
for G. As F is finite there exists a subset Sp of S and an integer # = 1 such that
F C 8] (i.e., each element in F can be written as the product of at most # elements
of Sp). Now let 7: G — U(J) be a continuous unitary representation of G which
factors through N; for some i (i.e., ker ¥ O Nj;) and without any nonzero invariant
vectors in J€. If v € J has norm 1, then there exists / = sl ... s € F such that

§ < |lm ()W) —v| < ||=(sg ... sHH @) —v].

Using the fact that the representation 7 is unitary, the right-hand side of the above
inequality can be written

n—1 n—1
H 3 (wlsd 53T — 7 (s 5dw) H <3 rlsh o s isE ) — )|
j=0 Jj=0
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n—1
F+1
< Z ”JT(Sé Wu) — v“
j=0

Combining these last two series of inequalities we deduce there exists a fp € So
such that

2 < ey ol 0

Before explaining how Property (t) yields the kind of upper bound we need for
the large sieve constants, let us first give (an infinite family of) examples of groups
having Property (7) (with respect to a certain family of subgroups for each of these
examples). Note moreover that in the case where n = 2 the following lemma provides
us with infinitely many examples of groups having Property (z) (with respect to a
suitably chosen family of subgroups) without being Kazhdan groups. These groups
of course are directly involved in the proof of Theorem 1.

Lemma 4. Let & be a proper subset of the rational primes. For any n = 2 the
group SL(n, Z[1/P]) has Property (t) with respect to the family of its congruence
subgroups

(ker:zrd: SL(n,Z[1/P]) — SL(n,Z[l/t?]/dZ[l/!P])){dZ”p*d i pe?)
Proof. 1et Sy be afinite generating system for SL.(n, Z) (the elementary transforma-
tions for instance). As already mentioned, Sp is a (r)-set for SL.(n, Z). The natural

inclusion
SL(n,Z) < SL(n, Z[1/P])

enables us to consider a generating set S O S; for SL(n,Z[1/P]). Let m be an
integer without prime factors in 5. We consider the projection

m: SL(n, Z[1/P]) — SL(n, Z[1/ P/ mZ[1/P]) ~ SL(n, Z/mZ).

The restriction of the morphism 7, to SL(n, Z} is surjective thus, since the family
of Cayley graphs (€(SL(n,Z)/(ker 7, N SL(n,Z)), 7,,(S1))), (indexed by the
integers m coprime to any element in ) is an expander family (see the discussion
preceding the above remark and recall that, for n = 3, the group SL{(n,Z) is a
Kazhdan group), then so is the family

(€(SL(n, Z[1/P))/ ket 7. 7 (S1))),, -

A fortiori the family (€(SL(n, Z[1/P])/ ket 7. 7 (S))),, forms of family of
expanders. In other words the group SL.(n, Z[1/5]) has Property {r) with respect to
the family of its congruence subgroups. O
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1.2. Upper bounds for A(Xy, L). Coming back to our sieve framework (see the
appendix), we now state the key proposition making precise all the assumptions that
will need to be verified for the arithmetic groups we consider, in order to obtain a
sufficiently sharp bound for the large sieve constants A and H of Propositions 26
and 27 (this is the analogue of [KoSieve, Proposition 7.2]).

Proposition 5. We recall G is a discrete group, G8 a normal subgroup of G with
abelian quotient G/ G¢ andlet T be a finite subset of a set of representatives of G/ G¥
in which we let o vary. For a fixed symmetric generating system S of G& we consider
the random walk (X ), defined in the introduction, on the coset aG¢ (witho € T)
and we suppose

* there exists a relation of odd length ¢ among the elements of S':

S1...8. =1,

* the steps &, for k = 1, are independent and independent of X,
* G¥ has Property (1) with respect to a family (N; )i cy of finite index subgroups,

then there exists n > 0 such that, for any finite dimensional representation
7. G — GL(V),

satisfying ker migs O N;, for some i and without any nonzero G¥-invariant vector,
the inequality
[E((m(Xp)e: S < llell I1Lf ] exp(=nk),
holds for all vectors e, f inV and all k = 0; {; ) denoting a G-invariant inner
producton V.,
The constant 1 only depends on the (t)-constant associated to (G5, S, (N;)), on
the distribution of the & and on the length c of a fixed relation in S.

Proof. The proof is quite similar to that of [KoSieve, Proposition 7.2]. Still, as many
technical points need to be modified we give the full detail of the arguments here.
We fix an index ¢ € I and a representation

7. G — GL(V),

such that the restriction ¢ factors through N; and has no nonzero G#-invariant
vector. Consider
M = E(x(E) = Y plo)(s).
seS
The linear operator M is a well-defined element of End(V') since the series defin-
ing M converges absolutely (because 7 is a unitary representationand ), p(s) = 1).
From M we can then define two other elements of End(V):

MT=1d—-M, M =1d+ M.
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Note that these formula define two operators which are both independent of k
and self adjoint. Indeed the set S as well as the distribution of the & are symmetric.
Moreover the mapping associating its adjoint to an operator is linear and continuous.
We also need to define

No = E(m(Xy)) = ) P(Xo = 1)m(1) € End(V).
teT

For k = 1, the random variables X and &, are independent therefore we have
E(m(Xi)) = NoM*,

thus by linearity,
E((m(Xp)e: £)) = (M¥e; Ny £),

where N denotes the adjoint of Ng.

As > g p(s) = 1 and since 7(s) is a unitary operator for every s € S, the
cigenvalues of M are in the interval [—1; 1]. Now, let p be the spectral radius of M :

p = max{|y| | yis an eigenvalue of M }.

We have the inequality
(M e; N3 )] < llell | £11 o,

since the norm of Ng 1s smaller than 1.

We need to exhibita § > 0 independent of i and 7 such that0 < p < 1 — 4. We
will then be able to choose n = —log(l — ) > 0 for the constant we are looking
for. We use the fact that p = max(p™, p~) where p™ (resp. p7) is the real number
equal to the greatest positive eigenvalue of M (resp. equal to the opposite of the
smallest negative eigenvalue of M ). Itis enough to prove that p* < 1— 84 for some
constants §+ which are independent of / and . To that purpose we use the variational
interpretation for the eigenvalues of a self adjoint operator on a finite dimensional
Hilbert space. Indeed 1 — p™ (resp. 1 + p~), which is the smallest eigenvalue of M+
(resp. of M ™), 1s equal to

(Tv;v)

2 ?
l

A = min
v#0

where T = M*. Now applying Proposition 3, we know that there exists for the
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group G¢ afinite (7)-set Sy included in S. This yields

AT O

2 2
ol 2P
1 | (s)v — v||?
EP o
SESH
+ 2
woisv —v
> PO inf max ) (”) E I~

w p#0sESo

where par = minges, p(s) > 0 and @ runs over the representations of G¢ without
any nonzero G# -invariant vector and which factorize through N; for some index ;.
Let &« > O be such that (k, Sp) is a (z)-constant for G with respect to (N;)icy, we

can choose N
5+ - Kpo
2

The argument used to determine 4~ is very close to that of [KoSieve, Proposi-
tion 7.2]. Since there exists by assumption a relation of odd length ¢ among the

elements of S, we can write forv € V:
1
v = 5((?) + 7(s1)v) — (w(s)v + 7(s5152)v) + - 4 (@51 ... SV + T (D).

Then, invoking the Cauchy—Schwarz inequality and using the G -invariance of the
inner product,

c—1

c—1
e c
PG L e rlsinlP < 3 ol

i=0

where rgp = land r; = s7...5s; fori = 1. In particular we deduce

v }jﬂaﬂnw+nwﬁnw

1<’ < e P (Sz )
then, taking into account possible repetitions of generators in the sequence (sy, ..., 5. ),
ol < < 1 e MCILORT
v — p(s)||mr(s)v + v
4 min{p(s;)| 1<
ol

(m1n{p(s,)|1 i c}) (M~ v;v).

Therefore we can choose 6~ = C% min{p(s;) |1 <i <¢} > 0.
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Under the assumptions of Proposition 5 together with an additional hypothesis of
linear disjointness (which really is a property of “independence of £ of the setting”),
the next two propositions give the upper bound we need for the two large sieve
constants A we are working with.

To begin with, we consider the case of the conjugacy coset sieve which is somewhat
simpler to handle.

Proposition 6. Let (Y, A, (pg: Y — Yy)) be the conjugacy coset sieve of the appendix
(see Proposition 26). We suppose that
* the assumptions of Proposition 5 are verified,
* the system (pg)icp is linearly disjoint, i.e., the restricted product map defined
ford U e A, £ # L, by
peer = pe X pgr: G5 — GF,, = Gf x G,

Is surjective.

Then, with notation as in Proposition 26, there exists n > 0 such that
A(Xi, L) < 1+ L4 exp(—nk),

where 11 > 0 depends only on G, S and the distribution of the & and A = (3d +2)/2,
withd = n*—1inthe casewhere G = SL(n, Z[1/P) andd = (n4+m)(n+m—1)/2
if G = SO(n,m)(Z).

Proof. From Proposition 26 we have

A(Xp, L) < max max Z Z |W(m, 7).

LeL* 2
well] eld* relly,
For £,¢" € A, we need to give an upper bound for the sums

1 -
W(pn. pr) = ———==E(Ti[x. tlpr.e: (X)),
ITEITE

once rewritten using the trick explained in the appendix after Lemma 25.

With notation as in the appendix (see the discussions preceding and following
Lemma 25), if [, T]pg ¢ has no G-invariant vector then Proposition 5 yields an
upper bound for

[E(Tt [, T]pg e (X))

Indeed it is enough to choose ¢ = f running over an orthonormal basis of the
representation space V of [r, 7]pg ¢ and then to sum up the terms obtained over e.
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We are reduced to computing the multiplicity of the trivial representation of G¢
in the restriction of [, T]pg ¢ to G€. As the sieve setting we work with is assumed
to be linearly disjoint, that quantity is the same as the multiplicity of the trivial
representation of Gf’z, in [, %]|G§ o From Lemma 25 of the appendix we know

that multiplicity is zero unless (£, =) = ({/, 7) in which case its value is |f‘f |. Thus,
denoting [, 7] the part of [, T] without any nonzero G £ -invariant vector, we deduce

Te[rr. Floe,e (Xi) = [FF|8((L. 7). (€', ©) + Telw. Tope,e (Xx).
Applying Proposition 5 to the representation [, T]ppe ¢ of G¢ yields

\W(m, t)—8((L, 7), (', 7))| < (dimm)(dim ) exp(—nk),

=\ —1
where we use the trivial upper bound ( Iy |) < 1.
The result follows from exploiting such trivial bounds as

dimz < /|G[. Y dimz <|G].

acir(G)

for any irreducible complex representation 7 of a finite group G (see [KoSieve,
Chapter 5] for better bounds for such quantities). O

In the next proposition we give an upper bound for A(Xy, £*) in the case of the
non-conjugacy coset sieve. It is very close to the one provided by Proposition 6.
However, needing to use another equivalence relation to define the orthonormal basis
for the L? space involved (compare the statements of Proposition 26 and 27), the above
proof cannot be directly adapted to the case of the non-conjugacy coset sieve. Indeed,
in order to prove the following result, we use the remark following Proposition 27
about the generalisation of the sieve statements of the appendix to a framework in
which we do not only use primes but more generally squarefree integers to perform
the sieve.

Proposition 7. Let (Y = a«G8, A, (pg: Y — Y;)) be the non-conjugacy coset sieve
of the appendix (see, e.g., Proposition 27). For any fixed integer L = 1 and under
the same assumptions as in Proposition 0, there exists ' > 0 such that

A(Xy, L) < 1+ LY exp(—1/k),

where 1/ > 0 depends only on G, the (t)-constant for G¥, the distribution of the
g and A = (17d + 4)/4withd = n*> —1if G = SL(n,Z[1/P]) and d =
(n4+m)n+m—1)/2if G =SO(n, m)(Z).
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Proof. Asinthe proof of the previous proposition we need to evaluate a sum involving
group characters. The point is that the maximal contribution in those sums comes
from the function corresponding to the trivial representation. Following that idea, we
apply an “equidistribution approach” in order to obtain the estimate we are aiming
at:

E(7, T pee (Xe)e; Nza) = > A7 70)e: Nmaly,

yEYE’E/

where the notation are those of (15) and where /,, on the right-hand side of the
equality is defined by

Iy = Plpee(Xp) = )

To evaluate /7, we decompose the characteristic function y, of {y} in Fourier
series. To that purpose, we need to extend by multiplicativity the result of Proposi-
tion 27 to the case of squarefree integers (not only primes, see the remark following
Proposition 27 in the appendix). In LZ(YM/, Ve ¢r), the following equality holds:

= D, ene= > eWIGE, e

(ﬂEBg’EI (pea@é’gl

Thus, we obtain

I, = E(Xy(PE,E’Xk)) = | i ] Z (p(y)E(gopg’E,(Xk))
£, 0eB, o
1 1
E AX).
= 65,1 T ier,] Y. e(E@pLe(Xi)

peB, o \{1}

Now if ¢ = @y, e, 7 18 an element of By g \ {1} (up to a suitable normalisation,
see Lemma 24), we know in particular that m¢ ¢ is an irreducible representation of
Gy ¢ and the quantity for which we need to find an upper bound is

[E((7e,epe.er(Xide's [ Nymy o).

In order to apply Proposition 5, we need to determine the multiplicity of the trivial
representation of G e in the restriction of g ¢ to Gz o As we assume the sieve
setting to be linearly dlSJOlIlt this multiplicity is the same as that of 1 in my ¢/ pg ¢
for the group G%. Applying Lemma 25 (once extended by multiplicativity) with
7 = my e, T = lg, (note that the assertion of Lemma 25 remains valid for the trivial
representation, see [KoSieve, Proof of Lemma 3.2]), and using the fact that £ is a prime
factor of ppem(£,£’), we see that multiplicity is zero unless ppem(€, £') = £ (i.e.,
£ = {)and 7y ¢ 6%, = lle p (or more precisely, applying [KoSieve, Lemma 3.2],

me Y~ g o for a certain character ¥ of Gg ¢/ Gf’z,). In particular, 7rg ¢+ has
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dimension 1 and for every vector ¢’ with norm 1 spanning the representation space
of my ¢ and every g € G7 .

(mee(g)ese’) = (efe) =1,

where the index ¢ ¢ 1s purposely omitted to avoid the use of too much notation.
Thus, with notation as in Lemma 24, we deduce that Py griel el ™ 1, which is a
contradiction.

Invoking Proposition 5 now yields an #” > 0 such that for all ¢ = ¢, e f! €

Beor \ {13,
E((me.0 000 (Xi)e's [ my o) < exp(=1k).

Finally, for the quantity
(dim ) TY2 (dim ) YD W pne, p1 0re) — 8 @me, s Prep)

we obtain the following upper bound (note that the inverse of the denominator of the
normalisation factor is trivially smaller than 1):

1

3

> (A0 Hea Y oIl x)|

g
| E,E’| ye¥y o ¢E£Z’£f\{1}

Applying the Cauchy—-Schwarz inequality we obtain

([, T) ()& Pzl < v, T10DE ez | F a1
<1

and more generally |¢(y)| < 1, forall y € Yy ¢ and all ¢ € B¢ o \ {1}. Using the
triangle inequality we deduce an upper bound for

(dim )2 (dim D) V2 | Wigr e £, res) — 8o 1 Pres)

namely
(1Be.er| — 1) exp(—n'k).
Now, by classical group representation theory,
Bewl< Y @imr)® =|Geel.
]IEiIT(Gg,EI)
We finally deduce an upper bound for the large sieve constant:
AXg, L) <1+ LY exp(—nk),

with A’ = (17d + 4)/4 and either d = n?> — 1if G = GL(n,Z[l/P]), or d =
(n+m)(n+m—1)/2if G = SO(n,m)(Z). Indeed, from the argument above, we
jJust need to use the same kind of trivial bounds as the ones at the end of the proof of
Proposition 6 as well as the obvious inequality |Gy ¢/| < |Ge||Gy|. O
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2. Local densities for polynomials and orthogonal matrices

In this section, which is independent of the others, we compute different densities
in subsets of the ring [Fy[T’] or of the orthogonal group O(N, F;) (notice that we do
not assume anything here on the integer N and, in particular, we do not distinguish
between the split and non split model for the orthogonal group, in the case N is even).

The goal of this section is to give enough quantitative information in order to
find a useful lower bound for the constant H appearing in (2). However this section
has an interest of its own and we do not restrict ourselves to the computations that
are strictly needed for the purpose of the paper. The style in which we expose the
different estimates we are interested in is very much inspired by [Chav, Section 3].
Doing so, it is easy to point out similarities as well as the differences between the
symplectic case (treated by Chavdarov in loc. cit.) and the orthogonal case. We will
notably highlight the lack of good topological properties for the orthogonal group.
That feature imposes that we be very careful in the statement of our results (such
precautions need not be taken in the case of the symplectic group).

2.1. Review of orthogonal groups over finite fields. We briefly recall some basic
facts and notation about orthogonal groups, as exposed in Section 6 of [Kal.]. The
proofs and details can be found e.g. in [ABS].

Let V be a vector space with dimension greater or equal to 2 over a fixed finite field
F, with characteristic different from 2. We assume we are given a non degenerate
quadratic form Q on V (we will denote by ® the bilinear form attached to Q). If
T(V') denotes the tensor algebra associated to V', we can consider the ideal 3(Q)
generated by the elements x ® x — Q(x).1, where x runs over the vectors of V. The
quotient algebra CI{V, Q) = T(V)/3(Q) is the Clifford algebra of V with respect
to @. That construction yields a natural injection

ip:V—>TIV)— CUV, Q)

which enables us to see CI(V, Q) as the solution of the following universal prob-
lem: for every morphism of [F,-vector spaces f: V — A, where A is an [F,-alge-
bra satisfying f(x)> = Q(x).14, there exists a unique [F,-algebra homomorphism
F:CI(V, Q) — Asuchthat f oip = f.

The involution v +— —v of V can be extended to an involution denoted ! of
CI(V, Q). Another morphism plays a crucial role in the theory of Clifford alge-
bras: it is the antiautomorphism ¢ : CI(V, Q) — CI(V, Q) coming from the natural
antiautomorphism defined on the k-th tensor power of V by

VIRQUVrRR QU= U ® QU & V1.

Let CI™ be the group of invertible elements of CI(V, Q). It acts on CI(V, Q) via
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the morphism p defined by
p)x = I(u)xu™t,

for every u € CI and x € CI(V, Q). The elements of CI* that leave V globally
invariant form a subgroup of CI*. We denote it C*. It is the the Clifford group of
CI*. Typical elements of C* are the images in CI(V, @) of non isotropic vectors
v € V, since the transformation x — I(u)xu~! is then the reflection with respect
to the hyperplane which is orthogonal to v. In fact any element of C* is a scalar
multiple of a product of such vectors (the transformation associated to that element
being an automorphism of the quadratic module (V, Q)).

Finally we define the map Norm: u € C* +— r(u)u which takes its values in
7 (see [ABS, Propositions 3.3 and 3.8] where the proof, given in the case where
the base field is R, can be easily adapted to the finite field case). The spinor group
Spin(V, Q) is then defined as the subgroup

Spin(V, 0) = (ker Norm)!

of the elements of C* that are fixed by . When V is N-dimensional and there is no
ambiguity on the chosen quadratic form @, we will denote that group Spin(N, I, )
instead of Spin(V, Q). With such notation the group Spin(N, F,) can in fact be seen
as the group of FF,-rational points of an algebraic group defined over F,. Unless
the context is ambiguous that algebraic group will also be called the spinor group.
It will be denoted Spin(N). It is well known that the spinor group is a connected
simply-connected algebraic group and that it is in fact the universal cover of the
special orthogonal group SO(N)/F,. In other words ([Hu, p. 189]) there exists an
isogeny @ such that we have an exact sequence of algebraic groups

] — {£1} — Spin(N) ——> SO(N) — 1. (3)

Thus the spinor group shares the same dimension as the special orthogonal group
N(N — 1)/2 and the same rank [N/2].

Remark. In all of the above, we do not need to assume that the base field is a finite
field. Every construction and definition we have recalled can in fact be stated for
quadratic modules over any perfect field.

Next let E denote a fixed separable closure of F,. The short exact sequence (3)
gives rise to the following exact sequence of Gal(F, /F, )-invariant groups:

Spin

| — > {+1} — Spin(V, F,) —> SO(N, F,)) —2 (41 1, @)

where the group homomorphism Ngp, is called the spinor norm and can be defined
as follows. For a non isotropic vector v € V', the image of the reflection with respect
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t0 v by Nspin 18 the class of Q(v) in F/(F ;)2 (the group of classes modulo nonzero
squares of IF ). The morphism Ns, is completely determined by the images of those
elements and it can be shown (see [KaL, Section 6]) that Ngpi, can be extended to a
surjective morphism from O(N, F, ) onto {£1} since we have supposed N = 2.

Finally we will denote Q(N, ;) the image of p in (4) (i.e., the kernel of Ngpin ).
That group which is of great importance in our sieving context, is easily seen to be
the derived group of both SO(N, F,) and O(N, F,) (see [Art, 5.17]). We note that it
can be directly defined from O(N, [F,;) by saying that it is the simultaneous kernel of
the determinant and the spinor norm.

To perform the density computations we need, we will have to estimate the car-
dinality of sets of orthogonal matrices with fixed determinant and/or spinor norm. In
practice it will be convenient to relate those quantities to the number of polynomials
with coefficients in the base field that can be realized as characteristic polynomials
of such matrices. To exhibit the link between these cardinalities the crucial point lies
in the possibility to “see” the value of the spinor norm and of the determinant of a
matrix g in the coefficients of its characteristic polynomial. This is, of course, very
casy in the case of the determinant. But as far as the spinor norm is concerned, we do
not see any obvious reason for such an explicit link to exist. However the following
beautiful result of Zassenhaus (which we recall here, in view of its importance) gives
us under certain conditions the kind of link we need:

Theorem 8 (Zassenhaus,1962). If g is an element of the orthogonal group associ-
ated to the quadratic space (V, Q) (satisfying the same assumptions as above) then,
provided —1 is not an eigenvalue of g, we have

+ 1
det (gT) = NSpin(g)a

modulo squares.

In [Za], Zassenhaus first defines the spinor norm via the formula of Theorem 8
(see (2.1) in loc. cit.) and then proves that definition coincides we the one we gave
earlier in this section (see the corollary of [Za, Theorem, p. 446]).

Remark. Over finite fields of odd characteristic we know that there are two isomor-
phism classes of quadratic forms (classified by the value modulo nonzero squares
of the discriminant of the quadratic form). In the case where the dimension is odd
these two classes give rise to the same orthogonal group, but this does not hold if
the dimension is even. Indeed if N = 2n, two distinct models for the orthogonal
group O(2n,F;) need to be distinguished: they are respectively called the splir and
nonsplit model, referring to the algebraic group O(2n) being split or not over F,
(see [KaL, Section 6] for examples of quadratic forms corresponding to each of these
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two models). Note that the computations in the sequel are performed independently
of the chosen model of orthogonal group. However we will see later how a result of
Baeza makes the choice of the split or of the nonsplit model come back into play.

2.2. Characteristic polynomials of orthogonal matrices over finite fields. Tet £
be an odd prime number and N = 2 an integer. As in the previous subsection (V, Q)
denotes a quadratic space over [Fy and O is still assumed to be non degenerate. For
g an element of O(N, [Fy) we denote by Py the reversed characteristic polynomial
of g:

Pe(T) = det(1 — Tg).

This polynomial also satisfies the functional equation (1). A short proof of that
fact goes as follows: if ¢ is the automorphism of the ambiant quadratic space (V, Q)
attached to the matrix g, we denote by @ the matrix of the quadratic form @ written
in the basis in which the matrix of o equals g. Then we have g@Q(‘g) = Q. We
deduce

P (T) = det(1 — Tg) = det(1 —T(*g))
=det(l - T(Q 'g71@))
= TN det(g Y det(g/T — 1) = (=T)N det(g) Py (1/T).

Here one should be careful that £, no longer designates the “usual” characteristic
polynomial det(7 — g), as in the introduction. What motivates the change in the
notation is that Chavdarov works with reversed characteristic polynomials in [Chav],
so that we can easily understand to what extent his results can be transposed to the
orthogonal case.

The functional equation (1) imposes P, to be “almost self-reciprocal”, i.e., its

roots oy, ..., oy can be reordered in such a way that
didN+1— = 1, 1 £i < n, if N =2n,
OGN 11— = I, 1<7i<n, and Opt+1 = det(g) ifN=2n+1,

That leads us to consider the set of polynomials

Mye={1+bT+-+byT" | b; € Fy, by = land
by_; = byb; if0<i < LN/ZJ}
Before studying certain subsets of My ¢, we recall a result due to Edwards which

gives in the case where N is even a (quite surprising at first) link between the dis-
criminant of a polynomial f € My ¢ and the values f takes at +1.
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Lemma 9 (Edwards). Let N be an even integer and let f € My be a monic
separable polynomial, then we have

disc(f) = f(1) f(~1) (mod (F;)?).

That result 1s obtained by combining Theorem 1 and Theorem 2 of [E] (note that
the definition of the discriminant of a polynomial used in loc. cit. is not the standard
one hence the statement of Lemma 9 only coincides with the one of [E] up to sign).

We are interested in the cardinality of certain subsets of My ¢. Our first result
in this direction is very close to [Chav, Lemma 3.2]. Tt deals with the subset of
irreducible polynomials in My ¢ or rather with the subset of those of them which
are irreducible once reduced. Indeed, using the notation of the introduction and
remembering we consider reversed characteristic polynomials here, we will use the
following notation:

« if N =2n,

g fa .
Ky = {f(T) € My | f(T)ea = T 1rreduc1b1e},

withe = 1if by = —1 and ¢ = 0 otherwise,
e if N =20+ 1,

J(T)

o = (/D) e My | FDa = 7=

is irreducible }

withe = £1if by = F1.

In both cases we will denote by N4 the degree of the reduced polynomial freq.
For those sets we have the following estimates:

Proposition 10.  « If N is even,

1 4 ¢N/2—s gN/2—e
— 2 | Ky 2 — VENI2—,
N —2¢ Kl N —2¢
» If N isodd,
(N-1)/2 (N—-1)/2
T 2 Kl > e~ Ve,

Proof. Tt is enough to consider the case where N is even and ¢ = 0. Indeed, if N
is even and ¢ = 1 (which means that the leading coefficient of f is —1), we are
interested in the irreducibility of g(T) = f(T)/(1 — T?). The leading coefficient
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of g is obviously 1 and it is clear that g € My_»¢. Thus g € KR,_M as soon as

feKy,.

In the case where N is odd the polynomial g(T) = f(7T)/(1 — ¢T) has leading
coefficient 1 and g € My_; ¢ so that g € Kg,_l ¢ assoonas f € Ky, ,. Inother
words,

« if Niseven, |[Ky,| =|K¥_, | and
« if Nisodd, |[K | = |Ky_, |-
We are now reduced to computing the number of elements of
Ky ={f(T) e Myy|Neven, by =h;, 0<i < NJ2,

f is monic and irreducible }.

This happens to be exactly the set K ; studied by Chavdarov (see Lemma 3.2 in
[Chav]) for g = N/2. In loc. cit., Chavdarov proves that for N even,

N/2 N/2
i > |KRI£| > E__EN/‘r’
N ; N
and this completes the proof. O

Restricting ourselves to polynomials f satisfying f = fiq (i.e., N = deg f is
even and f is monic), we are interested in the same kind of computation as above
with the extra condition that # must be such that (1) and f{—1) are in a given class
(not necessarily the same for (1) and f(—1)) of I modulo its subgroup of nonzero
squares, 1.¢., by Lemma 9 and Theorem 8, we work with polynomials having fixed
discriminant and that can only be characteristic polynomials for elements with fixed
spinor norm. At first it seems likely that we will get a “good” proportion of such
polynomials among the set of irreducible self-reciprocal polynomials of even degree
(that proportion should roughly be 1/4). The following result of Meyn (see [Me],
Theorem 8) tells us that this intuition is wrong:

Proposition 11 (Meyn). Let [ be a self-reciprocal monic polynomial of even degree

N over Fy. Let us write
f=x"2hx +x71)

with h monic of degree N/2. If h is an irreducible polynomial then f is irreducible
iff L(2)h(—2) is a nonsquare of I¥y.

Moreover with notation as in the above statement it is easy to see that if we start
with an irreducible £, the attached polynomial /# will also be irreducible. So any
self-reciprocal monic polynomial f with f(1) and f(—1) chosen in such a way that
(—DN/2 £(1) f(—1) is a square in Ty is nor irreducible. This means that out of the
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four classes determined by the imposed value at 1 and —1 modulo squares, only two
are non empty.

The following result asserts that the expected equidistribution property holds for
the two non empty classes.

Lemma 12. let N = 4 be an even integer. If 8&1), 8%2) are (non necessarily dis-
tinet) fixed elements of a fixed set {1,e0} of representatives of ¥, /(F;)?* and if

(D) 28?)822) is a nonsquare of ¥y, then we have
Hf € My | f isirreducible and f(a) = sé, fb) = 8%}‘

N/2
! (1_2(1+N))'
ON ]

where, in the set of the left-hand side, congruences are taken modulo the group of
nonzero squares of [Fy.

Proof. By Meyn’s Theorem and the discussion preceding Lemma 12, the set we are
interested in is in one-to-one correspondence with

{h € IFy[T] monic of degree N/2 | his irreducible and A(2) = sél),
h(=2) = (~)¥2:P}.
(2)

If we vary &‘El) and ¢, in {1, g9}, we see that computing the cardinality of the
above set amounts to evaluating the four following character sums

%Z (1 xe(h2))(A £ xe(h(-2))),
h

where the sum is taken over all monic irreducible polynomials of Fy[T] with degree
N/2 and where y; denotes the Legendre character of [Fy.
It is enough to focus on the study of the sum

g = Z (14 xe(h@2NYA + ye(h(=2))
h
=313 2@+ 3 xeh(=2) + Y pe(h()h(~2)).
h h h h

The first sum of the right-hand side is nothing but the number of irreducible monic
polynomials of degree N/2 in Fy[T]. There are well-known lower bounds for that
quantity. For our purpose, it is enough to use the inequality (see, e.g2., Lemma 3.1 in

[Chav])
24N/2

_ N/
;12 = B
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Next we consider both the sums >, x¢(h(2)) and >, xe(h(=2)). AsN/2 =2
(and thus an irreducible / of degree N/2 cannot be X +2) we have from the definition

of y¢ that
Saken=2 > [hh@=a}-Y L
h h

a NONZero square

Notice that the summand of the right-hand side does not depend on the point of
IF, at which / is evaluated (i.e., imposing the value of % at any point of I, yields a
set with the same cardinality as the analogue set where the value imposed is /(0)),
s0 using on the one hand the lower bound (see [KoSieve, Appendix B, formula B.8])

2EN/2—1
N

and on the other hand the upper bound (see [Chav], Lemma 3.1, or Lemma B.1 in
Appendix B of [KoSieve])

[{h € F¢[T] | h monic irreducible , degh = N/2,h(2) = a}| = — 4N

24N/2

|{h € F¢[T] | h monic irreducible ,degh = N/2}| < v
we get
2£N/2 2EN/2—1
-3 w2y < 2 — - Fp— )
- N
< & L8 yN/A+1
N

For the remaining sum, we need to be more careful (as the value of the polynomials
considered at two different elements of [y are involved). To begin with, the sum can
be expressed as follows:

S rb@i =< Y p®om(DV2@ - @)@+ ),
h a,dega=N/2

where Norm denotes the norm map with respect to the extension Fyn/2 /F;. Now,
using the inclusion-exclusion principle, we get

> xe@orm(@d—e?) = Y =DV 3"y (Norm(4 — o?)).
a,dega=N/2 d|N/2 o€l 4

For each divisor d of N/2,if weset ¢,y = y¢ o Norm (which is a multiplicative
character of F,4), we need to evaluate ZaeFf , Xe.n (4 —a?). From the Riemann

Hypothesis for curves over finite fields, we derive

\ > nen@—o?)| st

aE]Fed
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since the polynomial X2 — 4 has distinct roots in Fy (see [KaMul, Introduction and
Theorem 1] for the statement and the proof of a more general result handling the case
of higher dimensional varieties). Using the trivial fact that the number of divisors of
N/2 is less than N /2, we get the upper bound:

— Z xe(Norm(4 — o)) < %EN/A'.
a,dega=N/2
Thus
D xeh@h(=2)) = -V,
h

Finally, putting the above estimates together, we get

N/2 N/2—1 Nj2
g2 A — N/AFL N4 %{___(1__%£l;tjil). 0

N N J

In the last lemma of this subsection, we are interested in counting monic polyno-
mials /z of degree N /2 with certain imposed factorization patterns and imposed value
modulo squares at 2 and —2. Indeed it will be convenient, in the sections to come,
to use such information in order to prove the existence of certain elements in the
Galois group of an integral polynomial f whose reduction f (mod £) can be written
f=xM2p(x + x71).

Lemma 13. Let N = 4 be an even integer and £ = 5 be prime. With notation as
above (e.g. all the congruences are taken modulo the subgroup of nonzero squares of
), if we denote

(i) @5,3 for the set of monic polynomials f € My ¢ such that the corresponding
h is separable, has an irreducible factor of prime degree > N/4 and such that
h(2) = 8%1), h(=2) = 8%2), then we have

3 >£Nﬂ(7 1(7+15N))
O3l = =77 5 A

(i1) @554 for the set of monic polynomials | € My ¢ such that the corresponding
h is separable, has a unique irreducible quadratic factor, no other irreducible factor

of even degree and such that h(2) = 821), h(-2) = 8%2), then we have

EN/Z

>>N,

|©¢.4

with an absolute implied constant.
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Proof. (i) Let £/ be a prime such that N/4 < {' < N/2. The cardinality we are
computing is greater than that of the set of monic polynomials /# of degree N/2
which factor as the product of a monic irreducible polynomial of degree £ with
imposed values modulo squares at 2 and —2 with any monic irreducible polynomial
of degree N/2 — £ (note that N/2 — £’ < N/4 so that no double root may occur in
this way). Applying Lemma 12 (more precisely, using the arguments of the proof)
and using once more the lower bound of [Chav, Lemma 3.1] we get

204200 e e
] N/2— ¢ '

As N/4 < £/ < N/2, we have on the one hand

o (1 2(1 +2£’)) ¢N/2= . 4£N/2(1 2(1 +N))
44’ ‘ N/j2—&~ N { ’

. i
|®£,3| = H(l =

and on the other hand

v N/2
{ (1_2(1+2£’))£N/4_E,/2$£ / (1 2—|—N)

40! F; ON U 4

Gathering those two inequalities we get the estimate we wanted to establish.

(i) We consider separately the case where N/2 is odd and the case where N/2
is even. In the former case the cardinality of ®g 4 is greater than that of the set of
polynomials factoring as the product of an irreducible quadratic polynomial having
imposed values modulo squares at 2 and —2 with any monic irreducible polynomial
of degree N/2 — 2. Thus

_ 2 N/2-2
o> 5 (- 7) =)

Now if N/2 is even the set we consider contains all the polynomials which, once
divided by their quadratic factor (still with imposed values modulo squares at £=2)
are products of a polynomial of degree 1 (different from X =+ 2) with any irreducible
polynomial of degree N/2 — 3 (note that if N = 4 such a polynomial does not exist
and if N = 8 the other factor of degree 1 as well as the polynomials X 4 2 must
be removed from the set from which that polynomial of degree N/2 — 3 is picked).
Thus, using the same inequalities as above,

E(l __ 10
s £ 7
E(1-2)-2)¢-23),
E2

8

(1—2)t - 2)(G7asy — LN-914),

ifN =4, [Op4) =
if N =8, |Op4 >
if N =12, |Opq =

In particular we get the estimate stated. O
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2.3. Number of matrices with prescribed characteristic polynomial. Inour siev-
ing context we need a result which would be the analogue, in the orthogonal case,
of [Chav, Theorem 3.5]. The pointis that we need to know, for a fixed /' € My ¢, how
many matrices in O(N, Fy) have a reversed characteristic polynomial equal to f. To-
wards such a computation our first task is to show that there exists at least one matrix
g € O(N,F;) such that P, = f. This is a crucial step of the proof if we try to follow
Chadarov’s method. Unfortunately Chavdarov’s proof relies heavily on the fact that
the symplectic group Sp(2g) (as an algebraic group over [Fy) is simply connected and
thus (by a Theorem of Steinberg), that the centralizer under Sp(2g) of any semisim-
ple element in Sp(2g, ¥y ) is a connected algebraic group to which Lang’s Rationality
Theorem may be applied. As we already mentioned neither O(N) nor SO(N ) is a
simply connected algebraic group. As a matter of fact we can easily construct exam-
ples of polynomials in My ¢ which are not the reversed characteristic polynomials
of any matrix in O(N, Fy). Take, e.g., the polynomial f(T) =T?+T + 1 € My
and suppose that the quadratic structure on the ambiant space Fy x [, is given by the
standard scalar product: ®((xy, y1), (x2, y2)) = x1x2 + y1¥2. A straightforward
computation shows that any matrix in O(2, Fy) having f as its reversed characteristic
polynomial must have its non diagonal coefficients equal to half a square rootof 3, and
this is obviously not always possible for matrices with coefficients in Fy (problems
already occur for £ = 5...).

While the direct adaptation of Chavadarov’s method to the orthogonal case seems
to be hopeless, we can however use a result of Baeza (see [Ba]) that gives a very useful
criterion in the case where the dimension is even, to decide whether an f € My ¢
is or is not the reversed characteristic polynomial of a g € O(N, IF;). From Baeza’s
result we derive the following proposition:

Proposition 14. Let N be even and | € My ¢ such that
(1) f is monic,

(2) [ is separable,

(3) disc(f) = disc(Q).

Then there exists a semisimple element A € SO(N,Fy) such that
det(1 — TA) = f.

The equality of discriminants (condition (3)) is seen as an equality of residue
classes in IF ) /(IF EX)2 (an equality of discriminants will always be understood in this
way from now on). This condition is crucial and we easily see that, in our counterex-
ample, disc(P) = —1 while disc(Q) = 1 in the case where £ = 5,

Proof. From [Ba, Theorem 3.7], we know that the quadratic forms @’ on V such that
there exists a o € SO(V, @'} satisfying

det(l1 —To) =det(c — T) = f(T),
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arc exactly those that can be written s, (K, n}, in the notation of loc. cit. We briefly
recall how these quadratic spaces are constructed: the separable [Fy-algebra K =
Fe[T1/(f(T)) = F¢[x] is equipped with the involution

x = x L

If we consider the subalgebra L = Fp(x + x~!), then we have a norm map
n: K— L,

that defines a non degenerate quadratic form (K, n) with coefficients in L. For any
trace map s: L. — [y, we can then consider the composition s o n: K — [Fg; it
defines a non degenerate quadratic form on K. We denote s« (K, n) the quadratic
space obtained (see [Ba, discussion following Proposition 3.6] and the references
therein for details, notably concerning trace maps).

For such a fixed quadratic space s.(K, n), let us consider a ¢ € SO(5.(K, 1))
such that

det(l1—To) =det(c —T) = f(T).

From [Ba, Theorem 1.2], we then have disc(f) = disc(s«(K,n))} thus, by as-
sumption, disc(s. (K, n)) = disc(Q). But we know that quadratic forms over [F; are
classified by their discriminant: so s«(K,n) ~ (V, 0). Finally, to the element o
corresponds a matrix A € SO(V, Q) >~ SO(N, Iy) such that

det(1—TA) = f(T).
The semisimplicity of A is obvious from the separability assumptionon /. [

In that proof we see how the distinction between the two models of orthogonal
groups (in the case N is even) naturally appears. In particular we notice that, with
the notation of Baeza, the quadratic space s« (K, n) is precisely the one chosen by
Katz in [Kal., Section 6] to describe a model for the nonsplit orthogonal group.

We are now ready to prove the main result of this section. Provided the assump-
tions of Proposition 14 are verified, the statement is the analogue in the orthogonal
case of [Chav, Theorem 3.5] and it can be interpreted as a property of equidistribu-
tion of characteristic polynomials of orthogonal matrices among the polynomials of
My ¢. Apart from the use of Proposition 14 the arguments developed in the proof are
quite close to those of loc. cit.

Theorem 15. Let N be even and let f € My 4 be such that
(1) f is monic,

(2) f is separable,

(3) disc(f) = disc(Q).
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Then,
[{B € O(N,Fy) | £(T) = det(1 — TB)}| > ¢V*/>=N,

with an implied constant independent of N .

Proof. Let A be a semisimple element of SO(N,F;) with reversed characteristic
polynomial equal to f (the existence of such an A is justified by Proposition 14). Let

A={BeO(N,Fg) |det(1-TB) = f}.
If B € A, its Jordan decomposition can be written
B =2b8y8, BB,=28,B;, B B, ¢ O(NaIFK)a

with By semisimple and B,, unipotent.

In particular det(1 — TBy) = det(l — TA), thercfore the set of matrices By
satisfying det(1 — T'Bs) = f(T) contains the set of all semisimple matrices which
are SO(N, F¢)-conjugate to A. Hence the lower bound

|A| 2 [{(Bs, Bu) | By SO(N.Fg)-conjugate to A, By, € (Cson)(Bs))u(Fe)}

e

where Cso(n)(Bs) (resp. (Cson)(Bs))u) denotes the centralizer of By, seen as an
algebraic group, under the action of SO{N } (resp. the unipotent part of that central-
izer).

As already mentioned we cannot guarantee that the algebraic group Cson)(A) is
connected and we will denote Cso () (A)Y its (connected) identity component. Then
we argue as in [Chav, proof of Theorem 3.5] to obtain

|{Unipotent elements of (Cgo(n)(4))°([Fe)}| = £4m(Cson ) (AN =1k(Coo (v (4D
From [Bo, 11.12.2, prop.], Cson)(A4)? is a maximal torus in SO(N) (indeed

SO(N) is a reductive group and from the separability assumption on f we know A
1s regular semisimple), thus

rk(Csow)(A4))° = tkSO(N) = %

This finally yields the lower bound:

A| = £4m(Cson) (4)°=N/2 [SON.Fe)|
| Csow) (ANEFL)]

Moreover a theorem of Steinberg asserts that the group of connected components
of an algebraic group is always a subgroup of its fundamental group (see [SpSt, 1I
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Corollary 4.4]). We deduce that Cson)(A4) has at most 2 connected components.
Adapting the result of Nori (see [No]) used by Chavdarov ([Chav, p. 160]), we obtain

|Csovy(A)[Fe)| < 2(£ + l)dim(cso(N)(A))O_

Thanks to the formula (see, e.g., [Art, p. 147]) on the cardinality of the special
orthogonal group over IF; in the even dimensional case, we deduce

(£ — DVN=D2 < |SO(N, Ty)| < LN V=72,
Combining those last inequalities, we get
|A| > E_N/Z(E . 1)N(N—1)/2’

thus |A| > £N ?/2-N , where in these last two inequalities the implied constant does
not depend on N . [

The purpose of the last result we give in this section is to relate the cardinalities
of a given conjugacy invariant subset of O(N, Fy) and of the set of corresponding
reversed characteristic polynomials in My ¢. To that extent its main interest lies in
how we can apply it to our sieving problem. The arguments being very close to those
used in the proofs of Theorem 15 and Proposition 14, it seems fair to include it in this
“independent section”.

Lemma 16. Let N = 2 be an integer and £ be an odd prime number. Consider a
subset ®y with cardinality 8y of My, ¢ such that the elements [ € Oy satisfy

(1) f is monic,
(2) [ is separable,
(3) disc(f) = disc(Q),

(4) either f(—1) is a nonzero square of Fy for every [ € @y, or f(—1) is a non
square for every f € ©y.

Moreover let eél), 8%2) be two elements of Wy each equal to =1 and such that 8&2)

“is” the residue class in ¥} / IF;Z defined by condition (3) above and Lemma 9. Let

& = {g € O(N, ) | (det, Nepin)(g) = (65,65, det(l — Tg)wa € Op}.

If 8¢ = |©y|, we then have

1 )Nrcd(Nrcd_l)/z

8| Q(N,TF —1>§£—Nred/2(1——
0| S2(N, Fe)| e T 1
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At first the above statement can look ambiguous as the integer N4 18 not entirely
defined by N but also depends on the matrix we consider. The point is that once the
determinant is fixed (which is the case in the lemma since we restrict ourselves to
matrices with determinant sél)), there is only one integer N4 that can correspond to
N, so that, a posteriori, the assertion of the lemma makes sense.

Proof. Let us first consider the auxiliary set

{h € O(Nrea, Fe) | (det, Nopin)(h) = (1,6), det(1 = Th) = det(1 — Th)rea € Op},

&)
where Ef) is a fixed element of {1,&¢} (which still denotes a set of representatives
for B/ ]FEX2 ). We can trivially inject the set (5) in ®; via the map /& +— h ®& u where
u is any representative of a fixed class of O(N — Nyeq, [Fp) modulo (N — Nieq, Fp)

(that class corresponding to the couple (x, v) € {=£1} such that (1, égz)) X (x,y) =

(8(1), 8(2))) and the quadratic structure on the corresponding (N — Nreq)-dimensional
¢ % q P

vector space being chosen with discriminant 1. Imbedding (5) in ®, that way we
end up with a N,.q4-dimensional quadratic space having the same discriminant as the
ambiant N -dimensional quadratic space (V, Q). Moreover, from a fixed /4 in the
set (5) we construct (Q(N,Fyp) 1 Q(Nq.Fp)) distinct elements of ®,. Therefore,
following the same idea as in [KoZeta, Lemma 7.2], we can now compute a lower
bound for 8 involving &;. First, we have

Q. T "
“IQ(N.. F O(Nrea, F det, Nspin = {1, )
N Fo) g@juge (Neea. Fe) | (det, Nspin)(g) = (L&)

|
Teoe det(1 - Tg) = £},

Thanks to the assumption (3) we know that Proposition 14 can be applied and
hence that each summand of the right-hand side of the above inequality is nonzero.
More precisely each of these quantities is equal to the cardinality of the set A (de-
pending on the polynomial f) of the proof of Theorem 15. Following that proof and
using the above inequality, we get

by > Motz IZVEDL LY |SO(Npea, Fo)|
| = |
f€8;

|2(Nrea. Fe) Cso,e) (Af)Fe)|

where, for each f € Oy, the matrix A 7 1s the semisimple element whose existence
is guaranteed by Proposition 14 , Cso(n,..) (A7) denotes the centralizer of Ay under
the action of SO(Nreq) and dy is the dimension of the identity component of that
algebraic group. The proof of Theorem 15 yields

|Csovey) (A7)] < 20 + 147
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Now the derived group Q2(Npeq, F¢) has index 2 in SO(Nyq, Fy) so we have

B¢
2 }Vrcd/2
|Q(N.Fo)| Z 2(£ + 1)df

Thus
GO EY > M2 3 (1 L)df
’ - - |
f€0y,
N, /2 1 ]\l’recl(]\[red_l)/z~

e st [ PR p—— By,

( {+ 1) ¢
since we have dy < dim SO(Nrq) = Nyeg(Nyea — 1)/2. O

Remark. One can wonder why, in all the computations performed in this section,
we always give uniform bounds (with respect to the parameter N) for the quantities
studied rather than asymptotic estimates which, most likely, would have been easier
to establish and would suffice for the argument needed in the proof of Theorems 1
and 18. This is because we have in mind another possible application of the same
kind of sieving method to the study of L-functions of families of elliptic curves over
function fields (it 1s the main subject of [J]). In that work we obtain a lower bound
for the proportion of elliptic curves with irreducible (up to trivial factors) L-function
(seen as a Q-polynomial) when the curve varies in a suitable algebraic family. That
bound is uniform with respect to the common conductor of the family (provided the
related estimates for the local densities involved are uniform as well).

3. Statement and proof of the main result

In this last section we state the main result of this paper which generalizes Theorem 1
in two different ways. To that purpose we show that for the two different kinds of
group considered, Proposition 6 and Proposition 7 hold. Then, to derive our results
from the large sieve inequality (2), we need to find a suitable lower bound for the
constant 7. That issue, in the case where the groups involved are orthogonal groups,
can be handled thanks to the results of Section 2 and to a lemma proved in [J]. In the
other case we consider (G = GL(n, A), G8 = SL(n, A)), the question of finding a
lower bound for H turns out to be easier, as we do not have as many constraints on
the matrices considered as in the former case.

Let us first explain the additional terminology needed to state our result in full
generality. Indeed, we need not (as Theorem 1 would suggest) restrict ourselves to
the study of the irreducibility of characteristic polynomials of “random matrices”, but
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the sieve setting we are working with enables us to study the Galois group of those
@Q-polynomials (see [KoSieve, Chapter 7] for the analogous study for the groups
SL(n,Z) and Sp(2g,Z)). The Galois group of the (splitting field over Q of) the
characteristic polynomial of a matrix of GL(n, Z[1/%]) can a priori be as big as
the whole symmetric group &, but in the case of orthogonal matrices, (1) imposes
conditions on the roots. If we denote N = n + m and Neg = 2[(n + m)/2],
then the Galois group of (the splitting field over Q of) the reduced characteristic
polynomial of a matrix g € SO(n, m)(Z) is contained in the group denoted Wy,
which can be seen as the subgroup of Gy_, acting on N,.q/2 pairs of elements of
11,2, ..., Nraq}. However, as noticed in [J, Section 4.1], the biggest group the Galois
group investigated can be equal to might be smaller than the full group Wy, ,. Indeed,
depending on the sign of the functional equation (1) and on the fact that the underlying
quadratic form splits over @ or not, the Galois group we study might be included a
priori in a subgroup of index 2 of Wy, _,. More precisely, denoting by p the natural
projection obtained by identifying each of the N..q/2 pairs with a single letter, the
group Wy, fits the exact sequence

- {:l:l}Nred/z — Wy, _# @de/z — 1,

whereas the “right” maximal Galois group might only be the subgroup of index two
W;,: ., of Wn,, fitting the exact sequence

1 - {:lzl}Nred/z—l . W];};Ed $ @Nred/z _— 1.

Remark. The group Wy, , is the group of all permutations of N.q/2 pairs of letters
combined with all possible sign changes of the corresponding pairs of letters. Its
subgroup WAJ,: _, is the group of permutations of Nreq/2 pairs of letiers combined with
evenly many sign changes among the pairs. Those two groups correspond respectively
to the Weyl group of the root system of type By, , and Dy,,.

Because of that ambiguity on what the maximal Galois group for the splitting
field of det(T — Xy )rea Over Q@ should be if Xz € SO(n, m)(Z), we define a notion
of “small” Galois group (see [J, Definition 4.2]) as follows:

Definition 17. With notation as above let M be a matrix in GL(n, Z[1/P]) (resp.
SO(n,m)(7Z)). Let Ky be the splitting field over @ of the reduced characteristic
polynomial det(7 — M ).q. We say that det{T — M ).q has small Galois group if
Gal(K s /Q) is a proper subgroup of &, (resp. WAJ,: )

Note that, as pointed in [J, discussion following Theorem 4.3], the group WAJ,: i
is a transitive subgroup of @y _,. In particular the fact that det(7 — M );q does not
have small Galois group implies that det(7 — M )eq is Q-irreducible.
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We can also state a generalized version of the second part of Theorem 1. To do
s0, it is convenient to use (some of the basics of) the language of logic (as done
in [KoDef]). Recall (see Section 2 of loc. cit.) that a rerm in the language of rings is
simply a polynomial f € Z[x,..., x| and that an atomic formula v is a formula
of the form f = g where f and g are polynomials (non necessarily in the same
variables). Now if ¢ is an atomic formula, A is a ring and if we assign the family of
elements a = (a;) to the set of variables involved in the definition of ¢, we say that
p(a) is satisfied in A and we denote

AF p(a),

if the equality which “is” ¢ is satisfied in A when the variables are given the values «; .
From atomic formule we can build the so-called first order formule by induction,
using the symbols —, Vv, A and the quantifiers 3, ¥V (we refer the reader to loc. cit. for
examples of quite complicated formul® that can be obtained in this way). Next, if
@(x) is a first order formula with respect to the variables x = (x1,...,x,) and if A
is a ring, then we denote

p(A) ={x € A" | A F p(x)}.

With such a terminology, we can state the main result of this paper:

Theorem 18. With the above notation (as well as those used in the introduction) and
assuming that the first condition of Proposition 5 holds and thatn +m = 6, nm # 0
(resp. n = 3} in the case G = SO(n,m)(Z) (resp. G = GL(n, Z[1/P])), we have
the following.

(i) There exists a 3 > O such that for all k = 1, we have

P(det(T — Xy )rea € A[T] is reducible or has small Galois group) < exp(—psk),

with B3 depending only on the underlying algebraic group G/Q, on the generating
set S and on the sequence (p;); (i.e., on the distribution of the &). Moreover the
implied constant depends only on G and the density of & in the set of all rational
prime numbers (in the case where G = GL(n, Z[1/P]}).

(1) Let ¢ be a first order formula in the language of rings with respect to the
variables x = (xi j)1<i,j<n (Where N = nif G = GL(n, Z[1/P]) and N = n+m
ifG = SO(n,m)(Z)). Set

As = {Zprime | ‘(—-gp(Fg)) N Yg‘ . |G§'|_1 2 5},
and assume

there exists 6 > O such that Ag has strictly positive Dirichlet density, (6)



Vol. 85 (2010)  The large sieve and random walks on left cosets of arithmetic groups 679

then there exists a B4 > 0 such that for all k = 1, we have

P(A4 E ¢(Xp)) < exp(—pak),

with the same dependency for B4 as for B3 and the same dependency for the implied
constant as in the previous case.

Remarks. (i) If G is the subgroup of integral points of a special orthogonal group,
the fact that we emphasize (e.g. in Theorem 1) the case where the quadratic structure
is hyperbolic (i.e., the signature of the corresponding form is (n,n)) comes from
the first condition of Proposition 5. Indeed, in the hyperbolic case, that condition is
always fulfilled (as we will see in Lemma 19). Another (somewhat artificial) way to
ensure we can find in the general case a relation of odd length among the elements of
a generating set S could be to add the identity element to S. Doing so we would end
up with a “lazy” random walk for which we would have at each step a probability
pia > 0 to stay at the same point.

The same problem occurs in the case where G = S1.(2, Z[1/£]) (and this explains
why this case is omitted in the statement of Theorem 1); indeed, while the periodicity
condition is always fulfilled for any generating system S of SL(n, Z[1/P]) if n = 3
(as will be proved in Lemma 20 (ii}), there are examples of such sets .S for which
that property does not hold in the case n = 2 (see [KoSieve, Section 7.4] for further
details).

(i1) The fact that the Galois groups we investigate can be embedded in the Weyl
group of the underlying algebraic group (at least in the split case) seems to be a quite
general fact (it is proven by Kowalski for SL(») and Sp(2g) in [KoSieve, Chapter 7]
and the case of (the split form of) the exceptional group Eg/Q is treated in [JKZ]).

(ii1) In the case of orthogonal groups, the ambiguity as for what the maximal
Galois group should be might appear as a bit unsatisfactory. That issue is addressed
in [J], Remark (iv) following Lemma 4.6. The point here is that figuring what the
“right” maximal Galois group (Wy,, or WK,: _,) 1s depends on the way the quadratic
form considered splits modulo £ (where many values of £ are to be considered). That
feature is particularly tricky because a nonsplit quadratic form over ( might give rise
after reduction to a split quadratic form over IF; for every odd prime £ (see Remark (iv)
following LLemma 4.6 in [J] for an example).

Before getting into the details of the proof, let us give a few more remarks on part
(i1) of the statement. First, for a fixed first order formula ¢, the set

(—p(@Fe)) N Yy

(recall that ¥, = py (oz)Gf ) in the above statement is in fact the sieving set ®; with
index £, in the notation of (2) and of the appendix. Next, to deduce the second part
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of Theorem 1 from (i1) of Theorem 18, we choose for ¢ the formula

px): \/ Wyt =ax

1<i, j<N

Thus, assuming Theorem 18, proving the second part of Theorem 1 is equivalent
(once shown that the hypotheses of Proposition 7 are satisfied for the groups we study)
to the fact that (6) holds for that choice of ¢.

Finally, let us give examples of situations (i.e., choices of ¢) for which (6)
holds/does not hold: consider for instance the case where ¢(IFy) is the set of IFy-
rational points of a subvaricty V/IF; with codimension = 1 in G. Then (6) clearly
holds since |V (IF¢)| is trivially bounded by C£9™ Y where C is an absolute constant.
In the opposite direction, if we investigate the probability with which the trace of
a matrix in ¢ G¥ is sum of two squares, we quickly see that our method does not
yield any quantitative information at all: indeed, if £ is an odd prime number, any
clement in [F; is the sum of two squares (a quite classical application of the pigeonhole
principle) so that (6) is false for the choice

N
@((x;,7)) : Ja, 3b, in,i =a? + b2,

i=1

The remaining sections are devoted to the proof of Theorem 1 and its generalization
Theorem 18. In order to handle the case of orthogonal groups, we first review some
useful facts concerning certain quadratic modules over Z.

3.1. Quadratic modules over Z. Let n,m be integers such that # + m = 4 and let
(M, Q) be a quadratic module over Z with signature (n, m). The notion of spinor
group we reviewed at the beginning of Section 2 can be extended to the case of
quadratic modules (see [HM, Section 7.2A]): in that more general case, we still have
a morphism

Spin(M) — O(M),

the image of which is denoted $2(M) and the kernel of which is 1 (see [HM,
Theorem 7.2.21]). In other words, these groups fit the exact sequence

| — {1} — Spin(M) — QM) — 1, 7)

where (M) can once more be seen as the simultaneous kernel in O(M) of the
determinant and the spinor norm (as defined in [HM, p 419]). In the arithmetic
context we are interested in we will respectively denote by O(n, m)}(Z), SO(n, m}(Z)
and Q{(n,m)(Z) for O(M), SO(M) and Q(M). Moreover, it will be convenient
sometimes to see the first two of these groups as the groups of integral points of the
algebraic groups Q(n, m)/Q and SO(n, m)/Q respectively. The properties we need
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Q(n,m)(Z) to verity, in order to apply Propositions 6 and 7 are contained in the
following lemma

Lemma 19. (i) For integers n, m such that n + m = 4, we have

(1) If d = 1 is a squarefree integer whose only prime factors are outside a fixed
finite set §, then the reduction modulo d : Q(n,m)(Z.) — Qn,mWZ/d7Z) is
onto.

(2) Property (1) holds for Q(n,m)(Z) with respect to the family of its congruence
subgroups (ker(pd: Qn,my(Z) — Q(n,m) (Z/dZ)))le.

(1) If in addition the quadratic module considered is hyperbolic (in the sense of
the introduction, in particular n = m), and if n = 3, we have

(1) Q(n,n)(Z) is finitely generated.

(2) For every symmetric generating system S of Q(n,n)(Z.) there exits a relation
of odd length c inside S:

§51...8. =1, s € 8.

Proof. For (ii) we use the useful elements of the automorphism group of O(n, n }(Z)
called Eichler transformations (see [HM, 5.2.9]). As the ambiant quadratic module
(M, Q) we consider here is hyperbolic, we know from Theorem 9.2.14 of loc. cit. that
these transformations span the subgroup Q(»,»)(Z). This proves (ii) (1). Moreover
the same result asserts that the unitary elementary transformations E; ;(1), where
i # j run over a finite set of indices, span the group Q(n, n)(Z) and satisty the
commutator relation
[Ei,j (1) 2 Ex (D] = E; i (1),

if7, j, k, [ are distinct and run over the same (suitably chosen) set of indices (see [HM,
Theorem 9.2.14]). Hence Q(n, n)(7Z) equals its own derived group. Now to prove
(i1) (2) let us assume, by contradiction, that there is no relation of odd length among
a fixed symmetric generating system S of Q(n,n)(Z) and let F(S) denote the free
group generated by S. The morphism

F(S) = {£1}

s —1,

induces a surjective morphism Q(n, n)(Z) — {+1}. Thus a quotient of Q(n, n}(Z)
is isomorphic to {+1}; this contradicts the fact that Q(n,n)(Z) is its own derived
group.

For (1) (1) we first use strong approximation to justify the surjectivity of the re-
duction

7yt Spin(n, m)(Z) — Spin(n, m)(Fy),
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where p runs over the set of all prime numbers which do not lie in a fixed finite set §.
Indeed, using the fact that the group Spin(n, m)(R) is not compact (the algebraic
group Spin(n,n) is said to be of non compact type), we can apply Borel’s Density
Theorem (see [PR, Theorem 4.10]). Now Spin(n, m }(Z ) is a Zariski dense subgroup
of the simply connected algebraic group Spin(n, n)/Q, so strong approximation can
be applied; more precisely, thanks to [PR, Theorem 7.15], we deduce the surjectivity
of 7, provided p remains outside of a finite set § of prime numbers.
Then, using (7), we can consider the diagram with exact rows

] ——{+1} —— Spin(n,m)(Z) Qn,my(Z) — 1

LR

1 —— {+1} —— Spin(n, m)(FF,) —— Spin(n,m)(F,)/{£1} — 1.

If p is a prime not lying in §, the two left vertical arrows of the above diagram
are onto (as we have assumed to be working only with odd prime numbers). Then, if
we define the last vertical arrow in such a way that the diagram commutes, this map
must be onto as well. Moreover, it is easily seen that this last arrow also corresponds
to the usual reduction modulo p

Qn,m)(Z) — Q(n,m)(F,).

Now, for a squarefree integer d without any prime factor in §, we invoke Goursat—
Ribet’s lemma (as stated in [Chav, Proposition 5.1]). Indeed, for p ¢ §, the group
Q(n,m)(F,) has no non central proper normal subgroup and the group Q(n, m)(F,)
modulo its center is a simple group. So, for such a d, we have a surjective morphism

Qn,mW(Z) — Qn,m\{(Z/dZ).

Finally, for (3), we can apply [HV, Theorem 8, p. 23], thanks to which we know
that, as n + m = 4, the group SO(n, m)(R) has Kazhdan’s Property (T). Combining
this with [HV, Corollary 5 to Theorem 4, p. 33] we deduce first that SO(n, m }(Z.)
has Property (T) and then that Q(n, m){Z) also has Property (T). The weaker Prop-
erty (7) for Q(n, m)(Z) withrespect to the family of its congruence subgroups follows
immediately. O

Remark. In the above proof, we use the notation Spin(n,m)(IF,) or Q(n,m)(IF,)
just to keep track of the indefinite quadratic form over Q giving rise to the matrix
groups for which we then take the reduction modulo p.

3.2. Proof of the main theorem. Recall that we are working out the two following
cases.
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* Either, for n + m = 6 and with notation as above, G = SO(n, m)(Z), G8 =
Qn,m)(Z),and " = SO(n,m)(Z)/ 2(n, m)(Z), in which case, these groups fit the
following commutative diagram with exact rows and surjective lefi vertical map

| —— Qn,m)(Z) — SO(n,m)(Z) r—>1
| —— Q1 m)(Fy) — SO, m)(Fy) —= T — 1,

provided p ¢ § (see Lemma 19), and where I', denotes the abelianization of
SO(n, m)(Fy,).

* Or, for n = 2 and with notation as in the introduction, we set G = GL(n, Z[1/P]),
G¢ = SL(n,Z[1/P]), T = Z[1/P]*, in which case these groups fit the following
commutative diagram with exact rows

| ——=SL(n, Z[1/P]) ——=GL(n,Z[1/P]) ll 1
| ——= SL(n,Fp) GL(n,Fp) Fy 1L

provided p & &#. The question of the surjectivity of the downward arrows 7, (which
still denote reduction modulo p) is easily answered here. Indeed, it is straightfor-
ward to check that GL(n, Z) — GL(n,F,) is surjective and the fact that its restric-
tion SL(n,Z) — SL(n,F,) is also surjective is well known (see, for instance [Sh,
Lemma 1.38] where the surjectivity 1s proved in the more general case of the reduc-
tion SL{n, Z) — SL(n, Z/d 7)) modulo any positive integer d ). As we want to apply
Propositions 5, 6 and 7 to this case, we need the following analogue for the points of
Lemma 19

Lemma 20. (i) For n = 2, we have the following properties:

(1) SL(n,Z[1/P]) surjects onto S.(n, Z./d Z.) for each squarefree d without prime
factors in P.

(2) SL(n,Z[1/P]) has Property (v) with respect to the family of its congruence
subgroups
(ker(pg: SL(n,Z[1/P]) — SL(n. Z/dL})) ;.
where d runs over the set of squarefree integers without prime factors in .
(i) If we suppose n = 3 then, for every symmeftric generating system S of
SL(n, Z[1/P)), there exists a relation of odd length c:

§51...85. =1, s €8.
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Proof. We have just discussed point (1) (1) and (1) (2) is proven in Lemma 4.

For (ii), we note that, as the ring Z[1/] is euclidian, the group SL(n, Z[1/P]) is
generated by the (infinite) set of transvection matrices T;, j (@) (the sum of the identity
matrix and the matrix with all entries equal to zero except for the one in position (7, j )
which equals @), wherea € Z[1/P]  and 1 <i # j < n. Such matrices satisfy the
commutator relation

[7i,(a1), Tix(as)] = Tik(aras),

as soon as i, j, k are pairwise distinct (such a choice is indeed possible since n = 3).
From that equality, we deduce that SL(n, Z[1/P]) equals its own commutator sub-
group. The end of the proof is then exactly the same as for the last point of Lemma 19.

O

We are now ready to prove Theorem 18. Thanks to Lemmas 19 and 20, Propo-
sitions 6 and 7 hold with data corresponding to the two cases described above. To
prove the exponential decrease of the probabilities investigated as k grows, we need
to give a suitable lower bound for the constant

ve(©¢)
"= er* 1 —vp(©g)

where £* is the set of primes in A up to a fixed L. = 1 and A is a set of primes with

strictly positive Dirichlet density that we will make precise in due course.
Both for the conjugacy and the non-conjugacy coset sieve, we have

We shall prove that

> 1, (8)

with an implied constant depending only on » and on the underlying algebraic
group G, for our different choices of sieving sets ®; and groups Gf . Such an
estimate will turn out to be sufficient to prove Theorem 18 (and deduce Theorem 1).
First we note this inequality is quite obvious in the setting of (i1) of Theorem 18
with the choice A = Ag (the hypotheses are chosen purposely for that estimate to
be true). Indeed, in that case, we have ©¢ = (—p(F¢)) N Y, so that, by assumption,
there exists a § > O such that
©e| _
i |
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forall £ € Ag. Then, looking back at (2) and using Proposition 7 as well as the Prime
Number Theorem, we can easily get (i1). Indeed, we have

P(Fy E p(pe(Xp)) forall £ < L) < (1 + L7949 % exp(—nk)) L™ log L,

with an implied constant depending only on n and the density of Az as a subset of
the rational primes. Setting L = exp(—= e T 4) we obtain (ii) of Theorem 18.

Now as far as (1) of Theorem 18 is concerned, the set A we choose is, depending
on the type of group considered, either the set of primes which are not in § (see
Lemma 19) or the complement of # in a subset (with finite complement as we will
see later) of all prime numbers (see Lemma 20). The conjugacy coset sieve enables us
to study the reduced characteristic polynomial of X as k grows. Forafixedo € G
we choose

O = {g € pe(a)Gf | det(T — g)rea € O} ©)

where @y is, for each £, a set of polynomials having imposed factorisation patterns.
Each ©; will be a conjugacy mvariant subset of Y¢. Moreover, in the case where
G = SO, m)(Z) and G& = Q(n,m)(Z), the set ®; can be seen as a subset of
O(n + m, Fy) consisting of matrices with fixed determinant (equal to 1) and fixed
spinor norm.

Whereas the estimate (8) will be derived directly, for suitable families (®;) in the
case where G = GL(n,Z[1/P]), from [KoSieve, Appendix B], the analogue study
for G = SO(n,m)(Z) requires a few additional computations based on the ideas
of [KoZeta, Lemmas 7.1 and 7.2]. The strategy of loc. cit. relies on the fact that
as soon as a few particular conjugacy classes of Wy_,, or WAJ,r (where we keep the
notation Neg = 2|(n + m)/2]) are detected in the Galois group of a polynomial
P € Z[T], the Galois group of P is necessarily isomorphic to the whole group (sce
[J, Lemma 4.4 and Section 4.2]). It 1s well known that such conjugacy classes can
be detected through the study of the factorisation patterns of P (mod £) with £ taking
suitable prime values. As explained in [J, Lemma 4.4 and Section 4.2], it 1s enough
to consider four distinct families (&), three of which are related (via (9)) to a family
of sets of polynomials Q) (for simplicity we will denote in the sequel N = n +m
and Nieg = 2| (n +m)/2]):

(1) Let (:)fgl) be the set of polynomials f in My_, ¢

* which are irreducible if N is odd or which are irreducible with a fixed value
modulo nonzero squares of Fy in —1 and satisfy disc(f) = disc(Q) if N is
even and O(Nieq, Fe) = O(N,Fy) is nonsplit,

* which factor as a product of two distinct monic irreducible polynomials of
degree Niea/2 if N = Nieq is even, O(Nyeq, Fy) is split and £ = 1 (mod 4),

» which factor as a product of an irreducible monic quadratic polynomial and
an irreducible polynomial of degree Nyeq —2 if N = Nyeq is even, O(Nyeq, Fy)
is split and £ = 3 (mod 4).
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(2) Unlike the way the other families of sieving sets are described, we define e®
directly (i.e., we do not define first the set of characteristic polynomials that the

elements of each @,(52) must have).

o If N = Nieq is even and SO(N, [F¢) is a model for the split special orthogonal
group over Fy, we define G)éz) as the set of matrices g € oy Q(N, Fy) such that
det(1 — Tg) = det(1 — T g)ra factors as a product of a quadratic irreducible
polynomial with an irreducible polynomial of degree 4 as well as pairwise
distinct irreducibles with odd degrees.

* Otherwise (i.e., N is odd or SO(Nyeq, Fy ) is a model for the nonsplit orthogonal
group over Fy), we define @EZ) as the set of matrices g € apQ(N, Fy) such
that det(1 — 7'g).q factors as a product of an irreducible quadratic polynomial
with pairwise distinct irreducible polynomials of odd degrees.

(3) Let @ém be the setof polynomials f in My, ¢ with a fixed value modulo nonzero
squares of Fy; in —1, which satisfy disc(f) = disc(Q) and with associated
polynomial 4 (such that f = x™h(x + x~1)) being separable with at least one
factor of prime degree > Nyeq/4.

(4) Let @f{” be the setof polynomials f in My, ¢ with a fixed value modulo nonzero
squares of Fy; in —1, which satisfy disc(f) = disc(Q) and with associated
polynomial /2 being separable with one irreducible quadratic factor and no other
irreducible factor of even degree.

Lemma 21. For 1 < i < 4 we have, with the above notation,

ﬂ >>1
|Q(N, TFy)| ’

with an implied constant depending only on N.

Proof. For (@El))g, let us first consider the case where N = N4 1s even. Itis enough
in the nonsplit case to combine Lemma 12 and Lemma 16. This yields

)

o1 1 (1 2(1+N))(1 1 )N(N—Wz
IQ(N,Fy)| ~ 2N 14 L+1
from which we derive the estimate we want.

In the split case, the estimate we need is exactly the statement of the lemmas 6.5
and 6.6 of [KaL]. Indeed, we deduce directly from loc. cit. that

1
o
[QN,Fe)| ~ 4N
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Now if N is odd, we invoke another result of [KaL], namely Lemma 6.4, from
which we get

1
o 1
QN Fp)| ~ 2N —2°
for £ = max(7, (N — 1)/2).
The estimate for ®4(32) follows directly from [J, Lemma 4.6] which is itself deduced
by combining several lemmas from [KalL, Section 6].

Finally, for (@és)) ¢and (@é“)) ¢, itis straightforward to verify that the combination
of Lemma 13 and Lemma 16 yields the estimate of Lemma 21. O

Next we turn to the case of the conjugacy coset sieve for ¢SL(n, Z[1/P]). In that
case, we have, for each £ & #, Gf = SL(n,Fy) and the sieving sets we choose are
still given by (9) with this time, for any conjugacy class ¢ € &, whose elements have
a decomposition in disjoint cycles involving n; cycles of length 7 for 1 <7 < r,

@g’c = {f € IFg[T] | f has factorisation type ¢ and f(0) = det{p¢(®))},

where we say that a monic separable polynomial f € IFy[T'] of degree r = 1 has
factorisation type ¢ € &, if f factors as

f=h Tt

where f; is a product of »n; distinct irreducible monic polynomials of degree ¢ and
ding=r.

In the case of the trivial left coset pg(e} = 1, the estimate we need is given by
Kowalski in [KoSieve, Appendix B, Lemmas B.2 and B.5]. For the case of the general
left coset, it 1s straightforward (by performing the obvious change of variable sending
oo (@) to 1) to verify that the same estimate holds, so that we get the following result:

Lemma 22. With the above notation, we have

|®Ec
— > 1,
ISL(n, F¢)|

as soon as £ > 16n2, with an implied constant depending only on n.

Note that, to perform our sieve, the above statement suggests we should remove
the primes smaller than 1612 from A but this does not affect the final result as the
Dirichlet density of A remains unchanged.

Now we use the inequality

P(det(T — Xy )req has small Galois group) < Z P(Gal(det(T — X)) net = @),
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where O is the conjugacy class of Whn, (resp. ©,) determined by the family @ =
(©;); and where the sum runs over the family (@), ;<4 (resp. (Oc), )il G =
SO(n, m)(Z) and Nyeq = 2|(n + m)/2] (resp. G = GL(n, Z[1/P]).

Looking back once more at (2) and applying both Proposition 6 and the Prime
Number Theorem, we obtain, for the two types of groups imnvestigated

P(det(T — X¢)rea has small Galois group) < (1 4+ LC42/2 exp(—pk))L ' log L,

with an implied constant depending on » and the (stnctly positive) density of A in
the set of all rational primes. If we set &= exp(3 7 +2) then choosing for 83 any

positive real number smaller than yields (1) of Theorem 18.

3d +2
3.3. Proof of Theorem 1. As a conclusion, we explain how to deduce Theorem 1
from Theorem 18. Notice first that the first part of Theorem 1 is a trivial consequence
of (i) of Theorem 18. As explained in the previous subsection, the only thing we need
to prove to get the second inequality of Theorem 1 is that the first order formula

px): \/ .y =x,

1<i,j<N

yields sets ®p = (—w([F g)) N Y, (indexed by a set of primes A to be determined)
such that |®¢| - |G/ |71 > L.

For both the case where G = SO(n,m)(Z) and G = SL(n, Z[1/]), the above
sets ®, can be expressed in the following way

Op = {g = (gi.j) € agGég | gi,;isnotaquarein A/(£) = [y},

with notation as in Theorem 1 and where Ggg denotes Q(n,m)(Fy) or SL(n,Fy)
depending on what is . The element oy = pg (o) determines, in both cases, the left
coset of Gy (with respect to Gf } which contains ®,.

We first consider the case where G = SL(n, Z[1/P]) (so G&? = SL(n.Fy)
for £ & P). As a representative of the left coset of GL(n,Fy) consisting of the
matrices with fixed determinant say dg, we can choose the diagonal matrix oy given
by a¢ 1,1y = dgand ag ;i) = 1ifi = 2. Using the Legendre character (7) to detect
squares, we want to evaluate

s L (%)

g€y SL(n,Fy)
g; ;j#0

Thus to obtain the inequality |®¢||SL(n,F¢)|~! > 1, it is enough to prove

Z (gléj) < (4-1/2,

g€(aeSL(n,Fp)); 5
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where we denote (¢ SL(n,Fy));,; the matrices of «;SL(n, F¢) with a nonzero entry
in position (7, j), and where d equals n? — 1, the dimension of the algebraic group
SL(n).

Now, for each g € a¢SL(n,[Fy), there exists i € SL(n,F) such that g = agh.
The (i, j)-th entry of g is given by

gij = ) hhe; = @i,
k

since the matrix «y is diagonal. So it is enough to prove

O (i) hl_J) gd—1/2
( ¢ ) 2 (/z = ’

heSL(n,F¢); ;

which can also be written in the following way:

hi,j
()<

hESL(n,]Fg)i L

This inequality is proved in [KoSieve, Appendix B, Proposition B.4]. Thus (6)
of Theorem 18 (i1) holds if we choose for Ag the complementary of & in the ra-
tional primes, and we deduce the second part of Theorem 1 in the case where
G = GL(n, Z[1/2]).

Finally, in the case where G = SO(n,m}(Z) (i.e., Gf = Q(n,m)(F;)), things
are slightly different as this time, the group 2(n, m)(IF¢} cannot be seen as the group
of Fy-points of an algebraic group. In order to end up applying the same techniques
as above, we need to relate for fixed indices 1 < i, j < n + m the cardinality of the
sieving set

Op = {g € agQ2(n,m)Fy) | g;,; is a square in F¢},

to the cardinality of
©,° = {g € SO(n,m)(Fy) | gi,; is a square in Fy}.

To that purpose, we first make a special choice for the basis thanks to which we
identify the elements of SO(n, m)(F¢) with their matrix representation. Indeed the
surjectivity of the spinor norm (see Section 2) onto {41} enables us to choose a vector,
say e1, such that Ngin(re; ) = —1, where 7., denotes the reflection with respect to
the hyperplane #., which is orthogonal to e;. We can consider the restriction of the
quadratic form Q to #,,. This restriction is still non degenerate ([OM, p. 139]) and
we can choose the second vector e; of the basis we are constructing in such a way

. . He .
that the corresponding reflection ., of #,, has spinor norm 1 (see [KaL, Proof of
Lemma 6.3]). Then we can complete the basis of #,., with vectors {e3, ..., es1m} I
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: 4 . . : :
such a way that the matrix of refl written in the basis (ep, .. ., €,45,) has diagonal

coefficients (—1,1,...,1) and zeros outside the diagonal. Finally we can extend

r;;j “l to the whole ambiant space by making it act trivially on e;. We get a reflection
Fe, of the whole space. Now the product re, 7e, is an element of SO(n, m)(F¢) with

. 7 .
spinor norm —1 (note that Nspin (re,) = Nepin (7, *)) and the matrix My, o, of 7, 1,

in the basis (¢;); is the diagonal matrix with M, .,(i,i) = —1ifi = 1,2 and
M, e, (i, 1) = 1 otherwise. Now consider the involution
Op — O
g Me o8

where ¢ is any representative of the left coset of SO(n, m)(IFy) consisting of elements
with spinor norm —1 and

©; = {g € (ee)Q(n,m)(Fg) | g;,;is a square in Fy}.

We have (M, ¢,8)i,; = —&i,; if j = 1,2 and (M,,¢,8)i,; = gi,; otherwise.
So, for primes £ = 1 (mod 4), g; ; is a square in [Fy if and only if (M, ¢, 8)i,; 1S a
square as well. For such primes we deduce that

19;°] = |0¢] + |©F] = 2|0q].
So

2|Q(n,1n)(]Fg)| 2 (1 T (gTJ))

geapQ(n,m)(Fy)
8i,j#0

:4|sz(n,;)(m)|g 2. (1+(gi£j))

€S0(n,m)(F¢)
gi.; 70

: (1+ (%))
— > 1+ (=L)),
20806 mEl | e {
gi.; 70

as soon as we restrict ourselves to primes such that £ = 1 (mod 4).

To deduce from the last inequality that | @ ||Q2(n, m)(F¢)| ' > 1 (with animplied
constant depending only on » and ), we use the exact same argument as in the
previous case (where the finite group involved was SL{#, F¢)). Indeed, we can now
see the sum investigated as a character sum over the [;-points of the geometrically
irreducible variety SO(n, m)/TFy.

So we can choose A s = {primes congruent to 1 modulo 4} (which has Dirichlet
density 1/2) and then apply once more (ii) of Theorem 18 to get the second part of
Theorem 1 in the case G = SO(n, m)(Z).
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4. Appendix. Coset sieves

The purpose of this appendix is to explain the role that the large sieve plays in the proof
of Theorem 18. We give here the full statements with proofs of the different kinds of a
priori estimates we need to get the kind of explicit upper bounds of Theorem 18. The
results we expose here are very much in the spirit of [KoSieve] (especially Section
3.3 of loc. cit.) and sometimes, we only recall some results of [KoSieve]. Moreover
in the last subsection, we give self-contained versions of these statements in order to
make it possible for the reader to follow the proof of Theorem 18 without having to
get too much involved in the details of the sieving machinery.

4.1. The general framework. Our general sieving context is that of the coser sieve.
A general description of that sieve goes as follows: we suppose we are given a discrete
group G with a normal subgroup G¥ such that the quotient I' = G/G¥ is abelian.
Moreover, we suppose that there exists a subset A of the rational primes such that,
for any £ € A, we have a surjective group homomorphism

pe: G — Gy,

where Gy 1s a finite group.

That is, of course, a very natural generalisation of the reduction modulo £ mor-
phism from 7 to 7 /7. We emphasize here the fact that the above data is really all
we need (o set the sieve for cosets that we apply (and this is really the strong idea
underlying [KoSieve, Chapter 3.3]). All the framework we build from there, comes
from “natural” deductions. First, we denote

G = pe(G¥)

for £ € A. That subgroup is normal in G; because G¥¢ is a normal subgroup of
G and, since for every £ € A, the morphism p¢ is onto. Now, all these groups fit
the following commutative diagram with exact rows (such a diagram can already
be found, in a geometric context, in [Chav, Theorem 4.1], and is extensively used
in [KoZeta]):

1 G & I=G/G% — =1 (10)
1 G2 Gy —%>T; = G¢/GE —> |

where the surjective morphism pr, is defined in such a way that the diagram commutes.
In both rows, the quotient map is denoted ¢, in order to avoid the introduction of an
additional notation.
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An important feature of that sieve setting, in view of the proof of (1) of Theorem 18§,
is that each left coset «G¥¢ of G (« being any fixed element of G) is conjugacy
invariant. This comes from the fact that the quotient I' = G/G?¥ is an abelian group.

We now fix an element o € G, and, use, from now on, the upper index * to denote
the set of conjugacy classes of the (conjugacy invariant) set considered. The two
following sieve settings (Y, A, (p¢: ¥ — Y¢)) will be useful for our purpose: either

c Y = @G, Y, = (ps (oe)Gf W and p, also denotes the restriction (which
remains surjective) ¥ — Yy, for any £ € A (this will be referred to as the
conjugacy coset sieve); or

e Y = oG8, Y, = pg(a)GEg and p, also denotes the (surjective) restriction
Y — Yy, forany £ € A (this will be referred to as the non-conjugacy coset
sieve).

As we doin the introduction, we assume we are given a probability space (W, X, P).
The random walk { X} we are interested in (see the introduction again), can be seen
as an application on W with values in ¥ (whatever choice we make for the set ¥
among the two possibilities above). For each &k, we end up with a triple (\WV, X, P).
Following Kowalski’s book [KoSieve], let us denote by £* (the prime sieve support)
the set of clements £ € A that are smaller than a fixed integer L = 1. The large sieve
method we use here consists in giving, for any family ® = (®;) of subsets of ¥, (the
sieving sets) indexed by A, an upper bound for the probability

P({x € V| pe(Xp(x)) & ©p foralll € £7}).
For a matter of convenience, we will rewrite this probability in the standard way:

P(pe(Xy) & @ forallf € £¥).

We need to make precise the meaning and the definition of the constants A and
H appearing in the fundamental inequality 2 (the constant A is sometimes denoted
A(Xy, £*) when we want to emphasize the dependency on the parameters). From
now on, we will assume we are given a probability density v, on Oy for any £ € A;
then the constant /4 can be taken to be equal to

ve(Q¢)
"= E%:* 1 — v (©)

To define the large sieve constant A(Xg, £*), we should first emphasize that the
central issue, in order to get a useful upper bound from (2), is to find a suitable basis
for the space L2(Y;, v¢) which is the complex Hilbert space with associated inner
product (defined for C-valued functions f and g on Y):

(fig) =D v f(gk).

yeYy
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It B¢ denotes an orthonormal basis of that space containing the constant function 1
and if B; = By \ {1}, then, for any square integrable function #: W — C, the large
sieve constant A(Xg, £*) is defined as the smallest constant A satisfying

2 2

led™ pe B}

2

[p B(@)p (o (Xe (@)))d P()

<A L B@)]dP(),

which can also be written, denoting by E(X ) the expectation of a random variable X,

S5 ER - wlee (X)) < AE(B).

tel” peB]

The proof of the inequality (2) as we state it can be found in [KoSieve, Proposi-
tion 2.3]. To find an upper bound for A{(X%, £*), we use (see [KoZeta, Section 5]
for an analogue given in a geometric context)

A< g max 3 Y (W)l an
Ltel* /e B VeZ* peBy

where the W(g, ¢’) are the “exponential sums” given by

Wp, ") = E(p(pr (Xe))e' (e (Xk))). (12)

Obviously the usefulness of (11) lies in the fact that it now suffices to give estimates
for the individual sums W(g, ¢’) to deduce an upper bound for the large sieve constant.
In our context where the sets Y are left cosets in finite groups, it is natural to use the
irreducible characters of the finite groups G¢ in order to construct a suitable basis 8By.
Moreover, that explains why it seems fair to call the W(p, ¢’) exponential sums.

4.2. Exhibiting orthonormal bases. In what follows, we give the description, for
cach £ € A, of the basis B8, we need (note that we need to handle both the conjugacy
coset sieve and the non-conjugacy coset sieve).

First, werecall the following lemma due to Kowalski (see Lemma 3.2 in [KoSieve])
in which a basis for L2(Y;,vg) is described in the case of a conjugacy coset sieve
(we recall that in that case, Yy = (pg{) Gé” ¥) where the density v is the uniform

density defined by v (") = |y¥|GF |71
Lemma 23. With the same notation as above, let
or: Ve GY o Tr(m(yh)
a. Y I; yor,

where £ € A and 7 is an irreducible representation of G;. Let L*(Yy, vy) denote
the Hilbert space of complex valued square integrable functions with respect to the
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scalar product

> uH b,

yHeYy

{(f:8) =

|G|
Then we have the following:

(1) If = and t are irreducible representations of Gy,

(13)

0 if migs # Yigs or ¢apy, = 0,
(ZHES

mﬁ'lﬂ otherwise,

where Ty is the character group of I'y and v is an element of the group f’é’ =
Welg|m=n®yi
(2) Let By be the family of functions

Y, - C
s [TF 720, (09,

where  runs over the subset I1; of a set T1y of representatives for the irreducible
representations of Gy with respect to the equivalence relation

T ~ t if and only ’f”mf >~ T

and where w € T1} ifand only if oz |y, # 0. Then the family 8y is an orthonor-
mal basis for L*(Ye, vg).

In the case of the non-conjugacy coset sieve, the irreducible representations of G
cannot be used in such a direct way to construct B¢, but in spite of that, they turn out
to be very useful once more.

Fix an £ € A and a finite dimensional irreducible representation 77y of Gy. Let

1 dim 7,
By, = (ew,...,ene

denote an orthonormal basis of the representation space Vy, of mg, with respect to a
G ¢-invariant inner product on Vy, denoted {; ), (note that, p, having finite image,
it 18 always possible to assume the existence of such a Gg-invariant inner product).

Then for any two elements e and f of {ey ,....ex, "*}, consider the function

Crpe,f: X € Gy /dimmg(mp(x)e; [)z,.

called a matrix coefficient.
Then the family (¢, ., r) obtained by varying 7y in I, (where I, denotes a set
of representatives for the isomorphism classes of irreducible representations of Gy)
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and ¢, f in a fixed basis By,, forms an orthonormal basis for L?(Gyg, vy) of square
integrable complex valued functions on G, with respect to the inner product

(f:8) 3 F@g).

|ExEG

corresponding to the uniform density v defined for y € G¢ by ve(y) = |Gg|™!
(see [Kn, Section 1.5] for a proof).

From that result we can derive, in the non-conjugacy sieve setting, a useful or-
thonormal basis for L#(Y¢, vg), where we recall that ¥; = pg(«)G5 and where, for

y €Yy, v(y) = |GF|™!

Lemma 24. With notation as above, consider the inner product on L* (Y, vy) defined
by
(f:8) = 1 Z f(eg(),
E €Yy

Let wy and t; be irreducible representations of Gy and (e, [') (resp. (&,¢)) a
couple of elements of an orthonormal basis By, (resp. By,) of Vg, (resp. Vz,).
The functions @r, ¢, 5 and @, ¢ ¢ arve said to be equivalent (in which case we will
note Yy f ~ Qrpe0) if the entry (e, [) of Matp,, 7¢(g) and the entry (e, ¢) of
Matg,, ©(g) coincide for all g € Gf.

Then the following holds.

(1) If mp and tp are irreducible representations of Gy, and if we denote

~Pmwo.e. f Cax i
Fg t = {X € FE | Oree, f X x = Ore,e, f I LZ(GE)}’
we have
0 iang,e,f ’%WQ,S@ or ifthe eniry
(e. f) (resp.(e. ¢)) of Matp,,, 7 (g)
(resp. Matg,, 7 (g)) is zero for all
(%rg,e,f; Prped) = g ey,

glf(d(ag))|f';pw’e’f| else, where ap = pele), ¥ € [y,
and (ng,e,f & W = @‘L’g,s,(ﬁ-

(2) Let By be the family of functions

Y,— C

> [T ST C1Dy (),
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where (g, e, [) runs over the triples corresponding to a system of represen-
tatives for the equivalence relation ~ and where we assume that for every
triple (g, e, ['), there exists an element g € Yy such that the entry (e, f)
of Matg,,, 7¢(g) is nonzero. Then By is an orthonormal basis for L2(Yy, vp).

Proof. (1) We evaluate the scalar product

1 S
(907[«@589][; (’0T£181¢> = g Z ng,e,f(y)(ptg,s,q) (y)
|G£ | yeYy

- |Gg| Z wﬂz,e,f(y)ﬁptg,s,qb (¥)
yelr
d(y)=d(ae)

= S (X V@) erper (Nbres (),

= G
Gl T ¥eGr yefy

where the last inequality is obtained using Frobenius reciprocity.

Obviously the right-hand side of the above equality vanishes as soonas gy, . ¢ I¥e
Of @r;6,6|y, 18 dentically zero (which corresponds respectively to the vanishing of
the entry (e, f) of Matg,, 7¢(g) or (¢,¢) of Matp, 7¢(g), for all g € Yy). However,
if that quantity does not vanish, we have, on the right-hand side,

Z W(d(aﬁ))(wng,e,f b2y w;(pw,s,qﬁ)(;g'
yely
Now, in L2(Y¢, v¢), we have the equality of functions ¢z, ¢ f ® ¥ = ¢r,@v.e.f-
Indeed any Gy-invariant scalar product {; )z, on Vy, = Vi, gy (as vector spaces)

remains G¢-invariant if Gy acts via ¢ ® ¥ (which is still an irreducible representation
of Gy). We deduce

(@re s Peeed) = ) V@) Prigpef Proes)
wely
where & denotes Kronecker’s symbol.

The quantity 8(¢x,@y.e. £+ Pro.e¢) €quals 1if and only if ¢r,gy.e, f = Prp,6,6 I
L?(Gy). This condition is equivalent to the coincidence of the restrictions ¢, e f1GE

and Ve85 i.e., the equality between the entry (e, /') of Matg, ¢ (g) and the

entry (&, ¢) of Matp, " (g),forall g € Gf' . In that case we deduce, using [KoSieve,
Lemma 3.2],

7 Tr N A([)n- &,
(Prpe, £ Orres) = V(@) T, 7,

where v is any of the characters of [y such that

Prpef W > Qrp 4.
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The assertion (2} is straightforward using (1) and the above arguments. O

Remarks. (i) In the course of the proof of Lemma 24, we have seen that the relation
Orpe, f ~ Prpe.0 18 €quivalent to the existence of a character ¥ € I'y such that

Prpef @V = Oni@pe, f = Proed:

in L2(Gy). Then we proved that the scalar product
((ng,e,f; (Ptg,s,qb),

is equal to V' (d(ee)|{x € Tt | ¢npes ® x = e f 1D L*(G¢)}]. Thus, if g
is an irreducible representation of Gy, the group I')¢, in the sense of Lemma 23,

. ~A@ro.e, f v . .
is a subgroup of T, ¢ for any choice of vectors e, f in an orthonormal basis

of the representation space Vy,. Indeed, if ¢ € I'7, we have an isomorphism of
Ge-representations: wp ® ¥ ~ g, hence,

(Prpe.f ®YNE) = Onpoye, (&) = (e @Y ()e: fln,
= (me(@)e; [Yny = Onpye, (),

for every g € G¢. That means that the equivalence relation of Lemma 23 is “stronger”
than the one described in Lemma 24 (in the sense that the classes for the former
relation, which are contained in those for the latter, may form strict subsets in those
classes).

(i1} Using the example of the dihedral group Dy, neven = 2, we see that the
equivalence relation ~ defined in Lemma 24 can actually be non trivial, i.e., we can
exhibit two non isomorphic irreducible representations (7, V) and (z, V) of Dy,
and two couples of vectors (e, f) and (g, ¢) (respectively in V; and V;) such that
Cre, (&) = @req(g), forall g € G¥, with a suitable choice of group G¥.

With notation as in [Ser, 5.3], let G = C,, be the cyclic group of order n. It is
of index 2 in D, and we have an exact sequence of finite groups:

1> Cy— Dy — Z/27 — 1.

We fix the wrivial left coset representative « = 1 (with respect to the quotient
D, /Cy). If hy and h, are two distinct integers such that 2, = —h, (mod r), then
the representations p”*! and p*2 given in the canonical basis of C2 by

hi k
, w’i 0
phl (rk) = ( 0 a)—hik) 2

(where, as in loc. cit., r is a generator for Cp,, 0 < k < n —1land w = exp(2in/n)),
are irreducible of degree 2 and are nor isomorphic. A straightforward computation
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shows that the canonical basis (e, f) of €? is in fact an orthonormal basis of the
representation space V5, i = 1,2, with respect to the Dy, -invariant inner product

(i) n constructed from the canonical scalar product on C? by averaging over D,,.
Then we have, for all g € C,,

(pphl,e,e(g) = @phZ,f;f(g)’

since, forall 0 € k < n — 1, the equality wlk = ¢y=h2k holds.

Via that example, we also see that there do exist functions ¢y . s that vanish
identically on a whole left coset of G = D, with respect to G& = C,,. Indeed, we
have, for0 <k <n —1,

ky _
(pphl,e,f(r ) — 07

e, ¢ . r(g) =0forallg € Cy.

A common feature in the two lemmas above is that each individual sum W(g, ¢’)
ivolves two (a priori) distinct representations (of two a priori distinct groups). In
order to estimate those sums, it will be convenient to rewrite them in such a way that
a single group representation appears for each of the W(g, ¢’). For that purpose, we
need to introduce additional notation: for £ and £’ two elements of A, let G4 ¢ be the

group
Gy x Gy if € £,

Geo = .
Gy otherwise.

Now, for 7 (resp. 7) an irreducible representation of Gy (resp. Gy ), we define the
representation of Gy g

Kt iff#£4
R R S
7 ®t otherwise,
where “X” (resp. “®”) denotes the external (resp. inner) tensor product of representa-
tions. With such notation we can give the statement of [KoSieve, Lemma 3.4] which
is useful in the proofs of Propositions 6 and 7:

Lemma 25. Let £, ¢’ in A, 7 (resp. T) a non trivial irreducible representation of G
(resp. of Gyr). The multiplicity of the trivial representation in the restriction of [, T|
to GE?,E’ is equal to zero if (£, ) # (', ), and is equal to U] | if (£, ) = (£', ).

If £ # £, itis well known that the family ([, 7]) of representations of G¢ ¢ with 7
(resp. T) running over a system of representatives of irreducible representations of Gy
(resp. G¢) forms itself a system of representatives for the irreducible representations
of Gy .
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The above notation and the sieving context we would like to work with suggest
us (o combine the maps p; and py- (assuming £ and £’ are distinct elements of A) in
a single map

pew: G— Gy,
g = (pe(g). per(g)),
which is nothing but the product map from G to Gy x Gyr.

Now we claim that the exponential sums (12) can be rewritten, according to the
sieve setting considered, in one of the following forms:

* in the case of the conjugacy coset sieve, we have

1
VITFIT

with notation as in Lemma 23,

W(pn.p:) = E(Tt([, t]pg,e (Xk)). (14)

» in the case of the non-conjugacy coset sieve, we have

(dim 7)(dim 1) _ .=
W((pﬂ,e,fa (pf,8,¢) = \/|f¢nQle | |fw(p‘b,8,¢ | E(([]T, r](pE,E,(Xk))e; f)[ﬂ,f])a
£ £

| (15)

with notation as in Lemma 24 and wherc ¢ = ¢ ® ¢, f = f ®¢.

Both facts are a direct application of [KoSieve, Lemma 2.11].

4.3. Self-contained statements. We finish this appendix by giving self-contained
statements (i.¢., using no new terminology) for Lemmas 23 and 24 in order to make
it possible for the reader to follow the whole proof of Theorem 1 without having to
get too much involved (at least for a first reading of the paper) in the details of the
sieve. To begin with, we give the following self-contained version of Lemma 23 (this
is [KoSieve, Proposition 3.7]):

Proposition 26. Ler G be a group, G& anormal subgroup of G with abelian quotient
['; denote d: G — T the quotient map. Let A be a subset of the rational primes
and let pg: G — Gy, for £ € A, be a family of surjective homomorphisms onto
finite groups. Denote G§ = pg(G¥). Let o € T be fixed Y = d ') C G
and Yy = pe(Y). Let (&, X, P) be a probability space and X a random variable
with values in Y. For any £ € A let Ty be a set of representatives of the set of
irreducible representations of Gy modulo equality restricted to G¥, containing the

constant function 1. Moreover, let T1; = Ty \ {1} and f‘é’ be the set of characters
vof Iy = Gg/Gé" such that 1 @ W ~ 7 for a representation w of Gy.
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Let £* be afinite subset of A. Then, for any conjugacy invariant subsets ©y C Yy
fort € £*, we have

P(pi(X) ¢ Oy forall{ € £*) < AH™?,

where A is the smallest non-negative real number such that

ST 3 BB -Tra(e(X))] < AE(SP)

ltefL* nelly

for all square-integrable funciions p € L? (U, P), and
O]
H=),
g
lcf* |G |®K|

In addition, we have

A< max max Y Y [W(r ol (16)

Lel* o
EHZ tel* rEH*
with

W, ©) = E(Tr 7 (pe (X)) Tr 7 (per (X))

-
VITTITE]
1
VITZI
using the notation pg ¢ for the product map pg X per: G — Gy x Gy if £ # 4" and

pe.er = pg otherwise, and [, T| = 7w ® T for the (internal or external, depending on
whether £ = £ or not) tensor product of the representations m and T.

(17)

E(Tr[r, 7] (pg,e (X)),

The analogue self-contained statement in the non-conjugacy coset sieve setting is
the following reformulation of Lemma 24:

Proposition 27. Let (G,G%, A, (p), (Gy), (Gf)), (I, X, Planda, Y, (Yy), X be as
in Proposition 26. Moreover, for each £ € A and each finite dimensional irreducible
representation w € Irt(Gy) (the set of isomorphism classes of such irreducible rep-
resentations), let
B = [ek, ... a0

be an orthonormal basis of the space of w with respect to a Gg-invariant inner product
(: V. For the set of triples {(m,e, [) | m € Irt(Gy), e, f € By}, we denote by T
a set of representatives for the following equivalence relation,

(e, f) ~ (re,9) if (m(@e; fla = (t(g)e;d)c forall g € G,
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such that (1,e,e) € Iy (where 1 denotes the trivial representation and e is a basis
for the 1-dimensional space attached to it) and such that there is no (m,e, ) € Iy
satisfying (w(g)e: f)x = O forall g € G8. Let T1; = Ty \ {(1,e.e)} and let £*
be a finite subset of A. Then, for any subsets ©¢ C Yy for £ € £*, we have

P(pe(X) ¢ Oy, forl e £*y < AH™,

where A is the smallest non-negative real number such that

Y Y dm@) BB - (r(ee(X)es 1) < AE(B)

beL* (me. f)elly

for all square-integrable funciions p € L? (U, P), where
-y O]
|Gel — [©¢]
Moreover we have

A<max max Y [W(me f)(meg). (8

Lel* (me, fHell?
e NEE fezr (regemy,

where, with the same notations as in (17),

W((m,e, ). (t.e,¢))

(dim 7 )(dim 1)
E X)e: fx (X)) P)e
J e £ PO G G 970 o)

\/ (dim 7 )(dim 1)

|f~lgﬂ'=6’sf) | |f~lg}',€,¢)|

E({[7. T](pe, e/ (X))(e @ £): (f ® ¢))izz1)

with f‘é”’g’f ) denoting the set of characters y of I'y such that
(m(g)e: [ - x(g) = (m(g)e; [)n-

Remark. Inour description of coset sieves, we have restricted ourselves to sieve sup-
ports containing only prime numbers. Nevertheless as suggested by the discussions
preceding and following Lemma 25, we could quite easily extend our sieve method
to a framework in which we would use squarefree integers (and not only primes)
as a sieve support. As described in [KoSieve, Chapter 3], going from a prime sieve
support to a “squarefree” sieve support can be done naturally by extending a few of
the definitions we have given in this appendix by multiplicativity. Although using
that extended sieve support would surely yield better estimates in Theorem 1, we
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prefer working only with a prime sieve support, so that we avoid the use of additional
notation. However, for the proof of Proposition 7, it is convenient 0 use objects
defined by multiplicativity from two (not more) primes in A. So, for £ # £/ two such
primes, let

Yoo =Yg x Yy,

on which we have the product density ve ¢(y, y') = ve(y)ve (¥'), so that it makes
sense to speak about the space L2(Yy ¢, vg ¢/). It is straightforward to check that if
By (resp. Byr)is an orthonormal basis of L2 (Y, ve) (resp. of L?(Yyr, vgr)), the family
of functions defined by (v, v’} € Yzoo = @(¥)¢'(¥’), where ¢ € B¢ and ¢’ € By,
forms an orthonormal basis of L2(Y v ). Note finally, that, to unify all the
possible cases, we can extend the above definitions to the case £ = £’ by defining
Yeor =Yg, vo e = veand By = By.
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