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Compactly supported cohomology of buildings
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Abstract. We compute the compactly supported cohomology of the standard realization of any
locally finite building.
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Introduction

A building consists of a set ® (the elements of which are called “chambers”) together
with a family of equivalence relations (“adjacency relations”) on ® indexed by aset S
and a “T -valued distance function,” ® x & — W, where W is a Coxeter group with
fundamental set of generators S. So, associated to any building there is a Coxeter
system (W, S), its type.

There 1s a construction which associates a topological space to ®. This construc-
tion admits some freedom of choice. The idea is to choose a space X as a “model
chamber” and then glue together copies of it, one for each element of ®. To do this,
it is first necessary to choose a family of closed subspaces { X}scg so that copies of
X corresponding to s-adjacent chambers are glued together along X;. (We call such
a family, {X;}ses, a “mirror structure” on X.) Let U(P, X) denote the topological
realization of ® where each chamber 1s realized by a copy of the model chamber X .
(Details are given in Section 2.)

Classically, interest has centered on buildings of spherical or affine type, meaning
that W 1is a spherical or Euclidean reflection group, respectively. For example, each
algebraic group over a local field has a corresponding affine building. Here we are
mainly interested in buildings which are not classical in that their associated Coxeter
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systems are neither spherical nor affine. This is a large class of spaces, many of which
have a great deal of symmetry. For example, such buildings arise in the theory of
Kac—Moody groups (e.g., see [6], [22], [23]). Also, nonclassical buildings associated
to arbitrary right-angled Coxeter groups have been a subject of recent interest in
geometric group theory (e.g., see [8], [20], [27]).

‘Two choices for a model chamber X stand out. The first is X = A, a simplex
of dimension Card(S) — 1, with its codimension one faces indexed by S. This was
Tits’ original choice (cf. [1]). We call U(P, A) the “classical realization” of ®. The
other choice for X is the “Davis chamber” K, defined as the geomeitric realization
of the poset § of spherical subsets of S (see Chapters 7 and 18 in [9]). U(P, K)
is the “standard realization” of ®. Both realizations are contractible. The standard
realization 18 important in geometric group theory, the reason being that in this field
one is interested in discrete group actions which are both proper and cocompact and
these conditions are more likely to hold for the action of a group of automorphisms on
the standard realization than on the classical realization. A third choice for X which
will be important for us is X = A/, the complement in A of its “nonspherical”
faces. (If ® has finite thickness, then U (P, K) and U(P, AS) are locally finite,
while U(P, A) need not be.) In general, K € AF € A. (For an example where the
inclusions are strict, see Figure 1 in Section 2.)

If a discrete group I" acts properly and cocompactly on a locally finite, contractible
CW complex Y, then the compactly supported cohomology of ¥ is isomorphic to
the cohomology of I" with ZT" coefficients. In particular, it determines the virtual
cohomological dimension of T, as well as, the number of ends of T, and it determines
if I' 18 a duality group. (For more information, see Part [V in [18].) However, as
we will explain, even if one is only interested in cohomological computations in the
case of the standard realization of ®, it is necessary to carry out similar computations
for various other realizations, in particular, for the version of the classical realization
with its nonspherical faces deleted.

In the classical case of an (irreducible) affine building, the two notions of model
chamber agree: A = K. So, in the affine case the study of the cohomology of co-
compact lattices in Aut{®) is closely tied to the study of the cohomological properties
of U(P, A). For example, in [2] Borel and Serre calculated the compactly supported
cohomology, H(U(®P, A)), for any (irreducible) affine building and then used this
calculation to derive information about the cohomology of “S -arithmetic” subgroups.
The theorem of [2] is that A} (U(D, A)) is concentrated in the top degree (= dim A)
and is free abelian in that degree.

Our main result, Corollary 8.2, is a calculation of H (U(P, K)), generalizing
the theorem of Borel-Serre. In the case where @ = W this was done in [7], [10],
[13]. For a general (thick) building, in the case where (W, S) is right-angled, it was
done in [10], Theorem 6.6. It was claimed in full generality in [13]; however, there
1s a mistake m the proof (see [14]).
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In order to write the formula, we need more notation. Let A be the free abelian
group of finitely supported, Z-valued functions on . For each subset T € S, let
AT denote the subgroup of all functions f/ € A which are constant on each residue
of type T'. (A “residue” of type T 1s a certain kind of subset of ®; in the case of the
building W, a residue of type T is a left coset of Wy, the subgroup of W generated
by T'.) N.B. The empty set, @, is a spherical subset and a residue of type @ is just a
single chamber; hence, A? = A. f U O T, then AY € AT, Let A>T < AT denote
the Z-submodule, » ;—p AY. (Throughout this paper we will use the convention
that € denotes containment and C will be reserved for strict containment. Also, we
will use the symbol » for an internal sum of modules and € to mean either an
external direct sum or an internal sum which we have proved is direct.)

We shall show in Section 7 that A>T is a direct summand of A”. Let AT be acom-
plementary summand. As in [10], [11], [16] the main computation 1s a consequence
of the following Decomposition Theorem (proved as Theorem 7.1 in Section 7).

The Decomposition Theorem.

A= @AU and, in fact, forany T € §, AT = @ AY.
Ues Us>T

The Decomposition Theorem is then used to calculate the compactly supported
cohomology of any of the various realizations of ®. In any such calculation we are
computing the cohomology of some cochain complex. This complex can be viewed
as the cochains on the model chamber X with coefficients in a certain (nonconstant)
system of coetficients I(A) which depends on the free abelian group A. The point is
that the Decomposition Theorem implies a decomposition of the coefficient system
and a corresponding decomposition of the cochain complex. Each summand in this
decomposition can be identified with the ordinary cochains on a pair (X, X>~7), for
T a spherical subset of S, with constant coefficients in AT . (For any subset U of S,
XY denotes the union of the X, with s € U.) Taking cohomology we get our main
results. The calculation in which we are most interested 1s the following (proved as
Corollary 8.2 in Section 8).

The Main Theorem. Suppose ® is a building of finite thickness and type (W, S).
Let K be the geometric realization of the poset S of spherical subsets of S. Then

HYU®. K) = P H K KR AT
TeS

The Main Theorem applies to all buildings. A general building ® will not be
highly symmetric; for example, its automorphism group, Aut(®), could have in-
finitely many orbits of chambers. However, if ®/ Aut(®) is finite and if I is a
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torsion-free cocompact lattice in Aut{®), then the Main Theorem implies that the
cohomological dimension of I' is equal to the virtual cohomological dimension of
the corresponding Coxeter group. Moreover, this dimension is

cd(T) = ved(W) = maxik | H*(K, K5 1) #£ 0 forsome T € §}

(cf. Corollary 9.4). As another example, such a torsion-free cocompact lattice is an
n-dimensional duality group if and only if for each T € §, H*(K, K3~ T) is free
abelian and concentrated in degree n (cf. Corollary 9.5).

The central objective of [10] was to calculate H}(U(W, K)) as a W-module.
In that paper we showed there is a filtration of H}(U(W, K)) by W -submodules
so that the associated graded terms look like the terms on the right-hand side of the
formula in the Main Theorem. Similarly, one can ask about the G-module structure of
H>(U(P, K)) for any subgroup G € Aut(®). The methods of [10] are well adapted
to the present paper. In particular, for each T € §, the free abelian group A7 is a
G-module, as is its quotient DT .= AT / AZT . So, as in [10], there is a filtration of
H> (U (P, K)) by G-submodules and we get the following (proved as Theorem 9.1).

Theorem. Suppose G is a group of automorphisms of ®. There is a filtration of
H(U(P, K)) by right G-submodules with associated graded term in filtration de-
gree p:

P H k. ke D

TeS
|T|=p

The proof of the Decomposition Theorem depends on first establishing a version
of the Main Theorem for U(®, AY). So, the Main Theorem ultimately depends on
first proving a version for the “faces-deleted realization.” This version (proved as
Theorem 4.3) is the following.

Theorem. When W is infinite, H (U(®P, ATY) is free abelian and is concentrated
in the top degree n (= dim A).

This result is obvious when ® = W, for then U(W, A') is homeomorphic to
Euclidean space R” (see Section 2). We prove it for a general ® by showing the
following (Theorem 3.1).

Theorem. U(D, AT) admits a complete, CAT(0) metric (extending Moussong's
CAT(0) metric on the standard realization).

The existence of this CAT(0) metric on U(®, A) is of independent interest. (See
[21], [8] or [9] for a description of Moussong’s metric on U(P, K).)
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To finish the calculation of H (U(P, A)) we invoke a result of [4] which asserts
that the compactly supported cohomology of such a CAT(0) space is concentrated in
the top degree provided the cohomology of each “punctured link” vanishes except in
the top degree. These links are joins of spherical buildings with CAT(1) structures
on spheres and the vanishing of the cohomology groups, in degrees below the top, of
their punctured versions is a result of [17] (and independently, [25]).

As we have said, special cases of the Decomposition Theorem were proved in [10].
The method of [10] was simply to find a basis for A adapted to its decomposition
into the AZ. In the general case, finding an explicit description of such a basis is
problematic. We use instead an idea coming from an analogy with the argument of
[11]. In that paper we proved L? versions of the Decomposition Theorem and of
the Main Theorem. The proof of the L? version of the Decomposition Theorem was
homological: the key step was to show that certain “weighted L2-homology” groups
of certain auxiliary spaces associated to W vanished except in the bottom degree.
We then applied a certain duality (not applicable here) to deduce the Decomposition
Theorem in the cases of actual interest. Analogously, in this paper we prove the
Decomposition Theorem by establishing the vanishing, except in the top degree, of
the cohomology of certain auxiliary spaces. The most important of these auxiliary
spaces is U(P, A/) and we indicated in the previous paragraphs how to prove the
result in that case.

Our thanks go to the referee for helpful comments.

1. Coxeter groups and buildings

A chamber system over a set S 15 a set @ of chambers together with a family of
equivalence relations on ® indexed by S. Two chambers are s-equivalent if they are
related via the equivalence relation with index s; they are s-adjacent if they are s-
equivalent and not equal. A gallery in ® is a finite sequence of chambers (g, . . . , Ok )
such that, for 1 < j < k, ¢;_; is s-adjacent to ¢; for some s € S. The type of this
gallery is the word s = (s1,....s%) where ¢;_; is s;-adjacent to ¢;. If each s;
belongs to a given subset 7" of S, then the gallery is a T-gallery. A chamber system
is connected (resp., T -connected) if any two chambers can be joined by a gallery
(resp., a T'-gallery). The T-connected components of a chamber system & are its
residues of type T .

A Coxeter matrix over a set S is an S x S symmetric matrix M = (mg;) with
cach diagonal entry = 1 and each off-diagonal entry an integer > 2 or the symbol oc.
The matrix M defines a presentation of a group W as follows: the set of generators is
S and the relations have the form (st)™s, where (s, r) ranges over all pairs in S x .S
such that mg, # oo. The pair (W, S) is a Coxeter system (cf. [3], [9]). Given T C S,
Wy denotes the subgroup generated by T'; it is called a special subgroup. (Wy, T)
1s itself a Coxeter system. The subset T is spherical it Wr is finite.
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Definition 1.1. The poset of spherical subsets of S (partially ordered by inclusion)
is denoted § .

Also, P (= £(5)) will denote the poset of all proper subsets of S. (In Section 3
the poset 2 — § plays a role.)

Suppose (W, S) is a Coxeter system and M = (m, ) is its Coxeter matrix. Fol-
lowing [24] (or [10]), a building of type (W, S) (or of type M) is a chamber system
® over S such that

(1) for all s € S, each s-equivalence class contains at least two chambers, and

(i1) there exists a W-valued distance function §: & x & — W, (This means that
given a reduced word s for an element w € W, chambers ¢ and ¢’ can be joined
by a gallery of type s from ¢ to ¢’ if and only if §(p, ¢’) = w.)

Example 1.2. The group W itself has the structure of a building: the s-equivalence
classes are the left cosets of Wi, and the W-valued distance, 6: W x W — W, is
defined by 8(v, w) = v w.

A residue of type T is a building; its type is (Wr, T'). A building of type (W, S)
is spherical if W is finite. A building has finite thickness if each s-equivalence class
is finite, for each s € S. (This implies all spherical residues are finite.) Henceforth,
all buildings will be assumed to have finite thickness.

2. Geometric realizations of Coxeter groups and buildings

A mirror structure over a set S on a space X is a family of subspaces (X );es indexed
by S. Given a mirror structure on X, a subspace ¥ € X inherits a mirror structure
by Yy ;==Y N X,. If X is a CW complex and each X is a subcomplex, then X is a
mirrored CW complex. For each nonempty subset 77 < S, define subspaces X and
XT vy
Xr:=()X and XT:=[]JX, (2.1)
seT seTl

Put Xy := X and XY := . Given a cell ¢ of (a CW complex) X or a point x € X,
put

S(cy:=1{se€S|cC X},

Sx):={seS|xeX}

Suppose now that S is the set of generators for a Coxeter system (W, S). Let
Y (X) denote the union of the nonspherical faces of X and X/ its complement in X,
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1.8,
YX):=|JXr and X/ :=X-7(X). (2.2)
T¢S

The mirror structure is W-finite if T (X ) = @.

Given a building ® of type (W, S) and a mirrored space X over S, define an
equivalence relation ~ on & x X by (¢, x) ~ (¢/,x’) if and only if x = x" and
8(p, ¢') € Ws(y) (i.e., ¢ and ¢’ belong to the same S (x)-residue). The X -realization
of @, denoted U(P, X), is defined by

U(D, X) 1= (D x X)/ ~. (2.3)

(® has the discrete topology.) Suppose X is a mirrored CW complex and that we are
given a cell ¢ of X and a chamber ¢ € ®. Then ¢ - ¢ denotes the corresponding cell
in U(P, X). Let U denote the set of i-cells in U(P, X). Each such cell has the
form ¢ - ¢ for some ¢ € ® and i-cell ¢ of X.

The classical realization. A denotes the simplex of dimension |.S| — 1, with its
codimension one faces indexed by S. In other words, the mirror A is a codimension
one face and A7 (the intersection of the Ay over all s € T') 1s a face of codimension
|T|.

The simplicial complex U(W, A) is the Coxeter complex of (W, S) while U(D, A)
is the classical realization of the building ®.

Tits constructed a representation of W on R called “the contragredient of the
canonical representation” in [3] and the “geometric representation” in [9]. The el-
ements of S are represented by reflections across the codimension one faces of a
simplicial cone C. The union of translates of C is denoted by WC'. Itis a convex
cone and W acts properly on its interior .I. If W is infinite, WC is a proper cone. If
C7 denotes the complement of the nonspherical faces of C, then I is equivariantly
homeomorphic to U(W, C/). Assume W is infinite. Then the image of C — 0 in
projective space can be identified with the simplex A obtained by intersecting C with
some affine hyperplane; moreover, A7 is identified with the intersection of C/ and
this hyperplane. The image of I in projective space is then identified with U(W, AS).
Since this image is the interior of a topological disk (of dimension |S| — 1), it fol-
lows that U (W, AS ) is homeomorphic to a Euclidean space of that dimension. In
particular, it is contractible.

Geometric realizations of posets. Given a poset 7, Flag(7') denotes the set of
finite chains in 7, partially ordered by inclusion, i.e., an element of Flag(7) is a
finite, nonempty, totally ordered subset of 7. If @ = {ry,...,f} € Flag(9"), where
tg < -+ < fg, then we will write o 1= {fp < -+ < fx} and minc¢ := #y. Flag(7") is
an abstract simplicial complex with vertex set 7 and with k-simplices the elements
of Flag(J") of cardinality k¥ + 1. The corresponding topological simplicial complex
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is the geometric realization of the poset 7 and is denoted by |J7|. For example, if P
is the poset of proper subsets of S, partially ordered by inclusion, then its opposite
poset, PP, is the poset of nonempty faces of the simplex A. Flag(#) is the poset of
simplices in its barycentric subdivision, bA, and |P| = DA.

The standard realization, U (P, K). As before, § denotes the poset of spherical
subsets of S. Put K := |§|. It is a subcomplex of bA (provided W is infinite).
The mirror structure on A induces one on K. More specifically, for each s € S,
put Ky := [S>ys1| and foreach T € §, Ky = |S>7|. (K is the “compact core”
of Af ) K is sometimes called the Davis chamber of (W, S) and U(W, K), the
Davis complex. Alternatively, U(®, K) is the geometric realization of the poset of
spherical residues of ® (see [8]).

By construction U(P, K) is locally finite (since & is assumed to have finite
thickness). It is proved in [8] that U (P, K) is contractible.

The realization U(®, A7). A/ and K have the same poset of faces (indexed
by §) and there is a face-preserving deformation retraction Af — K. That is
to say, A/ is a “thickened version” of K. Similarly, U(®, A7) is a thickened
version of U(®, K). Like U(P, K), the space U(D, A7) has the advantage of being
locally finite; however, the chamber A7 isnot compact whenever A # A. We call
U(P, AT) the faces-deleted realization of .

Example 2.1. When W is infinite, K € A/ € A. The inclusions can be strict.

For example, if W is the product of two infinite dihedral groups, then S has four
elements, A is a tetrahedron, A is obtained from A by deleting two opposite edges
and K is a square. See Figure 1.

Figure 1. A, A/ and K when W = Doy X Das.
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3. A CAT(0) metric on U(P®, A7)
Our goal in this section is to prove the following.

Theorem 3.1. Let O be a building of type (W, S) with W infinite. Then there is a
complete, piecewise Euclidean, CAT(0) mertric on U(®, AT).

Review of the Moussong metric. Suppose 7' 1s a spherical subset of S. Wy acts
on R via the canonical representation. Since Wy is finite there is an invariant inner
product (unique up to scaling on each irreducible factor). The Coxeter cell of type T',
denoted Pr, is defined to be the convex hull of the Wy -orbit of a point x; in the interior
of the fundamental simplicial cone. As examples, if Wy is a product of n copies of
the cyclic group of order 2, then Pr is an n-cube; if Wr is the symmetric group on
n + 1 letters, then Pr 1s an n-dimensional permutohedron. Its boundary complex,
dPr, is the dual of the Coxeter complex of Wy (the Coxeter complex is a triangulation
of the unit sphere in R”). The fact that dPy is dual to a simplicial complex means
that Pr is a “simple polytope”. The isometry type of Pr is determined once we
choose the distance from xp to each of the bounding hyperplanes of the simplicial
cone. (We assume, without further comment, that such a choice of distance has been
made for each s € S.) The intersection of Pr with the fundamental simplicial cone is
denoted Bt and called the Coxerer block of type T . It1s a convex cell combinatorially
isomorphic to a cube of dimension |T'| (because Pr is simple). One can identify By
with the subcomplex |S<7| of K in such a way that xg is identified with the vertex
corresponding to @. To be more precise, By is the union of simplices of Flag(s)
whose maximum vertex is < 7, i.e., |S<r| is a subdivision of Br. See Figure 2.

Figure 2. T" = {s,t}, Pr is a hexagon, Wr has order 6.

The convex polytope By has two types of faces. First, there are the faces which
contain the vertex xg. Each such face is a Coxeter block of the form By for some
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V- € T'. The other type of face is the intersection of By with the face of the funda-
mental simplicial cone fixed by Wy for some nonempty V' € T'. We denote such a
face by Br,y and call it a reflecting face of Br. For the purpose of unifying different
cases, we shall sometimes write Br,g instead of By.

The Moussong metric on K is the piecewise Euclidean metric on K in which
each Coxeter block By is given its Euclidean metric as a convex cell in RT (cf. [21]
or Section 12.1 in [9]). This induces a piecewise Euclidean metric on U(W, K) as
well as one on U(P, K)}. The link of the central vertex corresponding to ¥ can be
identified with a certain simplicial complex L (= L{W, S)) called the nerve of the
Coxeter system. The vertex set of L is S and a subset T < S spans a simplex if
and only if it is spherical. Thus, the poset of simplices in L (including the empty
simplex) is §. The piecewise Euclidean metric on K induces a piecewise spherical
metric on L such that whenever m, < oo, the length of the edge corresponding to
{s,1}isw —m/ms. (Whenmg, = oo, {s, t} does not span an edge of L.) Moussong
proved that this piecewise spherical metric on L is CAT(1). From this he deduced
that the piecewise Euclidean metric on U(W, K') is CAT(0) (cf. [21] and Section 12.3
in [9]). Using this, it is proved in [8] by a standard argument that for any building &,
the Moussong metric on the standard realization, U(®, K), is CAT(0).

A piecewise Euclidean metric on A7 . We will define a cell structure on A/ so that
each cell will have the form By y x[0, 00)" forsome T € §, V' € T and nonnegative
integer m. When m > 0 such a cell will be noncompact. There are two types of
such cells. First there are the compact cells Br,y, where T € S and V € T'. The
remaining cells are in bijective correspondence with triples (7, V,«), where T € §,
V € T and o € Flag(# — §) is such that 7 < mine. Let F be the set consisting
of pairs (T, V) and triples (T, V,«), where T € §, V <€ T and o € Flag(# — §) is
such that 77 < min«. ¥ is partially ordered as follows:

s (T, V< (T, V)ifandonlyif 7/ € Tand V' C V,

s (T, V', oy < (T,V,a)ifand only if (T", V') < (T, V)and o’ C «,

s (T, V) < (T,V,w)ifand only if (T", V") < (T, V).
The cell ¢(T, V, «) which corresponds to (7, V, «) is defined to be Br y x [0, o0)?,
where [0, o0)® means the set of all functions from the finite set ¢ to [0, o0). For
the most part, it will suffice to deal with the case V' = # since the cells of the form
Br x [0, 50) cover A/, The piecewise Euclidean structure on A will be defined
by declaring each Br x [0, oc¢)® to have the product metric. Thus, the piecewise
Euclidean metric on A/ will extend the one on K. See Figure 3.

Lemma 3.2. A/ has a decomposition into the cells, {Br,y} U {c(T, V,a)}, defined
above, where (T, V') and (T, V, ) range over ¥ .

To prove this, we need to set up a standard identification of the open cone of
radius 1 on a k-simplex o with the standard simplicial cone [0, o)1 ¢ R¥*1,
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Figure 3. A7 has one vertex deleted.

Let {vptpeg be the vertex set of o for some finite index set B and let (xp)pes be
barycentric coordinates on o. Let R® be the Euclidean space of all functions 8 — R.
Let S4 (R#) denote the intersection of the standard simplicial cone [0, o0)® with the
unit sphere. Thus, S (R®) is an “all right” spherical simplex (i.e., all edge lengths
and all dihedral angles are 77/2). Let {ep}»c s be the standard basis for RE. Define
a homeomorphism g : 0 — S, (R®), taking vp to ep, by

bevb — beeb / (ng)l/z. (3.1)

Let r: [0,1) — [0, o0) be some fixed homeomorphism. The open cone on ¢ can be
regarded as the points [#, x] in the join, v * o, of o with a point v such that the join
coordinate ¢ is # 1. The homeomorphism from the open cone to [0, 50)® is defined
by [t, x] — r{t)8a(x).

Proof of Lemma 3.2. Suppose ¢ € Flag(#). Then o = {Ty < --- < T4}, where
Tr eSand Tgs1 ¢ S. Pute :={Ty <--- < Trtando” == {Try1 < - < Tt}
The simplex o, lies in B, while the simplex o~ 1s in the nonspherical face Ary .
We have 0y = 0y * 04~ and a point in o, has coordinates [z, x, y], where 1 € [0, 1],
X € oy and y € oy, The points in oy — o, are those where the join coordinate
t is # 1. The identification o4 — 0qr —> 0o x [0,00)%" is given by [r, x, y] —
(x, r{1)0e7(¥)). O

Next we want to consider the link of the central vertex vg (corresponding to 4)
in this cell structure. Let A°P denote the simplex with vertex set S. The nerve L 1s
a subcomplex of AP, If W is spherical, then L = AP, while if W is infinite, then
L is a subcomplex of dA°P, Moreover, AP is a triangulation of the (n — 1)-sphere,
for n = |S|. Assume W is infinite. The link of vg in A7 is a certain subdivision
L’ of dA°P, which we shall now describe. The vertex set of L’ is the disjoint union
S U (L — §). There are three types of simplices in L'
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1) simplices or in L corresponding to spherical subsets T € S 4,
2) simplices g, in bIA (= bIAP) corresponding to flags o € Flag(P — §),

3) joins o * o, with T € S-g, ¢ € Flag(# — §) and T < min «.
Lemma 3.3. L' is a subdivision of 0A® and L C L' is a full subcomplex.

Proof. Suppose U is a minimal element of > — §. Let oy denote the corresponding
simplex in dA°P. Introduce a “barycenter” vy € JAP and then subdivide oy to a
new simplicial complex (o7 )’ by coning off the simplices in doyy. Each new simplex
will have the form vy * oy forsome 7' C U.

Next, let U be an arbitrary element of & — § and suppose by induction that we
have defined the subdivision of (o) for each U’ C U and hence, a subdivision
(doy ) of doy. Introduce a barycenter vy of oy and subdivide by coning off (doyr ).
Each new simplex will have the form vy oy forsome U’ C U. Inother words, each
new simplex will be either of type 2 or type 3 above. It is clear that the subcomplex
L is tull. ]

The following lemma is also clear. (See Figure 3.)

Lemma 3.4. L' is the link of the central vertex in the piecewise Euclidean cell
structure on A7

The piecewise Euclidean metric induces a piecewise spherical metric on L’ ex-
tending the given metric on L. Since the link of the origin in [0, 00)**! is the all
right spherical k-simplex we get the following description of the metric on L/,

Lemma 3.5. The simplices in L’ have spherical metrics of the following types.

1) For T € S~g, the simplex o in L is the dual to the fundamental simplex for
Wr on the unit sphere in RL. In other words, for distinct elements s, t in T, the
edge corresponding to {s,t} has length m — 7w /mg;.

2) The simplex o corresponding to o € Flag(P — §) has its all right structure.
In other words, each edge of o4 has length 7 /2.

3) The simplex o1 % o has the structure of a spherical join. In other words, the
length of an edge connecting a vertex in o (o one in oy is w /2.

Remark 3.6. The simplicial complex L’ is the nerve of a Coxeter group (W', S’)
which contains W as a special subgroup. Namely, S’ is the disjoint union, SU(P —S§).
Two generators of S are related as before. If U, V € P — §, thenputm(U, V) := 2
whenever U C Vor V. C U and m(U, V) := oo, otherwise. Similarly, if s € S
and U € P — §, then m(s,U) = m(U,s) = 2 whens € U and it is = o0,
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otherwise. Since L' is a triangulation of $"~2, with n = |S]|, this shows that any »
generator, infinite Coxeter group is a special subgroup of a Coxeter group which acts
cocompactly on a contractible (n — 1)-manifold (such a Coxeter group is said to be
rype HM™ 1 in [9], p. 197).

CAT(0) and CAT(1) metrics. Gromov [19] proved that a piecewise Euclidean
metric on a polyhedron Y is locally CAT(0) if and only if the link in ¥ of each cell
is CAT(1). In his proof that L(W, S) was CAT(1), Moussong [21] gave a criterion
for certain piecewise spherical structures on simplicial complexes to be CAT(1). We
recall his criterion below. A spherical simplex has size > 7/2 if each of its edges has
length > /2. A spherical simplex o € S¥ ¢ R¥*! with vertex set {vo, ..., vgs1}
and edge lengths /;; := cos™!(v; - v;) is determined up to isometry by the (/;;).
Conversely, a symmetric (k 4 1) x (k + 1) matrix (/;;) of real numbers in [0, ) can
be realized as the set of edge lengths of a spherical simplex if and only if the matrix
(cos/;;) is positive definite, cf. [9], Lemma L.5.1, p. 513. Suppose N is a simplicial
complex with a piecewise spherical structure (i.e., each simplex has the structure of
a spherical simplex). N has size > /2 if each of its simplices does. N is a metric
flag complex if it satisfies the following condition: given any collection of vertices
{vo, ..., vg} which are pairwise connected by edges, then {vy, ..., v} is the vertex
set of a simplex in N if and only if the matrix of edge lengths (/;;) can be realized
as the matrix of edge lengths of an actual spherical simplex. (In other words, if and
only if (cos/;;) is positive definite.) Moussong’s Lemma is the following.

Lemma 3.7 (Moussong’s Lemma, [21], or Appendix 1.7 in [9])). Suppose a piecewise
spherical simplicial complex N has size > /2. Then N is CAT (1) if and only if it
is a metric flag complex.

The nextresultfollows immediately from our previous description of the piecewise
spherical complex L'

Lemma 3.8. L' has size > 7/2 and is a metric flag complex.

Corollary 3.9. L' is CAT(1). Moreover, L is a totally geodesic subcomplex.

Proof. The second statement follows from the fact that L is a full subcomplex. O
Since the link of any simplex in a metric flag complex of size > 7 /2 has the same

properties (cf. [21], Lemma 8.3, or [9]), Lemma 1.5.11, the link of any simplex in L’

is also CAT(1). Since the link in A7 N Ay of any cell of the form Bry x [0, 00)”

can be identified with the link of the corresponding simplex o7 * o, in L', it follows
that the link of each cell in A/ is CAT(1).
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Corollary 3.10. The piecewise Euclidean metric on U(W, AT is CAT(0). (This
implies that U(W, AT is a contractible manifold.)

Proof. The union of Wy -translates of a Coxeter block By in U(W, A') is a Coxeter
cell Py and the complete inverse image of By in U(W, A/) is a disjoint union of
copies of Py. Hence, U(W, Af) has a cell structure in which the cells are either
translates of Coxeter cells of the form Py or translates of cells of the form Pz x[0, oc)®
for some o € Flag((# — §)~7). Ineither case the link of such a cell in U(W, AT ) is
identified with the link of the corresponding cell in A/ . By Corollary 3.9, U(W, AT)
is locally CAT(0). A space is CAT(0) if and only if it is locally CAT(0) and simply
connected (cf. [19], p. 119, or Chapter I1.4 of [5]). U(W, A ) is contractible (hence,
simply connected), since it is homotopy equivalent to U(W, K). Therefore, it is
CAT(0). O

Review of spherical joins. In this section and the next we will need some properties of
the “spherical join” of two piecewise spherical complexes. We recall some definitions
from [5], p. 63.

Definition 3.11. For i = 1,2, suppose (L;,d") is a metric space. The spherical
Join L1 % Ly is the quotient space of L x Ly x [0, /2] by the equivalence relation
~ which satisfies (x1,x2,0) ~ (x1,x5,0) and (x1,x2,7/2) ~ (x],x2,7/2). The
equivalence class of (x1, x2, 8} will usually be denoted x1 cos 8+ x5 sin 6. Letd’ ()
be the metric on L; defined by dZ (x, y) = max{d’(x, y), w}. Define a metric d(, )
on Ly x L, by requiring that the distance between points x = x; cos § + xsinf
and x’ = x] cos 8’ + x} sin 6 be at most 7 and that it satisfy the formula:

cos(d(x,x")) = cos 8 cos B’ cos(d ) (x1, x})) + sin 8 sin 6’ cos(d2(x2,x5)). (3.2)

Links of Coxeter blocks. We also want to consider links of cells of the form By y
or Br,y x [0, 00)¥ in various cell complexes. (Here Br,y is a reflecting face of By.)

Lemma 3.12. Suppose c isacell in A of the form ¢ = Bty orc = Bry x[0, 00)®
forsomeV € T € §-g and o € Flag({(P — S)>71). Let d = By or Br x [0, 00)%
be the corresponding larger cell in A7 and let o4 be the corresponding simplex in
L'. Then

Lk(c, AT)Y = Lk(og, L") % T(V), (3.3)
Lk(c, U(W, AT} = Lk(og, L") % SV. (3.4)

Here SY is the unit sphere in the canonical representation of Wy on RY and (V) C
SV is the fundamental simplex.
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Moreover, suppose that @ is a building of type (W, S), that R is the spherical
residue of type V containing the base chamber and that S(R) := U(R, t(V')) is the
spherical realization of R. Then

Lk(c, U(D, AT) = Lk(o4. L") * S(R). (3.3)
Proof. Let A{i denote the face of A fixed by Wy (ct. (2.1)). Then

Lk(c, A') = Lk(c. A)) » Lk(AY, AT)
= Lk(d, AT) (V)
= Lk(og, L") % (V)

and similarly for formulas (3.4) and (3.5). O

We can now prove the main result of this section.

Proof of Theorem 3.1. Any spherical building, such as S(R),is CAT(1) (e.g., see [8])
and the spherical join of two CAT(1)-spaces is CAT(1) (e.g., see [5]), Corollary 3.15,
p- 190. So, the theorem follows from (3.5). Alternatively, it can be proved from
Corollary 3.10 by using the argument in §11 1n [8]. O

A variation. In Section 4 we will need the following modification of the previous
construction. Givena subset U € S, we will define a new piecewise Euclidean metric
on A7 — AY and then show that it induces CAT(0) metrics on U (Ws_g7, AL — AY)
and U(R, AS — AY) for any (S — U)-residue R of ®.

For each spherical subset 7', let Cf C RT be the simplicial cone determined by
the bounding hyperplanes of By passing through the vertex xo. (In other words, C;
is the dual cone to the fundamental simplicial cone.) Let Ss—y := § (Ws_y, S —U)
be the poset of spherical subsets of S — U and let Lg_y := L(Ws_y, S —U) be the
nerve of Wy_y. AY — AY has a cell structure with cells of the following two types:

(@) Bryy,whereT € Ss_yandV € T,
(b) B x[0,00)%, where € P — Sg_y and T, V are as above.

As before, each such cell is given the natural product metric. In effect we are putting
T(A) U AY at infinity.

The piecewise Euclidean metric on A7 — AV induces one U(R, AS — AY). Let
us describe the link, L&_U, of the central vertex in the new metricon A/ — AV, The
vertex set of L's_;; 18 (S — U) U (P — Ss—p). As before, there are three types of
simplices:

1) simplices o7 in Lg_g corresponding to spherical subsets T € Sg_p,

2) simplices oy in bIA (= bIAP) corresponding to flags @ € Flag(P — Ss—v ),
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3) joins o7 * o, with T € Sg_y, o € Flag(# — Ss_y)and T < min .

and L';_,; can be identified with a subdivision of JA®. Moreover, just as before,
L’;_,; has size > 7/2 and is a metric flag complex; hence, it is CAT(1). This proves
the following.

Theorem 3.13. Suppose U < S and R is any (S — U)-residue in ®. Then the
piecewise Euclidean metric on U(R, AT — AY), defined above, is CAT(0).

4. Metric spheres in U(®, A/)

An n-dimensional cell complex X is CS" (for “cohomologically spherical”) if H*(X)
is concentrated in degree n and is a free abelian group in that degree. Similarly, an n-
dimensional, noncompact, contractible space X is SI"~! (for “spherical at infinity”)
it H}(X) is concentrated in degree » and is a free abelian group in that degree. (We
will sometimes omit the superscript and write simply that a space is CS or SI when
we don’t need to specify n.) We want to prove that U(®, A7) is SI"~!. This is a
consequence of Theorems 4.1 and 4.2 below.

Suppose N is a CAT(1), piecewise spherical polyhedron and that p € N. Let
B(p,7/2) € N denote the open ball of radius 7/2 centered at p. Define a space
PN,, called N punctured at p, by PN, := N — B(p,n/2). We are interested in
this concept when N = Lk(c), the link of a cell ¢ in some CAT(0) complex X. In
this case we will write PLk, (c) for PN, and call it the punctured link of ¢ at p.

Theorem 4.1 (Brady, McCammond and Meier [4]). Let X be a CAT(0), piecewise
Euclidean cell complex (with finitely many shapes of cells). If for each cell ¢ in X
and for each p € 1k{c), the spaces 1.k(c) and PLk, (¢) are (n —dim c¢)-acyclic, then
X is n-acyclic at infinity. In particular, if X is (n — 2)-acyclic and n-dimensional,
then it is SI" L.

Remarks. In [4] the hypothesis of the above theorem is that X is the universal
cover of a finite, nonpositively curved complex; however, the proof clearly works
with a weaker hypothesis such as that there are only finitely many shapes of cells
(which holds in our case). The proof of the theorem uses Morse theory for polyhedral
complexes. Roughly, it goes as follows. Let p: X — R be the distance from some
base point xg, i.¢., p(x) := d(x, x¢). The spheres S(r) of radius r centered at xo € X
are the level sets of p. Call a point x a critical point (of p) if it is the closest point
to x¢ in some closed cell c. It follows from the CAT(0) hypothesis that the critical
points are isolated. If, for sufficiently small &, there is no critical point in the annular
region between S(r + ¢) and S(r), then S(r + ¢) and S(r) are homeomorphic.
On the other hand, the effect of crossing a critical point x € S(r) is to remove a
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contractible neighborhood of x in S(r) and replace it by the punctured link PLk(x),,
where p is the direction at x of the geodesic from x to xo. (If x lies in the relative
interior of a k-dimensional cell ¢, then Lk(x) = S¥~! x Lk(c).) So, the effect on the
homotopy type of the level sets is to replace a contractible neighborhood by a copy of a
suspension of a punctured link. It follows that, under the hypotheses of Theorem 4.1,
each metric sphere is CS. Since X is CAT(0), metric balls are contractible and since
HX(X) = h_r)n H*(B(r), S(r)) which is concentrated in the top degree, X is SI.

Theorem 4.2 (Dymara—Osajda [17], Theorem A.2, and Schulz [25]). Suppose R is
a spherical building of type (Wy, T) and that S(R) is its spherical vealization. Then
for any p € S(R), the space PS(R), is CS.

Theorems 4.1 and 4.2 can be used to prove the following.

Theorem 4.3. With notation as in Section 3 and above, given any building ®, its
faces-deleted realization U(P, A7) is SI.

When W is an irreducible affine Coxeter group, A/ = A and the theorem above
specializes to the theorem of Borel-Serre [2].

Complements of 3 -balls in spherical joins. Before proving Theorem 4.3, we need
to establish some facts concerning joins of piecewise spherical polyhedra.

Lemma 4.4. Fori = 1,2, suppose L; is a piecewise spherical polyhedron and
L = Ly % L, is the spherical join with the metric defined by (3.2). Let p =
p1Cos B + pysin@ be apointin L with 8 # 0, /2. Let B, B, and B be the open
balls of radius /2 in Ly, L, and L, respectively, about the points py, p> and p,
respectively. Then L — B deformation retracts onto (L1 — B1) * (L2 — B).

Proof. We denote the corresponding spheres of radius 7 /2 by B, dB> and dB. L
can be partitioned into four pieces, which we call the first, second, third, and fourth
quadrants:

First quadrant: El * EZ.

Second quadrant: (L, — By) % B>,
Third quadrant: (L1 — By) * (L, — B3).
Fourth quadrant: By % (Lo — B»).

The intersection of the third and fourth quadrants is dB; % (L, — B»). The intersection
of dB with the fourth quadrant is homeomorphic to dB; % (L — B3). (This is an
easy exercise using the definition of the join metric given in (3.2).) Also, the part
of L — B in the fourth quadrant is homeomorphic to (dBy * (L, — B2)) x [0, 1])
with 0By x [0, 1] collapsed down to dB; x 0. Hence, the part of L — B in the fourth
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quadrant deformation retracts onto the intersection of the third and fourth quadrants.
Similarly, the part of L — B in the second quadrant deformation retracts onto the
intersection of the second and third quadrants. Putting these deformation retractions
together, we get that L — B deformation retracts onto the third quadrant. O

In what follows, in order to avoid constantly repeating the condition in Theo-
rem 4.1, let us say that a piecewise spherical polyhedron L is “BMM” if it is CS and
if PL, isCS forall p € L. A corollary of Lemma 4.4 is the following.

Corollary 4.5. Suppose Ly and L, are BMM. Then so is L1 % L.

Proof. If dim Ly = n1, dim Ly = ny, then it follows from the Kiinneth Formula
that H*(L1 % L,) is concentrated in degree ny + no + 1 and H 2+ (L« L,y) =
H"(L1)® H"2(L,)is free abelian. If p = py cos € 4 p, sin 8 is a point in the join
with 6 # 0,7/2, then by Lemma 4.4 P(L; % L,), is CS"7™2%1 1f 6 = 0, then
P(Ly * L), = PL,, % Ly is also CS"1 T2+ and similarly, for 6 = /2. O

Proof of Theorem 4.3. By the theorem of Brady—McCammond-Meier (Theorem4.1),
it suffices to prove that each link in U(®, A7) is BMM. By Lemma 3.12 each such
link is the spherical join of a CAT(1), piecewise spherical structure on a sphere, call it
L7, (itisalink in L} and a spherical building S (R). Since the underlying PL structure
on L” is that of a standard sphere, it follows from [12], Lemma 3b.1, p. 370, that any
closed ball of radius 7 /2 in L" is homeomorphic to a closed m-disk (m = dim L").
Hence, the complement of the open ball is also an m2-disk. In particular, L” is BMM.
It is a standard fact that S(R) is homotopy equivalent to a wedge of spheres (one for
each apartment containing a given chamber). Hence, its cohomology is free abelian
and concentrated in the top degree. By the theorem of Dymara—Osajda and Schulz
(Theorem 4.2), the same is true for each punctured building PS(R),. Hence, S(R)
is BMM. Finally, by Corollary 4.5, so is L” * S(R). O

As a corollary to Theorem 3.13, we get the following relative version of Theo-
rem 4.3.

Theorem 4.6. Suppose U < S and R is any (S — U )-residue in ®. Then U(R, AT —
AYYis SI

Corollary 4.7. Suppose U € S. Then U(P, AS — AY) is SI.

Proof. U(®, Af — AY)is the disjoint union of the spaces U(R, AT —AY), where R
ranges over the (S — U)-residues. By the previous theorem, the compactly supported
cohomology of each such component is free abelian and concentrated in the top
degree. O
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5. Cohomology with finite support and compact support

Given a CW complex Y, Cg (') denotes the complex of finitely supported cellular
cochains on Y and H;, (Y') its cohomology. When Y is only required to be a topo-
logical space, H}(Y') denotes its compactly supported singular cohomology, i.e.,

HI(Y):=lim H*(Y,Y - ©),

where the direct limit is over all compact subsets C € Y. If Y is a locally finite CW
complex, HZ (V) =~ HI(Y).

Suppose Z, Z’ are mirrored spaces over S. Amap F: Z — Z' is mirrored if
F(Zy) € Ziy forall T C S itis a mirrored homotopy equivalenceif Flz,: Zp —
Z7 is a homotopy equivalence for all T' (including 7 = @).

Given a mirrored space X, let us say that Y (X) is collared in X if there is an
increasing family N = {N¢}e¢(0,4] Of open neighborhoods of Y (X) (“increasing
means that N, € N whenever ¢ < ¢’) such that the following two properties hold:

(1) MNee(o.q] Ne = Y(X), and
(ii) Foreache > 0, the inclusion Y (X) < N is a mirrored homotopy equivalence.

For example, if X is the simplex A, then Y{A) is collared in A. (Proof: T(A)
is a union of closed faces and we can take N; to be its e-neighborhood in A.) More
generally, if X is any finite CW complex, then YT (X) is collared in X.

Property (ii) implies that U(D, T (X)) — U(P, N,) is a homotopy equivalence.
To simplify notation, in what follows we often write Uy instead of U(P, X).

Lemma 5.1. Suppose X is a finite, mirrored CW complex . Then
H (Uyr) = Hg,(Ux. Urex))-

Proof. Since X is a finite complex, H} (Ux, Uyx)) = HX(Ux. Uyx)). Since
T(X) is collared in X, we have a family & = {N,} of open neighborhoods. For
agiven N = N, € N, let IN denote the boundary of N. Since N is mirrored
homotopy equivalent to YT (X),

HE (Ux, Urxy) = H (Ux, Ug) = HX (Ux-n). Uan),

where the second isomorphism is an excision. As ¢ — 0, X — N, — X7/, so any
compact subset C of Uy, lies within some Uy _n,. Hence,

HI(Uxr) = lim H*(Uy s, Uxs — C) = HZ (Ux—n. Uon).

Combining these equations, we get the result. O
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Example 5.2. A/ is a thickened version of K and U(P, A7) is a thickened version
of U(®, K). Hence, U(P, A7) and U (P, K) are homotopy equivalent. On the other
hand, their compactly supported cohomology groups can be completely different. For
example, suppose W is the free product of three copies of Z/2. Then A/ is a triangle
with its vertices deleted while K is a tripod. U(W, A7) can be identified with the
hyperbolic plane while U(W, K) is the regular trivalent tree. (This is the familiar
picture of the congruence 2 subgroup of PS1.(2, Z) acting on the hyperbolic plane.)
The compactly supported cohomology of U(W, A7) is that of the plane (i.e., it is
concentrated in degree 2 and is isomorphic to Z in that degree), while the compactly
supported cohomology of U (W, K) is that of a tree (i.¢., it is concentrated in degree 1
and 1s a countably generated, free abelian group in that degree).

6. Cohomology with coefficients in I (A)

Let A (= A(®)) be the free abelian group of finitely supported, Z-valued functions
on &. For each subset T of S, define a Z-submodule of A:

AT :={f € A| f is constant on each residue of type T'}.

Note that A” = A. Also note that A7 = 0 whenever T is not spherical.
We have AY < AT when T C U. Let A>T be the Z-submodule of AT spanned
by the AY with T a proper subset of U. Put

DT = AT 47T,

Remark. When ® = W, A is the group ring ZW and AT consists of elements
in ZW which are constant on each left coset wWy. Let us assume 7 is spherical
(otherwise AT = 0). LetIn(w) := {s € S | [(ws) < [(w)} be the set of letters with
which areduced expression for w can end. Since 7' is spherical, each left coset of Wrp
has a unique representative w which has a reduced expression ending in the longest
element of Wyr; hence, this representative has T € In(w). As a basis for DT we
can take images of the elements in A7 corresponding to cosets which have longest
representatives with T = In(w). In particular, D7 # 0. For a general building @,
note that if & < @ is a subbuilding of the same type, then A7 (&) = AT (®)|q¢
and hence, DT (®") ¢ DT(®). Since W C @ is a subbuilding this means that
DT (®) £A0forall T € 8.

Definition 6.1. The abelian group A and the family of subgroups {A” } 7 define a
“coefficient system” I(A) on X so that the i-cochains with coefficients in I{A) are
given by
(X I(4) = [] 4%,
ce XD



Vol. 85 (2010) Compactly supported cohomology of buildings 571

where X @) denotes the set of i -cells in X.

We continue to write Uy for U(P, X). Let U denote the set of i -cells in Uy .
Given a chamber ¢ € ® and ani-cell ¢ in X, let ¢ - ¢ denote the corresponding 7 -cell
in Uy. Given a finitely supported function «: U — Z,and ani-cell ¢ € X© with
S{c) spherical, we get an element f € A5 defined by f(¢) := a(¢-c). Of course,
when S(c) is not spherical, 43¢ = 0. So, for any finite, mirrored CW complex X,
this establishes an isomorphism

€ (X: I(A)) = Ci, (Ux, Urx)- (6.1)

In other words, the isomorphism (6.1) is given by 1dentifying a finitely supported
function on the inverse image in U of a cell ¢ € X@ with a function on & (i.e.,
with an element of A} which is constant on S(c)-residues containing the cells ¢ - ¢.

The coboundary maps in €*(X; I(A)) are defined by using these isomorphisms
to transport the coboundary maps on finitely supported cochains to €*(X; I(A)).
This means that the coboundary maps in €*(X; I(A)) are defined by combining the
usual coboundary maps in C* (X)) with the inclusions AV < AT for U > T'. Hence,
the isomorphism in (6.1) is an isomorphism of cochain complexes. This proves the
following.

Lemma 6.2. For X a finite, mirrored CW complex,
H (X I(A) = Hg, (Ux. Urx) = H (Uxr)-
Proof. The second equation is from Lemma 5.1. O

Remark. If ® = W, then A = ZW. €*(X; I(ZW)) can be interpreted as the
equivariant cochains on U (W, X') with coefficients in ZW. When X is a finite
complex, (6.1) asserts

CHX; I(ZW)) = Cg (Ux, Urx))-

The corresponding cohomology groups were studied in [10], [7]. In particular, when
X = K, these cohomology groups are isomorphic to H*(W; ZW).

In what follows the coefficient system is usually I(A) and we shall generally omit
it from our notation, writing J€( ) and €( ) instead of #( ; I(A)) and €( ; I(A4)).
(In other words, the coefficients I(A) are implicit when we use the calligraphic € or
J€ notation.)

As usual, A denotes the simplex of dimension n = |\S| — 1 with its codimension
one faces indexed by 5.
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Theorem 6.3 (cf. [16], Theorem B, as well as [11], [15]). #H*(A) is concentrated
in degree n and is free abelian; moreover, H"(A) = D?. More generally, for any
subset U of S, H* (A, AY) is concentrated in degree n and is free abelian and

HAAYY=4) Y A

seS-U

Proof. By Lemma 6.2, #*(A) = H} (U, ) and by Theorem 4.3, the right-hand
side is concentrated in degree n and is free abelian. The cochain complex looks like

o> ETHA) - E(A) — 0,

where €*(A) = A and €"1(A) = € A°. It follows that cohomology in degree n

1s the quotient
AlY 4 =D".
SES
Similarly, #*(A,AY) = H*(U,s_pv), and by Corollary 4.7 the right-hand
side is concentrated in degree n and is free abelian. Since €"(A,AY) = A4 and
LA AY) = Ps¢v A°. we get the final formula in the theorem. O

Corollary 6.4. DY is free abelian.

Remark. We saw in Section 2 that whenever W is infinite, U(W, A/) is homeo-
morphic to Euclidean space R™. Hence, the compactly supported cohomology of
U(W, Af) is that of H}(R™). Similarly, U(R, AT — (AF)Y) is homeomorphic to
R”, for each (S — U )-residue R.

Remark. U(W, AT) is a thickened version of U(W, K). In the proof of Corol-
lary 3.10 we explained the cellulation of U (W, K) by “Coxeter cells.” The corre-
sponding cellular chain complex, Cy (U (W, K)), has the form

ZW <—@Hs <« @ HT<_...,
seS Tecs2

where HT is the representation induced from the sign representation of Wy and
where $® ig the set of spherical subsets with k& elements (cf. §8 in [11]). The
cochain complex €*(A) for n — 2 < % < n, looks like

e @ AT — @AS—>ZW
Tes(2) seS

So, Cx (U(W, K)) and CI* (U(W, A7) are Poincaré dual to each other.
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7. The Decomposition Theorem

Our goal 1n this section is to prove the following (cf. [26], Theorem 9.11 in [11], [10],
Corollary 3.3).

Theorem 7.1 (The Decomposition Theorem). For each subset T of S, there is a
direct summand AT < AT such thar

AT =D

Vor

Remark 7.2. For any subgroup B € A, put BT := AT N B. This gives a coefficient
system I(B) on any mirrored CW complex X defined by

I(B)(c) := B5©,

where ¢ 15 a cell of X. Suppose that we have a decomposition of abelian groups
A = €p B; satisfying the following condition for all subsets T of S

AT =P )" (7.1)

4

As explained in [10], §2, this leads to a decomposition of coefficient systems, I(A) =
b I(B;), and a decomposition of cochain complexes:

€ (X: 1(4) = P € (X: I(By) (7.2)

Since A
MHT_IU itV 2>T,
0 otherwise,

the formula in the Decomposition Theorem satisfies (4)7 = @V:,T(ff 3T for all
T < S. In other words, it satisfies (7.1). So, we get a decomposition of coefficient
systems I(A) = P T (AV) and then a corresponding decomposition of cochain
complexes:

€T (X1 I(4) = P e (x: I(4") (73)
Vv

This leads to the decomposition theorems for cohomology in the next section.

Before embarking on the proof of the Decomposition Theorem, we roughly outline
the argument. We continue our policy from Section 6 of omitting the coefficient
system I(A) from our notation.
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1) As we explained in the proof of Theorem 6.3, the fact (Theorem 4.3) that
U(P, AT) is SI"~! means that the cochain complex

= €N A) = E€M(A) = 0,

has cohomology only in the top degree n and that the cokernel D? (= A/} A%)
of the next o top coboundary map is free abelian. Hence, it splits off as a direct
summand A? of A.

2) There are similar cohomological statements for the face A7 of A corresponding
to a spherical subset T of S (cf. Proposition 7.3 below). This means that the
quotient DT of AT is free abelian and hence, that it splits off as a direct summand
AT ot AT,

3) The cohomological statements mentioned in 2} are proved by induction on |7|
starting with Theorem 6.3 as the base case. Although the formulas in Propo-

sitions 7.3 and 7.5 seem complicated, their proofs only involve standard exact
sequences in cohomology.

4) The cohomological statements in 2) are combined to get the Decomposition
Theorem.

With regard to 2), we first want to prove a version of Theorem 6.3 for lower
dimensional spherical faces of A. Suppose T is a spherical subsetof S. Puto = Ar
and m = n — |T|. Let U be an arbitrary subset of S — 7.

Proposition 7.3. Each of the following cohomology groups is concentrated in the
top degree and is a free abelian group in that degree:

K*(o.6Yy, #*@Y,96Y)), and H*(Y)

(The top degrees are m, m—1, and m— 1, respectively.) Moreover, there are canonical
identifications:

H ooy =4/ Y ATV, (7.4)
se(S-T)-U
H" oY, aeY)) = ATV, (7.5)
sel
me_l(O'U) — Z ATU{S}/ Z ATU{S,E}' (76)
sell

sel
te(S=-T)-U

Proof. We first prove #*(o,0Y) is concentrated in degree m and is free abelian.
The proof is by induction on the number of elements in 7°. It holds for |T| = 0 by
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Theorem 6.3. Suppose T = T/ U {s}, U = U U {s} and = = Ag,. The exact
sequence of the triple (7, 7V, 7Y) gives

v 5 ,}f*_l(g,oU) — H*(x, ‘L'U/) — H*(z, ‘L'U) — e

(This uses the excision, #* 1(zV", tV) = #*1(0,¢Y).) By inductive hypothe-
sis, the last two terms are free abelian and concentrated in degree m + 1. Hence,
F*(0,5Y) is concentrated in degree . It is free abelian since it injects into a free
abelian group.

That the other cohomology groups are free abelian and are concentrated in the
top degree follows from various exact sequences. For example, for #* (o, (c¥)),
consider the sequence of the triple (o, 3o, e S—1=U):

— H* oY, 9(6Y)) > H*(0,00) — %*(G,U(S_T)_U) =1 (7.7)

where we have used the excision #* (30,0 S~1)=U) =~ g1V a(cY)) to
identify the first term. The second and third terms are free abelian and concentrated
in degree mi; hence, the first term is free abelian and concentrated in degree m — 1.
For #*(cV), we have the exact sequence of the pair (o, Y):

— H* oY) > H* 0.0V > H* (o) —, (7.8)

where the second and third terms are free abelian and concentrated in degree m.
Hence, J*(o'V) is free abelian and is concentrated in degree m — 1.

It remains to verify formulas (7.4), (7.5) and (7.6). We have €™ (o,c¥) = AT
and € (0, 0Y) = Dsev ATV g0

Hm(o,0V)y = AT [ ATV,
s¢lU

proving (7.4). (In particular, #™(c) = DT and #"(A) = DY) In the exact
sequence (7.7), we have #™(0,d0) = Al and, by (7.4), #" (0, S 1)V =
AT /3y ATV hence, (7.5). Using (7.4) to calculate the second and third terms
of (7.8), we get

me_l(UU): Z ATU{S}/ Z ATU{S}
seS-T se(S-1T)-U

and this can be rewritten as (7.6). 0

By Proposition 7.3, in the case where U = @, DT is the free abelian group
FH™(A7). So, for each T € §, we can choose a splitting t7: DT — AT of the
projection map AT — DT
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Definition 7.4. Let AT := 17 (D7). (Itis a direct summand of the free abelian group
AT)

Proposition 7.5. In the following three formulas, the obvious maps from the right-
hand sides of these equations to the right-hand sides of the corresponding equations in
Proposition 7.3 are isomorphisms. Hence, these isomorphisms induce isomorphisms
with the indicated cohomology groups on the left-hand sides:

H" (0,09 = @ AV (7.9)
Vor
V-TcU
" eV 00y = € A (7.10)
Vor
(V=TYNU £0
H (oY) = EB AV (7.11)
VorT
V-TCU

Proof. Assume by induction that (7.9) through (7.11) hold for dimo = m — 1 and
assume as well that they hold when dimo = m and U is replaced by U’ with

|U’| < |UJ. Write U = {s} U U’, for some s € U. Consider the exact sequence of
the triple (¢¥, o5, U 3(a¥), 3(eV)):
0— #" o, a0V — " oY, 06 Y)) — H" oy, (057 — 0,
(7.12)
where we have used the excisions #*(o¥, 05 U 8(c¥)) = 3*(cY’, (V")) and

H* (o, Ud0Y), 8oV)) = #* (0. (05)5~Y") to rewrite the first and third terms. By
induction,

me_l(GU,,a(oU/)): @ AV,

VoT
VAU’ 0

’ AV
ng_l(gs, (OS)S_U) — @ A
VoT U s}
Ve(@uishu(s-U"
Substituting these into the last two terms of (7.12), we get
o6V ey = @ A

VoT
VNU 48

which is (7.10). Next consider the Mayer—Vietoris sequence of oV = ¢V U o

0— " (o)) = #" o) = H" o) @ H" o) > 0. (1.13)
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By induction,

H"2on)"y= P AV and xm 'Y= G A7
VoTUis} VorT
V—(TUu{shHcU’ V—Tcu'’

and #"1(gy)) = ATV} Substituting these into (7.13) we get
Jem—l (GU) — @ A\V’
Vor
V-TcU
which is (7.11). Sequence (7.8) is
0> H" 1Y) > H"™(0,6Y) > H™(0) — 0.

Substituting (7.11) for the first term and AT for the third, we get formula (7.9) for
the middle term. O

We have #™ (o, d0) = AT. Hence, in the special case U = S — T, formula (7.9)
is the Decomposition Theorem.

8. Cohomology of buildings

Just as in [10], Theorem 3.5, the Decomposition Theorem (Theorem 7.1) implies the
following.

Theorem 8.1 (cf. [16], Corollary 8.2, [11], Theorem 10.3, [10], Theorem 3.5). Sup-
pose X is a finite, mirrored CW complex. Then

HY (U@ X )= P H XX A
TeS

Proof. By Lemma 6.2, H(U(®D, X 7)) is the cohomology of €*(X; I(A)). For-
mula (7.3) gives a decomposition of cochain complexes:

€ (X: I(A) = P e* (X I(AT))
Tes

We have
X 1AdT) = [ ATnas@= ] 47
ceX (k) cex &)
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So, an element of €% (X: I(AT)} is just an ordinary AT ~valued cochain on X which
vanishes on X5~ 7 ie.,

X IATY =X, x5 Ty e AT;
SO,
X IA) =P crx.x e Al
TeS

Taking cohomology, we get the result. O

The most important special case of the previous theorem is the following.

Corollary 8.2.
HY(U(®.K) =P HK. KAl
TeS

9. The G -module structure on cohomology

Assume X has a W-finite mirror structure (i.e., X = X /). Suppose G is a group of
automorphisms of ®. Then A4, AT, A>T and DT are naturally right G-modules and
so is the cochain complex CF(U(P, X)) as well as its cohomology. The discussion
in Section 8 is well adapted to studying the G-module structure of A} (U(P, X)).
As in [10], we should not expect a direct sum splitting of G-modules analogous o
the nonequivariant splitting of Theorem 8.1; rather there should be a filtration of
cohomology by G-submodules with associated graded terms similar to those in the
direct sum. We show below that this is indeed the case.
For each nonnegative integer p, define a G-submodule F, of A by

Fpi= > AT

|T|=p

This gives a decreasing filtration:
A=FyD--DFy, D Fy1---. O.1)

As in [10], it follows from the Decomposition Theorem that the associated graded
terms are
F,/Fpr1 = € DT.
|T|=p
As in Section 6, we get a coefficient system I(F, ), a cochain complex €* (X ; I(F,))

and corresponding cohomology groups #*(X; I(Fy)). The filtration (9.1) leads to
a filtration of #™*(X; I(A)) (= H}(U(P, X))) by right G-modules,
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HE(X;I(A) D DHTXI(F) D HX (X I(Fpyr))-+ . (9.2)

The Decomposition Theorem implies that

(X I(Fp 1))

is short exact. From this we deduce the following.

Theorem 9.1. Suppose G is a group of automorphisms of ®. Then the filtration (9.2)
of HX (U(®, X)) by right G-modules has associated graded term,

KX Fp) /(X Fpe) = D HYX. XD
Tesw)

Cocompact G -action. In this final paragraph we assume that there are only finitely
many G-orbits on ® and that X is a finite complex. These hypotheses imply that
the quotient space U(P, X)/ G is compact and since X is a finite complex, that each
of the cohomology groups H*(X, X1 is finitely generated. As a corollary to
Theorem 9.1, we get the following.

Corollary 9.2. With the above hypotheses, H} (U(P, X)) is a finitely generated
G -module.

Proof. The assumption that G has only finitely many orbits of chambers implies that
each AT is finitely generated G -module; hence, so is each DT . O

Example 9.3. Suppose G is chamber transitive, i.c., suppose ® consists of a single
G -orbit. Choose a base chamber @y, let B be its stabilizer and foreach T' € S, let G
be the stabilizer of the 7'-residue containing @y. Then A is the G-module Z (G/B) of
finitely supported functions on G/B and AT can be identified with Z(G/Gy). For
each U D T, we have a natural inclusion Z(G/Gy) — Z(G/Gr) induced by the
projection G/ Gy — G/Gy and DT is the G-module formed by dividing out the
sum of the images of Z(G/Gy) in Z{G/Gr) foral U D T.

Since DT # 0, we get the following corollaries to Corollary 8.2 and Theorem9.1.

Corollary 9.4. Suppose I' C G is a cocompact lattice in G. Then H*(I"; ZI') has,
in filtration degree p, associated graded I'-module

P H (kK5 D
Tesp)



5380 M. W. Davis, J. Dymara, T. Januszkiewicz, J. Meier, and B. Okun CMH

In particular, when I is torsion-free, its cohomological dimension is given by
cd(T") = max{k | HYK, K5 Ty+£0 for some T € §}.

A torsion-free group I' is an n-dimensional duality group if H*(I'; ZT') is free
abelian and concentrated in dimension . Following Definition 6.1 in [13], we say that
the nerve of a Coxeter system has punctured homology concentrated in dimension
nifforal T € 8§, H*(K5™T) is free abelian and concentrated in dimension ».
Corollary 8.2 gives us a (correct) proof of the following result, which was stated in
[13], Theorem 6.3.

Corollary 9.5. Suppose I' € G is a torsion-free, cocompact lattice in G. Then the
following are equivalent.

1) T is an n-dimensional duality group.
2) W is an n-dimensional virtual duality group.

3) The nerve of (W, S) has punctured homology concentrated in dimension n — 1.
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