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On the integro-differential equation satisfied by the p-adic
log I' -function

Eduardo Friedman™

Abstract. Diamond’s p-adic analogue LogI'n(x) of the classical function log I' (x) has recently
been shown to satisfy the integro-differential equation

) fp, fG+)dt=Gx-1Df(x)-x+1/2 (xe€Qp—1Zp),

where pr is a Volkenborn integral and f” is the derivative of f. We show that this equation

characterizes LogI'p{(x) up to a function with everywhere vanishing second derivative. Namely,
every solution f of (%) is infinitely differentiable and satisfies /" = LogI'n”.
We show that the set of solutions of the homogeneous equation

Jz, y(x +0)ydt = (x = 1)y’ (x)

associated to (%) is an infinite-dimensional commutative and associative p-adic algebra under
the product law

(¥1 @ y2)(x) 1= 5 (x)y1(x) + ¥{ (M) y2(x) — (x — 1/2)y{ () p5(x),

the unit being y(x) = x — 1/2. We also study Morita’s alternate p-adic analogue LogI'y of
log I'(x) and prove similar results.

Mathematics Subject Classification (2010). Primary 11S80; Secondary 45J05, 12H25.

Keywords. p-adic gamma function, p-adic integral equations, p-adic differential equations.

1. Introduction

Diamond’s [D1] p-adic analogue of Euler’s log I'-function was recently shown [CF]
[Co, p.335] to be the unique strictly differentiable function f: Q, — Z, — C,
simultaneously satisfying the difference equation

Jx+1)— fx) =log, x (1

*This work was partially supported by Chilean Fondecyt grant No. 1040585.
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and the “Raabe formula”
[t nd =G -nre-x+k @
Zp

Here f” is the derivative of f', C, is the completion of the algebraic closure of the
p-adic field Qp, Zp C Q) denotes the ring of p-adic integers and log,, is the Iwasawa
p-adic logarithm, so log,, p = 0 [Sc, p. 132]. Recall that the Volkenborn integral of
a function g: Z, — C, is defined by

pi-1

1
dt ;= lim — ), 3
/Zpg(t)t n%op”jgog(]) 3)

and that this limits exists if g is strictly differentiable on Z, [Ro, p. 264]. A function
g: X — C, 1s strictly differentiable on a subset X C Cp ifforalla € X,

lim gx)—g») @)
(x’y)_)(aaa) X — y

exists, the limit being restricted to x, y € X, x # vy [Ro, p. 221]. Diamond’s function
LogI'p(x) can be defined by the Volkenborn integral formula [Sc, p. 182]

Loglp(x) i= fZ (x+0)-(logy,(x +1) = 1)dt (x €Qp—Zp). (5

Since the combined difference equation (1) and Raabe formula (2) uniquely de-
termine Diamond’s function Logl™p, it is natural to wonder to what extent LogI'p is
determined by one of these equations alone. TFor the difference equation the answer
is trivial: f is a continuous solution of the difference equation (1) if and only if
y = f — Logl'p is Z,-periodic, i.e., y(x + 1) = y(x) forallr € Z,. (Note that
there are many non-constant Z,-periodic functions on Q, — Z,, the quotient group
Qp/Z, being discrete and infinite.) As the derivative of any Z,-periodic function
vanishes identically, we conclude that ' = (LogI'p)’.

Such a simple result cannot hold for the Raabe formula (2) since f(x) :=
Logl'p(x) + x — % satisfies (2). We show that one more derivative does the trick.

Theorem 1.1. Let Logl'n: Q, — Z, — C,, be Diamond’s p-adic analogue (5) of

the classical log I'-function and let f: Q, — Z, — C, be strictly differentiable and
satisfy the Raabe formula

fZ Fatndi=E-Df () —x+) xeQ-Z).  ©
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Then f is infinitely differentiable, (f — Log'n) is Zp-periodic, " = (Logl'p)”
and
Sx+1)— fx) =log, x + g(x), (7)

where g: Q, — Zp, — C, is strictly differentiable and g’ vanishes identically. Con-
versely, given any such g, then

Fei= [ G (g4 0+ logylr 0= 1)dr (reQ-Zp) G

is the unique strictly differentiable [ : Qp, — 7, — C, satisfying (6) and (7).

We will also show (see Proposition 4.2) that any f satisfying (6) can be uniquely
written in the form

f(x) = Loglp(x) +q(x)(x — 3) +r(x) (x € Qy—1Zp), ®)

where g is Zj-periodic and r satisfies [, r(x +1)di = Oforallx € Qp — Z).
Moreover, any f of the above form satisfies (6).

We note that functions r: Q, —Z, — C, satisfying pr r(x+t)dr = 0abound.
A strictly differentiable r has this property if and only if r(x) = A(x + 1) — h(x) for
some strictly differentiable £ satisfying 2’ = O everywhere (see Lemma 4.1). Such
r are “trivial” solutions to pr rix +t)dt = (x — 1)#'(x), in the sense that the
equation holds because both sides vanish identically.

Morita [Mo], [Sc, §35] defined a different analogue Logl'yi: Z, — C, of the
classical log I'-function. Morita’s LogI'y is by definition the Iwasawa logarithm of
his p-adic I'-function [Mo]. (We note in passing that LogIp is not the logarithm of
any function. Our notation is only meant to recall the kinship with log I'.) Its domain
is complementary to that of Diamond’s LogI'p and satisfies the modified difference
equation

fx+1)— f(x) = x(x)log, x,

where y is the characteristic function of the units Z 3 of Z,. Morita’s LogI'y satisfies
the integral formula [Sc, p. 176]

Loglm(x) = [ (x+1)- xx+1)-(ogy(x +1)—1)dt  (x € Zp),
ZP
and the Raabe formula [CF], [Co, p. 344]
[ LogTyv(x + 1) dr = (x — D)(Logly) (x) — x + (%W (10)
Zp

with [%1 as defined after (11) below.



538 E. Friedman CMH

Theorem 1.2. Let Logl'yi: Z, — C, be Morita’s p-adic analogue of the classical
log I'-function and let f: 7, — C, be strictly differentiable and satisfy

[Z fa+ndt=x-Df' ) —x+[3] (xeZp)), (11)

where ’_ﬁ-‘ is the p-adic limit of the usual integer ceiling function ’_

through x, € Z. Then (f — LogDl'y) is constant and

flx+ 1) — fx) = y(x)log, x + g(x), (12)

where g: Z, — C,, is strictly differentiable and g’ vanishes identically. Conversely,
given any such g, then

X

7”-‘ as x, — X

J(x) :fz (x+0)-(gx +1) + x(x + 0)(log,(x + 1} — 1)) dr (x € Zp) (13)

is the unique strictly differentiable f: 7., — C, satisfying (11) and (12).

Again, f(x) = Loglv(x) + x — 3 satisfies (11), and we will show in §4 (sce
Proposition 4.2) that any f satisfying (11) can be uniquely written in the form

f(x) =Loglu{x) +c- (x — %) +r(x) (x eZp), (14)

where ¢ € C,, and r satisfies pr r(t)dt = 0,as well as r'(x) = Oforall x € Z,.

Moreover, any f of the above form satisfies (11).
On setting y := f — Logl'p (or y := f — Logly in the Morita case), we will
obtain the two theorems above from

Theorem 1.3. Fix D as either Z, or Qp, — Zp, and let y: D — C, be strictly
differentiable on D and satisfy

f yx +0)dr = (x =11 (x) (x € D). (15)
Zp
Then y is infinitely differentiable, y' is Zp-periodic, g(x) := y{x + 1) — y(x) is
strictly differentiable, g’'(x) = 0 = y”(x) for all x € D, and
y{x) = / (x +t)g({x +t)dr. (16)
ZP

Conversely, given any strictly differentiable function g: D — C, with everywhere
vanishing derivative, then (16) defines the unique strictly differentiable function
y: D — C, satisfying (15) and y(x + 1) — y(x) = g(x).
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In §3 we prove a generalization of Theorems 1.1 and 1.3 where D is allowed to
be any subset D C C, invariant under translation by Z,. This is relevant since the
integral formula (5) allows the domain of Diamond’s Logl'p to be extended from
Qp — Zp to Cp, — Zp [Sc, §60].

In §4 we prove a rather different kind of consequence of Theorem 1.3.

Proposition 1.4. Fix D as either Z, or Q, — Zp, and let Vg be the set of stricily
differentiable functions y: O — C, satisfying pr yx +0)dt = (x — D)y’ (x).
Then the binary operation

(y1 ¢ y2)(x) 1= ¥5(0)p1(x) + ¥y (xX)p2(x) — (x — 3)¥ 1 (Op5(x) A7)

makes Vg into an infinite-dimensional, commutative, associative C,-algebra with

g 1
unit x — 3-

Let Wgp be the space of all strictly differentiable Cp,-valued functions on O
with everywhere vanishing derivative, a ring under the usual point-wise product of
functions. Theorem 1.3 gives a C,-vector space isomorphism A: Vg — Wy taking
a solution y of (15) to a g = Ay having vanishing derivative. Trivially, Vo can be
made into a ring using A to transport to Vg the ring structure on Wy . We shall show
in §4 that the ring Vp defined in Proposition 1.4 is not isomorphic to Wg, so the
o-product 1s a genuinely different ring structure on Vgp. In fact, Vp 1s isomorphic
to a certain subring of the ring of 2 x 2 upper-triangular matrices with coefficients
n Wop.

In the p-adic content it 1s not surprising to see the space Wyp parametrizing the
space of solutions Vgp. For functions on & = Z,, Schikhof [Sc, §65] showed that
the general solution of a first order differential equation

v =T(y)

is parametrized by the space Wz, , which is infinite-dimensional over C,, [Sc, §63].
Here T: C — C is a Lipschitz map on the space C = C°(Z,,C,) of continuous
functions from Z, to C,, endowed with the supremum norm. In other words, in the
p-adic domain one expects functions with everywhere vanishing derivative to play
the role of constants in the archimedean theory of differential equations.

Although there does not seem to be a theory of Volkenborn integro-differential
equations in the literature, it 1s reasonable to expect Wy to play an important role in
some equations of the form

f y(x +t)ydt = T{(y)(x). (18)

Zp

Indeed, on applying the difference operator A to both sides we find
Y = AT(y),
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which is of Schikhof’s type if T is. In Theorem 1.3, T(y){x) = (x — 1}y'(x) is not
of Schikhof’s type. Still, the first step in our proof of Theorem 1.3 will be to apply
the difference operator.

Another explanation of the importance of Wy lies in the decomposition

Wop =Ap & Xop, (19)

where Ap C Wy is the C,-algebra of Z ,-periodic functions on O, and X o consists
of all y € Wy satisfying pr y(x +1)dr = 0forall x € D (see $§4). We trivially
have that any y € X o N T~1(0) is a solution of (18). In particular, if Xo C T~1(0),
then all y € X g are solutions of (18). This is indeed the case in Theorem 1.3.

The summand A g in (19) can also play a role in (18). It # € Ag, then

[h(x—i—z)y(x—i—z)dt:h(x)/ vi{x 4+ t)dr.
Zy Zp

Hence, if 7" is an A p-module map, then the set of solutions of (18) is an A p-module.
A rather general example of this kind of equation is

[ rat0di=T0)0 = ¥ a0 0akye.
P 0<j.k=<n

where D and A denote the differential and difference operators, and the a; ; are
arbitrary functions on D.

2. Proof of the theorems

We begin by showing that Theorem 1.1 follows from Theorem 1.3. Diamond’s func-
tion Logl'p defined by

LogTo(x) i= [ (1) Qogy v +0) = Delt (x € @y~ )

Zp

is locally analytic on Q, — Z,, and is therefore strictly differentiable and infinitely
differentiable [Sc, Theorem 60.2 and Corollary 29.11]. Tt satisfies the difference
equation

Loglp(x + 1) — Loglp(x) = log,(x) (x € Q, — Z,)
[Sc, Theorem 60.2] and the Raabe formula [CF]

]% f(x—l—t)dr:(x—l)f’(x)—x—l—% (x € Qp—Zp). (20)
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If /: Q,—2Z, — C, is any other strictly ditferentiable function satistying (20),
then y(x) := f(x)—LogI'n(x) is a strictly differentiable function on Q, — Z, which
satisfies

[ Y+ 0 dt = (x — Dy’ (x).
Zp

Bearing in mind the above properties of Loglp, every assertion about f in Theo-
rem 1.1 is a direct translation of the corresponding statement for y in Theorem1.3 for
D=Q,—Zy.

'The proof that Theorem 1.2 follows from Theorem 1.3 1s similar, but we can make
better use of the difference equation on & = Z, than we could on D = Q, — Z,.
Indeed, Morita’s LogI'y (x) satisfies for x € Z,, the difference equation

Jx+ 1) = fx) = y(x)log, x, (21)

where y is the characteristic function of the units Z, of Z, [Sc, p. 176]. It also
satisfies the integral formula

LoglM'vu(x) = [ (x+ 1) x(x+12) (log,(x +1y—1)dr (x € Zp)
ZP
[S¢, p. 176] and the Raabe formula

L LogTy(x + 1) dt = (x — )(Logly) (x) — x + (%W, (22)
D
where (%W is defined in Theorem 1.2 [CF], [Co, p. 344]. Since LogI'y; is analytic on
pZp [Sc, Lemma 58.1] and the Iwasawa logarithm is locally analytic on C, — {0}
[Sc, Theorem 45.12], the difference equation (21) implies that Logl'y is locally
analytic on Z,,.

Now suppose f: Z, — C, is strictly differentiable and satisfies the Raabe
formula (22). As before, y(x) := f(x) — Logl'w(x) is then a strictly differentiable
function on Z, which satisfies

[Z yx+0yde=x =10y (x) (xeZp).
v
By Theorem 1.3, g(x) := y(x + 1) — y(x) has an everywhere vanishing derivative.
Thus ¥(x + 1) = y’(x), and " is continuous since y is strictly differentiable
[Sc, §271, [Ro, p. 221]. Itfollows that y” is constanton Z, as claimed in Theorem 1.2.
The rest of Theorem 1.2 follows from Theorem 1.3 just as Theorem 1.1 did.
Turning now to the proof of Theorem 1.3, we begin by recalling some general
properties of Volkenborn integrals. Let D = Z,, or & = Q, — Z,, and let

H(x) ::/Z gx +1)dt (x € D), (23)
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where g: O — C,, is assumed strictly differentiable. Then [Ro, p. 265]
Hx+1)— H(x) = q'(x), (24)

and [CF, Lemma 2.1], [Co, p. 396]
H(x) = g(x) —/ (t + DAg{x +1)dr. (25)
ZP

Here Ag(x) :=q{x + 1) —gq(x).
Let y be as in Theorem 1.3. Thus y is strictly differentiable on O and

H{(x) ::./Z yx +0)dt = (x — 1)y (x) (x € D). (26)

Set
g(x) 1= Ay(x). (27)
Using (24), (26) and (27) we find

Y(x)=Hx+1)-Hx) =xy'x+1)—x—-1)y(x) =xg"(x)+y'(x). 28)

Hence, g’(x) = O for all x € D, except possibly at x = O when D = Z,. As g
is strictly differentiable (because y is), ¢’ is continuously differentiable [Ro, p. 221].
Hence g’(x) = O forall x € D.

But y’ being continuous and A(y’) = (Ay) = g’ = 0 show that y’ is Z,-
periodic. Hence y is infinitely differentiable and y” = 0 identically, as claimed in
Theorem 1.3.

Next we show

y{x) = .[Z (x+tgx+1)dt (xeD). (29)

Note that the Volkenborn integral above is well-defined because g is strictly differ-
entiable on O. From (25)—(27) we find

u—mmn=fyw+om=ym—f<u4m@+mm

Z, Zp
or
ﬂm=@—uﬂm+f<u4mu+om. 30)
Zp

But, by (24),

y’(x):A([ y(x+z)dz) :/Z (Ay)(x+t)dt:/ glx +t)dr. (31)

Zp Zp
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On substituting (31) in (30), we obtain (29), proving the first part of Theorem 1.3.

We now prove the converse claim in Theorem 1.3. The uniqueness claim is a
special case of [CF, Proposition, p. 365], but we give the proof here for completeness.
Suppose both y; and y, are solutions of

yx+1D—yx)=gx) and / yix+0de=(x-1y(x), (32

Zp

where g is given. Then 2 := y; — y, satisfies
h{ix+1)—h(x)=0 and f hix +1)dt = (x — DA (x).
Zp

But 2(x + 1) = h(x) implies that #'(x) = 0 identically. It also implies, by the
very definition (3) of the Volkenborn integral, that /(x} = fzp h(x +t)dt. Hence
h(x) = 0 and uniqueness is proved.

We now turn to rest of the converse claim in Theorem 1.3, Suppose then that
g: D — C, is strictly differentiable and g'(x) = 0 forall x € £. We wish to show
that there is a strictly differentiable solution y to (32) and that y is given by

y{x) = .[Z (x+tgx+1)dt {(xeD). (33)
To this end, define y by (33). Then, from (24),
Y+ 1D —y(x) = (xg®) =g, (34)
since g’ = 0. Thus
Ay =g. (35)

Now assume O = Z, (we will deal with the case & = Q, — Z, in a bit). Then
(35) shows

v{x) = Sg(x) +c, (36)

where Sg: Z, — C, is the indefinite sum of g [Ro, p. 177], [Sc, pp. 105-106]
and ¢ is a constant. But Sg is strictly differentiable because g is [Ro, p. 232],
[Sc, p. 162]. Hence y is strictly differentiable, as claimed in Theorem 1.3.

We now show that y satisfies fzp y(x +1)dt = (x — 1)y’(x). Note that

[ g(x + 1) d = (Sg)'(x) = ' (x). 37

Zp

where the first equality amounts to the proof of existence of the Volkenborn integral
[Ro, p. 264], [Sc, p. 167], and the second equality uses (36). Now (25) and Ay = g
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[ vt nar=ye- [ ¢+ vgernar
Zp Zp

:y(x)—i_(x_l)L g(x‘i‘[)dl—é (X+Z)g(x+[)dz (38)

= (x— Dy ().

where we also used (37) and (33). This completes the proof of Theorem 1.3 in the
Morita case D = Z,.

When & = Q, — Z, we meet a nuisance in (36) because the indefinite sum
operator S is only defined for (continuous) functions with domain Z,,. To get around
this, forg: & — Cp and x € D, define g,.: Z, — Cp, by qx(t) := g(x + ). Then
Ay = g in (34) becomes

Ay, (1) =yt + 1) —y:(1) = gx(t) (x €D, re Zp)

Hence
() = S(gx))+ex (x€ D, t € Zy), (39)
and 1 — y« () is strictly differentiable on Z,. Thus, for any fixed a € D,
) =yal® _ o et yats
(r,s)—(0,0) rF—=s (r,s)—(0,0) y—=5

exists, the limit being restricted to 7,5 € Z,, r # 5. Asa € D C Q,, the existence
of (40) is equivalent to the existence of
N !
N (O e G0
(r'.8")—(a,a) r—s

»

the limit being restricted to r', s € D, r’ # s'. Hence y is again strictly differentiable
ond =Qp —Zy.

The proot of Theorem 1.3 in the Diamond case & = Q, — Z, now mimics the
Morita case. For example, (37) becomes

d d
[, atesnar= [ g = Fisglmy = g 0ren—edl sy = 00

where we used (39).

3. Other domains

Diamond’s function LogI'y can be defined for x € C,—Z,, by the Volkenborn integral
formula (5), and is actually locally analytic on C, — Z,, [Sc, Theorem 60.2 (iv)]. The
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difference equation (1) and the Raabe formula (2) still hold for x € C, —Z,, and they
uniquely characterize LogI'n among all strictly differentiable functions on C, — Z,.
More generally, let & C C, —Zp be such thatx € D andr € Z, imply x +t € D.
Then LogI™p restricted to £ is again the unique strictly differentiable function on O
satisfying (1) and (2), [CF].

Part of Theorem 1.3 holds for any & C C,, assumed invariant under translation
by Z,. Namely, if y is strictly differentiable on £ and satisfies (15), then g = Ay
is strictly differentiable on £ and g’ = 0 everywhere on D. The proof given in §2
goes through without change.

Other parts of Theorem 1.3, however, do not seem to generalize. The problem
is that if we begin with g strictly differentiable on £ and satisfying g’ = 0, the
differentiability (strict or not) of the function t — y, (1) = y(x + ) forr € Z, (see
(39)) does not imply differentiability of x — y(x) for x € D (unless D C Q).

To account for this we shall say that y: £ — C,, is strictly Z,-differentiable on
D if for each fixed x € D, themapt — y(x + ) forr € Z, is strictly differentiable
as a function with domain Z,. We denote the corresponding derivative by

y/(x) — lim y(x—|—r)—y(x)

t—0,t€Zp A

and call it the Z ,-derivative of y. We note that for strictly Z,-differentiable y, the
Z.p-derivative y' is Zp-continuous, ie., t — y'(x + 7} is continuous for 1 € Z,.
Although strict Z,-differentiability is a very weak notion if O ¢ Q,, it is exactly
what is needed to define the Volkenborn integral /. Zy v{x 4+ 1) dt. Anexample of a
strictly Zp-differentiable function on © = C,, which is not even continuous on D is
yx)i=1lifx € Q,, y(x) :=0if x € C, — Q,.

Examination of the proof given in [CF] shows that f/ = LogI'p restricted to D is
the unique strictly Z ,-differentiable function on £ satisfying the difference equation
(1) and the Raabe formula (2). With these adaptations we have

Theorem 3.1. Let D C C, be invariant under translationby Z., andlet y : D — C,
be strictly Zp-differentiable and satisfy

/Z yx +0)dr = (x — 1)y'(x) (x € D), (41)

where y' denotes the Zp,-derivative of v. Then y is infinitely Z,-differentiable, y' is
Z.p-periodic, g(x) := y(x + 1) — y(x) is a strictly Z,-differentiable function on D
whose Zp-derivative vanishes everywhere on D, and

y(x) = /Z (x +t)gl{x +1t)dr. (42)
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Conversely, given any strictly Zp-differentiable function g: D — C,, with every-
where vanishing 7 ,-derivative, then (42) defines the unique strictly 7., -differentiable
function y: D — Cp satisfying (41) and g(x) = y(x + 1) — y(x).

Proof. The proof of Theorem 1.3 for D = Q, — Z, goes through after replacing
“strictly differentiable” everywhere by “strictly Z,-differentiable” and understanding
all derivatives to be Z,-derivatives. We should also note, regarding equation (25),
that its proof in [CF] only requires strict Z ,-differentiability. O

Using the above result, it 1s clear that Theorem 1.1 can be extended from the
domain Q, — Z, to any D C C, — Z, invariant under translation by Zp, provided
differentiability (strict or not) is understood in the Z, sense defined above.

4. Decomposition of the solution space

We again fix D C Cp, assumed invariant under translation by elements of Z,, and use
the notions of Z,-continuity, Z ,-derivative and strict Z,-differentiability defined in
§3. When O C Q, these coincide with the usual definitions of continuity, derivative
and strict differentiability. All derivatives in this section are to be understood as
7, -derivatives.

Let Wy be the C,-algebra (under the usual point-wise product of functions) of
all strictly Z,-differentiable C,-valued functions on & with everywhere vanishing
Zp-derivative, and let Ap C Wy be the sub-algebra of Z,-periodic functions. If we
let A: Wgp — Wyp be the usual difference operator A(y)(x) := y(x + 1) — y(x),
we have Ap = ker(A).

Lemma 4.1. Fory € Wp, let T(y): D — C, be defined by

T()(x) = f yix + 1) dt.

Zp

and let X = ker(T) C Wyp. Then

(1) T maps Wo onto Agp, T restricted to Ay is the identity map on Agp, and so
T? =Ty

(2) T and A are Agp-module maps and TA = AT = 0;

(3) Wop = Ap & Xo, the internal direct sum being as Cp-vector spaces and as
Agp-modules;

4) A maps Wg onto X g, and A restricted to X g is an isomorphism of X p onio
itself.
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Proof. For any strictly Z,-difterentiable y, the function x — pr y(x + 1)de is
7 p-continuous, as the Volkenborn integral is the Z,-derivative of a strictly Z,-
differentiable function, namely of the indefinite sum of r — y(x + ¢) [Sc, p. 167],
[Ro, p. 267]. Also [Ro, p. 265]

A(T() () = T(A) ) = fZ (POt 14—y (e+0)) di = ¥ (x) =0, @3)

where the last step uses y € Wgp. Since x — T'(y)(x) is Zp-continuous, it follows
that T'(y) is Zp-periodic. Hence T(Wgp) C Ap. For f € Ap,

T(f)(x) = [Z Fle+ 1) di = fZ Fdi = £(x). (44)

Claim (1) in the lemma is now clear (it essentially amounts to [Sc, Corollary 55.6]).
To prove claim (2) take i € Ap and any strictly Z,-differentiable y. Then

[ hix +t)y(x +t)dt = h(x) y(x +1)de,

Zp Zp

and so 7' is an A p-module map. For A the verification of this fact is equally simple.
We have already seen in (43) that TA = AT = 0, as claimed in (2).

To prove (3), take v € Wy and write vy = T(y) + (y — T(y)). By claim (1)
in the lemma, T(y — T(y)) = T(y) — T*(y) = 0,50 y — T(y) € Xp. Since we
have already shown that T(y) € Agp, wehave Wp = Ap+ Xp. If f € Xp N Ap,
then T(f) =0as f €ker(T) = Xp. But (44) shows f = T(f),since f € Ap.
Hence Xp N Ap = {0} and claim (3) is proved.

To prove claim (4), note that TA = 0 implies AWgp C ker(T') = Xg. To prove
AWgp = AXgp = Xgp, take y € Xp and let

h(x) ::fZ (x + ) y(x + ) dt. (45)

Then Ah(x) = (xy(x))/ = y(x), since y/ = Ofor y € Wgp. As in §2 (see the
paragraph containing (39)), we conclude that 4 is strictly Z,-differentiable. Since
Ah = y, we have [Ro, p. 264], [Sc, p. 167]

W (x) = [Z Y + 8 dt = TG)x) =0,

where the last stepuses y € Xop. Thus i € Wop. Toprove h € Xgp weuse Al =y
and (25) to compute

f hix+t)dr = h(x)—[ (t+Dy(x+r)dr = h(x)—[ (t+x)y(x+1)dt =0,
ZP Zp Zp



548 E. Friedman CMH

where we also used pr y(x +1)dr = 0 and (45). Thus A maps Xp onto itself.

The injectivity of A on X g is clear from Xgp N Ap = {0}, which we have already
shown. O

We can now prove

Proposition 4.2. Let y: D — C, be strictly Z,-differentiable and satisfy

/Z y(x +1)yder = (x — 1)y (x). (46)
Then
y(x) = q(x)(x = 3) + r(x), (47)

for aunique q € Agp and a unique v € X . Conversely, givenqg € Ap andr € Xy,
(47) defines a strictly Z,-differentiable function y satisfying (46).

Proof. We first prove the converse claim. If ¥ € Xgp, then pr r(x +t)dt =0 =
r’(x), and so r is trivially a solution of (46). One checks directly that y(x) = x — %
1s a solution of (46) and that the set of solutions Vg is an Agp-module. Thus the
converse statement is clear.

To prove the main statement, note that by Theorem 3.1 the map A: Vp — Wop
is a Cp-isomorphism (we again denote the difference operator by A, despite the
change of domain with respect to Lemma 4.1). One easily checks that A is an
A p-module isomorphism. Under it x — % maps to the constant function 1. Hence
Ap - (x — %) maps isomorphically onto Ap C Wgp. But we have just seen that
Xp C Vp. By Lemma4.1 (4), A restricts to anisomorphism of X i onto itself. Since
Wo = Agp ® X p (see Lemma 4.1 (3)), we conclude that Vp = Agp - (x — %) P Xp.

O

Lastly, we turn to the ¢-product structure on Vg defined in Proposition 1.4. Using
Proposition 4.2, we can write y; € Vg as

yi(x) = qi(x)(x — 3) +ri(x) (i € Xp, qi € Ap, i = lor2).
Then

(y1 0 ¥2)(x) = y5(x)y1(x) + y1(0)y2(x) — (x — 3)p1(x)y5(x)
= g2 (x)y1(x) + g1 (x)y2(x) — (x — 3)q1(x)g2(x) (48)
= (511(36)6]2(?6)) (x - %) + (6]1(?6)1”2(?6) + Clz(x)rl(x)),

which is again in the form of Proposition 4.2. Hence Vg with the ¢-product is

q(x) r(x))

isomorphic to the ring R of all upper triangular matrices of the form ( 0 glx)
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where g € Ap and r € Xp. The ring R 1s clearly an associative and commutative
Cp-algebra.

The nilpotent elements of R are exactly the matrices of the form 8 ”(Ox) ) Since
Wgo, under the usual point-wise product of functions, has no non-zero nilpotent
elements, we see that Vg is not ring-isomorphic to W .

To see that Wy is an infinite-dimensional C,-vector space, note the isomorphism
Wo = [lien/z, Wa+z, and Wiyz, = Wz,. The latter space is known to be
infinite-dimensional over C, as it can be explicitly described in van der Put’s base
[Sc, Theorem 63.3].
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