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Dimensional reduction and the long-time behavior of Ricci flow

John Lott™

Abstract. If g(r) is a three-dimensional Ricci flow solution, with sectional curvatures that are
O(t~!) and diameter that is O(z1/2), then the pullback Ricci flow solution on the universal
cover approaches a homogeneous expanding soliton.

Mathematics Subject Classification (2010). 53C44, 57M50.
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1. Introduction

After Perelman’s proof of Thurston’s geometrization conjecture [43], [44], using
Hamilton’s Ricci flow [24], there are many remaining questions about three-dimen-
sional Ricci flow.

Since the Ricci flow is a nonlinear heat equation for the Riemannian metric, the
intuition 1s that it should smooth out the metric and thereby give rise, in the long-
time limit, to the locally homogeneous pieces in the geometric decomposition. This
intuition 1s a bit misleading because, for example, of the presence of singularities
in the Ricci flow. Nevertheless, based partly on earlier work of Hamilton [27],
Perelman showed that the hyperbolic pieces do asymptotically appear in the Ricci
flow. Perelman’s proof for the existence of the other geometric pieces is more indirect.
Perelman showed that the nonhyperbolic part of the evolving manifold satisfies certain
geometric conditions, from which one can show that it is a graph manifold [1], [32],
[42], [44], |51]. By earlier work of topologists, graph manifolds have a geometric
decomposition.

It is an open question whether the Ricei flow directly performs the geometric
decomposition of a three-manifold, as time evolves. In particular, suppose that the
geometric decomposition of the three-manifold consists of a single geometric piece.
If this piece has Thurston type S 3 or S x S2 then its Ricci flow has a finite extinction
time [10], [11], [45]. For the other Thurston types, one can ask whether the large-time
behavior of the Ricci flow solution will be that of a locally homogeneous Ricci flow, no
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matter what the initial metric may be. Hamilton [25, Section 11], Hamilton-Isenberg
[28] and Knopf [33] showed that this is true for certain manifolds of R? or Sol-
type if one assumes some extra symmetries on the initial metric. We are interested
in whether one can show asymptotic homogeneity for a wider class of Ricci flow
solutions.

To describe the results, let g(-) denote a Ricci-flow-with-surgery whose initial
manifold is a closed orientable 3-manifold. Let M, denote the time-f manifold. (If ¢
is a surgery time then we take M, to be the postsurgery manifold.) From Perelman’s
work [45], there is some time Ty so that for all ¥ > Ty, each connected component
C of M, is S or an aspherical 3-manifold. As the geometrization conjecture holds,
C has a decomposition into geometric pieces of type S3, R3, H3,Nil, Sol, H2 xR
and M); see Section 2.

It is possible that the Ricci-flow-with-surgery involves an infinite number of surg-
eries. In the known examples, there is a finite number of surgeries. Furthermore, in
the known examples, after all of the surgeries are done then the sectional curvatures
uniformly decay in magnitude as O(tr~!), i.e., one has a type-III Ricci flow solution.
In order to make progress, we will consider only Ricci-flows-with-surgery in which
this is the case. Hence, we will consider a smooth Ricci flow (M, g(-)), defined for
t € (1, o0) onaclosed, connected orientable 3-manifold M, with sectional curvatures
that are uniformly O (r~1).

If M admits a locally homogeneous metric modeled on a given one of the eight
Thurston geometries then we will say that M has the corresponding Thurston type.
Saying that M has a certain Thurston type is a topological statement, i.e., we allow
ourselves to consider Riemannian metrics on M that are not locally homogeneous.

In order to analyze the large-time behavior of a Ricci flow, we use blowdown
limits.

Definition 1.1. Fors > 1, put g;(r) = % g(sr). It is also a Ricci flow solution. Let
(1) be the lift of g () to the universal cover M.

A time interval [a, b] for g corresponds to the time interval [sa, sb] for g. We are
interested in the behavior as s — oo of g5 () on a specified time interval [«, b], since
this gives information about the large-time behavior of the 1nitial Ricci flow solution
g(+). If there is a limiting Ricci flow solution limg_. g5(+) then one says that it is a
blowdown limit of g(-).

For notation, if the Gromov-Hausdorff limit lim, . (M, @) exists and equals

a compact metric space X then we write lim, oo (M, £2) L X, If we write
Ny o0 (M, 71, 85(+)) = (Moo, M. goo(+)) then we mean that for any sequence
{s;}52, tending to infinity, there is a smooth pointed limit lim; (M., gs,("))
of Ricei flow solutions which equals (Moo, Moo, 8oo(+)). We recall that the notion
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of the limit in the statement Hm; o0 (M. 7, g5, () = (Moo, Moo, §oo(+)) involves
j-dependent pointed diffeomorphisms from domains in Mo to domains in M [26].

Theorem 1.2. Let (M, g(+)) be a smooth Ricci flow solution on a connected closed

orientable 3-manifold, defined fort € (1, o0). Suppose that the sectional curvatures
of (M, g(t)) are uniformly O(t~1) and diam(M, g(¢)) = O(l‘%).
Then M is irreducible, aspherical and its geometric decomposition contains a
single geometric piece.
1. If M has Thurston type R then lim;_, o (M, %t)) ES pt.
The limit limg_, (M, ", gs()) exists and equals the flat expanding soliton

(RS’ gﬂat)'
2. If M has Thurston type Nil then lim; (M, %’f)) = pt.
The limit limg_, o (ﬂ, i, g}()) exists and equals the expanding soliton

(R3, L(dx + Lydz — Lzdy)? + 13(dy? + dz?)).
3t3

3. If M has Thurston type Sol then the Gromov—Hausdorff limit lim; _, (M " @)
is a circle or an interval.
The limit limg_, (M, , gs()) exists and equals the expanding soliton
(R?, e dx? + ¢**dy® + 4tdz?).

4. If M has Thurston type H?> x R then for any sequence {t }j‘;l fending to
infinity, there is a subsequence (which we relabel as {t; } =1 ) 8o that the Gromov—

Hausdorff limir lim; _, (M, gg,)) exists and is a metric of constant curvature
&
—% on a closed 2-dimensional orbifold.

The limit limg_, o (M, i, §s()) exists and equals the expanding soliton
(H? xR, 2ighyp + ER)-

5. If M has Thurston type H? then limy .o (M, @) = (M, Aghyp)-
The limit limg_, o (M, m, gs()) exists and equals the expanding soliton

6. If M has Thurston type m then there is some sequence {s; }f‘;l tending to
infinity such that lim; . (M, g(s,j)) is a metric of constant curvature —L on a

s 2
closed 2-dimensional orbifold. ’

The limit lim; _, (M, m,gs; ()) is the expanding soliton

(H? xR, 2ighyp + &R)-
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Corollary 1.3. In cases 1-5 of Theorem 1.2, as time becomes large the Ricci flow
solution becomes increasingly locally homogeneous.

The corollary follows from the fact that the expanding solitons in Theorem 1.2
are all homogeneous. To state the corollary in a more precise way, we recall that a
Riemannian manifold (M, g) is locally homogeneous if and only if any function on
M that can be expressed as a polynomial in the covariant derivatives of the curvature
tensor Vy, Vi, ... Vi, Rjkim and the inverse metric tensor g%/, by contracting indices,
is actually constant on M [47]. Corollary 1.3 means thatin cases 1-5 of Theorem 1.2,
any function on M which is a polynomial in the covariant derivatives of the curvature
tensor and the inverse metric tensor of the rescaled metric g(¢) = # approaches a
constant value as t — oc.

Remark 1.4. The diameter condition diam(M, g(r)) = O(r%) implies (under our
curvature assumption) that the geometric decomposition of M contains a single ge-
ometric piece; see Proposition 3.5. We expect that if the diameter condition is not
satisfied then the geometric decomposition of M will contain more than one geometric
piece.

Remark 1.5. Any locally homogeneous Ricci flow solution (M, g(-)) on a closed
3-manifold M, which exists for ¢ € (1, o¢), does have sectional curvatures that are
uniformly O(:~!) and diam(M, g (1)) = O(t%) [29], [35]. Hence a Ricci flow solu-
tion on M that in any reasonable sense approaches a locally homogeneous solution,
as time goes to infinity, will satisfy the assumptions of Theorem 1.2. In this way,
Theorem 1.2 1s essentially an if and only if statement.

Remark 1.6. In Case 6 of Theorem 1.2 we only show that we have the desired limit
for some sequence {s;}72 ; tending to infinity, not for any such sequence. The reason

is a technical point about local stability; see Remark 6.5.

In [38, Theorem 1.1] we showed that the expanding soliton solutions listed in
Theorem 1.2 are universal attractors within the space of homogeneous Ricci flow so-
lutions on Thurston geometries. In proving Theorem 1.2, we show that they are global
attractors within the space of Ricei flow solutions that satisfy the given curvature and
diameter assumptions, after passing to the universal cover.

Theorem 1.2 describes the Gromov—Hausdorff limit of the rescaled Ricci flow
solution on M and the smooth pointed rescaling limit of the lifted Ricci flow solution
on M. In the proof we show there is a rescaling limit which is a Ricci flow solution
on an object that simultaneously encodes both the Gromov—Hausdorff limit on M
and the smooth limit on #. This rescaling limit can be considered to give a canon-
ical geometry for M. A similar phenomenon occurs in the work of Song and Tian
concerning collapsing in the Kéhler—Riccei flow on elliptic fibrations [52].
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There are three main tools in the proof of Theorem 1.2: a compaciness theorem,
a monotonicity formula and a local stability result. The compactness theorem [38,
Theorem 5.12] is an extension of Hamilton’s compactness theorem for Ricci flow
solutions [26]. Hamilton’s theorem allows one to take a convergent subsequence of
a sequence of pointed Ricci flow solutions that have uniform curvature bounds on
compact time intervals and a uniform lower bound on the injectivity radius at the
basepoint. The rescalings of a Ricci flow solution on a manifold M, as considered in
Theorem 1.2, may collapse, i.e., the Gromov—Hausdorff limit X may have dimension
less than three. This means that there is no uniform lower bound on the injectivity
radius of the rescaled solution, and so there cannot be a limiting Ricci flow solution
on a 3-manifold. Instead, the limiting Ricci flow solution lives on a more general
object called an €tale groupoid. Roughly speaking, an étale groupoid combines the
notions of manifold and discrete group into a single object. Its relevance for us
comes from the Cheeger—Fukaya—Gromov theory of bounded curvature collapse [3],
which implies that a Riemannian manifold which collapses with bounded sectional
curvature will asymptotically acquire extra symmetries. In Section 3 we give a brief
overview of how collapsing interacts with Ricci flow.

Under the assumptions of Theorem 1.2, the compactness theorem of [38] implies
that if {s;} 7= 1s a sequence tending to infinity then after passing to a subsequence,

{(M » &s; (-)) }72 converges to a Ricci flow solution g(-) on a three-dimensional étale
groupoid. It remains to understand the long-time behavior of g(-). In our case, the
relevant étale groupoids arise from locally free abelian group actions. In essence,
we have to understand the long-time behavior of an invariant Ricci flow solution on
the total space of a (twisted) abelian principal bundle over a compact space B. Such
a Ricci flow solution g{-) becomes a coupled system of evolution equations on the
lower-dimensional space B. This is the dimensional reduction part of the title of this
paper.

Our main tool to analyze the long-time behavior of such a Ricci flow is a modi-
fication of the Feldman—Ilmanen—Ni expanding entropy functional ‘W, [14], which
in turn is a variation on Perelman’s ‘'W-functional [43]. More generally, in Section 4
we describe versions of the ¥, ‘W and ‘W, functionals that are adapted for abelian
actions. Using the modified W, functional, we show that any blowdown limit of
g () satisfies the harmonic-Einstein equations of [38]. As we are in dimension three,
we can solve the harmonic-Einstein equations to find the homogeneous expanding
soliton solutions of Theorem 1.2.

By these techniques, we show that there is some sequence {s; };";1 tending to
infinity so that {(M, gs; (-))}72, converges in an appropriate sense (o a locally ho-
mogeneous expanding soliton solution. In order to get convergence for all sequences
{sj}72, tending to infinity, we use the local stability of the locally homogeneous
expanding solitons, along with some further arguments. The local stability is due to
Dan Knopf [34]. An important point is that we only need the local stability of the
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locally homogeneous expanding soliton within the space of Ricei flow solutions with
the same abelian symmetry. Because of this, the local stability issue reduces to an
elliptic-type analysis on the compact quotient space B where one has compact resol-
vents, etc. For the Nil and Sol-expanders, the local stability in a somewhat different
sense was considered in [21].

The outline of this paper is as follows. In Section 2 we make some general remarks
about Ricci flow and geometrization. In Section 3 we give an overview of some of
the needed results from [38]. In Section 4, which may be of independent interest, we
analyze Ricci flow solutions with a locally free abelian group action. In Section 5
we give the classification of the étale groupoids that arise. In Section 6 we prove
Theorem 1.2, Further descriptions are given at the beginnings of the sections.

I thank Xiaodong Cao, Dan Knopf and Junfang Li for discussions on the topics of
this paper. I am especially grateful to Dan for telling me of his local stability results
[34]. Part of this research was performed while attending the MSRI 2006-2007
program on Geometric Evolution Equations. I thank MSRI and the UC-Berkeley
Mathematics Department for their hospitality, along with the organizers of the MSRI
program for inviting me.

2. Geometrization conjecture and Ricci flow

In this section we describe what one might expect for the long-time behavior of the
Ricci flow on a compact 3-manifold M, in terms of the geometric decomposition of
M . Background information on the geometrization conjecture is in [50].

Let M be a connected closed orientable 3-manifold. The Kneser—Milnor theorem
says that M has a connected sum decomposition M = M # M, #---# My into so-
called prime factors, unique up to permutation. Thurston’s geometrization conjecture
says thatif M is prime then there 1s a (possibly empty) minimal collection of disjoint
incompressible embedded 2-tori {Ti}{zl in M, unique up to isotopy, so that each
connected component of M — U{’=1 T; admits a complete locally homogeneous
metric of one of the following types:

1. A compact quotient of S3, $2 x R, R3, Nil, Sol, H3, H2 x R or SL>(R).
2. A noncompact finite-volume quotient of H3 or H? x R.

3. Rxg, T?, where the generator of Z acts by x — —x on R and by the involution
on T2 for which T? /Z, is the Klein bottle K.

Remark 2.1. A finite-volume quotient of S3, §2 x R, R3, Nil or Sol is necessarily

a compact quotient. Noncompact finite-volume quotients of SI.;(IR) are not on the
list, as they are diffeomorphic to noncompact finite-volume quotients of H2 x R,



Vol. 85 (2010) Dimensional reduction and the long-time behavior of Ricci flow 491

Remark 2.2. If we were to cut along both 2-tori and Klein bottles then we could
eliminate the R xz, T? case, which is the total space of a twisted R-bundle over K.
However, as we are dealing with orientable manifolds, it is more natural to only cut
along 2-tori.

We now discuss graph manifolds. A reference is Chapter 2.4 in [39]. We recall
that a compact orientable 3-manifold M with (possibly empty) boundary is a graph
manifold if there is a collection of disjoint embedded 2-tori {7 } JJ _ S0 that if we take

the metric completion of M — UJ-J:1 T; (with respect to some Riemannian metric
on M) then each connected component is the total space of a circle bundle over a
compact surface. Clearly oM , if nonempty, is a disjoint union of 2-tori. The result of
gluing two graph manifolds along boundary components is again a graph manifold
(provided that it is orientable). In addition, the connected sum of two graph manifolds
is a graph manifold. In terms of the Thurston decomposition, a closed orientable prime
3-manifold M is a graph manifold if and only if it has no hyperbolic pieces.

We now summarize how Perelman proved the geometrization conjecture using
Ricci flow. If g(0) is an initial Riemannian metric on M then Perelman showed that
there is a Ricci-flow-with-surgery (M,, g(¢)) defined for all ¢ € [0, oo) (although M,
may become the empty set for large 7). A singularity in the flow is handled by letting
some connected components go extinct or by performing surgery. If 7 is a surgery
time then we let M; denote the postsurgery manifold M,". Going from a postsurgery
manifold M," to the presurgery manifold M . amounts topologically to performing
connected sums on some components of M,", possibly along with a finite number
of S1 x §2’s and R P?’s, and restoring any factors that went extinct at time 7. From
Kneser’s theorem, there is some 77 > 0 so that for a singularity time 1 > Ty, M,T
differs from M~ by the addition or subtraction of some S factors. That is, after time
T, all surgeries are topologically trivial.

Perelman showed that any connected component which goes extinct during the
Ricci-flow-with-surgery is diffeomorphic to S x §2, St xz, S2 = RP3*#RP3or
S3 /T, where T is a finite subgroup of SO(4) that acts freely on S3. He also showed
that for large 7, any connected component C of M, has a 3-dimensional submanifold
G with (possibly empty) boundary so that G is a graph manifold, dG consists of
incompressible tori in C and C — G admits a complete finite-volume hyperbolic
metric. Here G is allowed to be ## or C. Using earlier results from 3-manifold
topology, this is enough to prove the geometrization conjecture.

It is not known whether there is a finite number of surgeries, but after some time
all remaining surgeries will occur in the graph manifold part. For example, if the
original manifold M admits a hyperbolic metric then there is a finite number of
surgeries, since for large time there 1s no graph manifold part. We note that one can
never exclude singularities for topological reasons, as the initial metric could always
contain a pinched 2-sphere.
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In [45], Perelman showed that for large ¢, any connected component of M, is
aspherical or S3. Thus the relevant Thurston geometries are S3, R?, Nil, Sol, H?,
H? x R and SL,(R).

Put g(r) = @. Let us assume that there is a finite number of surgeries, and
consider the manifold M to be a connected component of the remaining manifold
after all of the surgeries are performed. Based on explicit calculations for the Riccei
flow on a locally homogeneous 3-manifold, the most optimistic possibility for the
Gromov—Hausdorff behavior of the long-time Ricci flow is given in the following
table. Here X is the Gromov—Hausdorff limit lim; .~ (M, 2(¢)), which we assume
to exist. The “Thurston type” denotes the possible geometric types in the Thurston
decomposition of M, but we do not assume that the metrics in the Ricci flow are
locally homogeneous.

X Thurston type
pt. R3 or Nil
Storl Sol
closed 2-orbifold with K = —1/2 | H? x R or SL2(R)
closed 3-manifold with K = — 1/4 H3
noncompact H3 H?xR, R?3

If X is noncompact then the possible geometric pieces in the geometric decom-
position of M should be noncompact finite-volume quotients of H 3, noncompact
finite-volume quotients of H2 xR and copies of R xz, 72. (The final R3-term in the
table refers to the latter possibility.) When discussing Gromov—Hausdorff limits in
this case, one would have to choose a basepoint m € M and take a pointed Gromov—

Hausdorff limit (X, x) e lim, oo (M, m, g(t)), whose value would depend on m.
One would expect to get possible Gromov—Hausdorff limits of the form

1. H3/T, where I is a torsion-free noncocompact lattice in PSL(2, C);
2. H?/T, where T" is a noncocompact lattice in PSL(2, R);

3. R;

4. [0, 00).

Example 2.3. Suppose that M = N Up, N is the double of the truncation N of
a singly-cusped finite-volume hyperbolic 3-manifold Y, where the metric on N is
perturbed to make it a product near N . If m is in N — T2 then one would expect that

: A GH : ; g
limy o0 (M, m, g(t)) = Y, with a metric of constant curvature —, while if m € T2

then one would expect that lim;_, oo (M, m, g(t)) ELS 3
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Example 2.4. Put M’ = N Uy2 (I xz, T?), where I xz, T? is the (orientable)
total space of a twisted interval bundle over the Klein bottle K. Then M’ is double
covered by N Up2 N, where the gluing is done by an orientation-reversing isometry

of T2. If m € M’ — K then one would expect that 1im; e (M’ m, (1)) &' ¥, while

if m € K then one would expect that lim;—.c (M, m, (1)) B R/Z> = [0, 00).

This example shows why, from the point of view of Ricci flow, it 1s natural to
include R xz, T2 as part of the geometric decomposition; see Remark 2.2. (In this
sense it would also be natural to include R x 7% as a possible piece, but such a piece
would be topologically redundant.)

In the collapsing case, i.e., when dim(X) < 3, the Gromov-Hausdorff limit X
contains limited information about the evolution of the 3-dimensional geometry under
the Ricci flow. For ¢ large, any component of the time-¢ manifold is aspherical or S3.
Because of this, one natural way to get more information about the 3-dimensional
geometry is to look at the evolving geometry on the universal cover. A special
case is when M is locally homogeneous. In [38, Section 3] the Ricci flow was
considered on a simply-connected homogeneous 3-manifold G/H, where G is a
connected unimodular Lie group and H is a compact subgroup of G. The Ricci flow
(G/H, g(-}) was assumed to be G-invariant and exist for all positive time. In each
case, it was shown that there are pointed diffeomorphisms {¢s }se(0,00) 0f G/H so that
the blowdown limit g4 (¢) = limg— s % @5 g(st) exists and is one of the expanding
solitons listed in Theorem 1.2.

Remark 2.5. As an aside, instead of looking at the rescaled Ricci flow metric
g) = #, one could also consider the normalized Ricci flow solution, with con-
stant volume. The normalized Ricci flow solution is useful in some settings but in
our case we get more uniform results, in terms of the Thurston type, by looking
at ¢. For example, let N be a truncated singly-cusped finite-volume hyperbolic 3-
manifold, as in Example 2.3. Let 2 and 2, be compact connected surfaces with one
boundary component and negative Euler characteristic. Put M; = N Up2 (S1x 1)
and M, = (S' x 1) Up2 (S! x X5), where the gluing of M, is such that it is
not just a product S! x (¥; Ugt ¥5). Under the unnormalized Ricci flow, one
expects that vol(My, g(t)) ~ const.z*2, due to the hyperbolic piece, whereas
vol(M,, g(t)) ~ const.t. Then the normalized Ricci flow on M; should collapse
its S x (¥, — %) piece, while the normalized Ricci flow on M, should have a
three-dimensional pointed limit onits S x (X1 — 3% 1) piece. In contrast, the pointed
Gromov-Hausdorff limit lim;— 0 (M;, m;, g(¢)), with an appropriate choice of base-
point m; in the S x X piece, should be £ — 0% with a complete finite-volume
metric of constant curvature —%, independent of 7 € {1,2}.
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3. Collapsing and Ricci flow

In this section we give an overview, aimed for geometers, of the use of groupoids in
collapsing theory. More details are in [38, Section 5] and references therein. We also
show that under the hypotheses of Theorem 1.2, the manifold has a single geomeitric
piece.

Suppose that (M™, g(-)) isa type-I1I Ricci flow solution thatexists for ¢ € (1, o),
i.e., there is some K > 0 so that || Riem(g(7))|x < % for all + > 1. Then the

rescaled metrics g(r) = @ have uniformly bounded sectional curvature. Even if
the manifolds (M, g(¢}) are collapsing in the Gromov—Hausdorff sense, we would
still like to take a limitas t — oc, in some way, of the n-dimensional geometry. To do
$0, it is natural to apply the Cheeger—Fukaya—Gromov theory of bounded curvature
collapse to the Ricci flow.

A main technique in the Cheeger—Fukaya—Gromov theory is to work O(n)-equi-
variantly on the orthonormal frame bundle FAM . This is not very convenient when
dealing with Ricci flow, as the induced flow on M is complicated. For this reason,
we use an older approach to collapsing with bounded sectional curvature, as described
in Gromov’s book [20], that deals directly with the manifold M .

Let M be a complete »-dimensional Riemannian manifold with sectional curva-
tures bounded in absolute value by a positive number K. Given r € (0, ﬁ) and

m € M, we can consider the Riemannian metric exp}, g on B(0,r) C T,, M.

Given a sequence of pointed complete n-dimensional Riemannian manifolds
{(M;,m;)}72, with sectional curvatures bounded in absolute value by K, there is
a convergent subsequence of the pointed geometries B(0, r) C Ty, M;, whose limit
is a C1“_metric on an n-dimensional r-ball (By, my). If one has uniform bounds
of the form || VX Riem(M; )| < C(k) then one can assume that the limit is a € °°-
metric and the convergence is C ™.

Define an equivalence relation ~; on B (0, £} C Ty, M; by saying that y ~; z if
eXPpp, (¥) = €xpy, (). Then B (m;.5) € M; equals (B (0,%) C T, Mi)/ ~i.
The equivalence relation ~; is the equivalence relation of a pseudogroup I'; of
local isometries on B(0,7) C T, M;, also called the fundamental pseudogroup
m1(M;,m;;r). One can take a convergent subsequence of the pseudogroups, in an
appropriate sense, to obtain a limit pseudogroup I's of local isometries of B, which
is a local Lie group. Furthermore, a neighborhood of the identity of I, 18 isomorphic
to a neighborhood of the identity of a nilpotent Lie group. In particular, after passing
to the subsequences, the pointed Gromov-Hausdorff limit of {B(m;. %) C M;};_,
is (B(mec. 5) C Bxo)/ Too.

In this way one constructs a limiting %-ball. It has the drawback that it only
describes the (lifted) geometry near the basepoints m;. As one started with complete
Riemannian manifolds, one would like to have a limiting object which in some sense
is also complete. For example, suppose that (M;, m;) = (M,m) for all i. The above
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process would produce the limiting ball B (0, £} C T, M, with Tog = 71 (M, m; 1).
However, the limiting object should be all of (M, m).

One way to construct a global limiting object would be to move the basepoints
to other points inside of B (O, %) C Tw; M;, construct new limiting balls, repeat
the process and glue all of the ensuing balls together in a coherent way. In order
to formalize such a limiting object, the notion of a “Riemannian megafold” was
introduced in [46]. This essentially consists of a pseudogroup of local isometries
of a Riemannian manifold. Another formalization was given in [38], in which the
limiting objectis a Riemannian groupoid. A Riemannian groupoidis an étale groupoid
with a Riemannian metric on its space of units, for which the local diffeomorphisms
coming from groupoid elements are local isometries. Riemannian groupoids have
been extensively discussed in the literature on foliation theory, as they describe the
transverse structure of Riemannian foliations. For details we refer to Section 5 in
[38] and references therein.

(We take this opportunity to make some corrections to [38]. The oo on p. 629,
line 42, should read (0, o¢); the [0, 1] on p. 658, line 15, should read [0, 1).)

The upshot is that if {(M;,m;)}72 is a sequence of pointed complete n-dimen-
sional Riemannian manifolds, and if for every k € Z=° and R € R there is some
C(k, R) < oo so that for all 7 we have |V* Riem(M;)| < C(k, R) on B(m;, R) C
M;, then a subsequence converges smoothly to a pointed complete closed effective
Hausdorff n-dimensional Riemannian groupoid (&g, O ) [38, Proposition 5.9].
This statement is essentially a reformulation of results of Cheeger, Fukaya and
Gromov.

Let & be a complete closed effective Hausdorff Riemannian groupoid. It carries a
certain locally constant sheaf g of finite dimensional Lie algebras on its space of units

&, These Lie algebras act as germs of Killing vector fields on &), Elements of
& that are sufficiently close to the space of units &'©, in the 1-jet topology, appear in
the image of the exponentials of small local sections of g. Inour case, the Lie algebras

are nilpotent and there is no point x € & at which all of the corresponding Killing
vector fields vanish simultaneously, unless g = 0. We will say that & is locally free
if the isotropy groups &7 are finite.

Remark 3.1. The locally constant sheaf g is analogous to a pure Nil-structure in
the sense of [3]; see [49] for a recent sur;ey. It may seem surprising that we al-
ways get pure structures on our limiting spaces, since a manifold that collapses
with bounded curvature generally carries a mixed Nil-structure if the diameter is
not bounded during the collapse. The point is that we are considering a completely
collapsed limit. In general, given €, K, D > 0, there is a number § = é(n, €, K, D)
so that if || Riem(M )|l < K then the fundamental pseudogroup i (FM, p;d)
(which is represented by loops at p with length less than §) can be continuously
transported to any pointg € B(p, D) C FM, and the result maps into 771 (FM, g; €)
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[17, Lemma 7.2]. The fact that one generally cannot transport the short loops ar-
bitrarily far, while keeping them short, is responsible for the appearance of mixed
Nil-structures. As we are considering a completely collapsed limit, we can effectively
move g 1o g, for an arbitrary value of D.

The work of Cheeger-Fukaya—Gromov describes the local structure of a Rie-
mannian manifold with bounded sectional curvature that is highly collapsed but not
completely collapsed. The technique to do this, for example in [6], is to rescale
the highly-collapsed manifold at a point p in order to make the rescaled injectivity
radius equal to 1 and the sectional curvatures very small. One then argues that the
local geometry around p is modeled on a complete flat #-dimensional manifold other
than R”, giving the local F-structure. When dealing with Ricci flow this rescaling
is problematic, as it does not mesh well with the flow. For this reason, we only deal
with completely collapsed limits.

The notion of smooth pointed convergence of Riemannian groupoids is given in
[38], which extends these collapsing considerations to the Ricci flow. (Related Ricci
flow limits on a single ball in a tangent space were considered in [18].) In [38] the
Ricci flow on an étale groupoid was considered. This consists of a Ricci flow g(z) on
the space of units G{?, in the usual sense, so that for each  the local diffeomorphisms
(arising from elements of &) act by isometries. One has the following compactness
theorem.

Theorem 3.2 ([38], Theorem 5.12). Let {(M;, p;, g (+))}52 | be a sequence of Ricci
flow solutions on pointed n-dimensional manifolds (M;, p;). We assume that there
are numbers —oo < A < 0and 0 < Q < oo so that the following holds:

1. Each Ricci flow solution (M;, p;, gi (-)) is defined on the time interval (A, Q).

2. Foreacht € (A, Q), gi(t) is a complete Riemannian metric on M;.

3. For each compact interval I C (A, Q) there is some Kj < o0 so that

| Riem(g;) (x.1)| = Ky
Jorallx € M; andt € 1.

Then after passing to a subsequence, the Ricci flow solutions g;(-) converge smoothly
to a Ricei flow solution g (+) on apointed n-dimensional étale groupoid (& oo, Oy ),
defined again fort € (A, Q).

This theorem is an analog of Hamilton’s compactness theorem [26], except with-
out the assumption of a uniform positive lower bound on the injectivity radius at
pi € (M;,g;(0)). In Hamilton’s theorem one obtains a limiting Ricci flow on a
manifold, which is a special type of étale groupoid. The proof of Theorem 5.12 in
[38] is essentially the same as the proof of Hamilton’s compaciness theorem, when
transplanted to the groupoid setting.
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Remark 3.3. If {diam (M, g, (0))}72 , is uniformly bounded above then (& o, g06(0))
has finite diameter and we do not have to talk about basepoints.

An immediate consequence of Theorem 3.2 is the following.

Corollary 3.4 ([38], Corollary 5.15). Given K > O, the space of pointed Ricci
Jlow solutions on n-dimensional manifolds, with Sup,c(1 o) ¢ || Riem(g)|lee < K,

is relatively compact among Ricci flows on pointed n-dimensional étale groupoids,
defined fort € (1, 00).

The next proposition will be used in later sections.

Proposition 3.5. et (M, g(:)) be a Ricci flow solution on a closed orientable
3-manifold that is defined for all t € [0, o0). Suppose that
1. the sectional curvatures of (M, g(t)) are uniformly O(t—1), and
2. diam(M, g(t)) = O(t 7).
Then M is irreducible, aspherical and its geometric decomposition contains a
single geometric piece.

Proof. As mentioned in Section 2, since the Ricci flow exists for all ¢ € [0, o0) it
follows that M is aspherical. The validity of the Poincaré Conjecture then implies
that M is irreducible [41, Theorem 2].

Put g(t) = %”‘). From the evolution equation for the scalar curvature R and
the maximum principle applied to R + 2—3t, it follows that vol{M, g(z)) is nonin-
creasing in r; see, for example, [14, (1.7)]. Suppose that lim;_. o vol(M, g(z)) > 0.
Then (M, g(r)) is noncollapsing. Recall Definition 1.1. If {s,;}7Z; is a sequence
tending to infinity then Hamilton’s compactness theorem [26] implies that after
passing to a subsequence, there is a limiting three-dimensional Ricci flow solution
(Moo, 8o (+)) = lim; o (M. gy, (+)). From the diameter assumption, M is dif-
feomorphic to M. Using monotonic quantities, one can show that (M, g0 (7)) has
constant sectional curvature —4%; see [14, Section 1] and references therein. Thus
M has an H 3-structure.

Now suppose that lim;—.~, vol(M, g(¢r})) = 0. Then (M, g(r)) collapses with
bounded sectional curvature and bounded diameter. There will be a sequence f; — oc
such that the Gromov—Hausdorff limit lim; ..o (M, g(z;)) exists and equals some
compact metric space X of dimension less than three. In what follows we use some
results about bounded curvature collapsing from [49] and references therein.

If dim(X) = O then M is an almost flat manifold and so has an R? or Nil-struc-
ture [19].

If dim(X ) = 2 then X is a closed orbifold and M is the total space of an orbifold
circle bundle over X [16, Proposition 11.5], from which it follows that M has a
geometric structure.
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Finally, suppose that dim(X) = 1. First, X is S! or an interval. If X = S'!
then M is the total space of a torus bundle over S! and hence carries a geometric
structure. If X is an interval [0, L] then there is a Gromov—Hausdorff approximation
7: M — X with 7710, L) = (0, L) x T?. Now X is locally the quotient of M by
a fixed-point free T2-action [5]. If the action is locally free then [0, L] is an orbifold.
As the orbifold [0, L] is double covered by S, the manifold M is double covered by
a T2-bundle over S'. Hence in this case, M has a geometric structure [40].

Suppose that the T2-action is not locally free, say on 7~ ![0, ), with § small.
From the slice theorem, a neighborhood of 7~1(0) is equivariantly diffeomorphic to
T? xg RY, where H is the isotropy group. As the T2-action has no fixed points, H
must be a virtual circle group. However, since M is aspherical, the map 71 (T?) —
1(M) must be injective [7, Remark 0.9]. This is a contradiction. Similarly, the
T2-action must be locally free on 7 ~1(L — 8, L]. O

Remark 3.6. In our case, one can see directly that there is a contradiction if H
is a virtual circle group. Suppose so. Then 7~1([0,6]) (or 7~ (L — &, L])) is
diffeomorphic to S x D?. If the T2-action fails to be locally free on both 7 ~1([0, §])
and 7~ ([L — 8, L]) then M is the union of two solid tori and so is diffeomorphic to
S3, 81 x S? or alens space. If it fails to be locally free on exactly one of 7~ ([0, 8])
and 7' ([L — &, L]) then a double cover of M is diffeomorphic to S, S x S2 ora
lens space. In either case, M fails to be aspherical.

Remark 3.7. By the argument of the proof of Proposition 3.5, we can say the follow-
ing about aspherical 3-manifolds that collapse with bounded curvature and bounded
diameter. If M carries an H3-structure then it cannot collapse. If M carries an
H?xRor Sif(]RQ-structure then it can only collapse to a two-dimensional orbifold
of negative Euler characteristic. If M carries a Sol-structure then it can only collapse
to S or an interval. However, if M carries an R? or Nil-structure then a priori
it could collapse to a two-dimensional orbifold with vanishing Euler characteristic,
a circle, an interval or a point. We will show that under the Ricci flow, with our
curvature and diameter assumptions it can only collapse to a point.

Remark 3.8. Some results about three-dimensional type-11b Ricci flow solutions, i.¢.,
Ricci flow solutions defined on [0, o) with limsup,_, ., 7 || Riem(g(?))||c = o0,
were obtained in [9]. Although phrased differently, the collapsing results in [9] can
be considered to be results about Ricci flow solutions with nonnegative sectional
curvature on three-dimensional étale groupoids.
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4. Dimensional reduction

In this section we consider a Ricci flow (M, g(-)) which is invariant under local
actions of a connected abelian Lie group on M. We first define the notion of a twisted
principal bundle and write out the Ricei flow equation for an invariant metric g on the
total space M. The Ricci flow equation becomes as a coupled system of equations
on the base B of the twisted principal bundle. We construct modified ¥, W and ‘W,
functionals for g(-) and show that they are monotonic. We use ‘W, to show that any
blowdown limit of g(-) satisfies the harmonic-Einstein equations of [38].

Related functionals were considered independently by Bernhard List [37] and
Jeff Streets [53]. (I thank Gerhard Huisken and Gang Tian for these references.) In
[37] the modified F -functional is considered in the special case when N = 1| and
Afx = 0. The motivation comes from the static Einstein equation. In [53], modified
F and ‘W-functionals are considered for a certain invariant flow on the total space of
a principal bundle, with the fiber geometry being fixed under the flow.

4.1. Twisted principal bundles. Let ¥ be a Lie group, with Lie algebra q. Let
B be a connected n-dimensional smooth manifold. Let & be a local system on B
of Lie groups isomorphic to §. Fixing a basepoint by € B and an isomorphism
Ep, = § of the stalk over by, the local system is specified by a homomorphism
p: m1(B,b) — Aut($§). Equivalently, we have a §-bundle E = § x, B over B,
with a flat connection, which gives the étale space of the locally constant sheaf &.
Pute = g x, B, a flat g-vector bundle on B. We will write A™e = A"™*q x, B
for the corresponding flat real line bundle on B of fiberwise volume forms, and
|AT*e| = |[AMFqg| x, B for the flat RZ%-bundle of fiberwise densities.

Hereafter we assume that the density bundle |A™**¢| is a flat product bundle
RZ=% x B. (Some of the subsequent results do not need this assumption, but for
simplicity we will assume uniformly that it holds.)

Example 4.1. If § = R¥ then Aut(§) = GL(N,R) and E = ¢ is a flat R" -bundle
over B. The assumption on |A™*¢| means that the holonomy of e lies in det™! (£1).
If € = TV then Aut(§) = GL(N, Z), E is a flat T" -bundle over B and e is a flat
R¥ -bundle over B. In this case the assumption on | A™*¢| holds automatically.

Let w: M — B be a fiber bundle with fiber §. We write £} for the fiber of
E over b € B and M} for the fiber of M over b € B. Consider the fiber product
ExpM = Jpep Ep x Mp. We assume that there is a smooth map £ xg M — M
so that over a point » € B, the map Ep x My — M, gives a free transitive action
of § = E, on M. The action must be consistent with the flat connection on £
in the sense that if U C B is such that E|y =~ U x § is a local trivialization of
the flat §-bundle E then 7' (U) has a free §-action, and so is the total space of a
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principal ¥ -bundle over U. In this way, M can be considered to be a twisted principal
G -bundle over B, with the twisting coming from the flat §-bundle E. There is a nat-
ural isomorphism between the vertical tangent bundle TV"M = Ker(d ) and w*e.

An isomorphism of two twisted principal §-bundles 7: M — Bandn': M’ —
B’ is given by a diffeomorphism 7: B — B’, an isomorphism ¢: E — E’ of flat
g -bundles that covers 7, and a diffeomorphism ¢p: M — M’ that covers 7 with the
property that for all m € M and x € E.,), we have ¢(x -m) = P(x) - p(m).

It makes sense to talk about a connection A € Q(M; 7*e) on a twisted principal
g-bundle M. The restriction of A to #71(U) is a g-valued connection in the usual
sense.

We assume that M has a Riemannian metric g¢ with a local free isometric §-action.
This means thatif £|y = U x § is a local trivialization of £ as above then the action
of § on 7 ~1(U) is isomeltric.

Hereafter we assume that & is a connected N -dimensional abelian Lie group.

Suppose that U is also small enough so that U is a coordinate chart for B with
local parametrization {x*}"_, — p(x*) € U. Take a section s: U — 71 (U).
Choosing a basis {ei}lN: . of g, we obtain coordinates on 71 (U) by (x*,x') —
exp (vazl xte;) - s(p(x®)). In terms of these coordinates we can write

N 1
Gy (dx' + ANdx) + A) & Y gop dxdxl. (42)
=1

g =
i a,f=1

2

Here G is the local expression of a Euclidean inner producton e, A* =Y, AL dx®
are the components of s* A, and ZZ p=18ap dx®dx* is the local expression of a
Riemannian metric gp on B. A change of section s changes 4’ by an exact form.
The curvatures F' = d A’ form an element of Q2(B;e).

If M and M’ are two twisted principal §-bundles then an isomorphism ¢: M —
M’ can be written in local coordinates as

BO7 ) = (30N, Tk + £1067)). 43)
k

where the ik’s are constants. It covers a diffeomorphism 7: B — B’. The isomor-
phism $ : E — E’ of flat §-bundles is represented locally by the functions Tik.

A locally §-invariant Ricci flow is a 1-parameter family of such Riemannian
metrics (M, g(-)) that satisfies the Ricci flow equation. We will consider a basepoint
for such a solution to be a point p € B.

Let {(M;, p;. g (+))}72 be asequence of locally §-invariant Ricci flow solutions
defined for ¢ € (1, 00). We say that lim; o (M;, pi, 2i(-}) = (Mso, Poo» 8oo(+)) if
there are
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1. asequence of open subsets {U;}72 | of Bog, containing poc, so that any compact
subset of By, eventually lies in all U;, and
2. open subsets V;; C B; containing p; and isomorphisms ¢; ;: 7 ' (U;) —
7 (Vi ;) sending )l (poo) to 7 (pi), so that
3. forall j,lim; o0 ¢ ; &i(-) = &oo(+) smoothly on 7z (U;) x [14+ 71, 1+ j].
If B is compact then we can remove the reference to basepoints.

4.2. Ricci flow on twisted principal bundles. In what follows, we use the Einstein
summation convention freely. Let (x%, x") be local coordinates on 7~ Y(U) as in
Section4.1. Wriling A* = }7,_| A} dx®, put F, = 9,43 — dgA;,. Wealso wrile

Gijiap = Gijap — Tp Gijo. (4.4)

where {I"%, ﬁ} are the Christoffel symbols for the metric gop on B.
Given b € U, it is convenient to choose the section s so that Al (h) = 0. Then

the curvature tensor Ryygy, of M is given in terms of the curvature tensor Ryg,s of
B, the 2-forms FD’l P and the metrics G;; by

Biwy = — g Gixa Girp + 5 2" Gt Gk,p.
Rijka = %gﬁy Gim Gik,p Fyy — 3 &P Gim G e
ijap = — 1 G™ Gimo Grjp + 4 G™ Gimp Grja

_%gyS Gim Gjx Fy, F,é‘(ng%gyS Gim Gji Fg, Fys, 4.5)

=3

Riajp = =% Gijap + 5 G* Girp Gjra + 5 87° Gix Gj1 FY, Fis,

Riapy = 5 Gy Fj

Bya T % Gij.a F/gy + % Gijp Fo{)f - % Gijy Ffjﬁ’

Rapys = Rapys — 5 Gij Fiy Fls— 1 Gij Fuy Fis + 5 Giy Fis Fj.,
The Ricci tensor 1s given by
Ry =18 Gijiap — L 8% G Grp o Gijp + 1 2% G¥ Gip o Gijp
+ % 8% g% Gu Gi Fig Fls.
4 i JE S af s (46)
mn

Riq = %g}/ﬁ Gik Fk)/;S + % g’ Gik.y Fc;ekS + %gys Gim G* Grty Fose

(24

Rop = Rap = 5 GY Gijiap + § G Gjia G¥ Grip — 5 87° Gij Fy, Fis.
The scalar curvature is
R=R- g“ﬁGij Gijap + % gaﬁ GY Gik,a G* Giip

y : . 4.7)
— 18" GY Gijo GM Gy p— 5 87 87 Gy Fup Fly.
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Consider a 1-parameter family of such Riemannian metrics g(-) on M. Writing
G, (1), A, (r) and g,8(r) as functions of 7, the Ricci flow equation becomes
L(Gyj(dx' + ADY(dx? + AT + gopdx®dxP)
= —2R;; (dx" + A")(dx’ + A7) (4.8)
— 4 Ry (dx" + AV)dx® — 2 Rygdx®dxP.
Equivalently,

0G;;
—- = g* Gijap + % g Gk Giie Gijg — g G Gik,a Gij,8

- % g g Gy G Fkﬁ F}i,g,

o

| 4.9)
a4k, ‘ /j '

o _g)’& Folzy;S - gy5 G Gji,y FoiCS . % gﬁ G Gty Fas

90 j j F!
Bl = —2Rup + G Gijap — 5 GV Gjia G Grip +87° Gy Fy, Fis.

Adding a Lie derivative with respect to —V In /det(G;; ) to the right-hand side, and

1

adding an exact form to the right-hand side of the equation for ag%, gives a new
equivalent set of equations :

aG;
8;] = g Gijap — g G* Gipa Gip— 587 "’ Gux G Fofﬁ F3£5’
dA! ; ij

8g ﬁ 1 52 kl 8 ] /

B — 2Rap+ 5 G Gt G Grip + 87 Gy Fly .

The equations in (4.10) consist of a heat type equation for G;;, a Yang—Mills
gradient flow type equation for A%, and a Ricci flow type equation for gep. If B is
closed then an extension of the DeTurck trick [13] to our setting shows short-time
existence and uniqueness for the system (4.10).

4.2.1. Modified ¥ -functional. We now assume that B is closed.
Definition 4.11. Given f € C*(B), put
F(Gij AL, gap. ) = [B (VAP +R—1g"GY Gjpo G¥ Gy g

— % g g By Foiﬁ F)fg) e~/ dvolp .

(4.12)

If N =0, ie., if M = B, then this is the same as Perelman’s F -functional
[43]. Otherwise, the expression in (4.12) differs from Perelman’s ¥ -functional by
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the subtraction of terms corresponding to a Dirichlet energy of the field G and a
Yang—Mills action for the connection A.

We now compute the variation of

Lemma 4.13. Given a smooth 1-parameter family

{(Gij(5), Ay (5). 8up (), [ (5)}se(—e0)-
dG;;

o dAl
ds A

] _ : _dgugp o df

s szojr(GijsAfnglﬂv f)

[Ble G* G (=1 8" Gijrap + 3 8 G Girw Gijp
+ 387 8" Gk G Fly Fls + 3 ¢°F Gijo fip)e™ dvolp
_ 2[ A‘Jg gaﬁ Gy (% gyS Fzy P gyS G Gik.y Fas
— 38" [y Fls) e/ dvolg (4.14)
- fB P (Ryp — L GV G G Gy g
387% Gy Fi, Fls + fup) e/ dvolg
+ f (38" gap — F)2V2Sf = IVFIP+ R—1 ¢ GY Gjiw G Gig
1 g% g% Gy Fly Fly) e~/ dvolg.

Proof. 'This follows from a calculation along the lines of the corresponding calculation
for Perelman’s ¥ -functional; see [31, Section 5]. O

We use the above lemma to show that & is nondecreasing under a certain flow.

Corollary 4.15. Under the flow equations

3G,
8;J — gaﬂ Gl] ;aff — gaﬂ le Gik o Gljﬂ
— 187 P Gt Gj1 Fig Fls — ¢ Gija 5.

dA . .

Fral —g"° Fh5— 8" GY Gjicy Fis +8"° £y Faps (4.16)
B ) Rog + 1 GY Gpa GH G ¥ Gy F

o = 2Ry + 5 GY Gjiq li,pg+g’ wy Fas =2 fap

df

8_t:_R+%gaﬂGiij“G G,{,,g-l-zgaygﬂSG FEBFJ _V2f
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one has
if(GU,AL,gaﬁ, /)
dt
- % [B 8% Gijap — & G* Gikw Gujp @.17)
— 387 8" Gu G Fig Frs — 8% Giju f 4 e dvolp
+ /B |gy5 Foi)/;g + gy8 GY Gik,y F;{S _gy8 Sy F§8‘2 e/ dvolp
+ 2]}; |Rop — 3 GV Gjk.a G* Gy p
17 Gy Ry By + Fual? o~ ol

Proof. 'This 1s an immediate consequence of Lemma 4.13. ]

As with Perelman’s ¥ -functional, we now perform an infinitesimal diffeomor-
phism to decouple the equation for f and obtain the Ricci flow on M.

Corollary 4.18. Under the flow equations

0G;;
Btlj = g% Gijap — g’ ¥ Gika Gljp
— 18" g% Gu Gy Fy Fls.
S =—g" Fups — 8" GY Gy Fp.
a (4.19)
. ) S
B(Zﬁ = 2 Rop + 5 GY Gjia G Grip+&"° Gij F, Fig,
A7 !
(8r ) _ _y2e 7y (R— 78 GY Gjra G Guig
_Lg ghl Gy, Flg ijg)e_f
one has
ifF(Gi» Al gaps 1)
dr S e
1 [ op af ikl
= — g G, _g G G.k’ Gl E
2 B‘ ij;ofB ik Jij.p (4.20)

2
— 38 P G G F(fﬂ F)ig — g Gijo fp] e dvolg
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—I—/B|gy5Fl +¢"° GY Gy Fls—¢"° 1y F, ‘ ~/ dvolg
+ 2[}3 |Rop — 3 GY Gjra G* Gy p
- %gw Gij Fiy ng + f;aﬂ\z e~/ dvolp .

Proof. 'This follows because the right-hand sides of (4.16) and (4.19) differ by a Lie
derivative with respect to V f. O

Note that the first three equations in (4.19) are the same as (4.10).
We now analyze what it means for 7 to be constant along the flow (4.19).

Proposition 4.21. If ¥ (G;;., AL, gup. ) is constant in t then Féﬂ = 0, det(G;;) is
constant and

g Gijup — 8% G* Gt Gijp =0,

(4.22)
R B——GUG]kaG Gyig = 0.
Proof. From (4.20), we have
g% Gijup — 8% G¥ Gy Gujp 4.23)
~ 38 ¢"° Gik Gji Fap Fys — ¢ Gijuu f1p = 0
and
Rup — 5 GV Gjr G* Gy 38" Gij Fly Fls + fup = 0. (4.24)

Multiplying (4.23) by G¥ and summing over indices gives
V2 Indet(Gy) — (V /. Vindeu(G;,)) — 5 g*7 ¢™° G; Flg FJS =0. (4.25)

(Here we are using the trivialization of | A™®e| o think of det(G;;) as a function on
B, defined up to multiplication by a positive constant.) Equivalently,

V(e Vo Indet(Gyy)) — 3 e/ g g7 Gy; FL, FJ5 = 0. (4.26)

Integrating (4.26) over B gives F Oi s = 0. Then multiplying (4.26) by In det(G,;) and
integrating over B gives VIndet(G;;) = 0, so In det(Gy;) is spatially constant.

Given that F’ wp = 0, the equation for Gi? ” implies

0
E In det(G,’j) = Vz In det(Gij). (427)
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Thus In det(G;; ) is also temporally constant.
As det(G;; ) is spatially constant, we have

GY Gijup — G Gjry G¥ Grig = 0. (4.28)
Along with the fact that Fj; = 0, it follows that

Ry =—18" Gijap + 3 8 GX Giro Gijp
Ry =0 (4.29)
Ryp = Rop— L GY Gjro G¥ Gyig
and 3 -
R=R—1¢g" G Gjpo GX Gpip. (4.30)
From equation (4.24),
[ R dvolp = 0. 4.31)
B
On M, the evolution of the scalar curvature is given by
IR —, - -
% = V2R + 2 |Rys |2 (4.32)
In our case, and using the fact that det(G;; ) is spatially constant, this becomes
IR 25 D2 512
EZV R+2|Rij| —|—2|Raﬁ| ; (4.33)
From (4.19), (4.23) and (4.24), the flow equations are
aG;;
= = g Gija £ (4.34)
dgop
=2 fug.
ot Sat

As the right-hand side of (4.34) is given by Lie derivatives with respect to V f, it
follows that

%_f = (V£ VR). (4.35)
Thus
V2R +2|Rij|? + 2| Repl* = (VL VR), (4.36)
or
VIR 2Ry 4 2R Rgapl +- 2= (VAVR).  @30)

From (4.31), either R = 0 or Ry < 0. If Ry < O then we obtain a contradiction to
the minimum principle, applied to (4.37). Thus R = 0. Equation (4.37) now implies
that R;; = Ryp = 0, which proves the proposition. O
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From (4.19), under the conclusion of Proposition 4.21 it follows that G, AL and
gup are time-independent. The Ricci flow solution g (+) on M is Ricci-flat. In the
case N = 0 the proof of Proposition 4.21 essentially reduces to the standard proof
that a steady gradient soliton on a compact manifold is Ricci-flat; see, for example,
Chapter 1 in [8].

With det (1) € GL(N, R), we can write

det™' (£1)/ O(N) = SL(N.R)/ SO(N).

From [38, Proposition 4.17], the first equation in (4.22) says that the map » — G; (b)
describes a (twisted) harmonic map G : B — det™!(41)/ O(N ). The twisting refers
to the fact that if the flat R” -bundle e has holonomy representation p: 71 (B, by) —
et (& 1) then we really have a harmonic map G: B — det™1(£1)/ O(N) which

sat1sﬁes G(yb) = p{(y) G(b) fory € m1(B,b) and b in the universal cover B. After
passing to a double cover of B if necessary, we can assume that p takes value in
SL(N,R). For simplicity, we will make this assumption hereafter and consider G
to be a twisted harmonic map from B to SL(N,R)/ SO(N ). Information on such
twisted harmonic maps appears in [12], [30, Section 1.2] and [36]. Given p, such a
twisted harmonic map G exists if and only if the Zariski closure of Im(p) is reductive
in SL(N, R). Given p, if there are two such equivariant harmonic maps G, and G5
then there 1s a 1-parameter family {G Yte[1,2] of such equlvarlant harmonic maps,
all with the same quotient energy, so that for each b € B the mapt — G (b)is a
constant-speed geodesic arc, whose length is independent of b.

If the second equation in (4.22) is satisfied then B clearly has nonnegative Ricci
curvature.

We now look at the solutions of (4.22).

Proposition 4.38. Any solution g of (4.22) is a locally product metric on a Ricci-flat
base B.

Proof. From the second equation i (4.22), B has nonnegative Ricci curvature. For
some r, the universal cover B is an isometric product of R” and W, where W is a
simply-connected closed (n—r )-dimensional manifold of nonnegative Ricci curvature
[4]. As before, let G: B — SL(N,R)/ SO(N) denote the lift of G to B.

Let x!,...,x" be Cartesian coordinates on R” and let x"™1,... x" be local
coordinates on W. From the second equation of (4.22), Gl ja=0forl <a <r.
That is, G is constant in the R¥-directions. Then the first equation of (4.22) implies
that for each y € R”, the restriction of G to {y} x W is a harmonic map from W to
SL(N.R)/ SO(N). It follows that for each y € R’ the restriction of G to Sy x W
is a point map. Thus G is constant. From the second equation of (4.22), B is Ricci
flat. The conclusion is that B is Ricci flat and G is locally constant. O
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In the next proposition we use ¥ to analyze a long-time limit of a locally §-
invariant Ricci flow solution. The method of proof is along the lines of the proof of
Theorem 1.3 in [14].

Proposition 4.39. Suppose that (M, g(+)) is a locally G -invariant Ricci flow defined
forallt € [0,00). Let {s;}7° | be a sequence of positive numbers tending to infinity.
Put g;(t) = g(t + s;). Suppose that lim;_, » g; () exists and equals goo(-) in the
sense of Section 4.1, for a locally ‘§-invariant Ricci flow g () with a compact base
Boo. Writing 206(+) = (Gijoo(+), Afx’oo(-), gap.oo(+)), we conclude that

i F T
1. the curvatures F . vanish,
2. det(Gj,oc ) is constant;

3. equations (4.22) are satisfied for Gij . (+) and gop o ().

Proof. We first construct a positive solution of the conjugate heat equation

ou . ‘ .
o = —V?u+(R— 38 GY Gjru G¥ Grip— 5 8% g7° Gij Flg Fils)u. (440)
that exists for all # € [0, 00). Note that if « is a solution to (4.40) then |5 u dvolp

is constant in 7. Let {;}22; be a sequence of times going to infinity. Let i (‘)bea
solution to (4.40) on the interval [0, ¢;] with initial condition % (f;) = Wm.
For any T > 0, we claim that a subsequence of the u;’s converges smoothly on
the time interval [0, 7']. To see this, at time 7 + 1 we know thatif 1; > 7 + 1
then u;(T + 1) = O and [ @;(T + 1) dvolp = 1. Solving the conjugate heat
equation with initial data at time 7" + 1, and restricting the solution to the time
interval [0, T'], gives a smoothing operator from the space of initial data {# € L'(B) :
> 0, [pii dvolg(T + 1) = 1} to C*([0, T'] x B). Thus we have the derivative
bounds needed to extract a subsequence of the 1 ’s that converges smoothly on [0, T'].
By a diagonal argument, we can extract a subsequence of the u;’s that converges
smoothly on compact subsets of [0, o0) to a nonzero solution u (- ) of (4.40), defined
for t € [0, ). )

One can show, as in the proof of Proposition 7.5 in [31], that oo (+) > 0. If foo (1)
is given by fieo (1) = e~/ then F(Gij 1), AL (1), gap (1), foo (t}) is nondecreasing
in 1. We write Foo = lim; o0 F (G (1), AL (1), gap (1), foo (t)), which is possibly
infinite for the moment.

Next, put u;{t) = U (f + s;). By assumption, lim; o gi(*) = Zao(+) in the
sense of Section 4.1. Then by the same smoothing argument as above, there is a
subsequence of {u; (-)}72, that converges smoothly on compact subsets of [0, o) to
a solution u . (-) of (4.40) on By, where (4.40) is now written in terms of Gy, (+),
Afx,oo(-) and g48,00(-). (When taking a convergent subsequence, we perform the
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same diffeomorphisms on the u;’s as are used in forming the limit lim;_, o, g;(-).)
Define foo (f) by 1o () = e~ ) Then after passing to a subsequence,

F(Gijoo(t)s Ao (1): apoo (1)s foo (1))
= _13)1o .?’V(Gij(t + Si),Aig([ + Si)vgaﬂ(t + Si)s foo(t + Si)) 4.41)

i

= Foo-

This shows that Foo < o0 and that F (Gijeo (1), Al o (). ga.eo (1), foo(t)) is con-
stant in 7. The proposition now follows from Proposition 4.21. O

Junfang Li pointed out that the modified # -functional has an (n + N )-dimensional
interpretation. Namely, for /' € C*(B), put

F(Gij. AL gap. ) = [B (VP2 +R) e/ \Jdet(Gy;) dvoly . (4.42)
This is a renormalized version of Perelman’s ¥ -functional on M .
Proposition 4.43. Pur f = f —1In /det(G;;). Then
F(Gij. Ay 8ap- ) = F(Gij, Ag gap. f)- (4.44)

Proof. We have

_ 2
F2,—F ) _ N
/B|Vf| e=7 \Jdeu(Gy;) dvolp /B‘Vf—l—VIn,/det(GU)‘ e/ dvolp (445)

and

2
/B‘Vf—l—Vln‘/det(Gij)‘ e~ dvolg
2
:L(|Vf|2—|—2<Vf,V11’1\/det(GU)>+ ‘Vln\/det(Glj)‘ )e_deOIB
2,
_ 2 2 . - —f
_[B(|Vf| 12V 1n,/det(GU)+‘Vln,/det(GU)‘ )e dvolp  (4.46)

- [ (IVS1? + 8 GY Gijiap — 8 G Gjicn G Glip
B

+ % gaﬁ ;Y Gij,a G*! le’ﬁ) e dvolpg .
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Combining this with (4.7) gives

2 -
fB (‘Vf +Vin ,/det(Gij)‘ + R) e~/ dvolp

f (|Vf|2 ny - g“ﬂ GY Giru GX Gpig 4.47)
B

g‘”’ g’% G;; F’ﬁ Fj)e_fdvolg,

which proves the proposition. O

4.2.2. Modified W -functional

Definition 4.48. Given f € C*°(B)and r € R™, put

W(Gij7Afx7gaﬂ’f;T)
/[ (VI2+R—-1Le" GY Gjr o G Glig (4.49)

gay gﬁS s Flﬁ ) 4 f g n](4j’[r) 2 e_f dvolp .

If N =0,1.e.,if M = B, then this is the same as Perelman’s 'W-functional [43].
The next proposition says how ‘W varies along the Ricci flow.

Proposition 4.50. Under the flow equations

88Gtij = 8% Gijiop — 8" GM Gira Grip — 5 8°7 87 Gur Gy1 Fg Fg
3;3 = —g" Fp,5 — 8"° GY Gy, Fii.
aéaf—(:ﬂ = —2Rop + 5 G Gjio G Gup+¢"° Gy F, Fjs, (431
8(ea—tf) _ v —f+(R g G Gik e Gl Glip
—Lgr oG, Fag FJ — e,
0t

ot
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one has

d

EW(Gij’A;’gaﬁafaf)

T
= fB 8% Gijiop — 8 G Gika Gijp (4.52)

2 _n _
- % g g" Gy G Ffﬁ ij(g — g% Gijo fp| (4nr) 2 e 7 dvolg

(24

; . 2 _n _
+ tL ‘g’/g Fly;s + g7 GV G Foﬁg — gt Sy F(fg‘ (477)"2 ¢~/ dvolp

+ 2r/B |Rup — 1 GY G0 G¥ Gy p— L 270 Gy F, Fﬁfg

2 _n
+ fiap — 2—11gaﬁ‘ (4m1)" 2 e~/ dvolp

1 f f _n  _
- Z[ng g’ G, Flog F]fg (477)"2 e~ dvolp .
Proof. The proof stands in relation to the proof of Corollary 4.18 as the corresponding

statements about Perelman’s ‘W-functional vs. Perelman’s ¥ -functional; see [31,
Section 12]. O

Note that the % Izg™ gh? G Foiﬁ F)fg (471)~2 e~/ dvolp term occurs on the
right-hand side of (4.52) with a negative sign. We now look at what it means for ‘W
to be constant in 7, under the assumption that F; 8 vanishes.

Proposition 4.53. Suppose that Féﬂ = 0. If W(Gyj. A,. gup. f.T) is constant in t
then det(G;; ) is constant and

g Gijiap — 8 G¥ Gigo Giip — 8 Giju fp =0,
1

.. 1
Rop — I GY Giga G Glig + fap — 5 8B = 0.

(4.54)

Proof. The same argument as in the proof of Proposition 4.21 shows that det(G;; ) is
constant. Then (4.54) follows from (4.52).

Unlike in Proposition 4.21, we cannot conclude that f is constant, because of the
existence of nontrivial compact gradient shrinking solitons. O

Remark 4.55. The term 1 [, g7 g#0 Gy Fly Flg (477)~2 e dvolp occurs on
the right-hand side of (4.52) with a useless sign. This is not surprising, as can be
seen by looking at the Ricci flow on a round 3-sphere M, which we consider to be
the total space of a circle bundle over S2. We shift the time parameter so that the 3-
sphere disappears at time zero. As the 3-sphere gives a gradient shrinking soliton, the
functional ‘W is constantin 7. However, the circle bundle has nonvanishing curvature.
Hence having ‘W constant in ¢ cannot imply that F; 4 vanishes.
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We now look at some special cases of (4.54).

Proposition 4.56. Under the hypotheses of Proposition 4.53, if 1 < dim(B) < 2
then the only solutions of (4.54) occur when B is S? or R P2,

Proof. The second equation in (4.54) implies that
1 o i ki n
R dvolp — - g™ GY Giko G Gyip dvolg — — vol(B) =0, (4.57)
B 4 B : * 2‘5

from which the proposition follows. O

We now use W to analyze a blowup limit.

Proposition 4.58. Suppose that (M, g(+)) is a locally G -invariant Ricci flow defined
forallt € (—T,0), withT < oo. Suppose that Foiﬂ = 0. Putt = —1t. Let {s;}7° | be
a sequence of positive numbers tending to infinity. Put ;(t) = s; g(s; '1). Suppose
that lim; .« g; () exists and equals g (-) in the sense of Section 4.1, for a locally
G-invariant Ricci flow goo(+) with a compact base B, defined for v € (0, 00).

Writing goo(*) = (Gijoo(*), ap.oo(+)), we conclude that
1. det(Gyj,oc) is constant;

2. equations (4.54) are satisfied for Gij,o(+) and gug,00(+).
Proof. 'The proof is along the lines of the proof of Proposition 4.39. O
4.2.3. Modified ‘W, -functional
Definition 4.59. Given /' € C®°(B)andt € RT, put
W+ (Gij7 Azxy gaﬁ, ﬁ t)
= [ [tV + R— Lg% GY G o G¥ Giig (4.60)
B
- % g gﬁs Gij Foiﬁ FJS) —f+ n](4m‘)_% et dvolp .

If N =0, ie,if M = B, then this is the same as the Feldman-Ilmanen—Ni
W, -functional [14].

Inwhatfollows, we will need a lower bound for ‘W in terms of the scalar curvature
of M and the volume of B.
Lemma 4.61. [f (47t)~2 [y e/ dvolp = 1 then

Wi (Gijo ALy, 8up f11) Z ¢ Ruin +1+ 3 In(4) —In (172 vol(B, gup(1))). (4.62)
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Proof. From (4.47),

= [B [r( Vf+ Vln,/det(G,»j)‘2 + E) —f +n] (4me)~% e~/ dvolp

>t Ruyin + 1 — (4m)‘% [ £ e~ dvolg

>t Rpn + 70 + In(4m) —In (r72 vol(B, gap (1)),

where we used Jensen’s inequality. This proves the lemma. O

The next proposition says thatif f satisfies a conjugate heat equation then ‘W is
monotonic under the Ricci flow.

Proposition 4.64. Under the flow equations

3G
8I = gaﬂ GtJ aff — gaﬂ le Gik,oz Glj,ﬂ 5 gay gﬁ5 Gix G]l F B Fl
aAl S ij k
a g ay8 - g GY ijsl/ FaS’
dg .
ajﬁ = —2 Rop + 1 G Gjro G¥ Gy g + 87 Gij Fl, Flj. (4.65)
(o
(eat ) _ v e/ + (R—1g"B GY Gjpo GM Gy g,
zgay gﬂS Gij Fﬁ F)fs + ”)e_f
one has
d i
EW-F(GU’AON gaﬁsf’t)
!
= [B 8" Gijiap — 8 G Gt Gljg (4.66)
2 —_ha
— 18" ¢’ G G Fiy Fl5 — & Gijo f5| (dmt)"2 e/ dvolp
—I-I[ ‘g”‘s F‘ g’ Gl Gk g”8 L 5‘ (4t)"2 e~/ dvolp

+2t / |[Rap — 3 GV G G Guig
B
2 e
~ 38" Gij Fay Fis + fap + 27 Sap|” (4m1)™% ™/ dvolp

1
+ 7 [ng P2.Gij Flg Fly (4m)™2 e/ dvolg .
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Proof. 'The proof is along the lines of the proof of Corollary 4.18. O

We now look at what it means for ‘W, to be constant along the flow (4.65).

Proposition 4.67. If W.(G;;, A, gap. [.1) is consiant in t then Foiﬁ = 0, det(Gy;)
is constant and

g% Gijup — 2% GM Gin o G1ip = 0,

- (4.68)
Raﬁ — % GY ij,a G* G,{i,ﬁ + 2_1t Sup = 0.
Proof. From (4.66), we see first that F Oi g = 0. Then we also see that
g Gijap — 8% G Gir o Grjp— 8% Giju f1p =0 (4.69)
and -
Rop — 5 GY Gjta G Grip + fup + 2 8ap = 0. )

As in the proof of Proposition 4.21, we can show from (4.69) that det(G,; ) is constant.
Then equations (4.29) and (4.30) hold. From (4.70), we have

fB (R + £) dvolp = 0. @.71)

As in the proof of Proposition 4.21, we have

aR

% = V2R +2|Rij > + 2 |Rapl*. (4.72)
From (4.65), (4.69) and (4.70), the flow equations are
oy
8;] - gaﬁ Gija [.8
(4.73)
ag_aﬁ =2 fap + l
dt wf T Haf
It follows that _ —
dR - R
— = (V£ VR) — —. 4.74
o = (VAVR) —~ (4.74)
Thus _
2p 52 = 2 R 7]
VIR + 2[R;;]7 + 2| Rop|” + == (V. VR). 4.75)
Then
1 2 1
V2(§+ i) +2|E»-|2+2‘E 8+ —8up ——(E+ i)
2t ¥ = 21°° t 2t 4.76)

fore (i 2))
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From (4.71), either R+ 2 = 00r Ry + 2 < 0. If Ry + 2= < 0 then we obtain a
contradiction to the minimum principle, applied to (4.76). Thus R + 5, = 0. From
(4.76), it follows that R;; = Ryp + %gaﬁ = 0. This proves the proposition. O

Lemma 4.77. Under the conclusion of Proposition 4.67, G;; and A, are time-
independent, and g, g is proportionate fo t.

Proof. 'This follows from (4.65) and (4.68). O

Remark 4.78. Equations (4.68) were called the harmonic-Einstein equations in [38],
where they were used as an ansatz to construct expanding soliton solutions on the
total spaces of flat vector bundles.

We now use ‘W, to analyze blowdown limits.

Proposition 4.79. Suppose that (M, g(-)) is a locally G -invariant Ricci flow defined
forallt € (0,00). Let {5;}72 | be a sequence of positive numbers tending to infinity.
Put g;(1) = 57! g(s;1). Suppose that im;_, 0 g; () exists and equals g () in the
sense of Section 4.1, for a locally §-invariant Ricci flow g () with a compact base
B, defined for t € (0,00). Writing geo(*) = (Gijioo(*), Ay 00 (*): apoo(+)), we

conclude that
1. Fi =0

aff,00
2. det(Gij o) is constant;

3. equations (4.68) are satisfied for G; o (+) and gup o ().

Proof. The proof is along the lines of the proof of Proposition 4.39. O

We now look at some special solutions of (4.68). Recall that p: 71(B,b) —
SL(N) is the holonomy representation.

Proposition 4.80. Under the assumptions of Proposition 479, if N = 0 then
Zoo(t) = tgEm, Where ggin is an Einstein metric on M = B with Einstein con-

stant —%. If N = 1 then 25(t) is locally an isometric product of R or S with

(B, tggm), where ggy is an Einstein metric on B with Einstein constant —%. For

any N, if dim{(B) = 1 then with an appropriate choice of section s, we can lo-
cally write G (b) = (ebX)l-j and gp = %Tr(XZ) db?, where X is a real diagonal
(N x N )-matrix with vanishing trace.

If dim(B) =2 and N = 2 then B has negative Euler characteristic. Also,

1
2t

2. p fixes no point of the boundary of SL(2, R}/ SO(2) = H? and with the right
choice of orientation of B, the map G: B — H? is holomorphic.

1. g is alocally product metric and B has sectional curvature — 5, or
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Proof. The N = 0 case is clear. As det(G;;) is constant, if N = 1 then we are
in a local product situation. For any N, if dim(B) = 1 then the map » — G;; ()
describes a geodesic in SL{N,R)/ SO(N, R), from which the proposition follows.
(See [38, Example 4.27]).

Ifdim(B) = 2and N = 2 then we can consider g o be a p-equivariant harmonic
mapu: B — H?. Choosing an orientation of B, we use a local complex coordinate z
on B. There is a solution to the first equation in (4.68) if and only if the representation
p: m(B) — SL(2,R) is not conjugate to a (nondiagonal) representation by upper
triangular matrices [30], [36]. If there is a solution to the first equation in (4.68) then
looking at the dz?-component of the second equation in (4.68) gives

u,iiz = 0. 4.81)

We consider the subset of dH 2, the boundary at infinity of H 2, which is pointwise
fixed by Im(p). It is either all of dH?, two points in dH 2, one point in dH? or the
empty set. If all of dH? is fixed by Im(p) then p is the identity representation, u
descends to a harmonic function on B (which must be constant) and B has constant
sectional curvature —»-. If Im(p) fixes exactly two points of 8H 2 then p is conjugate
to a diagonal representatlon and u maps to a nontrivial geodesic in H2. We can
assume that v is real-valued. Then equation (4.81) implies that u is constant, which
is a contradiction. As has been said, there is no solution to the first equation in (4.68)
if Im(p) fixes a single point of dH 2. Finally, suppose that Im(p) fixes no point of
dH?. Then u is constant or du has generic rank two. If u is constant then g is a locally
product metric. Suppose that ¥ is nonconstant. As du has generic rank 2, equation
(4.81) implies that u is holomorphic or antiholomorphic. If u is antiholomorphic
then we change the orientation of B to make u holomorphic. As u is nonconstant,
Liouville’s theorem implies that B has negative Euler characteristic. O

Remark 4.82. The solutions with dim(B) = 1, G;;(b) = etk )ij and gp =
£ Tr(X?) db* are generalized Sol-solutions.

Remark 4.83. When dim(B) = 2 and N = 2, the equations (4.68) arose inde-
pendently in the paper [52] on Kihler—Ricci flow. In that paper, which is in the
holomorphic setting, the map G arises as the classifying map for the torus bundle of
an elliptic fibration. The term 1 G¥ G o G¥ Gy; g of (4.68) is called the Weil-
Petersson term. The second equation of (4.68), in the Kdhler case, is considered to
be a generalized Kéhler-Einstein equation for the geometry of a collapsing limit.

Remark 4.84. All of the results of this section extend to the case when B is an
orbifold, £ is a flat orbifold §-bundle over B, a manifold M is the total space of
an orbifold fiber bundle w: M — B and § acts locally freely on M (via a map
E xp M — M) with orbifold quotient 5.
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5. Equivalence classes of étale groupoids

Let & be a complete effective path-connected Hausdorff étale groupoid that admits
an invariant Riemannian metric on the space of units G, We assume that

1. & equals its closure &;

2. thelocal symmetry sheaf g of & isalocally constant sheaf of abelian Lie algebras
isomorphic to RV .

Example 5.1. Let M be the total space of a twisted abelian principal §-bundle as
in Section 4.1. We can take & = E xp M, where the flat bundle E has the étale
topology, with & = M. The local symmetry sheaf comes from the flat vector
bundle 7*e on M.

We can perform a similar construction in the setting of Remark 4.84, where M 1is
a manifold and B is an orbifold.

The results of Section 4 extend to the setting of a Ricci flow on &, under the
analogous curvature and diameter assumptions, provided that & is locally free. The
reason is that the local structure of such an étale groupoid is the same as the local
structure considered in Section 4 [22, Corollary 3.2.2]. We can then perform the
integrals of Section 4 over the orbit space of & and derive the same consequences as
in Section 4.

It will be useful to determine the global structure of such étale groupoids, at least
in low dimensions.

Proposition 5.2. Suppose that & is locally free. Then the orbit space O is an orbifold.
There is a flat (orbifold) RN -bundle e on © associated to &.

If dim(O) = 1 then & is classified by the isomorphism class of e.

In general, if e is trivial then & is equivalent to the groupoid of a principal

bundle over O. It is classified up to groupoid equivalence by the orbits of GL(N, R)
on H2(O;RN).

Proof. The proof is similar to the classification in [23] of the transverse structure of
Riemannian foliations with low-codimension leaves. (As the paper [23] considers
Riemannian groupoids that may not equal their closure, there is an additional step in
[23] which consists of analyzing the restriction of the groupoid to an orbit closure.
Since we only deal with étale groupoids that equal their closures, we do not have to
deal with this complication.)

Given x € &, let O, be its orbit. There is an invariant neighborhood of the
orbit whose groupoid structure is described by [22, Corollary 3.2.2]. In particular,
the point in the orbit space @, corresponding to ¢, has a neighborhood U that is
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homeomorphic to V/&7}, where V is a representation space for the isotropy group
&¥. This gives the orbifold structure on the orbit space.

The classification of such étale groupoids comes from the bundle theory developed
in [22, Section 2.3], which we now follow. For notation, if G is a topological group
then let G denote G with the discrete topology. Suppose first that the isotropy groups
&7 are trivial, so the orbifold @ is a manifold. Let U C @ be a neighborhood of
O, as above. Let 7: & — @ be the quotient map. By [22, Corollary 3.2.2], the
restriction of & to 7 ~! (U ) is equivalent to the cross-product groupoid (R xU)xR Y,
where ]R%fsv acts on RY by translation and acts trivially on U. This gives the local
structure of & It remains to determine the possible ways to glue these local structures
together.

To follow the notation of [22, Section 2.1], put I' = R(]SV C Dift (RN )s. The
normalizer NT of T in Diff (RV ) is RY X GL(N, R) and the centralizeris CT = R,
We give NT the topology RY X GL(N, R)s.

Following the discussion in [22, Section 2.1], suppose that U C @ is an open
set. Consider the cross-product groupoid (RY x U) x R(]SV . Let &(U) be the self-
equivalences of (RY x U) x Rév that project onto the identity of U. This forms a
sheaf & on . We can cover @ by open sets U such that 7~ (U) is equivalent to
RN x U) Rgv . It follows that the étale groupoids in question are classified by the
set HY(O; &) [22, Proposition 2.3.2].

To compute H'(9; &), let RY be the sheaf on @ for which RY (U) consists of
smooth maps U — RY, let ]Rfsv (also) denote the constant sheaf on @ with stalk ]R{fsv
and let GL(N, R)s (also) denote the constant sheaf on @ with stalk GL(NV,R)s. As
in [22, (2.4.2)] there is a short exact sequence of sheaves

0— RY/RY — & — GL(N,R)s — 0. (5.3)

From [15, Théoreme 1.2], this short exact sequence of sheaves gives rise to an
exact sequence of pointed sets

- — H%(0; GL(N, R)5) — H'(0; RY /R})

1 1 (5.4)
L HY0:8) —> HY(O:GL(N. R);).

The set H'(Q:;GL(N,R)s) is the same as the set of homomorphisms 7;(9) —
GL{N, R) modulo conjugation by elements of GL(N,R) or, equivalently, the set
of equivalence classes of flat R" -vector bundles on @. The image of the classify-
ing element of &, under the map H'(®; &) — H(@; GL(N, R);), classifies the
flat R -vector bundle ¢ mentioned in Proposition 5.2. More explicitly, the transi-
tion functions of e come from the image under & — GL(N, R)s of the transition
functions of &,
The short exact sequence

0—RY - RY - RY/RY —0 (5.5)




Vol. 85 (2010) Dimensional reduction and the long-time behavior of Ricci flow 519

of sheaves of abelian groups gives a long exact sequence

-+ — H'(0:RY) — H'(O;RY /RY) 5.6
— H2(O;RY) — H2(O;RY) — - '
of abelian groups. As R¥ isa fine sheaf, it follows from (5.6) that H' (O; RV /RY ) =~
H2(9:RY) = HX(O; RY).
As HY consists of global sections, (5.4) gives an exact sequence of pointed sets

GL(N,R) — H2(0:R"Y) — HY(0: &) — H'(9; GL(N, R);). 5.7)

If dim(©9) = 1 then from (5.7), the map H'(®; &) — HY(O;GL(N,R);s) is
injective. Thus & is determined up to groupoid equivalence by the isomorphism
class of the flat vector bundle e.

If O has arbitrary dimension, suppose that e is trivial. Consider the preimage
under H! (0; &) — H'(O; GL(N, R)3) of the element in H! (9; GL(N, R)3) corre-
sponding to the identity representation. By (5.7), this preimage can be identified with
the orbit space for the action of GL(N, R) on H2(@; R"Y). Any such orbit contains
an element of Im(H2(0; Z¥ ) — H2(OQ; R¥Y)), which implies that & is equivalent to
the étale groupoid arising from some principal T -bundle on @.

The preceding considerations extend to the case when the (finite) 1sotropy groups
&% are not all trivial. In that case, O is an orbifold and the argument extends to
the orbifold setting. For example, H*(©: R ) has to be interpreted as an orbifold
cohomology group. O

Remark 5.8. If one starts with an (untwisted) principal §-bundle, with § abelian,
then the triviality of the corresponding étale groupoid is determined by whether or
not { [ F*}Y_ | vanishes in H*(B; RY).

Suppose that the étale groupoid is nontrivial and {g;}72 ; is a sequence of invariant
metrics on the principal §-bundle, so that there is a limiting invariant metric goo. It is
possible that the curvatures { F* }fV= | approach zero innorm as j — oc. If this is the
case then g, will live on a distinct étale groupoid, as its curvature { F* }f.V: , vanishes.
This phenomenon occurs in the rescaled Ricci flow on the unit circle bundle of a
surface of constant negative curvature.

On the other hand, if we start with a trivial ¢tale groupoid and {g;}72 ; is a non-
collapsing sequence of invariant metrics on the principal §-bundle then any limiting
invariant metric g~, will necessarily be on the same é€tale groupoid.

The relevance of Proposition 5.2 is that for étale groupoids which satisfy its hy-
potheses, we can discuss convergence of Ricci flow solutions on such étale groupoids
in terms of convergence of invariant Ricci flow solutions on twisted principal bundles.
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Example 5.9. Suppose that M is the total space of a principal S!-bundle over a
compact oriented surface B. Given a subgroup Z; C S, let M/Z; be the quotient
space. It is also the total space of a principal S!-bundle over B.

The (discrete) S !-action on a principal S!-bundle gives an étale groupoid. The
map M — M /Z; gives an equivalence of étale groupoids, in the sense of [2, Chapter
I11.§ .2.4]. However, the Euler class of the circle bundle M/7Z; — B is k times that
of the circle bundle M — B. This shows that the Euler class of the circle bundle
is not an invariant of the groupoid equivalence class. Instead, all that is relevant is
whether or not the rational Euler class vanishes.

Example 5.10. If dim(©®) = 1 then any homomorphism «: 71(@) — GL(N, R)
gives rise to an étale groupoid with unit space &© = R¥ x, @.

If O is a closed orientable 2-dimensional orbifold then H2(Q;RY) ~ R and
the action of GL(N,R) on H2(@; R") has two orbits, namely the zero element and
the nonzero elements. Thus if e is trivial then there are two equivalence classes of
such groupoids with orbit space @, one corresponding to a vanishing “Euler class”
and one corresponding to a nonvanishing “Euler class”.

Suppose that M is the total space of a twisted principal RY -bundle. Let g be
an invariant metric on M. We recall that there are two distinct connections in this
situation, the flat connection on the twisting bundle & and the connection 4 on the
twisted principal bundle. We will use the following lemma later.

Lemma 5.11. Ler m: M — B be a twisted principal RN -bundle. Given G;; and
gap, let Ay and A5 be two flat connections on M. Let g1 and g5 be the corresponding
invariant metrics on M. Then their underlying Riemannian groupoids are equivalent.

Proof. Let {U;} be acovering of B by open contractible sets. Let U = {7~ (U;)} be
the corresponding covering of M and let &y be the localization of & [38, Section 5.2].
In our case, elements of &y, are quadruples (i, p;, p;, j) with p; € 7= 1(U;), p; €
a1 (U;) and 7(p;) = 7(p;). The multiplication is (7, p;, p;, j) - (j. pj» pr. k) =
(Z, pi» Pk, k). The units 63’&)) are quadruples (7, p;, p;i,i) and the source and range
maps are s{i, pi, pj.j) = (. pj. pj.J) and r(i, pi. p;. j) = G, pi, pi, 7). Let
s} Up — 77 1(U;) be a section for which (s})*4; = 0. Similarly, let s?: U; —
7~ 1(U;) be a section for which (s2)*4, = 0. Define a map F: &y — Gy
by F(i,pi,pj, i) = (G, pi + s7(w) —s] (i), pj + 57(u;) — 57 (u)), j), where
ui = w(p;), u; = 7(p;) and we write the action of RY additively. Then F is a
groupoid isomorphism. On the space of units, F(i, p;, pi.i) = (i, pi + s?(u;) —
sHui). pi + sF(u;) — s}Hu;), i) and so F sends the section s;' to s7. It follows that
F is an isomorphism of Riemannian groupoids. O



Vol. 85 (2010) Dimensional reduction and the long-time behavior of Ricci flow 521
6. Convergence arguments and universal covers

In this section we prove Theorem 1.2, In Section 6.1 we prove convergence to a
locally homogeneous Ricci flow on an €tale groupoid. In Section 6.2 we promote
this to convergence on the universal cover of M.

6.1. Convergence arguments. Inthis subsection we show that under the hypotheses
of Theorem 1.2, there is a rescaling limit which is a locally homogeneous expanding
soliton solution on an étale groupoid. To do this, if @ is the closure of the orbit
of g(-) under the action of the parabolic rescaling semigroup R=! then we define
a stratification of @ in terms of the number of local symmetries. We let k¢ be the
maximal number of local symmetries that can occur in a rescaling limit of g(-).
This corresponds to a maximally collapsed limit. The first step is to show that kg
determines the Thurston type of M, and that there is a sequence of rescalings of g(-)
which approaches the corresponding locally homogeneous expanding soliton.

In order to show that any rescaling limit g(-) is a locally homogeneous expanding

soliton (except possibly in the SL, (R ) case), we use further arguments. We show that
any rescaling limit has k¢ local symmetries. We then use a compactness argument,
along with the local stability of the space of expanders, to show that g(-) is a locally
homogeneous expanding soliton.

So assume that g(-) is a Ricci flow solution on a connected closed 3-manifold
M, defined for ¢ € (1, 00), with SUp,¢(; o) ¢ [| Riem{g(t)|c < K < o0 and
SUD, €(1,00) (% diam(g(z)) < D < oc. From Proposition 3.5, M has a single ge-
ometric piece. Given s € [1,00), put gs(r) = %g(sr). Then for all s, we have
SUP;e(1,00) ! |l Riem(gs (1))}« < K and SUP¢e(1,00) (=2 diam(g;(r)) < D. By
Proposition 3.2, the family of Ricci flow solutions {gs(-)}sef1,00) 15 sequentially
precompact among Ricci flow solutions on étale groupoids.

Let @ be the sequential closure of the forward orbit {gs(-)}se[1,00)- Let Ow) be
the elements of O with a k-dimensional local symmetry sheaf g.

Lemma 6.1. If 3(-) € O then the underlying étale groupoid of g(-) is locally free.

Proof. If () € O then there is nothing to show. If 2(-) € Oy then the lemma
follows from the fact there is no point x € &© where the local Killing vector fields
vanish simultancously.

Suppose that 2(-) € O). Write () = lim; oo (M, gs, (-)) for some sequence
{S;» 72, tending to infinity. By [3], for any € > 0, there is an integer Jo < oo s0
thatif j > J, then there is a locally T 2-invariant Riemannian metric g;. on M which
is e-close in the C !-topology to ig(sj’.). Furthermore, one can take the sectional

curvature of g} to be uniformly bounded in € [48, Theorem 2.1]. The collapsing is
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along the T2 fibers. Taking a sequence of values of € going to zero and choosing
J = Je, after passing to a subsequence we can say that g(1) = lim;_o (M, g}).

Let S be the orbit space of the étale groupoid. It is a circle or an interval. If S
is a circle then M is the total space of a T2-bundle over S!. (The fibers cannot be
Klein bottles since M is orientable.) Hence the local 72-action on (M, g}) s free.
Let H € SL(2, Z) be the holonomy of the T2-bundle, defined up to conjugation in
SL.(2,7Z). Given M, there is a finite number of possibilities for H, as follows from
[50, pp. 439, 469470, 481-482]. After passing to a subsequence, we can assume
that there is a single such H. For each j, the T2-bundle with invariant metric g} 18
the total space of a twisted principal 7'2-bundle over S, where the twisting bundle
E is a flat T2-bundle on S with holonomy H . From Proposition 5.2, for all j these
give rise to equivalent €tale groupoids. Looking at how one constructs the limiting
Riemannian groupoid as j — oo [38, Proposition 5.9], it follows that g{-) is defined
on this same étale groupoid. In particular, it is locally free.

If S is an interval then as in the proof of Proposition 3.5, the asphericity of M
implies that the local T2-action on M is locally free. Then M is the total space
of an orbifold 72-bundle over the orbifold S. As S is double covered by a circle,
we can take a double cover M of M which is the total space of a T2-bundle over
S1. Applying the preceding argument Z,-equivariantly to M, we conclude that the
underlying étale groupoid of g(-) is again locally free.

Finally, suppose that g(-) € @(3). Write g(-) = lim; (M, gs (+)) for some
sequence {S} }7= tending to infinity. Then the orbit space S of the étale groupoid is a
pointand {(M, - g(s] ) }j’;l Gromov—Hausdorff converges, with bounded sectional

J

curvature, to a point. That is, M 1is almost flat and so is an infranilmanifold [19].
There is a finite normal cover My of M which is diffeomorphic to a flat manifold or
a nilmanifold. Let go(-) be the lift of g(-) to My and let go(-) be the corresponding
limiting Ricci flow on an étale groupoid, with g(-) as a finite quotient. By [3], for
any € > 0, there 1s an integer Je. < oo so thatif j > J. then there is a left-invariant
Riemannian metric g} on My, of R? or Nil-type, which is e-close in the C !-topology

o , go (S ). Furthermore, one can take the sectional curvature of g/, ;o be uniformly

bounded in e [48, Theorem 2.1]. The collapsing is along all of M. Taking a sequence
of values of € going to zero and choosing j > J., after passing to a subsequence we
can say that 2o (1) = lim;_, (M, g}). Looking at how one constructs the limiting
Riemannian groupoid as j — oo [38, Proposition 5.9], it follows that the underlying
étale groupoid of gy (1) is a cross-product groupoid R3 x Rg or Nil x Nilg, where &
denotes the discrete topology. Hence the underlying étale groupoid of g(-) is locally
free. O

The relevance of Proposition 6.1 is that it allows us to use Proposition 4.79 to
analyze blowdown limits of g(-).
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Let k¢ be the largest k so that @ () 1s nonempty. For simplicity of terminology, we
will say that a Ricci flow on an €tale groupoid is a locally homogeneous expanding
soliton if there is some homogeneous expanding soliton to which the Ricci flow on
the unit space of the étale groupoid is locally isometric.

Proposition 6.2. If kg = O then M admits an H3-structure. If kg = 1 then M
admits an H? x R or S/L—r(]Rﬂ-stmcmre. If kg = 2 then M admits a Sol-structure. If
ko = 3 then M admits an R> or Nil-structure.

In all of these cases, there is a sequence {Sj}j=1 tending to infinity so that
limj o0 (M, gs; (+)) exists as a Ricci flow solution on an étale groupoid, and is a
locally homogeneous expanding soliton of type

. Hsifk():O,
« H2xRifky =1,
e Solifky =2,

« R3 orNil ifky = 3.

Proof. Given g(-) € @(ko), put gs(r) = % g(st). We claim that the forward orbit
{85 (*)}se[1,00) 18 relatively sequentially compact in @(k0)~ To see this, suppose that
there is a sequence {g,, (-)}$2, having a limit g'(-). We can find a subsequence of
{(M, g5(-))}sel1,00) that converges to @'(+). Thus §'(-) € O. However, the number of
local symmetries cannot decrease in the limit. Hence g'(+) € O, for some k > k.
We must have k = kg, by the definition of k, which proves the claim.

Let {s;}72, be a sequence tending to infinity such that lim; ¢ g5, (*) = &oo(*)
for some goo(-) € Oky). Let S denote the underlying orbit space of g (1). There
is a sequence {s7}52, tending to infinity so that lim; .« (M, g () = o). In
particular, im; oo (M, 3-2(s})) Ls.

If ky = 0 then by Projposition 4.80, (M, go0(+)) is the Ricci flow on a manifold
of constant negative sectional curvature.

If ko = 1 then S is a closed two-dimensional orbifold. Taking a double cover if
necessary, we can assume that S is orientable. From Proposition 5.2, we can assume
that the underlying étale groupoid comes from an orbifold principal S!-bundle on
S. (The triviality of e comes from its identification with H! of the circle fiber of the
orbifold bundle M — S.) By Proposition 4.80, g (+) has (H? x R)-type and S
has a metric of constant curvature —2%. As M is the total space of an orbifold circle
bundle over S, it follows that M admits an H? x R or S’i;-/(IRQ—structure (using [40]
if we took a double cover).

If kg = 2 then S is S' or an interval [0, L]. Suppose first that S = S'. Then M
is the total space of a T2-fiber bundle over S. Let H € SL(2,Z) be the holonomy
of the fiber bundle, defined up to conjugacy. As in the proof of Lemma 6.1, the étale
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groupoid of g (+) arises from a (twisted) principal 72-bundle on S*. The flat bundle
e over S! has holonomy H € SL(2,Z). By Proposition 4.80, ¢, (-) has Sol-type
and H is a hyperbolic element of SL.(2, Z). Thus M admits a Sol-structure.

Suppose now that S = [0, L]. As in the proof of Lemma 6.1, M is the total space
of an orbifold 72-bundle over the orbifold [0, L]. A double cover M of M fibers over
51, Running the previous argument on M with the pullback metric, we conclude
that M admits a Sol-structure. Hence M admits a Sol-structure [40].

If kg = 3 then S is a point. Hence {(M, - g(s; ))};’il Gromov—Hausdorff

J

converges, with bounded sectional curvature, to a point. As in the proof of Lemma 6.1,
200 (+) is locally homogeneous and has R or Nil as its local symmetry group. Such a
Ricci flow solution is automatically a locally homogeneous expanding soliton. [

We have shown that there is some sequence {s;}7, tending to infinity so that
lim;, oo (M, gs; (-)) exists and is a locally homogeneous expanding soliton, We now
wish to show that this is true for any sequence {s 7152 tending to infinity, at least if the

Thurston type of M is not m The first step is to show that under a compactness
assumption, there is a parameter 7" so that if we take any rescaling limit g(-) then
upon further rescaling of g(-), the result is near a locally homogencous expanding
soliton for some rescaling parameter s € [1,T'].

Propeosition 6.3. Given k, let C be a sequentially compact subset of o k)- Let U be
a neighborhood of

e the H3-type locally homogeneous expanding solitons in @(0) ifk =0,
* the (H? x R)-type locally homogeneous expanding solitons in (5(1) ifk =1,
* the Sol-type locally homogeneous expanding solitons in (5(2) ifk =2,

o the R3-type and Nil-type locally homogeneous expanding solitons in @(3) if
k =3.
ThenthereisaT = T(k,C,U) € [1,00) so that forany g(-) € C, ifg;(-) € C
forall s € [1,T] then there is some s € [1,T] such that g;(-} € U.

Proof. Given k, C and U, suppose that the proposition is not true. Then for each
j e Z*, there is some g9 (-) e C so that for each s e [1,j], 8¥°() e C
and gsj )( ) ¢ U. Take a convergent subsequence of the {g"/)(- )}°° with limit
g()(-). Then for all s € [1,00), we have () € C and g§°°)() ¢ U. By
sequential compactness there 18 a sequence {rx{7- ; in Z* tending to infinity so
that limg o0 grk )( -) exists and equals some g(oo)( ) € C. By Proposition 4.80,

(oo)( -}is a locally homogeneous expandmg soliton as in the statement of the present
proposition. Then for large k, we have g g )( -) € U, which is a contradiction. [
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The next step is to use local stability to say that after rescaling g (- ) by the parameter
T, the result is definitely near a locally homogeneous expanding soliton solution.

Proposition 6.4. Suppose that M does not have Thurston type S’E;—/(IE@ Then there
are decreasing open sets {Uy}72 | of the type described in Proposition 6.3, whose
intersection is the corresponding set of locally homogeneous expanding solifon solu-
tions, so that under the hypotheses of Proposition 6.3, if T} = T (k, C,U;) then we
are ensured that g, () € Uy. (Inthe case k = 1 we restrict to Ricci flow solutions on
an étale groupoid with vanishing Fuler class, so Uy is a neighborhood in the relative

topology.)

Proof. 'This follows from the local stability of the expanding solitons in @(k). That
is, there is a sequence {U;}7° | of such neighborhoods so that gs(-) € U; implies that
gs () € Uy whenever s" > s. (In fact, one has exponential convergence to the set of
expanding solitons.) The case k = 0 appears in [54]. The case & = 2 appears in [34].
In the case k& = 1, recall from Example 5.10 that there are two relevant types of étale
groupoids, one with vanishing Euler class and one with nonvanishing Euler class.
The locally homogeneous expanding solitons live on étale groupoids with vanishing
Euler class. Their local stability (modulo the center manifold), among Ricci flows
on étale groupoids with vanishing Euler class, is shown in [34]. We remark that if M
has Thurston type H? x R then a limit lim; o0 (M, g5 ;(+}) can only be a Ricci flow
on an étale groupoid with vanishing Euler class.

Note that if & = 1 then there may be a moduli space of locally homogeneous ex-
panding solitons of type H? xR in (5(1), corresponding to various metrics of constant
curvature — % on the orbit space. However, because of our diameter bound, the moduli
space is compact. Comparing with [34], it may appear that there is also a factor in
the moduli space consisting of harmonic 1-forms on the orbit space. However, by
Lemma 5.11, the various harmonic 1-forms all give equivalent geometries. O

Remark 6.5. There is no locally homogeneous expanding soliton solution on a three-
dimensional étale groupoid of the type considered in Proposition 6.2 if it has an
orbifold surface base with negative Euler characteristic, and a nonvanishing Fuler
class. A Ricci flow on such an étale groupoid will have a rescaling sequence that
converges to an (H? x R)-type expander on an étale groupoid with vanishing Euler
class.

In order to show convergence of the Ricci flow on a 3-manifold with Thurston type

m, at least by our methods, one would have to show that the expanding solitons
of type H? x R are also locally stable if one considers neighborhoods that include
étale groupoids with nonvanishing Euler class. The difficulty is that the nearby Ricci
flows live on an inequivalent groupoid and so one cannot just linearize around the
(H? x R)-type expanding solitons. One approach would be to instead consider Ricci
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flows with SL; (R)-symmetry on étale groupoids with nonzero Euler class and show
that this finite-dimensional family is an attractor.

We now show if ky < 3 and M does not have Thurston type SL,(R) then any
rescaling limit g(-) is a locally homogenous expanding soliton. The method of proof
is to show that we canrescale g(-) backward by a factor T', and then apply the previous
proposition.

Proposition 6.6. Ifky < 3 and M does not have Thurston type S’E—/(]RQ then for any
sequence {s; };”;1 tending to infinity, as j — oo, (M, gs,(+)) approaches the set of
locally homogeneous expanding solitons of the type listed in Proposition 6.3, with

k = ky.

Proof. If the proposition is not true then there is a sequence {s; } 72 ; tending to infinity
and a neighborhood U; as in Proposition 6.4 so that for all j, gs; () € U;. After
passing to a further subsequence, we can assume that lim;_, g5, (1) = g(-) for
some 2(-) € O.

If kg = 2 then from Proposition 6.2, M admits a Sol-structure. As M cannot
collapse with bounded curvature and bounded diameter to something of dimension
other than one, Oy = Oy = O3y = €. Then C = O(y) is sequentially compact
and g(-) € O(z). A similar argument applies in the other cases when ko < 3 to show
that C = O, is sequentially compact and g(-) € O ).

For s = 1, let g(fl)(-) be the limit in @ of a convergent subsequence of
{grlsj (-)};?';1. Then g(-) = gﬁs 1)(-). Note that g(fl)(-) € @ko- By Propo-

—1
sition 6.4, there is a number 7; > 1 so that for each s > 1, g% )(-) e U;. Taking
s = Ty, we conclude that g(-) € U;. This is a contradiction. O

Corollary 6.7. If kg = O or kg = 2 then limg_, (M, gs(-)) exists and is one of the
locally homogeneous expanding solitons of the type listed in Proposition 6.3, with

k = ko.

Proof. In these cases, given M, there is a unique locally homogeneous expanding
soliton of the type listed in Proposition 6.3, with & = k. The relationship between
the topology of M and the equivalence class of the étale groupoid comes from the
proof of Lemma 6.1. If kg = 0 then M admits a hyperbolic metric and the expander
is the solution g(z) = 41gnyp, Where gy, is the metric of constant sectional curvature
—lon M. If kg = 2 then M is a Sol-manifold. Suppose first that M is the total
space of a T2-bundle over S!, with hyperbolic holonomy H € SL(2,Z). Then by
Remark 4.82, the expander can be written g = £ Tr(X2) db? + (dy)T e?X dy, where
b e0,1] and eX = HT H. If M fibers over the orbifold [0, 1] then the expander is
a Z»-quotient thereof. O
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In the case ky = 3, we must show that any rescaling limit g{-) has three local
symmetries. This does not follow just from topological arguments. The method of
proof is to rescale backwards and then apply the monotonicity arguments of Section 4
to a backward limit.

Proposition 6.8. If ky = 3 and g(-) € O is a limit lim; o0 (M, gs; (+)), for some
sequence {s; };";1 tending to infinity, then g(-) € @(3).

Proof. Suppose that g(+) € Oy with k < 3. As in the proof of Proposition 6.6, for
s>1,let g(fl)(-) be the limit in O of a convergent subsequence of {gs—15; (352,

Then g(-) = gssil)(-). More precisely, for each s € [1, oo) there is an equivalence
¢s of groupoids so that

1 _
g0 =~ g6 Dso). (6.9)

In particular, g(sfl) (-} € @(k). Using (6.9), we can extend the domain of definition
of g(-) to [s71, 00) for all s > 1, and hence to all ¢ € (0, 00). We still have the
bounds Sup, ¢ (g, o0) f1| Riem(g(z))[loc < K and sup,¢(p, ) =2 diam(g(r)) < D.

As in the proof of Proposition 4.79, we construct a solution f(¢) of the conjugate
heat equation on the orbit space S,

e S 1 o
(eat ) = -V? e_f+(R 4 gozﬁ GY Gk,a G*! Guip

q , (6.10)
-5 g% gﬁS Gy Fozeﬂ ijg + E)e f’

where n = dim(S) = 3 — k, that satisfies (47¢)"2 [ e~/ dvolg = 1 for all
t € (0,00). Then W, (G;;(1), AL (1), gup(t), f(t).1) is nondecreasing in ¢. From
Lemma 6.1, for t < 1 there is a uniform positive lower bound on 1 =2 vol(S, gap(1)).
By O’Neill’s theorem, the lower sectional curvature bound on g(¢) implies the same
lower sectional curvature bound on g,4(¢). Hence the (orbifolds) (S.t ' g,p (1)) are
noncollapsing in the Gromov—Hausdorff sense as r — 0. [tfollows that {gs_l () }s=1
lies in a sequentially compact subset of O, since if a sequence {g'sffl(-)}f‘;1
with lim, 5, = oo converged to an element of Oy with k&* > k then the
orbit spaces {(S,s; gup(s, 1))}]9’;1 would Gromov-Hausdorff converge to some-
thing of dimension 3 — k” < 3 — k, which contradicts the noncollapsing. In
particular, =2 vol(S, gap (1)) 1s uniformly bounded above as ¢ — 0 (as also fol-
lows from the diameter and lower curvature bounds). Then from Lemma 4.61,
Wi (Gij (1), AL (1), gag(t), f(2),1) is uniformly bounded from below as t — 0.
There is a sequence of times ¢; — 0 so that

: d i
_llm fjd— _ W+(Gij(t), Aa(t),g(xﬂ([), f(t)’[) = 0.
j—oo Llt=t,
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After passing to a subsequence, we can assume that lim; . g (-) = go(-) for some
go() € @(k), defined for t € (0, 00). As in the proof of Proposition 4.79, for any
t € (0, 00) the measures (471;1) 2 ¢~/ &1 dvol(S, g,p(1;1)) will subconverge to a
smooth positive probability measure on S. Using (4.66), we get that go(-) satisfies
the conclusion of Proposition 4.67 at time ¢ = 1. Tt follows that go(-) satisfies the
conclusion of Proposition 4.67 for all ¢+ > 1. In particular, A admits a geomeitric
structure other than an R3 or a Nil-structure (see the proof of Proposition 6.2), which
is a contradiction. Il

Proposition 6.11. If ko = 3 then for any sequence {s;}32 | tending io infinity,
lim; o0 gs; () exists and is a locally homogeneous expanding soliton of the R>
or Nil-type.

Proof. If the proposition is not true then there is a sequence {s; }°2 ; tending to infinity
such that lim; o g5, (-) = g(-) for some g(-) € O, but z(-) is not an expander of
type R3 or Nil. From Proposition 6.8, g(-) € O). In particular, g(-) is locally
homogeneous. If g is a local system of R3 Lie algebras then g(-) must be flat. If g is
a local system of nil Lie algebras then g(-) is automatically a locally homogeneous
expanding soliton, with respect to some origin of time. A priori, the equation for g(-)
could differ from the expanding Nil soliton in Theorem 1.2 by an additive change
of the time parameter. We can rule this out by using stability arguments as before,
which are simpler in this case because we are now talking about dynamics on the finite-
dimensional space of locally homogenous Nil-solutions. First, we argue that there is
some sequence s; — oo so that lim; . » gs; () is a locally homogeneous expanding
soliton modeled on the Nil expanding soliton of Theorem 1.2. Then we use the fact
that this expanding soliton is an attractor for the R=!-semigroup action on the locally
homogeneous Nil-solutions [38, Section 3.3.3]. Finally, we use a backward rescaling,
as in the proof of Proposition 6.8, to show that for any sequence {s, ]9';1 tending to
infinity, lim; o gs; () is a locally homogeneous expanding soliton modeled on the
Nil expanding soliton of Theorem 1.2 O

Remark 6.12. Some of the results of this subsection extend to higher dimension.
Suppose that (M, g(-}) is a Ricci flow on a closed n-dimensional manifold that exists
fort € (1, o0), with sectional curvatures that are uniformly O(z ') and diameter that
grows at most like 0(1‘%). (If # > 3 then not all compact Ricci flows satisfy these
assumptions, as seen by the static solution on a Ricci-flat K3 surface.) If {s;}72 , is
any sequence tending to infinity then after passing to a subsequence, there is a limit
Ricci flow g(-) on an n-dimensional étale groupoid &. If M is aspherical then & is
locally free.

If n is greater than three then the first point is that the local symmetry sheaf
g may be a sheaf of nonabelian nilpotent Lie algebras. (This could also happen
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in dimension 3, but then g(-} is locally homogenecous with respect to the three-
dimensional Heisenberg group.) Thus the analysis of Section 4.2 would have to be
extended to the case of twisted §-bundles where § is a nilpotent Lie group.

If we do assume that g is abelian then Proposition 4.79 says that any blow-
down limit of g(-) satisfies the harmonic-Einstein equations (4.68). Proposition 4.80
describes the blowdown limit of a Ricci flow solution (M, g(-)) on an aspherical 4-
manifold, defined for ¢ € (1, o0), with sectional curvatures that are uniformly O (¢ 1)

and diameter which is O(t%), provided that g is abelian.

6.2. Proof of Theorem 1.2. In this subsection we use the fact that M is aspherical
in order to extend the convergence result of Section 6.1 from a statement about a
limiting Ricci flow on an étale groupoid to a statement about a limiting Ricci flow
on M.

By Proposition 3.5, M is irreducible, aspherical and has a single geometric piece
in its geometric decomposition. We assume first that M does not have Thurston type
SLo(R).

Suppose that there is a sequence {s; f’L tending to mfinity such that the limit

lim; 00 (M » &s; (-)) exists and equals a Ricci flow g2(-) on an étale groupoid &. If
S is the orbit space of (&, g(1)) then lim;_, o (M, gi“;f)) g

From Propositions 6.6 and 6.11, g(-) is a locally homogeneous expanding soliton
of the type listed in Proposition 6.3. There is an orbifold fiber bundle M — S. Now
S is a very good orbifold, i.e., S is the quotient of a manifold S by a finite group
action. Taking the corresponding finite cover M of M, if we are interested in what

happens on the universal cover M then we can assume that S is a closed manifold.

Suppose that M is not of Nil-type. For large j, we know that (M, %j’)) is

the total space of a T50-bundle over S which defines an F-structure, where ko =
dim(M) — dim(S). As M is aspherical, the map 71 (T*0) — 7 (M) is injective [7,
Remark 0.9].

Choose § € (0, min (42 10\1/E)) and take a finite collection {x;} of points

in S with the property that { B(x;,d)} covers S. For large j, let {p; ;} be points

n (M 5 @) that are the image of {x; } under a Gromov—Hausdortf approximation.
J
Then for such j, { B(p;,;.58)} covers (M g(sj)). Each B(p;,;, ) is homeomorphic

3
to B30 x T%o and its lift m) to M is homeomorphic to B3 %o x Rko,
Suppose that p; ; € M isapreimage of pi.j- Thenthe 55-ball B(0,58) C Tp, ;M
is isometric to B(p;,;,58) C (M, £ )) with respect to the metric expy; %Jv’)
From the construction of the Riemannian groupoid (&, g(1)) [38, Propositfon 5.9],
lim;_, o, B(p;,j,5d) is isometric to a 58-ball in the time-1 slice of the (homogeneous)
expanding soliton solution on the manifold R3.
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Let i € M be a basepoint. Given R > 0, consider B(iii, R) C (M, %j’)) For

large j, we can find a finite collection of points { 5, } (depending on j ) in (M, g gj’ )),
where each p;, projects to some elementof { p; ;} C M, sothat the cardinality of {p, }
is uniformly bounded in j and B(#, R) C (M, gij_f')) is covered by {B(p,. 38)}.

£2) that lie in

B(in, R), cover p;,; and form a separated net of size approximately &.

Namely, for each 7 and j, take points in the strip W) C (]\Zf ;

After relabeling the indices if necessary, suppose that 7 € B(F;, 58) with 7, € M
projectioning to pq,; € M. TFor large j, fix an almost-isometry from B(p1,55) to
a 54-ball in the time-1 slice of the (homogeneous) expanding soliton solution on
R3. Taking the union of the balls B(p,,58) whose centers project to p1 j €M, it
follows that for large j, the metric 857 ( ) on m N B(m, R) approaches the
homogeneous expanding soliton rnetrlc on the strip. We do the same procedure for
the other values of 7, on the strips m) N B(m, R) C (]\Zf g(fj)). Then taking
g( )

the union of these strips for the various 7, it follows that for large j, the metric ==

B(m, R) approaches an R-ball in the time-one slice of the homogeneous expandmg
soliton solution on R 3 . Finally, we can perform the argument with the time parameter
added, to conclude {(M 7, &, (-))};_, converges to the expanding soliton solution

on R?, in the topology of pointed smooth convergence. We can perform a similar
argument in the Nil-case, where S is a point.

To prove Theorem 1.2, suppose first that A has Thurston type R3, Nil, Sol
or H3 Suppose that the theorem is not true. Then there is a sequence {s; i

tending to infinity so that for any subsequence {s;.}9< ,, either {(M ' &s;, (1))};)0:1
does not converge in the Gromov—Hausdorff topology to the limit stated in the theorem
or {(M m, g, (- ))} , does not converge in the pointed smooth topology to the
homogeneous expandmg soliton solution stated in the theorem. After passing to a
subsequence, thereis alimitlim; _, o, (M . 8s; (¢ )) as a Ricci flow on an étale groupoid,
g (S,))

whose time-one orbit space will be the Gromov—Hausdorff limit lim;; . », (M 5
The limit is characterized by Corollary 6.7 and Proposition 6.11. From the precedmg
discussion, there is a pointed smooth limit lim; _, o (M 1, By (-)) as a Ricci flow on
M, which is a homogeneous expanding soliton solution on R? of the corresponding
type. In any case, we get a contradiction.

Suppose now that M has Thurston type H? x R. We can apply the same argument.
The only difference is that we can no longer say that limg_, (M, g5(1}) exists in
the Gromov-Hausdorff topology. All that we get from Proposition 6.6 is that for
any sequence {f;}72, tending to infinity, there is a subsequence {z;, }72, for which

lim; (M , %) exists and equals a closed 2-dimensional orbifold with constant
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sectional curvature —%. A priori, different subsequences could give rise to to different
constant-curvature orbifolds. (From our diameter bound, for a given M there is
a compact set of such orbifolds that can arise). However, we claim_that on the
universal cover M we do get pointed smooth convergence limg o (M m, gs(- ))
to the Ricci flow (H? x R, 2¢gnyp + gr). To see this, suppose that {sj}72, isa

sequence tending to infinity so that for any subsequence {s;,}2,. {(M ., gs; ()} -,
does not converge to (H? x R ,2tgnyp + gr) in the pointed smooth topology. We
know that there is a subsequence {s;,}°2 | for which lim, . (M, gs; (-)) exists and
is a Ricci flow g(-) on an étale groupoid. From Proposition 6.6, g(-) is a Ricci flow
solution of type H? x R. From the preceding discussion, limy .o (M, 7, g, (-))
exists in the pointed smooth topology and equals the expanding soliton solution
(H?* x R, 2tgnyy + gr). This is a contradiction.

Finally, if M has Thurston type S’E—/(]RQ then the theorem follows from Proposi-
tion 6.2.

Remark 6.13. The assumption diam(M, g(r)) = O(t%) of Theorem 1.2, together
with the curvature assumption, ensures that M has a single geometric piece. One
can ask what happens if one removes the diameter assumption but keeps the curva-
ture assumption. In such a case one would clearly have to consider pointed limits
lim; o (M, m, gs; () of the Ricci flow solution. After passing to a subsequence,
there will be convergence to a Ricei flow solution g(-) on a pointed étale groupoid.
However, the analysis of Section 4.2 does not immediately extend to the pointed non-
compact setting. For example, g(r) need not have finite volume in any reasonable
sense; see Example 2.3,
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