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Dimensional reduction and the long-time behavior of Ricci flow

John Lott

Abstract. If g.t/ is a three-dimensional Ricci flow solution, with sectional curvatures that are

O.t 1/ and diameter that is O.t1=2 /, then the pullback Ricci flow solution on the universal
cover approaches a homogeneous expanding soliton.
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1. Introduction

After Perelman’s proof of Thurston’s geometrization conjecture [43], [44], using
Hamilton’s Ricci flow [24], there are many remaining questions about three-dimensional

Ricci flow.
Since the Ricci flow is a nonlinear heat equation for the Riemannian metric, the

intuition is that it should smooth out the metric and thereby give rise, in the longtime

limit, to the locally homogeneous pieces in the geometric decomposition. This
intuition is a bit misleading because, for example, of the presence of singularities
in the Ricci flow. Nevertheless, based partly on earlier work of Hamilton [27],
Perelman showed that the hyperbolic pieces do asymptotically appear in the Ricci
flow. Perelman’s proof for the existence of the othergeometric pieces is more indirect.
Perelman showed that thenonhyperbolic part of the evolving manifold satisfies certain
geometric conditions, from which one can show that it is a graph manifold [1], [32],
[42], [44], [51]. By earlier work of topologists, graph manifolds have a geometric
decomposition.

It is an open question whether the Ricci flow directly performs the geometric
decomposition of a three-manifold, as time evolves. In particular, suppose that the
geometric decomposition of the three-manifold consists of a single geometric piece.
If this piece has Thurston type S3 or S1 S2 then its Ricci flow has a finite extinction
time [10], [11], [45]. For the other Thurston types, one canaskwhether the large-time
behaviorof theRicci flowsolution willbe thatof a locallyhomogeneous Ricci flow, no
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matter what the initial metric may be. Hamilton [25, Section 11], Hamilton–Isenberg

[28] and Knopf [33] showed that this is true for certain manifolds of R3 or
Soltype if one assumes some extra symmetries on the initial metric. We are interested
in whether one can show asymptotic homogeneity for a wider class of Ricci flow
solutions.

To describe the results, let g. / denote a Ricci-flow-with-surgery whose initial
manifold is a closed orientable 3-manifold. LetMt denote the time-t manifold. If t
is a surgery time then we takeMt to be the postsurgery manifold.) From Perelman’s
work [45], there is some time T0 so that for all t T0, each connected component

C of Mt is S3 or an aspherical 3-manifold. As the geometrization conjecture holds,

C has a decomposition into geometric pieces of type S3, R3, H3, Nil, Sol, H2 R
and BSL2.R/; see Section 2.

It is possible that the Ricci-flow-with-surgery involves an infinite number of
surgeries. In the known examples, there is a finite number of surgeries. Furthermore, in
the known examples, after all of the surgeries are done then the sectional curvatures

uniformly decay in magnitude as O.t 1/, i.e., one has a type-III Ricci flow solution.
In order to make progress, we will consider only Ricci-flows-with-surgery in which
this is the case. Hence, we will consider a smooth Ricci flow M; g. //, defined for
t 2 .1; 1/ ona closed,connected orientable 3-manifoldM, withsectional curvatures
that are uniformly O.t 1/.

If M admits a locally homogeneous metric modeled on a given one of the eight
Thurston geometries then we will say that M has the corresponding Thurston type.
Saying that M has a certain Thurston type is a topological statement, i.e., we allow
ourselves to consider Riemannian metrics on M that are not locally homogeneous.

In order to analyze the large-time behavior of a Ricci flow, we use blowdown
limits.

Definition 1.1. For s 1, put gs.t/ D
1
s g.st/. It is also a Ricci flow solution. Let

gQs.t/ be the lift of gs.t/ to the universal cover Mz

A time interval OEa; b for gs corresponds to the time interval OEsa; sb for g. We are
interested in the behavior as s! 1of gs. / on a specified time interval OEa; b since
this gives information about the large-time behavior of the initial Ricci flow solution

g. / If there is a limiting Ricci flow solution lims!1 gs. / then one says that it is a

blowdown limit of g. /
For notation, if the Gromov–Hausdorff limit limt!1 M; g.t/

t
exists and equals

t

GH

D X. If we writea compact metric space X then we write limt!1 M; g.t/

lims!1 Mz ; mz; gQs. / D M1;m1;g1. / then we mean that for any sequence

fsj g1jD1
tending to infinity, there is a smooth pointed limit limj!1 Mz ; mz; gQsj /

of Ricci flow solutions which equals M1; m1; g1. / We recall that the notion
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of the limit in the statement limj!1 Mz ;mz; gQsj / D M1; m1; g1. / involves

j -dependent pointed diffeomorphisms from domains in M1 to domains in Mz [26].

Theorem 1.2. Let M; g. // be a smooth Ricci flow solution on a connected closed
orientable 3-manifold, defined for t 2 .1; 1/. Suppose that the sectional curvatures

of M; g.t// are uniformly O.t 1/ and diam.M; g.t// D
1

O.t 2/.
Then M is irreducible, aspherical and its geometric decomposition contains a

single geometric piece.

1. If M has Thurston type R3 then limt!1 M; g.t/
t

GH

D pt.

The limit lims!1 Mz ; mz; gQs. / exists and equals the flat expanding soliton

R3;gflat/:

t
GH
D pt.2. If M has Thurston type Nil then limt!1 M; g.t/

The limit lims!1 Mz ; mz; gQs. / exists and equals the expanding soliton

R3
; 1

3t 13
dx C

1
2zdy/2

C t2ydz 1 1
3 dy2

C dz2/ :

3. IfM has Thurston type Sol then the Gromov–Hausdorff limit limt!1 M; g.t/
is a circle or an interval.

t

The limit lims!1 Mz ; mz; gQs. / exists and equals the expanding soliton

R3; e 2zdx2
C e2zdy2

C 4tdz2 :

4. If M has Thurston type H2 R then for any sequence ftjg1jD1
tending to

infinity, there is a subsequence whichwerelabelas ftjg1jD1
so that the Gromov–

Hausdorff limit limj!1 M; g.tj/
tj

exists and is a metric of constant curvature
1
2

on a closed 2-dimensional orbifold.
The limit lims!1 Mz ; mz; gQs. / exists and equals the expanding soliton

H2 R; 2tghyp C gR/:

t
GH

D M; 4ghyp5. If M has Thurston type H3 then limt!1 M; g.t/

The limit lims!1 Mz ; mz; gQs. / exists and equals the expanding soliton

H3; 4tghyp/:

6. IfM has Thurston type BSL2.R/ then there is some sequence fsj g1jD1
tending to

infinity such that limj!1 M; g.sj /
sj is a metric of constant curvature 1

2
on a

closed 2-dimensional orbifold.
The limit limj!1 Mz ; mz; gQsj / is the expanding soliton

H2 R; 2tghyp C gR/:
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Corollary 1.3. In cases 1–5 of Theorem 1.2, as time becomes large the Ricci flow
solution becomes increasingly locally homogeneous.

The corollary follows from the fact that the expanding solitons in Theorem 1.2
are all homogeneous. To state the corollary in a more precise way, we recall that a

Riemannian manifold M; g/ is locally homogeneous if and only if any function on

M that can be expressed as a polynomial in the covariant derivatives of the curvature
tensor ri1ri2 : : :rir Rjklm and the inverse metric tensor gij by contracting indices,
is actually constant onM [47]. Corollary 1.3 means that in cases 1–5 ofTheorem 1.2,

any function onM which is a polynomial in the covariant derivatives of the curvature
tensor and the inverse metric tensor of the rescaled metric gO.t/ D

g.t/ approaches a
t

constant value as t 1.
Remark 1.4. The diameter condition diam.M; g.t// D O.t

1
2 / implies under our

curvature assumption) that the geometric decomposition of M contains a single
geometric piece; see Proposition 3.5. We expect that if the diameter condition is not
satisfied then thegeometricdecompositionofM will containmore thanonegeometric
piece.

Remark 1.5. Any locally homogeneous Ricci flow solution M; g. // on a closed
3-manifold M, which exists for t 2 .1; 1/, does have sectional curvatures that are

uniformly O.t 1/ and diam. 1
M; g.t// D O.t 2 / [29], [35]. Hence a Ricci flow solution

on M that in any reasonable sense approaches a locally homogeneous solution,
as time goes to infinity, will satisfy the assumptions of Theorem 1.2. In this way,
Theorem 1.2 is essentially an if and only if statement.

Remark 1.6. In Case 6 of Theorem 1.2 we only show that we have the desired limit
for some sequence fsj g1jD1

tending to infinity, not for any such sequence. The reason
is a technical point about local stability; see Remark 6.5.

In [38, Theorem 1.1] we showed that the expanding soliton solutions listed in
Theorem 1.2 are universal attractors within the space of homogeneous Ricci flow
solutions on Thurston geometries. In proving Theorem 1.2, we showthat they are global
attractors within the space of Ricci flow solutions that satisfy the given curvature and

diameter assumptions, after passing to the universal cover.
Theorem 1.2 describes the Gromov–Hausdorff limit of the rescaled Ricci flow

solution onM and the smooth pointed rescaling limit of the lifted Ricci flow solution
on Mz In the proof we show there is a rescaling limit which is a Ricci flow solution
on an object that simultaneously encodes both the Gromov–Hausdorff limit on M
and the smooth limit on Mz This rescaling limit can be considered to give a canonical

geometry for M. A similar phenomenon occurs in the work of Song and Tian
concerning collapsing in the Kähler–Ricci flow on elliptic fibrations [52].



Vol. 85 2010) Dimensional reduction and the long-time behavior of Ricci flow 489

There are three main tools in the proof of Theorem 1.2: a compactness theorem,
a monotonicity formula and a local stability result. The compactness theorem [38,
Theorem 5.12] is an extension of Hamilton’s compactness theorem for Ricci flow
solutions [26]. Hamilton’s theorem allows one to take a convergent subsequence of
a sequence of pointed Ricci flow solutions that have uniform curvature bounds on
compact time intervals and a uniform lower bound on the injectivity radius at the
basepoint. The rescalings of a Ricci flow solution on a manifoldM, as considered in
Theorem 1.2, may collapse, i.e., the Gromov–Hausdorff limit X may have dimension
less than three. This means that there is no uniform lower bound on the injectivity
radius of the rescaled solution, and so there cannot be a limiting Ricci flow solution
on a 3-manifold. Instead, the limiting Ricci flow solution lives on a more general
object called an étale groupoid. Roughly speaking, an étale groupoid combines the
notions of manifold and discrete group into a single object. Its relevance for us

comes from the Cheeger–Fukaya–Gromov theory of bounded curvature collapse [3],
which implies that a Riemannian manifold which collapses with bounded sectional
curvature will asymptotically acquire extra symmetries. In Section 3 we give a brief
overview of how collapsing interacts with Ricci flow.

Under the assumptions of Theorem 1.2, the compactness theorem of [38] implies
that if fsj g1jD1

is a sequence tending to infinity then after passing to a subsequence,

f M; gsj / gj1D1
converges to aRicci flow solution gN. / on a three-dimensionalétale

groupoid. It remains to understand the long-time behavior of gN. / In our case, the
relevant étale groupoids arise from locally free abelian group actions. In essence,

we have to understand the long-time behavior of an invariant Ricci flow solution on
the total space of a twisted) abelian principal bundle over a compact space B. Such
a Ricci flow solution gN. / becomes a coupled system of evolution equations on the
lower-dimensional space B. This is the dimensional reduction part of the title of this
paper.

Our main tool to analyze the long-time behavior of such a Ricci flow is a

modification of the Feldman–Ilmanen–Ni expanding entropy functional WC [14], which
in turn is a variation on Perelman’s W-functional [43]. More generally, in Section 4
we describe versions of the F W and WC functionals that are adapted for abelian
actions. Using the modified WC functional, we show that any blowdown limit of

gN. / satisfies the harmonic-Einstein equations of [38]. As we are in dimension three,
we can solve the harmonic-Einstein equations to find the homogeneous expanding
soliton solutions of Theorem 1.2.

By these techniques, we show that there is some sequence fsjg1jD1
tending to

infinity so that f.M; gsj //g1jD1
converges in an appropriate sense to a locally

homogeneous expanding soliton solution. In order to get convergence for all sequences

fsj g1jD1
tending to infinity, we use the local stability of the locally homogeneous

expanding solitons, along with some further arguments. The local stability is due to
Dan Knopf [34]. An important point is that we only need the local stability of the
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locally homogeneous expanding soliton within the space of Ricci flow solutions with
the same abelian symmetry. Because of this, the local stability issue reduces to an
elliptic-type analysis on the compact quotient space B where one has compact
resolvents, etc. For the Nil and Sol-expanders, the local stability in a somewhat different
sense was considered in [21].

The outline of this paper is as follows. InSection 2we makesome general remarks
about Ricci flow and geometrization. In Section 3 we give an overview of some of
the needed results from [38]. In Section 4, which may be of independent interest, we
analyze Ricci flow solutions with a locally free abelian group action. In Section 5
we give the classification of the étale groupoids that arise. In Section 6 we prove
Theorem 1.2. Further descriptions are given at the beginnings of the sections.

I thank Xiaodong Cao, Dan Knopf and Junfang Li for discussions on the topics of
this paper. I am especially grateful to Dan for telling me of his local stability results

[34]. Part of this research was performed while attending the MSRI 2006-2007
program on Geometric Evolution Equations. I thank MSRI and the UC-Berkeley
Mathematics Department for their hospitality, along with the organizers of the MSRI
program for inviting me.

2. Geometrization conjecture and Ricci flow

In this section we describe what one might expect for the long-time behavior of the
Ricci flow on a compact 3-manifold M, in terms of the geometric decomposition of
M. Background information on the geometrization conjecture is in [50].

LetM be a connected closed orientable 3-manifold. The Kneser–Milnor theorem
says thatM has a connected sum decompositionM D M1 # M2 # # MN into
socalled prime factors, unique up to permutation. Thurston’s geometrization conjecture
says that ifM is prime then there is a possibly empty) minimal collection of disjoint
incompressible embedded 2-tori fTi g

I
iD1

in M, unique up to isotopy, so that each

connected component of M S
I
iD1 Ti admits a complete locally homogeneous

metric of one of the following types:

1. A compact quotient of S3, S2 R, R3, Nil, Sol, H3, H2 R or BSL2.R/.
2. A noncompact finite-volume quotient of H3 or H2 R.

3. R Z2T 2, where the generator ofZ2 acts byx x onRand by the involution
on T 2 for which T 2=Z2 is the Klein bottle K.

Remark 2.1. A finite-volume quotient of S3, S2 R, R3, Nil or Sol is necessarily

a compact quotient. Noncompact finite-volume quotients of BSL2.R/ are not on the
list, as they are diffeomorphic to noncompact finite-volume quotients of H2 R.
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Remark 2.2. If we were to cut along both 2-tori and Klein bottles then we could
eliminate the R Z2 T 2 case, which is the total space of a twisted R-bundle over K.
However, as we are dealing with orientable manifolds, it is more natural to only cut
along 2-tori.

We now discuss graph manifolds. A reference is Chapter 2.4 in [39]. We recall
that a compact orientable 3-manifold M with possibly empty) boundary is a graph
manifold if there is a collection of disjoint embedded 2-tori fTjg

J
jD1

so that if we take

the metric completion of M S
J
jD1 Tj with respect to some Riemannian metric

on M) then each connected component is the total space of a circle bundle over a

compact surface. Clearly @M, if nonempty, is a disjoint union of 2-tori. The result of
gluing two graph manifolds along boundary components is again a graph manifold
provided that it is orientable). In addition, the connectedsum of two graph manifolds

is a graph manifold. In termsof the Thurstondecomposition, aclosed orientable prime
3-manifold M is a graph manifold if and only if it has no hyperbolic pieces.

We now summarize how Perelman proved the geometrization conjecture using
Ricci flow. If g.0/ is an initial Riemannian metric on M then Perelman showed that
there is a Ricci-flow-with-surgery Mt ; g.t// defined for all t 2 OE0; 1/ althoughMt
may become the empty set for large t A singularity in the flow is handled by letting
some connected components go extinct or by performing surgery. If t is a surgery
time then we letMt denote the postsurgery manifoldMCt Going from a postsurgery
manifold MCt to the presurgery manifold Mt amounts topologically to performing
connected sums on some components of MCt possibly along with a finite number
of S1 S2’s and RP3’s, and restoring any factors that went extinct at time t From
Kneser’s theorem, there is some T1 > 0 so that for a singularity time t > T1 MCt
differs fromMt by the addition or subtraction of some S3 factors. That is, after time
T1, all surgeries are topologically trivial.

Perelman showed that any connected component which goes extinct during the
Ricci-flow-with-surgery is diffeomorphic to S1 S2, S1 Z2 S2 D RP3 # RP3 or
S3= where is a finite subgroup of SO.4/ that acts freely on S3. He also showed
that for large t any connected component C ofMt has a 3-dimensional submanifold
G with possibly empty) boundary so that G is a graph manifold, @G consists of
incompressible tori in C and C G admits a complete finite-volume hyperbolic
metric. Here G is allowed to be ; or C. Using earlier results from 3-manifold
topology, this is enough to prove the geometrization conjecture.

It is not known whether there is a finite number of surgeries, but after some time
all remaining surgeries will occur in the graph manifold part. For example, if the
original manifold M admits a hyperbolic metric then there is a finite number of
surgeries, since for large time there is no graph manifold part. We note that one can

never exclude singularities for topological reasons, as the initial metric could always
contain a pinched 2-sphere.
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In [45], Perelman showed that for large t any connected component of Mt is
aspherical or S3. Thus the relevant Thurston geometries are S3, R3, Nil, Sol, H3,BH2 R and SL2.R/.

Put gO.t/ D
g.t/
t Let us assume that there is a finite number of surgeries, and

consider the manifold M to be a connected component of the remaining manifold
after all of the surgeries are performed. Based on explicit calculations for the Ricci
flow on a locally homogeneous 3-manifold, the most optimistic possibility for the
Gromov–Hausdorff behavior of the long-time Ricci flow is given in the following
table. Here X is the Gromov–Hausdorff limit limt!1.M; gO.t//, which we assume

to exist. The “Thurston type” denotes the possible geometric types in the Thurston
decomposition of M, but we do not assume that the metrics in the Ricci flow are
locally homogeneous.

X Thurston type

pt : R3 or Nil
S1 or I Sol

closed 2-orbifold with K D 1=2 H2 R or BSL2.R/
closed 3-manifold with K D 1=4 H3

noncompact H3; H2 R; R3

If X is noncompact then the possible geometric pieces in the geometric
decomposition of M should be noncompact finite-volume quotients of H3, noncompact
finite-volume quotients ofH2 R and copies of R Z2 T 2. The final R3-term in the
table refers to the latter possibility.) When discussing Gromov–Hausdorff limits in
this case, one would have to choose a basepoint m 2 M and take a pointed Gromov–

Hausdorff limit X; x/
GH

D limt!1.M; m; gO.t//, whose value would depend on m.
One would expect to get possible Gromov–Hausdorff limits of the form

1. H3= where is a torsion-free noncocompact lattice in PSL.2; C/;
2. H2= where is a noncocompact lattice in PSL.2; R/;

3. R;

4. OE0; 1/.
Example 2.3. Suppose that M D N [T2 Nx is the double of the truncation N of
a singly-cusped finite-volume hyperbolic 3-manifold Y where the metric on N is
perturbed to make it a product near @N. If m is in N T 2 then one would expect that

limt!
GH

1.M;m; gO.t// D Y with a metric of constant curvature 1 while if m 2 T 2
4

then one would expect that limt!1.M;m; gO.t//
GH

D R.
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Example 2.4. Put M0 D N [T2 I Z2 T 2/, where I T 2
Z2 is the orientable)

total space of a twisted interval bundle over the Klein bottle K. Then M0 is double
covered by N [T 2 N, where the gluing is done by an orientation-reversing isometry

of T 2. Ifm 2 M0 K then one would expect that limt! M0; gO.

GH

1. m; t// D Y while

if m 2 K then one would expect that limt!1.M0; m; gO.t//
GH

D R=Z2 D OE0; 1/.
This example shows why, from the point of view of Ricci flow, it is natural to

include R Z2 T 2 as part of the geometric decomposition; see Remark 2.2. In this
sense it would also be natural to include R T 2 as a possible piece, but such a piece
would be topologically redundant.)

In the collapsing case, i.e., when dim.X/ < 3, the Gromov–Hausdorff limit X
contains limited informationabout the evolutionof the 3-dimensional geometryunder
the Ricci flow. For t large, any component of the time-t manifold is aspherical or S3.
Because of this, one natural way to get more information about the 3-dimensional
geometry is to look at the evolving geometry on the universal cover. A special
case is when M is locally homogeneous. In [38, Section 3] the Ricci flow was
considered on a simply-connected homogeneous 3-manifold G=H, where G is a

connected unimodular Lie group and H is a compact subgroup of G. The Ricci flow
G=H;g. // was assumed to be G-invariant and exist for all positive time. In each

case, itwas shown that there arepointed diffeomorphisms f sgs2.0;1/ of G=H so that

the blowdown limit g1.t/ D lims! 1
1 g.st/ exists and is one of the expanding

s s
solitons listed in Theorem 1.2.

Remark 2.5. As an aside, instead of looking at the rescaled Ricci flow metric

gO.t/ D
g.t/ one could also consider the normalized Ricci flow solution, with

constant
t

volume. The normalized Ricci flow solution is useful in some settings but in
our case we get more uniform results, in terms of the Thurston type, by looking
at gO. For example, let N be a truncated singly-cusped finite-volume hyperbolic 3-
manifold, as in Example 2.3. Let †1 and †2 be compact connected surfaces with one
boundary component and negative Euler characteristic. PutM1 D N [T 2 S1 †1/
and M2 D S1 †1/ [T 2 S1 †2/, where the gluing of M2 is such that it is
not just a product S1 †1 [S1 †2/. Under the unnormalized Ricci flow, one
expects that vol.M1; g.t// const: t3=2, due to the hyperbolic piece, whereas

vol.M2; g.t// const: t. Then the normalized Ricci flow on M1 should collapse
its S1 †1 @†1/ piece, while the normalized Ricci flow on M2 should have a

three-dimensional pointed limit on its S1 †1 @†1/ piece. In contrast, the pointed
Gromov–Hausdorff limit limt!1.Mi; mi; gO.t//, with an appropriate choice of basepoint

mi in the S1 †1 piece, should be †1 @†1 with a complete finite-volume
metric of constant curvature 1

2
independent of i 2 f1; 2g.
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3. Collapsing and Ricci flow

In this section we give an overview, aimed for geometers, of the use of groupoids in
collapsing theory. More details are in [38, Section 5] and references therein. We also
show that under the hypotheses of Theorem 1.2, the manifold has a single geometric
piece.

Suppose that Mn;g. // is a type-III Ricci flowsolution that exists fort 2 .1; 1/,
i.e., there is some K > 0 so that k Riem.g.t//k1

K
t for all t > 1. Then the

rescaled metrics gO.t/ D
g.t/

t have uniformly bounded sectional curvature. Even if
the manifolds M; gO.t// are collapsing in the Gromov–Hausdorff sense, we would
still like to take a limit as t 1, in some way, of the n-dimensional geometry. To do
so, it is natural to apply the Cheeger–Fukaya–Gromov theory of bounded curvature
collapse to the Ricci flow.

A main technique in the Cheeger–Fukaya–Gromov theory is to work O.n/-
equivariantly on the orthonormal frame bundle FM. This is not very convenient when
dealing with Ricci flow, as the induced flow on FM is complicated. For this reason,
we use an older approach to collapsing with bounded sectional curvature, as described
in Gromov’s book [20], that deals directly with the manifold M.

Let M be a complete n-dimensional Riemannian manifold with sectional curvatures

bounded in absolute value by a positive number K. Given r 2 0; 1pK
and

m 2 M, we can consider the Riemannian metric expm g on B.0; r/ TmM.
Given a sequence of pointed complete n-dimensional Riemannian manifolds

f.Mi; mi/g1i
D1

with sectional curvatures bounded in absolute value by K, there is
a convergent subsequence of the pointed geometries B.0; r/ Tmi Mi whose limit
is a C1; -metric on an n-dimensional r-ball B1; m1/. If one has uniform bounds

of the form krk Riem.Mi/k1 C.k/ then one can assume that the limit is a C1-
metric and the convergence is C1.

Define an equivalence relation i on B 0; r
3 TmiMi by saying that y i z if

expmi y/ D expmi z/. Then B mi; r
3 Mi equals B 0; r

3 TmiMi /= i
The equivalence relation i is the equivalence relation of a pseudogroup i of
local isometries on B.0; r/ TmiMi also called the fundamental pseudogroup

1.Mi; miI r/. One can take a convergent subsequence of the pseudogroups, in an
appropriate sense, to obtain a limit pseudogroup 1 of local isometries of B1, which
is a local Lie group. Furthermore, a neighborhood of the identity of 1 is isomorphic
to a neighborhood of the identity of a nilpotent Lie group. In particular, after passing
to the subsequences, the pointed Gromov–Hausdorff limit of

°
B mi ; r

3 Mi 1i
D1

is B m1;
r
3 B1 1.

In this way one constructs a limiting r
3

-ball. It has the drawback that it only
describes the lifted) geometry near the basepoints mi As one started with complete
Riemannian manifolds, one would like to have a limiting object which in some sense
is also complete. For example, suppose that Mi; mi/ D M; m/ for all i The above
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process would produce the limiting ball B 0; r
3 TmM, with 1 D 1.M;mI r/.

However, the limiting object should be all of M; m/.
One way to construct a global limiting object would be to move the basepoints

to other points inside of B 0; r
3 Tmi Mi construct new limiting balls, repeat

the process and glue all of the ensuing balls together in a coherent way. In order
to formalize such a limiting object, the notion of a “Riemannian megafold” was
introduced in [46]. This essentially consists of a pseudogroup of local isometries
of a Riemannian manifold. Another formalization was given in [38], in which the
limiting object is aRiemannian groupoid. ARiemanniangroupoid isan étalegroupoid
with a Riemannian metric on its space of units, for which the local diffeomorphisms
coming from groupoid elements are local isometries. Riemannian groupoids have
been extensively discussed in the literature on foliation theory, as they describe the
transverse structure of Riemannian foliations. For details we refer to Section 5 in
[38] and references therein.

We take this opportunity to make some corrections to [38]. The 1 on p. 629,
line 42, should read .0; 1/; the OE0; 1 on p. 658, line 15, should read OE0; 1/.)

The upshot is that if f.Mi; mi/g1i
D1

is a sequence of pointed complete n-dimensional

Riemannian manifolds, and if for every k 2 Z 0 and R 2 RC there is some

C.k; R/ < 1 so that for all i we have jrk Riem.Mi/j C.k; R/ on B.mi;R/
Mi then a subsequence converges smoothly to a pointed complete closed effective
Hausdorff n-dimensional Riemannian groupoid G1; Ox1/ [38, Proposition 5.9].
This statement is essentially a reformulation of results of Cheeger, Fukaya and

Gromov.
LetG be a complete closed effective Hausdorff Riemannian groupoid. It carries a

certain locally constant sheaf g of finite dimensional Lie algebras on its space of units

G.0/. These Lie algebras act as germs of Killing vector fields on G.0/. Elements of

G that are sufficiently close to the space of unitsG.0/, in the 1-jet topology, appear in
the imageof the exponentials ofsmall local sectionsof g. In our case, the Lie algebras

are nilpotent and there is no point x 2 G.0/ at which all of the corresponding Killing
vector fields vanish simultaneously, unless g D 0. We will say that G is locally free
if the isotropy groups Gxx are finite.

Remark 3.1. The locally constant sheaf g is analogous to a pure Nil-structure in
the sense of [3]; see [49] for a recent survey. It may seem surprising that we
always get pure structures on our limiting spaces, since a manifold that collapses

with bounded curvature generally carries a mixed Nil-structure if the diameter is
not bounded during the collapse. The point is that we are considering a completely
collapsed limit. In general, given ; K; D > 0, there is a number i D i.n; ; K; D/
so that if kRiem.M/k1 K then the fundamental pseudogroup 1.FM; pIi/
which is represented by loops at p with length less than i) can be continuously

transported to any point q 2 B.p;D/ FM, and the result maps into 1.FM; qI /
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[17, Lemma 7.2]. The fact that one generally cannot transport the short loops
arbitrarily far, while keeping them short, is responsible for the appearance of mixed
Nil-structures. Aswe are consideringa completely collapsed limit, wecan effectively
move gp

to gq
for an arbitrary value of D.

The work of Cheeger–Fukaya–Gromov describes the local structure of a
Riemannian manifold with bounded sectional curvature that is highly collapsed but not
completely collapsed. The technique to do this, for example in [6], is to rescale

the highly-collapsed manifold at a point p in order to make the rescaled injectivity
radius equal to 1 and the sectional curvatures very small. One then argues that the
local geometry around p is modeled on a complete flat n-dimensional manifold other
than Rn, giving the local F -structure. When dealing with Ricci flow this rescaling
is problematic, as it does not mesh well with the flow. For this reason, we only deal

with completely collapsed limits.

The notion of smooth pointed convergence of Riemannian groupoids is given in
[38], which extends these collapsing considerations to the Ricci flow. Related Ricci
flow limits on a single ball in a tangent space were considered in [18].) In [38] the
Ricci flow on an étale groupoid was considered. This consists of a Ricci flow g.t/ on
the space of unitsG.0/, in the usualsense, so that for each t the localdiffeomorphisms
arising from elements of G) act by isometries. One has the following compactness

theorem.

Theorem 3.2 ([38], Theorem 5.12). Let f.Mi; pi; gi //g1i
D1

be a sequence of Ricci
flow solutions on pointed n-dimensional manifolds Mi; pi /. We assume that there
are numbers 1 A < 0 and 0 < 1so that the following holds:

1. Each Ricci flow solution Mi; pi; gi // is defined on the time interval A; /
2. For each t 2 A; / gi t/ is a complete Riemannian metric on Mi
3. For each compact interval I A; / there is some KI < 1so that

jRiem.gi/.x; t/j KI
for all x 2 Mi and t 2 I

Then after passing to a subsequence, theRicci flow solutions gi / converge smoothly
to a Ricci flowsolution g1. / ona pointedn-dimensional étalegroupoid G1; Ox1/,
defined again for t 2 A; /

This theorem is an analog of Hamilton’s compactness theorem [26], except without

the assumption of a uniform positive lower bound on the injectivity radius at

pi 2 Mi;gi .0//. In Hamilton’s theorem one obtains a limiting Ricci flow on a

manifold, which is a special type of étale groupoid. The proof of Theorem 5.12 in
[38] is essentially the same as the proof of Hamilton’s compactness theorem, when
transplanted to the groupoid setting.
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Remark 3.3. If fdiam.Mi; gi .0//g1i
D1

is uniformly boundedabove then G1; g1.0//
has finite diameter and we do not have to talk about basepoints.

An immediate consequence of Theorem 3.2 is the following.

Corollary 3.4 ([38], Corollary 5.15). Given K > 0, the space of pointed Ricci
flow solutions on n-dimensional manifolds, with sup

t2.1;1/ t k Riem.gt/k1 K,
is relatively compact among Ricci flows on pointed n-dimensional étale groupoids,
defined for t 2 .1; 1/.

The next proposition will be used in later sections.

Proposition 3.5. Let M; g. // be a Ricci flow solution on a closed orientable
3-manifold that is defined for all t 2 OE0;1/. Suppose that

1. the sectional curvatures of M;g.t// are uniformly O.t 1/, and

2. diam.
1

M; g.t// D O.t 2 /.
Then M is irreducible, aspherical and its geometric decomposition contains a

single geometric piece.

Proof. As mentioned in Section 2, since the Ricci flow exists for all t 2 OE0;1/ it
follows that M is aspherical. The validity of the Poincaré Conjecture then implies
that M is irreducible [41, Theorem 2].

Put gO.t/ D
g.t/
t From the evolution equation for the scalar curvature R and

the maximum principle applied to R C
3
2t

it follows that vol.M; gO.t// is
nonincreasing in t ; see, for example, [14, 1.7)]. Suppose that limt!1 vol.M; gO.t// > 0.
Then M; gO.t// is noncollapsing. Recall Definition 1.1. If fsjg1jD1

is a sequence

tending to infinity then Hamilton’s compactness theorem [26] implies that after
passing to a subsequence, there is a limiting three-dimensional Ricci flow solution

M1;g1. // D limj!1 M; gsj / From the diameter assumption, M1 is
diffeomorphic to M. Using monotonic quantities, one can show that M1; g1.t// has

constant sectional curvature 1
4t

; see [14, Section 1] and references therein. Thus

M has an H3-structure.
Now suppose that limt!1 vol.M; gO.t// D 0. Then M; gO.t// collapses with

bounded sectional curvature and bounded diameter. There will be asequence ti 1
such that the Gromov–Hausdorff limit limi!1.M; gO.ti// exists and equals some
compact metric space X of dimension less than three. In what follows we use some

results about bounded curvature collapsing from [49] and references therein.
If dim.X/ D 0 then M is an almost flat manifold and so has an R3 or Nil-structure

[19].

If dim.X/ D 2 then X is a closed orbifold andM is the total space of an orbifold
circle bundle over X [16, Proposition 11.5], from which it follows that M has a

geometric structure.
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Finally, suppose that dim.X/ D 1. First, X is S1 or an interval. If X D S1
then M is the total space of a torus bundle over S1 and hence carries a geometric
structure. If X is an interval OE0; L then there is a Gromov–Hausdorff approximation

W M X with 1.0;L/ D .0; L/ T 2. NowX is locally the quotient of M by
a fixed-point free T 2-action [5]. If the action is locally free then OE0; L is an orbifold.
As the orbifold OE0;L is double covered by S1, the manifoldM is double covered by
a T 2-bundle over S1. Hence in this case, M has a geometric structure [40].

Suppose that the T 2-action is not locally free, say on 1OE0; i/, with i small.
From the slice theorem, a neighborhood of 1.0/ is equivariantly diffeomorphic to
T 2

H RN where H is the isotropy group. As the T 2-action has no fixed points, H
must be a virtual circle group. However, since M is aspherical, the map 1.T 2/

1.M/ must be injective [7, Remark 0.9]. This is a contradiction. Similarly, the

T 2-action must be locally free on 1.L i;L

Remark 3.6. In our case, one can see directly that there is a contradiction if H
is a virtual circle group. Suppose so. Then 1.OE0; i / or 1.OEL i;L / is
diffeomorphic to S1 D2. If the T2-action fails to be locally free on both 1.OE0;i /
and 1.OEL i; L / thenM is the union of two solid tori and so is diffeomorphic to
S3, S1 S2 or a lens space. If it fails to be locally free on exactly one of 1.OE0;i /
and 1.OEL i;L / then a double cover of M is diffeomorphic to S3, S1 S2 or a

lens space. In either case, M fails to be aspherical.

Remark 3.7. By the argument of the proof of Proposition 3.5, we can say the following

about aspherical 3-manifolds that collapse with bounded curvature and bounded
diameter. If M carries an H3-structure then it cannot collapse. If M carries an

H2 R or BSL2.R/-structure then it can only collapse to a two-dimensional orbifold
of negative Euler characteristic. IfM carries a Sol-structure then it can only collapse
to S1 or an interval. However, if M carries an R3 or Nil-structure then a priori
it could collapse to a two-dimensional orbifold with vanishing Euler characteristic,
a circle, an interval or a point. We will show that under the Ricci flow, with our
curvature and diameter assumptions it can only collapse to a point.

Remark 3.8. Someresultsabout three-dimensional type-IIb Ricci flowsolutions, i.e.,
Ricci flow solutions defined on OE0; 1/ with lim supt!1 t k Riem.g.t//k1 D 1,
were obtained in [9]. Although phrased differently, the collapsing results in [9] can

be considered to be results about Ricci flow solutions with nonnegative sectional
curvature on three-dimensional étale groupoids.
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4. Dimensional reduction

In this section we consider a Ricci flow M; gN. // which is invariant under local
actions of a connected abelian Lie group onM. We first define the notion of a twisted
principal bundle and write out the Ricci flow equation for an invariant metric gN

on the
total space M. The Ricci flow equation becomes as a coupled system of equations
on the base B of the twisted principal bundle. We construct modified F W and WC
functionals for gN. / and show that they are monotonic. We use WC to show that any
blowdown limit of gN. / satisfies the harmonic-Einstein equations of [38].

Related functionals were considered independently by Bernhard List [37] and

Jeff Streets [53]. I thank Gerhard Huisken and Gang Tian for these references.) In

[37] the modified F -functional is considered in the special case when N D 1 and

Ai D 0. The motivation comes from the static Einstein equation. In [53], modified
F and W-functionals are considered for a certain invariant flow on the total space of
a principal bundle, with the fiber geometry being fixed under the flow.

4.1. Twisted principal bundles. Let G be a Lie group, with Lie algebra g. Let
B be a connected n-dimensional smooth manifold. Let E be a local system on B
of Lie groups isomorphic to G. Fixing a basepoint b0 2 B and an isomorphism

Eb0 Š G of the stalk over b0, the local system is specified by a homomorphism

W 1.B; b/ Aut.G/. Equivalently, we have a G-bundle E D G zB over B,
with a flat connection, which gives the étale space of the locally constant sheaf E.
Put e D g zB, a flat g-vector bundle on B. We will write ƒmaxe D ƒmaxg zB
for the corresponding flat real line bundle on B of fiberwise volume forms, and

jƒmaxej D jƒmaxgj zB for the flat R 0-bundle of fiberwise densities.
Hereafter we assume that the density bundle jƒmaxej is a flat product bundle

R 0 B. Some of the subsequent results do not need this assumption, but for
simplicity we will assume uniformly that it holds.)

Example 4.1. If G D RN then Aut.G/ D GL.N;R/ and E D e is a flat RN-bundle
over B. The assumption on jƒmaxej means that the holonomy of e lies in det 1 1/.
If G D T N then Aut.G/ D GL.N;Z/, E is a flat T N -bundle over B and e is a flat
RN -bundle over B. In this case the assumption on jƒmaxej holds automatically.

Let W M B be a fiber bundle with fiber G. We write Eb for the fiber of
E over b 2 B and Mb for the fiber of M over b 2 B. Consider the fiber product
E B M D Sb2B

Eb Mb. We assume that there is a smooth map E B M M
so that over a point b 2 B, the map Eb Mb Mb gives a free transitive action
of G Š Eb on Mb. The action must be consistent with the flat connection on E
in the sense that if U B is such that EjU Š U G is a local trivialization of
the flat G-bundle E then 1.U / has a free G-action, and so is the total space of a
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principalG-bundle over U. In this way, M can be considered to be a twisted principal
G-bundle over B, with the twisting coming from the flat G-bundle E. There is a natural

isomorphism between the vertical tangent bundle T vertM D Ker.d / and e.

An isomorphism of two twisted principal G-bundles
W M B and 0

W M0
B0 is given by a diffeomorphism W B B0, an isomorphism O W E E0 of flat
G-bundles that covers and a diffeomorphism

W M M0 that covers with the
property that for all m 2 M and x 2 E m/, we have x m/ D y x/ m/.

It makes sense to talk about a connection A 2 1.MI e/ on a twisted principal
G-bundle M. The restriction of A to 1.U / is a g-valued connection in the usual
sense.

We assume thatM has aRiemannian metric gN with a local free isometric G-action.
This means that if EjU Š U G is a local trivialization of E as above then the action
of G on 1.U / is isometric.

Hereafter we assume that G is a connected N-dimensional abelian Lie group.
Suppose that U is also small enough so that U is a coordinate chart for B with

local parametrization fx g
n

D1 x / 2 U. Take a section s W U 1.U /.

iD1
of g, we obtain coordinates on 1.U / by x ; xi /Choosing a basis feig

N

exp
P

N
iD1

xiei s. x //. In terms of these coordinates we can write

gN D
N

Xi;jD1
Gij dxi C Ai /.dxj C Aj / C

n

X; D1

g dx dx : 4.2)

Here Gij is the local expression of a Euclidean inner product on e, Ai D P
Ai dx

are the components of s A, and
P

n
; D1

g dx dx is the local expression of a

Riemannian metric gB on B. A change of section s changes Ai by an exact form.
The curvatures F i

D dAi form an element of 2.BIe/.
IfM andM0 are two twisted principal G-bundles then an isomorphism

W M
M0 can be written in local coordinates as

y ; yk/ D x y /;X
k

kyk
C f i y / ; 4.3)T i

k ’s are constants. It covers a diffeomorphism W B B0. The isomorphismwhere the T i
y W E E0 of flat G-bundles is represented locally by the functions T i

k
A locally G-invariant Ricci flow is a 1-parameter family of such Riemannian

metrics M;gN. // that satisfies the Ricci flow equation. We will consider a basepoint
for such a solution to be a point p 2 B.

Let f.Mi; pi ; Ngi //g1i
D1

be a sequence of locally G-invariant Ricci flow solutions
defined for t 2 .1; 1/. We say that limi!1.Mi; pi; gNi // D M1;p1;gN1. // if
there are
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1. a sequence of open subsets fUjg1jD1
of B1, containing p1, so that any compact

subset of B1 eventually lies in all Uj and

2. open subsets Vi;j Bi containing pi and isomorphisms i;j W

1

1 Uj/
1

i Vi;j / sending 1

1 p1/ to 1
i pi/, so that

3. for all j limi!1 i;j gNi / D gN1. / smoothly on 1
1 Uj / OE1Cj 1; 1Cj

If B1 is compact then we can remove the reference to basepoints.

4.2. Ricci flow on twisted principal bundles. In what follows, we use the Einstein
summation convention freely. Let x ; xi / be local coordinates on 1.U / as in
Section 4.1. Writing Ai D P

n
D1

Ai dx put iF D @ Ai @ Ai We also write

Gij I D Gij; Gij; ; 4.4)

where f g are the Christoffel symbols for the metric g on B.
Given b 2 U, it is convenient to choose the section s so that Ai b/ D 0. Then

the curvature tensor xRIJKL of M is given in terms of the curvature tensor R i of
B, the 2-forms F i and the metrics Gij by

xRijkl D
1
4 g Gik; Gjl; C

1
4 g Gil; Gjk; ;

xRijk D
1
4 g Gjm Gik; Fm

4 g Gim Gjk; Fm1 ;

xRij D
1
4 Gmk Gim; Gkj; C

1
4 Gmk Gim; Gkj;

4 g i Gim Gjk F m1 F k
4 g i Gim Gjk F mi C
1 F ki;

xRi j D
1

4 Gkl Gik; Gjl; C
1

2 Gij I C
1

4 g i Gik Gjl F k F li;
xRi D

1
2 Gij Fj

2 Gij; F j
I C

1
4 Gij; F jC
1

4 Gij; F j1 ;

xR i D R i
1 F j
2 Gij F i

4 Gij Fii
1 F j

4 Gij F i
i C

1
i Fj :

4.5)

The Ricci tensor is given by

xRij D
1
2 g Gij I

1
4 g Gkl Gkl; Gij; C

1
2 g Gkl Gik; Glj;

4 g g i Gik Gjl F k
C

1 F l
i ; 4.6)

xRi D
1
2 g i Gik Fk

2 g i Gik; Fk
Ii C

1
4 g i Gim Gkl Gkl; Fm

i C
1

i ;

xR D R 1
2 G ij Gij I C

1
4 Gij Gjk; Gkl Gli; 1 F j

2 g i Gij F i
i:

The scalar curvature is

xR D R g G ij Gij I C
3
4 g Gij Gjk; Gkl Gli;

4 g Gij Gij; Gkl Gkl; 11 F j
4 g g i Gij F i

i:
4.7)
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Consider a 1-parameter family of such Riemannian metrics gN. / on M. Writing
Gij t /, Ai t/ and g t/ as functions of t the Ricci flow equation becomes

d
dt Gij dx i

C Ai /.dxj C Aj / C g dx dx

D 2 xRij dx i
C Ai/.dxj C Aj /

4 xRi dx i
C Ai/dx 2 xR dx dx :

4.8)

Equivalently,

@Gij
@t D g Gij I C

1
2 g Gkl Gkl; Gij; g Gkl Gik; Glj;

2 g g i Gik Gjl F k1 F l
i ; 4.9)

@Ai
@ t D g i F i

Ii g i G ij Gjk; F k
2 g i Gkl Gkl; F i

i
1

i ;
@g

@t D 2R C Gij Gij I
1 F j
2 Gij Gjk; Gkl Gli; C g i Gij F i

i :

Adding a Lie derivative with respect to r ln pdet.Gij / to the right-hand side, and

adding an exact form to the right-hand side of the equation for
@Ai

@t gives a new
equivalent set of equations :

@Gij
@ t D g Gij I g Gkl Gik; Glj; 1

2 g g i Gik Gjl Fk F li ;

@Ai
@t D g i F i

Ii g i G ij Gjk; F k
i ; 4.10)

@g
@t D 2R C

1

2
F jGij Gjk; Gkl Gli; C g i Gij F i

i :

The equations in 4.10) consist of a heat type equation for Gij a Yang–Mills
gradient flow type equation for Ai and a Ricci flow type equation for g If B is
closed then an extension of the DeTurck trick [13] to our setting shows short-time
existence and uniqueness for the system 4.10).

4.2.1. Modified F -functional. We now assume that B is closed.

Definition 4.11. Given f 2 C1.B/, put

; g ; f / D Z
B jrf j

2
C R 1F Gij; Ai

4 g Gij Gjk; Gkl Gli;

4 g g i Gij F i1
i e f dvolB :F j

4.12)

If N D 0, i.e., if M D B, then this is the same as Perelman’s F -functional
[43]. Otherwise, the expression in 4.12) differs from Perelman’s F -functional by
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the subtraction of terms corresponding to a Dirichlet energy of the field G and a

Yang–Mills action for the connection A.
We now compute the variation of F

Lemma 4.13. Given a smooth 1-parameter family

f.Gij s/; Ai s/; g s/;f s//gs2. ; /;

write GPij D
dGij

sD0
APids D

dAi
ds sD0

gP D
dg

sD0
and fP D

df
ds ds sD0

Then

d

ds sD0
F Gij; Ai ; g ; f /

D Z
B

GPkl G ik G jl 1
2 g GijI C

1
2 g Gkl Gik; Glj;

4 g g i Gik Gjl F k
C

1
2 g Gij; f; e f dvolBF l

i C
1

2 Z
B

APj g Gij 1
2 g i F i

2 g i Gij Gjk; F k

Ii C
1 i

2 g i f; Fk1
i e f dvolB 4.14)

Z
B

gP R 1
4 Gij Gjk; Gkl Gli;

2g i Gij F i1
i C fI e f dvolBF j

C Z
B

1
2 g gP fP 2r

2f jrf j
2
C R 1

4 g Gij Gjk; Gkl Gli;

4 g g i Gij F i1
i e f dvolB :F j

Proof. This follows from a calculation along the linesof thecorrespondingcalculation
for Perelman’s F -functional; see [31, Section 5].

We use the above lemma to show that F is nondecreasing under a certain flow.

Corollary 4.15. Under the flow equations

@Gij
@t D g Gij I g Gkl Gik; Glj;

2 g g i Gik Gjl Fk1 F li g Gij; f; ;
@Ai

@t D g i F i
Ii g i G ij Gjk; Fk

i C g i f; F k
i ; 4.16)

@g
@t D 2 R C

1 F j
2 Gij Gjk; Gkl Gli; C g i Gij F i i 2 fI ;

@f
@ t D R C

1
4 g Gij Gjk; Gkl Gli; C

1 Fj
2 g g i Gij F i

i r2f
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one has

d
dt

F Gij; Ai ; g ; f /

D
1

2
Z
B

g Gij I g Gkl Gik; Glj; 4.17)

1 g g i Gik Gjl F k
2 F l

i g Gij; f;
2
e f dvolB

C Z
B

g i F i
Ii C g i G ij Gjk; F k

i g i f; F k 2
e f dvolBi

C 2 Z
B

4 G ij Gjk; Gkl Gli;R 1

2g i Gij F i1 F ji C fI
2

e f dvolB :

Proof. This is an immediate consequence of Lemma 4.13.

As with Perelman’s F -functional, we now perform an infinitesimal diffeomorphism

to decouple the equation for f and obtain the Ricci flow on M.

Corollary 4.18. Under the flow equations

@Gij
@t D g Gij I g Gkl Gik; Glj;

2 g g i Gik Gjl F k1 F l
i ;

@Ai
@ t D g i F i

Ii g i Gij Gjk; F k
i ;

4.19)
@g

@t D 2 R C
1 F j
2 G ij Gjk; Gkl Gli; C g i Gij F i

i;
@.e f /

@t D r2 e f C R 1 g Gij Gjk; Gkl Gli;4

1 g g i Gij F i F j
2 i e f

one has

d

dt
F Gij;Ai ; g ;f /

D
1

2
Z
B

g Gij I g Gkl Gik; Glj;
4.20)

2 g g i Gik Gjl F k1 F l
i g Gij; f;

2
e f dvolB
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C Z
B

g i F i
Ii C g i G ij Gjk; F k

i g i f; F k 2
e f dvolBi

C 2 Z
B

4 G ij Gjk; Gkl Gli;R 1

2g i Gij F i1 F ji C fI
2

e f dvolB :

Proof. This follows because the right-hand sides of 4.16) and 4.19) differ by a Lie
derivative with respect to rf

Note that the first three equations in 4.19) are the same as 4.10).
We now analyze what it means for F to be constant along the flow 4.19).

Proposition 4.21. If F Gij; Ai ; g ; f / is constant in t then F i
D 0, det.Gij / is

constant and

g GijI g Gkl Gik; Glj; D 0;

4 G ij Gjk; Gkl Gli; D 0:R 1
4.22)

Proof. From 4.20), we have

g Gij I g Gkl Gik; Glj;

2 g g i Gik Gjl F k1 F li g Gij; f; D 0
4.23)

and

4 G ij Gjk; Gkl Gli;R 1 F j1
2g i Gij F i

i C fI D 0: 4.24)

Multiplying 4.23) by Gij and summing over indices gives

r2 ln det.Gij/ hrf;r ln det.Gij /i 1 F j
2 g g i Gij F i i D 0: 4.25)

Here we are using the trivialization of jƒmaxej to think of det.Gij / as a function on

B, defined up to multiplication by a positive constant.) Equivalently,

r e f r lndet.Gij / 1
2 e f g g i Gij F i F j

i D 0: 4.26)

Integrating 4.26) over B gives F i
D 0. Then multiplying 4.26) by ln det.Gij / and

integrating over B gives r ln det.Gij/ D 0, so lndet.Gij/ is spatially constant.

D 0, the equation for Gij @GijGiven that F i
@t implies

@

@t
ln det.Gij / D r2 lndet.Gij /: 4.27)
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Thus ln det.Gij/ is also temporally constant.
As det.Gij/ is spatially constant, we have

G ij Gij I Gij Gjk; Gkl Gli; D 0: 4.28)

Along with the fact that F i
D 0, it follows that

xRij D
1
2 g Gij I C

1
2 g Gkl Gik; Glj;

Rix D 0 4.29)

Rx D R 1 ij klG Gjk;4 G Gli;

and

xR D R 1
4 g G ij Gjk; Gkl Gli; : 4.30)

From equation 4.24),

Z
B

xRdvolB D 0: 4.31)

On M, the evolution of the scalar curvature is given by

@ xR
@t D Sr

2 xR C 2 j xRIJ j
2 : 4.32)

In our case, and using the fact that det.Gij / is spatially constant, this becomes

@ xR
@t D r2 xR C 2 j xRij j

2
C 2 j xR j

2: 4.33)

From 4.19), 4.23) and 4.24), the flow equations are

@Gij
@t D g Gij; f; 4.34)

@g
@t D 2 fI :

As the right-hand side of 4.34) is given by Lie derivatives with respect to rf it
follows that

@ xR
@ t D hrf;r xRi: 4.35)

Thus

r2 xR C 2j xRij j
2

C 2j xR j
2

D hrf;r xRi; 4.36)

or

r2 xR C 2j xRij j
2

C 2j xR
1

n
xR g j

2
C

2

n
xR2

D hrf;r xRi: 4.37)

From 4.31), either xR D 0 or xRmin < 0. If xRmin < 0then we obtain a contradiction to
the minimum principle, applied to 4.37). Thus xR D 0. Equation 4.37) now implies
that xRij D xR D 0, which proves the proposition.
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From 4.19), under the conclusion of Proposition 4.21 it follows that Gij Ai and

g are time-independent. The Ricci flow solution gN1. / on M is Ricci-flat. In the
case N D 0 the proof of Proposition 4.21 essentially reduces to the standard proof
that a steady gradient soliton on a compact manifold is Ricci-flat; see, for example,
Chapter 1 in [8].

With det 1 1/ GL.N; R/, we can write

det 1 1/= O.N / D SL.N; R/= SO.N /:

From [38, Proposition 4.17], the first equation in 4.22) says that the map b Gij b/
describes a twisted) harmonic map GW B det 1 1/=O.N /. The twisting refers
to the fact that if the flat RN -bundle e has holonomy representation W 1.B;b0/
det 1 1/ then we really have a harmonic map zGW zB det 1 1/= O.N / which
satisfies zG. Qb/ D / zG.Qb/ for 2 1.B; b/ and Qb in the universal cover zB. After
passing to a double cover of B if necessary, we can assume that takes value in
SL.N;R/. For simplicity, we will make this assumption hereafter and consider zG
to be a twisted harmonic map from B to SL.N;R/= SO.N /. Information on such
twisted harmonic maps appears in [12], [30, Section 1.2] and [36]. Given such a

twisted harmonic map G exists if and only if the Zariski closure of Im. / is reductive
in SL.N; R/. Given if there are two such equivariant harmonic maps zG1 and zG2
then there is a 1-parameter family f zGt gt2OE1;2 of such equivariant harmonic maps,

all with the same quotient energy, so that for each Qb 2 zB the map t zGt Qb/ is a

constant-speed geodesic arc, whose length is independent of Qb.
If the second equation in 4.22) is satisfied then B clearly has nonnegative Ricci

curvature.
We now look at the solutions of 4.22).

Proposition 4.38. Any solution gN of 4.22) is a locally product metric on a Ricci-flat
base B.

Proof. From the second equation in 4.22), B has nonnegative Ricci curvature. For
some r, the universal cover zB is an isometric product of Rr and W where W is a

simply-connected closed n r/-dimensional manifoldofnonnegative Ricci curvature

[4]. As before, let zGW zB SL.N; R/= SO.N/ denote the lift of G to zB.
Let x1; : : : ; xr be Cartesian coordinates on Rr and let xrC1; : : : ; xn be local

coordinates on W From the second equation of 4.22), zGij; D 0 for 1 r.
That is, zG is constant in the Rk-directions. Then the first equation of 4.22) implies
that for each y 2 Rr the restriction of zG to fyg W is a harmonic map from W to
SL.N;R/= SO.N /. It follows that for each y 2 Rr the restriction of zG to fyg W
is a point map. Thus zG is constant. From the second equation of 4.22), zB is Ricci
flat. The conclusion is that B is Ricci flat and G is locally constant.
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In the next proposition we use F to analyze a long-time limit of a locally
Ginvariant Ricci flow solution. The method of proof is along the lines of the proof of
Theorem 1.3 in [14].

Proposition 4.39. Suppose that M; gN. // is a locally G-invariant Ricci flow defined

for all t 2 OE0; 1/. Let fsig1i
D1

be a sequence of positive numbers tending to infinity.
Put gNi t/ D gN.t C si /. Suppose that limi!1 gNi / exists and equals gN1. / in the
sense of Section 4.1, for a locally G-invariant Ricci flow gN1. / with a compact base

B1. Writing gN1. / Gij;1. /;Ai ;1 /; g ;1. //, we conclude that

1. the curvatures F i ;1
vanish;

2. det.Gij;1/ is constant;

3. equations 4.22) are satisfied for Gij;1. / and g ;1. /

Proof. We first construct a positive solution of the conjugate heat equation

@u
@t D r2

uC R 1
4 g Gij Gjk; Gkl Gli; 1 Fj

2 g g i Gij F i
i u: 4.40)

that exists for all t 2 OE0; 1/. Note that if u is a solution to 4.40) then
RB

u dvolB
is constant in t Let ftj g1jD1

be a sequence of times going to infinity. Let ujQ / be a

solution to 4.40) on the interval OE0; tj with initial condition ujQ tj/ D
1

vol.B;g tj//
For any T > 0, we claim that a subsequence of the

Quj ’s converges smoothly on
the time interval OE0; T To see this, at time T C 1 we know that if tj T C 1
then

Quj T C 1/ 0 and
RB Quj T C 1/ dvolB D 1. Solving the conjugate heat

equation with initial data at time T C 1, and restricting the solution to the time
interval OE0; T gives a smoothing operator from the space of initial data f Qu 2 L1.B/ W

Qu 0;
RB Qu dvolB.T C 1/ D 1g to C1.OE0; T B/. Thus we have the derivative

boundsneeded toextract a subsequence of the
Quj’s that converges smoothly on OE0; T

By a diagonal argument, we can extract a subsequence of the
Quj’s that converges

smoothly on compact subsets of OE0; 1/ to a nonzero solution Qu1. / of 4.40), defined
for t 2 OE0; 1/.

One can show, as in the proof of Proposition 7.5 in [31], that uQ1. / > 0. If fQ1.t/
is given by uQ1.t/ D e fQ1.t/ thenF Gij t /; Ai t /; g t/; fQ1.t// isnondecreasing

t/;g t /; fQ1.t//, which is possiblyin t We write F1 D limt!1 F Gij t /;Ai
infinite for the moment.

Next, put ui t/ D uQ1.t C si /. By assumption, limi!1 gNi / D gN1. / in the
sense of Section 4.1. Then by the same smoothing argument as above, there is a

subsequence of fui /g1i
D1

that converges smoothly on compact subsets of OE0; 1/ to
a solution u1. / of 4.40) on B1, where 4.40) is now written in terms of Gij;1. /
Ai ;1 / and g ;1. / When taking a convergent subsequence, we perform the
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same diffeomorphisms on the ui’s as are used in forming the limit limi!1 gNi /
Define f1.t/ by u1.t/ D e f1.t/. Then after passing to a subsequence,

F Gij;1.t /; Ai
;1 t /; g ;1.t/; f1.t//

D lim
i!1

t C si/; g t C si/; fQ1.t C si//F Gij t C si/; Ai

D F1:

4.41)

This shows that F1 < 1 and that F Gij;1.t /; Ai ;1 t/; g ;1.t/; f1.t // is
constant in t The proposition now follows from Proposition 4.21.

Junfang Li pointedout that the modifiedF -functional hasan nCN/-dimensional
interpretation. Namely, for fN 2 C1.B/, put

;g ; fN/ D Z
B

jrfNj2 C xR e fN
qdet.Gij / dvolB : 4.42)SF Gij;Ai

This is a renormalized version of Perelman’s F -functional on M.

Proposition 4.43. Put f D fN ln pdet.Gij/. Then

; g ; fN/ D F Gij; AiSF Gij; Ai ; g ; f /: 4.44)

Proof. We have

Z
B

jrfNj2 e fN
qdet.Gij / dvolB D Z

B

2
e f dvolB 4.45)rf Cr lnqdet.Gij/

and

Z
B

2
e f dvolBrf Crlnqdet.Gij /

D Z
B jrf j

2
C 2 rf;r lnqdet.Gij / C

2
e f dvolBr lnqdet.Gij /

D Z
B jrf j

2
C 2 r2

lnqdet.Gij / C
2

e f dvolB 4.46)r lnqdet.Gij/

D Z
B jrf j

2
C g G ij Gij I g Gij Gjk; Gkl Gli;

4 g Gij Gij; Gkl Gkl; e f dvolB :C
1
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Combining this with 4.7) gives

Z
B

2

C xR e f dvolBrf Crlnqdet.Gij/

D Z
B jrf j

2
C R 1

4 g G ij Gjk; Gkl Gli; 4.47)

4 g g i Gij F i1
i e f dvolB;F j

which proves the proposition.

4.2.2. Modified W-functional

Definition 4.48. Given f 2 C1.B/ and 2 RC, put

W.Gij; Ai ; g ; f; /

D Z
B jrf j

2
C R 1

4 g Gij Gjk; Gkl Gli; 4.49)

4 g g i Gij F i1

i C f n .4 / n
F j 2 e f dvolB :

If N D 0, i.e., if M D B, then this is the same as Perelman’s W-functional [43].
The next proposition says how W varies along the Ricci flow.

Proposition 4.50. Under the flow equations

@Gij
@t D g GijI g Gkl Gik; Glj; 1

2 g g i Gik Gjl F k F l
i ;

@Ai
@t D g i F i

Ii g i Gij Gjk; Fk
i;

@g
@t D 2 R C

1 F j
2 Gij Gjk; Gkl Gli; C g i Gij F i

i ; 4.51)

@.e f /
@t D r2

e f C R 1 g Gij Gjk; Gkl Gli;4

1 g g i Gij F i F j
2 2 e f ;i

n

@

@t D 1
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one has

d
dt W.Gij; Ai ;g ;f; /

D 2
Z
B

g Gij g kl
I G Gik; Glj; 4.52)

1 i k 2 n
g g Gik Gjl F .4 /2 F l

i g Gij; f; 2 e f dvolB

C Z
B

g i F i
Ii C g i G ij Gjk; Fk

i g i f; F k 2
.4 / n

i 2 e f dvolB

C 2 Z
B

4 G ij Gjk; Gkl Gli; 1R 1 F j
2 g i Gij F i i

C fI
1 2 .4 /

n

2 g 2 e f dvolB

1

4
Z

B
F jg g i Gij F i i .4 /

n
2 e f dvolB :

Proof. The proof stands in relation to the proof of Corollary4.18 as the corresponding
statements about Perelman’s W-functional vs. Perelman’s F -functional; see [31,
Section 12].

Note that the 1 F j
4 RB

g g i Gij F i
i .4 / n

2 e f dvolB term occurs on the
right-hand side of 4.52) with a negative sign. We now look at what it means for W
to be constant in t under the assumption that F i vanishes.

Proposition 4.53. Suppose that F i
D 0. If W.Gij; Ai ;g ;f; / is constant in t

then det.Gij/ is constant and

g Gij I g Gkl Gik; Glj; g Gij; f; D 0;

R
1
4

G ij Gjk; Gkl Gli; C fI
1

2
g D 0:

4.54)

Proof. The same argument as in the proof of Proposition 4.21 shows that det.Gij / is
constant. Then 4.54) follows from 4.52).

Unlike in Proposition 4.21, we cannot conclude that f is constant, because of the
existence of nontrivial compact gradient shrinking solitons.

Remark 4.55. The term 1 Fj
4 RB

g g i Gij F i i .4 /
n
2 e f dvolB occurs on

the right-hand side of 4.52) with a useless sign. This is not surprising, as can be
seen by looking at the Ricci flow on a round 3-sphere M, which we consider to be
the total space of a circle bundle over S2. We shift the time parameter so that the 3-
sphere disappears at time zero. As the 3-sphere gives a gradient shrinking soliton, the
functionalW is constant in t However, the circle bundle has nonvanishing curvature.
Hence having W constant in t cannot imply that F i vanishes.
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We now look at some special cases of 4.54).

Proposition 4.56. Under the hypotheses of Proposition 4.53, if 1 dim.B/ 2
then the only solutions of 4.54) occur when B is S2 or RP2.

Proof. The second equation in 4.54) implies that

Z
1

R dvolB Z
B 4 B

g G ij Gjk; Gkl Gli; dvolB
n
2

vol.B/ D 0; 4.57)

from which the proposition follows.

We now use W to analyze a blowup limit.

Proposition 4.58. Suppose that M; gN. // is a locally G-invariant Ricci flow defined
for all t 2 T; 0/, with T 1. Suppose that F i

D 0. Put D t Let fsig1i
D1

be

a sequence of positive numbers tending to infinity. Put gNi / D si gN.s
1

i / Suppose
that limi!1 gNi / exists and equals gN1. / in the sense of Section 4.1, for a locally
G-invariant Ricci flow gN1. / with a compact base B1, defined for 2 .0; 1/.
Writing gN1. / Gij;1. /; g ;1. //, we conclude that

1. det.Gij;1/ is constant;

2. equations 4.54) are satisfied for Gij;1. / and g ;1. /

Proof. The proof is along the lines of the proof of Proposition 4.39.

4.2.3. Modified WC-functional

Definition 4.59. Given f 2 C1.B/ and t 2 RC, put

WC.Gij; Ai ;g ; f; t/

D Z
B

t jrf j
2

C R 1
4 g Gij Gjk; Gkl Gli; 4.60)

4 g g i Gij F i1
i f C n .4 t/

n
F j 2 e f dvolB :

If N D 0, i.e., if M D B, then this is the same as the Feldman–Ilmanen–Ni

WC-functional [14].
Inwhat follows,wewillneed a lowerboundforWC in terms of the scalar curvature

of M and the volume of B.

Lemma 4.61. If .4 t/ n
2

RB
e f dvolB D 1 then

; g ; f; t/ t xRminCnC
n

WC.Gij; Ai
2 ln.4 / ln t

n
2 vol.B; g t // : 4.62)
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Proof. From 4.47),

WC.Gij; Ai ; g ; f; t/ 4.63)

D Z
B

t
2

C xR f C n .4 t/
n

rf Crlnqdet.Gij / 2 e f dvolB

2 Z
B

t xRmin C n .4 t/
n f e f dvolB

t xRmin C n C
n
2

ln.4 / ln t
n
2 vol.B;g t// ;

where we used Jensen’s inequality. This proves the lemma.

The next proposition says that if f satisfies a conjugate heat equation thenWC is
monotonic under the Ricci flow.

Proposition 4.64. Under the flow equations

@Gij
@t D g GijI g Gkl Gik; Glj; 1

2 g g i Gik Gjl F k F l
i ;

@Ai
@t D g i F i

Ii g i Gij Gjk; Fk
i;

@g
@t D 2 R C

1 F j
2 Gij Gjk; Gkl Gli; C g i Gij F i

i ; 4.65)

@.e f /
@t D r2 e f C R 1 g Gij Gjk; Gkl Gli;4 ;

1 g g i Gij F i F j
2 2t e fi C

n

one has

d
dt WC.Gij; Ai ; g ; f; t/

D
t
2

Z
B

g Gij g kl
I G Gik; Glj; 4.66)

1 i k 2 n
g g Gik Gjl F .4 t/2 F l

i g Gij; f; 2 e f dvolB

C t Z
B

g i F i
Ii C g i Gij Gjk; F ki g i f; F k 2

.4 t/
n

i 2 e f dvolB

C 2t Z
B

4 G ij Gjk; Gkl Gli;R 1

2 g i Gij F i1 F ji C fI C
1 2 .4 t/

n

2t g 2 e f dvolB

C
1

4
Z

B
F jg g i Gij F i i .4 t/ n

2 e f dvolB :
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Proof. The proof is along the lines of the proof of Corollary 4.18.

We now look at what it means for WC to be constant along the flow 4.65).

Proposition 4.67. IfWC.Gij; Ai ; g ; f; t/ is constant in t then F i D 0, det.Gij/
is constant and

g Gij I g Gkl Gik; Glj; D 0;

4 Gij Gjk; Gkl Gli; C
1R 1
2t g D 0:

4.68)

Proof. From 4.66), we see first that F i D 0. Then we also see that

g Gij I g Gkl Gik; Glj; g Gij; f; D 0 4.69)

and

4 Gij Gjk; Gkl Gli; C fI C
1R 1
2t g D 0: 4.70)

As in the proof ofProposition 4.21, we can showfrom 4.69) that det.Gij / is constant.
Then equations 4.29) and 4.30) hold. From 4.70), we have

Z
B

xR C
n
2t dvolB D 0: 4.71)

As in the proof of Proposition 4.21, we have

@ xR
@t D r2 xR C 2 j xRij j

2
C 2 j xR j

2: 4.72)

From 4.65), 4.69) and 4.70), the flow equations are

@Gij
D g Gij; f; ;

@t
@g 1

D 2
@t fI C t

g :
4.73)

It follows that
@ xR
@t D hrf;r xRi

xR
t

: 4.74)

Thus

r2 xR C 2j xRij j
2

C 2j xR j
2

C
xR
t D hrf;r xRi: 4.75)

Then

r2 xR C
n
2t C 2j xRijj

2
C 2 xR C

1
2t

g
2 1

t xR C
n
2t

D Drf;r xR C
n
2t E:

4.76)
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2t D 0 or xRminC
nFrom 4.71), either xRC

n
2t < 0. If xRminC

n
2t < 0then we obtain a

contradiction to the minimum principle, applied to 4.76). Thus xR C
n
2t D 0. From

4.76), it follows that xRij D xR C
1
2t g D 0. This proves the proposition.

Lemma 4.77. Under the conclusion of Proposition 4.67, Gij and Ai are
timeindependent, and g is proportionate to t

Proof. This follows from 4.65) and 4.68).

Remark 4.78. Equations 4.68) were called the harmonic-Einstein equations in [38],
where they were used as an ansatz to construct expanding soliton solutions on the
total spaces of flat vector bundles.

We now use WC to analyze blowdown limits.

Proposition 4.79. Suppose that M; gN. // is a locally G-invariant Ricci flow defined
for all t 2 .0;1/. Let fsig1i

D1
be a sequence of positive numbers tending to infinity.

Put gNi t/ D s 1
i gN.si t/. Suppose that limi!1 gNi / exists and equals gN1. / in the

sense of Section 4.1, for a locally G-invariant Ricci flow gN1. / with a compact base

B1, defined for t 2 .0; 1/. Writing gN1. / Gij;1. /;Ai ;1 /; g ;1. //, we

conclude that

1. F i
;1 D 0;

2. det.Gij;1/ is constant;

3. equations 4.68) are satisfied for Gij;1. / and g ;1. /

Proof. The proof is along the lines of the proof of Proposition 4.39.

We now look at some special solutions of 4.68). Recall that
W 1.B; b/

SL.N/ is the holonomy representation.

Proposition 4.80. Under the assumptions of Proposition 4.79, if N D 0 then

gN1.t/ D tgEin, where gEin is an Einstein metric on M D B with Einstein
constant 1

2
If N D 1 then gN1.t/ is locally an isometric product of R or S1 with

B; tgEin/, where gEin is an Einstein metric on B with Einstein constant 1
2

For
any N, if dim.B/ D 1 then with an appropriate choice of section s, we can
locally write Gij b/ D ebX/ij and gB D

t
2 Tr.X2/ db2, where X is a real diagonal

N N/-matrix with vanishing trace.
If dim.B/ D 2 and N D 2 then B has negative Euler characteristic. Also,

1. gN is a locally product metric and B has sectional curvature 1 or2t

2. fixes no point of the boundary of SL.2; R/= SO.2/ D H2 and with the right
choice of orientation of zB, the map zGW zB H2 is holomorphic.
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Proof. The N D 0 case is clear. As det.Gij / is constant, if N D 1 then we are

in a local product situation. For any N, if dim.B/ D 1 then the map b Gij b/
describes a geodesic in SL.N; R/= SO.N;R/, from which the proposition follows.
See [38, Example 4.27]).

If dim.B/ D 2 and N D 2 then we can consider gQ to be a -equivariant harmonic
map uW zB H2. Choosing anorientation of zB, we use a local complex coordinate z
on zB. There is a solution to the first equation in 4.68) if and only if the representation

W 1.B/ SL.2;R/ is not conjugate to a nondiagonal) representation by upper
triangular matrices [30], [36]. If there is a solution to the first equation in 4.68) then
looking at the dz2-component of the second equation in 4.68) gives

uzuNz D 0: 4.81)

We consider the subset of @H2, the boundary at infinity ofH2, which is pointwise
fixed by Im. / It is either all of @H2, two points in @H2, one point in @H2 or the
empty set. If all of @H2 is fixed by Im. / then is the identity representation, u
descends to a harmonic function on B which must be constant) and B has constant
sectional curvature 1

2t If Im. / fixes exactly two points of @H2 then is conjugate
to a diagonal representation and u maps to a nontrivial geodesic in H2. We can
assume that u is real-valued. Then equation 4.81) implies that u is constant, which
is a contradiction. As has been said, there is no solution to the first equation in 4.68)
if Im. / fixes a single point of @H2. Finally, suppose that Im. / fixes no point of
@H2. Then u is constant or du has generic rank two. Ifu is constant then gN is a locally
product metric. Suppose that u is nonconstant. As du has generic rank 2, equation
4.81) implies that u is holomorphic or antiholomorphic. If u is antiholomorphic

then we change the orientation of zB to make u holomorphic. As u is nonconstant,

Liouville’s theorem implies that B has negative Euler characteristic.

Remark 4.82. The solutions with dim.B/ D 1, Gij b/ D ebX/ij and gB D
t
2 Tr.X2/ db2 are generalized Sol-solutions.

Remark 4.83. When dim.B/ D 2 and N D 2, the equations 4.68) arose
independently in the paper [52] on Kähler–Ricci flow. In that paper, which is in the
holomorphic setting, the map G arises as the classifying map for the torus bundle of
an elliptic fibration. The term 1

4 Gij Gjk; Gkl Gli; of 4.68) is called the Weil-
Petersson term. The second equation of 4.68), in the Kähler case, is considered to
be a generalized Kähler-Einstein equation for the geometry of a collapsing limit.

Remark 4.84. All of the results of this section extend to the case when B is an
orbifold, E is a flat orbifold G-bundle over B, a manifold M is the total space of
an orbifold fiber bundle

W M B and G acts locally freely on M via a map

E B M M) with orbifold quotient B.
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5. Equivalence classes of étale groupoids

Let G be a complete effective path-connected Hausdorff étale groupoid that admits
an invariant Riemannian metric on the space of units G.0/. We assume that

1. G equals its closure SG;

2. the localsymmetrysheafg ofG is a locallyconstantsheafofabelian Liealgebras

isomorphic to RN

Example 5.1. Let M be the total space of a twisted abelian principal G-bundle as

in Section 4.1. We can take G D E B M, where the flat bundle E has the étale
topology, with G.0/

D M. The local symmetry sheaf comes from the flat vector
bundle e on M.

We can perform a similar construction in the setting of Remark 4.84, whereM is
a manifold and B is an orbifold.

The results of Section 4 extend to the setting of a Ricci flow on G, under the
analogous curvature and diameter assumptions, provided that G is locally free. The
reason is that the local structure of such an étale groupoid is the same as the local
structure considered in Section 4 [22, Corollary 3.2.2]. We can then perform the
integrals of Section 4 over the orbit space of G and derive the same consequences as

in Section 4.
It will be useful to determine the global structure of such étale groupoids, at least

in low dimensions.

Proposition 5.2. Suppose thatG is locally free. Then the orbit spaceO isan orbifold.
There is a flat orbifold) RN -bundle e on O associated to G.

If dim.O/ D 1 then G is classified by the isomorphism class of e.

In general, if e is trivial then G is equivalent to the groupoid of a principal
bundle over O. It is classified up to groupoid equivalence by the orbits of GL.N;R/
on H2 OIRN

Proof. The proof is similar to the classification in [23] of the transverse structure of
Riemannian foliations with low-codimension leaves. As the paper [23] considers
Riemannian groupoids that may not equal their closure, there is an additional step in
[23] which consists of analyzing the restriction of the groupoid to an orbit closure.
Since we only deal with étale groupoids that equal their closures, we do not have to
deal with this complication.)

Given x 2 G.0/, let Ox be its orbit. There is an invariant neighborhood of the
orbit whose groupoid structure is described by [22, Corollary 3.2.2]. In particular,
the point in the orbit space O, corresponding to Ox, has a neighborhood U that is
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homeomorphic to V=Gxx where V is a representation space for the isotropy group
Gxx This gives the orbifold structure on the orbit space.

The classification ofsuchétale groupoids comes from thebundle theorydeveloped
in [22, Section 2.3], which we now follow. For notation, if G is a topological group
then letGi denoteG with the discrete topology. Supposefirst that the isotropy groups

Gxx are trivial, so the orbifold O is a manifold. Let U O be a neighborhood of
Ox as above. Let

W G.0/ O be the quotient map. By [22, Corollary 3.2.2], the
restrictionofG to 1.U / is equivalent to the cross-product groupoid RN U/ÌRNi
where RNi acts on RN by translation and acts trivially on U. This gives the local
structure ofG. Itremains to determine the possibleways toglue these local structures
together.

To follow the notation of [22, Section 2.1], put D RNi Diff.RN/i The

normalizerN of in Diff.RN / isRN z GL.N; R/ and the centralizer is C D RN
We give N the topology RN z GL.N; R/i

Following the discussion in [22, Section 2.1], suppose that U O is an open
set. Consider the cross-product groupoid RN U/ Ì RNi Let E.U/ be the

selfequivalences of RN U/ÌRNi that project onto the identity of U. This forms a

sheaf E on O. We can cover O by open sets U such that 1.U / is equivalent to
RN U/ ÌRN It follows that the étale groupoids in question are classified by thei

set H1 OI E/ [22, Proposition 2.3.2].
To compute H1 OI E/, let RN be the sheaf on O for which RN U / consists of

smooth maps U RN let RNi also) denote the constant sheaf on O with stalk RNiand let GL.N; R/i also) denote the constant sheaf on O with stalk GL.N;R/i. As
in [22, 2.4.2)] there is a short exact sequence of sheaves

0 RN RNi E GL.N; R/i 0: 5.3)

From [15, Théorème 1.2], this short exact sequence of sheaves gives rise to an
exact sequence of pointed sets

H0 OI GL.N;R/i/ H1 OIR
N RN

i /
H1 OI E/ H1 OI GL.N; R/i /:

5.4)

The set H1 OI GL.N; R/i/ is the same as the set of homomorphisms 1.O/
GL.N; R/ modulo conjugation by elements of GL.N; R/ or, equivalently, the set

of equivalence classes of flat RN -vector bundles on O. The image of the classifying

element of G, under the map H1 OI E/ H1 OI GL.N; R/i /, classifies the
flat RN -vector bundle e mentioned in Proposition 5.2. More explicitly, the transition

functions of e come from the image under E GL.N; R/i of the transition
functions of G.

The short exact sequence

0 RN
i RN RN RN

i 0 5.5)
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of sheaves of abelian groups gives a long exact sequence

H1 OIR
N/ H1 OIR

N RN
i /

H2 OIR
Ni / H2 OIR

N /
5.6)

of abelian groups. AsRN is a fine sheaf, it follows from 5.6) thatH1 OIRN RNi / Š
H2 OIRNi / D H2 OIRN /.

As H0 consists of global sections, 5.4) gives an exact sequence of pointed sets

GL.N; R/ H2 OIR
N/ H1 OI E/ H1 OIGL.N; R/i/: 5.7)

If dim.O/ D 1 then from 5.7), the map H1 OI E/ H1 OI GL.N; R/i/ is
injective. Thus G is determined up to groupoid equivalence by the isomorphism
class of the flat vector bundle e.

If O has arbitrary dimension, suppose that e is trivial. Consider the preimage
under H1 OI E/ H1 OIGL.N; R/i/ of the element in H1 OI GL.N;R/i/
corresponding to the identity representation. By 5.7), this preimage can be identified with
the orbit space for the action of GL.N; R/ on H2 OIRN /. Any such orbit contains
an element of Im.H2 OIZN/ H2 OIRN //, which implies that G is equivalent to
the étale groupoid arising from some principal T N -bundle on O.

The preceding considerations extend to the case when the finite) isotropy groups

Gx are not all trivial. In that case, is an orbifold and the argument extends tox O
the orbifold setting. For example, H OIRN/ has to be interpreted as an orbifold
cohomology group.

Remark 5.8. If one starts with an untwisted) principal G-bundle, with G abelian,
then the triviality of the corresponding étale groupoid is determined by whether or
not

fRB
F ig

N
iD1

vanishes in H2 BIRN /.
Suppose that the étale groupoid is nontrivial and f Ngj g1jD1

is asequence of invariant
metrics on the principal G-bundle, so that there is a limiting invariant metric gN1. It is
possible that the curvatures fF i

g
N
iD1

approach zero in norm as j 1. If this is the
case then gN1 will live on a distinct étale groupoid, as its curvature fF

i
g

N
iD1

vanishes.

This phenomenon occurs in the rescaled Ricci flow on the unit circle bundle of a

surface of constant negative curvature.
On the other hand, if we start with a trivial étale groupoid and f Ngjg1jD1

is a

noncollapsing sequence of invariant metrics on the principal G-bundle then any limiting
invariant metric gN1 will necessarily be on the same étale groupoid.

The relevance of Proposition 5.2 is that for étale groupoids which satisfy its
hypotheses, we can discuss convergence of Ricci flow solutions on such étale groupoids
in terms of convergence of invariant Ricci flowsolutions on twisted principal bundles.
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Example 5.9. Suppose that M is the total space of a principal S1-bundle over a

compact oriented surface B. Given a subgroup Zk S1, let M=Zk be the quotient
space. It is also the total space of a principal S1-bundle over B.

The discrete) S1-action on a principal S1-bundle gives an étale groupoid. The
mapM M=Zk gives an equivalence of étale groupoids, in the sense of [2, Chapter

III.G.2.4]. However, the Euler class of the circle bundle M=Zk B is k times that
of the circle bundle M B. This shows that the Euler class of the circle bundle
is not an invariant of the groupoid equivalence class. Instead, all that is relevant is
whether or not the rational Euler class vanishes.

Example 5.10. If dim.O/ D 1 then any homomorphism W 1.O/ GL.N;R/
gives rise to an étale groupoid with unit space G.0/

D RN zO.
If O is a closed orientable 2-dimensional orbifold then H2 OIRN / Š RN and

the action of GL.N; R/ on H2 OIRN / has two orbits, namely the zero element and
the nonzero elements. Thus if e is trivial then there are two equivalence classes of
such groupoids with orbit space O, one corresponding to a vanishing “Euler class”
and one corresponding to a nonvanishing “Euler class”.

Suppose that M is the total space of a twisted principal RN -bundle. Let gN be
an invariant metric on M. We recall that there are two distinct connections in this
situation, the flat connection on the twisting bundle E and the connection A on the
twisted principal bundle. We will use the following lemma later.

Lemma 5.11. Let W M B be a twisted principal RN-bundle. Given Gij and
g let A1 and A2 be two flat connections onM. Let gN1 and gN2 be the corresponding
invariant metrics onM. Then their underlying Riemannian groupoids are equivalent.

Proof. Let fUig be a covering of B by open contractible sets. LetU D f 1.Ui/g be
thecorrespondingcovering ofM and letGU be the localization ofG [38, Section 5.2].
In our case, elements of GU are quadruples i; pi;pj ; j / with pi 2 1.Ui /, pj 2

1.Uj / and pi/ D pj /. The multiplication is i; pi; pj ; j/ j;pj;pk; k/ D
i;pi;pk; k/. The units G .0/

U are quadruples i; pi;pi ;i/ and the source and range
maps are s.i;pi;pj; j / D j;pj; pj ; j/ and r.i; pi; pj ; j / D i;pi;pi; i/. Let
s1

W Ui 1.Ui / be a section for which s1/ A1 D 0. Similarly, let s2i i i W Ui
1.Ui/ be a section for which s2i / A2 D 0. Define a map F W GU GU

by F.i;pi;pj ; j / D i; pi C s2i ui/ s1i ui/; pj C s2j uj / s1j uj/; j/, where

ui D pi /, uj D pj / and we write the action of RN additively. Then F is a

groupoid isomorphism. On the space of units, F.i; pi; pi; i/ D i; pi C s2
i ui/

s1i ui /; pi C s2i ui / s1i ui /; i/ and so F sends the section s1
i

to s2
i It follows that

F is an isomorphism of Riemannian groupoids.
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6. Convergence arguments and universal covers

In this section we prove Theorem 1.2. In Section 6.1 we prove convergence to a

locally homogeneous Ricci flow on an étale groupoid. In Section 6.2 we promote
this to convergence on the universal cover of M.

6.1. Convergence arguments. In this subsection we showthatunder thehypotheses

of Theorem 1.2, there is a rescaling limit which is a locally homogeneous expanding
soliton solution on an étale groupoid. To do this, if xO is the closure of the orbit
of g. / under the action of the parabolic rescaling semigroup R 1 then we define
a stratification of xO in terms of the number of local symmetries. We let k0 be the
maximal number of local symmetries that can occur in a rescaling limit of g. /
This corresponds to a maximally collapsed limit. The first step is to show that k0
determines the Thurston type ofM, and that there is a sequence of rescalings of g. /
which approaches the corresponding locally homogeneous expanding soliton.

In order to show that any rescaling limit gN. / is a locally homogeneous expanding

soliton except possibly in the BSL2.R/ case), we use further arguments. We show that

any rescaling limit has k0 local symmetries. We then use a compactness argument,
along with the local stability of the space of expanders, to show that gN. / is a locally
homogeneous expanding soliton.

So assume that g. / is a Ricci flow solution on a connected closed 3-manifold
M, defined for t 2 .1; 1/, with sup

t2.1;1/ t k Riem.g.t//k1 K < 1 and

sup
t2.1;1/ t

1
2 diam.g.t// D < 1. From Proposition 3.5, M has a single

geometric piece. Given s 2 OE1; 1/, put gs.t/ D
1
s g.st/. Then for all s, we have

sup
t2.1;1/ t kRiem.gs.t//k1 K and sup

t2.1;1/ t
1
2 diam.gs.t// D. By

Proposition 3.2, the family of Ricci flow solutions fgs. /gs2OE1;1/ is sequentially
precompact among Ricci flow solutions on étale groupoids.

Let xO be the sequential closure of the forward orbit fgs. /gs2OE1;1/. Let xO.k/ be
the elements of xO with a k-dimensional local symmetry sheaf g.

Lemma 6.1. If gO. / 2 Ox then the underlying étale groupoid of gO. / is locally free.

Proof. If gO. / 2 Ox.0/ then there is nothing to show. If gO. / 2 Ox.1/ then the lemma
follows from the fact there is no point x 2 G.0/ where the local Killing vector fields
vanish simultaneously.

Suppose that
gO. / 2 Ox.2/. Write gO. / D limi!1.M; gs0j // for some sequence

fs0j g1jD1
tending to infinity. By [3], for any > 0, there is an integer J < 1 so

that if j J then there is a locally T 2-invariant Riemannian metric g0j onM which

is -close in the C1-topology to 1
s

0

j g.s0j /. Furthermore, one can take the sectional

curvature of g0j to be uniformly bounded in [48, Theorem 2.1]. The collapsing is
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along the T 2 fibers. Taking a sequence of values of going to zero and choosing

j J after passing to a subsequence we can say that g.O 1/ D limj!1.M; g0j /.
Let S be the orbit space of the étale groupoid. It is a circle or an interval. If S

is a circle then M is the total space of a T 2-bundle over S1. The fibers cannot be
Klein bottles since M is orientable.) Hence the local T 2-action on M; g0j/ is free.

Let H 2 SL.2; Z/ be the holonomy of the T 2-bundle, defined up to conjugation in
SL.2; Z/. Given M, there is a finite number of possibilities for H, as follows from
[50, pp. 439, 469–470, 481–482]. After passing to a subsequence, we can assume
that there is a single such H. For each j the T 2-bundle with invariant metric g0j is

the total space of a twisted principal T 2-bundle over S1, where the twisting bundle

E is a flat T2-bundle on S1 with holonomy H. From Proposition 5.2, for all j these

give rise to equivalent étale groupoids. Looking at how one constructs the limiting
Riemannian groupoid as j 1[38, Proposition 5.9], it follows that gO. / is defined
on this same étale groupoid. In particular, it is locally free.

If S is an interval then as in the proof of Proposition 3.5, the asphericity of M
implies that the local T2-action on M is locally free. Then M is the total space

of an orbifold T 2-bundle over the orbifold S. As S is double covered by a circle,
we can take a double cover My of M which is the total space of a T 2-bundle over
S1. Applying the preceding argument Z2-equivariantly to My we conclude that the
underlying étale groupoid of gO. / is again locally free.

Finally, suppose that gO. / 2 Ox.3/. Write gO. / D limi!1.M; gs 0

j // for some

sequence fs0j g1jD1
tending to infinity. Then the orbit space S of the étale groupoid is a

point and
° M; 1

s0j g.s0j / 1
jD1

Gromov–Hausdorff converges, with bounded sectional

curvature, to a point. That is, M is almost flat and so is an infranilmanifold [19].
There is a finite normal cover M0 of M which is diffeomorphic to a flat manifold or
a nilmanifold. Let g0. / be the lift of g. / to M0 and let gO0. / be the corresponding
limiting Ricci flow on an étale groupoid, with gO. / as a finite quotient. By [3], for
any > 0, there is an integer J < 1 so that if j J then there is a left-invariant
Riemannian metric g0j onM0, of R3 or Nil-type, which is -close in the C1-topology

to 1
s 0

j
g0.s0j /. Furthermore, one can take the sectional curvature of g0j to be uniformly

bounded in [48, Theorem 2.1]. The collapsing is along all ofM0. Taking a sequence

of values of going to zero and choosing j J after passing to a subsequence we
can say that g0.1/O D limj!1.M0; g0j /. Looking at how one constructs the limiting
Riemannian groupoid as j 1[38, Proposition 5.9], it follows that the underlying
étale groupoid of gO0.1/ is a cross-product groupoid R3 Ì R3 or Nil ÌNili where ii
denotes the discrete topology. Hence the underlying étale groupoid of gO. / is locally
free.

The relevance of Proposition 6.1 is that it allows us to use Proposition 4.79 to
analyze blowdown limits of gO. /
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Let k0 be the largest k so that xO.k/ is nonempty. Forsimplicity of terminology, we
will say that a Ricci flow on an étale groupoid is a locally homogeneous expanding
soliton if there is some homogeneous expanding soliton to which the Ricci flow on
the unit space of the étale groupoid is locally isometric.

Proposition 6.2. If k0 D 0 then M admits an H3-structure. If k0 D 1 then MBadmits an H2 R or SL2.R/-structure. If k0 D 2 thenM admits a Sol-structure. If
k0 D 3 then M admits an R3 or Nil-structure.

In all of these cases, there is a sequence fsj g1jD1
tending to infinity so that

limj!1.M; gsj // exists as a Ricci flow solution on an étale groupoid, and is a
locally homogeneous expanding soliton of type

H3 if k0 D 0,

H2 R if k0 D 1,

Sol if k0 D 2,

R3 or Nil if k0 D 3.

Proof. Given gO. / 2 Ox.k0/, put gOs.t/ D
1
s gO.st/. We claim that the forward orbit

f Ogs. /gs2OE1;1/ is relatively sequentially compact in xO.k0/. To see this, suppose that
there is a sequence f Ogsi /g1i

D1
having a limit gO0. / We can find a subsequence of

f.M; gs. //gs2OE1;1/ that converges to gO0. / Thus gO0. / 2 Ox. However, the number of
local symmetries cannot decrease in the limit. Hence gO0. / 2 Ox.k/ for some k k0.
We must have k D k0, by the definition of k0, which proves the claim.

Let fsig1i
D1

be a sequence tending to infinity such that limi!1 gOsi / D Og1. /
for some gO1. / 2 Ox.k0/. Let S denote the underlying orbit space of gO1.1/. There
is a sequence fs0j g1jD1

tending to infinity so that limj!1 M; gs 0

j / D Og1. / In

particular, limj!1 M; 1
s0

jg.s0j/ GH

D S.

If k0 D 0 then by Proposition 4.80, M; gO1. // is the Ricci flow on a manifold
of constant negative sectional curvature.

If k0 D 1 then S is a closed two-dimensional orbifold. Taking a double cover if
necessary, we can assume that S is orientable. From Proposition 5.2, we can assume

that the underlying étale groupoid comes from an orbifold principal S1-bundle on

S. The triviality of e comes from its identification with H1 of the circle fiber of the
orbifold bundle M S.) By Proposition 4.80, gO1. / has H2 R/-type and S
has a metric of constant curvature 1 As M is the total space of an orbifold circle

2t
bundle over S, it follows that M admits an H2 R or BSL2.R/-structure using [40]
if we took a double cover).

If k0 D 2 then S is S1 or an interval OE0; L Suppose first that S D S1. Then M
is the total space of a T 2-fiber bundle over S. Let H 2 SL.2; Z/ be the holonomy
of the fiber bundle, defined up to conjugacy. As in the proof of Lemma 6.1, the étale



524 J. Lott CMH

groupoid of gO1. / arises from a twisted) principal T 2-bundle on S1. The flat bundle

e over S1 has holonomy H 2 SL.2; Z/. By Proposition 4.80, gO1. / has Sol-type
and H is a hyperbolic element of SL.2; Z/. Thus M admits a Sol-structure.

Suppose now that S D OE0;L As in the proof of Lemma 6.1, M is the total space

of an orbifold T 2-bundle over the orbifold OE0;L A double coverMy ofM fibers over
S1. Running the previous argument on My with the pullback metric, we conclude
that My admits a Sol-structure. Hence M admits a Sol-structure [40].

If k0 D 3 then S is a point. Hence
° M; 1

s0j g.s0j / 1
jD1

Gromov–Hausdorff

converges, with bounded sectionalcurvature, toa point. As in the proof of Lemma 6.1,

gO1. / is locally homogeneous and has R3 or Nil as its local symmetry group. Such a

Ricci flow solution is automatically a locally homogeneous expanding soliton.

We have shown that there is some sequence fsjg1jD1
tending to infinity so that

limj!1.M; gsj // exists and is a locally homogeneous expanding soliton. We now
wish to showthat this is true for any sequence fsj g1jD1

tending to infinity, at least if the

Thurston type ofM is not BSL2.R/. The first step is to show that under a compactness
assumption, there is a parameter T so that if we take any rescaling limit gN. / then
upon further rescaling of gN. / the result is near a locally homogeneous expanding
soliton for some rescaling parameter s 2 OE1; T

Proposition 6.3. Given k, let C be a sequentially compact subset of xO.k/. Let U be
a neighborhood of

the H3-type locally homogeneous expanding solitons in xO.0/ if k D 0,

the H2 R/-type locally homogeneous expanding solitons in xO.1/ if k D 1,

the Sol-type locally homogeneous expanding solitons in xO.2/ if k D 2,

the R3-type and Nil-type locally homogeneous expanding solitons in xO.3/ if
k D 3.

Then there is a T D T.k; C; U/ 2 OE1; 1/ so that for any gN. / 2 C, if gNs. / 2 C
for all s 2 OE1; T then there is some s 2 OE1; T such that gNs. / 2 U.

Proof. Given k, C and U, suppose that the proposition is not true. Then for each

j 2 ZC, there is some gN.
j/. / 2 C so that for each s 2 OE1; j gN

j/s / 2 C

s / … U. Take a convergent subsequence of the f Ng.j /. /g1jD1
with limitand

gN
j/

gN.1/. / Then for all s 2 OE1;1/, we have gN .1/s / 2 C and gN .1/s / … U. By

D1
in ZC tending to infinity sosequential compactness, there is a sequence ftkg1k

that limk!1 gN
.1/
tk / exists and equals some

gN
.1/1 / 2 C. By Proposition 4.80,

gN
.1/1 / is a locally homogeneous expanding soliton as in the statement of the present

proposition. Then for large k, we have
gN.1/tk / 2 U, which is a contradiction.
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The nextstep istouse local stabilitytosay thatafterrescaling gN. / by theparameter

T the result is definitely near a locally homogeneous expanding soliton solution.

Proposition 6.4. Suppose that M does not have Thurston type BSL2.R/. Then there

D1
of the type described in Proposition 6.3, whoseare decreasing open sets fUlg1l

intersection is the corresponding set of locally homogeneous expanding soliton
solutions, so that under the hypotheses of Proposition 6.3, if Tl D T.k; C;Ul/ then we

are ensured that gNTl / 2 Ul In the case k D 1 we restrict to Ricci flow solutions on
an étale groupoid with vanishing Euler class, so Ul is a neighborhood in the relative
topology.)

Proof. This follows from the local stability of the expanding solitons in xO.k/. That
is, there is a sequence fUlg1l

D1
of such neighborhoods so that gNs. / 2 Ul implies that

gNs0 / 2 Ul whenever s0 s. In fact, one has exponential convergence to the set of
expanding solitons.) The case k D 0 appears in [54]. Thecase k D 2 appears in [34].
In the case k D 1, recall from Example 5.10 that there are two relevant types of étale
groupoids, one with vanishing Euler class and one with nonvanishing Euler class.
The locally homogeneous expanding solitons live on étale groupoids with vanishing
Euler class. Their local stability modulo the center manifold), among Ricci flows
on étale groupoids with vanishing Euler class, is shown in [34]. We remark that ifM
has Thurston type H2 R then a limit limj!1.M; gsj // can only be a Ricci flow
on an étale groupoid with vanishing Euler class.

Note that if k D 1 then there may be a moduli space of locally homogeneous
expanding solitons of typeH2 Rin xO.1/, corresponding to various metrics of constant
curvature 1

2
on the orbitspace. However, becauseof our diameter bound, themoduli

space is compact. Comparing with [34], it may appear that there is also a factor in
the moduli space consisting of harmonic 1-forms on the orbit space. However, by
Lemma 5.11, the various harmonic 1-forms all give equivalent geometries.

Remark 6.5. There isno locally homogeneous expanding soliton solution on a
threedimensional étale groupoid of the type considered in Proposition 6.2 if it has an
orbifold surface base with negative Euler characteristic, and a nonvanishing Euler
class. A Ricci flow on such an étale groupoid will have a rescaling sequence that
converges to an H2 R/-type expander on an étale groupoid with vanishing Euler
class.

In order to showconvergence of the Ricci flowona 3-manifold withThurston typeBSL2.R/, at least by our methods, one would have to show that the expanding solitons
of type H2 R are also locally stable if one considers neighborhoods that include
étale groupoids with nonvanishing Euler class. The difficulty is that the nearby Ricci
flows live on an inequivalent groupoid and so one cannot just linearize around the
H2 R/-type expanding solitons. One approach would be to instead consider Ricci
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flows with BSL2.R/-symmetry on étale groupoids with nonzero Euler class and show
that this finite-dimensional family is an attractor.

We now show if k0 < 3 and M does not have Thurston type BSL2.R/ then any
rescaling limit gN. / is a locally homogenous expanding soliton. The method of proof
is to showthat we canrescale gN. /backward bya factor T and thenapply theprevious
proposition.

Proposition 6.6. If k0 < 3andM does not have Thurston type BSL2.R/ then for any
sequence fsj g1jD1

tending to infinity, as j 1, M; gsj // approaches the set of
locally homogeneous expanding solitons of the type listed in Proposition 6.3, with
k D k0.

Proof. If the proposition is not true then there is asequence fsj g1jD1
tending to infinity

and a neighborhood Ul as in Proposition 6.4 so that for all j gsj / … Ul After
passing to a further subsequence, we can assume that limj!1 gsj / D Ng. / for
some gN. / 2 Ox.

If k0 D 2 then from Proposition 6.2, M admits a Sol-structure. As M cannot
collapse with bounded curvature and bounded diameter to something of dimension
other than one, xO.0/ D xO.1/ D xO.3/ D ;. Then C D xO.2/ is sequentially compact
and gN. / 2 Ox.2/. A similar argument applies in the other cases when k0 < 3 to show
that C D Ox.k0/ is sequentially compact and gN. / 2 Ox.k0/.

For s 1, let gN.
s 1/. / be the limit in xO of a convergent subsequence of

fgs 1sj /g1jD1
Then gN. / D gN

s 1/
s / Note that gN.

s 1/. / 2 xOk0 By Proposition

6.4, there is a number Tl 1 so that for each s 1, gN

s 1/
Tl / 2 Ul Taking

s D Tl we conclude that gN. / 2 Ul This is a contradiction.

Corollary 6.7. If k0 D 0 or k0 D 2 then lims!1.M; gs. // exists and is one of the
locally homogeneous expanding solitons of the type listed in Proposition 6.3, with
k D k0.

Proof. In these cases, given M, there is a unique locally homogeneous expanding
soliton of the type listed in Proposition 6.3, with k D k0. The relationship between
the topology of M and the equivalence class of the étale groupoid comes from the
proof of Lemma 6.1. If k0 D 0 thenM admits a hyperbolic metric and the expander
is the solution gN.t/ D 4tghyp, where ghyp is the metric of constant sectional curvature

1 on M. If k0 D 2 then M is a Sol-manifold. Suppose first that M is the total
space of a T 2-bundle over S1, with hyperbolic holonomy H 2 SL.2; Z/. Then by
Remark 4.82, the expander can be written gN D

t
2 Tr.X2/ db2 C.dy/T ebXdy, where

b 2 OE0; 1 and eX D HTH. If M fibers over the orbifold OE0; 1 then the expander is
a Z2-quotient thereof.
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In the case k0 D 3, we must show that any rescaling limit gN. / has three local
symmetries. This does not follow just from topological arguments. The method of
proof is to rescale backwards and then apply the monotonicity arguments of Section 4
to a backward limit.

Proposition 6.8. If k0 D 3 and gN. / 2 Ox is a limit limj!1.M; gsj //, for some

sequence fsjg1jD1
tending to infinity, then gN. / 2 Ox.3/.

Proof. Suppose that gN. / 2 Ox.k/ with k < 3. As in the proof of Proposition 6.6, for

s 1, let gN.
s 1/. / be the limit in xO of a convergent subsequence of fgs 1sj /g1jD1

Then gN. / D gN

s 1/
s / More precisely, for each s 2 OE1;1/ there is an equivalence

s of groupoids so that

gN.t/ D
1

s
s gN

s 1/.st /: 6.9)

In particular, gN.
s 1/. / 2 O.x k/. Using 6.9), we can extend the domain of definition

of gN. / to OEs 1; 1/ for all s 1, and hence to all t 2 .0; 1/. We still have the

bounds sup
t2.0;1/ tk Riem.gN. k1 and sup

1t// K t2.0;1/ t 2 diam.gN.t// D.
As in the proof of Proposition 4.79, we construct a solution f t/ of the conjugate

heat equation on the orbit space S,

@.e f /
@t D r2 e fC R

1
4

g G ij Gjk; klG Gli;

1
g g i Gij F i F j

2 i C
n
2t

e f ;

6.10)

where n D dim.S/ D 3 k, that satisfies .4 t/
n
2

RS
e f dvolS D 1 for all

t 2 .0; 1/. Then WC.Gij t /; Ai t /; g t /; f t /; t/ is nondecreasing in t From
Lemma 6.1, for t < 1 there is a uniform positive lower bound on t

n
2 vol.S;g t//.

By O’Neill’s theorem, the lower sectional curvature bound on gN.t/ implies the same

lower sectional curvature bound on g t /. Hence the orbifolds) S; t 1g t// are

noncollapsing in the Gromov–Hausdorff sense as t 0. It follows that f N
gs

1 /gs 1

lies in a sequentially compact subset of xO.k/, since if a sequence f Ngsr
1

/g1r
D1

with limr!1 sr D 1 converged to an element of xO.k0/ with k0 > k then the
orbit spaces f.S; sr g s 1

r //g1jD1
would Gromov–Hausdorff converge to something

of dimension 3 k0 < 3 k, which contradicts the noncollapsing. In
particular, t

n
2 vol.S; g t// is uniformly bounded above as t 0 as also

follows from the diameter and lower curvature bounds). Then from Lemma 4.61,

WC.Gij t /; Ai t /; g t/; f t /; t/ is uniformly bounded from below as t 0.
There is a sequence of times tj 0 so that

lim
j!1

tj
d

dt tDtj
WC.Gij t/; Ai t/; g t /; f t/; t/ D 0:
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After passing to a subsequence, we can assume that limj!1 gNtj / D gN0. / for some

gN0. / 2 Ox.k/, defined for t 2 .0; 1/. As in the proof of Proposition 4.79, for any

t 2 .0; 1/ the measures .4 tjt/
n
2 e f.tj t/ dvol.S;g tjt// will subconverge to a

smooth positive probability measure on S. Using 4.66), we get that gN0. / satisfies
the conclusion of Proposition 4.67 at time t D 1. It follows that gN0. / satisfies the
conclusion of Proposition 4.67 for all t 1. In particular, M admits a geometric
structure other than an R3 or a Nil-structure see the proof of Proposition 6.2), which
is a contradiction.

Proposition 6.11. If k0 D 3 then for any sequence fsjg1jD1
tending to infinity,

limj!1 gsj / exists and is a locally homogeneous expanding soliton of the R3
or Nil-type.

Proof. If the proposition is not true then there is asequence fsj g1jD1
tending to infinity

such that limj!1 gsj / D gN. / for some gN. / 2 Ox, but gN. / is not an expander of

type R3 or Nil. From Proposition 6.8, gN. / 2 Ox.3/. In particular, gN. / is locally
homogeneous. If g is a local system of R3 Lie algebras then

gN. / must be flat. If g is
a local system of nil Lie algebras then gN. / is automatically a locally homogeneous
expanding soliton, with respect to some origin of time. A priori, the equation for gN. /
could differ from the expanding Nil soliton in Theorem 1.2 by an additive change
of the time parameter. We can rule this out by using stability arguments as before,
whichare simpler in this case because weare nowtalkingaboutdynamics on the
finitedimensional space of locally homogenous Nil-solutions. First, we argue that there is
some sequence sj 1so that limj!1 gsj / is a locally homogeneous expanding
soliton modeled on the Nil expanding soliton of Theorem 1.2. Then we use the fact
that this expanding soliton is an attractor for the R 1-semigroup action on the locally
homogeneousNil-solutions [38, Section 3.3.3]. Finally, weusea backward rescaling,
as in the proof of Proposition 6.8, to show that for any sequence fsj g1jD1

tending to
infinity, limj!1 gsj / is a locally homogeneous expanding soliton modeled on the

Nil expanding soliton of Theorem 1.2

Remark 6.12. Some of the results of this subsection extend to higher dimension.
Suppose that M; g. // is a Ricci flow on a closed n-dimensional manifold that exists
for t 2 .1; 1/, with sectional curvatures that are uniformly O.t 1/ and diameter that

grows at most like O.t
1
2 /. If n > 3 then not all compact Ricci flows satisfy these

assumptions, as seen by the static solution on a Ricci-flat K3 surface.) If fsj g1jD1
is

any sequence tending to infinity then after passing to a subsequence, there is a limit
Ricci flow gN. / on an n-dimensional étale groupoid G. If M is aspherical then G is
locally free.

If n is greater than three then the first point is that the local symmetry sheaf

g may be a sheaf of nonabelian nilpotent Lie algebras. This could also happen
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in dimension 3, but then gN. / is locally homogeneous with respect to the
threedimensional Heisenberg group.) Thus the analysis of Section 4.2 would have to be
extended to the case of twisted G-bundles where G is a nilpotent Lie group.

If we do assume that g is abelian then Proposition 4.79 says that any blowdown

limit of gN. / satisfies the harmonic-Einstein equations 4.68). Proposition 4.80
describes the blowdown limit of a Ricci flow solution M; g. // on an aspherical 4-
manifold, defined for t 2 .1; 1/, with sectional curvatures that are uniformly O.t 1/
and diameter which is O.t

1
2 /, provided that g is abelian.

6.2. Proof of Theorem 1.2. In this subsection we use the fact that M is aspherical
in order to extend the convergence result of Section 6.1 from a statement about a

limiting Ricci flow on an étale groupoid to a statement about a limiting Ricci flow
on Mz

By Proposition 3.5, M is irreducible, aspherical and has a single geometric piece
in its geometric decomposition. We assume first thatM does not have Thurston typeBSL2.R/.

Suppose that there is a sequence fsj g1jD1
tending to infinity such that the limit

limj!1 M; gsj / exists and equals a Ricci flow gN. / on an étale groupoid G. If
is the orbit space of GH

S G; gN. then limj!
g.1// M; sj /

1 sj D S.
From Propositions 6.6 and 6.11, gN. / is a locally homogeneous expanding soliton

of the type listed in Proposition 6.3. There is an orbifold fiber bundleM S. Now
S is a very good orbifold, i.e., S is the quotient of a manifold yS by a finite group
action. Taking the corresponding finite cover My of M, if we are interested in what

happens on the universal cover Mz then we can assume that S is a closed manifold.

Suppose that M is not of Nil-type. For large j we know that M; g.sj /
sj

is

the total space of a T k0-bundle over S which defines an F -structure, where k0 D
dim.M/ dim.S/. As M is aspherical, the map 1.T k0/ 1.M/ is injective [7,
Remark 0.9].

Choose i 2 0; min inj.S/
10 ; 1

10pK
and take a finite collection fxi g of points

in S with the property that fB.xi; i/g covers S. For large j let fpi;j g be points

in g. /M; sj that are the image of fxig under a Gromov–Hausdorff approximation.
sj

Then for such j fB.pi;j ; 5i/g covers M; g.sj/
sj

Each B.pi;j ; i/ is homeomorphic

to B3 k0 T k0 and its lift CB.pi;j; i/ to Mz is homeomorphic to B3 k0 Rk0

Suppose that pzi;j 2 Mz is a preimage ofpi;j Then the5i-ballB.0; 5i/ Tpi;jM
is isometric to B.pzi;j ; 5i/ Mz ; gQ.sj /

sj with respect to the metric exppi;j
g.sj/

sj
From the construction of the Riemannian groupoid G;gN.1// [38, Proposition 5.9],

limj!1 B. zpi;j ; 5i/ is isometric to a 5i-ball in the time-1 slice of the homogeneous)
expanding soliton solution on the manifold R3.
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Let mz 2 Mz be a basepoint. GivenR > 0, consider B.mz; R/ Mz ; gQ.sj/
sj

For

large j we can find a finite collection of points f zprg depending on j in Mz ; gQ.sj /
sj

where each prz projects to someelement offpi;jg M, so that the cardinality of fprz g

is uniformly bounded in j and B.mz;R/ Mz ; gQ.sj/ is covered by pr;5i/sj fB. z g.

Namely, for each i and j take points in the strip CB.pi;j ; i/ Mz ; gQ.sj /
sj that lie in

B. zm; R/, cover pi;j and form a separated net of size approximately i.
After relabeling the indices ifnecessary, suppose thatmz 2 B.pz1; 5i/ withpz1 2 Mz

projectioning to p1;j 2 M. For large j fix an almost-isometry from B. zp1; 5i/ to
a 5i-ball in the time-1 slice of the homogeneous) expanding soliton solution on

R3. Taking the union of the balls B.zpr;5i/ whose centers project to p1;j 2 M, it
follows that for large j the metric Qg.sj/

sj
onDB.p1;j; i/ \ B. zm; R/ approaches the

homogeneous expanding soliton metric on the strip. We do the same procedure for
the other values of i on the strips CB.pi;j ;i/ \ B.mz; R/ Mz ; gQ.sj /

sj
Then taking

the union of these strips for thevarious i it follows that for large j the metric Qg.sj /
sj

on

B.m;z R/ approaches an R-ball in the time-one slice of the homogeneous expanding
soliton solution onR3. Finally, we can perform the argument with the time parameter
added, to conclude

°
Mz ; mz; gQsj / 1 converges to the expanding soliton solution

jD1
on R3, in the topology of pointed smooth convergence. We can perform a similar
argument in the Nil-case, where S is a point.

To prove Theorem 1.2, suppose first that M has Thurston type R3, Nil, Sol
or H3. Suppose that the theorem is not true. Then there is a sequence fsj g1jD1
tending to infinity so that for any subsequence fsjr g1r

D1
either

°
M; gsjr .1/ 1r

D1

1r
does not converge in the Gromov–Hausdorff topologyto the limitstated in the theorem
or

° Mz ; mz; gQsjr / does not converge in the pointed smooth topology to the
D1homogeneous expanding soliton solution stated in the theorem. After passing to a

subsequence, there is a limit limj!1 M;gsj / as a Ricci flowon an étale groupoid,

whose time-one orbit space will be the Gromov–Hausdorff limit limj!1 M; g.sj /
sj

The limit is characterized by Corollary 6.7 and Proposition 6.11. From the preceding
discussion, there is a pointed smooth limit limj!1 Mz ; mz; gQsj / as a Ricci flow on

Mz which is a homogeneous expanding soliton solution on R3 of the corresponding
type. In any case, we get a contradiction.

Suppose nowthatM has Thurston typeH2 R. We can apply the same argument.
The only difference is that we can no longer say that lims!1.M; gs.1// exists in
the Gromov–Hausdorff topology. All that we get from Proposition 6.6 is that for
any sequence ftj g1jD1

tending to infinity, there is a subsequence ftjrg1r
D1

for which

limr!1 M; g.tjr /
tjr

exists and equals a closed 2-dimensional orbifold with constant
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sectionalcurvature 1
2

A priori, different subsequences couldgive rise to to different
constant-curvature orbifolds. From our diameter bound, for a given M there is
a compact set of such orbifolds that can arise). However, we claim that on the
universal cover Mz we do get pointed smooth convergence lims!1 Mz ; mz; gQs. /
to the Ricci flow H2 R; 2tghyp C gR/. To see this, suppose that fsjg1jD1

is a

sequence tending to infinity so that for any subsequence fsjr g1r
D1 °

Mz ; gQsjr / 1r
D1

does not converge to H2 R; 2tghyp C gR/ in the pointed smooth topology. We

know that there is a subsequence fsjrg1r
D1

for which limr!1 M; gsjr / exists and

is a Ricci flow gN. / on an étale groupoid. From Proposition 6.6, gN. / is a Ricci flow
solution of type H2 R. From the preceding discussion, limr!1 Mz ;mz; gQsjr /
exists in the pointed smooth topology and equals the expanding soliton solution
H2 R; 2tghyp C gR/. This is a contradiction.

Finally, if M has Thurston type BSL2.R/ then the theorem follows from Proposition

6.2.

Remark 6.13. The assumption diam.M; g.t// D O.t
1
2/ of Theorem 1.2, together

with the curvature assumption, ensures that M has a single geometric piece. One

can ask what happens if one removes the diameter assumption but keeps the curvature

assumption. In such a case one would clearly have to consider pointed limits

limj!1 M; m; gsj / of the Ricci flow solution. After passing to a subsequence,
there will be convergence to a Ricci flow solution gN. / on a pointed étale groupoid.
However, the analysis of Section 4.2 does not immediately extend to the pointed
noncompact setting. For example, gN.t/ need not have finite volume in any reasonable
sense; see Example 2.3.
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