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A converse theorem for Dirichlet L -functions

Jerzy Kaczorowski, Giuseppe Molteni and Alberto Perelli

Abstract. It is known that the space of solutions (in a suitable class of Dirichlet series with
continuation over C) of the functional equation of a Dirichlet L-function L (s, y) has dimension
> 2 as soon as the conductor ¢ of y is at least 4. Hence the Dirichlet L-functions are not
characterized by their functional equation for ¢ > 4. Here we characterize the conductors ¢
such that for every primitive character ¥ (mod ¢), L(s, ¥} is the only solution with an Euler
product in the above space. It turns out that such conductors are of the form g = 243%m with
any square-free m coprime to 6 and finitely many a and 5.
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1. Introduction

A well known theorem by Hamburger, see [7] and Chapter II of Titchmarsh [16],
states that the Riemann zeta function £ (s) is determined by its functional equation in
the following sense. Let f(s) and g(s) be two Dirichlet series absolutely convergent
for o > 1 such that (s — 1) f(s) and (s — 1)g(s) are entire functions of finite order,
and f(s) and g(s) satisty the functional equation

31_3/21"(%) fs) = Jr_(l_s)/zl"(l—;s)g(l —5).

Then f(s) = g(s) = c&(s) forsome ¢ € C. Infact, the same conclusion holds under
weaker conditions on f(s) and g(s); we refer to Piatetski—Shapiro and Raghunathan
[15], and to the literature quoted there, for an interesting discussion of the above the-
orem, especially in connection with uniqueness properties of the Poisson summation
formula.

Hamburger’s theorem is the first and simplest example of a converse theorem,
roughly speaking a result characterizing L-functions by means of their standard ana-
lytic properties. Several converse theorems are known in the literature. We mention
here only the classical converse theorems by Hecke (see Chapter I of [8]) and Weil
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[17] concerning the L-functions associated with modular forms (see also Conrey—
Farmer [4] for an interesting variant involving Euler products), and the general con-
verse theorems for automorphic L-functions, see Cogdell and Piatetski—Shapiro [3].
Moreover, a general converse theorem for degree 1 L-functions has been established
by Kaczorowski—Perelli [9] in the framework of the Selberg class.

Hamburger’s theorem has a special feature among converse theorems. In fact, it
shows that the vector space of the Dirichlet series satisfying the functional equation
of (s) and some standard analytic properties is 1-dimensional. This indeed happens
rarely, as shown by Theorem 2 of [9] for degree 1 L-functions: the 1-dimensional
case arises only when the conductor equals 1 (essentially Hamburger’s theorem) or 3.
In particular, the strict analog of Hamburger’s theorem holds, among the Dirichlet
L-functions with non-trivial character, only when L(s, y) is associated with the odd
character y (mod 3). This follows also from the arguments in [15], see p. 117, and
essentially also from the third part of Hamburger’s original paper. Similar phenomena
are expected to hold for higher degree L-functions as well.

In view of the above discussion it is natural to address the following question: un-
der what conditions a functional equation has only one solution in the set of Dirichlet
L-functions? As we shall see in Theorem 1 below, the question essentially asks for an
analog of Hamburger’s theorem where the Euler product is added to the standard ana-
lytic properties. In this paper we characterize the moduli g such that all the functional
equations (mod g ) have only one solution in the set of Dirichlet L-functions.

Werecall that for a primitive Dirichlet character y (mod g ), the functional equation
of L{s, y)1is

s/2 (1-s)/2
q s+a(y) B q l—s+a(y) _
(;) F(#)L(s, xX) = “)x(;) F(f)L(l — 8, 1),
where
(o = 10 HxED =1 _ W
O ity =—1, T g
and

q
() =Y xla)e™ e,
a=1
Moreover, it is well known that a primitive character (mod ¢) exists if and only if
g #£ 2 (mod 4); in this paper we will always assume that ¢ # 2 (mod 4). Hence,
given g # 2 (mod 4), the functional equation of L(s, y) is completely determined by
the signature of y, defined by

s(0) = (a(p), ().

Note that this is in fact a special case of a general result, obtained in the framework
of the Selberg class, characterizing functional equations by the so-called basic in-
variants, see Kaczorowski-Perelli [10]. Indeed, for degree 1 L-functions the basic
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mvariants determining the functional equation are conductor, parity and root number
(respectively ¢, a(x) and w, in this case, but clearly one may replace @, by 7(x));
see [9]. Our question can therefore be rephrased as follows: under what conditions
two primitive characters (mod ¢ ) with the same signature are equal 7 In this paper we
shall determine all cases where equality of signatures implies equality of primitive
characters, see Theorem 2 below.

As mentioned above, [9] contains a general converse theorem for degree 1 L-func-
tions in the Selberg class §, namely that £(s) and L{s + {8, y) with y primitive and
f € R are the only L-functions of degree 1 in §. Using this result and Theorem 2 be-
low we can prove the following general version of Hamburger’s theorem for Dirichlet
L-functions. For a primitive character y (mod gq), let W(y) be the set of Dirichlet
series F'(s) satisfying the following three conditions:

(1) the coefficients a(r) of F(s) satisfy a(n) < n® for every ¢ > 0, and there is
an integer 7 such that (s — 1)’ F (s) is an entire function of finite order;

(ii) log F (s) is a Dirichlet series with coefficients b (n) satisfying b(n) = O unless
n is a prime power > 1, and b(n) < n? for some & < 1/2;

(iii) F(s) satisfies the functional equation

(i)mr(w)m) — wx(i)(l_ﬂ/zr(%w)m——@. (L.1)

T 2 i o

Note that clearly L(s, y) belongs to W (), and that condition (ii) means that F'(s) is
a rather general Euler product. We also denote by @ the set of non-negative integers
g # 2 (mod 4) of the form ¢ = 293%m, with m square-free and (m,6) = 1, and
satisfying one of the following two conditions:

(a)a € {0,2,3,4,5} and b € {0, 1};
(b)ya € {0,2,3}and b = 2.
We have

Theorem 1. If g € @ then W(y) = {L(s, x)} for every primitive character y
(mod q), while if g ¢ Q, q % 2 (mod 4), there exists a primitive character x
(mod q) such that W{y) contains L(s, y) and at least another L(s, ) with primitive

W (mmod q).

As remarked in [9], the above conditions defining W{y) can be weakened, and
still the same result follows. For example, the Ramanujan conjecture a(n) < n® in (i)
is not necessary, the weaker assumption that F (s} is absolutely convergent for o > 1
being sufficient. Hence Theorem 1 may be expressed by saying that for g € @, every
primitive Dirichlet L-function (mod g) is characterized by the functional equation
and the multplicativity of the coefficients. We also remark that, in view of the above
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mentioned Theorem 2 of [9], the Euler product assumption in (i1) plays an essential
role in Theorem 1.

The following result is crucial for Theorem 1 and also of independent interest.
Given g # 2 (mod 4), let s; be the map sending each primitive character y (mod g)
to its signature s(y) defined above. We have

Theorem 2. The map s, is injective if and only if g € Q.

We refer to the next section for the proof of Theorem 2 and for more general
results related to it. Note that Theorem 2 immediately implies the following

Corollary. The functional equations of the L(s, y)’s with y primitive (mod q) are all
distinct if and only if g € Q.

Theorem 1 follows at once from the corollary and the above mentioned results in
[9]. In fact, given a primitive character y (mod g), W{(y) is a subset of the degree 1
L-functions in § and hence its elements are either {(s) or L{s + i6,y) with 8 € R
and primitive . Moreover, it is clear that & = 0 and the conductor of ¥ is ¢
it L(s + 8, v) satisfics the unshifted functional equation (1.1). Therefore, W(y)
contains only Dirichlet L-functions with primitive characters (mod ¢) (including the
trivial character (imod 1)), and hence Theorem 1 follows from the corollary.

We remark that generalizations of Hamburger’s theorem to Dedekind zeta func-
tions and to Hecke L-functions associated with algebraic number fields do exist in the
literature, see e.g. Gurevic |6], Ehrenpreis—Kawai [5] and Yoshimoto [18]. However,
although such functions include the Dirichlet L-functions, these results are more in
the spirit of Weil’s converse theorem, i.e., characterizing an L-function by means of
analytic properties of its twits by suitable characters. In particular, as far as we can see
the results of this paper do not follow from the results in the above papers. Recalling
that the twist of a function ¥ € W{y) by a Dirichlet character v is by definition

Fis.p) =Y alny (0=,
n=1

we state the following variant of these converse theorems, which in view of Theorem 1
is interesting only when g ¢ @.

Theorem 3. Let y4 be the odd character (inod 4) and y be primitive (mod q). If
F e W(y) satisfies F(1) = L(1, y) if y iseven, and F(1, y4) = L(1, yx4) if x is
odd, then F(s) = L(s, x).

The proof of Theorem 3 is a consequence of Corollary 3 in Baker-Birch—Wirsing
[1], from which in particular follows that the values L(1, x;) are all distinct when y;
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runs over a finite set of even characters with distinct )(;.‘, where x}k denotes the primitive
character inducing y;. We already know that if /' € W(y) then F(s) = L(s, )
with i primitive (mod ¢) having the same signature of y, hence the case of even y
follows at once. If y is odd then ¥ x4 and y x4 are even characters (mod ¢’) for a
certain ¢’|4q, and hence (Y y4)* = (xx4)*. Let (¢,q) = 1 and let p = a (mod g)
be an odd prime, so that (p, ¢’) = 1. By definition of induced character we have

Y(a@) = v(p) = xa(p) ' Wxa)(p) = xa(p) " (Wxa)*(p)
= x2(P) " xa) " (p) = xa(p) " axalp) = x(p) = x(a),

thus v = y and Theorem 3 follows in this case as well.
We point out the interesting problem of determining the cardinality |W(y}| of
W{(y) for g ¢ @, the trivial upper bound being of course

Wl < e*@) =[] (@) —e(p* ™). (1.2)

PXlg

the number of primitive characters (mod ¢). Note that the problem asks, in particular,
for a characterization of the primitive y (mod ¢) such that W{(y) = {L(s, )} when
g ¢ Q. This problem has been recently studied by Molteni [12], [13].

We conclude with a numerical example of distinct Dirichlet L-functions satisfying
the same functional equation. We use the standard notation e(x) = 27 and let
{4 = e(1/gq). Moreover, given a character y (mod g) we denote by x(Z) the set
of values taken by x over the integers and write K, = Q({,, x(Z)) and k, =
Q(&q.7(x)), so that K,/k, is a field extension. Choose ¢ = 25 and note that
¢(25) = 20 and that Z3, is generated by 2. We consider the primitive character y
(mod 25) defined by x(2) = ¢J,. Then we have

19

; 2
() = Zx@f)zzs =Y (),

j=0

and a computation shows that 7(y) = 5{»5. Hence in this case k,, = Q({25) while
KX = Q(é’zs,é’zo) = Q(é’loo), thus kX = KX; in fact [KX : kX] = 2. Therefore,
there exists a unique non-trivial automorphism o € Gal(K,/k,), and we define
x7(a) = o(y(a)), which is clearly a primitive character (mod ¢) with the same
parity of y. Moreover, since o fixes k, we have

q
() =o(t(n) = Y @ = t(x%).
a=1

Finally, y® # x since otherwise o(y(a)) = y(a) foralla € Z and hence o would
fix K, a contradiction; in particular, one finds that x°(2) = ¢i7. Therefore, L(s, x)
and L (s, x©) are distinct but satisfy the same functional equation.
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2. Proof of Theorem 2

We first recall some basic properties of the Gauss sums and of the groups Z;k.

In general, given a character y (mod ¢) and a primitive g-th root of unity Z,, the
associated Gauss sum is

q
(L) = D a0

=l

and depends on ¢, according to the relation

x@r(x. i) =t(x. 8. (e.q) =1

The classical Gauss sum 7 () corresponds to the choice ¢, = e(1/q). Suppose that
(¢1.92) = 1, x; are primitive characters (mod g; ) and let {,, be primitive ¢;-th roots,
i = 1,2. Then yx; x» is a primitive character (mod q14g2 ), {4, {4, 1S a primitive g1q»-th
root and

T(1x2:8q18q2) = T(1: L) T(X2. 8 2.1)

and viceversa. Note that (2.1) shows the 2-variables multiplicativity of the gen-
eral Gauss sums. When dealing with Gauss sums z(yx, {,), the signature of y is
(a(y). t(x, Ly)) and is denoted by s(x, {y).

Explicit formulae for Gauss sums modulo prime-powers were given by Odoni
[14] and Mauclaire [11], see also Chapter 1 of Berndt—Evans—Williams [2]. These
formulae can easily be used to compute the value of Gauss sums modulo p¥ for each
fixed k and every fixed character, and in fact we used them to compute Tables 1-5
below.! However, such formulae contain products of several roots of unity whose
dependence on the character is quite involved, and it is not clear how to use them
directly to prove our results.

The structure of the groups Z; « for p odd prime and p = 2 is quite different.
Let p be an odd prime. The group Z:k is cyclic of order (p — 1) p*~1. Let Uy =
fxeZx i xPl = and Vi = {x € I3 : xP1 =1}, Then |Ux| = p— 1,
Ve| = p* 1, sz is the direct product of U and Vi and if g is a generator of Z;k,

k— .
then g? ' generates Uy and g?~! generates Vy. The map U, — Z,, sending x to
its congruence class (mod p) provides an isomorphism of groups so that for every

IThe values of the Gauss sums are normalized dividing by the square-root of the conductor. In the tables we
use the notation £y = ¢(1/g). For every root, some characters having the same Gauss sum are shown in bold.
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Char. \ root ts | &3 | &5 | &2

(D=1, y»=-1|1]-1]-1]1

x(—H)=-1, y(5)=-1 | i i —i | =i

Table 1. Gauss sums for primitive characters (mod 23) and primitive 2>-th roots of unity.

Char. \ root bis | B | 0 | 8s | @ | Be | Bl | &

(=1 =1
—1 3 —5 7 7 —5 3 —1
) 16 §16 é‘16 €16 16 16 16 16

x(5) =i
G == | tie |55 | 8% | Ge | 816 | & | ST6 | C1s
¥ =-1 7 3 3 7 1 | g% | =8 | g
) 16 §16 é‘16 €16 16 16 16 16

x(5) =i
x®=—i | tis | & | &6 | t1e | ¢ | &6 | 416 | 4id

Table 2. Gauss sums for primitive characters (mod 2*) and primitive 2*-th roots of unity.

integer z, the equation x = z (mod p) has a (unique) solution x € Uy if and only if
p t z. Given a generator g of Z; .~ the characters y (mod p¥) are determined by the

integer «,,, unique (mod ¢( %)), such that

x(8) = ey /e(p*)).

Moreover, y is even if and only if ¢, is even and is primitive if and only if p { «,.
The decomposition ZZ « = Up x Vg corresponds to a decomposition of each character

¥ (mod pk) as y = xu xv, where yp (resp. yv) is a character of Uy (resp. of Vi),
i.e., a homomorphism from Uy (resp. V) to C*. According to this decomposition, y
is primitive if and only if among the values of yy- there are primitive p*—!-th roots of
unity, and in this case y is called primitive. Moreover, equality —1 = g?* ' #=1/2
shows that —1 € Uy so that y is even if and only if yy(—1) = 1.

Let p = 2. When k& > 2 group Z7; is isomorphic to the direct product of a

cyclic group of order 2 and a cyclic group of order 2572, respectively generated by
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Char. \ root {32 3, | & | £3, 3 » 3
b=t §§2 §§27 {32 53_23 %3 3_215 §§2 3_211
x(5) =13
x5y =283 3 |83 |G | &3 | G5 | th 3 o
=8 |G| e |85 & G| G 8% &
=8 | G | B ] 8 |50 B |G| s
D= ng égz U 5’ 55’ {32 §§2 §§2
x(5) =13
HOESH 2| 85 | s 3 » |t | % 37
1) =8 R85 | B | B P ey
x(5) = s 3, B | {3, 3 4 ¢3

Table 3. Gauss sums for primitive characters (mod 2°) and half of the primitive 2°-th roots of
unity. The values for the roots {7 with @ > 15 can be deduced using the identity t(y,{7) =

x(=Dz(x. {5)-

—1and 5. It follows that the characters (mod 2%) are uniquely determined by a couple
of integers («, B) with & (mod 2) and B (mod 2€2) such that

Xap(—1) = (1%  xap(5) = e(/2°72),

and y, g is even if and only if & is even and is primitive if and only if 8 is odd.

We recall that ¢ € @ if and only if ¢ = 293%m with (m,6) = 1, m square-free
and one of conditions (a) and (b) in the introduction is satisfied. Let {; be a g-th
primitive root of unity and denote by s4,¢ the map sending primitive y’s (mod g) to
s(x. ¢g). We start with

Proposition 1. Let g € Q and let {,; be a q-th primitive root of unity. Then the map
84,2, 1S injective.

Proof. Letq € @, g = 293%m, suppose that n > 1 and let p be the largest prime
factor of m. Writing ¢ = ¢/ p, clearly p and ¢’ are coprime. Given a primitive y
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(mod ¢ ) and a primitive g-throot {,, let y = x’ x,, be the decomposition of y (mod g)
as a product of ¥’ (mod ¢") and y, (mod p). Moreover, thanks to (2.1), let £,» and £,
be the primitive ¢’-th and p-th roots satisfying

(1. L) = 7(X". L)t (xp- 5p)- (2.2)

Consider the two cyclotomic fields K? = Q(ly(q), &) and K = K) (),
where {,) = e(1/¢(g)). Since p is the largest prime dividing m, we have that
(p.q'¢(g)) = 1, and hence [K,, : Kg] = @(p). Therefore, by elementary Galois
theory, for every (a, p) = 1 there exists an automorphism o, € Gal(K, / K;) such
that 0,(Lp) = ;. Since o4 fixes {y(). it fixes also the values of y, x" and .
Moreover, o, fixes also {7, hence by (2.2) we have

oa(t(x, é'q)) — Oq (f(X/’ é'q’)f()(p’ é'p)) = T()(/, gq’)o‘a (T(Xpa Cp))
= 1'()(,, Cq’)f()(ps ;3) = r()(/, gq’)mf()(ps gp)
= 1p (@7 L),

thus for every (a, p) = 1
xpla) = t(x. g/ oa(z(x, Eg))-

Hence y, is completely determined by the value of 7(y, ;). In particular, if x, v are
primitive characters (mod ¢ ) with 7(x, {;) = ©(3, {;) then, with the above notation,
Xp = Y¥p and by (2.2) also

T()(” Zq’) = T(W’, Zq’)-

Iterating the argument we eliminate all factors of m:, thus we may assume thatm = 1.

Suppose now that g = 293% with (@, b) # (0,0) and that we are in case (a), i.e.,
a€10,2,3,4,5and b € {0, 1}. If b = 1 we have ¢*(3) = 1, see (1.2), hence by
the previous argument we eliminate the factor 3, so we may assume that g = 2% with
a €1{0,2,3,4,5}. If a = 2 we have ¢*(4) = 1, while in the other cases the result
follows by direct computation of the Gauss sums, see Tables 1, 2 and 3. In case (b),
ie.,a € {0,2,3} and b = 2, the result follows again by direct computation of the
Gauss sums for ¢ = 2932, see Tables 1 and 5. Proposition 1 is therefore proved. [

Now we deal with the case ¢ = p*, where p is an odd prime and k > 2 (if p = 3
then k > 3), and prove the following

Proposition 2. Let g = p* with a prime p > 5andk > 2 or p = 3 and k > 3,
and let {; be a primitive q-th root of unity. Then there exist two distinct primitive
characters y, v (mod q) with s(x,8q) = s(¥, {g).
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wmu

¥
1e—

.vhm M

9
hm.w
9
mHM
9
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ﬂwu
9
hm.w
9
61—

9
61

ﬂmu
wwm
€12
612
ﬂmu
22
6123
122
«mu

qw.w

wmu
wmw.w
21
527
wmu
LT—

v9
LT

v9
6T

vMM
LT—

723
€23
wmu
wmw.w
LT—

9
ol

«wu

#wu

wwm

#wm

9
£z
.ku
9
Tm.w
9
e

#cm

.ku

9
53

.v% M

62

93
3
9
£7—4
o
¢zl
93
3

.v% M

¥93

q1=(9)X
= ()X
=X
1= ()X
?l= ()X
%82 = ()X
= ()X
93 = ()X
==X
212 = ()X
F12 = ()X
=X
%61 = ()X
o= ()X
%= ()X
%= ()X
913 = (&)X
1=
joor\ ey
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the identity t(y, {
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aq
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Char. \root | o | & | &5 | & | ¢ | &
XD =C | —¢3| 83 |43 | &5 | 43| &5
AD =05 | o | &g | &5 | &5 | &9 | 0o
A=8 | 85 | &% | 6| &% | |

XD =8¢ | &o | =G| & | & & | &

Table 5. Gauss sums for primitive characters (mod 32) and the primitive 32-th roots of unity.

Note that the primitive characters (mod 9) have distinct signatures with respect
to every choice for the 9-th root of unity (see Table 5). In the proof of Proposition 2
we need Lemma 1 below. Let ¢ and ¢, be as in Proposition 2 and y be a character
(mod g). The decomposition Z; = Uy x Vi described at the beginning of this section
allows one to write

(18 =) x(0)g = D xw)ey’ = > i T(Lw),  (23)

ucly uclUy
UEVk

where

TOru) = Y )V,

veVy

Let g be a generator of Z7 and w (mod p) be such that
g? ' =1+ wp (mod p?).

Since g?~! generates Vi whose order is p*~1, y(g?~1) is a p*~1-th roots of unity.
Hence x(g?~') = )7 for some uniquely determined y (mod p¥~!); moreover,
(y, py = lif and only if y is primitive. Therefore, the congruence

uw = —y (mod p) (2.4)

has a solution ¥ € Uy only when y # 0 (mod p), i.e., only for primitive characters,
and in this case it is unique and is denoted by u,. With such a notation we have

Lemma 1. Let q and {, be asin Proposition 2 and y be a primitive character (mod q).
Then

t(1.8q) = xu) &g T(x. uy).
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Proof. Let u satisfy uw # —y (mod p). Since Vi is generated by g, = g?7',
writing f,, (h) = yhp + u(gl — 1) (mod q) we have

T(ru)= Y x@g" " = Z x(ghgi e

vEVk

hp (81 R fu(h)
Z Zy "4 o Z é'q :
h=1

Suppose that f,(h1) = f,(hy) with iy # h,, and let iy — by = p¥[ with some v
and (I, p)} = 1. We write f,,(h1) = f.,(h3) (mod ¢) as

(2.5)

y(h —ha)p +ugy>(gy' ™" — 1) = 0 (mod q). (2.6)
By induction on v we get
gf)p“ =1+ lwpv+1 (mod pv+2). (2.7)

The conditions 1 < fq,h, < p*~!imply that v 4+ 2 < k, hence we may consider
(2.6) as a congruence (mod p't), Inserting (2.7) in (2.6) we get

v+1 V+2)

yip"th 4 u(g'j?lwp‘”r1 = 0 (mod p

so that
vl + ugzzlw = 0 (mod p),

and since (I, p) = 1 and g, = 1 (mod p) we have y + uw = 0 (mod p), a
contradiction. Therefore, for every u withuw # —y (mod p) the map f, : Z,
Z ik 1s injective. Since p| £, (k) for every £, it follows that the values f,, (%) run over

a complete set of representatives of pZ k1 as h runs over Z 1. Thus by (2.5)

k—1 —

pk—l pk—l
TG = Y 0 =Y g =0
h=1 h=1

for every u such that uw # —y (mod p), and the lemma follows from (2.3). O

Let y = yu yxv be the decomposition reported at the beginning of this section.
Note that u, and T (. u, ) depend only on the values assumed by y on Vg, i.e., depend
only on yy. In order to get distinct primitive characters with the same signature we
make use of the following strategy. We fix a primitive character n of V; and consider
the p — 1 distnct primitive characters (mod ¢g) of the form yyn, where yy varies
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over the characters of Ux. Hence if y and v are two such characters, {; is a g-th
primitive root and # = u, = uy, by Lemma 1 we have

t(qun.by) _ xu)
Wun.by)  pu)

Since Uy, is cyclic, there exist yy # Yy with yy(u) = ¢y (u) if and only if v is not
a generator of Ug. The best choice for # would be a primitive character for which
u = 1, since in this case (2.8) shows that t(y, {;) = (V. {,), i.e., there are p — 1
distinct primitive characters (mod ¢) with the same Gauss sum. Moreover, both a
couple of even and a couple of odd characters are produced whenever p— 1 > 4. For
p = 3 this approach produces only p — 1 = 2 characters having necessarily different
parity. As a consequence, the case p = 3 must be treated with an ad hoc argument.
The following proof of Proposition 2 shows, in particular, that indeed a character n
with # = 1 can always be found.

(2.8)

Proof of Proposition 2. We look for characters y having u, = 1, and (2.4) shows
that u, = lif and only if y = —w (mod p). The identity x(g?~!) = ¢, implies
that the integer ¢, introduced at the beginning of this section satisfies «,, = cy (mod
p*~1) where c is such that &, = e(c/q), thus u, = 1 if and only if o) = —cw
(mod p). As a consequence, there are ¢( pk_l) distinct characters y having u, = 1,
corresponding to the choices

oy =—cw+hp, h=1,.. Lo,
Among such characters y, those having the same y (and hence equal on V) must
satisfy

G = —cw—i—hpk_l, h=1,....,p—1.
In this way we produce p — 1 distinct primitive characters (mod ¢) all having u = 1
and hence the same Gauss sum thanks to (2.8). Therefore, if p > 5 and k > 2 this
argument produces at least two distinct primitive characters (mod p*) with the same
signature (in fact, it gives a bit more, as mentioned above).

Note that if p = 3 and k > 2 the previous argument produces only two distinct
characters, with different parity since in this case /# assumes only values 1 and 2. In
order to complete the proof we show thatif p = 3 and k > 3 there exist two primitive
characters having distinct y but with the same Gauss sum and parity; we explicitly
construct such a couple of characters. We first observe that

3k—3

4237 =14 5.3 2 (mod 3%y forallk > 3,

which can be easily verified by induction on k. Next we set

foy=6l+4 -1, A =6l(1+32) 14 1
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and prove that, writing /o = 2 - 3¥73, for every [ and every k > 3 we have

fill) = foll + o) (mod 3). (2.9)

The proof is simple, since (mod 3¥) we have

Jol +1o) — fill) = 6(1 +lo) + 4"F0 — 1 — (61(1 + 3 2) + 4/ — 1)
— gl+lo _ 4l o351 4 gl
— 4l (40 — 1y — 213K 161,
=4l5.3k=2 _op3k=1 4 4.3k2 = 3k24l5 ¢/ 1 4),

and 4/5 — 61 + 4 = 0 (mod 9) since it holds for I = 0, 1,2 and the left hand side is
periodic with period 3 when considered (mod 9). Now we choose g = 2 as generator
of Z7%. so gP~! = 14 3 and hence w = 1. We show that the characters y with

oy = 2and ¢ with oy = 2+ 2- 3k=2 have the same Gauss sum; note that both
are even primitive characters. For both characters o, = oy = —1 (mod 3) (since
k > 3),s0u, = uy = 1. Thus, by Lemma 1, in order to prove that their Gauss sums
are equal it is sufficient to verify that T'(y, 1) = T(y,1). We have y, = 2 while
Yy = 2+ 2- 352 therefore T(y.1) = T(i, 1) means that

zk—1

3lyy+221—1 3y +220— 1
T g 3

ie.,
3k71 3k71

Z é.flg(l) — Z é-fk1(l)
3 3 ’

=1 I=1

Clearly, the values of such sums are not modified by a shift I — [ + [y, hence
equality follows from (2.9) after shifting the left hand side. Note that a similar
argument provides also a couple of distinct odd primitive characters with the same
Gauss sum. O

We finally deal with the case ¢ = 2 with k > 6 and prove the following

Propesition 3. Ler ¢ = 2K with k > 6 and Cq be a primitive g-th root of unity. Then
there exist two distinct primitive characters y, ¥ (mod gq) with s(x.Cy) = sy, {y).

The proof in this case is rather computational and requires several preliminary
results. Denoting by 8 the odd integer, unique (mod ¢), such that ¢, = e(8/25), the
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Gauss sum associated with the primitive character y, g (see at the beginning of this
section) can be written as

2 k2
(et L) = 3 Y Aap(CD¥SV)e(B(—1)"57/25)
u=1 v=1
2k—2 2k—2
= (1" ) e(Bldv—5")/2F) + Y " e(Bav +57)/2%)  (2.10)
v=1 p=1

z fr) i
= (D% Y Gt g Y oW,
v=1 v=1

where
fr(v) =4v—5" 4+ 1, fo(v) =4v+ 5" — 1.
The following lemma collects a list of useful identities satisfied by the functions

J=(w).

Lemma 2. The following facts hold true:
) f4(0) + f-(v) = 8o for every v,
i) fi(v) = 0 (mod 16) for every v,
iii) f_(v) = 8 (mmod 64) for every odd v,
iv) fr(v+253) = £ () (mod 2%) for every v, for k > 3,
V) fr(v+ 2573 = £ (v) + 2% (mod 25F1) for every v, fork > 4,
vi) fo(u+2F7%) = f_(v) (mod 2%) for every v, for k > 5,
vi) fo(v 42574 = f_(v) + 2F (mod 25tV for every odd v, for k = 6.

Proof. By induction on k we have

527° = 1 4 251 (mod 2%) for all k > 3, 2.11)
5270 = | 4 ok=1 4 ok (mod 2K for all k > 4, (2.12)
527 4 ok=2 okt ook (mod 2KFY) forall k > 6. 2.13)

Now we prove each claim. 1) is trivial. ii) is clearly true when v = 0, and by induction
on v we have (mod 16)

0=5f(v) =200 5" 4 5=4p 5"l L 54w+ 1)—5"t 41
= f+(v+1).
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iii) Clearly f_(1) = 8 (mod 64). Let v be odd and by induction on v we assume
that £ (v) = 8 (mod 64). Multiplying by 52 we have (mod 64)
8§=52.8=5"f(v) =5 -4v 45252
=4 +2)+ 5" - 1+320v-1) = f_(v+2).
iv) By (2.11) we have

Filv+ 2k—3) — 4y 4 2F-1 _ gu+2K3 +1

=4y +2F 1 _svFl L 41
= f+(v) + 25711 = 5%) = f£1(v) (mod 2F).
v) Note that
Fo(v + 2873y = gy g 2k—1 _gur2 0 e gy okl a5y

thus recalling that 57 = 1 (mod 4) for every y, by (2.12) we have for some integer /
that

fro+227) = fi) + 25 - (a4 25 2k -
= fy(v) + 2F (mod 2% 1),

vi} The claim follows from 1) and v).
vii) Note that

foo+ 25 = dp 4 2R 2 1592 = ) 22 52T D,

hence recalling that 57 = 5 (mod 8) for every odd y, by (2.13) we have for some
integer £ that

o 425 = £.0) +92% 2 £ I+ 48801 - 9% 23 25T 1o¥_ )
= f_(U)+2k_2+2k_2+2k_1 +2k+2k
= f-(v) + 2% (mod 21,

and the lemma follows. O

Lemma 3. Let k > 4. The function fy(v) (mod 2X) assumes each value exactly
mwice when v = 1,...,2K73. Moreover, for such v the range of f+(v) (mod 2%)
coincides with the numbers 164, £ = 1,...,2K4 each one with multiplicity 2.

Proof. 'We first prove that every value of f4 (v) is assumed at least twice. A trivial
computation shows that

0= fr(1) = fL(2) (mod 2%),
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proving our claim for k = 4. Now we proceed by induction. Let & > 4 and
let xo,vo € {1,....2%573Y, xo # o, satisfy fi(x0) = fi(yo) (mod 2F). We
distinguish two cases.

Case 1. Suppose that f(xg) # f4+(vo) (mod 2KF1). Then f4 (xo) = fi(vo) +
2% (mod 2%*1) and hence v) of Lemma 2 shows that (xo + 2573, yo) and (xg, yo +

2573 are solutions of £+ (x) = fi(y) (mod 2¢F+1),

Case 2. Suppose that £y (xo) = fi(yo) (mod 2¥T1). Then by v) of Lemma 2
we obtain f (xo +257%) = f1 (xo) + 2 = f1(yo) + 28 = fi (yo +2F7%) (mod
25+1y hence (xo + 2573, yo + 2573) is also a solution (mod 2K +1).

Letnow x € {1,...,2%¥72}. If x < 2%¥73 then write xo = x and there exists
yo € {1,...,2573 vy # xg, such that fi(x0) = fr(yo) (mod 2). If we are in
Case 1 then £y (xo) = fr(yo+ 2573) (mod 2% 1) and hence the value £y (x) (mod
2k+1y js attained at least twice, while if we are in Case 2 then fy(xo) = fi(yo)
(mod 25*1) and again the value fi(x) (mod 25*1) is attained at least twice. If
2K=3 < x < 2K=2 we write xy = x —2%~3 and again there exists y € {1,...,2873},
yo # xo, such that f4(x0) = f4+(yo) (mod 2%). Then we repeat the same argument,
using the solution (xo + 2573, yg) in Case 1 and the solution (xo + 2573, yo +2573)
in Case 2, thus proving that the value 7 (x) is assumed at least twice in this case as
well.

Now we prove that each value is assumed exactly twice. When & = 4 the claim
is true. Assume that there exists a minimal value k& > 4 for which there are distinct
integers 1o, vg, wo € 1,...,2573 with fy(uo) = fir(vo) = fr(we) (mod 25).
Write _

, o if ug < 2574,
Up = = =
{uo — 2k_4 ifug > 2k_4,
and similarly for vy and wo. By iv) of Lemma 2 we have that f4 (10) = f3(uo)
(mod 261y hence fy(uo) = fy(vo) (nod 2%) implies that /1 (t10) = f4(¥o) (mod
2k=1y Hence fy(ito) = fi(D0) = fy (o) (mod 25~1), From the minimality of &
we obtain that #¢, vo, wo cannot be all distinct; let ug = v, say. The definition of
such numbers implies that either 1y = vy, or ug + 2574 = vy, or uy = vy + 2872,
The first case is ruled out by our assumption, and the second and third cases are treated

similarly (it is sufficient to change 1o with vp), s0 we may assume thatug = vo —|—2’E —
By v) of Lemma 2 we get

Fr(uo) = Filvo+ 2674 = fi(wo) + 2571 (mod 2F)

which contradicts our assumption that f4 (1) = f4+(vo) (mod 2k }, thus proving the
first claim.

By ii) of Lemma 2 we know that the values of f (v) are of the form 16£, hence
the number of distinct values of £ (v) (mod 2%) is at most 2% /16 = 2¥~*. On the
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other hand, by the periodicity (mod 2%) expressed by iv) of Lemma 2 and the fact that
each value of £y (v) with 1 < v < 2573 is attained exactly twice, we have that the
distinct values of £y (v) (mod 2%) with 1 < v < 2572 are at least 2¥72/4 = 2k—4,
Therefore the values of /1 (v) (mod 2%) are the numbers 164 with 1 < £ < 25—4,
and the lemma follows. O

The argument proving Lemma 3 shows also that when 1 < vy, v, < 2573 and
Fr(v1) = fi(vs) (mod 2%) then v, and v, cannot have the same parity. As a
consequence we have the following

Lemma 4. Let k = 4. The function fy(v) (mod 2F) assumes each value exactly
once when v € {1,...,2573Y runs over odd integers. Moreover, for such v the range
of £+ (v) (mod 2%) coincides with the numbers 164, £ = 1,...,2K7*  each one with
multiplicity 1.

The following lemma gives a similar result for the function f_(v).

Lemma 5. Let k > 6. The function f_(v) (mod 2) assumes each value exactly
twice when v € {1,...,2"*} runs over odd integers. Moreover, for such v the range
of f—(v) (mod 2k) coincides with the numbers 8 + 644, f = 1....,2%7%, each one
with multiplicity 2.

Proof. The proof is similar to the proof of Lemma 3, using iii), vi) and vii) of Lemma 2
instead of ii), iv) and v) of the same lemma. We leave the details to the interested
reader. -

Proof of Proposition 3. A direct computation shows that the two distinct primitive
characters y = xqa4p and ¥ = xg 448+ (Which are even when ¢ = 0 and odd
when ¢ = 1) have t(x, e(B/2%)) = t(y, e(B/2%)) for every odd B (see Table 4),
hence our claim for n = 6 1s proved.

Ifg = 2K withk > 7write y = Xepad ¥ = x, g pgok—3 where, again, o = 0, 1
and B is the odd integer such that ¢, = e(8/q). We prove that (. {,) = t(¢. ;).
In fact

2k—2

t(. L) = (=D 3 e(@B(1 + 2w — B5%)/g)

v=1
2k—2

+ 3 (@B + 25 + B59)/g)
v=1

ok —2 9k—2

= (—1)aé_—q Z (_l)vé.qur(v) i Z (_l)v;L{L(v)

v=1 v=1
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and hence, thanks to (2.10),

2k 2 2k "
T(3, 0g) — (¥, &) = (—1)*2¢, Z AR TS Z ¢1-@),
v odd v odd

Therefore, the 25— 3-periodicity of f4(v) (mod 2¥)in iv) of Lemma 2 and Lemma 4
give
zk 4

v odd v odd

whenk > 5. Analogously, the 2€—*-periodicity of f_(v) (mod 2¥)in vi) of Lemma 2
and Lemma 5 give

ok—2 ok—4 2k—6
3t —4 Z ¢/~ =3 Z e(B(8 + 644)/2F)
ki  oda
2k—6
=878 > " e(Bt/2"%) =0
£=1

when & > 7. Proposition 3 follows since y and v are distinct primitive characters
with the same parity. O

The proof of Theorem 2 is now a simple consequence of Propositions 1, 2 and 3.
In fact, by the special case {; = e¢(1/q) of Proposition 1 we have that if ¢ € @ then
the map s, 18 injective. Viceversa, assume that ¢ # 2 (mod 4) does not belong to €.
Then, writing ¢ = 2%3%m with (m, 6) = 1, we have the following cases:

(1) m is not square-free and a, b are arbitrary with a # 1;

(2) m 1s square-free and both conditions (a) and (b) are not satisfied.

In case (1) we can write ¢ = g1¢» with (g1,¢2) = 1 and ¢; = p* for some prime
p = 5and k > 2. Thanks to (2.1}, given primitive characters y; (mod g;) and y»
(mod gq) let {;, and {,, be the primitive roots (not depending on y; and y») such
that

t(x1x2.¢(1/q)) = ©(x1. 841 )T (X gn- Cg)- (2.14)

Now fix the primitive character y» (modg;). By Proposition 2, there exist two distinct
primitive characters y; and y’; (mod ¢; ) with the same signature with respect to {4, .
Finally, consider the distinct primitive characters y = 1 x2 and ¥ = x| x2 (mod q).
Clearly y and v have the same parity, and thanks to (2.14) we have

t(x) = (11, ch)f()(qz’ é‘qz) = T(Xll’ é‘q1)T(quv éqz) = t(y).
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Thus the map s, i8 not injective in this case.

The argument in case (2) is similar. In this case we have either a > 6, or b > 3,
ora € {4,5} and b = 2. The first two subcases are treated in a similar way, using
Proposition 3 and Proposition 2, respectively. Indeed, in both cases we can write
g = q192 with (¢1.¢2) = 1 and ¢, = 2% or ¢; = 3%, thus there exist two distinct
primitive characters x; and x| (mod g;) with the same signature with respect to the
primitive root {,, , and the non-injectivity of the map s, follows again. Finally, if
a € {4,5} and b = 2, we note that modulo 2%, 2° and 32 and for every primitive
root, there exist two distinct primitive characters with the same Gauss sum but with
different parity, see Tables 2, 3 and 5. Hence, multiplying such characters in a suitable
way we get two distinct primitive characters (mod ¢1), g1 = 2932, with the same
signature, and we proceed as before thus showing that the map s, 1s not injective in
this subcase as well. O

Clearly, the above arguments give exactly the same characterization of Theorem 2
for the integers g such that the map s4 ¢, 1s injective. Indeed we have

Theorem 4. Let {; be a primitive q-th root of unity. Then the map sq ¢, is injective
ifand only if g € Q.

We also remark that the same arguments can be used to give the following charac-
terization of the integers g for which the map S; ¢, sending primitive x’s to t(x, {,)
is injective.

Theorem 5. Let {,; be a primitive q-th root of unity. Then the map S; 2, is infective
if and only if g = 2%m with m odd square-free and a € {0, 2, 3}.
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