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Local signature defect of fibered complex surfaces via monodromy
and stable reduction

Tadashi Ashikaga

Abstract. We consider the localization problem of signature of a fibered complex surface. In
this paper, we analyze the contribution of topological monodromy to the local signature of a
fiber germ. In order to realize it, we describe explicitly the behavior of Atiyah—Patodi—Singer’s
eta invariant under the stable reduction of a fiber germ in terms of Nielsen’s data.
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Introduction

Let f: S — B be a surjective holomorphic map from a compact complex surface
S to a nonsingular curve B such that the general fiber of f is a curve of genus g.
We call f afibration of genus g. Let Sign S be the signature of the intersection form
on H?(S,Q). If there exist a finite number of fiber germs (£, F;), F; = f~1(P})
(1 <i <s, P; € B)and alocal invariant o ( f, F;) is geometrically well defined such
that

s
SignS =Y o(f. Fy).
i=1
then we say Sign S is localized and call o ( f, F;) a local signature.

Atiyah [Atf] had a deep insight which is, in some sense, the origin of several
formulations of this concept. Matsumoto [Mal], [Ma2] used the Meyer function and
formulated the local signature of genus 1 and 2, and calculated them for the Lefschetz
fiber germs. Endo [E] extended it for hyperelliptic fibrations of arbitrary genus. (See
also [Mo].) Another local signature for hyperelliptic fibrations is defined by using
the double covering method ( [X], [AA1]), and these two notions are in fact coincide
with each other ([Te2]).

On the other hand, Ueno [U] used the even theta constant and defined and calcu-
lated a local signature of genus 2. lida [li] gave an analytic interpretation of the local
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signature of genus 2 by using the theta divisor and the adiabatic limit of the eta in-
variant. Kuno [Ku] extended the approach of the Meyer function to non-hyperelliptic
fibrations of genus 3. For the survey articles, see [AK], [AE].

Now, through a series of papers, we present a certain type of a local signature
including generic non-hyperelliptic and unstable fibrations of arbitrary genus. From
our viewpoint, this notion should philosophically consist of two aspects of “moduli”
and “monodromy’:

local signature := “moduli” aspect + “monodromy” aspect. (1)

With respect to the moduli aspect, we refer the joint paper with K. Yoshikawa
[AY] in detail. Here we only comment that, if f: S — B is a stable fibration,
then the moduli aspect of (1) purely contribute it. Namely, by developing the idea of
L. Smith [Sm], we can define an explicit “signature divisor” on the Deligne-Mumford
compactification ]l71g and can localize Sign S via the pull back of it by the induced
map B — M,.

The main topic of this paper is the analysis of the monodromy aspect of (1), which
concerns the direct relation between the local monodromy around the singular fibers
and the local contribution of the stable reduction to the global signature. Namely, our
purpose here is to write down it explicitly by the language of the Nielsen’s invariants
[N1], [N2] of the monodromy map.

Note that Tan [Tan] and Viehweg [V] had important studies on the contribution of
the stable reduction to global invariants of 8§ by certain algebro-geometric methods.
On the other hand, our method is topological based on variations of the signature
theorem historically started from [Hil], and the setting is local in base.

We summarize the arguments here. Let f: S — A be a degeneration of curves
with the central fiber F over a closed disk A, and let 2 ¢ be a Riemannian metric on
S such that kg is a product metric near the boundary d.S. We define

o(f. F:hs) = SignS +n(3S, has),

where Sign S is the signature on H?(S,3S; Q) and 5(9S, hyg) is the eta invariant
(IAPS]) with respect to the restricted metric has of hs on the boundary 5. Let
I S — A be the minimal stable reduction of S with the central fiber F which
comes from the cyclic base change A — A of degree N. We also put o ( f F; thyg) =
Sign S+ 5(dS, h 55) where h,z is a Riemannian metric on S which coincides with
the natural pull back of /1,5. We define

Lsd(f. Fihys) = o (f, Fihys) = w0 (F Filgg),

which we call the local signature defect of the degeneration f. This notion is analo-
gous i some sense to the “defect part” which Hirzebruch explained in [Hi2].
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Now our main theorem (Theorem 5.2.1) says that the local signature defect of f
is explicitly written in terms of the Nielsen’s monodromy data of f. In particular, this
is independent of the choice of the metric /135. Moreover the local signature defect
1s nothing but the local contribution of the difference of the global signatures for the
global stable reduction (Lemma 5.3.1).

The idea of the proof of the main theorem is as follows: The cyclic group G =
Z/{N ) acts holomorphically on S so that the resolution space of the singularities of
the quotient space S/G coincides with the original .S, and the problem is reduced
to the comparison between Sign S and Sign S/G. Since the spaces S and S/G are
also complex orbifolds, we can apply Kawasaki’s orbifold signature theorem [Ka],
which is a natural extension of Atiyah—Singer’s G -signature theorem. The data of the
integral of the equivariant L-forms on the infinitesimal neighborhoods of the G-fixed
point sets are essentially reduced to the Dedekind sum with respect to the monodromy
data, which are calculated explicitly in Sections 4 and 6.

For the preparation of this calculation, we propose the following two tools, which
themselves seem to have independent meanings. The one is a formula of Dedekind
sum (Theorem 4.1.2), which is due to Myerson and Holzapfel ([Hol], [My]). The
other is a certain precise relation between the stable reduction and the Matsumoto—
Montesinos’ method in Sections 1-3 as follows:

The study of the local monodromy has a long history, and it is settled that the local
monodromy as an element in the conjugacy class of the mapping class group of genus
g belongs to the class of pseudo-periodic map of negative twist. Conversely, for a
given pseudo-periodic map of negative twist o X — X, of a Riemann surface X,
Matsumoto—Montesinos ([MM1] Part 1) constructed a certain topological quotient
space X, — X /{i), which we call MM-quotient.

An algebro-geometric interpretation of X, /(u) due to Takamura [Tak] is as
follows: We start from the stable reduction S — A of f. The Galois group
G = Gal(A/A) acts holomorphically on S, since it is 2-dimensional ((DM]). The G-
action has natural local expressions at the nodes and the points whose isotropy groups
are nontrivial as in Section 3.1 (cf. [Tel]). He constructed the local uniformization
spaces of these actions and determined the types of singularities on §/G. The nor-
mally minimal model of the resolution of S/G is nothing but the space X g/ (1)
Therefore, to say generically, the stable reduction theorem induce the MM-quotient.

The MM-quotient has richer information than the usual stable reduction theorem.
Indeed, we propose in Section 2 “a precise” stable reduction theorem based on MM-
quotient as follows: Since the numerical Chorizo space of the singular fiber of f
coincides with X /{u), all the irreducible components are classified into cores, tails,
arcs and quasi-tails as in Section 1. We contract all the tails, arcs and quasi-tails to
points, and put S* the resulting surface. Then the natural fibration § — A of the
normalization S of S¥ x o A via the cyclic cover A — A whose degree coincides with
a pseudo-period of  is nothing but the stable reduction of f (Theorem 2.2.1). This
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process 1s more precise than the usual one, because the birational transformations
in the process are explicit. Moreover, the description of the Milnor number of the
A-type singularities on S, the coincidence of S*# and S/ G, and the description of the
singularities on S* are all directly known.

By comparing the monodromy maps of S — Aand S/G — A = A/G, we also
directly obtain the coincidence of the data of the local action of G to S (which we call
G-valency ete. in Section 3.1) and the Nielsen’s monodromy data (Theorem 3.1.1).

1. Matsumoto—Montesinos quotient

In this section, we review the construction of the quotient space introduced by
Matsumoto—Montesinos ((MM1] Part I} and related facts which will be used after-
wards.! This space is constructed by the topological quotient of a Riemann surface by
an clement of the subclass of the mapping class group which is called pseudo-periodic
map of negative twist. Here our description is slightly modified from the original one
[MM1] by using the method of Takamura [Tak].

1.1. Let X, be a Riemann surface of genus g and let p: X, — X, be a pseudo-
periodic map of negative twist. By definition, p 1s an orientation-preserving home-
omorphism such that the following conditions are satisfied modulo isotopy: There
exists a decomposition

Ye=AUB (2)

into the annulus-part A = | | #4; which is the disjoint union of the annular neighbor-
hoods #; of simple closed curves on X, belonging to the admissible system of cut
curves, and the body-part B = | | B; which is the disjoint union of Riemann surfaces
B; with boundary, such that the boundary set dB coincides with the boundary set
dA. The restriction j|p is periodic, i.e., the power (1| )" for some natural number
N is the identity map idg. The restriction of the power (;L|,,4,J.)N to each annulus
#A; 18 a right-handed integral Dehn twist. We call such an N a pseudo-period of ji.
Note that NV is a multiple of the minimal pseudo-period Ny (i.e., the minimal natural
number among all the pseudo-periods).

Now let [i] be the equivalence class of u of the conjugacy class M of the
mapping class group of genus g. We review the conjugacy invariants of [,u]

Let C be an oriented simple closed curve on Xg. Suppose there is a natural
number m = m((j’) such that ,um(é j = C as an oriented curve, where m is assumed
to be the minimal number which enjoys this property. Moreover suppose (M|C)m
is periodic of order A = A(C ) > 1. Then for any point R on C, there is a natural
number o = o(C )ywith 1 <o < A—1 such that the iteration of ;" are situated in the

IFor many examples of the notion discussed here, see for instance [AIL].
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order (R, u"7(R), MZmor (R), ... —Dma (RY) when viewed in the direction of
C. The set of triple (m(C) A(C) o(C ))is called Nielsen’s valency at C (IN1]). Let
§ = 5(C) be the integer which satistiesod = 1 (modA)and 1 < § < A—1. Then the
map (| 2 behaves as the rotation of angle 276/ in a suitable parametrization of C.
Since the number 4 is also important in our argument, we simply call the quadruplet
m(C), MC),o(C),8(C)) the valency at C .

Let Q be a point on the inside of a body component B;\dB;. Let m(B;) be
the minimal natural number such that 8|5 = idp,. If there exists a natu-
ral number m = m(Q) which is strictly smaller than »(B;) such that the points
{0, n(Q),..., )" 1(Q)} are distinct each other and " (Q) = Q, we call Q a
multiple point. Then there exists a disk neighborhood Do of Q which is invariant
under the action p/". The valency (m(Q), A(Q),a(Q),5(Q)) at Q is defined to be
the valency of the boundary curve dD o of Do whose orientation is defined from the
outside of the disk. (Note that the orientation of dD¢ is defined from the inside in
[MM1].)

For an annulus component #4;, we put dA; = 8&4}1) I 8&41(-2) the decomposition
to connected components of the boundary curve where the orientation is defined here
from the outside of the annulus. The valency at 4; is defined to be the couple of

valencies (m (94), A(dAT), o (0AT), 5(3A)) for k = 1,2. If there exists a
natural number £ such that # interchanges the boundary components of #;, i.e.,

ub (BAJ(I)) = 80%5.2), we call A; an amphidrome annulus. Otherwise we call A; a
non-amphidrome annulus.

Let & be the smallest natural number such that 4% (4A;) = A; does not interchange
the boundary components. Let y be a non-zero integer such that (¥ [3.4,; 1s the identity
map. Then y is a multiple of &, and ' : A; — #A; is aresult of e full Dehn twist, e
being an integer. Then we define the screw number at A; by s(A;) 1= ea/y.

Then the theorem of Nielsen [N2] and Matsumoto—-Montesinos [MM1] says that
the conjugacy class of u 1s determined by the data of

(1) valencies at the multiple points { @} and at the annuli {A; },
(i1) screw numbers at the annuli {4},

(iii) the action of u to the extended partition graph T (jt), i.e., the one-dimensional
oriented graph whose points correspond to { B; } and whose segments correspond
to {»4,} in a natural way.

1.2. By a numerical Chorizo space, we mean a connected topological space con-
sisting of the components which are underlying topological spaces of irreducible
Riemann surfaces with nodes so that the multiplicities are attached to every compo-
nents. Moreover, if two components of them intersect each other, they intersect at
several points transversally.
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For a given conjugacy class of pseudo-periodic map of negative twist ], Matsu-
moto—-Montesinos [MMI1] constructed the generalized quotient map m,,: Xy —
Yg/{t). Here Xg/(u) is a certain numerical Chorizo space, which we call the

Matsumoto—Montesinos quotient of u. Let Xg/{p) = >, o; I @) he the decompo-

top
sition to its components. By the construction, thp) 1s classified into the following
types (1)—(v):

(1) th;) is a core component. Namely, th’; is the unique component which contains
the support of m, (B;), where B; is the complement of disk neighborhoods of

multiple points of & on a certain body connected component B;,

(i1) th’; is a sphere component of a fail which comes from the quotient of a disk

neighborhood of a multiple point,

(ii1) th? is a sphere component of an arc which comes from the quotient of a non-
amphidrome annulus,

(iv) Ft(();) is a sphere component of a quasi-tail which comes from the quotient of an
amphidrome annulus.

We review the construction and the properties of the tails, the arcs and the quasi-
tails in Sections 4, 1.5 and 1.6, respectively.

1.3. Before the construction, we prepare some terminology. Let (A, o} be any pair
of integers with 1 < o < A — 1 in this subsection. Let

A n 1 |
f=ki-2=KK-——— =K, - .= [[K1, K2, ..., K]
o o ns 1

3)
be the continued linear fraction. The sequence {n;} ;rol of natural numbers which
satisfies ng = A,n1 = o and

R = Ki—altya—Hhp QX1 5r+ 1) 4)

is called the usual multiplicity sequence of the continued linear fraction (3). Note
thatn, = landn,4+1 = 0.

Conversely, let {n; } :01 be any sequence of non-negative integers such thatn; # 0
and (n; 41 + n;—1)/n; are integers for 1 < i < r. We call such {”i}{i& abstract
multiplicity sequence. We define the associated continued fraction [K1, K», .. ., K;]|
of this abstract multiplicity sequence by putting K; = (nj+1 + n;—1)/n;.

For instance, we sometimes set the initial values ng, n; another pair of natu-
ral numbers, and consider the abstract multiplicity sequence by the same recursion

formula (4) of (3) as in the following example.
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Example 1.3.1. We consider [K1, K5, K3, K4, K5]] = [2,2,2,3,2]] = 14/11.
Then the usual multiplicity sequence is {14,11,8,5,2,1, 0}.

On the other hand, the abstract multiplicity sequence with the initial values ngp = 6,
ny = 5 of this continued linear fraction i1s {6,5,4,3,2,3,4}. Indeed, we have
iy =2-5—6=4,n3=2-4—-5=3, 014 =2-3—4=2,n5=3-2—-3 =23,
ne=2:-3-2=4,

Therefore, [[2,2,2,3,2] is also the associated continued linear fraction of
{6,5,4,3,2,3,4}.

1.4. Tet Q be a multiple point on B with the valency (m, A,0,8). Let (3) be the
continued linear fraction of A /o with respect to this valency data, and let {n;}; :01 be
its usual multplicity sequence.

Then we attach at a point of a disk £ of multiplicity m n a chain of rational curves
of the length r of multiplicities mini, mns,...,mn, (see [MM2], p. 72, Figure 1).
This is the fail arising from the multiple point Q.

1.5. Next consider a non-amphidrome annulus #4 = ;. Let 94 = dA®0 || 042
be the decomposition to the connected components of the boundary and let
(m® L&) &) 5K pe the valencies at dAK) (k = 1,2). Let s(A) be the screw
number at 4. Then s (A) is a non-positive rational number, and is written as

s 5@
S(A):—W—W—K (5)
where K is an integer greater or equal to —1 ((MM1]). Let
prey) 1@
W — [[K],Kz,...,Kr]], TZ) — [[Ll,Lz,...,Lr/]] (6)
g g

be the continued linear fractions and let {n; } :5 {m;}; ;J[)l be their usual multiplicity

sequences respectively. Let &%) be the natural number which satisfies
oW§D =6@20 11 ¢ =1,2).
We define a natural number ¢ and integers v, v*, v, v™ by
d = —A(I)A(Z)S(A) — 5@ + 5@, M + Kl(l)l(z), (7)
p=oW§D 1 1 @50 4L ;WD) D g  p* = @D 4 ) D52 4 ;@)D g (g)
v=v{modd), l<v<d-—1 v =v*({modd), l<v*<d-1. (9

Lemma 1.5.1 (Takamura [Tak]). (i) vv* =1 (modd ),
(i) IfK >0, thenl <v<d—landl <v*<d—1,ie,v=1vandv* = v*
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Proof. The assertion (1) follows from
vo* = (W@ 4 6Ws@D 4 WA K)g 4 1.
The former assertion of (ii) follows from

(A(l) _ 0(1)) d+ 1@
- 2
The latter assertion of (ii) is similar. O

d—v > ()

Now we first assume K > 0. From (6), we define new continued fractions ® :=
AL /6 A2 /6@ K as follows:
(1) If K > 1, put

®=[Ki.Ks...Kc1. K, +1,2,...,2, Lo+ 1, Lyr—q.... Lo, L1].
S —
K-1
(i)If K =0,r > land r’ > 1, put
(D — [[K17K27"' vKr—laKi" + LI‘/JLFI—l * '7L27L1]]‘
(i) If K =0,r > land r’ = 0, put
® =K. Ka. ..., Ko

Lemma 1.5.2. The abstract multiplicity sequences with the initial values A M
of the continued linear fraction ® are as follows:

WK > 1, then{ng,ny,....0n—1,np, Lo Lmpr,mpr_y, ... miq, Mgt
S e’
K-—1
(YIfK =0,r>1andr' > 1, then {ng,ny,... ,np—y, 1,mp_q, ... ,my,mph

(D IfK =0,r > landr’ =0, then {ng,ny,...,n,_1,0,}.

Proof. We prove (i). Let {£;37 "X be the abstract multiplicity sequence of ®
with the initial values £5 = A = ng, £; = ¢V = . Itis clear that £; = n;
for0 <i < r. Sincen, = 1 and K;n, — n,—1 = 0, we also have £, =
(K + 1y —npg=land 4, 4; =2-1—1=1for2<i < K.

On the other hand, the usual multiplicity sequence {m; }; :51 satisfies mi,r4q = 0,
mu = landm;_o = L;_ym;_1 —m; for2 <i <y’ + 1. Hence

Livgks1=1-Lpr+1)—1=Ly =mp_g. (10)
By (10)yand £, g = 1 = m,+, we inductively have
brvk+i = Ly—i—tdrykvi-1 —CrvKvi—2 = Ly 1mMpr—jp 1 — My 0 = My

for2 <i <y,
The proofs of (i1), (ii1) are similar. L
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Lemma 1.5.3. The value of the continued linear fraction of each of ® coincides
with d /v.

Proof. See [To] p. 64, Lemma 4.9. O

Note that Lemma 1.5.3 also implies that [L1, Lo, ..., Ly, Ly +1,2,...,2,
N— —

K, +1,K,—1...,K>,Kq]] =d/v* and so on. K-1
Next we assume K = —1. This case occur only when §(V /A1) 1 §@) /3@ > 1,

Theorem 1.5.4 (Takamura). Assume § /A1) 4 §2) /3@ > 1,
(i) There exists an unique pair (v, @') of integers with) < w <r, 0 <o’ < ¥/,
(w, ") # (0,0) which satisfies

Ry = My, Ap+1 + My/+1 = He.

In particular, the following are abstract multiplicity sequences;
@) Ifo=> 1,0 =1, then {ng,n1,... . 0p—1,Mep, Mey/—1,..., M1, M0}
(b) If ' =0, then {no,n1,...,Rp—1,Np}
(1) The associated continued linear fractions © of these sequences are respectively
(a) ®=[K1,Kz,....,Kp—1, Ko + Loy — 1, Loy—1,..., L2, L1]],
(b) © =[K1.Ka,...,Ky_1]l for o > 2. (Note that © is empty for o = 1.)

(iii) In the case (a), we have v = v and v* = v*. Moreover the value of the
continued linear fraction ® coincide with d /v by putting K = —1 in (8).

(iv) In the case (b) for @ > 2, we have v < v and v* = v*. The value of ®
coincide with d /v by putting K = —1.

Proof. See [Tak], §6.2. O

We will again discuss in Section 3.2 the geometric meaning of Lemma 1.5.3 and
Theorem 1.5.4.

Now we go back to the construction of the arc m,(4). This is related to the
abstract multiplicity sequences in Lemma 1.5.2 and Theorem 1.5.4. Namely, this
is constructed by combining two disks D and D with multiplicities mn, and
mm respectively by the following chain of spheres:

(i) If K > 1, then the chain has length r + r’ + K — 1 such that the multiplicities
of the components are min,mny, ..., MR, W, ... W, MW, ... W, MW (see

——

[MM2], p. 73, Figure 2). K-1

(ii) If K = 0, then the chain has length r 4 7' — 1 such that the multiplicities of the
components are mn,mng, ..., MAp_1, M, MM _1, ..., mma, mm (Figure A).
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(ilia) If K = —1,@ > land @’ > 1, then the chain has length @ + @’ — 1 such that
the multiplicities of the components are mn |, mho, ... , MA 4y 1, M4y, MMy _1, ...,
mmy, mm; (Figure B).

(iiib) If K = —1, w > 2 and «’ = 0, then the chain has length @ — 1 such that
the multiplicities of the components are miny, mny, ..., mng,_1 (Figure C).

(iiic) If K = —1 and @ = 1, ’ = 0, then the banks of both sides of the bodies
connect directly at one point transversally (Figure D).

% - w. h mml mmo

Figure A

mno mmo

Figure B

HIRHg | MRy | eeeeen HlRp—1 Hing

Figure C

mng mmg

Figure D

The above arc 7, (+A) is globally attached to core components in a natural way.
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1.6. Lastly we assume that the annulus # is amphidrome. The guasi-tail 7, (A) is
constructed as follows:  Let (2m’, A, 5, 8) be the valency at both sides of boundary
curves of », and let {n;};_, be the multiplicity sequence of the continued linear
fraction of A/o as in (3). Then 7, (+) is constructed by connecting a disk of multi-
plicity 2m’mg and the set of rational curves at a point transversally. This set has the
dual graph of Dynkin diagram of type D, and the multiplicities of components are
2m'ny,2m'ng, ..., 2m'n, ,m’ ,m’. (the last m’, m’ are the multiplicities of the two
tail components. (See [MM2], p. 73, Figure 3).

The space 7, () is also globally attached to a core component in a natural way.

1.7. We present two examples of MM-quotients for certain pseudo-periodic maps of
genus 2. We will again discuss them in Sections 2 and 5 via another viewpoint. For
further examples of MM-quotient, see [AT1].

Example 1.7.1. Let p: X5 — 35 be the pseudo-periodic map of negative twist of
genus 2 as follows: The decomposition (2) for p is written as X, = £1 U By U A,
where each 8; (¢ = 1,2) is a body connected component consisting of a one-
punctured torus and # is a non-amphidrome annulus. The valencies (m, A, 0, §) on
By are (1,4,3,3), (1,4,3,3) and (1,2, 1, 1), where (1,4, 3, 3) is attached to the
boundary curve 38; = 0AM and the others are attached to the multiple points.
According to [AI1], we simply say that the total valency on B is 3/4 +3/4 + 1/2.
By the same way, the total valency on B, is 2/3 4+ 2/3 + 2/3. The screw number
s(A)is —3/4—-2/3— K (K = —1). The minimal pseudo-period of u is 12. See
Figure G in Section 2.
The MM-quotient space F of p for K > 0% and K = —1 are written as

2, 3 K-1
F=4FO 13" 3 a- HFEY + 27" + 3 FO 4 35O
k=1j=1 =1
3 2
' 2
+3.Y B-HFT (K =0,
k=1j=1

3
F=4FD + 3 @- HFY +2FP +3F) +2FG 7 +3F®
j=1

3 2
+3 3 B-HFP (K =-1).

k=2j=1

il 2 K—1 0) .
21f K = 0, then F1(3) = Fl(z) and Ej:l Fj( ) is empty.
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The configuration of £ is as in Figure I in Section 2. Here F has two core components

F® and F@® | four connected components of the tails Zj=1(4 — j)Fz(Jl.), A7l

ZJZ'=1 3—7 )FZ(JZ.) and Zf=1(3 — 7 )Fg), and one connected component of the arc

Yo 4= PHFY K O 1y 2 RS resp. 3FY +2F5 ) for K > 0
(resp. K = —1).

Example 1.7.2. Let p: X5 — ¥, be the pseudo-periodic map with the same de-
composition ¥, = B; U By U »4 as in Example 1.7.1 such that the total valency of
eachof B; (f = 1,2)is3/4 + 3/4 + 1/2 and A is an amphidrome annulus with the
screw number —3/4 — 3/4 — 2K (K > 0). The minimal pseudo-period is 8. The
configuration of the MM-quotient F of p is as in Figure E. Here the MM-quotient
space I’ has one core component, two connected components of the tails and one
connected component of the quasi-tail.

Quasi-tail

Figure E

2. Stable reduction in biregular sense

By a stable reduction f S —> Aofa degeneration f: S — A of curves, we mean
that S is birationally equivalent to the fiber product S x o A where Z~—> Ais acyclic
cover which is totally ramified at the origin, so that the central fiber f~1(0) is a stable
curve. The total space S may have singularities of type A at the nodes of the central
fiber. Note that the stable reduction is not unique for given f. Several proofs are
known for the existence of the stable reduction in this simple situation ([DM], [AW]
and [BPV] etc.).
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Now 1in this section, we present another process of the stable reduction in this
situation which is different from the method of above ones. Our process seems to be
precise, because we can “catch” the stable reduction explicitly in biregular sense.

2.1. Let f: S — A beaproper surjective holomorphic map from a complex surface
S to an unit disk A = {r € C | |#| < 1} such that the general fiber f~1(z9) (to # 0)
is a nonsingular curve of genus g > 1. Let F = #7!(0) be the singular fiber,
andlet F = YV o, F® be its irreducible decomposition Assume f is normally
minimal, i.e., the reduced scheme F™¢ = "V F (#) is normal crossing and any
(—1) component in Freq has at least three nodes of F™¢ on it. We call # a normally
minimal degeneration of curves of genus g.

Let py: ¥y — Xg be a monodromy map of f, where X, is considered to be a
fixed general fiber of /. The conjugacy class [pr] € M ¢ in the mapping class group
is uniquely determined by f, which we call the topological monodromy of f. Itis
well known that [11£] belongs to the class of a pseudo-periodic map of negative twist
([Im], [MM1] etc. )

LetFn =3 [ o th’p) be the numerical Chorizo space naturally obtained by the
singular fiber F = Ziy _, ; F. Namely, if we only forget the analytic structure of
each F¥, but do not forget the underlining topological structure and the multiplicity
¢; and also its configuration, then we obtain f7y,.

The fundamental theorem of [MM1] says that F, coincides with the Matsumoto—

Montesinos quotient X /{4 s ) of the monodromy map . r. We call F @) a core (resp.

tail, arc, quasi-tail) component of F' iff the corresponding thp) is acore (resp. tail, arc,
quasi-tail) component in the sense of Section 1. By changing the order if necessary,
we may assume that {F (‘)}l_1 (for some 1 < y’ < y) are core components and
{F (‘)}l 41 are non-core (i.e., tail, arc and quasi-tail) components. |

Since { F (‘)}l ,r+1 18 @ proper subset (or empty set) of F =R F @ the in-

tersection matrix of {F @} 1s negative definite. Therefore we have the bimero-

i=y'+1

morphic holomorphic map p: S — S* which contract {F®}Y to points by

i=y’'+1
Grauert’s theorem [Gr]. Let f #. S* . A be thenatural holomorphic map which sat-
isfies ffop = f. Putting Fiic = p(F)for1 <i <y, the fiber F*:= (fH~1(0)
is written as F# = 21—1 o; F,

Now the two-dimensional analytic space S* has at most isolated singularities P

so that the support of P is contained in (F*)®¢ = "7_ FF. # Moreover one of the
following 1s satisfied:

(i) (F%dissmooth at P, and P is the contraction image by p of a tail.
(i) (F*d is singular at P, and P is the contraction image by p of an arc.

(iii) (F")d is singular at P, and P is the contraction image by p of a quasi-tail.
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We determine the type of singularity at P of S* in the sense of Brieskorn [Br] for
each case. First we consider (i). Let (m, A, o, §) be the valency of the multiple point
corresponding to the tail, and go back to the situation in Section 1.4. The point P is
the contraction image of the chain Y ;_, mn, E; of rational curves. By identifying
this chain with the divisor on S which is a part of components of ', we have

O0=FE; =m@i—1 +n E? + ni41)

for 1 <i < r (where n, 41 is assumed to be 0). It follows that El2 = (—nj_1 —
niy1)/n; = —K;. Namely, this is the Hirzebruch-Jung string whose compo-
nents have the self-intersection numbers — Ky, ..., —K,. Therefore by the well-
known argument, the germ (S*, P) is a cyclic quotient singularity of type Cis»
i.e., the germ at the origin of the quotient C?/(Z/AZ) by the action (zy,2,) —
(e(1/A)z1.e(6/A)z>2).

Second we consider (ii). We go back to Section 1.5, and consider the non-
amphidrome annulus corresponding to the arc. The point P is the contraction im-
age of the Hirzebruch—Jung string whose self-intersection numbers of the compo-
nents coincides with the self-intersection sequence of the continued linear fraction
PAD /6 A2 /63 K). Therefore it follows from the tautness of this type of
singularity, Lemma 1.5.1, Lemma 1.5.3 and Theorem 1.5.4 that (S¥, P) is a cyclic
quotient singularity of type Cy 5.

We consider (iii). The point P is the contraction image of the tree of rational
curves whose dual graph has Dynkin diagram of type D as in Section 1.6. By the
argument in [Br], (S # P) is a dihedral quotient singularity of type (b;2,1;2,1;8 +
AMK + 1),8 + AK) in p. 347 of [Br]. For more simplified notation as in [R], we
call it of type D¢y 5 ¢ by putting § = 8 + A K. Summarizing the above argument we
obtain

Lemma 2.1.1. In Case (i), (S*, P) is a cyclic quotient singularity of type C)3

In Case (i), (S*, P) is a cyclic quotient singularity of type Cga.5, where d, v are
given in (7)—9).

In Case (iii), (S*, P) is a dihedral quotient singularity of type Deyge.

2.2. In general, let M be an analytic space and M — A be a fibration of curves.
Let a be a positive integer, and A9 : A©@) — A be the covering between small disks
defined by z — z?. Let M ‘) be the normalization of the analytic space M xa A
We call the natural morphism A @ 5 A the pure a-th root fibration® of M — A.
We set 7@ : M@ — M the natural morphism. The following is a slightly more
precise version of the classical stable reduction theorem:

3This notion is slightly different from the root fibration in [BPV] p.92, because the modification after nor-
malization is unused.
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Theorem 2.2.1. (i) Let N be a pseudo-period of (1. Then the following hold.

(ia) The pure N -th root fibration f(N): SN 5 AN) offﬂ: S¥ > A is a stable
reduction of f. Moreover, f™) is the unique stable reduction of f in the
birational equivalence class of S x5 AW,

(ib) The cyclic group G = 7./ N 7 acts holomorphically on S™N) so that the quotient
space SN /G coincides with S*.
(ic) Ffor a node E on the singular fiber F = (f WY~1(0), the germ of the point
P = RN)Y(P) on S* is one of (i) and (iii) in Lemma 2.1.2. Then the germ
(S, P) is a rational double point of type Apn—1 (n > 1) such that the Milnor
number n is given by
Ns(A)
mA)
where A is the annulus whose center curve is the vanishing cycle corresponding
to P.

(ii) Conversely, any stable reduction of f coincides with the pure N -th root
fibration fN) of f¥ for some pseudo-period N of . In particular, FNO) g the
minimal stable reduction in the sense that the covering degree Ny of the base change
is minimal among all of them.

Proof. Step 1. We first fix a pseudo-period N of 7. Let B be a connected component
of B in(2). Let {Q;}]_, be the set of multiple points on B, and {aBs(’jlgsm,} be
the set of connected components of the boundary dB. Let {(m;,A;,0,,8;)}1<i<s+s'

be the valency at each multiple point or boundary component. Let N be the minimal
period of p at B, i.e., N; is the minimal number such that (up)M is isotopic to the
identity idg. Then Ny is a divisor of N and we have N; = m;A; for 1 <i <s+s'.

There exists a unique component of F# containing m, (B) as a set, which we may

assume to be FlIi .Let P; (1 <i < s+ s)be the point on F f which is the image by
the contraction map p of the tail or the arc or the quasi-tail corresponding to Q; or
dB® . The curve F f itself is smooth or irreducible with nodes.

Now we choose an open set U* of $* containing the divisor o1 F f so that the
complement of ¢ F' f in U* N F¥is empty or consists of small punctured disks with
some multiplicities, and satisfies #(U%) = A (see Figure F).

First we consider the pure Nj-th root fibration £N: U™ o AN of
fgﬁ : U¥ - A. The unique closed component F 1(N1) of the central fiber F(N) =
( fk()iv N=1(0) is itself smooth or irreducible with nodes. Let 7 : FI(N D FI(N 1
be the normalization, and let /i: F 1(N1) — F f be the lift of the restriction map
hy = E(N1)|F1(N1): FI(NI) — Ff to the normalization. Then # is an N;-fold cyclic

covering whose branch points coincides with {771 (P;)}1<i<s+s. Moreover the total
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valency data of the periodic automorphism of F 1(N Y induced by this covering trans-
formation coincides with {(m;, A;, 0y, 8;) }1<i<s+s. (cf. [AI1], §1.) Since the natural
morphism 2NV : UND U i unramified covering over U\ [li<i<srs Pisthe

singularities of U 1) are at most on (fz(Nl))_l(Pi) (1<i<s+ys).

U* UM
\/ o
OllFltt Fl '
P
A - Nl . 1 A(Nl)
Figure F

But, over (EI(OZZ 1))_I(Pi) for 1 <7 < s, i.e., over the tail-contracting point, we
claim that U ) is non-singular.

Indeed, since the germ (U¥, P;) is a cyclic quotient singularity of type C 4:.8;» the
local fundamental group mys p, is isomorphic to Z/A; Z (|Br]). By looking at the
local monodromy, this group is trivialized by the A;-fold cyclic cover whose Galois
group is the stabilizer of each ramification point over (AN1)~1(P;). Since the germ
of the point with trivial local fundamental group is nothing but the germ of a smooth
point ([Mu]), (A“¥1))y~1(P,) consists of m; smooth points.

The total space U™ of the pure N-th root fibration £V UM — AN of
fgjﬁ is also smooth on the pull back of P; (1 < i < ), because the natural morphism
UM — UMD clearly lifts these smooth points to smooth points of UM,

Step 2. Next we consider the case s + 1 < i < s+ s'. Assume P := P; is
an arc-contracting point. We choose an open set Up C U* of P so that the fiber
(¥ u,)~1(0) consists of two multi-disks n D + /D@ (DM N D@ = P)and
satisfies 7#(Up) = A. We rewrite the valencies at the boundaries d+4; of the non-
amphidrome annulus A; by (m, A, ¢ ® §U)y (k = 1,2). Note thatm is a common
divisor of n and »’, and the general fiber of f ﬂ|UP : Up — A consists of m disjoint
annuli.

First we consider the pure m-th root fibration fl(gcm): Ui — A of fiy,.

The central fiber of flgf) consists of two multi-disks with the multiplicities # /m and
n’/m, and the general fiber consists of an annulus. Moreover the monodromy of
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(m) is isotopic to the linear twist with the screw number s(A; ) ([IMM1], §8), i.e.,
there exists a parametrization #4; =~ [0, 1] x R/Z > (¢, u) such that the monodromy
action of £ is written as (1, u) — (r.u — 8D /2D 4 s (A ).

Next we consider the pure N-th root fibration £V : UM s AN of £8);,
Since N/m is a multiple of both of n/m and n’/m the central fiber (fl(N)) L)
consists of two (reduced) disks D, + D, so that D; and D, meets transversally
at a point P. The general fiber 4 = ( fl(N)) L) (toy # 0) is an annulus, and
the monodromy map u £ A — A is isotopic to the linear twist with the screw
number (N/m) s(A;) = (N/m) (— D /A1) — (@ /1@ — K).

Since N/m is a multiple of Icm(AY, A)), this map is an integral Dehn twist of

—(N/m)s (+A;) times to right hand direction. Therefore the numerical Chorizo space
yam £ ~») consists of two disks and a P !-chain of length —(N/m)s (A;) — 1 whose
multlphcmes of all the components are one, i.e., the chain of (—2) curves of length
—(N/m)s(A;) — 1. Since ( flgc )) 1(0) consists of two disks, all the components
of this chain should be contracted to a point. Namely, the point P € UN) < § is
nothing but the contraction image of this chain, and therefore the germ (S, Pyisa
rational double point of type A_(N/sm)s (A;)—1-

If P is aquasi-tail contracting point, i.e., #; is an amphidrome annulus, the similar
argument also works. (We omit it.)

Hence fV): SOV 5 AW g a stable family and the assertion (ic) is verified.

If a core component of the central fiber of (#¥)) is a (—=2) curve, it has at least
three nodes of the fiber. This fact is a direct consequence of Harvey’s theorem [Hal.
Therefore the uniqueness of the stable family with the fixed covering degree is also
clear, which induce the assertion (ia).

Step 3. Let N’/ be any positive integer which is not a multiple of Ny, and we
consider the pure N'-th root fibration f V7 SOV AW of £# The monodromy
map fl ) Y, — Xg is isotopic to the power (@ f)N ', and the decomposition to
the annulus part and the body part of j¢, v coincides with (2) of sy

Now the assumption of N’ implies that there exists a connected component B
of the body part such that v [p 18 not isotopic to idp. Namely the period of
fpvn |B 1s greater than one. Therefore the numerical Chorizo space g /{p s nv))
contains at least one core component with the multiplicity greater than one. If this
core component is a (—1) curve in the normally minimal fiber, then it intersects at
least three tail components by [Ha]. This fiber germ cannot be transposed birationally
to a stable fiber germ. Hence the assertions (i) is clear.

The remaining assertion (ib) is also clear, because the natural action of Z/NZ
on the fiber product S o AW lifts to its normalization as a holomorphic Galois
action by an easy argument. O
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Example 2.2.2. Let f: S — A be the degeneration whose topological monodromy
coincides with g which is given in Example 1.7.1. The numerical Chorizo space
of the singular fiber F of f coincides with the MM-quotient described in Exam-
ple 1.7.1. Note that f is the degeneration which is listed as the types [I[V* — III* —m],
[IV* —IIT* — ¢] in Namikawa—Ueno’s table [NU].

id

B1

3 -

T A =—-17-12K
B, id
1
/“512
Figure G Figure H

Let S — S* be the contraction defined in Section 2.1. The irreducible decom-
position of the central fiber F¥ of S¥ — A is written as F¥ = 4FF + 3FF, The

normal analytic surface S* has five isolated singularities Pl(l), Pz(l), Py, Pl(z) and
Pz(z). The points Pl(l), Pz(l), Pl(z), Pz(z) are tail contracting points, and are rational
double points of types Az, A1, A2, A respectively. The point P = F f N lei is an
arc contraction point, and is the cyclic quotient singularity of type Ci17412K,1249K
(resp. type Cs,3) for K > O (resp. K = —1), because of [2,2,3,2,...,2,3,2]] =

(174 12K)/(12 + 9K) (resp. |2, 3]] = 5/3). Seec Figure J. K-1

Let f S — A be the stable family obtained by the composition of the 12 : 1
base change. The central fiber F consists of two components F = F,+ F,sothat F
(resp. F)is a smooth elliptic curve, since it is a 4-fold (resp. 3-fold) cyclic cover of P
branched at 3 points whose branch indices are 4, 4, 2 (resp. 3, 3, 3). The topological
monodromy around F coincides with 712, and therefore the decomposition to the
bodies and the annuli is the same as ¢ and the total valencies at B; (i = 1,2) are
trivial and the screw number at A is —17 — 12K, i.e., it is the right-handed Dehn
twist of 17 + 12K times. See Figure H. The surface S has a rational double point of
type A16+12k atthe node P = Fl M Fz as in Figure K.
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Example 2.2.3. Let f: S — A be the degeneration whose topological monodromy
coincides with p givenin Example 1.7.2. The numerical Chorizo space of the singular
fiber F of f coincides with the MM-quotient described in Example 1.7.2. Note that
f 1is listed as the type [21I1* — m] in [NU].

After the contraction S — S*, the surface S¥ has three isolated singularities on
its central fiber F* of S¥ — A. Two of them are rational double points of types A3
and A; which are the tail contracting points, and one of them is a dihedral singularity

of type D744k 344k which is the quasi-tail contracting point.
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Let f : § — A be the stable family obtained by 8 : 1 base change. The central
fiber F consists of two smooth elliptic curves with one node so that S has a rational
double point of type As4gx at the node.

3. Group action and monodromy

The notation is the same as Section 2. We fix a pseudo-period N of pur, and a
generator gg of G = Z /N Z through this section. We consider the stable reduction
F=fM.§=5M_, A =AMof £: § - A. In this section, we describe
the direct relation of the action of G on § and the monodromy data of f. We also
review Takamura’s argument [Tak] for later use.

3.1. (i) We call a smooth point P on F = 7~1(0) an inner multiple point of F iff
the stabilizer Stabg (P) of P in G is strictly larger than the stabilizer Stabg (F F@y of
the irreducible component £ of F which contains P.

For an inner multiple point P, there exists a positive integer /7 such that neighbor-
hoods in S of the /7 mutually distinct points P, go(P), ..., gg’_l (P) are permuted
cyclically and isomorphically to each other by the action of gg, and g(’;ﬁ stabilizes
the neighborhood Up of P as a set. We choose local coordinates (x, ) on Up so
that 7 is a lift of a parameter on A and x is a local parameter of #@ which satisfy
P = {(x,t) = (0,0)}. Since the action of g(’;ﬁ is locally linearizable and of finite
order, there exist relatively prime natural numbers ()~L, 5) with 1 <& < A — 1 so that
the action of géﬁ on Up is wrilten as

8 1
(x,1) —> (e(k)x e()uz) ) (11)

where £ = N/ ()~Ln'7z)~is an integer, and e(x) = exp(2zix). We also put the integer
o which satisfies 66 = 1 (mod A)and 1 < 6 < A — 1, and call (s, A, &,0) the
G-valency at P.

(ii) Next assume P is a node of F. There exist disks D, D@ of both sides of
local irreducible components of F at P such that P = D N DP. We choose a
suitable local coordinate neighborhood Up on S at P as

Up ={(x,y,.0) e C” | xy =", |x| <e, |y <&} (12)

where F = {r =0}, DV = fx =r =0, P = {y =r =0l and n is a
positive integer. There exists a positive integer 77 such that the neighborhoods in S
of the points P, go(P), ..., g(’?—l (P) are permuted isomorphically to each other by
the action of go and géﬁ stabilizes Up as a set without changing the boundaries, i.e.,
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gé’" (SOU )) = DU for Jj = 1,2. The integer m is assumed to be the smallest among
the positive integers which enjoy the above property.

Moreover, if 772 is even and g’ /2 stabilizes Up exchanging DD and D@, we
call P an amphidrome node. Otherwise, we call P a non-amphidrome node.

(iia) Assume P 1s a non-amphidrome node. Then, for j = 1,2, there exist
relatively prime natural numbers (A, §()) with 1 < &) < AU) — 1 so that the
action of g/" on Up is written as

He 5@ i
(x, 7,81 Vo |V \5e ) ¢ (1cm()1(1)’)](2)) .g)t (L)

where £ = N/{lem(A (D, A®) .77} is an integer. Since  the action (13) is compatible
with the local equation in (12), there exists an integer K > —1 such that

£
n= S
gcd(A (D), 1 (@)

(g(l)i(z>+g(z);(1)+I‘g;<1)i(z))_ (14)

We also put the integer & which satisfies 59600 = 1 (mod Ay and 1 < 500 <
AU 1 for j = 1,2, and call (7, ALY, 60D 50 the G-valency at P. Moreover we

set . .
s 5@

0 i@
which we call the G-screw number at P.

K. (15)

§ =—

(iib) Assume P is an amphidrome node. There exist relatively prime natural
numbers (A, 8) with 1 < § < A — 1 such that ggn/z acts on Up by

(x,y.t)— le é e é X e(i)r (16)
b a7\ ) G

where £ = N/ (iz%) is an integer. Moreover there exists a non-negative integer K
with L
n=240&+ KA). (17)

We put the integer ¢ in the same way, and call (i, A.5,8) the G-valency at P. We
set

26 o~
§=——-2K (18)
A
which we call the G-screw number at P.
(iii) Let I (F') be the dual graph of F'. This is the one-dimensional oriented graph

so that the vertices correspond to the irreducible components of £ and the oriented
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segments correspond to the nodes of F in a canonical way. The action of G on F
naturally induces an action on I' (F).

Now we claim that the data (i)—(ii1) in this section are essentially identified with
the data (1)—(i11) in Section 1.1. One way to obtain this result is to compare the types of
singularities on S* and the quotient singularities by the G-action in this section (see
Takamura [Tak] and Section 3.2). Another way is to describe directly the monodromy
map of the quotient family of the action as follows:

Theorem 3.1.1. (i) There exists a natural isomorphism T (F) — T (u £) so that the
action of G on T (F) coincides with the action of itr on I (jig). In particular, there
exists a one-to-one correspondence between the set { VY of irreducible components
of F and the set {B©Y of body components for jir, berween the set { P} of non-
amphidrome nodes of F and the set {4y} of non-amphidrome annuli for i £, and
between the set { Py} of amphidrome nodes of F and the set {Ay} of amphidrome
annuli for Lz, respectively.

(i1) Let {P;} be the set of inner multiple points on a irreducible component
FD_ and let {O;} be the set of multiple points on the corresponding body com-
ponent B9, Then there exists a one-to-one correspondence between {Pj}yand {Q;}
such that the G-valency (i%(Pj),i(Pj), a(P;), S(PJ)) coincides with the valency
(m(Q;). A(Q).0(Q;).6(Q,))

(i) The G-valency (7 (Pi), A (Pr), 6D (P), 8Y)(P)) (j = 1,2) at a non-
amphidrome node Py coincides with the valency (m(Ar), A9 (Ar), oY) (Ar),
8 (AL)) ar the corresponding non-amphidrome annulus Ay. Moreover the G-
screw number §( Py} coincides with the screw number s (A ).

(iv) The G -valency (m (L), M(Pp), 6 (Py), §(P¢)) at an amphidrome node Py co-
incides with the valency (m(p), A(Ag), 0 (Ag),5(A¢)) at the corresponding am-
phidrome annulus Ay. Moreover the G-screw number s(Py) coincides with the
screw nuimnber s(Ay).

Proof. Step 1. First, according to the well-known argument ([C], [MMI1] etc.), we
describe the monodromy map of £ B

We consider a general fiber F,O = 71(10) (tp # 0) around the stable fiber F.
For each node P and its neighborhood Up by (12), we put Ap 4, := Up N 13’}0. We
have the decomposition

Fo = ([ Ars) v (LI 82) (19)
P

z

where [ [, !B,%) is the decomposition to connected components of 1:::0\ [1p AP
Clearly there exists a natural one-to-one correspondence between the set {!Bt(é)} and
the set { F©} of irreducible components of F .
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Now we specially consider the fiber Fs for a sufficiently small positive real number
8. Set e’ = 6" /e. We define a homeomorphism gp s : [0, 1] X &l 5 Ap s as follows;
We first define a map u: [0, €] x [0, €] — [0, 1] by

bl if x| < || <e.
u(x. [y) = § 26~ ]XD
oM e 2
2= yD

For each u € [0, 1], there uniquely exists a pair of real numbers (r(u), s(u)) such
that r(u)s(u) = 6",0 < r(u) <¢€,0 < s(u) < € and u(r(u),s(u)) = u. Then
(r(u), s(u)) defines a curve connecting the point (r(0), s{(0)) = (¢/,¢) on 894’1(!?2,)3 =
{|y| = €} and the point (r(1), 5(1)) = (¢.€) on dA} % = {|x| = e}. Then we define
©p,§: [0, 1] x S1 Ayp,(s by

eps(u, )= (e(a)r(u), e(—o)s(u),d) (20)

where ¢ € R/Z ~ S!.

Now we define a homeomorphism /g : Fg — Fe &s for0 < 6 < 1asfollows; For
an annulus part 4 p s, by using the parametrization gp 5, we define g4, 5 ps —
Ap e ()5 DY

(x.7.8) — (e((1 = u(lx]. [y))8n)x. e(u(lx]. [yDon)y. e(®)3).  @1)

For a body part 8 (gi) which is locally defined by + = & in a natural coordinate (z, ¢)
of 5, we define hg| NCK B — By 5 by (2.8) — (e(On)z.e(H)8). These are
globally well-patched and define a homeomorphism /g : Fs — F, g)s.

Then the monodromy homeomorphism is nothing but /; : Fs — Fj by putting
6 = 1. Since

(h1laps o ops)u,a) = pps(u, o —nu)
by (20)and (21), /11| 4 p s 18 aresult of n-full Dehn twist. Therefore hy induce integral
Dehn twists on the annulus part and the identity map on the body part.

Step 2. Weput5* = 6V, and consider the smooth fiber Fs« = f~1(§*). Note that
go(Fs) = Foayms. Letm: S—>S§/G be the projection, and let m; = zr|F Fs —

Fs« and 7y, = Fe(l /N)s — Fs= be the two isomorphisms. Since f

|Fe(1/n(P))8
coincides with fG S /G — A over the non-critical locus on A, the homeomorphism

h:=myohyyo(m) "t Fss —> Fys (22)

is nothing but the monodromy homeomorphism of f.
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We set Apx 5+ = m1(Aps) and Sb’lgi*) = Jrl(ia’g")), and consider the decomposi-

tion
Foo = ([ Arese) U (1] 252)- 23)
P+ i

Since the restriction of A" to ] [ B g? is the identity map and the restriction (o A px 5+
is an integral Dehn twist on itself, A is a pseudo-periodic map so that (23) coincides
with the decomposition of the annular neighborhood of the admissible system of cut
curves and the body parts of . Moreover the minimal pseudo-period of 4 is a divisor
of N.

Since (23) is the decomposition with respect to the monodromy A, the partition
graph T (y1¢) is isomorphic to I (i J;). Since the dual graph T (F) is isomorphic to
I'(n f~), this is isomorphic to T (xt7). These isomorphisms are canonical and clearly
compatible with the G-action and the monodromy action. Therefore we have the
assertion (1).

Now by using (20), we define a parametrization on #4p+« 5+ by

pprsx = opps i [0,1]x 81— Apx g,

Assume P is a non-amphidrome node. It follows from (13), (14), (15), (20), (21),
(22) that

nmu 5
((hm|a47p*,5*) © QOP*’(S‘*) (M,Ol) = pp= g (M, o — N + ﬁ)
5

= WP*,(S* (M, o+ Eu -+ W)

Namely, this is the linear twist with the screw number s and the valency 5§ /0@ g
one boundary. The valency at the other boundary coincides with 5 / A by (15).
Therefore the assertion (iii) holds.

Assume P 1s an amphidrome node. It follows from (15), (16), (17), (20), (21),
(22) that

mnu 8
((hm|o’op*8*) o (PP*,S*) (u,Ol) = pp*§* (1 —u, —o + —+ _N)

N 24
§ 5

= @p=s* (1 —u, —a— —~)
Z 2

We also have ((h2m|AP*78*) o (IOP*’S*) (u,a) = @p* 5+ (u, 0 +5u+68/A). Therefore
the assertion (iv) follows.

It remains to prove (ii). For the irreducible component F@), we put F@* =
FO\[[p(Up N FO)where P isanode of F on £ Then there exists a canonical

analytic isomorphism gof()e) 5 ££i()9) 5 = F®* 35 Riemann surfaces with boundary.



Vol. 85 (2010) Local signature defect of fibered complex surfaces 441

Now let g’ ©) be the generator of Stabg (F). Then the restriction map

. @ @)
hm(i)/N|£§i)' Bs" = B tuiger/ s

is also an analytic isomorphism so that the composition map
QDS()m(L)/N)S o hm(l)/N|£§l) o ((‘D(gl))—l . F(l)* — F(l)*

coincides with the analytic automorphism gg’(i)| Fape: FO* — FO* Therefore

the body part i)’g*) = ﬂl(ﬁgi)) of Fs«is analytically isomorphic to F©* and the
restriction of the power of the monodromy map ™)) ik £§z*) - B (gl*) is nothing
but g™ Fire: FO* — FO* yia this isomorphism. Hence the assertion (ii) is
clear by (11) and the definition of the valency. O

3.2. Since Theorem 3.1.1 is established, we use the simplified notations i = m, A=
A, ... by omitting the “tilde”. For instance, we write (x,7) — (e(6/A)x,e(1/A)1)
for (11), etc.

We already described the singularities on S* = S/G in Theorem 2.2.1 and
Lemma 2.1.2. Here, we also explain why these types of singularities appear on S*
by the quotient of the action (11), (13) and (16). The argument of this subsection is
essentially due to Takamura [Tak].

(1) We consider the neighborhood Up of an inner multiple point P. Since the
action on Up of the cyclic group (g(') generated by g(* of (11) is not small, i.e.,
this group has an element which has one-dimensional fixed point locus, according
to the well-known argument in singularity theory, we descend it as follows; Let
Up — Vpr = {(z,u) € D x D} (D is a small disk) be the map defined by
(x,1) — (z,u) = (x,r*). As the descent map of (11), we define the action gy on

Vpr b
Pz [y 5 )
(z,u) — (e (1) z,e (z) u) . (24)

The action on Vp: of the cyclic group {gy) =~ Z/AZ is small so that the quotient
space Up /{g{') is isomorphic to Vp+/{go). whose singularity at the origin is of type
C).c by (24). Namely, this is the case (i) of Lemma 2.1.2.

(ii) We consider Up in (12) for anode P. Let Up = (X, Y)e DxD}—> Up
be the minimal local uniformization map defined by

(X, Y)— (x,y, 1) = (X", Y" XY). (25)
(iia) Assume P is a non-amphidrome node. In order to describe the lifting to Up

of the action (13), we need the following elementary number theoretic lemma whose
claim essentially due to Takamura ([Tak]) :



442 T. Ashikaga CMH

Lemma 3.2.1. (i) Ler AW § 1@ §@ K pe narural numbers with ()L(l),(?(l)) —
(1), MA@, §@) = (1) as ideals in the ring of integers Z. Put d = A1§2 4
A@5W o+ KAMWAD) . Then there exist natural numbers ay, as which satisfy

ay+az =K, (W +a; 20 d) = 6@ + 0@ d) = (1). (26)

(i) The element (6@ + a;A@) - 61 + a, A in the multiplicative group
(Z/dZ)* coincides with the representative v of (8).

Proof. Let py, ..., p, betheprime factors of thenumber d. Foreach p; (1 <i < u),
we define the subset M{( p;) of Z by

M(pi) = {x € Z| DV + 32D p)) = @ + (K — AP, p) = (1)

We claim that there exists ; € Z such that the arithmetic sequence {o; + kp;tikez
is contained in M( p;);
{a; + kpitrez C M(pi). (27)

Indeed, we first assume (A, p;) = (A@, p;) = (p;). Then the assertion (27)
is clear by M(p;) = Z.

Second, weassume (A(V, p;) = (1), (A@, p;) = (pi). The congruence equation
§M 4+ xAM = 0 (mod p; ) has a solution, say x = «/. (We omit (mod p; ) afterwards.)
We choose an «; € Z with o; # «;. Then {o; + kp;}rez is contained in M(p;).
The case where (A0, p,) = (p;), (A, p;) = (1) is also similar.

Third, we assume (A1, p;) = (A?, p;) = (1). Suppose p; > 3. Leta), B, be
natural numbers with § + o AW =90, 5@ 4 ,8;1(2) = (. The union of elements
of arithmetic sequences

A ={o; +kpitkez U {K — B; +kpitiez

is a proper subset of Z. We choose a number «; € Z witho; # o), ; Z K — fl.
Then {o; + kpitrez is contained in Z \ A, and therefore is contained in M (p; ).
Suppose p; = 2. Since d = 0, one of the following occurs (modulo symmetry):

(a) A0 =22 =50 =5@0 =1 K =0

) AW =1D =5 =1 5@ =0, K=1.

(c) A =1@ =1 §0D =@ =0, K =0.

(d) AV =21@ =0, §1) = §@ = 1 (K is arbitrary).

If (a) or (b) occurs , then {2k }rez C M(2). If (¢) occurs, then {2k + 1}zez C
M(2). If (d) occurs, then M(2) = 7Z.. Hence the assertion (27) holds.
By using (27) inductively, the set of intersection

Mp) NN M(py)
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is non-empty, because it contains an arithmetic sequence {# + k []/_, pitxez for
some 8 € Z. We choose anelementa; € M(p)N---NM(py)andseta, = K —ay.
Then we have the assertion (i).

By the definition of v and the equality §(Ve® = §MWAM 4 1, we easily have

YV + a; AWy — 6P 4+ a24@) = WY + a0M)d.
Hence the assertion (ii) also follows. ]

We go back to the situation in Sections 1.5 and 3.1 (iia). The number » is deter-
mined by (14). By using Lemma 3.2.1, as a lift of (13) by (25), we define the action
on Up by

§M 4 42D 5@ 4 g0 @

The cyclic action generated by (28) is not small. We descend it as follows: By putting
2O = 20 /76ca W 2@y (i = 1,2),1et Up — Vpr = ((X.¥) € D x D} be the
map defined by X > X = X“(l), Y 5 ¥ = Y*** Then the descent map of (28)
is written as

o § 2Dy 5@ L@N
G0 (X, V) — (e (%) X, e (%) Y), (29)

which generates the small action. By (26), & = e (60 + a1AV)/d) is a primi-
tive d/-th root of unity and the number e ((§® + a»,A®)/d) coincides with £V by
Lemma 3.2.1 (ii). The quotient space Up /{g{') is isomorphic to Vp:/{gy), whose
singularity at the origin is of type Cy ,,. Namely this is the case (ii) of Lemma 2.1.2.

(iib) Assume P is an amphidrome node. The action which is the lift by (25) of
the cyclic group generated by (16) is generated by two maps

hot (X.Y) —> (e (‘H‘M)X, e (5—|—a2)L) Y),
AR An
(30)
h -(XY)H( ( 1 )y( 1 )X)
LE oxl ) T\ 2

where n = £(28 + 2AK ) and (a1, az) is a pair of integers witha; +a, = 2K, (8 +
aiA,An) = (8 +azA,An) = 1. Note that 47 is contained in the subgroup generated
by k. This action is not small. Let Up — Vpr = {(X,Y) € D x D} be the map
defined by (X,Y) — (X,Y) = (X*, Y*). By putting £ = § + AK, the descent
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action is written as
— = d+aA\ - §+ arA\ -
X.Y)¢ X Y
&1 — (e (5557) 7 (S520) T):

A7y (e (55) 7 e (51) F)-

which generate the small action, and the germ of singularity at the origin of the
quotient space is nothing but D¢ ; ¢-singularity in (iii) of Lemma 2.1.2.

4. Dedekind sum

In this section, we prepare some number-theoretic arguments which relate to the
Dedekind sum.

4.1. Let (A, 0)be any pair of mutually prime natural numbers withA > 2, 1 < ¢ <

A—1. Let
i—1

(o= 3 ((%)) ((kTG))

be the Dedekind sum with respect to (A, o), where ((x)) = x — [x] — 1/2 for a non-
integer x and {(x)) = O for an integer x. ([x] is the greatest integer not exceeding x.)
The following formula is classical.

Theorem 4.1.1. Let ky, k; be any integers. Then

Y cotoL cotZL = dkiks - s(0,A)

where j moves over integers satisfying 1 < j < kikaA — 1, j £ 0 (mod k1A) and
j &£ 0(mod kaA).

When k; = k5, = 1, itis the classical Rademacher’s formula. The above formula
appears in Hirzebruch—Zagier [HZ] p. 179, 180.

Let A/o = [[K1,K>,..., K,]] be the continued linear fraction, and set ny =
Anp=ocandn; = K;_1nj_1—n;_o 2<i<r+1) Let 6 be the integer with
o8 = I(mod A) and 1 < 8 < A — 1. Then s(o, A) is expressed via these data of
the continued linear fraction by Myerson—Holzapfel’s formula. For the geometric
meaning of this formula, see also [AI2].
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Theorem 4.1.2 (Myerson [My], Holzapfel [Hol], p. 270).

r

r 1l fo+6
son =5+ 5"+ T K)
i=1

4.2. We consider the Dedekind sum with respect to the monodromy data at a non-
amphidrome annulus 4. We follow the notations in Section 1.5.

Lemma 4.2.1.

v+v* oW Ls 5@ 4 5@ B (5(1) 5(2)) A2 L (1 @2
7 o g - U Tie) T T e

Proof. By (7) and A0 — 50§50 = _1 we have

Jr@ (T v* oW 45 5@ 4 5@
d A0 @

— 0@ 05M05@ 4 (4@ L 1 (s@) gy (1)
— AW + )2 — A2 {1 + (612
On the other hand, it follows from (5) that
s 5@
@5 4 Mgy — 10Ok L 2
(AR L A DEH K = 2107 K(MU+A@)
= (d — 2PsW QW@ (—s(A) - K) (32)

= {d — AVAD (—s(A) — K)}(—s(A) — K)
= —(s(A) + K)d — AP (s(A) + K)2.

Moreover

211 251 52) + (A(l))z{l + (5(2))2} + (A(Z))Z{l + (5(1))2}
- (1(2)5(1) + 1(1)5(2))2 + (;L(l))Z + ()L(Z))Z (33)
= QOPADR(A) + K7 + QD2 + )2,

From (31), (32) and (33) we have the assertion. O

Now we consider the case d > 1. From the argument in Sections 1.5 and 3.2 (iia),
this condition is equivalent to saying that A does nothave the invariants K = —1, 0 =
land @’ = 0.
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Lemma 4.2.2. Assume d > 1. We put
0

o+ —r—1r + = (Z K;

i=w+1

e'(A) =

i=1

where «

d

T. Ashikaga

w—r—r + = (ZK —|—ZL —o —|—1)

CMH

K =0,

ifK =—1,

w>1, 0 >1,

+ZL+2)

i=w'+1

ifK =—1,

w>2, 0w =0,

* = D (See Theorem 1.5.4 (iv).) Then we have

—4s(v,d) + 4s(cM, AW 4 45(c@, 1 ?))

— 1+ €' (A).

+a*+ZKi), K=-10>20

ZK +ZL +2K) K >0,

i=1

ZK +ZL )

i=1

d (1(1))2 4+ (/1(2))2
REVION® 31 (D)

Proof. Itfollows from Lemma 1.5.1, Lemma 1.5.3, Theorem 1.5.4 and Theorem4.1.2
that

r+r+K—1 l(v—l—v

4 12 d

w+w -1 v —i— v*
s(v,d) = T4

w— 1 1 (v + v* L

4 12 d 4
i=1

Therefore, by applying Theorem 4.1.2 again to s(¢V, AV} and s(c@, 13}, we

casily have the assertion from Lemma 4.2.1.

Next we consider the case d = 1,1.e., K

O

= —1, w = 1 and ' = 0. In order to

treat this case in the same formulation as in the case d > 1, we define a slight (trivial)
generalization of Dedekind sum s(o, A) for A = 1. Namely, for any integer o, we

define

s(o,1) = 0.

(34)

The analogous result of Lemma 4.2.2 for d = 1 is as follows:

Lemma 4.2.3. Assume d = 1. We put

€(A)=—r—r' + = (ZK —i—ZL—l—

5
FYOI

Um
2@

12
A

pRey)
@

+4)
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Then we have

—4s(v,1) + 4s(c D, Ay + 450 @, 1D)
1 A2 4 (A2
= 320, R OR®)

— 1+ €'(A).

Proof. From s(v,1) = 0and d = §(WAR) 4 @AM _ A (DA — | the assertion
easily follows from Theorem 4.1.2. O

5. Local signature defect

5.1. Let O < € < 1 be a sufficiently small real number. In this section, let f: S —
A be a normally minimal degeneration of curves of genus g over a closed e-disk
A = {t € C| |t| < e} with the central fiber F = f~1(0). (By a little bit abuse
of the notation, one may consider f the restriction over a small closed disk of the
degeneration defined in Section 2.1.) We denote the restriction of f to its boundary
by 3f : 0S5 — dA ~ S

Since the restricted family over the punctured disk f/~1(A*) — A* = A\ {0}
is differentiably locally trivial, there exists a Riemannian metric hg = {f;;} on S
such that the restriction over a tubular neighborhood of 95 is a product metric. We
put /255 the restriction of /g to dS. The choice of /g is not unique, and we fix one
of them. Let Sign S be the signature of the intersection form on H2(S, dS; Q), and
(S, hys) be the eta-invariant of Atiyah—Patodi—Singer [APS]. Inspired by Furuta’s
discussion [Fu]*, we put

o(f, F;hys) = Sign S + n(3S, hys).

Let f : § — A be the stable reduction of degree N of f, and let p: A — A,
p: § — S be the natural maps. Let h ¢ be a Riemannian metric on S so that hg
is an extension of the natural pull back of the restricted metric of &g to a tubular
neighborhood of 4S. Since the map p is umramified near the boundary, it is well
defined. The metric & g is a product metric near the boundary 35, and the eta-invariant
1(dS, h,z) is well defined. We also put o (f, F; h,z) = Sign(S) + 7(3S, hyz). We
define

G
Lsd(f, F:hys: N):= o (f. F:hyg) — Nd(fa Fihyg),

and call it the local signature defect of (f, F;hys) of order N.

4Furuta [Fu] discussed this type of invariants under a more general setting of the linear connection.
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5.2. Wesummarize the notations of the monodromy dataof /. Let X, = BUA'UA"”
be the decomposition to the set of body connected components B = [ [ B;, the set of
non-amphidrome annuli A" = | [ »4; and the set of amphidrome annuli A” = | | A%
with respect to (a representative of) the monodromy map iy: Xg — Xg. Let
B/ ~= [ ][Bi] be the orbit decomposition with respect to the cyclic action generated
by pr. Namely two components B;, and B;, are equivalent iff B;, = (ur)"(B;,)
for some integer n, and B/ ~ is its equivalence class. We set A’/ ~ = [[ [4A,]
A"/ ~ = 1] [/r] similarly.

Let {mg, )Lgf ), a,ff), 8éi)}15a5¢(i) be the set of all the valencies which are attached
to multiple points and boundary curves of B;. Set

2810 = 1Ko ). Koo i) K (e D]

Let (m(A;), AD (), 0D (A;), 8D (A;) and (n(A;), AP (A;),cP(A)),
5@ (A 7)) be the valencies of both boundary curves of a non-amphidrome annulus 4,
and s (A;) = =W (A;)/A D (A;) =8P (4;)/1 P (s;) —K (A,) be the screw num-
ber. Set AV (A;) /oW (A;) = [KD, KD Kf{})]] and A@ (4A,)/0 @ (A,) =
. LY. LY

Now we define a rational number € (4 ;) as follows:

If K(A;) > 0, put

G(Aj) = 0.
If K (A;) = —1, put

1 J‘(J) ) I’,(j) -

5( Y. K7+ Y L - 1), w(j) =1, &'(j) > 1,
i=w(j)+1 i=w'(j)+1

1 r() ' r(j) 5
i=w(f)+1 i=1

g(ZK/ + )L —ﬂ*(j)—z), w(j) =1, o'(j) =0,
p=1 i=1

where w(/ ), @'(j) are defined in Theorem 1.5.4, o™ () is defined in Lemma 4.2.2
and B*(j) is defined by

_ MDA A i oD (A))

D) T A0

B* () 2D (A

i=1

Moreover we put £(;) = N/{lem(A 1 (;), AP (A;)) - m(A;)}.
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Let (m(Ak) )L(cA)k) O‘(:A)k) 5(Ak)) be the valency of a boundary curve of the
amphidrome annulus A, and S(e)“)k) = —28(a4>k)/A(Ak) — 2K(a4)k) be the screw
number. Put/Z(cA,k) N/{)L(Ak)m(o%k)}

Note that the above data are independent of the choice of a representative of [ B;],
[#4;] and [Ax] respectively.

Now the proof of the following theorem is postponed to Section 6.

Theorem 5.2.1.
1 o) Go(!i) —1—55) r{o,i)
Lsd(f, F;hyg; N) = —gzz (T + Z Kj(Ol,l))
[Bi]a=1 o J=1
ged(A D (A;), AP (4)))

+ ( —K(:A-)—i—e(zA-))
MZ,;] L(ANAD(AHAD (A) ! !

T ( R —K(@)—z),
Z 28(Ag )JA (AL )

[Ar]

where the summations move over all the classes of the orbit decompositions.

Since Lsd( f, F'; hys; N) is independent of /155, we write it by Lsd( f, F; N} from
now on, Morcover, if we choose N minimal, then we simply write it by Lsd( f, F')
and call it the local signature defect of the degeneration f, which only depends on
the fiber germ at F'.

Now let f : S — Abe /Ehe semi-stable reduction of f. The surface S is obtained
from S by the resolution S — S of rational double points of type A at the double
points of . The boundary d.5 of S coincides with d.5, and has the natural Riemannian

metric i, ¢. For the fiber germ (f, ﬁ), we put o(f, F: hys) = Sign(§) + n(8§, hys
Similarly we define

Lsd(f, Fihys: N) 1= o(f, Fihys) — —U(f hys)-
If N is minimal, we put
Lsd(f, F) := Lsd(f. Fihys: N).

which also depends on the fiber germ at F.°

3 In [AY], the invariant Lsd( f, F) is called the local signature defect instead of Lsd(f, F). The reason is
that the result of Corollary 5.2.2 is simpler than that of Theorem 5.2.1. In this paper, we emphasize the theoretical
importance.
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Corollary 5.2.2.

@(i) (z) 5(;) rla,i)
Lsd(f, F:hys: N) = ——ZZ( ZK(O{!))

[B;] =1
(5(1)(%,) 52 (A)
[

20(A) T AD(A) + 6(04)]))

oy (M)

[A7] A(t""lc)

Proof. Let n(#4;) be the Milnor number of the singularity of type A corresponding
to the non-amphidrome annulus #; via Theorem 3.1.1. By (14), n(A;) coincides
with
£(A})
ged(A(D(A;), A2 (A)))
(D (ANAD (A;) + 8P (ANAD (A)) + K (AL (AHAP (A))).

Moreover the number N is written as N = £(A;) - lem (AP (A;), A@ (A;)).
Let n(sAr) be the Milnor number of the singularity of type A corresponding
to the amphidrome annulus A By (17), we have n(gk) = 2£(£}€) (8(;4?;()

+K(J(k)l(£k)) and N = Zﬂ(a:\.:}c)l(,;\;(). Therefore we have
1 ~ =
ﬁ(Sign(S) — Sign(S))

Ay =1 n(Ar) — 1
D e A

[A/] [Ax]
(V) | 8O !
iy (T + 280y K~ Ty om0 )
A o x 1 )
+ — 1+ K(Ar) — = — .
Mzk](mw MSTTERSTES

On the other hand, it follows from 7(3S, & a5) = n(8§ .hiyg) that

1 - :
Lsd(f. F:hys: N) = Lsd(f. F:hys: N) + - (Sign(5) - Sign(8))

Hence the assertion follows from Theorem 5.2.1. O



Vol. 85 (2010) Local signature defect of fibered complex surfaces 451

Example 5.2.3. Let f: S — A be the degeneration given in Example 2.2.2. If
K = —1 for the unique amphidrome annulus #, then we have r = 3,w = 2, r' = 2,
w = 1land ¢ := €(A) = (1/3)(2 + 2 — 1) = 1. Therefore Theorem 5.2.1 implies
that

Lsd( /. F)=Lsd(f, F;12)

1({3+3 1+1 242

=T =423} 24 (——+2 242203

{5 20) 2 (5 2) (57 +22) )
1

45
—K — T K =0
- 37
- K = -1
4
Moreover
—119/12, K(A) >0,
—107/12, K(A) =—1.

Example 5.2.4. For the degeneration f: S — A given in Example 2.2.3, we have

MMfF):—§“2}3+23)2+(?%i+0)}+(gz—Kﬁﬂ)
63

=
8

3 29

Lsd(/. F) = -6+ (2—2) ==

5.3. We consider the global stable reduction f 8§ — €of f:8 —>C€oforder N.
The description of f is as follows:

Let N; be a pseudo-period of the local monodromy map around the singular fiber
F, = f7YP) (1 <i < r). Let N be a common multiple of all of N;. By
adding a non-critical point Py (“a dummy point”) if necessary, we can construct a
cyclic branched covering ¢: € — € of order N whose branch points coincide with
Py, Py, ..., P.. Moreover, for 1 <i < r, the fiber ¢ 1 ( P;) consists of N/N; points
so that the ramification indices at them are N;. The analytic surface § has at most
A-type singularities and is birationally equivalent to § x¢ €. Explicit construction
is nothing but the natural patching of N/N;-copies of the local stable reduction of
the fiber germ of F; (1 < i < r) discussed in Section 2. Note that f (¢~ 1(Py))
consists of multiple fibers whose reduced schemes are nonsingular and § itself is
smooth around the fiber.
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The local signature defect of the germ of the singular fiber is nothing but the local
contribution of the difference of the global signature under the global stable reduction,
i.e., we have the following lemma whose proof is also postponed to Section 6.

Lemma 5.3.1. _
Sien § L
= Y Lsd(fi BN

i=1

Sign§ —

where f; is the restricted fibration of f to a tubular neighborhood of F;, and Fiis
its stable fiber of the local stable reduction f; of f; of order Nj;.

6. Proof of main theorem

We prove Theorem 5.2.1 and Lemma 5.3.1. Our basic tool is a complex 2-dimensional
version of the orbifold signature theorem with smooth boundary. We review the
notations and the result of itin Section 6.1, and then apply it to our proof in Section 6.2.

6.1. In general, let M be a complex 2-dimensional V-manifold in the sense of Sa-
take [Sa] with a real 3-dimensional manifold boundary oM. Let M = |JU be
a V-coordinate covering, namely, the local uniformization maps U — U and the
finite Galois groups Gy = Gal(U/U) are defined with the natural compatibil-
ity conditions, i.e., it Uy C Us,, then there exist a holomorphic open embedding
U, — U, and an injective group homomorphism Gy, < Gy, which induce
U,/Gy, = Uy < U, = U,/Gy,. Since M is a rational homology manifold,
the signature Sign M over H2 (M, dM, Q) is well defined.

Let {hg } be a V-Riemannian metric on M, i.e., each hg is a Gy-invariant Rie-

mannian metric on U with the natural compatibility conditions. We assume {hg
induces a product metric near dM . The V-Levi-Civita connection {7y} with respect
to {hg }, and the V-curvature matrix { Ry } with respect to {77 } are defined naturally
([Sal). The V-Pontrjagin form { p1 (U)} is defined by p1(U) = (27) 2 Tr (RF)).

For each V-coordinate U and an element g € Gy, we define the equivariant L.-
form L8(U) as follows (cf. [AS], §6): If g = id, put LE(U) = (1/3) p1(U), i.e.,
the Hirzebruch L-form of degree 1. Assume g # id, and let U# be the g-fixed locus
on U, which is an isolated fixed point or a fixed complex curve.

Suppose U2 := P is an isolated fixed point. Then g acts on the tangent space
Tp(U) linearly with its eigenvalues ¢?*s and e'#s (0 < tg, g < 2). Then we put
LE(U) = —cot{ag/2)cot(Bg/2).

Suppose U8 := C is a fixed complex curve. Then g acts on each fiber of the
normal bundle (N /U)Q of a generic point O € C linearly with its eigenvalue ¢'%s
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(0 < B, < 2m). Put LE(U) = cosec®(Hy/2) - C1(Nc/f;), where Cl(NC/ﬁ) is the
first Chern form of N /-
Then the orbifold signature theorem ([Ka]) says that

Sign M + n(dM) = Z Z f ou LE(U), (35)

gEG

where py 1s a cut function on U so that the system {py} defines a partition of
unity on M and n(dM ) is the eta invariant with respect to the above V-connection.
Note that (35) is the “primitive version” in some sense, and Kawasaki reformulates
it by describing the correction term from the L-class as the equivariant L.-class on
the orbifolds which are the preimages of the V-singular locus of M by the natural
immersion. (See theorem and corollary in [Ka], p. 78, 79.)

6.2. We prove Theorem 5.2.1 by several steps.

Step 1. First we consider the surface S, which has a simple V-manifold structure.
The support of the V-singular locus (i.e., the set of points whose isotropy groups in
the Galois groups are non-trivial) of S coincides with the set of nodes {P} on the
central fiber F at which S has Ap—1-singularities (n > 1).

We may assume that the V-chart Up containing P is unique, and the local uni-
formization map Up — Up is given by (25). Since the generator of the Galois group
Gup ~ Z/(n) actson Up as (X, ¥) > (e(1/n)X,e((n — 1)/n)Y), it follows from
Theorem 4.1.1 that

| —1

Z Lg(Up)———Zcot— u
|GUP| ; n

g€Gyp \fid} (36)
2

3_n.

=—4S(n—1,n):%—1—|—

If P = Puoam is a non-amphidrome node, by putting d = §MA2 4 §@3 M 4
KAWA@ and e = ged AW, AP), wehaven = (£d)/cand N = ((ADA@) /¢, 1f
P = P,, is an amphidrome node, we have n = 2£& =2{(8 + AK)and N = 2{A.
Therefore it follows from (35) and (36) that

% (Sign§ + 77(8§))

B s d ¢ ool
= 3N[P1( )+ Z 32OO 0D T 3EH0AD ) (37)

HOEIH

e 11
* PZ (SA 2% T 3am

am
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where the first summation moves over all the data of non-amphidrome nodes and the
second summation moves over all the data of amphidrome nodes.

Step 2. Next we consider the surface S* defined in Section 2. The cyclic group
G = Z/(N) acts holomorphically on S so that S/ G coincides with S¥. The surface
S* has the V-manifold structure via the composition of the restriction of the global
covering map S — S* and the local uniformization map of the V-chart of S.

First we calculate the contribution of the integral of the equivariant L-form of
the isolated fixed points P of the Galois groups. We may assume the V-chart Up
containing P is unique. Let G(’}P be the subset of elements g € Gy, such that

UP‘? = {P},1.e., g has the isolated fixed point at P. We set

Y. LEWUP).

eG*

L(P)

|GUP

Note that P is a tail contracting point, or an arc contracting point, or a quasi-tail
contracting point defined in Section 2.1.

(i) Assume P is a tail contracting point. Then Up is a neighborhood of an inner
multiple point with the valency (m, A, ¢, ) in Section 3.2 (i). The group Gy, is
isomorphic to Z/(£), whose generator g; acts on Up as the map (11). We put
J*={jeZ|l=<j<ti—1 j#0 (modA)}. Then Gy, =gt | § & %},
Therefore it follows from Theorem 4.1.1 that

i w
Z Cot s Cot —] — _45(5, ). (38)

]EJ*

(ii) Assume P is an arc contracting point. Then Up coincides with the local
uniformization space of the neighborhood of the non-amphidrome node in Sec-
tion 3.2 (ifa). The group Gy, isisomorphic to Z/ (£2AVA 2 d /¢?), whose generator
g1 acts on Up as the map (28). Weput J* = {j € Z |1 < j < 2203 @d/c2 —
1, j #0 (mod £AMd/c), j 0 (mod LAPd/e)}. Then Gy = {g{ | j € J*}.
By changing the primitive d-th root of unity as in the argument in Section 3.2 (iia),
it follows from Theorem 4.1.1 that

2

_ ¢ wcj mcj
L{P) = g ZJ Ot ey ot o = —4s(v,d). (39)
jeJ*

(iii) Assume P is a quasi-tail contracting point. Then Up coincides with the local
uniformization space of the neighborhood of the amphidromenode in Section 3.2 (iib).
The group Gy, is isomorphic to the dihedral group of order 2£An = 2£2A(25+2AK)
whose generators /g and 4 act on Up as the maps (30), and is written as Gy, =
(Wl hIhy |0 < j < dAn— 1}
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The map h'é has an isolated fixed point at P iff j £ 0 (mod An). Moreover,
by putting 0§ = A6 + 1 and v = 06 + A6 + 20AK, the action of the sub-
group generated by /g equivalently descends to the action generated by (z,u) +—
(e(v/2A8)z,e(1/2A8)u).

On the other hand, since A h; acts as X +— e (1/(24A) + (8 + axA)j/(An) Y,
Y e (1/(2L4) + (8 + a1A)j/(An)) X, itfollows that the eigenvalues of this action
are e((1 + j)/(24A)) and e ({1 + j)/(24A) + 1/2). The map héhl has an isolated
fixed point at P iff j % —1 (mod £1).

Since cot ”(41&] ) cot (”g&j Lo %) = —1, it follows from Theorem 4.1.1 that
1

§40An - s(v,20E) — (UA — 1)} = —2s(v, 21E) + £A —

Lipy= 200

" 26An (40)

Step 3. Next we calculate the contribution of the fixed complex curves C on S*
of the Galois groups. Namely, let C C | U; be a covering of V-charts in .S ¥ and let
G (C) be the point-wise stabilizer of C|y; in Gy;. Put

1
L{C) = Z| >, [chf pu; LE (Up).

Gu
o |0l £€GF (C)

Note that C is an irreducible component of the central fiber F¥ = Y q; FJF , 0T &
hyperplane around a quasi-tail contracting point. We calculate it for each case.

(i) We consider the former case. Since the normal bundle of F]F in S* is locally
trivial on a neighborhood of a generic point of F F, the data in order to determine
L{F JF ) are concentrated on the neighborhoods of the nodes. Let P,z be a point

written locally as an intersection point of two components Ff and F ﬂ, and Up; ; be
the chart containing P;j .

Choose the coordinate (X, Y') of the uniformization space U pigsothaty =0
(resp. X = 0) defines the local lift f’f (resp. ﬁ,f ) of Ff (resp. Flf ). We take another
chart U; with F}i NU; #8,U; N Up; ; # @ and U; ¥ P;; such that the coordinate
(X', t) of the uniformization space U; is chosen so that 7 = 0 defines the lift f , and
the coordinate transformation on U; N U P, 18 givenby r = XY, X’ = X. Since
the transition function f; p; , of NEj/ng’k ok [Ej”E"j on U; N ﬁpj’k is given by
Ji,p; = Y, the system {¢|5Pj,k =1/Y, ¢|L7z = 1} defines a meromorphic section
of the normal bundle of E; over U; U Up, , . Namely, a divisor corresponding to the
normal bundle has a simple pole at Pjx = {(X,Y) = (0.0)}. Therefore, it follows
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from the well-known local calculation (cf. [GH] p. 141) that
e, c1Ng 5, )=-—1, /~ _pp.ci(Ng. ,5) =0.
/;;f-mﬁpj’k Upj .k EilUP; ¢ 0, Ui Y

If P; k 18 an arc contacting point, then G;j,k (F}i }is a cyclic group of order A (D /¢
generated by nA®-th power of the map (28). If P; 18 a quasi-tail contacting point,
then G;j,k (F JF ) is a cyclic subgroup of order £ generated by hé” of (30).

On the other hand, we have

—1
X Lk r2—1
E CoSeC™"— = 3
r
k=1

for a natural number r (cf. [HZ] p. 178 ). From these, we have

) (@) 2
i ¢ o 1 22—
D L(F)) = Zgzd)t(l))b(l)z {( » ) _1}_szn 3
Vg F P

noam

(41)

(i) We consider the latter case. Let P be a quasi-tail contracting point, and we
follow the notations in Step 2 (iii). If j = 2k€A — 1 (1 < k < n), the map h}/h has
a fixed curve component

. L S+ad)j
H; = {(X,Y)eUp‘e(Zer( +Aan1 )J)X—Y:O},

so that the action of héhl on the normal bundle of H; in fjp is the reflection, i.e.,
with eigenvalue —1. Since H; is a horizontal hyperplane with respect to the global
fibration, the self-intersection H jz on Up (cf. [AS] p. 583) is nothing but a single
point with multiplicity 1. Therefore we have

1 T 1
L{H 2_ HP = —. 42
Z = 20 ]CX::COSEC 2 T 2 (“42)
Step 4. We show
Sign S¥ + p(ash (43)
w(i) (z) +5(z) r(a,i)
— _/S pl(Sﬂ)—i—ZZ {r(a i)— ( 0 Z K;(c, z))}

[Bi] =1

d ; Jp? & 1
* MZ] (3,10)1(2) — byl + 3£2d1<1m2)) t2 (ﬁ * BULn) '
J [Ax]




Vol. 85 (2010) Local signature defect of fibered complex surfaces 457

Indeed, it follows from (35), (38)) (39), (40), (41), (42) that

. 1
Sign S¥ + n(3s%) — 3 [S ﬁ p1(SH (44)
B ()L(l))z + (A(Z))Z 202
— _[};]45(5,1) — [PZ] {4s(v,d) S T® T 3R
1 21
—2{25(1),215)—5—1- Y },
[ Pan]

where the first, the second and the third summations move over all the monodromy
data of the orbits of the monodromy map of multiple points, non-amphidrome annuli
and amphidrome annuli, respectively. Since the both banks of an amphidrome annuli
belong to the same orbit, we can write the right-hand side of the quality (44) as

— Y 4D - Y {4s(v,d)—4s(8(1),)t(1))—4s(5(2),k(2))

[(6,A)] [Pnoam]

(A(IJ)Z + (/1(2))2 5 52
3d) MA@ 3240 (D@

— 3 J2s( 2&5)—4(8A)—1+£2_1
[P]”’ MM T 30

where the first summation moves over the valencies of the orbits of multiple points
and of both sides of non-amphidrome and amphidrome annuli, i.e., the valencies of all
the bodies. Moreover, for the monodromy data of an amphidrome annulus, a similar
argument as in Lemma 4.2.3 shows that

) | K 1
25(v,208) + 4s(8,4) = L + GAE + 3 "5 (45)
Hence the assertion (43) follows from Theorem 4.1.2, Lemma 4.2.2, Lemma 4.2.3
and (45).
Step 5. Since the intersection matrix of the exceptional set is negative definite, the
contraction S — S* induces the decrease of the dimension of the negative eigenspace
of the intersection form as the same number of the exceptional curves. Therefore

@)
Sign S—Sign S*F = =3 " "r(@.i)= ) (K — 1+ " (A))—> (K+2). (46)
[Bi]e=1 [4;] [Ax]
where
0 it K >0,

(A =
(A;) {a)+w/—r—”/+1 if K =—1.
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Note that the number € (#4 ;) defined in Section 5.2 for a non-amphidrome annulus
A; coincides with €’(A;) — €”(A;), where €'(4)) is defined in Lemma 4.2.2 and
Lemma 4.2.3.

By the definition of the orbifold Pontrjagin form, we have

[ rsh= [ 0.

Moreover, since G acts on 95 freely, n(3S) = n(3S*) coincides with (1/N Yn(88)
(JAPS] II}. Hence the assertion of Theorem 5.2.1 follows from (37), (43), (46). O

_ We prove Lemma 5.3.1. The Galois group G = Gal(€ /€) of the base extension
€ — € naturally acts on § so that the restriction of this action to a neighborhood of a
singular fiber of f is nothing but the action which we already discussed here. Since
the action of G is free outside the singular fibers and the dummy fiber £ ~1(Py), it
suffices to show that any data of £ ~1(Py) does not contribute Sign § —(1/N) Sign §.

Although f ~1(Py) is a component of fixed curves of some element of G, it does
not contribute the integral of the equivariant L-form because the normal bundle of
f1(Py) in § is trivial. Therefore the assertion is clear. O
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