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Local signature defect of fibered complex surfaces via monodromy
and stable reduction

Tadashi Ashikaga

Abstract. We consider the localization problem of signature of a fibered complex surface. In
this paper, we analyze the contribution of topological monodromy to the local signature of a

fiber germ. In order to realize it, we describe explicitly the behavior of Atiyah–Patodi–Singer’s
eta invariant under the stable reduction of a fiber germ in terms of Nielsen’s data.
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Introduction

Let f W S B be a surjective holomorphic map from a compact complex surface

S to a nonsingular curve B such that the general fiber of f is a curve of genus g.
We callf a fibration of genus g. Let SignS be the signature of the intersection form
on H2.S; Q/. If there exist a finite number of fiber germs f; Fi/, Fi D f 1.Pi/
1 i s, Pi 2 B) and a local invariant f;Fi/ is geometrically well defined such

that

Sign S D
s

X
iD1

f; Fi /;

then we say Sign S is localized and call f; Fi/ a local signature.
Atiyah [At] had a deep insight which is, in some sense, the origin of several

formulations of this concept. Matsumoto [Ma1], [Ma2] used the Meyer function and

formulated the local signature of genus 1 and 2, and calculated them for the Lefschetz
fiber germs. Endo [E] extended it for hyperelliptic fibrations of arbitrary genus. See

also [Mo].) Another local signature for hyperelliptic fibrations is defined by using
the double covering method [X], [AA1]), and these two notions are in fact coincide
with each other ([Te2]).

On the other hand, Ueno [U] used the even theta constant and defined and calculated

a local signature of genus 2. Iida [Ii] gave an analytic interpretation of the local
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signature of genus 2 by using the theta divisor and the adiabatic limit of the eta
invariant. Kuno [Ku] extended the approach of the Meyer function to non-hyperelliptic
fibrations of genus 3. For the survey articles, see [AK], [AE].

Now, through a series of papers, we present a certain type of a local signature
including generic non-hyperelliptic and unstable fibrations of arbitrary genus. From
our viewpoint, this notion should philosophically consist of two aspects of “moduli”
and “monodromy”:

local signature WD “moduli” aspect C “monodromy” aspect. 1)

With respect to the moduli aspect, we refer the joint paper with K. Yoshikawa

[AY] in detail. Here we only comment that, if f W S B is a stable fibration,
then the moduli aspect of 1) purely contribute it. Namely, by developing the idea of
I. Smith [Sm], we can define an explicit “signature divisor” on the Deligne–Mumford
compactification SMg and can localize Sign S via the pull back of it by the induced
map B SMg.

The main topic of this paper is the analysis of the monodromy aspect of 1), which
concerns the direct relation between the local monodromy around the singular fibers
and the local contribution of the stable reduction to the global signature. Namely, our
purpose here is to write down it explicitly by the language of the Nielsen’s invariants
[N1], [N2] of the monodromy map.

Note that Tan [Tan] andViehweg [V] had important studies on the contribution of
the stable reduction to global invariants of S by certain algebro-geometric methods.
On the other hand, our method is topological based on variations of the signature
theorem historically started from [Hi1], and the setting is local in base.

We summarize the arguments here. Let f W S be a degeneration of curves

with the central fiber F over a closed disk and let hS be a Riemannian metric on

S such that hS is a product metric near the boundary @S. We define

f;FI hS/ D Sign S C @S; h@S/;

where Sign S is the signature on H2.S; @SIQ/ and @S; h@S/ is the eta invariant
([APS]) with respect to the restricted metric h@S of hS on the boundary @S. Let
fQW Sz z be the minimal stable reduction of f with the central fiber Fz which
comes from the cyclic base change z of degreeN. We also put fQ; FzI h

@ zS / D
Sign zSC @ zS; h@ zS/ where h@ zS

is a Riemannian metric on @ zS which coincides with
the natural pull back of h@ zS

We define

Lsd.f; FI h@S/ WD f;FI h@S/
1

N
fQ; FzI h@ zS/;

which we call the local signature defect of the degeneration f This notion is analogous

in some sense to the “defect part” which Hirzebruch explained in [Hi2].
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Now our main theorem Theorem 5.2.1) says that the local signature defect of f
is explicitly written in terms of the Nielsen’s monodromy data of f In particular, this
is independent of the choice of the metric h@S Moreover the local signature defect
is nothing but the local contribution of the difference of the global signatures for the
global stable reduction Lemma 5.3.1).

The idea of the proof of the main theorem is as follows: The cyclic group G D
Z=.N / acts holomorphically on zS so that the resolution space of the singularities of
the quotient space zS=G coincides with the original S, and the problem is reduced
to the comparison between Sign zS and Sign zS=G. Since the spaces zS and zS=G are

also complex orbifolds, we can apply Kawasaki’s orbifold signature theorem [Ka],
which is a natural extension of Atiyah–Singer’s G-signature theorem. The data of the
integral of the equivariant L-forms on the infinitesimal neighborhoods of the G-fixed
point sets are essentially reduced to the Dedekind sum with respect to the monodromy
data, which are calculated explicitly in Sections 4 and 6.

For the preparation of this calculation, we propose the following two tools, which
themselves seem to have independent meanings. The one is a formula of Dedekind
sum Theorem 4.1.2), which is due to Myerson and Holzapfel ([Hol], [My]). The
other is a certain precise relation between the stable reduction and the Matsumoto–
Montesinos’ method in Sections 1–3 as follows:

The study of the local monodromy has a long history, and it is settled that the local
monodromy as an element in the conjugacy class of the mapping class group of genus

g belongs to the class of pseudo-periodic map of negative twist. Conversely, for a

given pseudo-periodic map of negative twist W †g †g of a Riemann surface†g,
Matsumoto–Montesinos ([MM1] Part I) constructed a certain topological quotient
space †g †g=h i, which we call MM-quotient.

An algebro-geometric interpretation of †g=h i due to Takamura [Tak] is as

follows: We start from the stable reduction zS z of f The Galois group

G D Gal.z / acts holomorphicallyon zS, since it is 2-dimensional ([DM]). TheGaction

has natural local expressions at the nodes and the points whose isotropy groups
are nontrivial as in Section 3.1 cf. [Te1]). He constructed the local uniformization
spaces of these actions and determined the types of singularities on zS=G. The
normally minimal model of the resolution of zS=G is nothing but the space †g=h i.
Therefore, to say generically, the stable reduction theorem induce the MM-quotient.

The MM-quotient has richer information than the usual stable reduction theorem.
Indeed, we propose in Section 2 “a precise” stable reduction theorem based on
MMquotient as follows: Since the numerical Chorizo space of the singular fiber of f
coincides with †g=h i, all the irreducible components are classified into cores, tails,
arcs and quasi-tails as in Section 1. We contract all the tails, arcs and quasi-tails to
points, and put S] the resulting surface. Then the natural fibration zS z of the
normalization zS ofS] z via the cycliccover z whose degree coincides with
a pseudo-period of is nothing but the stable reduction of f Theorem 2.2.1). This
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process is more precise than the usual one, because the birational transformations
in the process are explicit. Moreover, the description of the Milnor number of the
A-type singularities on zS, the coincidence of S] and zS=G, and the description of the
singularities on S] are all directly known.

By comparing the monodromy maps of zS z and zS=G D z G, we also
directly obtain the coincidence of the data of the local action of G to zS which we call
G-valency etc. in Section 3.1) and the Nielsen’s monodromy data Theorem 3.1.1).

1. Matsumoto–Montesinos quotient

In this section, we review the construction of the quotient space introduced by
Matsumoto–Montesinos ([MM1] Part I) and related facts which will be used
afterwards.1 This space is constructed by the topological quotient of aRiemann surface by
an element of the subclass of the mapping class group which is called pseudo-periodic
map of negative twist. Here our description is slightly modified from the original one

[MM1] by using the method of Takamura [Tak].

1.1. Let †g be a Riemann surface of genus g and let
W †g †g be a

pseudoperiodic map of negative twist. By definition, is an orientation-preserving
homeomorphism such that the following conditions are satisfied modulo isotopy: There
exists a decomposition

†g D A [ B 2)

into the annulus-part A D`Aj which is the disjoint union of the annular neighborhoods

Aj of simple closed curves on †g belonging to the admissible system of cut
curves, and the body-part B D `Bi which is the disjoint union of Riemann surfaces

Bi with boundary, such that the boundary set @B coincides with the boundary set

@A. The restriction jB is periodic, i.e., the power jB/
N for some natural number

N is the identity map idB. The restriction of the power jAj /N to each annulus

Aj is a right-handed integral Dehn twist. We call such an N a pseudo-period of
Note that N is a multiple of the minimal pseudo-period N0 i.e., the minimal natural
number among all the pseudo-periods).

Now let OE be the equivalence class of of the conjugacy class Myg of the
mapping class group of genus g. We review the conjugacy invariants of OE :

Let CE be an oriented simple closed curve on †g. Suppose there is a natural

number m D m.CE/ such that m.CE/ D CE as an oriented curve, where m is assumed

to be the minimal number which enjoys this property. Moreover suppose jCE/
m

is periodic of order D CE/ 1. Then for any point R on CE, there is a natural

number D CE/ with1 1 such that the iteration of m are situated in the

1For many examples of the notion discussed here, see for instance [AI1].
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order R; m R/; 2m R/;: : :; 1/m R/) when viewed in the direction of

CE. The set of triple m.CE/; CE/; CE/) is called Nielsen’s valency at CE ([N1]). Let

i D i.CE/ be the integer which satisfies i 1 mod and 1 i 1. Then the

map m
jCE behaves as the rotation of angle 2 i= in a suitable parametrization of CE.

Since the number i is also important in our argument, we simply call the quadruplet

m.CE/; CE/; CE/; i.CE/) the valency at CE.

Let Q be a point on the inside of a body component Bin@Bi Let m.Bi / be
the minimal natural number such that m.Bi /jBi D idBi If there exists a natural

number m D m.Q/ which is strictly smaller than m.Bi/ such that the points

fQ; Q/; : : : ; m 1.Q/g are distinct each other and m.Q/ D Q, we call Q a

multiple point. Then there exists a disk neighborhood DQ of Q which is invariant
under the action m. The valency m.Q/; Q/; Q/; i.Q/) at Q is defined to be
the valency of the boundary curve @DQ of DQ whose orientation is defined from the
outside of the disk. Note that the orientation of @DQ is defined from the inside in
[MM1].)

For an annulus component Aj we put @Aj D @A.1/
j `@A.2/

j the decomposition
to connected components of the boundary curve where the orientation is defined here
from the outside of the annulus. The valency at Aj is defined to be the couple of

valencies m.@A k/
j /; @A k/

j /; @A k/
j /; i.@A k/

j /) for k D 1; 2. If there exists a

natural number such that interchanges the boundary components of Aj i.e.,

@A.1/
j / D @A.2/

j we call Aj an amphidrome annulus. Otherwise we call Aj a

non-amphidrome annulus.
Let be the smallestnaturalnumbersuch that Aj/ D Aj does not interchange

the boundarycomponents. Let bea non-zero integer such that j@Aj is the identity
map. Then is a multiple of and

W Aj Aj is a result of e full Dehn twist, e
being an integer. Then we define the screw number at Aj by s.Aj/ WD e

Then the theorem of Nielsen [N2] and Matsumoto–Montesinos [MM1] says that

the conjugacy class of is determined by the data of

i) valencies at the multiple points fQg and at the annuli fAj g,

ii) screw numbers at the annuli fAjg,

iii) the action of to the extended partition graph / i.e., the one-dimensional
oriented graph whose pointscorrespond to fBi g and whose segmentscorrespond
to fAjg in a natural way.

1.2. By a numerical Chorizo space, we mean a connected topological space
consisting of the components which are underlying topological spaces of irreducible
Riemann surfaces with nodes so that the multiplicities are attached to every components.

Moreover, if two components of them intersect each other, they intersect at

several points transversally.



422 T. Ashikaga CMH

For a given conjugacy class of pseudo-periodic map of negative twist OE Matsumoto–

Montesinos [MM1] constructed the generalized quotient map W †g
†g=h i. Here †g=h i is a certain numerical Chorizo space, which we call the

Matsumoto–Montesinos quotient of Let †g=h i D Pi iF i/
top be the decomposition

to its components. By the construction, F i/
top is classified into the following

types i)–(iv):

i) F i/
top is a core component. Namely, F i/

top is the unique component which contains
the support of B0i /, where B0i is the complement of disk neighborhoods of
multiple points of on a certain body connected component Bi

ii) F i/
top is a sphere component of a tail which comes from the quotient of a disk

neighborhood of a multiple point,

iii) F i/
top is a sphere component of an arc which comes from the quotient of a

nonamphidrome annulus,

iv) F i/
top is a sphere component of a quasi-tail which comes from the quotient of an

amphidrome annulus.

We review the construction and the properties of the tails, the arcs and the quasitails

in Sections 4, 1.5 and 1.6, respectively.

1.3. Before the construction, we prepare some terminology. Let ; / be any pair
of integers with 1 1 in this subsection. Let

n2 1

D K1 D K1

K2
n3

n2

D K1
1

K2
1

K3

WD OEOEK1; K2; : : : ;Kr

3)
be the continued linear fraction. The sequence fnig

rC1
iD0

of natural numbers which
satisfies n0 D ; n1 D and

ni D Ki 1ni 1 ni 2 .2 i r C 1/ 4)

is called the usual multiplicity sequence of the continued linear fraction 3). Note
that nr D 1 and nrC1 D 0.

Conversely, let fnigrC1
iD0

be any sequence ofnon-negative integers such that ni ¤ 0
and niC1 C ni 1/=ni are integers for 1 i r. We call such fni grC1

iD0
abstract

multiplicity sequence. We define the associatedcontinued fraction OEOEK1; K2; : : : ; Kr
of this abstract multiplicity sequence by putting Ki D niC1 C ni 1/=ni

For instance, we sometimes set the initial values n0; n1 another pair of natural

numbers, and consider the abstract multiplicity sequence by the same recursion
formula 4) of 3) as in the following example.
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Example 1.3.1. We consider OEOEK1; K2; K3; K4; K5 D OEOE2; 2; 2; 3; 2 D 14=11.
Then the usual multiplicity sequence is f14; 11; 8; 5; 2;1;0g.

Onthe otherhand, theabstract multiplicity sequence with the initial values n0 D 6,
n1 D 5 of this continued linear fraction is f6;5;4; 3; 2; 3; 4g. Indeed, we have

n2 D 2 5 6 D 4, n3 D 2 4 5 D 3, n4 D 2 3 4 D 2, n5 D 3 2 3 D 3,
n6 D 2 3 2 D 4.

Therefore, OEOE2; 2; 2; 3; 2 is also the associated continued linear fraction of

f6;5;4; 3; 2; 3; 4g.

1.4. Let Q be a multiple point on B with the valency m; ; ; i/. Let 3) be the
continued linear fraction of with respect to this valency data, and let fnigrC1

iD0
be

its usual multiplicity sequence.
Then weattach at apoint of a diskD of multiplicitymn0 a chain of rational curves

of the length r of multiplicities mn1;mn2; : : : ; mnr see [MM2], p. 72, Figure 1).
This is the tail arising from the multiple point Q.

1.5. Next consider a non-amphidrome annulus A D Aj Let @A D @A.1/`@
A.2/

be the decomposition to the connected components of the boundary and let
m.k/; k/; k/; i.k// be the valencies at @A.k/ k D 1;2). Let s.A/ be the screw

number at A. Then s.A/ is a non-positive rational number, and is written as

s.A/ D
i.1/

.1/
i.2/

.2/ K 5)

where K is an integer greater or equal to 1 ([MM1]). Let

.1/

.1/ D OEOEK1; K2; :: : ;Kr ;
.2/

.2/ D OEOEL1; L2; : : : ;Lr0 6)

be the continued linear fractions and let fnigrC1
iD0 fmig

r 0

C1
iD0

be their usual multiplicity
sequences respectively. Let

O
i/ be the natural number which satisfies

i/i i/ D O
i/ i/ C1 i D 1; 2/:

We define a natural number d and integers v; v ; Nv; Nv
by

d D
.1/ .2/s.A/ D i.1/ .2/

C i .2/ .1/
C K .1/ .2/; 7)

v D
.1/i.2/

C
.2/

O
.1/

C
.1/ .2/K; v D

.2/i .1/
C

.1/
O

.2/
C

.2/ .1/K; 8)

Nv v mod d/; 1 Nv d 1; Nv v mod d/; 1 Nv d 1: 9)

Lemma 1.5.1 Takamura [Tak]). i) vv 1 mod d

ii) If K 0, then 1 v d 1 and 1 v d 1, i.e., v D Nv
and v D Nv
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Proof. The assertion i) follows from

vv D O
.1/ .2/

C
.1/

O
.2/

C
.1/ .2/K/d C 1:

The former assertion of ii) follows from

d v D
.1/ .1/ d C .2/

.1/ > 0:

The latter assertion of ii) is similar.

Now we first assume K 0. From 6), we define new continued fractions ˆ WD

ˆ .1/= .1/; .2/= .2/; K/ as follows:
i) If K 1, put

ˆ D OEOEK1;K2; : : : ; Kr 1; Kr C 1; 2; : : : ; 2; Lr0 C 1; Lr 0 1 :: : ;L2; L1 :

„ ƒ‚ …K 1

ii) If K D 0, r 1 and r0 1, put

ˆD OEOEK1; K2; : : : ; Kr 1; Kr C Lr0; Lr 0 1 :: : ;L2; L1 :

iii) If K D 0, r 1 and r0 D 0, put

ˆD OEOEK1; K2; : : : ; Kr 1 :

Lemma 1.5.2. The abstract multiplicity sequences with the initial values .1/; .1/

of the continued linear fractionˆ are as follows:

i) If K 1, then fn0;n1; : : : ; nr 1; nr; 1; : : : ; 1; mr0; mr 0 1; : : : ;m1;m0g.

„ ƒ‚ …K 1

ii) If K D 0, r 1 and r0 1, then fn0; n1; : : : ; nr 1; 1; mr 0 1; : :: ; m1; m0g.
iii) If K D 0, r 1 and r0 D 0, then fn0; n1; : : : ; nr 1;nrg.

Proof. We prove i). Let f`i grCr
0

CK
iD0

be the abstract multiplicity sequence of ˆ
with the initial values `0 D .1/ D n0, `1 D

.1/ D n1. It is clear that `i D ni
for 0 i r. Since nr D 1 and Krnr nr 1 D 0, we also have `rC1 D
Kr C 1/nr nr 1 D 1 and `rCi D 2 1 1 D 1 for 2 i K.

On the other hand, the usual multiplicity sequence fmig
r 0

C1
iD0

satisfies mr 0

C1 D 0,
mr 0 D 1 and mi 2 D Li 1mi 1 mi for 2 i r0 C 1. Hence

`rCKC1 D 1 Lr 0 C 1/ 1 D Lr 0 D mr0 1: 10)

By 10) and `rCK D 1 D mr0 we inductively have

`rCKCi D Lr0 i 1`rCKCi 1 `rCKCi 2 D Lr0 i 1mr 0

iC1 mr 0

iC2 D mr0 i

for 2 i r0.
The proofs of ii), iii) are similar.
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Lemma 1.5.3. The value of the continued linear fraction of each of ˆ coincides
with d=v.

Proof. See [To] p. 64, Lemma 4.9.

Note that Lemma 1.5.3 also implies that OEOEL1; L2; :: : ;Lr0 1; Lr 0 C 1; 2; : : : ; 2;

„ ƒ‚ …K 1Kr C 1; Kr 1 : : : ;K2;K1 D d=v and so on.
Next we assume K D 1. This case occur only when i.1/= .1/ Ci.2/= .2/ 1.

Theorem 1.5.4 Takamura). Assume i.1/= .1/ C i.2/= .2/ 1.

i) There exists an unique pair .!; 0/ of integers with 0 r, 0 0 r0,

.!; 0/ ¤ .0; 0/ which satisfies

n! D m!0; n!C1 C m!0

C1 D n!:

In particular, the following are abstract multiplicity sequences;

a) If 1; 0 1, then fn0;n1; : : : ; n! 1; n!; m! 0 1; : : : ;m1;m0g.
b) If 0 D 0, then fn0; n1;: : : ; n! 1; n!g:

ii)The associated continued linear fractionsˆ of these sequences arerespectively

a) ˆ D OEOEK1; K2; :: : ;K! 1; K! C L! 0 1; L! 0 1; : : : ; L2;L1
b) ˆ D OEOEK1; K2; :: : ;K! 1 for 2. Note thatˆ is empty for D 1.)

iii) In the case a), we have v D Nv
and v D Nv Moreover the value of the

continued linear fraction ˆ coincide with d=v by putting K D 1 in 8).
iv) In the case b) for 2, we have v < Nv

and v D Nv
The value of ˆ

coincide with d= Nv by putting K D 1.

Proof. See [Tak], §6.2.

We will again discuss in Section 3.2 the geometric meaning of Lemma 1.5.3 and
Theorem 1.5.4.

Now we go back to the construction of the arc A/. This is related to the
abstract multiplicity sequences in Lemma 1.5.2 and Theorem 1.5.4. Namely, this
is constructed by combining two disks D.1/ and D.2/ with multiplicities mn0 and

mm0 respectively by the following chain of spheres:

i) If K 1, then the chain has length r Cr0 CK 1 such that the multiplicities
of the components are mn1;mn2; : : : ;mnr; m; : :: ; m; mmr0; : : :; mm2;mm1 see

„ ƒ‚ …K 1[MM2], p. 73, Figure 2).

ii) IfK D 0, then the chain has length rCr0 1 such that the multiplicities of the
components are mn1; mn2;: : : ; mnr 1;m; mmr 0 1; : : : ;mm2; mm1 Figure A).
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iiia)IfK D 1, 1 and 0 1, then the chain has length C! 0 1 such that

the multiplicities of the components are mn1; mn2; : : : ; mn! 1; mn!; mm! 0 1; : : :;
mm2;mm1 Figure B).

iiib) If K D 1, 2 and 0 D 0, then the chain has length 1 such that

the multiplicities of the components are mn1; mn2;: : : ; mn! 1 Figure C).

iiic) If K D 1 and D 1, 0 D 0, then the banks of both sides of the bodies
connect directly at one point transversally Figure D).

· · · · · ·mn1 mnr 1 m mmr

Figure A

· ·· mn! 1 mn! mm! 0 1 · · ·

Figure B

· · · · · ·

Figure C

Figure D

mm1

mn0

mn0

mn0

mn0

mn0

mn1

mn1

0 1

mm1 mm0

mm0

mm0

mn! 1

The above arc A/ is globally attached to core components in a natural way.
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1.6. Lastly we assume that the annulus A is amphidrome. The quasi-tail A/ is
constructed as follows: Let .2m0; ; ; i/ be the valency at both sides of boundary
curves of A, and let fni g

r
iD0

be the multiplicity sequence of the continued linear
fraction of as in 3). Then A/ is constructed by connecting a disk of
multiplicity 2m0m0 and the set of rational curves at a point transversally. This set has the
dual graph of Dynkin diagram of type D, and the multiplicities of components are
2m0n1;2m0n2; :: : ; 2m0nr;m0; m0. the last m0;m0 are the multiplicities of the two
tail components. See [MM2], p. 73, Figure 3).

The space A/ is also globally attached to a core component in a natural way.

1.7. We present two examples of MM-quotients for certain pseudo-periodic maps of
genus 2. We will again discuss them in Sections 2 and 5 via another viewpoint. For
further examples of MM-quotient, see [AI1].

Example 1.7.1. Let W †2 †2 be the pseudo-periodic map of negative twist of
genus 2 as follows: The decomposition 2) for is written as †2 D B1[B2 [A,
where each Bi i D 1; 2) is a body connected component consisting of a

onepunctured torus and A is a non-amphidrome annulus. The valencies m; ; ; i/ on

B1 are .1; 4; 3; 3/, .1; 4; 3; 3/ and .1;2; 1; 1/, where .1; 4; 3; 3/ is attached to the
boundary curve @B1 D @A.1/ and the others are attached to the multiple points.
According to [AI1], we simply say that the total valency on B1 is 3=4 C 3=4 C 1=2.
By the same way, the total valency on B2 is 2=3 C 2=3 C 2=3. The screw number

s.A/ is 3=4 2=3 K K 1). The minimal pseudo-period of is 12. See

Figure G in Section 2.
The MM-quotient space F of for K 0 2 and K D 1 are written as

F D 4F .1/
C

2

X
kD1

3

X
jD1

.4 j/F .1/
kj C 2F .1/

3 C
K 1

X
jD1

F .0/
j C 3F .2/

C

3

X
kD1

2

X
jD1

.3 j /F .2/
kj K 0/;

F D 4F .1/
C

3

X
jD1

.4 j /F .1/
2j C 2F .1/

11 C 2F .1 2/
3 C 3F .1/

12 11 C 3F .2/

C
3

X
kD2

2

X
jD1

.3 j /F .2/
kj K D 1/:

2If K D 0, then F .1/
12 and P

K 1
13 D F .2/

jD1 F .0/j is empty.
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The configuration of F isas in FigureI in Section2. Here F has two core components

F .1/ and F .2/, four connected components of the tails
PjD1.4

3 j /F .1/ 2F .1/
2j 3

jD1.3 j /F .2/

P
2

jD1.3 j/F .2/
2j and

P
2

3j and one connected component of the arc

jD1.4 j /F .1/

P
3

1j CP
K 1
jD1 F .0/

jD1 jF .2/
j CP

2
11 C2F

.1 2/
1j

resp. 3F .1/
12 11 for K 0

resp. K D 1).

Example 1.7.2. Let
W †2 †2 be the pseudo-periodic map with the same

decomposition †2 D B1 [ B2 [ A as in Example 1.7.1 such that the total valency of
each of Bi i D 1; 2) is 3=4C3=4C1=2 and A is an amphidrome annulus with the
screw number 3=4 3=4 2K K 0). The minimal pseudo-period is 8. The
configuration of the MM-quotient F of is as in Figure E. Here the MM-quotient
space F has one core component, two connected components of the tails and one
connected component of the quasi-tail.

8

6

6

4

4

2

2 2 2

4

1

1

Tail
Tail

Quasi-tail

Core

Figure E

2. Stable reduction in biregular sense

By a stable reduction fQW Sz z of a degeneration f W S of curves, we mean
that zS is birationally equivalent to the fiber product S z where z is a cyclic
cover which is totally ramified at the origin, so that the central fiber fQ 1.0/ is a stable

curve. The total space zS may have singularities of type A at the nodes of the central
fiber. Note that the stable reduction is not unique for given f Several proofs are

known for the existence of the stable reduction in this simple situation ([DM], [AW]
and [BPV] etc.).
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Now in this section, we present another process of the stable reduction in this
situation which is different from the method of above ones. Our process seems to be
precise, because we can “catch” the stable reduction explicitly in biregular sense.

2.1. Let f W S be a proper surjective holomorphic map from a complex surface

S to an unit disk D ft 2 C j jt j < 1g such that the general fiber f 1.t0/ t0 6D 0)
is a nonsingular curve of genus g 1. Let F D f 1.0/ be the singular fiber,
and let F D PiD1 iF i/ be its irreducible decomposition. Assume f is normally
minimal, i.e., the reduced scheme F red

D PiD1
F i/ is normal crossing and any

1) component in Fred has at least three nodes of F red on it. We call f a normally
minimal degeneration of curves of genus g.

Let f W †g †g be a monodromy map of f where †g is considered to be a

fixed general fiber of f The conjugacy class OE f 2 Myg in the mapping class group
is uniquely determined by f which we call the topological monodromy of f It is
well known that OE f belongs to the class of a pseudo-periodic map of negative twist
([Im], [MM1] etc.).

Let Fch D PiD1 iF i/
top be the numerical Chorizo space naturally obtained by the

singular fiber F D PiD1 iF i/. Namely, if we only forget the analytic structure of
each F i/, but do not forget the underlining topological structure and the multiplicity

i and also its configuration, then we obtain Fch.
The fundamental theorem of [MM1] says that Fch coincides with the Matsumoto–

Montesinos quotient †g=h f i of the monodromy map f We call F i/ a core resp.

tail, arc, quasi-tail) component ofF iff the corresponding F i/
top is a core resp. tail, arc,

quasi-tail) component in the sense of Section 1. By changing the order if necessary,

we may assume that fF
i/

g

0

iD1
for some 1 0 are core components and

fF i/
giD

0

C1
are non-core i.e., tail, arc and quasi-tail) components.

Since fF i/
giD

0

C1
is a proper subset or empty set) of F red

D PiD1
F i/, the

intersection matrix of fF i/
giD

0

C1
is negative definite. Therefore we have the

bimeromorphic holomorphic map
W S S] which contract fF i/

giD
0

C1
to points by

Grauert’s theorem [Gr]. Let f ]
W S] be the natural holomorphic map which

satisfies
i D F i// for 1 i 0, the fiber F] WD f ]/ 1.0/f ]

B D f Putting F ]

is written as F] D P
0

iD1 iF ]
i

Now the two-dimensional analytic space S] has at most isolated singularities P
so that the support of P is contained in F ]/red

D P
0

iD1
F ]
i Moreover one of the

following is satisfied:

i) F]/red is smooth at P, and P is the contraction image by of a tail.

ii) F]/red is singular at P, and P is the contraction image by of an arc.

iii) F]/red is singular at P, and P is the contraction image by of a quasi-tail.
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We determine the type of singularity at P of S] in the sense of Brieskorn [Br] for
each case. First we consider i). Let m; ; ; i/ be the valency of the multiple point
corresponding to the tail, and go back to the situation in Section 1.4. The point P is
the contraction image of the chain

P
r
iD1 mniEi of rational curves. By identifying

this chain with the divisor on S which is a part of components of F, we have

0 D FEi D m.ni 1 C niE2
i C niC1/

for 1 i r where nrC1 is assumed to be 0). It follows that E2i D ni 1

niC1/=ni D Ki Namely, this is the Hirzebruch–Jung string whose components

have the self-intersection numbers K1; : : : ; Kr Therefore by the
wellknown argument, the germ S]; P/ is a cyclic quotient singularity of type C ;i
i.e., the germ at the origin of the quotient C2=.Z= Z/ by the action z1; z2/
e.1= /z1; e.i= /z2/.

Second we consider ii). We go back to Section 1.5, and consider the
nonamphidrome annulus corresponding to the arc. The point P is the contraction
image of the Hirzebruch–Jung string whose self-intersection numbers of the components

coincides with the self-intersection sequence of the continued linear fraction

ˆ .1/= .1/; .2/= .2/; K/. Therefore it follows from the tautness of this type of
singularity, Lemma 1.5.1, Lemma 1.5.3 and Theorem 1.5.4 that S];P/ is a cyclic
quotient singularity of type Cd; Nv.

We consider iii). The point P is the contraction image of the tree of rational
curves whose dual graph has Dynkin diagram of type D as in Section 1.6. By the
argument in [Br], S]; P/ is a dihedral quotient singularity of type hbI2; 1I 2;1Ii C

K C 1/;i C Ki in p. 347 of [Br]. For more simplified notation as in [R], we
call it of type D C ; by putting D i C K. Summarizing the above argument we
obtain

Lemma 2.1.1. In Case i), S]; P/ is a cyclic quotient singularity of type C ;i
In Case ii), S]; P/ is a cyclic quotient singularity of type Cd;Nv, where d; Nv are

given in 7)–(9).

In Case iii), S];P/ is a dihedral quotient singularity of type D C ;

2.2. In general, let M be an analytic space and M be a fibration of curves.
Let a be a positive integer, and h.a/

W
a/ be the covering between small disks

defined by z za. LetM.a/ be the normalization of the analytic spaceM a/.
We call the natural morphismM.a/ a/ the pure a-th root fibration3 ofM
We set hQ.a/

W M.a/ M the natural morphism. The following is a slightly more
precise version of the classical stable reduction theorem:

3This notion is slightly different from the root fibration in [BPV] p.92, because the modification after
normalization is unused.
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Theorem 2.2.1. i) Let N be a pseudo-period of f Then the following hold.

ia) The pure N-th root fibration f N/
W S.N/ N/ of f ]

W S] is a stable
reduction of f Moreover, f N/ is the unique stable reduction of f in the
birational equivalence class of S N/.

ib) The cyclic groupG D Z=NZ acts holomorphically on S.N/ so that the quotient
space S.N/=G coincides with S].

ic) For a node Pz on the singular fiber Fz D f N// 1.0/, the germ of the point
P D hQ.N/.Pz/ on S] is one of ii) and iii) in Lemma 2.1.2. Then the germ

Sz; Pz/ is a rational double point of type An 1 n 1) such that the Milnor
number n is given by

n D
Ns.A/
m.A/

;

whereAis the annulus whose center curve is the vanishing cycle corresponding
to P.

ii) Conversely, any stable reduction of f coincides with the pure N-th root
fibration f N/ of f ] for some pseudo-period N of f In particular, f N0/ is the
minimal stable reduction in the sense that the covering degree N0 of the base change
is minimal among all of them.

Proof. Step1. We firstfix a pseudo-periodN of f LetB bea connectedcomponent

of B in 2). Let fQig
s

iD1
be the set of multiple points on B, and f@B i/

sC1 i sCs0g be
the set of connected components of the boundary @B. Let f.mi; i; i; ii/g1 i sCs

0

be the valency at each multiple point or boundary component. Let N1 be the minimal
period of at B, i.e., N1 is the minimal number such that B/N1 is isotopic to the
identity idB. Then N1 is a divisor of N and we have N1 D mi i for 1 i s Cs0.

There exists a unique component of F ] containing B/ as a set, which we may

1 Let Pi 1 i s C s0) be the point on F ]assume to be F ]
1 which is the image by

the contraction map of the tail or the arc or the quasi-tail corresponding to Qi or

@B.i/. The curve F ]
1 itself is smooth or irreducible with nodes.

Now we choose an open set U] of S] containing the divisor 1F]
1 so that the

complement of 1F ]
1 in U] \F ] is empty or consists of small punctured disks with

some multiplicities, and satisfies f ].U]/ D see Figure F).
First we consider the pure N1-th root fibration f N1/

loc W U.N1/ N1/ of

f ]
U] W U] The unique closed component F N1/

1 of the central fiber F N1/
D

loc / 1.0/ is itself smooth or irreducible with nodes. Let O1 W FN
N1/f N1/

1 F N1/
1

be the normalization, and let hO
W FN

N1/
1 FN

]
1

be the lift of the restriction map

hQ1 WD hQ.N1/
jF N1/

1
W F N1/

1 to the normalization. Then hO is an N1-fold cyclic1 F]
covering whose branch points coincides with f

1
1 Pi/g1 i sCs

0 Moreover the total
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valency data of the periodic automorphism of FN
N1/

1 induced by this covering
transformation coincides with f.mi; i; i;ii /g1 i sCs

0 cf. [AI1], §1.) Since the natural

morphism hQ
N1/

loc W U.N1/ U] is unramified covering over U]n`1 i sCs
0 Pi the

singularities of U.N1/ are at most on hQ.N1// 1.Pi/ 1 i s C s0).

U ] U N1

1F ]
1

F N1/
1

N1 W 1 N1/

Figure F

But, over hQ
N1/

loc / 1.Pi / for 1 i s, i.e., over the tail-contracting point, we

claim that U.N1/ is non-singular.
Indeed, since the germ U ]; Pi / is a cyclic quotient singularity of type C i ;ii the

local fundamental group U];Pi is isomorphic to Z= iZ ([Br]). By looking at the
local monodromy, this group is trivialized by the i -fold cyclic cover whose Galois
group is the stabilizer of each ramification point over hQ.N1// 1.Pi/. Since the germ

of the point with trivial local fundamental group is nothing but the germ of a smooth
point ([Mu]), hQ.N1// 1.Pi/ consists of mi smooth points.

The total space U.N/ of the pure N-th root fibration f N/
loc W U.N/ N/ of

f ]
U]

is also smooth on the pull back of Pi 1 i s), because the natural morphism

U.N/ U.N1/ clearly lifts these smooth points to smooth points of U.N/.

Step 2. Next we consider the case s C 1 i s C s0. Assume P WD Pi is
an arc-contracting point. We choose an open set UP U] of P so that the fiber

f ]jUP / 1.0/ consists of two multi-disks nD.1/
C n0D.2/ D.1/ \D.2/

D P) and
satisfies f ].UP/ D We rewrite the valencies at the boundaries @Ai of the
nonamphidrome annulusAi by m; k/; k/; i.j// k D 1; 2). Note thatmis a common
divisor of n and n0, and the general fiber of f ]

jUP W UP consists of m disjoint
annuli.

First we consider the pure m-th root fibration f m/
loc W U.m/ m/ of f ]jUP

The central fiber of f m/
loc consists of two multi-disks with the multiplicities n=m and

n0=m, and the general fiber consists of an annulus. Moreover the monodromy of
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f m/
loc is isotopic to the linear twist with the screw number s.Ai/ ([MM1], §8), i.e.,

there exists a parametrization Ai ' OE0; 1 R=Z 3 t; u/ such that the monodromy
action of f m/

loc is written as t;u/ 7! t; u i.1/= .1/
C s.Ai /t/.

Next we consider the pure N-th root fibration f N/
loc W U.N/ N/ of f ]jUP

loc / 1.0/Since N=m is a multiple of both of n=m and n0=m, the central fiber f N/

consists of two reduced) disks Dz1 C Dz2 so that Dz1 and Dz2 meets transversally

at a point Pz. The general fiber AQ WD f N/
loc / 1.t0/ t0 ¤ 0) is an annulus, and

loc
W AQ AQ is isotopic to the linear twist with the screwthe monodromy map f N/

number N=m/ s.Ai/ D N=m/ i.1/= .1// i.2/= .2// K
Since N=m is a multiple of lcm. .1/; .2//, this map is an integral Dehn twist of

N=m/s.Ai/ times to right hand direction. Therefore the numerical Chorizo space

AQ h f N/
loc i consists of two disks and a P1-chain of length N=m/s.Ai/ 1 whose

multiplicities of all the components are one, i.e., the chain of 2) curves of length

N=m/s.Ai/ 1. Since f N/
loc / 1.0/ consists of two disks, all the components

of this chain should be contracted to a point. Namely, the point Pz 2 U.N/ zS is
nothing but the contraction image of this chain, and therefore the germ Sz; Pz) is a

rational double point of type A N=m/s.Ai/ 1.
IfP is aquasi-tailcontracting point, i.e., Ai isan amphidrome annulus, the similar

argument also works. We omit it.)
Hence f N/

W
S.N/ N/ is a stable family and the assertion ic) is verified.

If a core component of the central fiber of f N// is a 2) curve, it has at least

three nodes of the fiber. This fact is a direct consequence of Harvey’s theorem [Ha].
Therefore the uniqueness of the stable family with the fixed covering degree is also
clear, which induce the assertion ia).

Step 3. Let N0 be any positive integer which is not a multiple of N0, and we
consider thepureN0-th root fibration f N 0/

W S.N
0/ N 0/ of f ]. The monodromy

map f N0/ W †g †g is isotopic to the power f /N
0

and the decomposition to
the annulus part and the body part of f N 0 / coincides with 2) of f

Now the assumption of N0 implies that there exists a connected component B
of the body part such that f N 0 / jB is not isotopic to idB. Namely the period of

f N 0 / jB is greater than one. Therefore the numerical Chorizo space †g=h f N 0 /i
contains at least one core component with the multiplicity greater than one. If this
core component is a 1) curve in the normally minimal fiber, then it intersects at

least three tail components by [Ha]. This fiber germcannot be transposed birationally
to a stable fiber germ. Hence the assertions ii) is clear.

The remaining assertion ib) is also clear, because the natural action of Z=NZ
on the fiber product S] N/ lifts to its normalization as a holomorphic Galois
action by an easy argument.
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Example 2.2.2. Let f W S be the degeneration whose topological monodromy
coincides with which is given in Example 1.7.1. The numerical Chorizo space

of the singular fiber F of f coincides with the MM-quotient described in Example

1.7.1. Note that f is the degeneration which is listed as the types OEIV III m
OEIV III in Namikawa–Ueno’s table [NU].

1
2

s D
3
4

2
3 K

2
3

3
4

1
2

3
4

2
32

3

12 W 1

B1

A

B2

id

s D 17 12K

id

12

Figure G Figure H

Let S S] be the contraction defined in Section 2.1. The irreducible
decomposition of the central fiber F ] of S] is written as F ] D 4F ]

1 C 3F ]
2 The

normal analytic surface S] has five isolated singularities P .1/
1 ;P .1/

2 ; P12; P .2/
1 and

P .2/ The points P .1/; P .1/; P .2/; P .2/ are tail contracting points, and are rational2 1 2 1 2

double points of types A3; A1; A2; A2 respectively. The point P12 D F ]
1 \F ]

2 is an
arc contraction point, and is the cyclic quotient singularity of type C17C12K;12C9K
resp. type C5;3) for K 0 resp. K D 1), because of OEOE2;2; 3; 2;: : : ; 2; 3; 2 D

„ ƒ‚ …K 1.17 C 12K/=.12 C 9K/ resp. OEOE2; 3 D 5=3). See Figure J.

Let fQW Sz z be the stable family obtained by the composition of the 12 W 1
base change. The central fiber Fz consists of two components Fz D Fz1CFz2 so that Fz1

resp.Fz2) is asmooth elliptic curve, since it isa 4-fold resp. 3-fold) cycliccover ofP1
branched at 3 points whose branch indices are 4, 4, 2 resp. 3, 3, 3). The topological
monodromy around Fz coincides with 12, and therefore the decomposition to the
bodies and the annuli is the same as and the total valencies at Bi i D 1;2) are

trivial and the screw number at A is 17 12K, i.e., it is the right-handed Dehn
twist of 17C12K times. See Figure H. The surface zS has a rational double point of
type A16C12K at the node P D Fz1 \ Fz2 as in Figure K.
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4
3

3
Core

3

2

2

2

2

2
2

1

1

1

1

1

1

Tail
Tail

Tail

Tail

Core

Arc

S F K 0/

Contract

S] F ] Sz Fz

A3

A1

A2
A2

C17C12K;12C9K

12 W 1

A16C12K

Figure I

Figure J Figure K

Example 2.2.3. Let f W S be the degeneration whose topological monodromy
coincides with given in Example 1.7.2. ThenumericalChorizo space of thesingular
fiber F of f coincides with the MM-quotient described in Example 1.7.2. Note that

f is listed as the type OE2III m in [NU].
After the contraction S S], the surface S] has three isolated singularities on

its central fiber F ] of S] Two of them are rational double points of types A3
and A1 which are the tail contracting points, and one of them is a dihedral singularity
of type D7C4K;3C4K

which is the quasi-tail contracting point.
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Let fQW Sz z be the stable family obtained by 8 W 1 base change. The central
fiber Fz consists of two smooth elliptic curves with one node so that Sz has a rational
double point of type A5C8K at the node.

3. Group action and monodromy

The notation is the same as Section 2. We fix a pseudo-period N of f and a

generator g0 of G D Z=NZ through this section. We consider the stable reduction
fQ D f N/

W zS D S.N/ z D
N/ of f W S In this section, we describe

the direct relation of the action of G on zS and the monodromy data of f We also
review Takamura’s argument [Tak] for later use.

3.1. i) We call a smooth point P on Fz D fQ 1.0/ an inner multiple point of Fz iff
the stabilizer StabG.P/ of P in G is strictly larger than the stabilizer StabG.Fz.i// of
the irreducible component Fz.i/ of Fz which contains P.

For an inner multiple point P, there exists a positive integer zmsuch that neighborhoods

in zS of the zm mutually distinct points P; g0.P/; : : : ;g zm 1
0 P / are permuted

cyclically and isomorphically to each other by the action of g0, and g zm
0 stabilizes

the neighborhood UP of P as a set. We choose local coordinates x; t/ on UP so

that t is a lift of a parameter on z and x is a local parameter of Fz.i/ which satisfy
P D f.x; t/ D .0; 0/g. Since the action of g zm is locally linearizable and of finite0
order, there exist relatively prime natural numbers Q ; Qi) with 1 Qi Q 1 so that
the action of g zm

0 on UP is written as

x; t/ 7 e
Qi

Q

x; e
1
Q `

t 11)

where ` D N=.Q zm/ is an integer, and e.x/ D exp.2 ix/. We also put the integer

Q which satisfies
Q

Qi 1 mod Q and 1 Q
Q 1, and call zm; Q ; Q; Qi) the

G-valency at P.
ii) Next assume P is a node of Fz. There exist disks D.1/; D.2/ of both sides of

local irreducible components of Fz at P such that P D D.1/ \D.2/. We choose a

suitable local coordinate neighborhood UP on zS at P as

UP D f.x; y; t/ 2 C 3
j xy D tn ; jxj ; jyj g 12)

where Fz D ft D 0g, D.1/
D fx D t D 0g, D.2/

D fy D t D 0g and n is a

positive integer. There exists a positive integer zm such that the neighborhoods in zS
of the points P; g0.P/; : : : ; g zm 1

0 P/ are permuted isomorphically to each other by
the action of g0 and g zm

0 stabilizes UP as a set without changing the boundaries, i.e.,
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g zm

0 D.j// D D.j / for j D 1; 2. The integer zm is assumed to be the smallest among
the positive integers which enjoy the above property.

Moreover, if zm
is even and g zm=2

0 stabilizes UP exchanging D.1/ and D.2/, we
call P an amphidrome node. Otherwise, we call P a non-amphidrome node.

iia) Assume P is a non-amphidrome node. Then, for j D 1; 2, there exist
relatively prime natural numbers Q j /; Qi.j /) with 1 Qi.j / Q j / 1 so that the
action of g zm

0 on UP is written as

Q

.1/! x; e
Qi.2/

Q

.2/! y; e
1

x; y; t/ 7 e
Qi.1/

lcm.Q .1/; Q .2// `
t! 13)

where ` D N=flcm. Q.1/; Q .2// zmg is an integer. Since the action 13) is compatible
with the local equation in 12), there exists an integer Kz 1 such that

n D
`

gcd.Q .1/; Q.2//
Qi
.1/

Q
.2/

C Qi
.2/

Q
.1/

C Kz Q
.1/

Q
.2/ : 14)

We also put the integer Q j/ which satisfies Q j/Qi.j / 1 mod Q j/) and 1 Q j/
Q j/ 1 for j D 1; 2, and call zm; Q j/; Q

j/; Qi.j/) the G-valency at P. Moreover we
set

Qs D
Qi.1/

Q .1/

Qi.2/

Q.2/
Kz; 15)

which we call the G-screw number at P.

iib) Assume P is an amphidrome node. There exist relatively prime natural

numbers Q ; Qi) with 1 Qi Q 1 such that g zm=2
0 acts on UP by

2Q
y; e

Qi

2Q
x; e

1

2Q `
t! 16)x; y; t/ 7 e

Qi

where ` D N=. Qmz/ is an integer. Moreover there exists a non-negative integer Kz

with
n D 2`.iQ C Kz Q/: 17)

We put the integer Q in the same way, and call zm; Q ; Q ; Qi) the G-valency at P. We

set

Qs D
2Qi

Q

e2K 18)

which we call the G-screw number at P.
iii) Let Fz/ be the dual graph of Fz. This is the one-dimensional oriented graph

so that the vertices correspond to the irreducible components of Fz and the oriented
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segments correspond to the nodes of Fz in a canonical way. The action of G on Fz

naturally induces an action on Fz/.
Now we claim that the data i)–(iii) in this section are essentially identified with

the data i)–(iii) in Section 1.1. Oneway to obtain this result is tocompare the types of
singularities on S] and the quotient singularities by the G-action in this section see

Takamura [Tak] and Section 3.2). Another way is to describe directly the monodromy
map of the quotient family of the action as follows:

Theorem 3.1.1. i) There exists a natural isomorphism Fz/ f / so that the

action of G on Fz/ coincides with the action of f on f /. In particular, there
exists a one-to-one correspondence between the set fF i/g of irreducible components
of Fz and the set fB.i/g of body components for f between the set fPkg of
nonamphidrome nodes of Fz and the set fAkg of non-amphidrome annuli for f and

between the set fP`g of amphidrome nodes of Fz and the set fA`g of amphidrome
annuli for f respectively.

ii) Let fPjg be the set of inner multiple points on a irreducible component

F i/, and let fQj g be the set of multiple points on the corresponding body
component B.i/. Then there exists a one-to-one correspondence between fPj g and fQj g
such that the G-valency zm.Pj /; Q Pj /; Q Pj/; Qi.Pj// coincides with the valency

m.Qj /; Qj /; Qj /;i.Qj //.
iii) The G-valency zm.Pk/; Q j /.Pk/; Q

j /.Pk/; Qi.j/.Pk// j D 1; 2) at a
nonamphidrome node Pk coincides with the valency m.Ak/; j/.Ak/; j /.Ak/;
i.j /.Ak// at the corresponding non-amphidrome annulus Ak. Moreover the
Gscrew number Qs.Pk/ coincides with the screw number s.Ak/.

iv) The G-valency zm.P`/; Q P`/; Q P`/; Qi.P`// at an amphidrome node P`
coincides with the valency m.A`/; A`/; A`/; i.A`// at the corresponding
amphidrome annulus A`. Moreover the G-screw number Qs.P`/ coincides with the
screw number s.A`/.

Proof. Step 1. First, according to the well-known argument ([C], [MM1] etc.), we
describe the monodromy map of fQ.

We consider a general fiber Fzt0 D fQ 1.t0/ t0 ¤ 0) around the stable fiber Fz.

For each node P and its neighborhood UP by 12), we put AP;t0 WD UP \ Fzt0 We

have the decomposition

Fzt0 D aP AP;t0 [ ai t0 19)B i/

t0 is the decomposition to connected components of
Fzt0n`P AP;t0where `i B i/

Clearly there exists a natural one-to-one correspondence between the set fB i/
t0 g and

the set fFz.i/g of irreducible components of Fz.
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Nowwe specially consider the fiberFzi fora sufficientlysmall positive real number

i. Set 0 D in= We define a homeomorphism 'P;i W
OE0; 1 S1 AP;i as follows;

We first define a map uW OE0; OE0; OE0; 1 by

u.jxj; jyj/ D
8ˆ̂<
ˆ̂:

jyj
2. jxj/

if jxj jyj ;

1 jxj
2. jyj/

if jyj jxj :

For each u 2 OE0;1 there uniquely exists a pair of real numbers r.u/; s.u/) such
that r.u/s.u/ D in, 0 r.u/ 0 s.u/ and u.r.u/; s.u// D u. Then

r.u/; s.u/) defines a curve connecting the point r.0/; s.0// D 0; / on @A.2/
P;i D

fjyj D g and the point r.1/; s.1// D ; 0/ on @A.1/
P;i D fjxj D g. Then we define

'P;i W
OE0;1 S1 AP;i by

'P;i u; / WD e. /r.u/; e. /s.u/; i/ 20)

where 2 R=Z ' S1.
Nowwe define ahomeomorphismh W Fzi Fze. /i for0 1as follows; For

an annulus partAP;i by using the parametrization 'P;i we define h jAP;i W AP;i
AP;e. /i by

x; y; i/ e .1 u.jxj; jyj// n x; e u.jxj; jyj/ n y; e. /i : 21)

For a body part B i/
i which is locally defined by t D i in a natural coordinate z;t/

of zS, we define h jB i/i W B i/
i B i/

e. /i by z; i/ e. n/z; e. /i/. These are

globally well-patched and define a homeomorphism h W
Fzi Fze. /i

Then the monodromy homeomorphism is nothing but h1 W Fzi Fzi by putting

D 1. Since

h1jAP;i B 'P;i/.u; / D 'P;i u; nu/

by 20) and 21), h1jAP;i is a result of n-full Dehn twist. Thereforeh1 induce integral
Dehn twists on the annulus part and the identity map on the body part.

Step 2. Weput i D iN and consider the smooth fiberFi D f 1.i / Note that

g0.Fzi/ D Fze.1=N /i Let
W Sz Sz=G be the projection, and let 1 D jFzi W Fzi

Fi and 2 D jFze.1=n.P//i W
Fze.1=N/i Fi be the two isomorphisms. Since f

coincides with fQG W Sz=G over thenon-critical locus on the homeomorphism

h WD 2 B h1=N B 1/ 1
W Fi Fi 22)

is nothing but the monodromy homeomorphism of f
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We set AP ;i D 1.AP;i/ and B i/
i D 1.B i/

i /, and consider the decomposition

Fi D aP AP ;i [ ai i : 23)B i/

Since the restriction of hN to`B i/
i is the identity map and the restriction toAP ;i

is an integral Dehn twist on itself, h is a pseudo-periodic map so that 23) coincides
with the decomposition of the annular neighborhood of the admissible system of cut
curves and the body parts of h. Moreover the minimal pseudo-period of h is a divisor
of N.

Since 23) is the decomposition with respect to the monodromy h, the partition
graph f / is isomorphic to

fQ
/. Since the dual graph Fz/ is isomorphic to

fQ/, this is isomorphic to f /. These isomorphisms are canonical and clearly
compatible with the G-action and the monodromy action. Therefore we have the
assertion i).

Now by using 20), we define a parametrization on AP ;i by

'P ;i D 1 B 'P;i W
OE0; 1 S1 AP ;i :

Assume P is a non-amphidrome node. It follows from 13), 14), 15), 20), 21),
22) that

hm
jAP ;i / B 'P ;i u; / D 'P ;i u;

n zmu
N C

Qi.1/

Q .1/

D 'P ;i u; C Qsu C
Qi.1/

.1/
:

Namely, this is the linear twist with the screw number Qs and the valency Qi.2/= Q .2/ at

one boundary. The valency at the other boundary coincides with Qi.1/= Q .1/ by 15).
Therefore the assertion iii) holds.

Assume P is an amphidrome node. It follows from 15), 16), 17), 20), 21),
22) that

hm
jAP ;i / B 'P ;i u; / D 'P ;i 1 u; C

zmnu
N C

Qi

2Q

D 'P ;i 1 u; Qsu

2 C
Qi

2Q
:

We also have h2m jAP / B 'P ;i u; / ' u; Q / Therefore;i D P ;i CQsuCQi=
the assertion iv) follows.

It remains to prove ii). For the irreducible component Fz.i/, we put Fz.i/ D
Fz.i/n`P UP \Fz.i// where P is a node of Fz on Fz.i/. Then there exists a canonical

analytic isomorphism '.i/
e. /i Fz.i/ as Riemann surfaces with boundary.

e. /i W B i/
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0 be the generator of StabG.Fz.i//. Then the restriction mapNow let gm.i/

i W B i/hm.i/=N jB i/ i B i/
e.m.k/=N/i

is also an analytic isomorphism so that the composition map

i B .'.i/'.i/e.m.i/=N /i B hm.i/=N jB i/ i / 1
W

Fz i/ Fz i/

0 jFz.i/ W Fz.i/ Fz.i/ Thereforecoincides with the analytic automorphism gm.i/
the body part B i/

i / of Fi is analytically isomorphic to Fz.i/ and thei D 1.B i/

i
W B i/restriction of the power of the monodromy map hm.i/jB i/ i B i/

i is nothing

0 jFz.i/ W Fz.i/ Fz.i/ via this isomorphism. Hence the assertion ii) isbut gm.i/
clear by 11) and the definition of the valency.

3.2. Since Theorem 3.1.1 is established, weuse the simplifiednotations
zm D m, Q D

; : : : by omitting the “tilde”. For instance, we write x; t/ e.i= /x; e.1= `/t/
for 11), etc.

We already described the singularities on S] D zS=G in Theorem 2.2.1 and
Lemma 2.1.2. Here, we also explain why these types of singularities appear on S]
by the quotient of the action 11), 13) and 16). The argument of this subsection is
essentially due to Takamura [Tak].

i) We consider the neighborhood UP of an inner multiple point P. Since the
action on UP of the cyclic group hgm0 i generated by gm0 of 11) is not small, i.e.,
this group has an element which has one-dimensional fixed point locus, according
to the well-known argument in singularity theory, we descend it as follows; Let
UP VP 0 D f.z; u/ 2 D Dg D is a small disk) be the map defined by

x; t/ z; u/ D x; t`/. As the descent map of 11), we define the action yg0 on

VP 0 by

z; u/ 7 e i z;e
1

u : 24)

The action on VP 0 of the cyclic group h yg0i ' Z= Z is small so that the quotient
space UP hgm0 i is isomorphic to VP 0=h yg0i, whose singularity at the origin is of type

C ; by 24). Namely, this is the case i) of Lemma 2.1.2.

ii) We consider UP in 12) for a node P. Let zUP D f.X;Y / 2 D Dg UP
be the minimal local uniformization map defined by

X;Y / 7 x; y; t/ D Xn; Y n; XY /: 25)

iia) Assume P is a non-amphidrome node. In order to describe the lifting to zUP
of the action 13), we need the following elementary number theoretic lemma whose
claim essentially due to Takamura ([Tak]) :
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Lemma 3.2.1. i) Let .1/; i.1/; .2/; i.2/;K be natural numbers with .1/; i.1// D
.1/, .2/; i.2// D .1/ as ideals in the ring of integers Z. Put d D .1/i.2/ C

.2/i.1/ C K .1/ .2/. Then there exist natural numbers a1; a2 which satisfy

a1 C a2 D K; i.1/
C a1 .1/; d/ D i.2/

C a2 .2/; d/ D .1/: 26)

ii) The element i.2/
C a2 .2// i.1/

C a1 .1// 1 in the multiplicative group

Z=dZ/ coincides with the representative v of 8).

Proof. Letp1;: : :; p be the prime factors of the number d. Foreachpi 1 i
we define the subsetM.pi/ of Z by

M.pi / D fx 2 Z j i.1/
C x .1/;pi / D i.2/

C K x/ .2/; pi/ D .1/g:

We claim that there exists i 2 Z such that the arithmetic sequence f i C kpi gk2Z
is contained inM.pi /;

f i C kpigk2Z M.pi /: 27)

Indeed, we first assume .1/; pi/ D .2/; pi/ D pi /. Then the assertion 27)
is clear byM.pi/ D Z.

Second,weassume .1/; pi/ D .1/; .2/; pi/ D pi/. The congruence equation

i.1/
Cx

.1/ 0 mod pi has a solution, say x 0
i

We omit mod pi afterwards.)
We choose an i 2 Z with i 6

0i Then f i C kpi gk2Z is contained in M.pi/.
The case where .1/; pi/ D pi/; .2/; pi / D .1/ is also similar.

Third, we assume .1/; pi/ D .2/; pi / D .1/. Suppose pi 3. Let 0
i ;

0

i be

natural numbers with i.1/
C 0i

.1/ 0; i.2/
C

0

i
.2/ 0. The union of elements

of arithmetic sequences

A D f 0

i C kpigk2Z [ fK
0

i C kpigk2Z

is a proper subset of Z. We choose a number i 2 Z with i 6 0
i i 6 K 0

i
Then f i C kpigk2Z is contained in Z n A, and therefore is contained inM.pi /.

Suppose pi D 2. Since d 0, one of the following occurs modulo symmetry):

a) .1/ .2/ i.1/ i.2/ 1; K 0.

b) .1/ .2/ i.1/ 1; i.2/ 0; K 1.

c) .1/ .2/ 1; i.1/ i.2/ 0; K 0.

d) .1/ .2/ 0; i.1/ i.2/ 1 K is arbitrary).

If a) or b) occurs then f2kgk2Z M.2/. If c) occurs, then f2k C 1gk2Z
M.2/. If d) occurs, thenM.2/ D Z. Hence the assertion 27) holds.

By using 27) inductively, the set of intersection

M.p1/\ \M.p /
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is non-empty, because it contains an arithmetic sequence f C k Q
v
iD1 pigk2Z for

some 2 Z. We choose an element a1 2 M.p1/\ \M.pv/ and set a2 D K a1.
Then we have the assertion i).

By the definition of v and the equality i.1/ .1/
D O

.1/ .1/
C 1, we easily have

i.1/
C a1 .1//v i.2/

C a2 .2// D O
.1/

C a1 .1//d:

Hence the assertion ii) also follows.

We go back to the situation in Sections 1.5 and 3.1 iia). The number n is
determined by 14). By using Lemma 3.2.1, as a lift of 13) by 25), we define the action
on zUP by

.1/n
X; e

i.2/
C a2 .2/

.2/n
Y !: 28)X;Y / 7 e

i.1/
C a1 .1/

The cyclic action generated by 28) is not small. We descend it as follows: By putting
Q i/ D i/=gcd. .1/; .2// i D 1; 2/, let UzP VP 0 D f.XN; YN / 2 D Dg be the

map defined by X 7! XN D X`Q.1/
; Y 7! YN D Y `Q.2/ Then the descent map of 28)

is written as

d
XN; e

i.2/
C a2 .2/

d
YN !; 29)gy0 W

XN; YN / 7 e
i.1/

C a1 .1/

which generates the small action. By 26), D e i.1/
C a1 .1//=d is a primitive

d-th root of unity and the number e i.2/
C a2 .2//=d coincides with v by

Lemma 3.2.1 ii). The quotient space UP hgm0 i is isomorphic to VP 0=h yg0i, whose
singularity at the origin is of type Cd;v. Namely this is the case ii) of Lemma 2.1.2.

iib) Assume P is an amphidrome node. The action which is the lift by 25) of
the cyclic group generated by 16) is generated by two maps

h0 W X; Y / 7 e i C a1

n
X; e i C a2

n
Y ;

2 ` Y; e
1

h1 W X; Y / 7 e
1

2 ` X ;

30)

where n D `.2iC2 K/ and a1; a2) is a pair of integers with a1 Ca2 D 2K; iC
a1 ; n/ D i Ca2 ; n/ D 1. Note that h21 is contained in the subgroup generated

by h0. This action is not small. Let zUP VP 0 D f.XN; YN / 2 D Dg be the map
defined by X;Y / 7! XN; YN / D X`; Y` : By putting D i C K, the descent
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action is written as

XN; YN / 7 e i C a1

2
XN; e iC a2

2
YN ;

2
YN; e

1
XN; YN / 7 e

1

2
XN ;

which generate the small action, and the germ of singularity at the origin of the
quotient space is nothing but D C ; -singularity in iii) of Lemma 2.1.2.

4. Dedekind sum

In this section, we prepare some number-theoretic arguments which relate to the
Dedekind sum.

4.1. Let ; be any pair of mutually prime natural numbers with 2; 1
1. Let

s. ; / WD

1

X
kD1

k k

be the Dedekind sum with respect to ; where x// D x OEx 1=2 for a

noninteger x and x// D 0 for an integer x. OEx is the greatest integer not exceeding x.)
The following formula is classical.

Theorem 4.1.1. Let k1;k2 be any integers. Then

Xj
cot j

k1
cot j

k2 D 4k1k2 s. ; /

where j moves over integers satisfying 1 j k1k2 1, j 6 0 mod k1 and

j 6 0 mod k2

When k1 D k2 D 1, it is the classical Rademacher’s formula. The above formula
appears in Hirzebruch–Zagier [HZ] p. 179, 180.

Let D OEOEK1; K2; : :: ; Kr be the continued linear fraction, and set n0 D
;n1 D and ni D Ki 1ni 1 ni 2 2 i r C 1). Let i be the integer with

i 1.mod / and 1 i 1. Then s. ; / is expressed via these data of
the continued linear fraction by Myerson–Holzapfel’s formula. For the geometric
meaning of this formula, see also [AI2].
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Theorem 4.1.2 Myerson [My], Holzapfel [Hol], p. 270).

s. ; / D
r
4 C

1

12
C i C

r

X
iD1

Ki :

4.2. We consider the Dedekind sum with respect to the monodromy data at a
nonamphidrome annulus A. We follow the notations in Section 1.5.

Lemma 4.2.1.

v C v
d

.1/
C i.1/

.1/

.2/
C i.2/

.2/ D
i.1/

.1/ C
i.2/

.2/
.1//2 C .2//2

d .1/ .2/ :

Proof. By 7) and i/
O

i/ i/i.i/ D 1, we have

d .1/ .2/ v C v
d

.1/
C i.1/

.1/

.2/
C i.2/

.2/

D
.1/ .2/

f2i
.1/i.2/

C
.2/i .1/

C
.1/i.2//Kg

.1//2
°
1 C i.2//2 .2//2

°
1 C i .1//2 :

31)

On the other hand, it follows from 5) that

.2/i.1/
C

.1/i.2//K D
.1/ .2/K i.1/

.1/ C
i.2/

.2/

D d .2/i .1/ .1/i.2//. s.A/ K/
D °d .1/ .2/. s.A/ K/ s.A/ K/
D s.A/ C K/d .1/ .2/.s.A/ C K/2:

32)

Moreover

2 .1/ .2/i .1/i.2/
C .1//2

°
1 C i.2//2 C .2//2

°
1 C i.1//2

D
.2/i.1/

C
.1/i.2//2 C .1//2 C .2//2

D .1//2 .2//2 s.A/ C K/2
C .1//2 C .2//2:

33)

From 31), 32) and 33) we have the assertion.

Now we consider the cased > 1. From the argument in Sections 1.5 and 3.2 iia),
this condition is equivalent to saying thatAdoes not have the invariantsK D 1; D
1 and 0 D 0.
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Lemma 4.2.2. Assumed > 1. We put

0.A/ D

8ˆ̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

0 if K 0,

C
0 r r0 C

1
3

r

X
iD!C1

Ki C
r0

X
iD!0C1

Li C 2 if K D 1,

1, 0 1,

r r0 C
1

3

r

X
iD!

Ki C
r0

X
iD1

Li C 1 if K D 1,

2, 0 D 0,

where D
Nv v

See Theorem 1.5.4 iv).) Then we have

4s.v; d/ C 4s. .1/; .1// C 4s. .2/; .2//

d

D
d

3 .1/ .2/ C
.1//2 C .2//2

3d .1/ .2/ 1 C 0.A/:

Proof. It follows from Lemma 1.5.1, Lemma 1.5.3, Theorem 1.5.4 andTheorem4.1.2
that

s.v; d/ D

8ˆ̂̂̂̂
ˆ̂̂̂̂
<̂

ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

r C r0 C K 1
4 C

1

12

v C v

d C
r

X
iD1

Ki C
r0

X
iD1

Li C 2K ; K 0;

C 0 1

4 C
1
12

v C v
d CX

iD1
Ki C

0

X
iD1

Li 1 ; K D 1;

1, 0 1,

1

4 C
1

12
v C v

d C C
1

X
iD1

Ki ; K D 1; 2, 0 D 0.

Therefore, by applying Theorem 4.1.2 again to s. .1/; .1// and s. .2/; .2//, we
easily have the assertion from Lemma 4.2.1.

Next we consider the case d D 1, i.e., K D 1; D 1 and 0 D 0. In order to
treat this case in the same formulation as in the cased > 1, we define a slight trivial)
generalization of Dedekind sum s. ; / for D 1. Namely, for any integer we
define

s. ; 1/ D 0: 34)

The analogous result of Lemma 4.2.2 for d D 1 is as follows:

Lemma 4.2.3. Assume d D 1. We put

0.A/ D r r0 C
1
3

r

X
iD!

Ki C
r0

X
iD1

Li C
.1/

.1/ C
.2/

.2/

.2/

.1/

.1/

.2/ C 4 :
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Then we have

4s.v; 1/ C 4s. .1/; .1// C 4s. .2/; .2//

D
1

3 .1/ .2/ C
.1//2 C .2//2

3 .1/ .2/
1 C 0.A/:

Proof. From s.v;1/ D 0 and d D i.1/ .2/ C i.2/ .1/ .1/ .2/ D 1, the assertion
easily follows from Theorem 4.1.2.

5. Local signature defect

5.1. Let 0 < < 1 be a sufficiently small real number. In this section, let f W S
be a normally minimal degeneration of curves of genus g over a closed -disk

D ft 2 C j jtj g with the central fiber F D f 1.0/. By a little bit abuse

of the notation, one may consider f the restriction over a small closed disk of the
degeneration defined in Section 2.1.) We denote the restriction of f to its boundary
by @f W

@S @ ' S1.
Since the restricted family over the punctured disk f 1. / D n f0g

is differentiably locally trivial, there exists a Riemannian metric hS D fhijg on S
such that the restriction over a tubular neighborhood of @S is a product metric. We

put h@S the restriction of hS to @S. The choice of hS is not unique, and we fix one

of them. Let Sign S be the signature of the intersection form on H2.S; @SIQ/, and
@S; h@S / be the eta-invariant of Atiyah–Patodi–Singer [APS]. Inspired by Furuta’s

discussion [Fu]4, we put

f;FI h@S/ D Sign S C @S; h@S/:

Let fQW Sz z be the stable reduction of degree N of f and let W z
QW Sz S be the natural maps. Let hSz be a Riemannian metric on zS so that hzS
is an extension of the natural pull back of the restricted metric of hS to a tubular
neighborhood of @S. Since the map

Q
is umramified near the boundary, it is well

defined. Themetric hzS is aproductmetric near the boundary @ zS, and the eta-invariant

@ zS; h
@ zS/ is well defined. We also put fQ; FzIh@ zS/ D Sign.zS/ C @ zS;h@ zS /. We

define

Lsd.f;F I h@SIN/ WD f; FI h@S /
1

N
fQ; FzIh@ zS /;

and call it the local signature defect of f;F I h@S/ of order N.

4Furuta [Fu] discussed this type of invariants under a more general setting of the linear connection.
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5.2. We summarize thenotationsof themonodromydataof f Let†g D B[A0[A00

be the decomposition to the set of body connected components B D `Bi the set of
non-amphidrome annuli A0 D`Aj and the set of amphidrome annuli A00 D ` AQ k
with respect to a representative of) the monodromy map f W †g †g. Let
B= D `OEBi be the orbit decomposition with respect to the cyclic action generated

by f Namely two components Bi1 and Bi2 are equivalent iff Bi2 D f /n.Bi1/
for some integer n, and B= is its equivalence class. We set A0= D ` OEAj

A00= D` OEAk similarly.

Let fm ; i/; i/ ; i i/
g1 ' i/ be the set of all the valencies which are attached

to multiple points and boundary curves of Bi Set

i/ i/ D OEOEK1. ;i/;K2. ; i/; : : :; Kr. ;i/. ; i/ :

Let m.Aj /; .1/.Aj /; .1/.Aj /; i.1/.Aj// and m.Aj /; .2/.Aj /; .2/.Aj /;
i.2/.Aj// be thevalencies of both boundary curves of a non-amphidrome annulusAj
and s.Aj / D i.1/.Aj /= .1/.Aj/ i.2/.Aj /= .2/.Aj / K.Aj/ be the screwnumber.

Set .1/.Aj/= .1/.Aj / D OEOEK j /
1 ; K j /

2 ; : : :; K j/r.j/ and .2/.Aj /= .2/.Aj / D
1 ; L j /

2 ; : : : ; L j /
OEOEL j /

r 0 j /
Now we define a rational number Aj / as follows:
If K.Aj / 0, put

Aj / D 0:

If K.Aj / D 1, put

Aj / D

8ˆ̂̂̂̂
ˆ̂̂̂̂
<̂

ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

1

3

r.j /

X
iD!.j /C1

K j/i C
r 0 j /

X
iD! 0 j /C1

i 1 ; j / 1; 0.j/ 1;L j /

1

3

r.j /

X
iD!.j /C1

K j/i C
r0 j /

X
iD1

i j / 2 ; j / 2; 0.j / D 0;L j /

1

3

r.j /
X
iD1

K j/
i C

r 0 j /
X
iD1

i j / 2 ; j / D 1; 0.j/ D 0;L j/

where j /;!0.j/ are defined in Theorem 1.5.4, j/ is defined in Lemma 4.2.2
and j/ is defined by

j / D
.2/.Aj /
.1/.Aj / C

.1/.Aj/

.2/.Aj/

2

X
iD1

i/.Aj/
i/.Aj/

:

Moreover we put `.Aj/ D N=flcm. .1/.Aj /; .2/.Aj // m.Aj /g.
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Let m.Ak/; Ak/; Ak/; i.Ak// be the valency of a boundary curve of the
amphidrome annulus Ak, and s.Ak/ D 2i.Ak/= Ak/ 2K.Ak/ be the screw

number. Put `.Ak/ D N=f Ak/m.Ak/g.
Note that the above data are independent of the choice of a representative of OEBi

OEAj and OEAQ k respectively.

Now the proof of the following theorem is postponed to Section 6.

Theorem 5.2.1.

Lsd.f; FI h@SIN/ D
1

3X
OEBi

' i/

X
D1

i/
C i i/
i/ C

r. ;i/

X
jD1

Kj ; i/

CX
OEAj

gcd. .1/.Aj /; .2/.Aj //
`.Aj / .1/.Aj/ .2/.Aj /

K.Aj/ C Aj /

CX
OEAk

1

2`.Ak/ Ak/
K.Ak/ 2 ;

where the summations move over all the classes of the orbit decompositions.

Since Lsd.f; F Ih@S IN/ is independent of h@S we write it by Lsd.f; FIN/ from
now on. Moreover, if we choose N minimal, then we simply write it by Lsd.f; F/
and call it the local signature defect of the degeneration f which only depends on
the fiber germ at F

Now let fOW Sy be the semi-stable reduction of f The surface Sy is obtained
from zS by the resolution yS zS of rational double points of type A at the double
points ofFz. The boundary @Sy of Sy coincides with @Sz, and has thenaturalRiemannian
metric h

@ yS
For the fiber germ fO; Fy/, we put fO; FyI h@ yS/ D Sign. yS/C @ yS; h

@ yS
/.

Similarly we define

Lsd.f; FI h@SIN/ WD f; FI h@S/
1
N

fy; FyIh@ yS /:

If N is minimal, we put

Lsd.f; F/ WD Lsd.f;F I h@SIN/;
which also depends on the fiber germ at F .5

5 In [AY], the invariant Lsd.f;F / is called the local signature defect instead of Lsd.f;F /. The reason is
that the result ofCorollary5.2.2 is simpler than thatof Theorem 5.2.1. In this paper, weemphasize the theoretical
importance.
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Corollary 5.2.2.

Lsd.f; F I h@S IN/ D
1

3X
OEBi

' i/

X
D1

i/
C i i/

i/ C
r. ;i/

X
jD1

Kj ;i/

CX
OEAj

i.1/.Aj /
.1/.Aj/ C

i.2/.Aj /
.2/.Aj / C Aj /

CX
OEAk

Ak/
2 :i.Ak/

Proof. Let n.Aj / be the Milnor number of the singularity of type A corresponding
to the non-amphidrome annulus Aj via Theorem 3.1.1. By 14), n.Aj/ coincides
with

`.Aj/
gcd. .1/.Aj/; .2/.Aj //

i.1/.Aj / .2/.Aj/ C i.2/.Aj/ .1/.Aj / C K.Aj/ .1/.Aj / .2/.Aj / :

Moreover the number N is written as N D `.Aj / lcm. .1/.Aj /; .2/.Aj //.
Let n.Ak/ be the Milnor number of the singularity of type A corresponding

to the amphidrome annulus Ak. By 17), we have n.Ak/ D 2`.Ak/ i.Ak/

CK.Ak/ Ak/ and N D 2`.Ak/ Ak/: Therefore we have

1
Sign.S/z Sign.S/y

N

DX
n.Aj/ 1

OEAj
N CX

OEAk

n.Ak/ 1

N

DX
OEAj

i.1/.Aj /
.1/.Aj / C

i.2/.Aj/
.2/.Aj / C K.Aj/

1

`.Aj / lcm. .1/.Aj /; .2/.Aj //

CX
OEAk

i.Ak/
Ak/

C K.Ak/
1

:
2`.Ak/ Ak/

On the other hand, it follows from @ zS; h@zS/ D @ yS; h@ yS/ that

Lsd.f; F I h@SIN/ D Lsd.f; F Ih@SIN/ C
1

N
Sign. zS/ Sign. yS/ :

Hence the assertion follows from Theorem 5.2.1.
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Example 5.2.3. Let f W S be the degeneration given in Example 2.2.2. If
K D 1 for the unique amphidrome annulusA, then we have r D 3, D 2; r0 D 2,

0

D 1 and WD A/ D .1=3/.2 C 2 1/ D 1. Therefore Theorem 5.2.1 implies
that

Lsd.f; F / D Lsd.f; F I12/

D
1
3² 3 C 3

4 C 2 3 2 C
1 C 1

2 C 2 C
2 C 2

3 C 2 2 3³

12
K CC

1

D
8
<̂

:̂
K

45

4
; K 0

37

4
; K D 1:

Moreover

Lsd.f;F / D ´ 119=12; K.A/ 0;

107=12; K.A/ D 1:

Example 5.2.4. For the degeneration f W S given in Example 2.2.3, we have

Lsd.f; F/ D
1

3²
3 C 3

4 C 2 3 2 C
1 C 1

2 C 2 ³ C
1

2 4
K 2

D
63
8

K;

4
2 DLsd.f; F/ D 6 C

3 29

4
:

5.3. We consider the global stable reduction fQ W z Cz off W C of order N.
The description of fQ is as follows:

Let Ni be a pseudo-period of the local monodromy map around the singular fiber

Fi D f 1.Pi/ 1 i r). Let N be a common multiple of all of Ni. By
adding a non-critical point P0 (“a dummy point”) if necessary, we can construct a

cyclic branched covering ' W zC C of order N whose branch points coincide with
P0; P1;: : : ; Pr Moreover, for 1 i r, the fiber ' 1.Pi/ consists of N=Ni points
so that the ramification indices at them are Ni The analytic surface z has at most
A-type singularities and is birationally equivalent to C zC. Explicit construction
is nothing but the natural patching of N=Ni -copies of the local stable reduction of
the fiber germ of Fi 1 i r) discussed in Section 2. Note that f 1.' 1.P0//
consists of multiple fibers whose reduced schemes are nonsingular and z itself is
smooth around the fiber.
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The local signature defect of the germ of the singular fiber is nothing but the local
contribution of thedifference of the global signature under the globalstable reduction,
i.e., we have the following lemma whose proof is also postponed to Section 6.

Lemma 5.3.1.

Sign
Sign z

N D
r

X
iD1

Lsd.fi; Fi INi/

where fi is the restricted fibration of fQ to a tubular neighborhood of Fi and Fzi is
its stable fiber of the local stable reduction fQi of fi of order Ni

6. Proof of main theorem

WeproveTheorem5.2.1 and Lemma 5.3.1. Ourbasic tool is a complex 2-dimensional
version of the orbifold signature theorem with smooth boundary. We review the
notationsand the result of it in Section 6.1, and then apply it to our proof inSection 6.2.

6.1. In general, let M be a complex 2-dimensional V-manifold in the sense of
Satake [Sa] with a real 3-dimensional manifold boundary @M. Let M D S

U be
a V-coordinate covering, namely, the local uniformization maps zU U and the
finite Galois groups GU D Gal. zU=U/ are defined with the natural compatibility

conditions, i.e., if U1 U2, then there exist a holomorphic open embedding

zU1 zU2 and an injective group homomorphism GU1 GU2 which induce

zU1=GU1 D U1 U2 D zU2=GU2 Since M is a rational homology manifold,
the signature SignM over H2.M; @M; Q/ is well defined.

Let fhUij g be a V-Riemannian metric on M, i.e., each hUij is a GU -invariant

Riemannian metric on zU with the natural compatibility conditions. We assume fhUij g
induces a product metric near @M. TheV-Levi-Civita connection f5U g with respect
to fhUij g, and theV-curvature matrix fRU g with respect to f5U g are defined naturally

([Sa]). The V-Pontrjagin form fp1.U /g is defined by p1.U / D .2 / 2 Tr R2U /.
For each V-coordinate U and an element g 2 GU we define the equivariant

Lform Lg.U / as follows cf. [AS], §6): If g D id, put Lg.U / D .1=3/ p1.U /, i.e.,
the Hirzebruch L-form of degree 1. Assume g ¤ id, and let zUg be the g-fixed locus
on zU, which is an isolated fixed point or a fixed complex curve.

Suppose zUg WD P is an isolated fixed point. Then g acts on the tangent space

TP zU/ linearly with its eigenvalues ei g and ei g 0 < g; g < 2 Then we put
Lg.U/ D cot. g=2/cot. g=2/.

Suppose zUg WD C is a fixed complex curve. Then g acts on each fiber of the
normal bundle NC= zU /Q of a generic point Q 2 C linearly with its eigenvalue ei g
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0 < g < 2 Put Lg.U / D cosec2. g=2/ c1.NC= zU /, where c1.NC= zU / is the
first Chern form of NC= zU

Then the orbifold signature theorem ([Ka]) says that

SignM C @M/ DX
U

1

jGU j X
g2GU

Z
zUg

ULg U/; 35)

where U is a cut function on U so that the system f U g defines a partition of
unity on M and @M/ is the eta invariant with respect to the above V-connection.
Note that 35) is the “primitive version” in some sense, and Kawasaki reformulates

it by describing the correction term from the L-class as the equivariant L-class on
the orbifolds which are the preimages of the V-singular locus of M by the natural
immersion. See theorem and corollary in [Ka], p. 78, 79.)

6.2. We prove Theorem 5.2.1 by several steps.

Step 1. First we consider the surface zS, which has a simpleV-manifold structure.
The support of the V-singular locus i.e., the set of points whose isotropy groups in
the Galois groups are non-trivial) of zS coincides with the set of nodes fPg on the
central fiber Fz at which Sz has An 1-singularities n 1).

We may assume that the V-chart UP containing P is unique, and the local
uniformization map zUP UP is given by 25). Since the generator of the Galois group

GUP 'Z=.n/ acts on UzP as XN; YN / 7! e.1=n/XN; e..n 1/=n/YN /, it follows from
Theorem 4.1.1 that

1

jGUP j X
g2GUP nfidg

Lg UP / D
1
n

n 1

X
jD1

cot j
n

cot
n 1/j

n

D 4s.n 1; n/ D
n
3

1 C
2

3n
:

36)

If P D Pnoam is a non-amphidrome node, by putting d D i.1/ .2/
C i.2/ .1/

C
K .1/ .2/ and c D gcd .1/; .2//, we have n D .`d /=c and N D .` .1/ .2//=c. If
P D Pam is an amphidrome node, we have n D 2` D 2`.i C K/ and N D 2`
Therefore it follows from 35) and 36) that

1

N
Sign zS C @ zS/

D
1

3N
Z

zS
p1. zS/ C X

Pnoam

d
3 .1/ .2/

c

` .1/ .2/ C
2c2

3`2d .1/ .2/

CX
Pam

3

1

2` C
1

3` n

37)
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where the first summation moves over all the data of non-amphidrome nodes and the
second summation moves over all the data of amphidrome nodes.

Step 2. Next we consider the surface S] defined in Section 2. The cyclic group

G D Z=.N / acts holomorphically on zS so that zS=G coincides with S]. The surface

S] has the V-manifold structure via the composition of the restriction of the global
covering map zS S] and the local uniformization map of the V-chart of zS.

First we calculate the contribution of the integral of the equivariant L-form of
the isolated fixed points P of the Galois groups. We may assume the V-chart UP
containing P is unique. Let G?

UP
be the subset of elements g 2 GUP such that

zU
g
P D fPg, i.e., g has the isolated fixed point at P. We set

LhPi D
1

jGUP j X
g2G?UP

Lg UP /:

Note that P is a tail contracting point, or an arc contracting point, or a quasi-tail
contracting point defined in Section 2.1.

i) Assume P is a tail contracting point. Then zUP is a neighborhood of an inner
multiple point with the valency m; ; ; i) in Section 3.2 i). The group GUP is

isomorphic to Z=.` / whose generator g1 acts on UPz as the map 11). We put

J D fj 2 Z j 1 j ` 1; j 6 0 mod /g. Then G? D fg
j

UP 1 j j 2 J g.
Therefore it follows from Theorem 4.1.1 that

LhPi D
1

` X
j2J?

cot j
`

cot ij
D 4s.i; /: 38)

ii) Assume P is an arc contracting point. Then zUP coincides with the local
uniformization space of the neighborhood of the non-amphidrome node in Section

3.2 iia). The groupGUP is isomorphic toZ= `2 .1/ .2/d=c2 whosegenerator

g1 acts on UPz as the map 28). We put J D fj 2 Z j 1 j `2 .1/ .2/d=c2

1; j 6 0 mod ` .1/d=c/; j 6 0 mod ` .2/d=c/g. Then G?UP D fgj1 j j 2 J g.
By changing the primitive d-th root of unity as in the argument in Section 3.2 iia),
it follows from Theorem 4.1.1 that

LhPi D
c2

`2 .1/ .2/d X
j2J?

cot
cj

` .1/d
cot

cj
` .2/d D 4s.v; d/: 39)

iii) Assume P is a quasi-tail contracting point. Then zUP coincides with the local
uniformizationspaceof the neighborhoodof the amphidrome node inSection 3.2 iib).
The groupGUP is isomorphic to the dihedralgroup of order 2` n D 2`2 2iC2 K/
whose generators h0 and h1 act on UPz as the maps 30), and is written as GUP D
fhj ; hj h1 j 0 j ` n0 0 1g.
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The map hj0 has an isolated fixed point at P iff j 6 0 mod n/. Moreover,
by putting i D O C 1 and v D i C O C 2 K, the action of the
subgroup generated by h0 equivalently descends to the action generated by z; u/ 7!
e.v=2 /z; e.1=2 /u/.

On the other hand, since hj0h1 acts as X 7! e .1=.2` / C iC a2 /j=. n// Y
Y 7! e .1=.2` / C i C a1 /j=. n// X, it follows that the eigenvaluesof this action

are e..1 C j /=.2` // and e..1 C j /=.2` / C 1=2/. The map hj0h1 has an isolated
fixed point at P iff j 6 1 mod ` /

Since cot 1Cj/
4` cot 1Cj/

4` C 2 D 1, it follows from Theorem 4.1.1 that

LhPi D
1

2` n f4` n s.v; 2 / ` 1/g D 2s.v; 2 / C
` 1

2`
: 40)

Step 3. Next we calculate the contribution of the fixed complex curves C on S]
of the Galois groups. Namely, let C S Ui be a covering of V-charts in S], and let
G?

Ui C / be the point-wise stabilizer of CjUi in GUi Put

LhCi DX
Ui

1

jGUi j X
g2G?Ui C/

Z
C\Ui

UiLg Ui /:

Note that C is an irreducible component of the central fiber F ]
D P jF ]

j or a

hyperplane around a quasi-tail contracting point. We calculate it for each case.

i) We consider the former case. Since the normal bundle of F ]j in S] is locally

trivial on a neighborhood of a generic point of F ]
j the data in order to determine

LhF
]j i are concentrated on the neighborhoods of the nodes. Let Pj;k be a point

written locally as an intersection point of two components F ]
j and F ]

k and UPj;k be
the chart containing Pj;k.

Choose the coordinate X;Y / of the uniformization space zUPj;k so that Y D 0

j resp. Fz
]resp. X D 0) defines the local lift Fz] k

of F ]
j resp. F ]

k
We take another

chart Ui with F ]
j \Ui 6D ;, Ui \ UPj;k 6D ; and Ui 63 Pj;k such that the coordinate

X0;t/ of the uniformization space Uzi is chosen so that t D 0 defines the lift Fz]j and

the coordinate transformation on Uiz \UPj;z is given by t XY X0 X. Since
k D D

the transition function fi;Pj; ofk NEzj UzPj; ' OEEzj jEzj on Uiz \ UPj;z is given by
kk

fi;Pj;k D Y the system f j zUPj;k D 1=Y; j zUi D 1g defines a meromorphic section

of the normal bundle of Ezj over Uzi [ UzPj;k
Namely, a divisor corresponding to the

normal bundle has a simple pole at Pzj;k D f.X;Y / D .0; 0/g. Therefore, it follows
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from the well-known local calculation cf. [GH] p. 141) that

Z
Ezj\UzPj;k

zUPj;k
c1.NEzj UzPj;k

/ D 1; Z
Ezj\Uzi

zUi c1.NEzj Uzi / D 0:

If Pj;k is anarc contacting point, thenG?
Pj;k F]j / is a cyclic group of order ` .1/=c

generated by n .2/-th power of the map 28). If Pj;k is a quasi-tail contacting point,

then G?Pj;k F ]
j / is a cyclic subgroup of order ` generated by h n

0 of 30).

On the other hand, we have

r 1

X
kD1

cosec2
k
r D

r2 1

3

for a natural number r cf. [HZ] p. 178 From these, we have

XF
]j

LhF
]
j i D X

Pnoam

c2

`2d .1/ .2/

2

X
iD1

c

21

3²
` i/

1³ X
Pam

1

2` n
2.`2 1/

3
:

41)

ii) We consider the latter case. Let P be a quasi-tail contracting point, and we

follow the notations in Step 2 iii). If j D 2k` 1 1 k n), the map hj
0h1 has

a fixed curve component

Hj WD ² X; Y / 2 zUp e
1

2` C i C a1 /j
n

X Y D 0³;

0h1 on the normal bundle of Hj in zUp is the reflection, i.e.,so that the action of hj
with eigenvalue 1. Since Hj is a horizontal hyperplane with respect to the global
fibration, the self-intersection H2j on zUp cf. [AS] p. 583) is nothing but a single
point with multiplicity 1. Therefore we have

n

X
kD1

LhHji D
1

2` n

n

X
kD1

cosec2
2

H2j D
1

2`
: 42)

Step 4. We show

Sign S] C @S]/ 43)

D
1

3
Z
S]

p1.S]/CX
OEBi

' i/

X
D1

²r. ;i/ 1
3

i/
C i i/
i/ C

r. ;i/

X
jD1

Kj ; i/ ³

CX
OEAj

d
3 .1/ .2/

1 C 0.Aj / C
2c2

3`2d .1/ .2/ CX
OEAQ k

3 C
1

3` n
:
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Indeed, it follows from 35), 38)) 39), 40), 41), 42) that

Sign S] C @S]/ 1
3

Z
S]

p1.S]/ 44)

D X
OEPmult

4s.i; / X
OEPnoam

²4s.v; d/ C
.1//2 C .2//2

3d .1/ .2/
2c2

3`2d .1/ .2/ ³

X
OEPam

²2s.v;2 /
1

2 C
`2 1

3` ³;

where the first, the second and the third summations move over all the monodromy
data of the orbits of the monodromy map of multiple points, non-amphidrome annuli
and amphidrome annuli, respectively. Since the both banks of an amphidrome annuli
belong to the same orbit, we can write the right-hand side of the quality 44) as

X
OE.i; /

4s.i; / X
OEPnoam

²4s.v; d/ 4s.i.1/; .1// 4s.i.2/; .2//

.1//2 C .2//2

C 3d .1/ .2/
2c2

3`2d .1/ .2/ ³

X
OEPam

²2s.v; 2 / 4s.i; /
1
2 C

`2 1

3` ³;

where the first summation moves over the valencies of the orbits of multiple points
and of bothsidesof non-amphidrome and amphidrome annuli, i.e., the valencies of all
the bodies. Moreover, for the monodromy data of an amphidrome annulus, a similar
argument as in Lemma 4.2.3 shows that

2s.v; 2 / C 4s.i; / D i
3 C

1

6 C
K
3

1

2
: 45)

Hence the assertion 43) follows from Theorem 4.1.2, Lemma 4.2.2, Lemma 4.2.3
and 45).

Step 5. Since the intersection matrix of the exceptional set is negative definite, the
contractionS S] induces the decrease of the dimension of the negative eigenspace

of the intersection form as the same number of the exceptional curves. Therefore

Sign S Sign S]
D X

OEBi

' i/

X
D1

r. ;i/ X
OEAj

K 1 C 00.Aj / OEX
AQ k

KC2/; 46)

where

00.Aj / D ´0 if K 0,

C 0 r r0 C 1 if K D 1.
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Note that the number Aj/ defined in Section 5.2 for a non-amphidrome annulus

Aj coincides with 0.Aj / 00.Aj/, where 0.Aj / is defined in Lemma 4.2.2 and
Lemma 4.2.3.

By the definition of the orbifold Pontrjagin form, we have

Z
S]

p1.S]/ D
1

N
Z

zS
p1. zS/:

Moreover, since G acts on @ zS freely, @S/ D @S]/ coincides with .1=N/ @ zS/
([APS] II). Hence the assertion of Theorem 5.2.1 follows from 37), 43), 46).

We prove Lemma 5.3.1. The Galois group G D Gal. zC=C/ of the base extension

zC C naturally acts on z so that the restriction of this action to a neighborhood of a

singular fiber of f is nothing but the action which we already discussed here. Since
the action of G is free outside the singular fibers and the dummy fiber f 1.P0/, it
suffices to showthat any data off 1.P0/does not contribute Sign .1=N/ Sign z

Although f 1.P0/ is a component of fixed curves of some element of G, it does

not contribute the integral of the equivariant L-form because the normal bundle of

f 1.P0/ in is trivial. Therefore the assertion is clear.
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