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The K(x, 1) conjecture for a class of Artin groups

Graham Ellis and Emil Skoldberg™

Abstract. Salvetti constructed a cellular space Bp for any Artin group A p defined by a Coxeter
graph D. We show that Bp, is an Eilenberg—Mac Lane space if Bp- is an Eilenberg—Mac Lane
space for every subgraph D’ of D involving no co-edges.
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1. Introduction

A Coxeter matrix is a symmelric » X n matrix whose entries m(f, j ) are either positive
integers or the symbol oo, with m(Z, j) = 1 if and only if i = j. Such a matrix
is represented by an n-vertex labelled graph D (called a Coxeter graph) with edge
joining vertices / and j if and only if m (7, j) > 3; the edge is labelled by m(Z, j).
The Artin group Ap 1s defined to be the group generated by the set of symbols
S = {x1,...,xu} subject to relations (xX; Xj)m(, ;) = (XjXi)ma, ;) foralli # j,
where (xy),, denotes the word xyxyx ... of length m. The Coxefter group Wp is
the quotient of Ap obtained by imposing additional relations x> = 1 forx € S.

For each Coxeter graph D there is an interesting finite CW-space Bp arising as a
quotient of a union of certain convex polytopes (see Section 2 for precise details). It
has fundamental group 71(Bp) = Ap and we have the following.

Conjecture 1. The space Bp is an Eilenberg—Mac Lane space K(Ap, 1).

From work of Squier in the 1980s (published posthumously [16]) one can deduce
that the conjecture holds whenever the Coxeter group Wp is finite. (Squier established
a free ZAp-resolution R? of Z having the same number of free generators in each
degree as the cellular chain complex C.(Bp). Ttis clear that RP coincides with
C«(Bp) in degrees < 2 and hence R2 is the cellular chain complex of the universal
cover of some K(Ap, 1). A detailed analysis suggests that R? is in fact the cellular
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chain complex of Bp.) Also, it follows immediately from a result of Appel and
Schupp [1, Lemma 6] that the conjecture holds if, for every triple of generators
a,b,c € S, the three Artin relators (ab)r = (ba)g, (bc); = (ch)y, (ac), = (cakm
are such that  + 7+ + < 1. (Inthis case Bp is just the standard 2-dimensional CW-
space associated to the presentation and Lemma 6 in [1] implies that any element of
72( Bp ) would have to be represented by a non-positively curved piecewise euclidean
2-sphere.)

Given a Coxeter graph D we shall say that a subgraph D’ is an oc-free subgraph
if (1) D’ is a connected and full subgraph of D; (2) no edge of D’ is labelled by oo.
(Ina full subgraph an edge must be included if its two boundary vertices are present.)
Our main result is obtained using a technique of D. E. Cohen [8] and is the following.

Theorem 2. An Artin group Ap satisfies Conjecture 1 if Ap satisfies Conjecture 1
for every oo-free subgraph D’ in D.

For Artin groups satisfying Conjecture 1 the cellular chains of the universal cover
Bp yield an explicit small free Z A p-resolution from which cohomology calculations
can be made. Section 4 gives such a cohomology calculation based on Theorem 2.

To place Theorem 2 in context we mention that there 18 an alternative statement of
Conjecture 1. Every Coxeter group Wp acts canonically as a linear group generated
by “reflections” on a real vector space V' and properly discontinuously on an open
cone I C V called the Tits cone. Denote by A the set of reflecting hyperplanes of
Wp and consider the following subspace of C® V =1V @iV

M(Wp) =1&iV\(Uyea HPiH).

The group Wp acts freely and properly discontinuously on M (W) and the quotient
N(Wp) = M(Wp)/ Wp has fundamental group equal to Ap,

Conjecture 3. The space N(Wp) is an Eilenberg—Mac Lane space K(Ap, 1).

Conjecture 3 is known as the K (s, 1)-conjecture for Artin groups and is attributed
to Arnold, Pham and Thom in [5]. It has been proved in many cases: Deligne [10]
proved it for finite Wp; Hendriks [12] proved it for Wp of large type; Charney and
Davis [5] proved it when Wp is 2-dimensional and when Wp is of FC type; Charney
and Peifer [7] proved it for Wp of affine type A, ; Callegaro, Moroni and Salvetti [4]
have recently proved it for Wp of affine type B,,.

Salvetti [15] showed that the space Bp is homotopy equivalent to N (Wp) for finite
Wp. This homotopy equivalence was extended to arbitrary Wp by Charney and Davis
[6]. Conjectures 1 and 3 are thus equivalent and so Theorem 2 can consequently be
viewed as a generalisation of the solution to the K (s, 1)-conjecture for Artin groups
of FC type provided in [5]. (Recall that Ap is said to be of FC type if Wpr is finite
for every oo-free subgraph D’ in D.)

We would like to thank the referees for helpful comments and references.
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2. The space Bp

Let D be a Coxeter graph. Let x be the image in Wp of the generator x € S C Ap
and set § = {X: x € S}. We say that D is of finite rype if the Coxeter group Wp is
finite.

Assume for the moment that D is of finite type and let n = |S|. Then Wp can
be realized as a group of orthogonal transformations of R” with generators x equal
to reflections [9]. Let A be the set of hyperplanes corresponding to all the reflections
in Wp. For any point ¢ in R” \ A we denote by Pp the convex hull of the orbit of e
under the action of Wp. The face lattice of the n-dimensional convex polytope Pp
depends only on the graph D. (To see this, first note that the vertices of Pp are the
points w - e for w € Wp and that there is an edge between w - ¢ and w’ - ¢ if and only
if w™'w’ € . Thus the combinatorial type of the 1-skeleton of Pp does not depend
on the choice of point e. Furthermore, each vertex of the n-dimensional polytope
Pp is incident with precisely n edges; hence Pp is simple and the face lattice of the
polytope is determined by the combinatorial type of the 1-skeleton [2].)

Label each edge in Pp by the generating reflection X = w™'w’ € S determined
by the edge’s boundary vertices w - e, w’ - e. Define the length of an element g in Wp
to be the shortest length of a word in the generators representing it. It is possible to
orient each edge in Pp so that its initial vertex gv and final vertex g’v are such that
the length of g is less than the length of g’. With this edge orientation the 1-skeleton
coincides with the Hasse diagram for the weak Bruhat order on Wp. Each k-face
in Pp has a least vertex in the weak Bruhat order. Reading the edge labels along
the boundary of any 2-face, starting at the least vertex and using edge orientations
to determine exponents %1, yields a relator (xy)mq, ) (yx);ll(l.’ ;) of the Artin group
Ap. Furthermore, if F is any k-face of Pp,then Vg = {w € Wp: w-e € F}is
a left coset of the parabolic subgroup {T') of Wp generated by some subset T C S
of size |7'| = k; this induces an isomorphism between the face lattice of Pp and the
poset of cosets {w - (T): T C §,w € Wp} ordered by inclusion.

The above description of the polytope Pp is well known. (We note that many
authors prefer to deal with the dual polytope: since Pp is simple the dual is simplicial.)

The space Bp is obtained from the polytope Pp by isometrically identifying
any two cells with similarly labelled 1-skeleta. More precisely, the group Wp acts
cellularly on Pp. If a k-face F is mapped to a k-face F’ under the actionof w € Wp,
then there is a unique wo € Wp which maps F to F’ in such a way that the least
vertex of F maps to the least vertex of F’; we identify wy - f with f for each point
f € F. Thus the face lattice of Bp is isomorphic to the poset of subsets of S

Suppose now that D is not of finite type. We define a subgraph D; of D to be
maximal finite it D; is a full subgraph of D of finite type that is not contained in any
larger subgraph of finite type. Let D1,. .., D¢ be the list of maximal finite subgraphs
of D. We denote by D; N D; the full subgraph of D with vertices common to D; and
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D;. 'There is a canonical embedding of the polytope Pp;np; into the polytope Pp;;
such embeddings allow us to define Pp as the amalgamated sum of the polytopes
Pp,..... Pp,. The space Bp is the connected space obtained from Pp by isomet-
rically identifying any two cells with similarly labelled 1-skeleta; the identification
is the unique one which respects orientations of edges. The face lattice of the space
Bp is isomorphic to the poset S/ = {T < S: |{T)| < oo} ordered by inclusion.

Note that if a Coxeter graph D with vertex set S is a disjoint union of two Coxeter
graphs D', D" with vertex sets S/, S” respectively, then there is a poset isomorphism
ST = 8" % 8”7 Ttis not difficult to see that this poset isomorphism extends to a
CW-homeomorphism Bp = Bps X Bpr.

Example. Consider the graph

where edges whose label is not indicated are assumed to have edge label 3. Letting
vertices correspond to generators w, x, v, Z (starting at the top left corner and working
clockwise) the associated Artin group is

Ap = {w,x,y,z : wxw = Xwx, wy = yw,

WEW = WY, X% = g%, YV = UyEV).

The 3-dimensional space Bp is obtained from the following two 3-dimensional poly-
topes by identifying similarly labelled faces and edges.
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The space Bp contains four 1-cells, five 2-cells and two 3-cells. O

3. Proof of Theorem 2

Suppose that Ap satisfies the hypothesis of the Theorem 2. Let Xp denote the
universal covering space of Bp. We shall use induction on the number of infinity
edges in D and the number of connected components in D to show that Xp is
contractible.

If there are no infinity edges and the graph D is connected then X p is contractible
by hypothesis.

If D is not connected then Ap is a direct product Ap = Apr x Apr of two
non-trivial Artin groups Ap- and Ap~ where the graph D is the disjoint union of D’
and D”. The space Bp is the direct product Bps x Bp~. Thus Xp is contractible if
and only if both Xp- and Xp~ are contractible. Hence, by induction on the number
of connected components in D, it suffices to prove the theorem in the case where the
graph D is connected.

Suppose that the Coxeter graph D 1s connected. Suppose that there is an infinity
edge in D whose endpoints correspond to the generators @, b € S = {x1,...,X,}.
Let A; be the subgroup of Ap generated by S\ {a}, and A, ; the subgroup generated
by S\ {a, b}. Let D\ {a} denote the graph obtained from D by removing vertex ¢ and
alledges incident with a. Let D\{a, b} be the subgraph obtained by removing vertices
a, b and all edges incident with them. There are clearly surjective homomorphisms
Ap\fay — Ag and Ap\gapy — Aa,é' A result of H. van der Lek [13] (see also [14])
shows that these surjections are in fact isomorphisms. Note that each of the groups
Ap\(ays Ap\ibys AD\{a,b} 18 an Artin group satisfying the hypothesis of the theorem
and with Coxeter graph involving fewer infinity edges than are in D.

Suppose that D has » > 1 infinity edges. As an inductive hypothesis as-
sume that the theorem holds for all Artin groups satisfying its hypothesis and hav-
ing Coxeter graph with fewer than » infinity edges. Thus we can assume that
Bp\{a}- Bp\ib}» Bp\{a,by are classifying spaces for the subgroups 45, Az, Aa,z?' Con-
sider the homotopy pushout

Bp\ta,py — Bp\{a}

L

Bp\(py W.

The space W = Bp\ (a3 U Bp\ ) 18 precisely the space W = Bp. Now by a theorem
of J. H. C. Whitehead (see for example [3], Chapter I1-7) the space W is a classifying
space. Hence its universal cover X p is contractible. O



414 G. Ellis and E. Skéldberg CMH

An argument similar to the above was used in [8] to study properties of graph
products of groups. Also, a version of this proof for Artin groups of FC type can be
found in [5] as a remark following Lemma 4.3.7.

4. An application

The cellular chain complex C,(Xp) has been implemented in the computational
algebra package HAP [11]. In cases where the K(rr, 1) conjecture is known to hold
this chain complex is a free Z Ap-resolution of Z and can be used to compute the
cohomology of the Artin group Ap. The following was obtained in this way.

Proposition 4. The Artin group Ap defined by the Coxeter graph

o0 4
4 @
4
4
has integral cohomology groups
H%Ap,7) = Z, HYAp,7Z) =~ 7°, H*(Ap,7) = 7',
H3(Ap.7) =7, ® 7", H*(Ap,7) =72 72, H>(Ap,7)=7,&7°,
H®Ap.7) = Z, H"(Ap,Z) =0 (n > T7).

Proof. The graph D is such that for every oo-free subgraph D’ the Artin group Ap
satisfies the K(z, 1) conjecture by results mentioned in Section 1. By Theorem 2
the group Ap itself satisfies the K(or, 1) conjecture. We can thus use the computer
implementation of C«(Xp) in [11] to make the cohomology calculations. The space
Xp is 6-dimensional in this example. [
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