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Automatic transversality and orbifolds of punctured holomorphic
curves in dimension four

Chris Wendl*

Abstract. We derive a numerical criterion for J-holomorphic curves in 4-dimensional symplec-
tic cobordisms to achieve transversality without any genericity assumption. This generalizes
results of Hofer—Lizan—Sikorav [HL.S97] and Ivashkovich—Shevchishin [IS99] to allow punc-
tured curves with boundary that generally need not be somewhere injective or immersed. As an
application, we combine this with the intersection theory of punctured holomorphic curves to
prove that certain geometrically natural moduli spaces are globally smooth orbifolds, consisting
generically of embedded curves, plus unbranched multiple covers that form isolated orbifold
singularities.
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1. Introduction

Applications of pseudoholomorphic curves in symplectic 4-manifolds and contact
3-manifolds often depend on the rather special transversality properties that exist in
this low-dimensional setting. Unlike the general situation, where the moduli space is
smooth only at somewhere injective curves and only for generic data, certain moduli
spaces in dimension 4 are smooth for all data as long as the right numerical criteria are
satisfied. For example, suppose (W, J) is any almost complex 4-manifold, (X, j)}isa
closed Riemann surface of genus g and u : (X, j) — (W, J) is a pseudoholomorphic
curve. The following result was first mentioned by Gromov [Gro85], and later given
a complete proof by Hofer-Lizan—Sikorav:

Theorem ([HI.S97]). If u is embedded and c1(u*T W, J) > O, then the moduli
space of unparametrized pseudoholomorphic curves near u is a smooth manifold of
dimension 2c;(u*TW,J)+ 2g — 2.

Observe that the assumptions in the theorem do not require any data to be generic:
rather, the criterion ¢y (u*T W) > 0 implies regularity for uniquely 4-dimensional
reasons that are loosely related to positivity of intersections. The dimension of the
moduli space is then equal to its so-called virtual dimension, also called the index of
u, defined as ind(u) = 2¢c(u*TW) 4+ 2g — 2. Thus ¢ (u*T W) > 0 is equivalent
to the condition ind(u) > 2g — 2, which leads one to summarize results of this type
with the motto, “the moduli space is smooth if the index is sufficiently large.” Exactly
how large the index needs to be depends on the genus: this is the reason why almost
all applications of such results (including the one in this paper) principally involve
curves of genus zero.

Versions of the theorem above for compact immersed holomorphic curves with
boundary were proved in [HLS97], and similar results for immersed punctured curves
in symplectizations of contact 3-manifolds also appeared in [HWZ99], [Wen05]. The
reason for dealing with irmmersed curves in particular was that one could then describe
a neighborhood of ¥ in the moduli space using sections of 1ts normal bundle and thus
reduce the linearization to the so-called normal Cauchy—Riemann operator. The key
fact about this operator is that its domain 1s a space of sections on a complex line
bundle, thus the zeroes of these sections can be counted and related to the same
topological invariants that appear in the index formula, giving rise to constraints on
the kernel and cokernel. A generalization for closed holomorphic curves with critical
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points was carried out in [IS99], where the normal bundle was replaced by a normal
sheaf.

In this paper, we establish a transversality criterion that generalizes all of the
above results, applying to arbitrary J-holomorphic curves with totally real boundary
and cylindrical ends in 4-dimensional symplectic cobordisms.

One of the advantages of this approach to transversality is that it applies to more
than just somewhere injective curves: in §4, we will describe a setting in which
our criterion, combined with some nontrivial intersection theory, implies that certain
moduli spaces are smooth orbifolds, which consist mostly of embedded holomorphic
curves but also have isolated singularities consisting of unbranched multiple covers
over embedded curves. These moduli spaces arise quite naturally in a geometric
setting: they are the building blocks of J-holomorphic foliations, cf. [HWZ03],
[Wen0O8].

1.1. The setting. Tet » > 2. In all of what follows, (W, J) will denote a 2n-
dimensional almost complex manifold with noncompact cylindrical ends, which ap-
proach (2rn — 1)-manifolds ML equipped with stable Hamiltonian structures. We
now recall the precise definitions.

We use the term srable Hamiltonian structure to mean the collection of data
that were introduced in [BEH+03] as the appropriate setting for pseudoholomorphic
curves in cylindrical manifolds. Namely, such a structure # = (&, X, w,J) on a
(2n — 1)-manifold M consists of the following data:!

» & is a smooth cooriented hyperplane distribution on M

* o 1s a smooth closed 2-form on M which restricts to a symplectic structure on
the vector bundle § — M

* X is a smooth vector field which is transverse to &, satisfies w(X,-) = 0, and
whose flow preserves &

« J is a smooth complex structure on the bundle & — M, compatible with @ in
the sense that w(-, J-) defines a bundle metric

Note that, as a consequence of these definitions, the flow ¢ : M — M of X also
preserves the symplectic structure w|¢, and the special 1-form A associated to & and
X by the conditions

AMX)=1, kerA =§,

satisfies d A(X, ) = 0. The symplectization R x M now admits a natural R-invariant
almost complex structure J, defined by the conditions

Tde =X, Jg=1J

1 The inclusion of J in the data is somewhat nonstandard but convenient for our purposes. The data (£, X, w)
are equivalent to the definition of a framed Hamiltonian structure stated in [EKPO6], with the exception that the
latter requires @ to be exact; here it need only be closed.
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where a denotes the coordinate on the R-factor and d, € T(R x M) is the corre-
sponding unit vector field.

Recall thata 7'-periodic orbit x : R — M is nondegenerate if the linearized return
map d (p}; (x (0|, (o, does nothave 1 as an eigenvalue. More generally, a Morse—Bott
manifold of T -periodic orbits is a submanifold N C M tangent to X such that (,0)]; |V
is the identity, and forall p € N,

T, N = ker (dgy (p) —1).

We will say that an orbit with period 7' is Morse—Bott if it 1s contained in a Morse—
Bott manifold of 7 -periodic orbits; note that this manifold could be a circle, meaning
the orbit 1s nondegenerate. Moreover, X itself 1s said to be Morse—Bott (or nonde-
generate) if every periodic orbit of X is Morse—Bott (or nondegenerate).

We now fix two closed (21 — 1)-manifolds M4 with stable Hamiltonian structures
He = (E1, X1, w4, 1) and associated data A+ and Ji, as well as an almost
complex 2r-manifold (W, J} which decomposes

W =E_Upym W Un, EL

so that
« W, is a compact 2n-manifold with boundary 0Wy, = M_ L M,
o (E_,J) = ((—00,0] x M_,J_)and (E4,J) = ([0, 00) x My, Jy)

Fix also a totally real submanifold L C W.

Near 0E4+ C Ey4, the data #+ define natural symplectic forms o+ + d{ati)
which can be extended (non-uniquely) over E+. Then given any symplectic form w
on W, that attaches smoothly to w4 +d(aA+) at Wy, we denote by o, (W, H ., #H_)
the space of almost complex structures J on W that are compatible with » on W,
and satisfy the conditions above.?

We will consider pseudoholomorphic (or J-holomorphic) curves

u: (3, ) = (W, J),

where & = % \ [, (2, j) is a compact connected Riemann surface with boundary,
[ C intX is a finite set of interior punctures,” and by definition u satisfies the
nonlinear Cauchy—Riemann equation Tu o j = J o Tu and boundary condition
u(dX) C L. We also will assume u is asymptotically cylindrical, which means the
following. Partition the punctures into positive and negative subsets

r=rtur-,

2The symplectic form e will play almost no role in anything that follows, but becomes important in applica-
tions, e.g. it yields compactness results as in [BEH+03].

3For brevity we're leaving out the case of punctures on the boundary, though this can presumably be handled
by similar methods.
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and at each z € I'*, choose a biholomorphic identification of a punctured neighbor-
hood of z with the half-cylinder Z 4, where

Zy =[0,00)xS! and Z_ = (—00,0] x S

Then writing u near the puncture in cylindrical coordinates (s, ), for |s| sufficiently
large, it satisfies an asymptotic formula of the form

uo QD(S,[) = exp(Ts’x(Tt))h(S,t) < E:t.

Here T > O1is aconstant, x: R — M4 is a T-periodic orbit of X4, the exponential
map is defined with respect to any R-invariant metric on R x My, h(s.t) € &, (1p
goes to Ouniformlyinrass — ocand¢: Z4 — Z4 is a smooth embedding such
that

o(s,t) — (s + so.t +tg) — 0

as s — oo for some constants so € R, 5 € S!. We will denote by y; the T-periodic
orbit parametrized by x, and call it the asymprotic orbit of u at the puncture z. With
this asymptotic behavior in mind, it is convenient to think of (2, j) as a Riemann
surface with cylindrical ends, and we will sometimes refer to neighborhoods of the
punctures as ends of 3. Asis well known (cf. [Hof93], [HWZ96]), the asymptotically
cylindrical holomorphic curves in (W, J) are precisely those which satisfy a certain
finite energy condition, though we will not need this fact here.

Denote by M := M(J, L) the moduli space of equivalence classes of asymptot-
ically cylindrical J-holomorphic curves in W with boundary on L; here an equiva-
lence class is defined by the data (X, j, T, u) where T is considered to be an ordered
set, and we define (X, j, T, u) ~ (¥, j/, T, u’) if there exists a biholomorphic
map ¢: (X, j) — (¥/,j’) taking T" to I'” with the ordering preserved, such that
u = u' o . We shall often abuse notation and write u € M or (X, j,T,u) € M
when we mean [(X, j, ', u)] € M. The moduli space has a natural topology defined
by Coc-convergence on % and uniform convergence up to the ends. For any u € M,
denote by M, the connected component of M containing u.

It is often interesting to consider subspaces of M defined by imposing constraints
on the asymptotic behavior at some of the punctures.

Definition 1.1. For a given punctured surface ¥ = X\ (I'" U T'"7), let ¢ denote a
choice of periodic orbit y¢ in M+ for some subset of punctures z € ['*. We call ¢ a
choice of asymptotic constraints,* and refer to each puncture z for which ¢ specifies
an orbit y; as a constrained puncture.

4One can impose more stringent constraints as well, e.g. on the rate at which u converges to its asymptotic
orbits; such constraints are treated in [Wenb], [Wena]. Another possibility is to allow marked points that map to
specified points in the image, perhaps with cusps of prescribed order, as in [Bar00], [Fra05]. We omit all these
possibilities here for the sake of brevity.
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For any choice of domain ¥ and asymptotic constraints ¢, we can consider the
constrained moduli space
M C M
consisting of curves u: > — W that approach the specified orbit y; at each of the

constrained punctures z € I', and arbitrary orbits at the unconstrained punctures. The
constraints define another partition of I',

I'=TcUTl'y

into the sets of constrained and unconstrained punctures respectively. The positive
and negative subsets within each of these will be denoted by Féc and Flﬂf.

It the asymptotic orbits of v are all Morse-Bott, then the so-called virtual dimen-
sion of MZ, is given by the Fredholm index

ind(u;¢) = (n — 3) (X)) + 2e W *TW) 4+ u®u¢), (1.1)

where ¢ ® (4 * T W) is the relative first Chern number of (u*T W, J) — ¥ with respect
to a suitable choice of trivialization ® along the ends and boundary, and u® (u; ¢) is
a sum of Conley—Zehnder indices of the asymptotic orbits and a Maslov index at the
boundary with respect to ®; a precise definition will be given in §3.2.

As we shall review in more detail in §3, the nonlinear Cauchy—Riemann equation
can be expressed as a smooth section of a Banach space bundle

éJ: B—->€&, (jyuy»Tu+JoTuoj,

such that a neighborhood of any non-constant (X, j, T, u) in M€ is in one-to-one cor-
respondence with 951 (0)/ Aut(X, j), where the group Aut(3, j) of biholomorphic
maps (X, j) — (Z,]) fixing I' acts on pairs (j/,u’) € 97 71(0) by

- u'y=(p*j u op).

It is then standard to say that (X, j, I, u) € M is regular if it represents a transverse
intersection with the zero-section, 1.e. the linearization

DAy (j,u): T B — ¢

is surjective. We will give a precise definition in §3.2 once the functional analytic setup
is in place. Observe that if u: ¥ — W is not constant, then the action of Aut(Z, )
induces a natural inclusion of its Lie algebra aut(X, j) into ker D3 (j, u). For the
sake of completeness, we will present in §3.2 a proof of the following standard folk
theorem:

Theorem 0. Assume u: (X, j) — (W, J) is a non-constant curve in M with only
Morse—Bott asymptotic orbits. 1If u is regular, then a neighborhood of u in M°
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naturally admits the structure of a smooth orbifold of dimension ind(u; ¢), whose
Isotropy group at u is

Aut(u) 1= {p € Aut(X, j) | u = u o g},
and there is a natural isomorphism

Ty M = ker DAy (j,u)/aut(X, j).

In particular, regularity implies that M€ is a manifold near u if u is somewhere
injective, and in general the isotropy group for an orbifold singularity has order
bounded by the covering number of u. Note that in contrast to the standard theory
of J-holomorphic curves (cf. [MS04]), we shall in this paper be especially interested
in cases where u achieves regularity despite being multiply covered, so the moduli
space is smooth but may be an orbifold rather than a manifold.

In the case dim W = 4, another number that turns out to play an important role is
the so-called normal first Chern number ¢y (u;¢) € %Z, which can be defined most
simply via the formula

2en(u;e) =ind(u;¢) —2 4+ 2g + #g(c) + #my(3X). (1.2)

Here g is the genus of £ and T'o(¢) C T is the subset of punctures for which the
asymptotic orbit has even Conley—Zehnder index (this is the correct definition if all
orbits are nondegenerate; in the Morse—Bott case the definition is more complicated
and may depend on the asymptotic constraints, see §3.2). We will be able to give
a better motivated definition in §3.5 using the linear theory in §2, but for now, the
significance of ¢y (u; ¢) can be illustrated by considering the case where X is closed
and ' = @. Then a combination of (1.1) and (1.2) yields the relation cy{(u;¢) =
c1(u*T W) — x(X), so cny (u; ¢) is the first Chern number of the normal bundle if u is
immersed. This is the appropriate philosophical interpretation of ¢y (u; ¢) in general,
as will become obvious from further considerations.

As a final piece of preparation, note that since a non-constant holomorphic curve
u: 3 — W is necessarily immersed near the ends, it can have at most finitely many
critical points. Indeed, as we will review in §3.3, the bundle u*T W — 3 admits a
natural holomorphic structure such that the section

du € T (Homg (T, u*TW))

18 holomorphic; its critical points are thus isolated and have positive order, which we
denote by ord(du; z) for any z € Crit(ux). The quantity

1
Z(du) := > | ord(du; z) + - > ord(du;z) (1.3)
zedu 1 (O)Nmt X zedu— 1 (O)NIZ

is therefore a finite nonnegative half-integer (or integer if 9% = @), and it equals zero
if and only if » is immersed.
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1.2. Local and global transversality results. We now state the main result of this
paper. The following will be a convenient piece of shorthand notation: if 0% # 4,
then for given constants ¢ € R and G = 0, define the nonnegative integer

K(c,G) = min{k + £ | k,{ nonnegative integers,

14
k < Gand2k + £ > 2c¢}. (14

If % = @ we modify this definition slightly by requiring the integer £ to be even.
Note that in most applications known to the author, it will turn out that ¢ < 0, so
K(c,G)=0.

Theorem 1. Suppose dim W = 4 and (X, j,[',u) € M® is a non-constant curve
with only Morse—Bott asymptotic orbits. If

ind(u;¢) > cy(u:e) + Z(du), (1.5)

thenu is regular. Moreover, when this condition is not satisfied, we have the following
bounds on the dimension of ker Doy (j, u): ifind(u; ¢) < 2Z(du), then

2Z(du) < dim (ker Dy (j,u)/aut(X, j))
< 2Z(du) + K(cn (u;€) — Z(du),#To(¢)),
and if 2Z(du) < ind(u;¢), then
ind(u:¢) < dim (ker D3y (j, u)/aut(X, j))
< ind(u;e) + K(eny(u;¢) + Z(du) — ind(u; ¢), #Tp(c)).

Remark 1.2. Plugging in the definition of ¢ (u; ¢) and the index formula, the con-
dition (1.5) is equivalent to

ind(u;¢) > 2g + #o(¢) + #mp(dX) — 2 + 2Z(du),

or
202 TW) + u®(u;e) + #T1(c) > 2Z(du),

where I'; (¢) := '\ T'g(¢). These are direct generalizations of the criteria in [HLS97],
[Wen05], [TS99].

Remark 1.3. There is an important special case of the dimension bound which we will
use in the application: if ey (u;¢) < Z(du), then K(cy (u:¢)—Z(du), #Io(c)) = 0,
thus dim ker (D ar(/J, u)) becomes 2Z(du), its smallest possible value.

Results of this type have been used previously for a variety of applications,
including disk filling and deformation arguments in contact 3-manifolds [Hof93],
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[HWZ95b], [Wen08], and the symplectic isotopy problem [SheO1], [Sik03]. In the
last section of this paper, we will use our generalization to prove a somewhat sur-
prising global structure theorem for certain geometrically natural moduli spaces of
holomorphic curves in 4-dimensional symplectic cobordisms.

To motivate this, consider for a moment the case of a closed holomorphic curve
u: X — W that satisfies the criterion ind{(u) > cy{(u) + Z(du). We know then that
M is smooth in some neighborhood of u, but ideally one would like to know that the
entire connected component M, is smooth. In general this will not be true, as other
curves in M,, may have more critical points and thus fail to satisfy the criterion. One
favorite way to evade this issue is by assuming that v 1s embedded: then the adjunction
formula (cf. [IMS04]) guarantees that all somewhere injective curves u” € M, are also
embedded, hence Z(du’y = 0 and the criterion is satisfied. The catch is that unless
one imposes additional restrictive conditions on the homology class [u] € Hx (W),
not every curve in M, need be somewhere injective: a sequence of embedded curves
may converge to a branched cover, which will not always be regular since its branch
points are critical. Thus M, may fail to be globally smooth if it contains branched
covers, and there is no way to avoid this in general.’

The surprising fact is that if we impose an additional, rather natural intersection-
theoretic condition on u, then the multiple covers that arise turn out to be “harmless™:
even the multiple covers are regular, and M, is thus globally smooth. The condition
in question arises from the study of J/-holomorphic foliations: in particular, we focus
on punctured embedded curves u: X — W that exist in 1- or 2-dimensional families
(with respect to some constraints ¢) and have the property of never intersecting their
neighbors, i.e. these families foliate either an open set or a hypersurface containing
u(X) € W. A complete characterization of such curves is given in [Wenb] and
will be reviewed in §4; we refer to them as stable, nicely embedded curves. 1If u is
such a curve, then it automatically satisfies the criterion of Theorem 1, thus the local
structure of M, near u is well understood, but one still has the global question:

Question. Can a sequence of stable, nicely embedded curves converge to a multiple
cover?

If the answer is no, then M, is a smooth manifold, and we shall show that this is
indeed the case whenever W is an R-invariant symplectization (with generic J)
or a closed symplectic manifold. In general, it turns out that multiple covers can
appear, but only if they are immersed, in which case the regularity criterion is still
satisfied. The proof of this fact will make use of our transversality arguments for non-
immersed curves, establishing in effect that any component of M® containing such a
non-immersed multiple cover can consist only of multiple covers. The result is:

> Note that multiply covered curves also pose a problem in the standard transversality theory, but for completely
different reasons.
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Theorem 2. For generic J, ifu € M is a stable, nicely embedded curve, then every
curve in M, is regular: in particular M naturally admits the structure of a smooth
orbifold of dimension ind(u; ¢) € {1, 2}, with only isolated singularities. Moreover,
all curves in M, are embedded except for a discrete subset, consisting of unbranched
multiple covers over stable, nicely embedded index O curves, and the images of any
two curves in M;, are either identical or disjoint.

This will follow from a more general result (Theorem 4) proved in §4, which
applies also to parametrized moduli spaces under a generic homotopy of almost
complex structures. As a simple corollary, we observe the two aforementioned cases
where the answer to the question posed above 1s no:

Corollary 1.4. For the curve u: ¥ — W in Theorem 2, suppose that either
e Y is a closed Riemann surface (without punctures), or

« (W,J) = (R xM,J)is the symplectization of a 3-manifold with stable Hamil-
tonian structure £ = (X, &, w, J), where J is generic.

Then every curve in M, is embedded, thus M;, is a manifold.

Proof. For the R-invariant symplectization (R x M, J), a multiple cover u = v o ¢
would require a somewhere injective curve v of index 0, which does not exist if J is
generic. The reasoning in the closed case is different: it depends on the fact that, as
we shall show in §4.3, stable nicely embedded curves always have genus zero. Then
@ must be a holomorphic map S? — S? with no branch points, contradicting the
Riemann—Hurwitz formula. U

Unbranched multiple covers can and do appear in general if 3 has punctures and
(W, J) is anon-cylindrical manifold, e.g. a nontrivial symplectic cobordism. We will
show an example at the end of §4, where the resulting collection of curves actually
foliates W.

The phenomenon illustrated by Theorem 2 contrasts with the more general study
of holomorphic curves, e.g. in Symplectic Field Theory, where transversality can only
be achieved in general by abstract perturbations. Such perturbations usually destroy
many of the nice geometric properties of holomorphic curves — such as positivity
of intersections — but the philosophy here is that for curves that are especially nice
in some geometric sense, precisely these nice properties make abstract perturbations
unnecessary. In particular, the theorem is part of a larger program outlined in [Wena],
to prove that the compactified moduli spaces of curves that can occur in foliations
always have a nice global structure: in principle, after proving a suitable compactness
theorem for this “nice” class of curves, transversality should always follow “for free”.
Such results are necessary tools in the general theory of J-holomorphic foliations,
as one would like to prove that these foliations can always be carried through under
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various types of homotopies and stretching arguments. The situation is already well
understood in the R-invariant case due to [Wena], and Theorem 2 may be seen as a
partial result in the direction of generalizing that compactness theorem to symplec-
tic cobordisms. (See Example 4.22 and Remark 4.23 for an idea of what such a
generalization might look like.)

1.3. Outline of the proofs. The technical backbone of Theorem 1 is the analysis
of the normal Cauchy—-Riemann operator DY associated to any holomorphic curve
u: Y — W. As we will recall, this is well defined even if u has critical points,
because there always exists a splitting

uw*TW =T, ® N,

such that (7). is the image of T, 3 under du at all regular points z. The domain of
thv is then a space of sections of N, a complex line bundle. We describe the required
linear theory of such operators in §2, giving criteria that guarantee surjectivity of D,ﬁv
as well as bounds on the dimension of its kernel.

The next step 1s then to relate the operator Dév to the nonlinear problem. In the
immersed case, the traditional approach (cf. [HLS97], [HWZ99]) is to set up the
nonlinear problem to detect J -invariant maps that can be expressed as sections of
the normal bundle of a given solution u, in which case the linearization is equivalent
to DY . This is no longer possible when u has critical points; Ivashkovich and
Shevchishin in [1S99] dealt with this difficulty by replacing the normal bundle with
a normal sheaf and proving that u is regular if and only if DY is surjective. Our
approach takes some inspiration from theirs but is less algebraic and more analytical
in flavor, as we avoid any reference to sheaves and exact sequences in favor of Banach
space splittings and Fredholm operators. Unlike [HL.S97], [HWZ99], we treat the
nonlinear problem in the way that is standard for arbitrary dimensions, as a section

07: T x8B — &

of a suitable Banach space bundle, where B is a (globally defined) Banach mani-
fold of maps ¥ — W (including reparametrizations) and 7 is a (locally defined)
finite dimensional space of complex structures parametrizing on open subset in the
Teichmiiller space of >. We will use the splitting u*TW = T, & N, and some
properties of the standard Cauchy—Riemann operator on ['(7 X} to give a precise
relation (Theorem 3) between the kernels and images of D9y (j,u) and thv in arbi-
trary dimensions. A consequence is the fact that each of these operators is surjective
if and only if the other is.

As for the proof of Theorem 2: assume 1, is a sequence of stable, nicely embedded
curves converging to a multiple cover u = v o ¢, where v is somewhere injective.
We observe first that the embedded curves u, necessarily satisfy the criterion of
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Theorem 1, so this will remain true for the limit v unless it acquires critical points.
The main task then is to show that u is immersed, and the kernel bounds in Theorem 1
for non-immersed curves turn out to be a useful tool in proving this. The first step is
to show that the underlying simple curve v is embedded and has index O: this follows
by a careful application of the intersection theory of punctured holomorphic curves,
which we review at the beginning of §4. Note that this is the only point in the argument
at which we assume J to be generic: 1t is necessary to obtain a lower bound on the
index of v and thus on its related intersection invariants, but it will not be required in
proving transversality for #. With this established, critical points of u arise only from
branch points of the cover ¢, hence Z(du) = Z(dy), i.e. the ramification number
of ¢. Now the dimension bound in Theorem 1 turns out to imply that a neighborhood
of u in M, “lives inside a space of dimension at most 2Z(dwu)”; we will make
this statement precise later using the implicit function theorem. But if Z(du) > 0,
then the space of holomorphic branched covers homotopic to ¢ is nontrivial and has
precisely this dimension, which yields a 2Z{du )-dimensional smooth submanifold
of M containing u. It follows that this describes a neighborhood of u in M;, so any
sequence of curves converging to ¥ must then have the form u, = v o ¢,, i.e. they
are all multiple covers with the same image, and this is a contradiction.

Acknowledgments. Many thanks to Denis Auroux, Kai Cieliebak, Oliver Fabert,
Helmut Hofer, Sam Lisi, Klaus Mohnke, Sewa Shevchishin and Richard Siefring for
useful conversations.

2. Cauchy-Riemann type operators on bundles

2.1. Generalities. Let (X, j) be a compact Riemann surface with genus g, m >
0 boundary components, and a finite set of positive/negative interior punctures [' =
't U™ Cint X, with the corresponding punctured surface denoted by ¥ = \ T.
Regarding ¥ as a surface with cylindrical ends {U;},r+ biholomorphic to the half-
cylinders Z . , it admits a natural compactification X obtained by replacing [0, 00) xS !
by [0, 00]x S and (—oc, 0] x S by [—o0, 0] xS, The compactified space is naturally
a topological 2-manifold with boundary

aizazuu(sz,

zell

where for each z € T't, §, =~ {400} x S! denotes the corresponding “circle at
infinity”. Note that in making this definition we have chosen cylindrical coordinates
(s,t) € Z4 overeachend {U.} .+, and we will continue to use these coordinates
whenever convenient. The definitions of ¥ and 8, do not depend on this choice,
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and in fact the resulting identification of each §, with S' = R/Z is unique up to a
constant shift.

Let E — X be a complex vector bundle of rank n whose restriction to 3 and
each of the circles é; has a smooth structure. Assume moreover that £ is given a
Hermitian structure over each end U;. By an admissible trivialization of E near
z € I'*, we mean a smooth unitary bundle isomorphism ®: E|q,. — Z. x R?"
(where R2" is identified with C™), which covers the coordinate map U, — Z4
and extends continuously to a smooth unitary trivialization £|s, — S! x R2", An
asymptotic operator at z € I 1s then a bounded real linear operator

Az H'(E|s,) — L*(Es,)
whose expression with respect to any admissible trivialization takes the form
HY(SYL,R*™) — LA (SLR*™), nrs —Joi— Su;

here Jy = i is the standard complex structure on R?" = C" and S = S(¢) is any
smooth loop of symmetric 2n-by-2n matrices. This defines an unbounded self-adjoint
operator on the complexification of L?(E|s.). We say that 4, is nondegenerate i
its spectrum o (A ;) does not contain 0.

Define the standard d-operator for smooth functions on X by

3: C®(2,C) > Q"2), fedf +idfoj

For any two complex vector bundles £ and E’ over the same base, we denote by
Homg (E, E’) and Homc (E, E’) the corresponding bundles of complex linear and
antilinear maps £ — E’ respectively. There are also the corresponding endomor-
phism bundles End¢ (E) := Home (E, E) and Endc (E) := Homc (E, E).

Definition 2.1. A (smooth, real linear) Cauchyv—Riemann tvpe operator on E is a
first-order linear differential operator
D:T (Elg) — T (Homc(TE, E|y))
such that for every smooth section v: ¥ — E and smooth function f: ¥ — R,
D(fv) = (3f)v + f(Dv).

Given an asymptotic operator A, at z € I't, we will say that D is asymprotic to A
if its expression in an admissible trivialization ® near z takes the form

(Dv)(s,t) = dzv(s, 1) + Jod,v(s, t) + S(s, t)v(s, 1),

where S(s, ) is a smooth family of real-linear transformations on R2" which con-
verges uniformly as s — 400 to a smooth loop of symmetric matrices S(z ), such that

d
—J()E = S(Z)

is the coordinate expression for A, with respect to ®.



360 C. Wendl CMH

Define the Banach space Wk’P(E) to consist of sections v: ¥ — E of class
Wlfc’p such that in any choice of admissible trivialization near each puncture z € T'%,

the corresponding map Z+ — R2” is of class W*?_ If £ < E|yx is a smooth totally
real submanifold, define the subspace

WSP(E) = {v e WEP(E) | v(3E) C 4.

Observe that Homg (TS, E) also admits a natural extension over %, and the com-
bination of the coordinates (s, )} with the trivialization ® near z € I" also gives rise
to a trivialization of Homg (T, E). Using this we can define the Banach spaces
W r(Home (TS, E)). We will generally write W97 as L?.

Now fix a smooth totally real subbundle £ C E|3x, and asymptotic operators A4 ;
for each z € I', denoting the collection of all these operators by Ar. Let D be a
Cauchy—Riemann type operator that is asymptotic to A, for each z € T". We will
then be interested in the bounded linear operator

D: W)P(E) — L? (Home (T 2, E)).

This is a Fredholm operator if all the 4 ; are nondegenerate, and its index is determined
by a variety of topological quantities which we shall recall next.

Fix a set of admissible trivializations near each puncture z € I" as well as smooth
complex trivializations of E|3x, denoting the collection of all these choices by &.
One can then define the relative first Chern number clq> (E) € Z. If E is aline bundle,
then cf’(E ) is defined simply by counting zeroes of a generic smooth section Y > E
that extends continuously over ¥ and is a nonzero constant with respect to ® on
dX. Tor higher rank bundles, cf’ (E) can be defined axiomatically via the direct sum
property and the assumption that it matches the ordinary first Chern number if ¥ is
closed.

For each connected component C C 9%, the totally real subbundle £|¢ C E|c¢
has a Maslov index u® (E|c. £|c), and we shall denote the sum of these by 1 ®(E, £).

Finally for each puncture z € T'*, the asymptotic operator 4., expressed as
—Jpd; — S(¢) with respect to ®, gives rise to a linear Hamiltonian flow in R?" via
the equation

(t) = JoS(£)n(r).

If A, is nondegenerate, then the resulting path of symplectic matrices W (r) € Sp(n)
ends at a matrix W(1) which does not have 1 as an eigenvalue, so it has a well defined
Conley—Zehnder index which we denote by ud, (A ). All of this together allows us
to define the fotal Maslov index

pP(E L Ar) = p®(E.0) + Y u&(Az)— ) p&(As).
zel'+ zel'™
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The Fredholm index of D is then given by the following generalization of the
Riemann—Roch formula:

ind(D) = ny(X) + 2¢X(E) + n®(E. £, Ap). (2.1)

This follows from the formula for the case 0% = @ proved in [Sch95], together with
a gluing/doubling argument; cf. [Wen(5]. Note that all dependence on @ in the right
hand side of (2.1) cancels out.

Let us briefly review the useful generalization of the above that arises by consid-
ering Banach spaces with exponential weights. Pick numbers §; € R foreachz € T’
and denote the collection of these by 81 = {8;};er. Then we define

wkp3T(E)

to be the space of Wlff sections v: 3 — F such that in an admissible trivialization
near each z € T'F, the function Z4+ — R2%, (s,1) > eT¥25v(s, 1) is of class Wk:?,
This imposes an exponential decay condition at each puncture where 8, > 0, or a
bound on exponential growth if §; < 0. There are now obvious definitions for the
spaces W;hp ST (E) and L7 (Home (T X, E)), so that the Cauchy—Riemann type

operator D defines a bounded linear map
D: W' PPN (E) — LP3T (Homc (TS, E)).

It is simple to show (cf. [HWZ99], [Wenb]) that this map is conjugate to another Cau-
chy-Riemann operator Dg.: %l’p (E) — L?(Hom¢(TX, E)), which is asymp-
totic at z € T to A, + §,; denote the latter collection of operators by Ar & 8r.
The operator on the weighted space is thus Fredholm if and only if ¥6, € o (4, ) for
all z € T*, and its index can then be read off again from (2.1), but with Ar & 81
replacing Ar. Note in particular that if all A, are nondegenerate and all &, are
sufficiently close to 0, then the weighting does not change the index of D,

2.2. The line bundle case. For the rest of this section we assume n = 1, 8o
each asymptotic operator is equivalent to an unbounded self-adjoint operator on
L?(S',R?) of the form A = —JO% — S(t), whose eigenfunctions can be assigned

winding numbers. For A € a(A4) define w(A) € Z to be the winding number of any
nontrivial section in the A-eigenspace of A4 ; this number depends only on A, by a re-
sult in [HWZ95a]. Moreover, it is shown in the same paper that w (1) is an increasing
function of A which takes every integer value exactly twice (counting multiplicity).
We define

a_(A) =max{w(A) | A € o(A4), A < 0},
ay(A)y =min{w(d) | A € 0(4), A > 0}, (2.2)
p(A) = a(A) —a_(4),



362 C. Wendl CMH

so if A is nondegenerate, p(A) € {0,1}. By another result in [HWZ95a], these
winding numbers are related to the Conley—Zehnder index by

pcz(A) =20-(A) + p(4) = 2a4.(A4) — p(4). (23)

This entire discussion applies also to the operators A, once trivializations ® are
specified; we thus denote these winding numbers by oz;f (A;), and observe that
p(A;) € {0,1} does not depend on ®. The latter is the parity of the puncture
z € I', defining a partition of I" into sets of even and odd punctures, denoted I'y and
I'; respectively.

Define the %Z-Valued adjusted first Chern number of (E, £, Ar) by

UE L AD) = e () + p B0+ Y o) Y o4, 0

ze+ zel'™

and observe that this does not depend on ®. Using (2.3) and the index formula, it is
casy to show that

2e1(E £, Ar) = ind(D) — 2 + 2g + #To + m. (2.5)

Note that ¢1(E, £, Ar) is necessarily an integer if 0% = .

The adjusted first Chern number has the following interpretation which justifies
itsname. If v € ker D is a nontrivial section, then the equation Dv = 0 together with
the similarity principle implies that v has only isolated zeroes, all of positive order.
Moreover, by arguments in [HWZ96], [Sic08], v satisfies an asymptotic formula of
the form

v(s,t) = e** (e (t) + ris.1)) (2.6)

in admissible trivializations near each puncture z € I'*, where A € o(4,) satisfies
+A <0,¢; € I'(E]s,)is asection in the corresponding eigenspace and the remainder
r(s,t) goes to zero as s — oo, It follows that v(s, 7} has only finitely many zeroes,
and near z € T'F it has a well defined asymptotic winding number windz,I> (v) € Z,
which is bounded from above by ¢®(A4,) if z € T, or from below by e$(4.) if
z € I'". We use this to define the asymptotic vanishing of v:

Zoo) = Y [¢®(4;)—wind? ()] + ) [wind? () —af(4,)].

ZEF+ zel'—

Define also the %Z—Valued count of zeroes,

Z(v) = Z ord(v; z) + % Z ord(v; z),

zev—1(0)Nint 3 zev~L(OINIT



Vol. 85 (2010) Transversality and orbifolds of holomorphic curves 363

where the order of a zero on the boundary is defined by a doubling argument de-
scribed in the appendix. Now a simple computation using these definitions and
Proposition A.2 yields the relation

Z(v) + Zoo(v) = c1(E. £, Ar). (2.7)

Observe that both terms on the left hand side are manifestly nonnegative.
The next result is the main objective of this section. Recall from (1.4) the non-
negative integer K(c, G).

Proposition 2.2. (1) In the case ind(D) < 0, D isinjective if c1(E, £, Ar) < 0, and
otherwise
dimker D < K (¢1(E, £, Ar). #I'y) .

(2) In the case ind(D) = 0, D is surjective if ind(D) > c¢1(E,{, Ar), and
otherwise

ind(D) < dimker D < ind(D) + K (c1(E, £, Ar) — ind(D), #T5) .

Proof. The argument rests crucially on (2.7), together with the observation thatif z €
Ty, then the space of eigenfunctions with negative eigenvalue and winding o®(4,)
is 1-dimensional, as is the space with positive eigenvalue and winding aj‘: (A).

We prove the result first for the case ind(D) < 0. If ¢1(E, £, Ar) < 0, then
D is clearly injective, else (2.7) would force any nontrivial section v € ker D (o
have either Z(v) < 0 or Zoo(v) < 0. To establish the dimension bound for ker D
when ¢ (E,£, Ar) > 0, choose any nonnegative integers k and » such that k <
#Ip and 2k + n > 2¢y(E, £, Ar). In this situation we can construct an injective
homomorphism from ker D into a real vector space of dimension » + k. Indeed,
it 3¥ # @, pick n distinct points {1,...,(, € 9%, and choose also & distinct
even punctures zi,...,zx € I'p. For each of the z;, the correspondence v +— ¢
coming from the asymptotic formula (2.6) defines a linear map from ker D into the
1-dimensional vector space Vz; consisting of eigenfunctions of 4., with winding
equal to a$(A z;). We can define this map so that it takes the value 0 € V;_ if and
only if the eigenfunction in (2.6) has a different winding number. Using these maps
and the evaluation of v at the points {; € dX, we obtain a homomorphism

WikerD =l @& Bl BV, BB V.

The claim is that ¥ is injective, and thus dimker D < n + k. Indeed, suppose
v € ker D is a nontrivial section with W(v) = 0. Then the asymptotic winding of v
differs from ozgé (Az;) at each of the punctures z;, implying Zo (v) > k. Similarly,
v has boundary zeroes at (1, . .., {», contributing at least n/2 to Z(v), hence

(B4, Ar) = Z) 4 Zoo(v) = 5 +E,
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which contradicts our assumptions on » and k.

A minor modification to this argument is needed if 33 = @. We must now assume
n is even, and choose distinct interior points {1, ..., {2 € , using evaluation at
these points to define the homomorphism

U: ker D — Eg S DLy, DV @D V.

The right hand side is again a vector space of real dimension n + k, and the same
argument as above shows that W 1s injective.

To deal with the case ind( D) = 0, we consider the formal adjoint D* (cf. [Sch95]).
This can be regarded as a Cauchy—Riemann type operator on the bundle /7 :=
Homc(TX, E) — X with an appropriate totally real boundary condition £* and
asymptotic operators A7, which have the same parity as A ;. It satisfies

ind(D*) = —ind(D), dimker D* = dim coker D, (2.8)

and applying (2.5) to D and D* together, we find
1
ci(E, L, Ar) — c1(F, L%, AT) = 5 [ind(D) — ind(D™*)]| = ind(D).

Then the condition ¢y (F, £*, A{) <Oissatisfied if and only ifind(D ) > ¢ (E, £, Ar),
and this implies D is surjective. If ind(D) < ¢1(E, £, Ar), then ¢ (F,£*, AT) = 0
and we can apply the above estimate to dim ker D *, giving

dimker D = ind(D) + dimcoker D = ind(D) + dimker D™
<ind(D) + K (c1(F. £*, A7), #T)
— ind(D) + K (¢, (E, £, Ap) — ind(D), #T). 0

Remark 2.3. The proof of Theorem 2 requires only the very simplest case of this
dimension bound, namely that ker D is trivial when ¢ (E, £, Ap) < 0. As that proof
will demonstrate, however, such bounds can sometimes be useful in cases where D
18 not surjective, so perhaps the more general dimension bound will eventually find
similar application.

3. The normal operator for a holomorphic curve

In this section we will give the precise definition of regularity and show that it is
equivalent to the surjectivity of a certain Cauchy—Riemann operator on a generalized
normal bundle. The precise relation between this operator and the concept of regu-
larity is stated in §3.4 as Theorem 3, and in §3.5 we apply the linear transversality
theory from §2.2 to show that Theorem 1 follows as an easy corollary.
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Throughout the following, we fix a compact, connected and oriented surface % of
genus ¢ > 0 withm > 0 boundary components, and a finite set I' C int X, writing
M=\

3.1. Teichmiiller slices and Cauchy—Riemann operators. We begin by collecting
some classical facts about moduli spaces of Riemann surfaces which can be related
to the analysis of Cauchy—Riemann type operators.

Let Z(X) denote the space of smooth complex structures on X that induce the
given orientation, and denote by Diff | (¥, ") the group of orientation preserving
diffeomorphisms on X that fix I', and Diffy (2, ') C Diff (X, I') those which are
homotopic to the identity. Both of these groups act on £(X) by (¢, j) — ¢*j, and
the Teichmiiller space of ¥ is a smooth finite-dimensional manifold defined as

T(3) = 4(Z)/ Diffo(Z, T).

Its quotient by the mapping class group M(X) = Diff . (2, ")/ Diff o (X, T') gives
the moduli space of Riemann surfaces (with genus g, m boundary components and
#I' interior marked points)

M(E) = T(X)/M(E) = §(X)/ Diff (X, T),

which is in general an orbifold of the same dimension. We say . is stable if x(3) < 0,
in which case

dim M(X) = 6g — 6 + 3m + 2#T = —3 (%) — #T,
and the automorphism group
Aul(X, j) = {p € DIff L(Z,T) | ¢*j = j}

is finite for any choice of j € g(X) (though its order may depend on j). LetlD C C
denote the closed unit disk, A = [0, 1] x S the compact annulus and T2 = R?/Z?
the 2-dimensional torus. For our purposes, the non-stable cases to be considered are
the following:

(1) M(S?) = {[i]} and dim Aut(S2,i) = 6.

(2) M(C) = {[{]} and dim Aut(C,i) = 4.

(3) M(D) = {[{]} and dim Aut(D,7) = 3.

(4) M(R x S') = {[{]} and dim Aut(R x S',7i) = 2.
(5) M(D\ {0}) = {[i]} and dim Aut(D \ {0},7) = 1.
(6) dim M(A) = 1 and dim Aut(A, j) = 1.

(7) dim M(T?) = 2 and dim Aut(T2, j) = 2.
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For all but the last case, the mapping class group M (%) is trivial and thus M(X) =
T (2) is a manifold. Observe also that if 3 is not stable,

dim Aut(E, j) — dim M(Z) = 3x(Z) + #I. (3.1)

Fixing p > 2, the latter is the Fredholm index of the standard linear Cauchy—Riemann
operator
DE: T(az)(TZ '} — L?(Endc(TY)),

where WT(BE)(TE; ') is the space of W1?-smooth vector fields Y: ¥ — TX
satisfying Y(dX) C T(dX) and Y|r = 0.

Lemma 3.1. For all choices of (£, j, '), dim coker(DF) = dim M(X).

Proof. This may be regarded as a standard piece of Teichmiiller theory in the stable
case (cf. [Tro92]), and also follows by using a simplified version of the argument in
the proof of Proposition 2.2 to show that D%: is injective. Here one must account also
for the condition Y |r = 0, which ensures Z(Y'} > #I', thus it suffices to observe
that the adjusted first Chern number is strictly less than #I". In the non-stable case,
a similar argument shows that dim ker(Dlg ) < dim Aut(X, j), and by interpreting
D%: as the linearization of a nonlinear operator d o =T+ joTypo j,one sees
that ker(Dlg ) contains aut(3, j), giving an inequality in the other direction, hence

dimker(DZ) = dim Aut(Z, ).
The result then follows from (3.1). O

Given j € (%) and the corresponding Cauchy—Riemann operator Dlg, pick a
complement of im(D¥), i.e. a subspace C C L?(Endc (T X)) such that

im(D¥) @ C = L?(Endc(TL)).

By approximation, we may assume every section in C is smooth and vanishes on
a neighborhood of I'. We can then choose a small neighborhood @ C C of 0 and
define the map

1 1\
0:0>4®. v (tgiy)i(1+3) . 62
which has the properties $(0) = j and

d
a¢mﬂﬁ0=%
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thus it is injective if @ is sufficiently small. The image
T :=d(0) C g(2)

is thus a smooth manifold of dimension dim C = dim 7 (X), with T;7 = C and
consisting of smooth complex structures close to j that are identical to j on some
fixed neighborhood of T". It parametrizes a neighborhood of [] in 7 (%), i.e. the
projection ¢ (X) — T (X) restricts to a diffeomorphism from 7~ onto a neighborhood
of [j]. This provides an explicit construction of the following general object:

Definition 3.2. Given j € $(X), we define a Teichmiiller slice through j to be any
smooth family 7 C #(3) parametrized by an injective map U — (%), where

U is an open subset of Rdimﬂz), such that all j" € T are identical on some fixed
neighborhood of T', and im(D?) @& T;7 = L?(Endc(TY)).

Lemma3.3. If (2. J) is stable, then there exists a Teichmiiller slice T through j that
is invariant under the group action Aut(X, j) x J(X) — F(Z), (¢, j) — ¢*j'.

Proof. The automorphism group G := Aut(X) is finite and consists of biholomorphic
maps on (X, j) that fix I'. Each point in I then has a G-invariant neighborhood
biholomorphically equivalent to the standard unit disk, on which G acts by rational
rotations. Let g denote a metric on X that is invariant under the action of G; such a
metric can be constructed by starting from the Poincaré metric on ¥ and interpolating
this with flat rotation-invariant metrics on disk-like neighborhoods of each pointin I,
Then g induces a bundle metric on End¢ (7E) — X and a corresponding G -invariant
L?-inner product { , }; 2 on the space of sections of this bundle.

To prove the lemma, it suffices to construct a G-invariant complement C C
L?(Endc(TX)) of im(D?) that consists of smooth sections vanishing near I': then
an appropriate Teichmiiller slice can be defined via (3.2) since ¢*j = j implies
S(p*y) = *P(y) for any ¢ € G. Observe that irn(D?) itself is G-invariant,

since p*j = j also implies DF(p*Y) = ¢*(DEY) for all ¥ € Wyl (TE;T).
Now using the G-invariant L2-product chosen above, define a complement Cy, as the

L?-orthogonal complement of im(D %), i.e.
Co = {y € LP(Endc(TE)) | (DEY.y),2 = Oforall Y € Wiy (TE:T)).

This space is G-invariant due to the G-invariance of im(D%}) and { , )z2, and by
elliptic regularity for weak solutions of the formal adjoint equation, it consists only
of smooth sections. Now choosing G -invariant disk-like neighborhoods of the points
in I', we can obtain the desired complement C by multiplying the sections in Cy
by G-invariant cutoff functions that vanish near G and equal 1 outside a sufficiently
small neighborhood of I". O
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For the two non-stable cases in which 7 (X) is nontrivial, it will be convenient
to have explicit global Teichmiiller slices. If ¥ = A = [0, 1] x S, for each 7 > 0
define the diffeomorphism ¢ : A — [0, 7] x S, (s,7) +> (rs,1) and let Tp denote
the collection of complex structures {¢)i}r~o. This parametrizes the entirety of
7 (A) (which equals M(A) since the mapping class group is trivial), and also gives a
natural identification of every Aut(A, ¢*i) with S!, acting on A by translation of the
second factor. If 3 = T2 = R2?/Z?, we define T2 to be the space of all constant
complex structures on R? = C that are compatible with the standard orientation;
clearly these descend to T2, and they also parametrize the entirety of 7 (T 2). Then
for each j € T2, the subgroup

Auty(T?, ;) := Aut(T2, j) N Diff o (T?)

can be identified naturally with T2, acting by translations. Choosing a base point
p = [(0,0)] € T2, the stabilizer of [j] € T(T?) under the action of M(T?) =
SL(2, Z) is meanwhile the finite subgroup

AT, j: p) = {p € Au(T2, j) | p(p) = p} = {4 € SLQ,Z) | 4] = jA},

and Aut(T2, ;) is the semidirect product of Aut(T?2, j: p) with Aut(T?2, j) = T?2.
Note in particular that for any j € J72, this group acts by affine transformations on
R? (descending to T?), and the action (¢, j) > ¢* j/ therefore preserves Jp2.

The following will be useful for technical reasons in our analysis of the relationship
between D,, and its normal component.

Lemma 3.4. Forany j € $(X) andfinite set K C 3, there exists a Teichmiiller slice
T through j such that every j' € T is identical to j on some fixed neighborhood of
KUT.

Proof. It suffices to construct C = 7,7 so that every y € C vanishes near K U T".
This can be done using cutoft functions to replace a basis of any given complement
with one that vanishes in such a neighborhood; the new basis can be made L? -close
to the old one if the neighborhood is sufficiently small. O

For any Teichmiiller slice 7 through j, the operator
Lr:T;7 @ WHP(TS:T) — L?(Endc(TE)). (».Y)+— jy+ DEY,

is clearly surjective; indeed, as D is complex linear, Lr(y. jY) = j (y + DY),
and the target space is spanned by 7,7 and im(Dlg). For the analysis in the following
sections it will be useful to derive a corresponding statement for the standard Cauchy—
Riemann operator on a Riemann surface with ends. We will recall in the next section
the construction of certain Banach manifolds containing asymptotically cylindrical
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maps ¥ — W. In the simple case W = X, the tangent space to such a Banach
manifold 8% at the identity map 1: 3 — X can be written as

T _ P8
T 8% = Wd (T @ VE,

where § > 0 is a small weight applying at every end and VFE C [(TX)is a 24T -
dimensional space of smooth sections that are supported near infinity and constant
in some fixed choice of cylindrical coordinates near each end. The natural nonlinear
Cauchy-Riemann operator defines a section of a Banach space bundle over B%,
whose linearization at 1 is the usual linear Cauchy—Riemann operator given by the
holomorphic structure of 7% — ¥, denoted here by

DE: Wy b (TS) @ VE — LP4 (Endc (TE)).

Now since every y € T;T is smooth and vanishes near T', there is a natural in-
clusion of 7;7 C L?3(Endc(TY)), as well as a bounded linear map ;7 —
LP8 (Endc(TX)), y — jy.

Lemma 3.5. The operator
e 0.8 ;
L: T;T @ (Wrihe)(TS) @ Vi) — L2 (Ende(TE)).  (y.1) v jy + D¥n.
IS surjective.

Proof. Applying the linear theory in §2, we find that ind(D ¥) = ind(Dlg ) and hence
ind(L) = ind(Lr). Now in light of the natural inclusion

W lps8 1 :
T(gz:)(TE) S VF — WT(‘gE)(TZ, I)

it follows that ker(L) C ker(Lrt), but since dimker(L) > ind(L) in general and
dimker(Lr) = ind(L 1) by the remarks above, we have

dimker(L) < dimker(Lt) = ind(Lt) = ind(L),
implying L is surjective. O
Corollary 3.6. For any Teichmiiller slice T through j,
LP4(Endc(TY) = im(DX) @ T; T

3.2. Functional analytic setup. To state the definition of regularity, we begin by
reviewing the nonlinear functipnal analytic setup used in [Dra04], [Bou0O2] for asymp-
totically cylindrical maps v : X — W with nondegenerate or Morse-Bott asymptotic
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orbits. Fix the surface X, punctures ' = 't U '™ C int X, and asymplotic con-
straints ¢. Recall that the latter choice partitions I into a set of constrained and
unconstrained punctures I' = I'c U I'y, and assigns to each z € FCjE an orbit P; of
X+, which we will assume is Morse—Bott, and we will denote its period by 7. For
each z € Tz, we instead choose an arbitrary Morse-Bott manifold of periodic orbits
in My, denoted again by P, with period 7; > 0. By a slight abuse of notation, each
P, may be regarded both as a submanifold P, C ML and as a set of T, -periodic
orbits y € P, (sometimes with only one element). Denote this collection of choices
for all punctures z € I by Pr. We shall then consider a Banach manifold consisting
of asymptotically cylindrical maps u: ¥ — W whose asymptotic orbits v, forz € T
satisfy y; € P;.

Before explaining the Banach manifold, we digress for a moment to define some
important invariants that enter into the index formula. Recall thatany 7 -periodic orbit
y of X4 has an associated asymptotic operator A, , defined on sections of the bundle
£. along y. One can write it down by choosing a paramelrization x: S' — My of
y with A(x) = T, and defining A, : ['(x*£+) — ['(x™&4) by

Ayv=—-Jr(Viv—-TVXy)

for any symmetric connection V on My. This gives an unbounded self-adjoint
operator on L?(x*£.) of the form considered in §2, and it is nondegenerate if and
only if the orbit 1s nondegenerate, in which case we define the Conley—Zehnder index
ug’z(y) = ugZ(Ay) for any choice of trivialization ® on x*£,. If y is degenerate,
then A, can be perturbed to a nondegenerate asymptotic operator by adding any
number € € R \ —o(A4), and we thus define the perturbed Conley—Zehnder index

n& @y +e) i=pnd 4, +e),

and its parity
0 if u& (y + €)is even,

+ —
iy +e) {1 if 1& (y + €) is odd,

which does not depend on ®. Observe that if y is nondegenerate and e is sufficiently
close to zero, then ug’z (y +¢€) = ug’z (y) since o (A4, ) is discrete. More generally,
one can see from the relationship between the Conley—Zehnder index and spectral
flow (cf. [RS95]) that for sufficiently small € > O,

n& (y—e€) —pud (y +e) = dimker(4,). (3.3)

In particular if y belongs to a Morse—Bott family P, then the right hand side of (3.3)
is dim P — 1, and &, (y & €) remains unchanged if we move y to a different orbit
in the same family.



Vol. 85 (2010) Transversality and orbifolds of holomorphic curves 371

If My are 3-dimensional, then &4 have complex rank one, so recalling the defi-
nitions in §2.2, we can associate to any 7 -periodic orbit y of X1 and real number e
the so-called extremal winding numbers

ai(y + €)= ai(Ay + €),

or for the case € = 0, simply «(y) = a3(A4,). We will refer to the cigenfunctions
of A, involved in this definition as extremal eigenfunctions at y if € = 0, or more
generally extremal eigenfunctions with respect to €. Now if € € —o(A,,), (2.3) gives

p& (y +€) =2a2(y +€) £ p(y +e),
py+e)=al(y+e)—a®(y+¢) €01

Choosing 8 > 0 arbitrarily small, it will also be convenient to define

va(y) =oad(y — 8 —al(y +8), (3.4)

which equals O whenever y is nondegenerate, and is otherwise either O or 1.°

Notation. Fix a number § > 0, which we will generally assume to be as small as
may be needed. Suppose T' = 't U T~ is a set of punctures and ¢ is a set of
asymptotic constraints, defining constrained and unconstrained subsets I'c, 'y C T’
respectively. We then associate to each puncture z € I a real number

§ ifzel
cz-:{ NEE e, (3.5)

-8 ifzely.

For asymptotically cylindrical maps u: ¥ — W subject to constraints ¢, we will
use the following notational conventions throughout. The asymptotic orbit of u at a
puncture z € I'* will be called y;, with asymptotic operator A, := A,_, and the
collection of these for all punctures will be denoted by yr and A r respectively. Denote
the corresponding collection of perturbed asymptotic operators {A; & ¢} _.pr+ by
Ar £ er, noting that the sign choice must always match the sign of the puncture. For
i €{0,1}, let

Fz’i(c) ={ze r+ | py: ez} =1}

and T;(¢) = T;"(¢) U T, (¢). This defines a partition of T into so-called even and
odd punctures with respect to the constraints. Note that when y, is nondegenerate,
the parity of z 1s simply the even/odd parity of ,ufcpz(yz); in general however this
distinction depends on not just the orbit and constraints, but also the sign of the
puncture.

“For orbits in two-dimensional families, the numbers vy () are closely related to the sign of a Morse—Bott
surface, as defined in [Wenb].
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Choose p > 2 and define the Banach manifold
B:= BLP4(E W L, Pr)

to consist of maps X — W of class Wléc’p which satisfy #(d%) C L and have asymp-
totically cylindrical behavior approaching the orbits { P, }.cr at the corresponding
punctures: the latter means in particular that using cylindrical coordinates (s, 1) € Z 4
near z € I'F, there exists an orbit y, € P, with parametrization x: R — M4 and a
constant 5o such that for sufficiently large |s|,

u(s + 0, 1) = eXpPy(s.0) 1(5.1),

where X (s, 1) := (Tz5,x(T;t)) € Ex CRxMyandh € T'(x*TEL) is of weighted
Sobolev class W 7% on Z_.. The tangent space T,, B can then be written as

T.8 = Wi w*TW) & Vi & Xr,

where the summands are defined as follows. The subscript A refers to the totally real
subbundle
A= (ulys)" TL — 0%, (3.6)

so that sections v € Wi’p . (u*T W) are required to satisty the boundary condition

v{dX) C A, as well as decaying in accordance with the small exponential weight
§ > Oateachend. The other two summands are both finite dimensional vector spaces
consisting of sections Y — u*TW that are supported near infinity and asymptot-
ically equal to constant vectors in some choice of R-invariant coordinates near the
asymptotic orbit. In particular, Vr has dimension 2#I" and contains vector fields
that are parallel to the orbit cylinders X (s,7) = (T's, x(T't)) near infinity, while the
vector fields in X are trivial whenever P; 1s a fixed orbit and otherwise parallel to
the Morse—Bott manifolds P, thus

dim Xt =Y (dimP; —1) = » dimker(4). (3.7)

zell zel'y

Fixing a complex structure j on X, there is a Banach space bundle & — 8 whose
fibers are spaces of complex antilinear bundle maps

g, = LP*® (Homc (Tﬁ}, u*TW)),
and the nonlinear Cauchy—Riemann operator defines a smooth section
d7: B — &, Uur>Tu+JoTuoj,

whose zeroes are parametrizations of asymptotically cylindrical pseudoholomorphic
curves u: (X, j) — (W, J). The linearization of d; at a zero u defines a linear
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Cauchy-Riemann type operator,

D,:TWw*TW) — I'Homc (TS, u*TW)),

: : (3.8)
vi>Vuo4+JoVvoj+(VyJ)oTuo j,

where V is any symmetric connection on W. As a bounded lincar operator 7,8 —
&y, Dy, is Fredholm. To write down its index, let ® be an arbitrary choice of triv-
ialization for u*7 W along 9% and for &1 along the orbits y., and define the roral
Maslov index

pPie) = pP@ TW A+ Y p& -+ e — D pd& (v — o).
e+ zel'™

The trivializations of &1 extend naturally to trivializations of TW = T(R x M4)
along the orbits via the splitting

TRxMi)=RPRXL) D EL, (3.9)
so that one can also define the relative Chern number e (u*T W),
Proposition 3.7.
ind(Dy,) = ny(X) 4 2¢2W*TW) + 1®(u;¢) 4 #T.
Proof. Denote by Dy the restriction of D, to Wi’p S*TW), so

ind(D,) = ind(Dy) + dim VT + dim X
= ind(Do) + 24T + > dimker(4;).

zel'y

Then Dy is a Cauchy—Riemann type operator asymptotic at z € I' to the operators

B, =C@ A.,
where we use the splitting (3.9) and define on the first summand the “trivial” asymp-
totic operator C = —Jp %. The latter is degenerate, but we have
pez(C £ 8) ==F1 (3.10)

if 8§ > 0 1s sufficiently small. By the discussion of exponential weights in §2.1, Dy
is now conjugate to a Cauchy—Riemann operator

WP w*TW) — L? (Home (TS, u*TW))
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with nondegenerate asymptotics, so by (2.1):
ind(Do) = ny(%) + 2c2w*TW) + u®W*TW, A)
+ Z Mgz(Bz +8) — Z Mg)z(Bz —38)

Z€r+ zel'—
=ny(X) + 2¢2 @ TW) + u® @*TW,A)

= Z :“gz(AZ"‘S)_ Z l/‘g}z(Az_S)_#F’
Z€r+ zel'—

where in the last line we have used the splitting B, = C@® A, and (3.10). Now using
(3.3), we have

Z 1E(Az +8) — Z & (A, —8) —#I

ZGF+ zel'—
+ 240 + Y dimker(4;)
zely
= Y u&GA -8+ Y p&(d; +8) L1
ZEF$ zEFg '
=Y n& A+ 8) = > p& (A —8) +#T
zel'y; z€l-
== Z Mgz(Az + CZ) - Z MSZ(AZ - CZ) + #I,
zel'+ zel'~
and the result follows. O

For the following lemma, recall that D¥: T (T'Z) — '(Endc(T'X)) denotes the
natural linear Cauchy—Riemann operator on I'(7T X) determined by the holomorphic
structure of T'Y; it is the linearization at the identity of the operator 8290 =Top +

JjoT@ojacting on maps ¢: ¥ — 3. We use the bundle map du: TS > u*TW
to define linear maps

r(Ts) 2 T Tw), a2

- . d . .
I'(Endc(TE)) 25 M'([ome (TS, u*T W).

Lemma 3.8. For any smooth vector field v € T(T'Y),

D, (du(®)) = du(DZv).



Vol. 85 (2010) Transversality and orbifolds of holomorphic curves 375

Proof. Choose any open subset U C 3 with compact support. On this neighborhood,
the flow ™ of v is well defined for 7 sufficiently close to 0, and by definition, if z € U
and Y € 7T, X,

(D*v)Y = Ve [37e"(V)]|._, -

where V is any connection on Y. Similarly, using the fact that u: (3, j) — (W, J)
and 1: (¥, j) — (X, j) are both holomorphic,

D (du()(Y) = Ve [dr oD M)]|,_,
= Ve [TuopHY)+JoTweop) o j(¥)]l—
= Ve [TuoTe " (¥Y)+JoTuoTe" o j(¥)]|, =
=V [TuoTp"(Y)+TuojoTe" o J(¥)]|=0
= Ve [dulp™ () - 9Fe"M]|, _,
= V) (du) - 07 (DY) + du( Ve [070° (]| _,)
= du(DZv(Y)). O

Varying complex structures on the domain can be incorporated into the picture by
fixing jo € (X} and choosing a Teichmiiller slice 7~ through jp (see Definition 3.2).
We can now redefine the Banach space bundle & over 5~ x B so that

&y = L (Home (TE. j). ' T W, 1)),
and extend the section 9 over this bundle by
3: T xB—>E, (jouyr>Tu+JoTuoj.
The linearization at (j, u) € 5}1 (0) can now be expressed via its “partial derivatives,”
DI;(ju): ;T ® TuB — €y, (1, 0) > Gyy + Dy

where

G,: T;7 C T(Endc(TX)) — T'(Homc (T, j), W*TW, T)))
yi—=>JoTuoy.

We can now present the precise definition of regularity.

Definition 3.9. The curve (X, j, ', u) € M€ is called regular if there exists a Teich-
miiller slice 7 through j such that the operator Dy (j,u): T;7 © T, B — €(u)
1§ surjective.
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Remark 3.10. This condition clearly does not depend on the choice of map
u: (X, j)— (W, J) representing a given equivalence class in M€; if go X7y —
(X, j)isa b1holomorph1c map and u’ = uogp, one canuse the pullback @™ to construct
a Teichmiiller slice 7/ through j’ so that the operators DAr( vy and D3y (j,u)
are conjugate. The next lemma shows also that the surjectivity of Doy (j,u) — and
in fact the codimension of its image — does not depend on the choice of Teichmiiller
slice.

Lemma 3.11. For (X, j.T,u) € M and any two Teichmiiller slices T and T’
through j, denote by L: T;T & TuB — &(ju) and L:T;7®&TuB — Eu the

corresponding linearizations of 3y at (j,u). Then im(L) = im(L’).
Proof. Using the inclusion T;5 € L?% (Endc (T %)), extend L to

L: LP%Endc(TE) @ T B — €
(y,v) > JoTuoy+ Dyv.

For y = DY e im(D¥) ¢ LP¥(Endc(TY)), we use the fact that u is J-
holomorphic and write

L(y,0)=JoTuoy=du(jy) =du(DE(Y)).

Then by Lemma 3.8, this equals D, (du(jY))if Y is smooth, and the same holds for
general Y in the domain of D¥ by a density argument, thus the restriction of L to
im(D ¥) has image contained in im( D). Since LP3(Endc(TY)) = im(D )@ 7,7

by Corollary 3.6, this implies im(L) = im(L). Now using the same argument for
77, we have im(L) = im(L) = im(L"). O

Since D,, is Fredholm and 7 is finite dimensional, D9 7(Jj,u) is also Fredholm.
Recalling (3.1) and the definition of ind(u; ¢) = vir-dim M, in (1.1), we have

ind DAy (j,u) = dim T + ind(D,,) = ind(u; ¢) + dim Aut(X, /).

For completeness, we now prove the fact that regularity gives M€ the structure of a
smooth orbifold of dimension ind(u; ¢) near u.

Proof of Theorem 0. Assume (jo, up) € 5}1(0) is regular and let G = Aut(X, jo).
By Lemma 3.11, the regularity condition 1s independent of the choice of Teichmiiller
slice, so if ¥ is stable, then using L.emma 3.3 we can pick a slice 7 through j, that is
invariant under the natural G-action. Similarly if ¥ is A or T2, then without loss of
generality we can compose with a diffeomorphism such that j, belongs to one of the
special Teichmiiller slices 73 or YT constructed in §3.1 (which also admit a natural
G-action), and choose this for . There is now a G-action on 7 x B defined by

g-(j.u)y= (" j,uop).
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This clearly preserves 5}1 (0), and the stabilizer of any (j,u) € 5;1 (0) is the finite
subgroup {¢ € Aut(X, jo) | ¢*j = j,uop =u} C Aut(u). Since D3y (jy,up)
is surjective, Remark 3.10 implies that the same is true for all (/, u) in the G-orbit
of (jo, ug), thus by the implicit function theorem, a neighborhood U C 8_1(0) of
this orbit admits a natural smooth manifold structure, with dimension md(uo, c) +
dim Aut(X, jo). Starting from a small neighborhood of (jo.uo) in 97 1(0) and ex-
tending this under the G-action, we may assume U to be G-invariant. The quotient
U/ G then inherits the structure of a smooth orbifold of dimension ind(u; ¢), with
isotropy group Aut(u) at (jo, #¢) and a natural isomorphism

Tloauo) (U/G)Y = ker Dy (jo, uo)/aut(X, jo).

One can adapt the argument in [Dra04] to show that charts constructed in this way
are always smoothly compatible.

To complete the proof, we show that U /G is homeomorphic to a neighborhood
of (2, jo, ', up) in M. Clearly U contains a representative of every J-holomorphic
curve near {jo, tg), so the point is to show that any two such curves (j, u) and (j/, )
that are equivalent in M® are related by the G-action.

Suppose first that ¥ is non-stable and is not A or T2: then 7~ contains only Jo.and
(jo,u) ~ (jo,u")if and only if " = u o ¢ for some go e Aut(Z, jo) = G, so we are
done. The case A is hardly more comphcated now 7 is 1-dimensional and M(2)i 1s
trivial, so M(X) = T(X)and j, j/ € T are equivalent in M(X) if and only ifj = j’.
Thus (j,u) ~ (j/,u’) implies j = j’ and u’ = u o ¢ for some ¢ € Aut(X, j). But
our construction of T4 identifies Aut(X, j) with Aut(X, jo) = G, so again we are
done.

Consider now the stable cases and T2, for which M (i]) is nontrivial. For these,
the groups Auto(E i) := Aut(X, j) N Diffo (X, T) for every j € T are identified
with Auto (2, jo); this is a nontrivial statement only for ¥ = T2, where our explicit
construction of 7 = T2 identifies every Auto(T?2, j) with T2, acting by trans-
lations. Meanwhile, for each j € T there is a finite subgroup G; C Aut(X, j)
(G, = Aut(X, j) in the stable cases) naturally isomorphic to the stabilizer of
[/] € T7(2) under the M(X)-action, such that Aut(Z, j) is the semidirect prod-
uct of G; with Auto (X, jo). Now if (j,u) and (j/, u’) are two elements of U that
represent equivalent curves, so j° = ¥* j andu’ = uoy for some Y € Diff (X, T),
we need to show that ¢ € G. In terms of the M (X)-actionon 7 (X), [¥]-[/] = [J']
implies that if j and j’ are both sufficiently close to jo, then [1#] belongs to the
stabilizer of [jp], i.e. [¥] - [jo] = [jo]. Thus there is a unique ¢ € G, such that
[¢] = [] € M(X), and by construction, p* j = j’. Itfollows that (Y op™")*j = J,
s0 ¥ o ! € Autg(E, j) = Auto(X, jo), and ¥ is thus a product of two maps in
Allt(z, Jo). U
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3.3. The generalized normal bundle. For the remainder of this section, we shall
consider a fixed non-constant holomorphic curve (j,u) € 5}1(0) C T x B and
examine the operator Ddy(j.u) = G, + D,, more closely. When we refer to 3 or
2 as a Riemann surface, we will always mean with complex structure j .

As was observed in [IS99], the operator D, defines a natural holomorphic struc-
ture on the bundle u*TW — 3: indeed, the complex linear part of D, is also a
Cauchy-Riemann type operator, so there is a unique holomorphic structure whose
local holomorphic sections vanish under this operator. This induces a holomorphic
structure on Home (7%, w*T W), and one can then show (cf. [[S99]) that

du € T(Homg (T2, u*TW))

1s a holomorphic section. Thus if zg 1s an i_nterior critical point of v, we can choose
a holomorphic trivialization of Hom¢ (T %, u*T W) near zy and express du as a
C"-valued function of the form

(z — z0)F F(2) (3.13)

for some k € N and C”-valued holomorphic function F with F(zy) # 0. In this
case we define the order of the critical point by

ord(du; zo) = k.

A similar definition is possible for zo € Crit(u) N d% since du satisfies the totally
real boundary condition du{(9X%) C £, where

£ = {4 e Homc(TE, u*TW)|sz | A(T(OX)) C A}

Indeed, one can then choose a trivialization near zg such that du satisfies the Schwartz
reflection principal, and define ord(du; zy) again via (3.13) after reflection. Define
the %Z-Valued algebraic count of critical points by

1
Z(du) = > | ord(du; z) + 5 > ord(du;z). (3.14)
zedu—1{0)Nmnt X zedu 1(0)NIZT
The expression (3.13) has a second important purpose: the complex subspace of
Tu(-) W spanned in the trivialization by F(z) € C"\ {0} allows us to define a smooth

rank 1 subbundle
T, Cu*TW

such that for any z € X\ Crit(), (Ty,); = im du(z). We will call this the generalized
tangent bundle to u.

Lemma 3.12. The intersection (T,,); N A, is 1-dimensional for all z € 0.
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Proof. Tt can never be 2-dimensional since (75,), is a complex subspace and A ; is
totally real. Moreover, it is clearly at least 1-dimensional whenever du(z) # 0, as
then Tu(Y) € TyL = A forany ¥ € T;9%. Since critical points are isolated
and the condition dim(7y,); N A, = 0 is open, the result follows. O

By the lemma, we can define a totally real subbundle
(1 = AN Tulss C Tulos,
and by construction du now defines a section of the complex line bundle
Homg¢ (Ti], T.) — b
with totally real boundary condition du (3X) ¢ £7, where
£7 = {A e Home (T2, T,) oz | AT(OX)) C £1}.

As defined in the appendix, the algebraic count of zeroes for this section is precisely
Z{du).

Observe that both T and T, admit natural extensions over the compactified
surface X; we define this extension for T, via its natural identification with 7%
under du since u is immersed near infinity. There is also a natural trivialization v of
T'S atinfinity defined by the cylindrical coordinates (s, #) € Z, and we can define
7 also over 9% such that the Maslov index ™ (T, T(9X)) vanishes. Then

f(TX) = x(2).

Now choose any trivialization ® of T;, over d% and define it at infinity to be the same
as 7. The combination of T and ® induces a trivialization of Homg (7%, T,,) over 9%
and at infinity, which we will also denote by ®. Then we can apply Proposition A.2,
noting that the winding terms are zero by construction, and obtain

Z(du) = ¢ (Home(TX, To,)) + %uq’(Homc(Ti], T.). £5). (3.15)
To break this down further, note that the natural bundle isomorphism
TY ® Homc(TS, Tw)—T,, v® A Av,
sends T(0X) ® £7 to 47, thus
P (1) = ¢{(TE) + cf (Home(TE, T,)) = x(E) + ef (Home (T £, T,))),
and

p® (T k1) = p(TE, TOX)) + u®(Home(TE, To), £7)
= u®(Home (T2, T,), £1),
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$0 (3.15) implies
ef (T) = 2(2) — %uq’(n,ﬂ) + Z(du). (3.16)
We next choose a generalized normal bundle N,, — X, which we define to be
any rank n — 1 subbundle of ™7 W such that
u*TW =T, ® Ny,

and the following conditions are satisfied:

(1) On the cylindrical neighborhoods U for z € T'*, N,, matches the hyperplane
distributions &4, and thus extends to infinity as Ny |5, = &+|,,.

(2) For z € 0%, there is always a real (n — 1)-dimensional intersection Zﬁ,v =
(Ny):; N Az, thus defining a totally real subbundle

EN - Nu|32

such that £ @ N = A.

3.4. Splitting the linearization. Thesplittingu™T W = T,,& N, defines projection
maps 77 € I'(Homc(u™T W, T,))) and 7y € T'(Home (u*T W, N, )), both of which
are smooth and satisfy exponential decay conditions due to the asymptotic behavior
of u. It follows that these define bounded linear projection operators

et TW) @ Vi @ Xr 2o WP (T @ v
WPt TW) @ Vr @ Xr 7 WP (V) @ Xr.

where VrT C T'(T,,) is the isomorphic image of VFE C T(T'E) under the map
du: T'(TY) — I'(T,), v — Tu o v, and without loss of generality Xt € ['(N,).
There is thus a Banach space splitting

WP TW) @ Ve @ Xt = (WP (L) @ V) @ (WP (W) @ Xr),
and a similar splitting
L? Home (TS, u*TW)) = L3 (Home (T, T)) & LP? (Home(TE, Ny)),
so that with respect to these splittings, the operator
Dy: Wi W*TW) @ Vr @ Xt — LPS (Home (TS, u*TW))

can be written in matrix form as

DI DT
DM = DTN DN .
u u
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It is trivial to show that
1,p.8 e — :
D WP (L) e Vi — L7 (Home (TS, Ty))

and
DY : wiP (V) ® Xr — L? (Home (TE, Ny)

cach satisfy the appropriate Leibnitz rule for a Cauchy—Riemann type operator. The
former is asymptotic at each puncture z € I'* to the degenerate asymptotic operator
—Jy % on a trivial complex line bundle; removing the exponential weight as in §2.1,

this operator becomes —.J; % =+ §, giving Conley—Zehnder index F 1 with respect to
the natural trivialization t. Thus the restriction of D.I" to W;T’p - (T,) has index

2(E) + 268 (T) + p® (T £1) —#T
and adding the dimension of VFT we find

ind(D,) = x(X) + 2¢; (Tu) + n® (Tu, £1) +#T
= 3x(X) + #I + 2Z(du) (3.17)
= dim Aut(2, j) — dim T (2) + 2Z(du),
where the second line follows from (3.16).
We call DL{V the normal Cauchy—Riemann operator atu. Itis also Fredholm; from

the asymptotic identification of N,, with £ along orbits, we see that Div is asymptotic
to A, at each puncture z € I'. We can use (3.16) to relate its index to ind(u;c).

Abbreviate uly (yr £er) = X ert & (V2 + €)= X e 148 (vz —¢2). Then
removing the exponential weights as in §2.1, we apply the Riemann—Roch formula

(2.1) and repeat the calculation in (3.11) to find

ind(DY) = (1 — () + 2P (V) + B (N, £V)

+ Z u&(Az +8)— Z ey (Az —8) + dim Xr
zel't zel'™

= (n — Dx(X) + 2eF (V) + 1 Now V) + & (yr £ ¢2)
= (n = D(X) +2[ef W TW) — ¢ (T)]
+ [P @ TW, A) = pu® (T £1)] + n& (yr £ er)
= (n— Dy(X) +2cP@*TW) —23(3) = 2Z(du) + n®(u:¢)
= ind(u;¢) — 2Z(du).

(3.18)

The main goal for this section is the following:
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Theorem 3. Assume (X, j,I',u) € M is a non-constant curve with Morse—Bott
asymptotic orbits and T is any Teichmiiller slice through j. Then ker Ddj(j, u)
contains a subspace ker(G, + DI) C T;7 & %1711) /8 (Ty) & VIT of dimension
2Z(du) + dim Aut(X, j ) such that the normal projection induces a natural isomor-
phism

ker Dy (j,u)/ ker(G, + DuT) = kerDiV,

and

im Day(j,u) = LP (Homc (T, T,,)) @ im DY .
In particular, we have

dimker D3y (j, u) = 2Z(du) + dim Aut(3, j ) + dimker D,

dim coker Ddy(j, 1) = dim coker Div.
Corollary 3.13. (X, j, T, u) € ME is regular if and only if DY is surjective.

The reason for this result is essentially that the analysis of the map (y,v) +—
G,y + Dyv when v is a section of 73, can be reduced to Lemma 3.5, which one
can regard as an analytical statement about the smoothness of Teichmiiller space. To
achieve this reduction, we introduce certain special Banach spaces of sections: for
each zy € Crit(u), choose holomorphic coordinates and corresponding trivializations
of TX and T,, near zg so that the bundle map du: TX — T, locally takes the form
z >z, where k = ord(du; zo). Now for any function d : Crit(u) — Z, define the
Banach space

whkrd.d(Ty)

to consist of sections v that are of class Wlfc’p on ¥ \ Crit(u), class W*?-3 near
infinity, and such that near each zy € Crit(u), using the coordinates and trivialization

chosen above, the map
740y ()

is of class W* 7. Note that v(zo) may or may not be well defined: if d(zo) > 0 then v
is allowed to blow up at zg, e.g. it could be meromorphic with a pole of order < d(zp).
A suitable Banach space norm can be defined using weighting functions supported
near Crit(u ), and the subspace W]]f (é’ g)’d (T X) is defined by adding the usual boundary
condition; similarly we can define such spaces on the bundles T, Endc(7TY) and

Homge (7Y, T,). These are naturally isomorphic to our original Banach spaces if
d(z) = Ofor all z € Crit(u).
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The usefulness of this notion lies in the fact that if we choose d(z) := ord(du; z),
then the correspondence v — Tu o v defines Banach space isomorphisms

s 989d ; d_>u > ’8
Wris” (T2) = Wi (L),
d
VFE u; VFT7
.4 S
LP34 Endc(TY)) =5 L7 (Home(TX, T,)).

We will stick with this choice of d henceforward.

Using the fact that z* is holomorphic on the punctured disk for any k € Z, it is
easy to show that the natural linear Cauchy—Riemann operator on ['(7'3) defines a
bounded linear map

DI WS ATy @ VE — LP3 Endc(TY)).

The next result then follows from Lemma 3.8 by a density argument,
1,p.8.d : b3 _ h
Lemma 3.14. Forany v € Wi (TY) @ Vi, Dy(du(v)) = du(Djv).
Lemma 3.15. The operator
Ly: T;7 & (Wpda ' (TE) @ VE) — LP54 Endc (T))
(v.v) > jy + DJv

is surjective and has kernel of dimension

dimker(Ly) = 2Z(du) + dim Aut(Z, j).

Proof. We claim first that the result does not depend on the choice of Teichmiiller
slice 7. Indeed, in light of the splitting L?¢ (Endc (T X)) = im(DZ) @ T;7 and
the natural inclusion of this space in L?-%-¢ (Endc (T 3)), an argument analogous (o
that in the proof of Lemma 3.11 shows that L s has the same image as its natural

extension to L?® (Endc(TX)) @ (W;zg’z%’d (TX)® ViF). We are thus free to change
J: in particular, we shall use Lemma 3.4 to assume in the following thatall y € T; 7
vanish on some fixed neighborhood of Crit(u) U T".

The subscript d is meant to distinguish L ; and DE from the operators that

appeared in Lemma 3.5; we shall continue to denote the latter simply by
L: T;7 ® (Wb (TS) @ V{T) — L7 (Endc (TY)).

with D denoting the restriction to W]}Egg) (TY) @ V. The latter has index
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ind(D*) = dim Aut(X, j) — dim 7, whereas Lemma 3.14 implies that D> is con-
jugate to D,{ , hence

ind(DY) = ind(D) = dim Aut(2, j) —dim T + 2Z(du)
= ind(D %) + 2Z(du)

and ind(L,) = ind(L) 4+ 2Z(du) = 2Z(du) + dim Aut(Z, j). The result will
follow if we can show that dimker(L ) < ind(L) + 2Z(du).
To this end, define a 2Z(du)-dimensional subspace P C W]}Egg)’d(T ¥) as fol-

lows: P shall consist of smooth sections on X \ Crit(x), supported near Crit(u),
which in our chosen holomorphic trivializations near any given zg € Crit(u) take the

form
Cd(zg)

d(z0)

1 (655}
e demshs (3.19)
z  Z
forc; € Cifzp € int%, or ¢; € R if zyp € 9d%. Since every section in P is
holomorphic near Crit(u), there is an obvious extension of L,
L:T,7® (W;Egg)(m oV o P) > LPS(Ende(TS)),

which has ind(L") = ind(L) 4+ dim P = ind(L) + 2Z(du) = ind(L ;). Now since
L is surjective by Lemma 3.5, so is L', and thus dimker(L’) = ind(L) + 2Z(du).

To finish, we claim that ker(Ly) C ker(L’). Indeed, suppose y € T;7 and
v e Whpdd(TY) @ VF such that

Dy =—joy.

Then by our assumption on 7, y vanishes near Crit(x) and v is therefore a holo-
morphic section in this neighborhood, except possibly at points of Crit(u). Near
zp € Crit(u), the principal part of v in our holomorphic trivialization must have the
form of (3.19): in particular there cannot be an essential singularity or pole of order
higher than d(zo) since 220y (z) is of class WP, There is thus a unique section
in P that equals the principal part near Crit{(x ), and subtracting this off we obtain a

section in W]}Egg) (TS ® VE, showing that v belongs to the domain of L’. O

Proof of Theorem 3. Any v € T,, 8B can be decomposed uniquely as v = du(vs) +
vy where vy € W;Eg’z‘f)’d(TE) ® V7E and vy € W;]{,”"s (N,) @ Xr. Then for
y € T;7, Lemma 3.14 implies
Das(j,u)(y,v)y=JoTuoy+ du(D?vz) + D,iVTvN + D,ﬁVUN
= du (j oy + DEUE) + D;;VTUN + DLJ;VUN.
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The first term is Gy, y + D] du(vs), and this maps onto L#-* (Homg (TS, T,)) by
Lemma 3.15, with dim ker (G, + DT) = 2Z(du) +dim Aut(X, j). The desired de-
scription of ker Dy (j, u) andim Ddy (j, u) now follows easily from this expression
since DY T vy € LP3 (Home (TS, T)). O

Example 3.16. Though we have generally assumed n > 2, Theorem 3 also applies
to the case n = 1: then the normal bundle has rank zero and Ddy(j,u) = Gy +
DI 5o the theorem says that D (j,u) is a surjective operator of index 2Z (du) +
dlm Aut(E 7). One can apply this to understand the moduli space M (X, X') of
asymptotically cylindrical holomorphic maps

p: (X)) — (X"

between two punctured Riemann surfaces X \ I and X’ \ T, up to equivalence
by automorphisms on the domain. Such maps are equivalent to holomorphic maps
(X,7)— (¥, j)) thatsend T to I''. Combining Theorem 3 and Theorem 0, we see
that for any ¢ € M(X, 3), the connected component M(p(E >’} containing ¢ is a
smooth orbifold with

dim M, (3, X)) = 2Z(dy),

where of course the right hand side can be computed from the Riemann—Hurwitz
formula. This fact is classical, but it will be useful in the proof of Theorem 2 to view
it in our particular analytical setup.

Before restricting to the four-dimensional case, we mention one more simple
application of Theorem 3. It gives namely an upper bound on the algebraic number
of critical points in terms of the dimension of the kernel. For somewhere injective
curves in the generic case this is simply the index, and we obtain:

Corollary 3.17. For generic J, all somewhere injective curves u € M satisfy

2Z(du) < ind(u; ¢).

So for instance, if X = @ then somewhere injective curves of index 0 or 1 are
necessarily immersed for generic J. This is a simple version of the folk theorem that
generically, spaces of curves with at least a certain number of critical points have
positive codimension.

3.5. The transversality criterion in dimension four. We will now show that Theo-
rem 3 implies Theorem 1 in the case dim W = 4. The key is the fact that N,, — X is
now a complex line bundle, so DY will be subject to the constraints of Proposition 2.2.
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Recall from (1.2) the definition of the normal first Chern number cy (u;¢). An
easy exercise combining the index formula with the relations (2.3) between wind-
ing numbers and Conley—Zehnder indices yields the following alternative definition,
reminiscent of (2.4):

.1
en(uie) = e TW) — () + 5pfl’(m“TW, A)

+ Z Ol?()/z ‘|‘cz)_ Z af()/z_cz)-

zeC+ zel'—

(3.20)

Proposition 3.18. Ifu € M€ is not constant, then
c1 (N, £V AT £ er) = en(u;¢) — Z(du).

Proof. Choosing appropriate trivializations &, the relation follows by a simple cal-
culation using the definitions (3.20) and

1
e1(No, €Y, Ar £ er) = e (V) + S (N, £7)

I Z a®(A; +e;)— Z ai(Az_cz)

Z€F+ zel'™
and plugging in (3.16). O

To finish the proof of Theorem 1, we relate thv to a similar operator on a larger
weighted domain: for z € I, regard the numbers ¢, = +8 now as exponential
weights and, recalling the notation for weighted Sobolev spaces from §2, extend D,ﬁv
o a new operator

DY whPer(N,) — LPT (Home(T X, Ny)).

The extended operator is conjugate to an operator on non-weighted spaces asymptotic
to Ar£er,so(2.1) gives ind(ﬁfeV ) = ind(D}Y). Moreover, Proposition 2.2 together
with Proposition 3.18 above implies for 55 precisely the transversality criterion and
kernel bound that we would desire for D¥. The result then follows because the
domain of DY contains that of DY, hence ker DY  ker DV,

4. Application to spaces of embedded curves

As an application of the transversality theory, we shall in this section state and prove
a stronger version of Theorem 2. For preparation, we review in §4.1 some basic
facts from the intersection theory of asymptotically cylindrical holomorphic curves
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in four dimensions. This theory has been developed by R. Siefring [Sie08] for curves
with fixed asymptotic orbits, and is generalized to the Morse—Bott case in [SW]. We
expand on this in §4.2 by proving some useful formulas involving the intersection
theory for multiple covers of orbits and holomorphic curves. The proof of Theorem 2
then appears in §4.3.

For the remainder of this paper we consider only pseudoholomorphic curves with-
out boundary.

Notation. In the following, we will often abbreviate the notation by printing sum-
mations with £=-signs in their index sets, e.g.

Z Pz, 23)-

(Zl,ZQ)EF?:XFg:

The intended meaning is then literally,

Z F+(Zl,22)-|— Z F_(Zl,Zz).

(2'1,2'2)El“fr><1“;r (z1,z2)el] x5
Several variations on this scheme will appear.

4.1. Intersection theory for punctured holomorphic curves. This section will
consist only of definitions and statements; we refer to [Sie08], [SW] for all proofs.

Throughout the following, (W, J} is a 4-dimensional almost complex manifold
with cylindrical ends (M4, #1), whose vector fields X4 are Morse—Bott. Sup-
pose u: X — W and u’: %' — W are asymptotically cylindrical holomorphic
curves belonging to moduli spaces M and ME respectively for some choices ¢, ¢/
of asymptotic constraints. One of the goals of the intersection theory is to define an
integer 7 (u; ¢ | u’;¢’) that is invariant as » and #’ move continuously through M€
and M¢ respectively, and can be interpreted as an algebraic intersection count for the
two curves. One can show (see [Sie08]) that if # and u’ are geometrically distinct,
meaning they do not both cover the same somewhere injective curve, then their inter-
sections occur only within some compact subset, so the algebraic intersection count
u o u’ is indeed finite and nonnegative. It is not however homotopy invariant in gen-
eral, as intersections can run out to infinity under homotopies. There is nonetheless
a well defined notion of an asymptotic intersection number

isc(u;e|u’;e)eZ
which is also nonnegative, such that the sum

iwse|u'ie) i=ueu +inuie|u’;c) 4.1)
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depends only on the respective connected components M;, and (Mf;,. With some addi-
tional effort and (as yet unpublished) analysis, one can show that i (u#; ¢ | u’;¢/) =0
for generic somewhere injective curves and generic J: more precisely, the spaces
of curves for which i (u; ¢ | #’;€¢’) > 0 have positive codimension, and so u « u’
attains the maximal possible value i (u; ¢ | u’; ¢/) generically.

It is useful to phrase the definition of i(u;¢ | u’;¢’) in terms of the relative
intersection number # o 1/, where @ is an arbitrary choice of trivialization for &
along the asymptotic orbits of ¥ and u’. One computes u ep u’ by counting the
intersections of u” with a small perturbation of u that is offset in the ®-direction at
infinity: the resulting integer is homotopy invariant and depends on ® up to homotopy.
Then as shown in [Sie08], [SW], for each pair of orbits y, ¥’ and numbers €, ¢’ € R,
there are integers 2% (y + €, 7' + €’) such that

i(use|u';¢) = uepu' — Z Qi(yzicz,yzfj:c;,), (4.2)
(z,z/)eI Tx(I')T

with the dependence on @ canceling out on the right hand side. The actual definitions
of Q2(y + €,y’ + €) are as follows. We set Q3 (y + €,y +€) = 0if y and y’
are geomeltrically distinct orbits, and for any simply covered orbit y and m,n € N,
if ™ and y" denote the corresponding covers of y, let

Fa2(y™ +€) Fal(y" +¢€)
m ’ n

Q2"+ e,y 4 €) :mn-min{ } (4.3)
We shall use the abbreviated notation Q2 (y, y’) when ¢ = ¢/ = 0. Observe that
the right hand side of (4.2) makes sense even when u and u’ are not geometrically
distinct; in particular, we can use it to define i (u; ¢ | u; ¢), which is the appropriate
generalization of a “self-intersection number” for punctured holomorphic curves.

If u and u" are geometrically distinct, then we can directly define the asymptotic
contribution i (u; ¢ | ©’; ¢}, thus giving a more conceptually revealing definition of
i(u;c|u’;¢)via (4.1). Indeed, any pair of punctures for # and »’ that have the same
sign and indistinct orbits offers a potential for intersections to be “hidden at infinity”.
For two such punctures z € I'* and z’ € (I'")%, denote by

- O /
o (Uz U,

the relative asymptotic intersection: this is computed by restricting both curves to
suitably small cylindrical neighborhoods of the respective punctures and counting any
intersections that appear near infinity after perturbing u in the ®-direction. It turns
out that whenever both curves are J-holomorphic, 7 f; (uz.ul,) is a priori bounded

from below by Qi (Yz, vzr): thus the integer

ooz, ul) = i2 sl ) — Q2 (2. y2)
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1s nonnegative and independent of ®. Intuitively, it counts the potential intersections
of these two ends that can “emerge from infinity” under homotopies of u and u’
that fix their asymptotic orbits. Additional intersections may appear if either orbit
1s unconstrained and allowed to move in a Morse-Bott family: the number of these
is also nonnegative and turns out to depend only on the orbits and their constraints.
Thus for any orbits y, y” and numbers €, €’ € R, define

iy +ey +6)=Q20y) - Q2 + e,y +€).

We will interpret ichy (v, £ ¢z, y2r £ c.,) as the number of “extra” hidden intersections
not counted by foo(uz,u’,) that can emerge as these two ends move generically
according to their respective constraints, potentially shifting the asymptotic orbits.
The total asymptotic intersection number is then

io(use|u’;e) = Z [foo (uz,uly) + iZa(y: £ ez, yr )] @4
(z,z2)el T (=

Each individual term in this sum is nonnegative, and can be expected to vanish under
generic perturbations of u and u’ as “potential” intersections become real.

Ifu: ¥ — Wissomewhere injective, werecall from [MW95] that v admits alocal
description near any critical point allowing one to define a nonnegative singularity
index 5(u): it gives an algebraic count of self-intersections u#(z) = u(z’) for z #£ 2’
after making local perturbations so that ¥ becomes immersed. As shown in [Sie08],
this still makes sense in the punctured case because v is necessarily embedded outside
of some compact subset: then §(u) > 0, with equality if and only if u is embedded.
It is however possible for self-intersections to escape to infinity under homotopies,
thus &(u) is not homotopy invariant, but as with the intersection number, one can add
a nonnegative asymptotic singularity index §(u; ¢) so that the sum

sing(u; ¢) := §(u) + oo (u; ) 4.5)

depends only on the connected component M¢,, and equals §(u) generically but not
always. The condition sing(u;¢) = 0 is then necessary and sufficient so that all
somewhere injective curves in M}, should be embedded for generic J; note that one
still may have u embedded if sing(u; ¢) > 0, but then generic¢ curves close to v will
not be. The asymptotic contribution is a sum of the form

2800(“"; C) = Z [iOO(u29 sz) + il\:/l[:]g()’z + ¢ Yz + cz’)]
z#z’el'E

2 [260ou) + 2855 vz £ €2)].

zel'T

(4.6)

in which every term is nonnegative if u is J-holomorphic. We interpret 8o, (u ) as
the number of self-intersections near the puncture z that may emerge from infinity
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under generic homotopies fixing the orbit y,; this can happen if y, is multiply cov-
ered, as distinct branches of the cylinder approaching y, run into each other under
perturbation. Define

2800 (i) = iQ (uz uz) — Q2 (v2),

where Q2 (y) € Z is the “self-intersection analogue” of 2 (y, '), giving a different
theoretical minimum for ¢ ;‘; (u 5, u,) since the two ends are identical. To write it down
explicitly for the k-fold cover of a simple orbit y, choose any nontrivial eigenfunction
ex of A x whose winding about y¥ equals oa$ (¥%), and note that its covering number
cov(ex) € N depends on k and ag(yk) but not on the choice ex (cf. Lemma 4.2).
Thus we denote

cov (¥F) 1= coves),

and then define
Q25 = Fk — D2 (X)) + [cove (5 — 1] 4.7

Similarly, 835 (v & ¢;) counts further self-intersections that may emerge if y;
is allowed to move in a Morse—Bott family. This does not happen if every orbit
in the family has the same minimal period, but if y, converges to an orbit with
smaller minimal period (and thus higher covering number), the existence of additional
branches can hide extra intersections at infinity. The following characterization of
Morse—Bott manifolds will be useful.

Proposition 4.1. If M is a 3-manifold with a Morse—Bott vector field X, then every
Morse—Bott submanifold P C M can be described as follows. There exists a number
T > 0 such that all but a discrete set of orbits in P have minimal period t; we shall
call these generic orbits. The other orbits will be called exceptional: any such orbit
with period t is an m-fold cover of a simply covered orbit y for some m > 2 (called
the isotropy), and y* is nondegenerate for all k € {1,...,m — 1}. The isotropy of
an exceptional orbit is always 2 if dim P = 2.

Now, define 5%43 (y £8) = 0if 8§ > 0; recall this case is associated with a
constraint that fixes y, thus there can be no “extra” self-intersections appearing due
to Morse—Bott considerations. The definition is as follows if § < 0: given an orbit y,
set ye = y if it is nondegenerate, otherwise let v denote any nearby generic orbit in
the same Morse—Bott family as y. If y, is simply covered, k € N, and y has isotropy
m € N, then set

2855 (vF £ 8) = k(m — e (vF) + cove (F) —covz (F).  @8)

where vx(y) € {0, 1} is defined in (3.4). Observe that the two covering terms refer
to homotopic eigenfunctions e of 4« and e¢ of Ayéf, s0 1if e, 1s an n-fold cover then
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e is as well, hence cov(y¥) = cov;(yf ). The inequality may sometimes be strict,
because e is attached to a km-covered orbit, while the orbit of e, is only k-covered.
In any case, clearly 8, (y* & 8) > 0 in general, and it vanishes whenever y is a
generic orbit.

For the curve u € M€, choose for each z € I a generic perturbation y; of the
orbit y;, setting y: = y; if either y, is nondegenerate or z € I'c. Then let

coveo(yrie) = Y [cov(yf) —1],

zel*

and
covmp (yr;e) = Y [cov(ys) — 1] - ve(ys),

+
ZGFU

with cov(y) denoting the covering number of y£.

Theorem (Adjunction formula [Sie08], [SW]). For any somewhere injective curve
u e M

i{u;e | u;e) = 2sing(u; ¢) + ey (u;€) + covee (vr: €) + covyp(yr; e).

4.2. Some covering relations. It will be useful to have formulas relating the inter-
section invariants of holomorphic curves and their multiple covers. A prerequisite for
this is to have corresponding covering formulas for periodic orbits, so to start with, as-
sume M is a 3-manifold with stable Hamiltonian structure # = (X, &, w, J). Given
an orbit y, we shall denote the corresponding asymptotic operator by 4, and the
k-fold cover of y by y*. Thenif A,e = Ae, the eigenfunction has a k-fold cover e*

such that A4« ek = kAek. In general, we say that an eigenfunction f of Ayrisa

k-fold cover if there exists an eigenfunction e of A, such that f = e

In the following, whenever a trivialization ¢ along an orbit y appears, we will use
the same notation ¢ to denote the resulting induced trivializations along all covers
of y.

Lemma 4.2 ([Wena], Lemma 3.5). Suppose ® is a trivialization along y. Then a
nontrivial eigenfunction e of A« is a k-fold cover if and only if wind®(e) € kZ.

Lemmad.3. Suppose y is aperiodic orbitof X ande € R. If A, +€ isnondegenerate
and p(y + €) = O, then A x + ke is nondegenerate and p(y* + ke) = 0 for all
k e N.

Proof. It p(y +¢€) =0, then 6 (4, + €) contains a pair of neighboring eigenvalues
with opposite signs and eigenfunctions of the same winding number. The k-fold
covers of these are eigenfunctions of A, x +ke with the same properties, thus 4« +ke
1s nondegenerate and has even parity. O
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Remark 4.4. If € € R is sufficiently close but not equal to zero, then we may always
assume that for all & € N up to some arbitrarily large (but finite) bound, A« + €
is nondegenerate and a3 (y* + ke) = aP(y* + €). We can thus replace ke with e
in the statement above whenever € is assumed close to zero, and the same applies 0
several statements below.

Corollary 4.5. For any exceptional orbit in a Morse—Bott family, the underlying
simple orbit and all of its nondegenerate covers are odd.

Proposition 4.6. For any periodic orbity of X, k € N and € € R, there exist integers
g+(y +e:k) € {0,...,k — 1} such thar

a2 (Y* + ke) = kal(y + €) F gLy + €:k). (4.9)

Proof The integer g+ (y + €:k) := F [ (y* + €) — kal(y + €)] is well defined
after observing that all dependence on @ in the right hand side cancels, so it remains
only to show that this number is between 0 and k — 1. Consider first the case € = 0,
and choose a trivialization ®, along y such that 20 (y) = 0. Then there exists an
eigenfunction e_ of A, with negative eigenvalue and wind®° (e_) = 0, and another
eigenfunction e with nonnegative eigenvalue and wind %o (e1) = 1; moreover there
are no eigenfunctions with eigenvalue strictly between that of e_ and 0. Moving (o
the k-fold cover, we obtain eigenfunctions eX and e of A y& with

wind ®© (ef ) =0 eigenvalue < 0,

wind ®° (eﬁ) =k eigenvalue > 0,

and there is no k-fold covered eigenfunction with eigenvalue strictly between that
of ¢k and 0. Then by Lemma 4.2, this range of the spectrum of A,k contains no
eigenfunctions with winding k. Since the winding depends monotonically on the
eigenvalue, this implies @20 (y%) € {0, ...,k —1}. An analogous argument gives the
corresponding result for o, Finally if € # 0, the arguments above give the same
relation between the eigenfunctions of A, + € and A« + ke. O

In preparation for the next lemma, for any orbit y, numbers m,n,k € N and
3§, € € R, define the nonnegative integers

d/..m n
To 8 o €

f?i()/m—l-&)/n-i—e;k):kmn-mjn{ v ), Tor(” ¥ e)

m 7
© (4.10)
_TFoxr(y™ +8) qx(y" +8:k) Fax(y" +e)
— kmn - min — , .

m km n

Then a simple computation using the definitions of Qi (y+e, ¥y +€)andg(y+e; k)
implies:
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Lemma 4.7. For any simply covered orbity, m,n, k € N and §,¢ € R,
QL k8. y" +€) =k-QE(" + 8,7 + ) — Gy +8,7" + k).

Returning now to the context of a 4-manifold W with Morse—-Bott cylindrical ends
(My, F+), let us fix the following notation: u € M€ is a holomorphic curve with
domain (X \ T, j), (¥, j)and (X, j) are closed Riemann surfaces, and ¢ : (X, j) —
(X, j) is a holomorphic branched cover of degree deg(¢) € N. This restricts to a
branched cover of punctured surfaces

¢: Z\[ = Z\T,
where I" := ¢~ 1(I"), and there is a resulting holomorphic curve uc ¢: S\ T — W.
Its asymptotic orbits are related to those of u by

_ ke
Yz = Vo(2)

at each z € T, where k, := ord(dg;z) + 1, so that ¢ is k;-to-1 near z. The
constraints ¢ on I' can then be pulled back to constraints ¢*¢ on ' like so: for
any { € ' constrained to the orbit y;, define ¢*¢ by fixing the orbit yé‘ 7 at each

zep (&) Thenuogp € M.
Proposition 4.8. Foru € M¢ and the cover u o ¢ € M? ¢ defined above,

ey (uop;pte) =deglp) ey (uie) + Z(dg) + O,
where Q is a nonnegative integer. Specifically,
Q= Z q:F(V(p(z) == cqo(z);kz)'
zelt

Proof. Denote i := uop, € := p*cand observe thatforeach € T', 3 - 1@)k

k := deg(¢). Note also that by extending ¢ to the circle compactifications of X \ T
and X \ I', one can apply the Riemann—Hurwitz formula and obtain

Z(dg) = —x(E\T) + ky(E\T).
Then using (4.9) and Remark 4.4,
en(i:®) = cf @ TW) — xE\D) + Y Y 2R (rf £
tert zep—1(2)
= keP @ TW) —kx(E\T) + Z(d¢) +k Y ey +¢)

EETE

L Z Z :I:(OJ?F)()/?Z +t¢;)— kzai(yi + C;))

telt zep™1(2)
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—k-en:0) + ZUA@) + Y g3 Vp(x) £ Cpinike). O
zel't

Proposition 4.9. For the cover u o ¢ € M? ¢ as in Proposition 4.8 and any other
/
curve v € M,

i(uop,p*e|v:e) > deg(p)-i(use|v;e').

Proof. Again denote k := deg(p), k, := ord(d¢;z)+ 1 € N foreachz € T,  :=
u o @ and € := ¢™c¢. The relative intersection number satisfies ¢ ep v = k(u ¢ v).
Writing the puncture set of v as ', we apply Lemma 4.7 with Remark 4.4 in mind
and find

(¢ |vie) =il e v— > Q% (y, £¢,, v £¢l)
(z.z)el T (It

=k -(uegpv)— Z ( Z Qi(%z ==y PN :I:c/z'))

@.2)ertx(Mt  zep=1(@)

—k-en)— > (X [0l ey 2
&, zNeTEx (ML zee~1(D)

—Gi(ye £ e,y £ kz)])

—k-(uepv)—k > Q2(ye £z |y £€5)
(& z)eltx (@t

+ Z q~:|: (V(P(Z) + Co(z) | Yz + C/Z/ | kz)
(z,z2/)eTEx(IHt

:k-i(u;cl U;C/)—l— Z Cji(y(p(z):l:é(p(z) | yzrzlzcg./ | kz).
(z,z)elT T (T

The last term is nonnegative. O

Definition 4.10. For a given set of punctures I', the set of all choices of asymptotic
constraints on I' admits a partial order defined as follows. We say ¢~ < ¢ if forevery
z € [ at which the asymptotic orbit y; is constrained by ¢, it is also constrained by
¢t to the same orbit.

Observe that if ¢~ < ¢+, then Mt C M¢ andc¢, < ¢/ foreachz € T'. One
expects in general that weaker constraints should lead to larger intersection numbers,
as intersections can more easily emerge from infinity under more general homotopies.
Indeed, using ¢, < ¢ together with the fact that a$ (y + €) always has monotone
decreasing dependence on €, we easily derive the following:
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Proposition 4.11. If¢~ < ¢t andu < M°+, then
en(u;€7) = en(useh).
Moreover, for any other curve v € M,
i(u;e” |v;e) > i(u;c"' | v;e).

4.3. Multiply covered limits are immersed. We shall now state and prove a para-
metrized version of Theorem 2.

Definition 4.12. We will say that u € M€ is a stable, nicely embedded curve (with
respect to the constraints ¢) if it 18 somewhere injective and satisfies the following
relations:

(1) i(u;ce|u;e) <0,
(2) ind(u;¢) = 0,
(3) ind(u;¢) > cy(u;e).

Before going further, let us consider the properties of such curves and the moti-
vation for the definition. Observe first that the combination of ind(u; ¢} > 0 and the
relation

2en(u;e) = ind(u;¢) — 2 + 2g 4+ #Tp(c) (4.11)

gives the lower bound cy (u;¢) = —1. Then the adjunction formula together with
i(u;c| u;e) < 0implies sing(u; ¢) = 0, so every somewhere injective curve in M,
is embedded. We can also deduce from the adjunction formula that ¢y (v;¢) < 0,
and then (4.11) implies ind(x;¢) < 2. The index 1 and 2 cases are of particular
interest: since #['g(c) and ind(u; ¢) always have the same parity due to the index
formula, it follows from (4.11) that curves of index 1 or 2 satisfying our condi-
tions have cy (u;¢) = 0 and thus 7 (u;¢ | u;¢) = 0. The transversality criterion
ind(u; ¢) > cy(u; ¢) is clearly satisfied, and thus u lives in a 1 or 2-dimensional fam-
ily of embedded curves that never intersect each other. These are precisely the curves
that appear in J-holomorphic foliations of W, or in the case where W is a symplecti-
zation R x M, the finite energy foliations of Hofer, Wysocki and Zehnder [HWZ03].
Isolated curves with ind(u; ¢) = 0 can also occur in such foliations (surrounded by
families of larger index): we shall show for instance that stable, nicely embedded
index O curves appear as the underlying somewhere injective curves when families
of larger index degenerate to multiple covers.

It will be useful to note that due to (4.11), all stable nicely embedded curves also
have the following properties:

() g =0,
(2) #I'o(¢) = 1 if ind(u; ¢) = 1, and otherwise #['¢(¢) = 0.
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In the cases ind(u;¢) = 1 or 2, we have observed that ¢y (#;¢) = O and thus the
adjunction formula also implies covo(yr;¢) = covyp(yr;e) = 0. We will use this
shortly to prove the following consequence for the unique even puncture z € 'p{c)
in the index 1 case:

Proposition 4.13. Ifu € M€ is a stable, nicely embedded curve with ind(u; ¢) = 1,
then the unique even puncture z € Fg': (¢) satisfies one of the following:

(1) y; is nondegenerate and even,

(2) y; belongs to a 2-dimensional Morse—Bott manifold, and v=(y;) = 0 if and
onlyifz € I'c.

Moreover, y; is either simply covered, or is doubly covered such that the underlying
simple orbit is nondegenerate and odd.

Definition 4.14. Adapting some terminology from Symplectic Field Theory [EGHO00],
we will call z € I'F a bad punctureif z € Ty(¢) and y, = y? for some nondegenerate
odd orbit y.

Remark 4.15. In this terminology, Proposition 4.13 says that the unique even punc-
ture has an orbit of covering number 1 or 2, and is bad in the latter case. In SFT
of course, “bad” also means “to be ignored”: moduli spaces of curves with such
punctures cannot be oriented, but they also need not be counted in constructing the
algebra of the theory.

This is enough preparation to state the strong version of Theorem 2. In the
following, we use expressions such as “for generic J...” or “.J is generic” to mean
more precisely: “there exists a Baire subset § C Jo (W, H4, #_) such that the
following is true if J € ¢.” Similarly, “for generic homotopies...” means that there
exists a Baire subset in the space of smooth homotopies in (W, H 1, #_) for which
the statement is true.

Theorem 4. Assume {J:}re[o,1] is a@ smooth 1-parameter family of almost complex
structures in $ o, (W, H4, H_) such that either

(1) the homotopy t — J is generic, or
(2) Jr = J isindependent of T and is generic.

Suppose 1, — 15 € [0, 1] and u,, : Y > Wisa sequence of asymptotically cylin-
drical J,-holomorphic curves, which are stable and nicely embedded with respect
to some fixed asymplotic constraints ¢ and converge lo a smooth Jr__-holomorphic
curve u: ¥ — W. Then:

e Ifind(u;¢) = Oorind(u;c) = 1 with y, simply covered for the unique even
puncture z € ['o(¢), then u is a stable, nicely embedded curve.
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» Ifind(u;¢) = 1 and the unique even puncture z € I'y(¢) is bad (with y, doubly
covered), or ind(u; ¢) = 2, then u is either a stable, nicely embedded curve or
an unbranched multiple cover of a stable, nicely embedded index O curve.

In all cases, u is regular.

Note that since sing(u; ¢) = 0 for all stable, nicely embedded curves, the Morse—
Bott contribution 83, (y;) also vanishes at each puncture. Plugging in (4.8) leads
immediately to the following consequence:

Lemma 4.16. For any stable, nicely embedded curve u, if z € F[j]: is an uncon-
strained puncture with a degenerate orbit y, which is exceptional in the sense of
Proposition 4.1, then v¢(y;) = 0 and covx(y;) = covx(y;).

Proof of Proposition 4.13. The first alternative follows easily from the formula
ply: £¢;) = oaj‘: (v: + ;) —a®(y; £ ¢.) and the definition of vx(y,). We have
also covx(ys) = 1 and [cov(ys) — 1] - vx(y;) = O, implying the same statements
for y; due to Lemma 4.16.

If y, is nondegenerate, we claim now that it cannot be a multiple cover of any
even orbit y’. Otherwise there are eigenfunctions e4 of A, with identical winding
numbers and eigenvalues of opposite sign, so the corresponding covers give a pair of
neighboring eigenfunctions in the spectrum of A ,_; their eigenvalues are therefore the
largest negative and smallest positive elements of o (A4, ), implying covx(y;) > 1,
a contradiction. This leaves two possibilities for the simply covered orbit underlying
yz: it is either even (and thus is y; itself) or is odd but hyperbolic, in which case y;
can only be its double cover.

In the Morse—Bott case, suppose first that v¢(y;) = 0. Then any section whose
covering number is counted by covs (5 ) has the same winding and hence the same
covering number as a section in ker 4 ¢, thus also the same covering number as
ys itself. We conclude that y5 is simply covered, so either y; is as well or it is an
exceptional orbit with isotropy 2 as described in Proposition 4.1. The same result
follows if v=(y;) = 1 because [cov(yz) — 1] - vx(y2). O

In the proof of Theorem 4, we shall need the following small variation on the
usual implicit function theorem:

Lemma 4.17. Suppose f: X — Y is a smooth Fredholm map between Banach
spaces with f(0) = 0, and Q C X is a smooth finite dimensional submanifold of X
that contains 0, is contained in { ~1(0) and satisfies

dimker df(0) = dim Q.

Then Q also contains a neighborhoodof 0 in f ~1(0); in particular this neighborhood
is a smooth manifold of dimension dimker df(0).
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Proof. Let V. = imdf(0) C Y and choose a linear projection map ny: Y — V
along some closed complement. Then 7y o f: X — V is also Fredholm and is
regular at 0, so the implicit function theorem gives (7 o )~ 1(0) near O the structure
of a smooth manifold of dimension dimker df(0). Now

0 C f7H0) C (v o £)7HO),

where the spaces on the left and right are manifolds of the same dimension contain-
ing 0; the result follows. O

To every connected component of the moduli space M€, one can associate the
data (¥, T, Pr), where X \ T is the domain of any curve in the component (well
defined up to diffeomorphism) and Pr is the collection of orbits and/or Morse-Bott
submanifolds { P, }.cr that determine the asymptotic behavior of such a curve. Let
us introduce the notation

M(Z, T, Pr) C M€

to indicate the union of all connected components of M€ that have this particular
domain and asymptotic behavior.

Lemma 4.18. For any component M(%, T, Pr) C M, there exists a finite set €
containing tuples (X', T, Pr+,¢') such that the following is true: ifu = vog €
M(X, T, Pr) is a multiple cover and v is the underlying somewhere injective curve,
then there exists (X', T, Pr/,¢') € € such that v € M(X', T, Pr) C M and
¢ < @*¢ in the sense of Definition 4.10.

Proof. The Riemann—Hurwitz formula constrains the genus of X’ to be less than or
equal to that of X, allowing only finitely many different closed surfaces. Having
chosen X, the relation y, = yiffz) forz e ' and k; := ord(de;z) + 1 allows k; to
vary between 1 and cov(y. ), thus giving a finite range of choices for each puncture.
After making this choice, we can also decide which punctures z, z’ € I' might have
the same image under @: this is allowed only when P, and P;- belong to the same
Morse—Bott manifold, and again presents a finite range of choices. The number of
punctures I' and their asymptotic limits P are uniquely determined by this choice.
Finally, the constraints ¢’ can be defined as follows: for any constrained z € T,
define ¢ := ¢(z) to be a constrained puncture, fixed at the unique orbit y¢ such that

Py = yé‘z. Any puncture { € '/ not touched by this algorithm will be considered
unconstrained. By construction now, ¢ < ¢*¢’. O

Proof of Theorem 4. We will carry out the proof in several steps assuming {J; }¢[o,1]
is a generic homotopy; the proof for a fixed generic J is the same but slightly simpler
in a few details.
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If u is somewhere injective there’s nothing to prove, so assume v = v o g for a
somewhere injective curve v: 3’ — W and a holomorphic branched cover ¢: & —
¥’ of degree k > 2. By Lemma 4.18, the domain of v is one out of a finite set of
choices and satisfies constraints ¢’ with ¢ < ¢*¢’. For each such choice, there exists
a generic set of homotopies {J;} such that we can assume ind(v;¢’) > —1, and the
intersection of all these generic sets is also generic, hence the genericity assumption
implies ind(v; ¢) = —1. By (4.11) then, ey (v; ¢’y > —1.

Step 1. We show that cy(v; ¢} = —1. Combining Proposition 4.8 and Proposi-
tion 4.11 yields

0> cn(use) > eny(usp™e’) =key(vie) + Z(dg) + O,

so the only other alternative is ¢y (v; ¢’} = 0, in which case cy (u;¢) = Z(dy¢) =
(@ = 0. Then all critical points of ¢: ¥ — ¥’ are at punctures, and the Riemann—
Hurwitz formula gives 2k — 2 of them (counting multiplicity) since both ¥ and ¥’
necessarily have genus zero, Denote k, = ord{dy¢;z)+ 1 € N foreachz € T'. Now
Q = 0 implies that for each z € T'%,if & = ¢(2),

ai()’z + (‘P*C,)z) = ai(ygz + ((P*c/)z) = kzai(yé + cé—)’

so depending on the constraints, we have either a$ (yz) € k;Z or oz$ (y:F8) ek,Z,
the latter only if { € I'j;, which implies z € T'y. In either case, Lemma 4.2 then
implies that a certain eigenfunction ¢ of 4,, is a k;-fold cover. If it is the first
case, then covx(y;) > k;, and this equals covx(y$) by Lemma 4.16. In the second
case, we have cov(y;) > k; and e € ker4,_. If vx(y;) = 0, then wind® (e) =
a$(yz) € k;Z, so Lemmas 4.2 and 4.16 again imply covx(yf) = covx(y;) >
k.. Otherwise vx(y,;) = 1, so Lemma 4.16 implies that y, is generic and thus
ve(y:) - [cov(yze) — 1] = vx(y;) -[cov(y;) — 1] = k, — 1. Putting all of these cases
together and summing over z € I', we find

COVoo(yri€) + Covmp(yrie) = > (k; — 1) =2k —2> 2.

zel

Thus for large n, i(up; ¢ | Ui e) = 2sing(ua;¢) + ey (Un;¢) + covao(yr;e) +
covma (yr; ¢) > 2, a contradiction.

In light of this result and (4.11), we have either ind(v; ¢) = 0 with all punctures
odd or ind(v; ¢’) = —1 with exactly one even puncture.

Step 2. Claim ind(v:¢’) = 0. If not, then ind(v;¢’) = —1 and #T'((¢/) = 1,
and since covers of even orbits are always even (Lemma 4.3), #Is(¢) > 1, implying
ind(u#;¢) = 1. In this case u also has exactly one even puncture z € [g(c), so
Y = yé‘ with ¢ := ¢(z) € ['[(¢/). There are now three cases to consider:

(1) If y¢ is nondegenerate, then so is y, and its extremal eigenfunctions are the
k-fold covers of those of y¢, giving covy(ys) > k.
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(2) If y¢ is Morse—Bott with vx(yz) = 0, then the extremal eigenfunction of a
generic perturbation yg has the same winding and thus same covering number
as a section in ker A ves and the same is true for the k-fold cover. Moreover, the
Morse—Bott family containing y; is at least k-fold covered, which implies the
same for sections in ker A ,¢. So again, covx(y;) = cov(y;) = k.

(3) If ve(y¢) = 1, then Lemma 4.16 implies y; is generic, so we can take y§ = y;
without loss of generality and conclude [cov(ys) — 1] - vx(y;) = k.

The conclusion from all of these cases is that cove (yr; €) + covmp(yr:c) = k—1 >
1, and since cy (u; ¢) = 0 for the index 1 case, a contradiction arises again from the
adjunction formula: 7 (uy; ¢ | up; ) = 28ing(uy; €) + ey (Un;€) + covao(yr;e) +
covma(yr:e) > 1.

Step 3. Since 0 = ind(v; ¢') > ey (v;¢') = —1, it now follows immediately from
Proposition 4.9 and Proposition 4.11 that v 1s a stable, nicely embedded curve, as

O>i(u;e|uie) >i(u ¢ | uip*e) = k% i(v;¢ | vie).

Step 4. If ind(u; ¢) = 1, then its unique even orbit cannot be simply covered since
v has only odd orbits. Thus the even orbit must be a doubly covered orbit at a bad
puncture.

Step 5. We claim u is immersed and has ind(x; ¢) > 0. Suppose not, i.e. that
either Z(du) > O orind(u;¢) = 0. Then ind(u; ¢} < 2Z(du), so Theorem 1 gives

2Z(du) < dimker (D3, (j.u)/aut(X, j))

(4.12)
< 2Z(du) + K(ey (s €) — Z(du), #To(c)) = 2Z(du)

since cy(u;¢) — Z(du) < 0. Extending the usual bundle on 7 x B to allow
parametrized J, we can now consider a nonlinear operator

[0, 1]xT xB—E&, (r.j u)y—ds (j u).

Since v is embedded, every critical point of v arises as a branch point of ¢ : Y -3,
thus Z(du) = Z(d ), and (4.12) now implies

dimker Dd(1o0, j, u) < 2Z{d¢) + dim Aut(Z, j) + 1. (4.13)

To apply Lemma 4.17, we shall now find a smooth manifold of precisely this di-
mension that is contained in 9~1(0). The key is to look at the space of holomorphic
branched covers ¥ — Y’ close to ¢. Observe that since v is embedded and sat-
isfies the transversality criterion 0 = ind(v;¢’) > cy(v;¢’) = —1, for 7 close to
Toe We obtain from the implicit function theorem a smooth 1-parameter family of
asymptotically cylindrical pseudoholomorphic maps

UT: (2,7 jT) — (W7 JT)
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satisfying the constraints ¢/, with v, = v. The holomorphic maps from X to (X, j)
can then be identified with the zero-set of a section

Iz [0.1]x T x BY > €Y, (1.j.¢) > Te' + jeoT¢ o',

and by the remarks in Example 3.16, a neighborhood of ¢ in 55,1 (0} is a smooth
manifold of dimension 2Z(¢) + Aut(X, j) + 1. Now for (r, j/,¢') € 55,1 (0), we
have (z, j/,v¢ o ¢') € d71(0), thus embedding d3!(0) as a smooth submanifold
of dimension 2Z(d¢) + dim Aut(X, j) + 1 in 971(0). It follows that (4.13) is an
equality, and Lemma 4.17 now implies that every element of 9~ (0) near (0. j. )
belongs to this submanifold; this is a contradiction, as it implies that for large n, u,
must also be a multiple cover.

Step 6. Since we now know that u is immersed, it is immediate from Theorem 1
that u is regular. O

Corollary 4.19. For generic J, ifu € M€ isastable, nicely embedded J -holomorphic
curve then M, is a smooth orbifold of dimension ind(u; ¢) with only isolated singu-
larities. Moreover, the images of any two curves in M are either identical or disjoint,
and they are all stable and nicely embedded except for a discrete set of unbranched
multiple covers of embedded curves.

Proof. The statement about the images follows from positivity of intersections and the
condition i (¥; ¢ | u; ¢) < 0. The only remaining part not immediate from Theorem 4
is that the multiple covers are isolated; this is related to the fact that the orbifold
singularities must be isolated for orientation reasons (see Remark 4.21 below), but
does not follow fromit. So, we claim that for any multiple cover u = vog arising as a
limit in the theorem, every other curve close to u 1s somewhere injective. Here we can
assume ind{u; ¢} is 1 or 2, so cy(U;€) = covee(yr: €} = covmp(yr;c) = 0. Now
note that Theorem 3 and the implicit function theorem give a natural isomorphism
Ty M = ker DN since u is immersed, and it will thus suffice to show that nontrivial
sections 1 € ker DMN C I'(N,) are not multiply covered. Otherwise, using the
natural identification N, = ¢*N,,, there exists a nonzero 7 € ker DY and a section
n € I'(N,) such that = 5’ o . We know that 5 is zero free (also at infinity), since
using (2.7), Proposition 3.18 and the usual identification of DY with an operator on
non-weighted spaces,

ZN) + Zoo(n) = c1(Ny, €y, Ar £ er) = cy(u;¢) = 0.

This implies that the winding of 7 near each puncture z € I'* attains the extremal
value ozf; (y; = ¢;). But this is impossible if 7 = 7’ o ¢: indeed, the fact that
¢: X — ¥/ is immersed but both surfaces have genus zero implies that there exists
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a puncture z € I" at which ¢ has nontrivial branching order k, := ord(dy;z) > 1,
so the asymptotic winding Windg’ (n) of n near z satisfies

+wind? () < 2k 0 (ypr) £ ¢ ,)
= :I:oz;.q;()/z + (")) — 45 Vo) £ C:p(z)§ kz)
- iai()/z te)—gx(vee) £ c(/p(z); kz).

implying g+ (Y £ c(’p ()’ k.) = 0 and thus a$ (y: £¢;) € k,Z. Then repeating an
argument that is by now familiar from the proof of Theorem 4, we find a contradiction
in the form cove, (yr;¢) + covyp(yr:e) > 0. O

Remark 4.20. It is shown in [Wenb] that if u : Y — W is a stable nicely embedded
index 2 curve, then the nearby curves in M, foliate a neighborhood of u(X)in W.
Now suppose u is a multiply covered index 2 curve that is a limit of stable nicely
embedded curves. Then since u is immersed and T, M€ consists of zero-free sections
of its normal bundle, the same argument shows that the nearby curves in M}, again
foliate a neighborhood of 1(X). In this foliation, u(X) is an exceptional leaf, being
the embedded image of an isolated index O curve. An explicit example is constructed
below.

Remark 4.21. The fact that singularities in a 1-dimensional orbifold are isolated is
obvious, and in two dimensions it 1s true if the orbifold is oriented, as an oriented
orbifold can only have singularities of codimension at least two. By results in [BM04],
M,, does admit an orientation if u is a stable, nicely embedded curve of index 2, and
the same is true for index 1 if and only if the unique even puncture is not a “bad”
puncture. This excludes singularities in the index 1 case entirely unless the even
puncture is bad, and indeed, we have shown that multiple covers do not appear in
this case. These remarks are not quite enough to prove Corollary 4.19 however,
as in general there can be multiple covers with trivial automorphism groups, which
therefore do not cause singularities.

Example 4.22. We now consider a concrete situation in which nicely embedded
curves of index 2 are seen to converge to an isolated, unbranched multiple cover.
Identify S? with the extended complex plane and let

W = (8% x %)\ {(0,0). (00, 00), (1, D},

choosing the standard complex structure J = 7 @ 7. This can be regarded as a
manifold with three negative cylindrical ends asymptotic to the standard contact 3-
sphere, whose Reeb orbits are the fibers of the Hopf fibration. The asymptotics are
therefore Morse—Bott: there is a 2-dimensional family of closed orbits at each end.
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Now for { € C \ {0,—1, 1}, consider the 2-dimensional family of J-holomorphic
four-punctured spheres

Ug . Sz\{(), l,-l,o0} =W, zrH (23;2—_:_?1,22).

These are all proper and embedded, with asymptotic behavior as follows:
* At 0, ug is asymptotic to a fixed doubly covered orbit in the end (0,0).
» Atoc, ug is asymptotic to a fixed doubly covered orbit in the end (oc, 00).

* Atland —1, ug is asymptotic to an arbitrary (not fixed) simply covered orbit in
the end (1, 1).

One can use the setup we have described to show that the moduli space of embedded
holomorphic curves satisfying precisely these asymptotic constraints and representing
the same relative homology class is indeed a smooth 2-dimensional manifold: indeed,
ind(u;¢) = 2and i(u;¢ | u;¢) = cy(u;¢) = covee(yTi€) = covpp{yr;¢) = 0.
Now as ¢ — 0, the family converges to the curve uo(z) = (z*,z?) =: v(z?), an
unbranched double cover of the embedded 3-punctured sphere

v SZ\{O,I,oo}—> W, z (22,2),

and with the appropriate asymptotic constraints ¢ one can indeed show that
ind(v;¢’) = Oand i(v;¢' | v;¢’) = en(v;¢’) = —1. Observe that the images
of ug for ¢ near zero together with the image of v foliate a neighborhood of v in W.
Due to the ordering of the punctures, Aut(ug) is the trivial group, so the moduli space
remains a smooth manifold even with ug included. If we take the quotient of this
space by forgetting the order of the punctures, it becomes a smooth orbifold in which
g has isotropy group 7.

Remark 4.23. It is also interesting to see what happens to the family u; as { — £1
or { — oo: here it turns out that u; breaks into a J-holomorphic building (in the
sense of the SFT compactness theorem [BEH+03]). At { — oc in particular, the
building includes a component that is an unbranched multiple cover of index —2 over
a nicely embedded index O curve. It 1s work in progress by the author to generalize
Theorem 4 in light of SFT compaciness and show that such behavior is quite general:
indeed, that only unbranched multiple covers can arise in such limits, and that there
exists a well behaved gluing theory for buildings of this type.
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Appendix. Counting boundary zeros

In this appendix we define a %Z—Valued count of zeroes for sections of a complex
line bundle with totally real boundary condition, Let (E, J) — S be a topological
complex line bundle over a compact, connected and oriented surface with boundary.
Partition the boundary into two open and closed subsets dS = dpS U 91 S, either of
which may be empty. Now choose a totally real subbundle £ C E|y,s — oS, and
consider the space of all continuous sections ¢ : S — FE such that ¢(d¢S) C £ and
o # 0on dy.S. We will call such sections admissible. Suppose o is an admissible
section with a discrete zero set 0~1(0) C S. If zy € o~1(0) Nint S, then it is
standard to define the order of the zero ord(o; zp) as the winding number of ¢ over a
small loop around z,, computed in any local trivialization. The boundary condition
makes it possible to extend this definition to isolated zeros on dgS as well: for
zo € o 1(0) N 8ypS, choose coordinates identifying a neighborhood U of z, with
Dt ={zeC||z|] <land Imz > O}, such thatzp = Oand U N 3S = DT NR.
Choose also alocal trivialization over U thatidentifies £ with (DTNR)xR C Dt xC.
Then o is represented on this neighborhood by a continuous function f: DT — C,
satisfying the boundary condition f(Dt N R) C R. We can therefore extend f to

a continuous function fP: D — C on the full disk, satisfying f° () = fP(2).
The order ord(c; z5) is then the order of the isolated zero of £ P at 0, i.e. the winding
number of 2 for a small circle about 0. This definition does not depend on the
choices.

For an admissible section o with discrete zero set o~ 1(0), we now define the
algebraic count of zeros by

Z(o) = Z ord(o; z) + % Z ord(o; z).

zeo—1(DNint S zeo L (0N S

Proposition A.1. Suppose oy and o1 are admissible sections with isolated zeros, and
are homotopic through a family of admissible sections. Then Z(oy) = Z(o7).

Proof. This is clear if dy.S = @: then Z (o) is the Euler number of £ if 0,5 = #,
or more generally the homotopy invariant winding number about 91 S with respect to
any global trivialization.

We reduce the general case to this by using a doubling argument: define the
conjugate surface S¢ := S with the opposite orientation, and the conjugate bundle
(E€,JC) := (E,—J) — S€. Then we can glue S to S€ along 9S to define the
doubled surface S, and similarly form a bundle (E?, JP) — S P by gluing (E, J)
to (E€, J¢) via the unique complex bundle isomorphism E| s — E £ las that
restricts to the identity on £. Now 98P = 9;SP = 9,5 U 3;S¢. Any admissible
section o of E defines an admissible section o of EP, and the same statement
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applies to homotopies, thus it suffices to prove the following formula relating Z (o)
to Z{c Py

Ze®y= ) ordc”:z)

ze(eP)~1(0)

= Z Z ord(o; z) + Z ord(c; z)

zeo— LNt S zea—H{0)N3n S
=2Z(0).

This follows from two important facts which are easy to check: first, if z is a zero of
o inint S, its order is the same as that of the corresponding zero in S¢. Secondly,
if z is a boundary zero of o, then its order equals its order as an interior zero of o,

O

The doubling formula Z (o ?) = 2Z (o) which emerged from this proof is a useful
fact in itself; we shall apply it now to express Z (o) in terms of the relative first Chern
number of £ and the boundary Maslov index of the pair (|, s, £).

Proposition A.2. For any choice of trivialization ® along 95,
1 :
Z(o) = cX(E) + EM‘I’(E,ﬁ) + windj ¢(0).

Proof. Label the right hand side A (o) and observe that it does not depend on &
and depends on ¢ only up to homotopy through admissible sections. Moreover, it is
clear that Z(o) = 74 (0)if 39S = @, so it will suffice to prove the doubling formula
Z(0P) = 2Z(o). Since the orientations of both E€ and S€ are reversed, we have
Wiﬂd?ﬁ% 5 B7) =3 vvindg’1 ¢ (o) for the natural trivialization ®P induced by . We
claim also that 5

c2T(EPY = 2e8(E) 4+ n®(E. ),

which will prove the result. This can be reduced to the standard additivity of the
Maslov index under gluing. Construct a new surface S O S by gluing a disk to
each component of 915, and glue in trivial bundles along ® over these disks to
produce a new bundle (E,J) — S, such that E|s = E and c?(E) = c®(E).
Now 85 = 305, and 2¢P(E) + p®(E,£) is by definition the absolute Maslov
index (£, £). (Alternatively, one can define the latter as u®(E, £) where ® is any
trivialization along 35 that extends globally over S.) Now the gluing property for
w(E, L) gives
2u(E £ = M(ED) = Z6q (ED)

since SP is closed. But the latter is also equal to ZC?D (E b ), proving the claim.
O
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