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Automatic transversality and orbifolds of punctured holomorphic
curves in dimension four
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Abstract. We derive anumerical criterion for J -holomorphiccurves in 4-dimensional symplectic

cobordisms to achieve transversality without any genericity assumption. This generalizes
results of Hofer–Lizan–Sikorav [HLS97] and Ivashkovich–Shevchishin [IS99] to allow punctured

curves with boundary that generally need not be somewhere injective or immersed. As an

application, we combine this with the intersection theory of punctured holomorphic curves to
prove that certain geometrically natural moduli spaces are globally smooth orbifolds, consisting
generically of embedded curves, plus unbranched multiple covers that form isolated orbifold
singularities.
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1. Introduction

Applications of pseudoholomorphic curves in symplectic 4-manifolds and contact
3-manifolds often depend on the rather special transversality properties that exist in
this low-dimensional setting. Unlike the general situation, where the moduli space is
smooth only at somewhere injective curves and only for generic data, certain moduli
spaces in dimension 4 are smooth for all data as long as the right numerical criteriaare

satisfied. For example, suppose W; J/ is any almost complex 4-manifold, .†; j / is a

closed Riemann surface of genus g and uW .†; j/ W; J / is a pseudoholomorphic
curve. The following result was first mentioned by Gromov [Gro85], and later given
a complete proof by Hofer–Lizan–Sikorav:

Theorem ([HLS97]). If u is embedded and c1.u TW;J/ > 0, then the moduli
space of unparametrized pseudoholomorphic curves near u is a smooth manifold of
dimension 2c1.u TW; J/ C 2g 2.

Observe that the assumptions in the theorem do not require any data to be generic:
rather, the criterion c1.u TW/ > 0 implies regularity for uniquely 4-dimensional
reasons that are loosely related to positivity of intersections. The dimension of the
moduli space is then equal to its so-called virtual dimension, also called the index of
u, defined as ind.u/ D 2c1.u T W / C 2g 2. Thus c1.u T W / > 0 is equivalent
to the condition ind.u/ > 2g 2, which leads one to summarize results of this type
with the motto, “the moduli space is smooth if the index is sufficiently large.” Exactly
how large the index needs to be depends on the genus: this is the reason why almost
all applications of such results including the one in this paper) principally involve
curves of genus zero.

Versions of the theorem above for compact immersed holomorphic curves with
boundary were proved in [HLS97], andsimilar results for immersed punctured curves

in symplectizations of contact 3-manifolds also appeared in [HWZ99], [Wen05]. The
reasonfordealing with immersed curves in particularwas that one could then describe
a neighborhood of u in the moduli space using sections of its normal bundle and thus
reduce the linearization to the so-called normal Cauchy–Riemann operator. The key
fact about this operator is that its domain is a space of sections on a complex line
bundle, thus the zeroes of these sections can be counted and related to the same

topological invariants that appear in the index formula, giving rise to constraints on
the kernel and cokernel. A generalization for closed holomorphic curves with critical
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points was carried out in [IS99], where the normal bundle was replaced by a normal
sheaf.

In this paper, we establish a transversality criterion that generalizes all of the
above results, applying to arbitrary J -holomorphic curves with totally real boundary
and cylindrical ends in 4-dimensional symplectic cobordisms.

One of the advantages of this approach to transversality is that it applies to more
than just somewhere injective curves: in §4, we will describe a setting in which
our criterion, combined with some nontrivial intersection theory, implies that certain
moduli spaces are smooth orbifolds, which consist mostly of embedded holomorphic
curves but also have isolated singularities consisting of unbranched multiple covers
over embedded curves. These moduli spaces arise quite naturally in a geometric
setting: they are the building blocks of J-holomorphic foliations, cf. [HWZ03],
[Wen08].

1.1. The setting. Let n 2. In all of what follows, W;J / will denote a

2ndimensional almost complex manifold with noncompact cylindrical ends, which
approach .2n 1/-manifolds M equipped with stable Hamiltonian structures. We

now recall the precise definitions.
We use the term stable Hamiltonian structure to mean the collection of data

that were introduced in [BEH+03] as the appropriate setting for pseudoholomorphic
curves in cylindrical manifolds. Namely, such a structure H D ; X; !; J / on a

.2n 1/-manifold M consists of the following data:1

is a smooth cooriented hyperplane distribution on M
is a smooth closed 2-form on M which restricts to a symplectic structure on

the vector bundle M
X is a smooth vector field which is transverse to satisfies X; / 0, and
whose flow preserves

J is a smooth complex structure on the bundle M, compatible with in
the sense that ; J / defines a bundle metric

Note that, as a consequence of these definitions, the flow 't
X W M M of X also

preserves the symplectic structure j and the special 1-form associated to and

X by the conditions

X/ 1; ker ;
satisfies d X; / 0. The symplectization R M now admits a natural R-invariant
almost complex structure JQ, defined by the conditions

JQ@a D X; JQj D J
1The inclusion ofJ in thedata is somewhat nonstandardbut convenient for our purposes. The data ;X;!/

are equivalent to the definition of a framed Hamiltonian structure stated in [EKP06], with the exception that the

latter requires to be exact; here it need only be closed.
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where a denotes the coordinate on the R-factor and @a 2 T.R M/ is the
corresponding unit vector field.

Recall thata T -periodic orbit xW R M is nondegenerate if the linearized return
map d'TX x.0//j x.0/

does nothave 1 as an eigenvalue. More generally, a Morse–Bott

manifold of T -periodic orbits is a submanifold N M tangent to X such that 'T
X jN

is the identity, and for all p 2 N,

TpN D ker d'TX p/ 1 :

We will say that an orbit with period T is Morse–Bott if it is contained in a Morse–
Bott manifold of T -periodic orbits; note that this manifold could be a circle, meaning
the orbit is nondegenerate. Moreover, X itself is said to be Morse–Bott or
nondegenerate) if every periodic orbit of X is Morse–Bott or nondegenerate).

We now fix two closed .2n 1/-manifoldsM with stable Hamiltonian structures

H D ; X ; ; J / and associated data and JQ as well as an almost
complex 2n-manifold W; J/ which decomposes

W D E [M W0[MC EC

so that

W0 is a compact 2n-manifold with boundary @W0 D M tMC
E ; J/ Š 1; 0 M ; JQ / and EC; J/ Š OE0; 1/ MC;JQC/

Fix also a totally real submanifold L W
Near @E E the data H define natural symplectic forms C d.a /

which can be extended non-uniquely) over E Then given any symplectic form
onW0 that attaches smoothly to Cd.a / at @W0, we denote by J!.W; HC; H /
the space of almost complex structures J on W that are compatible with on W0
and satisfy the conditions above.2

We will consider pseudoholomorphic or J -holomorphic) curves

uW .†P ; j/ W; J /;

where †P D † n .†;j / is a compact connected Riemann surface with boundary,
int † is a finite set of interior punctures,3 and by definition u satisfies the

nonlinear Cauchy–Riemann equation Tu B j D J B Tu and boundary condition
u.@†/ L. We also will assume u is asymptotically cylindrical, which means the
following. Partition the punctures into positive and negative subsets

D C[ ;
2The symplectic form will play almost no role in anything that follows, but becomes important in applications,

e.g. it yields compactness results as in [BEH+03].
3For brevity we’re leaving out the case ofpunctures on the boundary, though this can presumably be handled

by similar methods.
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and at each z 2 choose a biholomorphic identification of a punctured neighborhood

of z with the half-cylinder Z where

ZC D OE0;1/ S1 and Z D 1; 0 S1:

Then writing u near the puncture in cylindrical coordinates s; t /, for jsj sufficiently
large, it satisfies an asymptotic formula of the form

u B '.s;t/ D exp T s;x.Tt// h.s; t/ 2 E :

HereT > 0 is a constant, x W R M is a T -periodic orbit of X the exponential
map is defined with respect to any R-invariant metric on R M h.s; t/ 2 x.T t/
goes to 0 uniformly in t as s 1and ' W Z Z is a smooth embedding such

that

'.s; t/ s C s0; t C t0/ 0

as s 1for some constants s0 2 R, t0 2 S1. We willdenote by z the T -periodic
orbit parametrized by x, and call it the asymptotic orbit of u at the puncture z. With
this asymptotic behavior in mind, it is convenient to think of .†P ;j / as a Riemann
surface with cylindrical ends, and we will sometimes refer to neighborhoods of the
punctures as ends of†P As is well known cf. [Hof93], [HWZ96]), the asymptotically
cylindrical holomorphic curves in W; J/ are precisely those which satisfy a certain
finite energy condition, though we will not need this fact here.

Denote byM WD M.J; L/ the moduli space of equivalence classes of asymptotically

cylindrical J -holomorphic curves in W with boundary on L; here an equivalence

class is defined by the data .†; j; ; u/ where is considered to be an ordered
set, and we define .†;j; ; u/ †0; j 0; 0; u0/ if there exists a biholomorphic
map ' W .†; j/ .†0; j0/ taking to 0 with the ordering preserved, such that

u D u0 B '. We shall often abuse notation and write u 2 M or .†; j; ; u/ 2 M
when we mean OE.†; j; ; u/ 2 M. The moduli space has a natural topology defined
by Cl1oc -convergence on †P and uniform convergence up to the ends. For any u 2 M,
denote byMu the connected component ofM containing u.

It is often interesting to consider subspaces ofMdefined by imposing constraints
on the asymptotic behavior at some of the punctures.

Definition 1.1. For a given punctured surface †P D † n C [ / let c denote a

choice of periodic orbit c
z in M for some subset of punctures z 2 We call c a

choice of asymptotic constraints,4 and refer to each puncture z for which c specifies
an orbit c

z as a constrained puncture.

4One can impose more stringent constraints as well, e.g. on the rate at which u converges to its asymptotic
orbits; such constraints are treated in [Wenb], [Wena]. Another possibility is to allow marked points that map to
specified points in the image, perhaps with cusps of prescribed order, as in [Bar00], [Fra05]. We omit all these

possibilities here for the sake of brevity.
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For any choice of domain †P and asymptotic constraints c, we can consider the
constrained moduli space

Mc M
consisting of curves uW †P W that approach the specified orbit c

z at each of the
constrained punctures z 2 and arbitrary orbits at the unconstrained punctures. The
constraints define another partition of

D C [ U

into the sets of constrained and unconstrained punctures respectively. The positive
and negative subsets within each of these will be denoted by C and U

If the asymptotic orbits of u are all Morse–Bott, then the so-called virtual dimension

ofMcu is given by the Fredholm index

1 u T W / C ˆ uIc/; 1.1)ind.uIc/ D n 3/ †P / C 2cˆ
1 u T W / is the relative first Chern number of u TW;J/ †P with respectwhere cˆ

to a suitable choice of trivialization ˆ along the ends and boundary, and ˆ uI c/ is
a sum of Conley–Zehnder indices of the asymptotic orbits and a Maslov index at the
boundary with respect toˆ; a precise definition will be given in §3.2.

As we shall review in more detail in §3, the nonlinear Cauchy–Riemann equation
can be expressed as a smooth section of a Banach space bundle

N@J W B E; j;u/ 7! Tu C J B Tu B j;
such that a neighborhood of any non-constant .†;j; ; u/ inMc is in one-to-one
correspondence with N@ 1

J .0/= Aut.†P ; j /, where the group Aut.†P ;j / of biholomorphic
maps .†;j / .†; j / fixing acts on pairs j 0; u0/ 2 N@ 1

J .0/ by

' j0; u0/ D .' j0; u0
B '/:

It is then standard to say that .†; j; ; u/ 2 M is regular if it represents a transverse
intersection with the zero-section, i.e. the linearization

DN@J j; u/W T.j;u/B E.j;u/

is surjective. Wewillgive a precisedefinition in §3.2 once the functionalanalyticsetup
is in place. Observe that if uW †P W is not constant, then the action of Aut.†P ; j/
induces a natural inclusion of its Lie algebra aut.†P ; j/ into kerD@NJ j;u/. For the
sake of completeness, we will present in §3.2 a proof of the following standard folk
theorem:

Theorem 0. Assume uW .†P ; j/ W; J / is a non-constant curve in Mc with only
Morse–Bott asymptotic orbits. If u is regular, then a neighborhood of u in Mc
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naturally admits the structure of a smooth orbifold of dimension ind.uI c/, whose

isotropy group at u is

Aut.u/ WD f' 2 Aut.†P ; j/ j u D u B 'g;

and there is a natural isomorphism

TuMc
D kerD@NJ j; u/=aut.†P ; j /:

In particular, regularity implies that Mc is a manifold near u if u is somewhere

injective, and in general the isotropy group for an orbifold singularity has order
bounded by the covering number of u. Note that in contrast to the standard theory
of J -holomorphic curves cf. [MS04]), we shall in this paper be especially interested
in cases where u achieves regularity despite being multiply covered, so the moduli
space is smooth but may be an orbifold rather than a manifold.

In the case dimW D 4, another number that turns out to play an important role is
the so-called normal first Chern number cN uI c/ 2

1
2 Z, which can be defined most

simply via the formula

2cN uI c/ D ind.uI c/ 2 C 2g C # 0.c/ C # 0.@†/: 1.2)

Here g is the genus of † and 0.c/ is the subset of punctures for which the
asymptotic orbit has even Conley–Zehnder index this is the correct definition if all
orbits are nondegenerate; in the Morse–Bott case the definition is more complicated
and may depend on the asymptotic constraints, see §3.2). We will be able to give
a better motivated definition in §3.5 using the linear theory in §2, but for now, the
significance of cN uI c/ can be illustrated by considering the case where † is closed
and D ;. Then a combination of 1.1) and 1.2) yields the relation cN uI c/ D
c1.u T W / †/, so cN uIc/ is the first Chern number of the normal bundle if u is
immersed. This is the appropriate philosophical interpretation of cN uIc/ in general,
as will become obvious from further considerations.

As a final piece of preparation, note that since a non-constant holomorphic curve

uW †P W is necessarily immersed near the ends, it can have at most finitely many
critical points. Indeed, as we will review in §3.3, the bundle u TW †P admits a

natural holomorphic structure such that the section

du 2 HomC.T †P ; u T W //
is holomorphic; its critical points are thus isolated and have positive order, which we
denote by ord.duI z/ for any z 2 Crit.u/. The quantity

Z.du/ WD X
z2du 1.0/\int†P

ord.duI z/ C
1

2 X
z2du 1.0/\@†

ord.duI z/ 1.3)

is therefore a finite nonnegative half-integer or integer if @† D ;), and it equals zero
if and only if u is immersed.
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1.2. Local and global transversality results. We now state the main result of this
paper. The following will be a convenient piece of shorthand notation: if @† ¤ ;,
then for given constants c 2 R and G 0, define the nonnegative integer

K.c; G/ D minfk C ` j k; ` nonnegative integers,

k G and 2k C ` > 2cg:
1.4)

If @† D ; we modify this definition slightly by requiring the integer ` to be even.

Note that in most applications known to the author, it will turn out that c < 0, so

K.c; G/ D 0.

Theorem 1. Suppose dimW D 4 and .†; j; ;u/ 2 Mc is a non-constant curve
with only Morse–Bott asymptotic orbits. If

ind.uI c/ > cN uIc/ C Z.du/; 1.5)

then u is regular. Moreover, when this condition is not satisfied, we have the following
bounds on the dimension of kerDN@J j;u/: if ind.uI c/ 2Z.du/, then

2Z.du/ dim kerD@NJ j; u/=aut.†P ; j /
2Z.du/ C K.cN uIc/ Z.du/; # 0.c//;

and if 2Z.du/ ind.uI c/, then

ind.uI c/ dim kerD@NJ j;u/=aut.†P ; j/
ind.uI c/ C K.cN uIc/ C Z.du/ ind.uIc/; # 0.c//:

Remark 1.2. Plugging in the definition of cN uI c/ and the index formula, the
condition 1.5) is equivalent to

ind.uI c/ > 2g C # 0.c/ C # 0.@†/ 2 C 2Z.du/;

or

1 u T W / C ˆ uI c/ C # 1.c/ > 2Z.du/;2cˆ
where 1.c/ WD n 0.c/. These aredirectgeneralizations of thecriteria in [HLS97],
[Wen05], [IS99].

Remark 1.3. There isan importantspecialcaseof the dimension bound which we will
use in the application: ifcN uI c/ < Z.du/, then K.cN uIc/ Z.du/; # 0.c// D 0,
thus dim ker DN@J j;u/ becomes 2Z.du/, its smallest possible value.

Results of this type have been used previously for a variety of applications,
including disk filling and deformation arguments in contact 3-manifolds [Hof93],
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[HWZ95b], [Wen08], and the symplectic isotopy problem [She01], [Sik03]. In the
last section of this paper, we will use our generalization to prove a somewhat
surprising global structure theorem for certain geometrically natural moduli spaces of
holomorphic curves in 4-dimensional symplectic cobordisms.

To motivate this, consider for a moment the case of a closed holomorphic curve

uW † W that satisfies the criterion ind.u/ > cN u/ CZ.du/. We know then that

M is smooth in some neighborhood of u, but ideally one would like to know that the
entire connected component Mu is smooth. In general this will not be true, as other
curves inMu may have more critical points and thus fail to satisfy the criterion. One

favoriteway to evade this issue is by assuming that u is embedded: then the adjunction
formula cf.[MS04]) guarantees thatall somewhere injective curvesu0 2 Mu arealso
embedded, hence Z.du0/ D 0 and the criterion is satisfied. The catch is that unless
one imposes additional restrictive conditions on the homology class OEu 2 H2.W /,
not every curve inMu need be somewhere injective: a sequence of embedded curves
may converge to a branched cover, which will not always be regular since its branch
points are critical. Thus Mu may fail to be globally smooth if it contains branched
covers, and there is no way to avoid this in general.5

The surprising fact is that if we impose an additional, rather natural intersectiontheoretic

condition on u, then the multiple covers that arise turn out to be “harmless”:
even the multiple covers are regular, andMu is thus globally smooth. The condition
in question arises from the study of J -holomorphic foliations: in particular, we focus
on punctured embedded curves uW †P W that exist in 1- or 2-dimensional families
with respect to some constraints c) and have the property of never intersecting their

neighbors, i.e. these families foliate either an open set or a hypersurface containing

u.†P / W A complete characterization of such curves is given in [Wenb] and

will be reviewed in §4; we refer to them as stable, nicely embedded curves. If u is
such a curve, then it automatically satisfies the criterion of Theorem 1, thus the local
structure ofMcu near u is well understood, but one still has the global question:

Question. Can a sequence of stable, nicely embedded curves converge to a multiple
cover?

If the answer is no, thenMcu is a smooth manifold, and we shall show that this is
indeed the case whenever W is an R-invariant symplectization with generic J
or a closed symplectic manifold. In general, it turns out that multiple covers can
appear, but only if they are immersed, in which case the regularity criterion is still
satisfied. The proof of this fact will make use of our transversality arguments for
nonimmersed curves, establishing in effect that any component ofMc containing such a

non-immersed multiple cover can consist only of multiple covers. The result is:

5Note that multiply coveredcurves alsopose a problem in the standard transversality theory, but forcompletely
different reasons.
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Theorem 2. For generic J if u 2 Mc is a stable, nicely embedded curve, then every
curve inMcu is regular: in particularMcu naturally admits the structure of a smooth
orbifold of dimension ind.uIc/ 2 f1; 2g, with only isolated singularities. Moreover,
all curves inMcu are embedded except for a discrete subset, consisting of unbranched
multiple covers over stable, nicely embedded index 0 curves, and the images of any
two curves inMcu are either identical or disjoint.

This will follow from a more general result Theorem 4) proved in §4, which
applies also to parametrized moduli spaces under a generic homotopy of almost
complex structures. As a simple corollary, we observe the two aforementioned cases

where the answer to the question posed above is no:

Corollary 1.4. For the curve uW †P W in Theorem 2, suppose that either

†P is a closed Riemann surface without punctures), or

W; J/ D R M; JQ/ is the symplectization of a 3-manifold with stable Hamiltonian

structure H D X; ; !; J /, where J is generic.

Then every curve inMcu is embedded, thusMcu is a manifold.

Proof. For the R-invariant symplectization R M; JQ/, a multiple cover u D v B 'would require a somewhere injective curve v of index 0, which does not exist if J is
generic. The reasoning in the closed case is different: it depends on the fact that, as

we shall show in §4.3, stable nicely embedded curves always have genus zero. Then

' must be a holomorphic map S2 S2 with no branch points, contradicting the
Riemann–Hurwitz formula.

Unbranched multiple covers can and do appear in general if†P has punctures and

W; J / is a non-cylindrical manifold, e.g. a nontrivial symplectic cobordism. We will
show an example at the end of §4, where the resulting collection of curves actually
foliates W

The phenomenon illustrated by Theorem 2 contrasts with the more general study
of holomorphiccurves, e.g. in Symplectic FieldTheory, where transversality can only
be achieved in general by abstract perturbations. Such perturbations usually destroy
many of the nice geometric properties of holomorphic curves – such as positivity
of intersections – but the philosophy here is that for curves that are especially nice
in some geometric sense, precisely these nice properties make abstract perturbations
unnecessary. In particular, the theorem is part of a larger program outlined in [Wena],
to prove that the compactified moduli spaces of curves that can occur in foliations
always have a nice global structure: in principle, after proving a suitable compactness
theorem for this “nice” class of curves, transversality should always follow “for free”.
Such results are necessary tools in the general theory of J -holomorphic foliations,
as one would like to prove that these foliations can always be carried through under
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various types of homotopies and stretching arguments. The situation is already well
understood in the R-invariant case due to [Wena], and Theorem 2 may be seen as a

partial result in the direction of generalizing that compactness theorem to symplectic

cobordisms. See Example 4.22 and Remark 4.23 for an idea of what such a

generalization might look like.)

1.3. Outline of the proofs. The technical backbone of Theorem 1 is the analysis
of the normal Cauchy–Riemann operator DNu associated to any holomorphic curve

uW †P W As we will recall, this is well defined even if u has critical points,
because there always exists a splitting

u TW D Tu ° Nu

such that Tu/z is the image of Tz†P under du at all regular points z. The domain of
DNu is thena space of sections ofNu, a complex linebundle. Wedescribe the required
linear theory of such operators in §2, giving criteria that guarantee surjectivity ofDNu
as well as bounds on the dimension of its kernel.

The next step is then to relate the operator DNu to the nonlinear problem. In the
immersed case, the traditional approach cf. [HLS97], [HWZ99]) is to set up the
nonlinear problem to detect J -invariant maps that can be expressed as sections of
the normal bundle of a given solution u, in which case the linearization is equivalent
to DNu This is no longer possible when u has critical points; Ivashkovich and
Shevchishin in [IS99] dealt with this difficulty by replacing the normal bundle with
a normal sheaf and proving that u is regular if and only if DNu is surjective. Our
approach takes some inspiration from theirs but is less algebraic and more analytical
in flavor, as we avoid any reference to sheaves and exact sequences in favor of Banach
space splittings and Fredholm operators. Unlike [HLS97], [HWZ99], we treat the
nonlinear problem in the way that is standard for arbitrary dimensions, as a section

N@J W T B E

of a suitable Banach space bundle, where B is a globally defined) Banach manifold

of maps †P W including reparametrizations) and T is a locally defined)
finite dimensional space of complex structures parametrizing on open subset in the
Teichmüller space of †P We will use the splitting u TW D Tu ° Nu and some
properties of the standard Cauchy–Riemann operator on T †P / to give a precise
relation Theorem 3) between the kernels and images of DN@J j; u/ and DN in arbitrary

u
dimensions. A consequence is the fact that each of these operators is surjective

if and only if the other is.
As for theproof ofTheorem 2: assumeun is asequence ofstable,nicely embedded

curves converging to a multiple cover u D v B ', where v is somewhere injective.
We observe first that the embedded curves un necessarily satisfy the criterion of
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Theorem 1, so this will remain true for the limit u unless it acquires critical points.
The main task then is to show that u is immersed, and the kernel bounds in Theorem 1
for non-immersed curves turn out to be a useful tool in proving this. The first step is
to show that the underlying simple curve v is embedded and has index 0: this follows
by a careful application of the intersection theory of punctured holomorphic curves,
which we reviewat thebeginning of §4. Note that this is theonly point in the argument
at which we assume J to be generic: it is necessary to obtain a lower bound on the
index of v and thus on its related intersection invariants, but it will not be required in
proving transversality for u. With this established, critical points of u arise only from
branch points of the cover ', hence Z.du/ D Z.d'/, i.e. the ramification number
of '. Now the dimension bound in Theorem 1 turns out to imply that a neighborhood
of u in Mcu “lives inside a space of dimension at most 2Z.du/”; we will make

this statement precise later using the implicit function theorem. But if Z.du/ > 0,
then the space of holomorphic branched covers homotopic to ' is nontrivial and has

precisely this dimension, which yields a 2Z.du/-dimensional smooth submanifold
ofMcu containing u. It follows that this describes a neighborhood of u inMcu so any
sequence of curves converging to u must then have the form un D v B 'n, i.e. they
are all multiple covers with the same image, and this is a contradiction.

Acknowledgments. Many thanks to Denis Auroux, Kai Cieliebak, Oliver Fabert,
Helmut Hofer, Sam Lisi, Klaus Mohnke, Sewa Shevchishin and Richard Siefring for
useful conversations.

2. Cauchy–Riemann type operators on bundles

2.1. Generalities. Let .†; j/ be a compact Riemann surface with genus g, m
0 boundary components, and a finite set of positive/negative interior punctures D

C[ int †, with the corresponding punctured surface denoted by †P D †n
Regarding †P as a surface with cylindrical ends fUzgz2 biholomorphic to the
halfcylindersZ itadmits anaturalcompactification x† obtained by replacing OE0; 1/ S1
byOE0;1 S1 and 1; 0 S1 by OE 1; 0 S1. The compactified space is naturally
a topological 2-manifold with boundary

@ x† D @† t[z2

iz;

where for each z 2 iz Š f 1g S1 denotes the corresponding “circle at

infinity”. Note that in making this definition we have chosen cylindrical coordinates
s; t/ 2 Z over each end fUzgz2 and we will continue to use these coordinates

whenever convenient. The definitions of x† and iz do not depend on this choice,



Vol. 85 2010) Transversality and orbifolds of holomorphic curves 359

and in fact the resulting identification of each iz with S1 D R=Z is unique up to a

constant shift.
Let E †x be a complex vector bundle of rank n whose restriction to †P and

each of the circles iz has a smooth structure. Assume moreover that E is given a

Hermitian structure over each end Uz. By an admissible trivialization of E near

z 2 we mean a smooth unitary bundle isomorphism ˆ W EjUz Z R2n
where R2n is identified with Cn), which covers the coordinate map Uz Z

and extends continuously to a smooth unitary trivialization Ejiz S1 R2n. An
asymptotic operator at z 2 is then a bounded real linear operator

Az W H 1
Ejiz / L2 Eiz/

whose expression with respect to any admissible trivialization takes the form

H 1 S1;R2n/ L2 S1;R2n/; 7! J0 P S I
here J0 D i is the standard complex structure on R2n D Cn and S D S.t/ is any
smooth loopof symmetric 2n-by-2nmatrices. Thisdefines an unboundedself-adjoint
operator on the complexification of L2.Ejiz /. We say that Az is nondegenerate if
its spectrum Az/ does not contain 0.

Define the standard @N-operator for smooth functions on †P by

@N
W C1.†P ;C/ 0;1.†P /; f 7! df C i df B j:

For any two complex vector bundles E and E0 over the same base, we denote by
HomC.E; E0/ and HomC.E; E0/ the corresponding bundles of complex linear and
antilinear maps E E0 respectively. There are also the corresponding endomorphism

bundles EndC.E/ WD HomC.E; E/ and EndC.E/ WD HomC.E;E/.

Definition 2.1. A smooth, real linear) Cauchy–Riemann type operator on E is a

first-order linear differential operator

DW Ej†P HomC.T †P ; Ej†P /
such that for every smooth section vW †P E and smooth function f W †P R,

D.f v/ D N@f /v C f Dv/:
Given an asymptotic operator Az at z 2 we will say that D is asymptotic to Az
if its expression in an admissible trivialization ˆ near z takes the form

Dv/.s; t/ D @sv.s; t/ C J0@ tv.s; t/ C S.s;t/v.s; t /;
where S.s; t/ is a smooth family of real-linear transformations on R2n which
converges uniformly as s 1to a smooth loop of symmetric matrices S.t/, such that

J0
d
dt

S.t/
is the coordinate expression for Az with respect to ˆ
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Define the Banach space W k;p.E/ to consist of sections v W †P E of class

loc such that in any choice of admissible trivialization near each puncture z 2
the corresponding map Z R2n is of class W k;p. If ` Ej@† is a smooth totally
real submanifold, define the subspace

W k;p

W k;p
` E/ D fv 2 W k;p E/ j v.@†/ `g:

Observe that HomC.T †P ; E/ also admits a natural extension over †x, and the
combination of the coordinates s; t / with the trivialization ˆ near z 2 also gives rise
to a trivialization of HomC.T †P ; E/. Using this we can define the Banach spaces

W k;p.HomC.T †P ; E//. We will generally write W 0;p as Lp.
Now fix a smooth totally real subbundle ` Ej@†, and asymptotic operators Az

for each z 2 denoting the collection of all these operators by A Let D be a

Cauchy–Riemann type operator that is asymptotic to Az for each z 2 We will
then be interested in the bounded linear operator

` E/ Lp HomC.T†P ; E//:DW W
1;p

This is aFredholm operator if all theAz are nondegenerate, and its index is determined
by a variety of topological quantities which we shall recall next.

Fix a set of admissible trivializations near each puncture z 2 as well as smooth
complex trivializations of Ej@†, denoting the collection of all these choices by ˆ
One can then define the relative first Chern number c1̂ E/ 2 Z. If E is a line bundle,

1 E/ is defined simply by counting zeroes of a generic smooth section †P Ethen cˆ
that extends continuously over x† and is a nonzero constant with respect to ˆ on
@ x†. For higher rank bundles, c1̂ E/ can be defined axiomatically via the direct sum

property and the assumption that it matches the ordinary first Chern number if †P is
closed.

For each connected component C @†, the totally real subbundle `jC EjC
has a Maslov index ˆ EjC ; `jC /, and we shall denote the sum of these by ˆ E; `/.

Finally for each puncture z 2 the asymptotic operator Az, expressed as

J0@t S.t/ with respect to ˆ gives rise to a linear Hamiltonian flow in R2n via
the equation

P t/ D J0S.t/ t/:

If Az is nondegenerate, then the resulting path of symplectic matrices ‰.t/ 2 Sp.n/
ends at a matrix ‰.1/ which does not have 1 as an eigenvalue, so it has a well defined
Conley–Zehnder index which we denote by ĈZ.Az/. All of this together allows us
to define the total Maslov index

ˆ E; `; A / WD ˆ E; `/ C X
z2 C

ĈZ.Az/ X
z2

ĈZ.Az/:
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The Fredholm index of D is then given by the following generalization of the
Riemann–Roch formula:

ind.D/ D n †P / C 2c1̂ E/ C ˆ E; `; A /: 2.1)

This follows from the formula for the case @† D ; proved in [Sch95], together with
a gluing/doubling argument; cf. [Wen05]. Note that all dependence on ˆ in the right
hand side of 2.1) cancels out.

Let us briefly review the useful generalization of the above that arises by considering

Banach spaces with exponential weights. Pick numbers iz 2 R for each z 2
and denote the collection of these by i D fizgz2 Then we define

W k;p;i E/

loc sections v W †P E such that in an admissible trivializationto be the space of W k;p
near each z 2 the function Z R2n, s; t/ 7! e izsv.s;t/ is of class W k;p.
This imposes an exponential decay condition at each puncture where iz > 0, or a

bound on exponential growth if iz < 0. There are now obvious definitions for the
spaces W

1;p;i
` E/ and Lp;i HomC.T †P ; E//, so that the Cauchy–Riemann type

operator D defines a bounded linear map

` E/ Lp;i HomC.T†P ; E//:DW W 1;p;i
It is simple to show cf. [HWZ99], [Wenb]) that this map is conjugate to another
Cauchy–

` E/ Lp.HomC.T †P ; E//, which is asymptoticRiemann operator Di W W 1;p

at z 2 to Az iz; denote the latter collection of operators by A i
The operator on the weighted space is thus Fredholm if and only if iz 62 Az/ for
all z 2 and its index can then be read off again from 2.1), but with A i
replacing A Note in particular that if all Az are nondegenerate and all iz are

sufficiently close to 0, then the weighting does not change the index of D.

2.2. The line bundle case. For the rest of this section we assume n D 1, so

each asymptotic operator is equivalent to an unbounded self-adjoint operator on
L2.S1;R2/ of the form A D J0 d

dt S.t/, whose eigenfunctions can be assigned

winding numbers. For 2 A/ define w. / 2 Z to be the winding number of any
nontrivial section in the -eigenspace of A; this number depends only on by a
result in [HWZ95a]. Moreover, it is shown in the same paper that w. / is an increasing
function of which takes every integer value exactly twice counting multiplicity).
We define

A/ D maxfw. / j 2 A/, < 0g;

C.A/ D minfw. / j 2 A/, > 0g;

p.A/ D C.A/ A/;
2.2)
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so if A is nondegenerate, p.A/ 2 f0; 1g. By another result in [HWZ95a], these

winding numbers are related to the Conley–Zehnder index by

CZ.A/ D 2 A/ C p.A/ D 2 C.A/ p.A/: 2.3)

ˆ
This entire discussion applies also to the operators Az once trivializations ˆ are
specified; we thus denote these winding numbers by Az/, and observe that

p.Az/ 2 f0;1g does not depend on ˆ The latter is the parity of the puncture

z 2 defining a partition of into sets of even and odd punctures, denoted 0 and

1 respectively.
Define the 1

2Z-valued adjusted first Chern number of E; `; A / by

c1.E;`; A / D c1̂ E/ C
1

2
ˆ E; `/ C X

z2 C
ˆ Az/ X

z2
Ĉ Az/; 2.4)

and observe that this does not depend on ˆ Using 2.3) and the index formula, it is
easy to show that

2c1.E; `; A / D ind.D/ 2 C 2g C # 0 C m: 2.5)

Note that c1.E;`;A / is necessarily an integer if @† D ;.
The adjusted first Chern number has the following interpretation which justifies

its name. If v 2 kerD is a nontrivial section, then the equationDv D 0 together with
the similarity principle implies that v has only isolated zeroes, all of positive order.
Moreover, by arguments in [HWZ96], [Sie08], v satisfies an asymptotic formula of
the form

v.s; t/ D e s e t/ C r.s;t// 2.6)

in admissible trivializations near each puncture z 2 where 2 Az/ satisfies

< 0, e 2 Ejiz/ isa section in the corresponding eigenspace and the remainder

r.s;t/ goes to zero as s 1. It follows that v.s;t/ has only finitely many zeroes,

and near z 2 it has a well defined asymptotic winding number wind ẑ v/ 2 Z,
Az/ if z 2 C, or from below by

Ĉ
which is bounded from above by ˆ Az/ if
z 2 We use this to define the asymptotic vanishing of v:

Z1.v/ D X
z2 C

ˆ z v/ C X
z2

windˆAz/ windˆ z v/ Ĉ Az/ :

Define also the 1
2Z-valued count of zeroes,

Z.v/ D
z2v

1X
.0/\int†P

ord.vI z/ C
1

2 X
z2v 1.0/\@†

ord.vI z/;
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where the order of a zero on the boundary is defined by a doubling argument
described in the appendix. Now a simple computation using these definitions and
Proposition A.2 yields the relation

Z.v/ C Z1.v/ D c1.E; `; A /: 2.7)

Observe that both terms on the left hand side are manifestly nonnegative.
The next result is the main objective of this section. Recall from 1.4) the

nonnegative integer K.c;G/.

Proposition 2.2. 1) In the case ind.D/ 0, D is injective if c1.E; `; A / < 0, and
otherwise

dim kerD K c1.E; `;A /; # 0/:

2) In the case ind.D/ 0, D is surjective if ind.D/ > c1.E; `; A / and

otherwise

ind.D/ dim kerD ind.D/ C K c1.E;`;A / ind.D/; # 0/ :

Proof. The argument rests crucially on 2.7), together with the observation that if z 2
0, then the space of eigenfunctions with negative eigenvalue and winding ˆ Az/

is 1-dimensional, as is the space with positive eigenvalue and winding
Ĉ

Az/.
We prove the result first for the case ind.D/ 0. If c1.E;`;A / < 0, then

1

D is clearly injective, else 2.7) would force any nontrivial section v 2 kerD to
have either Z.v/ < 0 or Z1.v/ < 0. To establish the dimension bound for kerD
when c1.E; `;A / 0, choose any nonnegative integers k and n such that k
# 0 and 2k C n > 2c E;`;A / In this situation we can construct an injective

ˆ

homomorphism from kerD into a real vector space of dimension n C k. Indeed,
if @† ¤ ;, pick n distinct points 1; :: : ; n 2 @†, and choose also k distinct
even punctures z1; : : : ; zk 2 0. For each of the zj the correspondence v 7! e
coming from the asymptotic formula 2.6) defines a linear map from kerD into the
1-dimensional vector space Vzj consisting of eigenfunctions of Azj with winding
equal to Azj /. We can define this map so that it takes the value 0 2 Vzj if and

only if the eigenfunction in 2.6) has a different winding number. Using these maps
and the evaluation of v at the points j 2 @†, we obtain a homomorphism

‰ W kerD ` 1 ° ° ` n ° Vz1 ° ° Vzk :

The claim

ˆ
is that ‰ is injective, and thus dim kerD n C k. Indeed, suppose

v 2 kerD is a nontrivial section with ‰.v/ D 0. Then the asymptotic winding of v
differs from Azj / at each of the punctures zj implying Z1.v/ k. Similarly,
v has boundary zeroes at 1; :: : ; n, contributing at least n=2 to Z.v/, hence

c1.E; `; A / D Z.v/ C Z1.v/
n
2 C k;
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which contradicts our assumptions on n and k.
A minor modification to this argument is needed if @† D ;. We must now assume

n is even, and choose distinct interior points 1; : :: ; n=2 2 †P using evaluation at

these points to define the homomorphism

‰ W kerD E 1 ° ° E n=2 ° Vz1 ° ° Vzk :

The right hand side is again a vector space of real dimension n C k, and the same

argument as above shows that ‰ is injective.
Todealwith thecase ind.D/ 0, we consider the formaladjointD cf. [Sch95]).

This can be regarded as a Cauchy–Riemann type operator on the bundle F WD

HomC.T†P ; E/ †P with an appropriate totally real boundary condition ` and
asymptotic operators Az which have the same parity as Az. It satisfies

ind.D / D ind.D/; dim kerD D dim cokerD; 2.8)

and applying 2.5) to D and D together, we find

c1.E;`;A / c1.F;` ; A / D
1

2
ind.D/ ind.D / D ind.D/:

Then the conditionc1.F; ` ; A /<0is satisfied if and only if ind.D/>c1.E; `; A /
and this implies D is surjective. If ind.D/ c1.E; `; A / then c1.F; ` ;A / 0
and we can apply the above estimate to dim kerD giving

dim kerD D ind.D/ C dim cokerD D ind.D/ C dim kerD

ind.D/ C K c1.F; ` ; A /; # 0

D ind.D/ C K c1.E; `;A / ind.D/;# 0/ :

Remark 2.3. The proof of Theorem 2 requires only the very simplest case of this
dimension bound, namely that kerD is trivial when c1.E; `; A / < 0. As that proof
will demonstrate, however, such bounds can sometimes be useful in cases where D
is not surjective, so perhaps the more general dimension bound will eventually find
similar application.

3. The normal operator for a holomorphic curve

In this section we will give the precise definition of regularity and show that it is
equivalent to the surjectivity of a certain Cauchy–Riemann operator on a generalized
normal bundle. The precise relation between this operator and the concept of regularity

is stated in §3.4 as Theorem 3, and in §3.5 we apply the linear transversality
theory from §2.2 to show that Theorem 1 follows as an easy corollary.
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Throughout the following, we fix a compact, connected and oriented surface † of
genus g 0 with m 0 boundary components, and a finite set int †, writing
†P D † n

3.1. Teichmüller slices and Cauchy–Riemann operators. We begin by collecting
some classical facts about moduli spaces of Riemann surfaces which can be related
to the analysis of Cauchy–Riemann type operators.

Let J.†/ denote the space of smooth complex structures on † that induce the
given orientation, and denote by DiffC.†; / the group of orientation preserving
diffeomorphisms on † that fix and Diff0.†; / DiffC.†; / those which are

homotopic to the identity. Both of these groups act on J.†/ by .';j / 7! ' j and
the Teichmüller space of †P is a smooth finite-dimensional manifold defined as

T .†P / D J.†/= Diff0.†; /:

Its quotient by the mapping class group M.†P / D DiffC.†; / Diff0.†; / gives
the moduli space of Riemann surfaces with genus g, m boundary components and
# interior marked points)

M.†P / D T .†P /=M.†P / D J.†/= DiffC.†; /;

which is ingeneral an orbifoldof the same dimension. Wesay†P is stable if †P / < 0,
in which case

dimM.†P / D 6g 6 C 3m C 2# D 3 †P / # ;

and the automorphism group

Aut.†P ; j / D f' 2 DiffC.†; / j ' j D jg

is finite for any choice of j 2 J.†/ though its order may depend on j Let D C
denote the closed unit disk, A D OE0; 1 S1 the compact annulus and T2 D R2=Z2
the 2-dimensional torus. For our purposes, the non-stable cases to be considered are
the following:

1) M.S2/ D fOEi g and dim Aut.S2;i/ D 6.

2) M.C/ D fOEi g and dim Aut.C; i/ D 4.

3) M.D/ D fOEi g and dim Aut.D; i/ D 3.

4) M.R S1/ D fOEi g and dim Aut.R S1; i/ D 2.

5) M.D n f0g/ D fOEi g and dim Aut.D n f0g; i/ D 1.

6) dimM.A/ D 1 and dim Aut.A; j / D 1.

7) dimM.T2/ D 2 and dim Aut.T2; j / D 2.
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For all but the last case, the mapping class group M.†P / is trivial and thus M.†P / D
T .†P / is a manifold. Observe also that if †P is not stable,

dim Aut.†P ;j / dimM.†P / D 3 †P / C # : 3.1)

Fixingp > 2, the latter is the Fredholm index of the standard linear Cauchy–Riemann
operator

W W 1;pD† T.@†/.T†I / Lp EndC.T †//;

where W 1;p
T.@†/.T†I / is the space of W 1;p-smooth vector fields Y W † T†

satisfying Y.@†/ T .@†/ and Y j D 0.

Lemma 3.1. For all choices of .†; j; / dim coker.D†/ D dimM.†P /.

Proof. This may be regarded as a standard piece of Teichmüller theory in the stable
case cf. [Tro92]), and also follows by using a simplified version of the argument in
the proof of Proposition 2.2 to show thatD† is injective. Here one must account also
for the condition Y j D 0, which ensures Z.Y / # thus it suffices to observe

that the adjusted first Chern number is strictly less than # In the non-stable case,

a similar argument shows that dim ker.D†/ dim Aut.†P ;j /, and by interpreting

D† as the linearization of a nonlinear operator N@ ' T' j T' j one seesj D C B B

that ker.D†/ contains aut.†P ; j /, giving an inequality in the other direction, hence

/ D dim Aut.†P ; j /:dim ker.D†

The result then follows from 3.1).

Given j 2 J.†/ and the corresponding Cauchy–Riemann operator D† pick a

complement of im.D†/ i.e. a subspace C Lp.EndC.T †// such that

im.D†/ ° C D Lp EndC.T †//:

By approximation, we may assume every section in C is smooth and vanishes on
a neighborhood of We can then choose a small neighborhood O C of 0 and
define the map

ˆ W O J.†/; y 7! 1 C
1

2
jy j 1 C

1
2
jy

1

; 3.2)

which has the properties ˆ 0/ D j and

@

@ tˆ ty/
tD0

D y;
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thus it is injective if O is sufficiently small. The image

T WD ˆ O/ J.†/
is thus a smooth manifold of dimension dim C D dim T .†P /, with TjT D C and

consisting of smooth complex structures close to j that are identical to j on some

fixed neighborhood of It parametrizes a neighborhood of OEj in T .†P /, i.e. the
projection J.†/ T .†P / restricts to a diffeomorphism from T onto a neighborhood
of OEj This provides an explicit construction of the following general object:

Definition 3.2. Given j 2 J.†/, we define a Teichmüller slice through j to be any
smooth family T J.†/ parametrized by an injective map U J.†/, where

U is an open subset of RdimT .†P /, such that all j 0 2 T are identical on some fixed
neighborhood of and im.D†/ ° TjT D Lp.EndC.T †//.

Lemma 3.3. If .†P ; j/ is stable, then there exists a Teichmüller slice T through j that
is invariant under the group action Aut.†P ;j / J.†/ J.†/, .';j 0/ 7! ' j 0.

Proof. Theautomorphism groupG WD Aut.†P / is finite and consists ofbiholomorphic
maps on .†;j / that fix Each point in then has a G-invariant neighborhood
biholomorphically equivalent to the standard unit disk, on which G acts by rational
rotations. Let g denote a metric on † that is invariant under the action of G; such a

metric can be constructed by starting from the Poincaré metric on†P and interpolating
this with flat rotation-invariant metrics on disk-like neighborhoods of each point in
Theng induces a bundle metricon EndC.T †/ †anda correspondingG-invariant
L2-inner product h ; iL2 on the space of sections of this bundle.

To prove the lemma, it suffices to construct a G-invariant complement C
Lp.EndC.T †// of im.D†/ that consists of smooth sections vanishing near : then
an appropriate Teichmüller slice can be defined via 3.2) since ' j D j implies

ˆ ' y/ D ' ˆ y/ for any ' 2 G. Observe that im.D†/ itself is G-invariant,

since ' j D j also implies D† ' Y / D ' D†Y / for all Y 2 W 1;p
T.@†/.T†I /

Now using the G-invariant L2-product chosen above, define a complement C0 as the

L2-orthogonal complement of im.D†/ i.e.

Y; yiL2 D 0 for all Y 2 W 1;pC0 D °y 2 Lp EndC.T †// j hD
† T.@†/.T†I / :

This space is G-invariant due to the G-invariance of im.D†/ and h ; iL2 and by
elliptic regularity for weak solutions of the formal adjoint equation, it consists only
of smooth sections. Now choosing G-invariant disk-like neighborhoods of the points
in we can obtain the desired complement C by multiplying the sections in C0
by G-invariant cutoff functions that vanish near G and equal 1 outside a sufficiently
small neighborhood of
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For the two non-stable cases in which T .†P / is nontrivial, it will be convenient
to have explicit global Teichmüller slices. If †P D A D OE0; 1 S1, for each > 0
define the diffeomorphism ' W A OE0; S1, s; t/ 7! s; t/ and let TA denote
the collection of complex structures f' ig >0. This parametrizes the entirety of
T A/ which equalsM.A/ since the mapping class group is trivial), and also gives a

natural identification of every Aut.A; ' i/ with S1, acting on A by translation of the
second factor. If †P D T2 D R2=Z2, we define TT2 to be the space of all constant
complex structures on R2 D C that are compatible with the standard orientation;
clearly these descend to T2, and they also parametrize the entirety of T T2/. Then

for each j 2 TT2 the subgroup

Aut0.T2; j / WD Aut.T2;j /\Diff0.T 2/
can be identified naturally with T2, acting by translations. Choosing a base point

p D OE.0; 0/ 2 T2, the stabilizer of OEj 2 T T2/ under the action of M.T2/ D
SL.2; Z/ is meanwhile the finite subgroup

Aut.T 2; j Ip/ WD f' 2 Aut.T2 ; j/ j '.p/ D pg D fA 2 SL.2; Z/ j Aj D jAg;

and Aut.T2; j / is the semidirect product of Aut.T2; j Ip/ with Aut0.T2; j / D T2.
Note in particular that for any j 2 TT2 this group acts by affine transformations on
R2 descending to T2), and the action .';j 0/ 7! ' j 0 therefore preserves TT2

The followingwillbe useful for technical reasons inouranalysis of the relationship
between Du and its normal component.

Lemma 3.4. For any j 2 J.†/ and finite setK †P there exists a Teichmüller slice

T through j such that every j 0 2 T is identical to j on some fixed neighborhood of

K [
Proof. It suffices to construct C D Tj T so that every y 2 C vanishes near K [This can be done using cutoff functions to replace a basis of any given complement
with one that vanishes in such a neighborhood; the new basis can be made Lp-close

to the old one if the neighborhood is sufficiently small.

For any Teichmüller slice T through j the operator

L W Tj T ° W 1;p T†I / Lp EndC.T †//; y; Y / 7! jy C D†Y;

is clearly surjective; indeed, as D† is complex linear, L y; jY / D j y C D†Y

and the target space is spanned by Tj T and im.D†/ For the analysis in the following
sections it will be useful toderive a corresponding statement for the standard Cauchy–
Riemann operator on a Riemann surface with ends. We will recall in the next section
the construction of certain Banach manifolds containing asymptotically cylindrical
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maps †P W In the simple case W D †P the tangent space to such a Banach
manifold B† at the identity map 1W †P †P can be written as

T.@†/.T †P / ° V †T1B†
D W 1;p;i ;

T †P / is a 2# -where i > 0 is a small weight applying at every end and V †
dimensional space of smooth sections that are supported near infinity and constant
in some fixed choice of cylindrical coordinates near each end. The natural nonlinear
Cauchy–Riemann operator defines a section of a Banach space bundle over B†,
whose linearization at 1 is the usual linear Cauchy–Riemann operator given by the
holomorphic structure of T†P †P denoted here by

T.@†/.T †P /° V †D†
W W

1;p;i Lp;i EndC.T †P //:

Now since every y 2 Tj T is smooth and vanishes near there is a natural
inclusion of TjT Lp;i.EndC.T †P //, as well as a bounded linear map TjT
Lp;i.EndC.T †P //, y 7! jy.

Lemma 3.5. The operator

LW Tj T ° W 1;p;iT.@†/.T †P / ° V † Lp;i EndC.T †P //; y; / 7! jy C D† ;

is surjective.

Proof. Applying the linear theory in §2, we find that ind.D†/ D ind.D†/ and hence

ind.L/ D ind.L / Now in light of the natural inclusion

W
1;p;iT.@†/.T †P / ° V † W 1;p

T.@†/.T†I /
it follows that ker.L/ ker.L / but since dim ker.L/ ind.L/ in general and
dim ker.L / D ind.L / by the remarks above, we have

dim ker.L/ dim ker.L / D ind.L / D ind.L/;

implying L is surjective.

Corollary 3.6. For any Teichmüller slice T through j
Lp;i EndC.T †P // D im.D†/° TjT :

3.2. Functional analytic setup. To state the definition of regularity, we begin by
reviewing the nonlinear functional analyticsetupused in[Dra04], [Bou02] for
asymptotically cylindrical maps uW †P W with nondegenerate or Morse–Bott asymptotic
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orbits. Fix the surface †, punctures D C [ int †, and asymptotic
constraints c. Recall that the latter choice partitions into a set of constrained and
unconstrained punctures D C [ U and assigns to each z 2 C

an orbit Pz of
X which we will assume is Morse–Bott, and we will denote its period by Tz. For
each z 2 U we instead choose an arbitrary Morse–Bott manifold of periodic orbits
inM denoted again by Pz, with period Tz > 0. By a slight abuse of notation, each

Pz may be regarded both as a submanifold Pz M and as a set of Tz-periodic
orbits 2 Pz sometimes with only one element). Denote this collection of choices
for all punctures z 2 by P We shall then consider a Banach manifold consisting
of asymptotically cylindrical maps uW †P W whose asymptotic orbits z for z 2
satisfy z 2 Pz.

Before explaining the Banach manifold, we digress for a moment to define some
important invariants that enter into the index formula. Recall that any T -periodicorbit

of X has an associated asymptotic operator A defined on sections of the bundle
along One can write it down by choosing a parametrization xW

S1 M of
with Px/ T and defining A W x / x / by

A v D J rtv T rX /

for any symmetric connection r on M This gives an unbounded self-adjoint
operator on L2.x / of the form considered in §2, and it is nondegenerate if and

only if the orbit is nondegenerate, in which case we define the Conley–Zehnder index

ĈZ. / D ĈZ.A / for any choice of trivialization ˆ on x If is degenerate,
then A can be perturbed to a nondegenerate asymptotic operator by adding any
number 2 R n A/, and we thus define the perturbed Conley–Zehnder index

ĈZ. C / WD ĈZ.A C /;

and its parity

p. C / D ´0 if ĈZ. C / is even,

1 if ĈZ. C / is odd,

which does not depend on ˆ Observe that if is nondegenerate and is sufficiently
close to zero, then ĈZ. C / D ĈZ. / since A / is discrete. More generally,
one can see from the relationship between the Conley–Zehnder index and spectral
flow cf. [RS95]) that for sufficiently small > 0,

ĈZ. / ĈZ. C / D dim ker.A /: 3.3)

In particular if belongs to a Morse–Bott family P, then the right hand side of 3.3)
is dim P 1, and ĈZ. / remains unchanged if we move to a different orbit
in the same family.
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If M are 3-dimensional, then have complex rank one, so recalling the
definitions in §2.2, we can associate to any T -periodic orbit of X and real number
the so-called extremal winding numbers

ˆ C / WD ˆ A C /;

or for the case D 0, simply ˆ / D ˆ A / We will refer to the eigenfunctions
of A involved in this definition as extremal eigenfunctions at if D 0, or more
generally extremal eigenfunctions with respect to Nowif 62 A / 2.3) gives

ĈZ. C / D 2 ˆ C / p. C /;
p. C / D Ĉ C / ˆ C / 2 f0;1g:

Choosing i > 0 arbitrarily small, it will also be convenient to define

/ D ˆ i/ ˆ C i/; 3.4)

which equals 0 whenever is nondegenerate, and is otherwise either 0 or 1.6

Notation. Fix a number i > 0, which we will generally assume to be as small as

may be needed. Suppose D C [ is a set of punctures and c is a set of
asymptotic constraints, defining constrained and unconstrained subsets C; U
respectively. We then associate to each puncture z 2 a real number

cz WD´i if z 2 C

i if z 2 U
3.5)

For asymptotically cylindrical maps uW †P W subject to constraints c, we will
use the following notational conventions throughout. The asymptotic orbit of u at a

puncture z 2 will be called z, with asymptotic operator Az WD A z and the
collectionof these for all punctureswillbe denoted by andA respectively. Denote
the corresponding collection of perturbed asymptotic operators fAz czgz2 by

A c noting that the sign choice must always match the sign of the puncture. For

i 2 f0; 1g, let

i c/ D fz 2 j p. z cz/ D ig
and i c/ D Ci c/ [ i c/. This defines a partition of into so-called even and

odd punctures with respect to the constraints. Note that when z is nondegenerate,
the parity of z is simply the even/odd parity of ĈZ. z/; in general however this
distinction depends on not just the orbit and constraints, but also the sign of the
puncture.

6For orbits in two-dimensional families, the numbers / are closely related to the sign of a Morse–Bott
surface, as defined in [Wenb].
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Choosep > 2 and define the Banach manifold

B WD B1;p;i.†P ; W I L;P /
to consist of maps †P W of classW 1;p

loc which satisfy u.@†/ L and have
asymptotically cylindrical behavior approaching the orbits fPzgz2 at the corresponding
punctures: the lattermeans in particular that usingcylindrical coordinates s; t/ 2 Z
near z 2 there exists an orbit z 2 Pz with parametrization x W R M and a

constant s0 such that for sufficiently large jsj,

u.s C s0; t/ D exp
Qx.s;t/ h.s; t /;

where Qx.s; t/ WD Tzs;x.Tzt// 2 E R M and h 2 Qx TE / is of weighted
Sobolev class W 1;p;i on Z The tangent space TuB can then be written as

ƒ u T W / ° V ° X ;TuB D W 1;p;i
where the summands are defined as follows. The subscript ƒ refers to the totally real
subbundle

ƒ WD uj@†/ TL @†; 3.6)

ƒ u T W / are required to satisfy the boundary conditionso that sections v 2 W
1;p;i

v.@†/ ƒ, as well as decaying in accordance with the small exponential weight

i > 0at each end. The other two summands are both finite dimensional vector spaces

consisting of sections †P u TW that are supported near infinity and asymptotically

equal to constant vectors in some choice of R-invariant coordinates near the
asymptotic orbit. In particular, V has dimension 2# and contains vector fields
that are parallel to the orbit cylinders Qx.s; t/ D T s; x.T t// near infinity, while the
vector fields in X are trivial whenever Pz is a fixed orbit and otherwise parallel to
the Morse–Bott manifolds Pz, thus

dim X DX
z2

dim Pz 1/ D X
z2 U

dim ker.Az/: 3.7)

Fixing a complex structure j on†, there is a Banach space bundle E B whose
fibers are spaces of complex antilinear bundle maps

Eu D Lp;i HomC.T †P ; u T W //;

and the nonlinear Cauchy–Riemann operator defines a smooth section

N@J W B E; u7! Tu C J B Tu B j;
whose zeroes are parametrizations of asymptotically cylindrical pseudoholomorphic
curves uW .†P ; j/ W; J /. The linearization of @NJ at a zero u defines a linear
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Cauchy–Riemann type operator,

Du W u T W / HomC.T †P ;u T W //;
v 7! rvC J B rv B j C rvJ/ B Tu B j;

3.8)

where r is any symmetric connection on W As a bounded linear operator TuB
Eu, Du is Fredholm. To write down its index, let ˆ be an arbitrary choice of
trivialization for u TW along @† and for along the orbits z, and define the total
Maslov index

ˆ uI c/ D ˆ u TW; ƒ/ C X
z2 C

ĈZ. z C cz/ X
z2

ĈZ. z cz/:

The trivializations of extend naturally to trivializations of TW D T.R M /
along the orbits via the splitting

T.R M / D R°RX / ° ; 3.9)

1 u T W /.so that one can also define the relative Chern number cˆ
Proposition 3.7.

1 u T W / C ˆ uIc/ C # :ind.Du/ D n †P / C 2cˆ

ƒ u T W /, soProof. Denote by D0 the restriction of Du to W 1;p;i
ind.Du/ D ind.D0/ C dim V C dim X

D ind.D0/ C 2# C X
z2 U

dim ker.Az/:

Then D0 is a Cauchy–Riemann type operator asymptotic at z 2 to the operators

Bz WD C°Az;

where we use the splitting 3.9) and define on the first summand the “trivial” asymptotic

operator C D J0 d
dt The latter is degenerate, but we have

CZ.C i/ D 1 3.10)

if i > 0 is sufficiently small. By the discussion of exponential weights in §2.1, D0
is now conjugate to a Cauchy–Riemann operator

ƒ u T W / Lp HomC.T †P ; u T W //W 1;p
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with nondegenerate asymptotics, so by 2.1):

1 u T W / C ˆ u TW; ƒ/ind.D0/ D n †P / C 2cˆ
C X

z2 C

ĈZ.Bz C i/ X
z2

ĈZ.Bz i/

1 u T W / C ˆ u TW; ƒ/D n †P / C 2cˆ
C X

z2 C
ĈZ.Az C i/ X

z2

ĈZ.Az i/ # ;

where in the last line we have used the splitting Bz D C°Az and 3.10). Now using
3.3), we have

X
z2 C

ĈZ.Az C i/ X
z2

ĈZ.Az i/ #

C 2# C X
z2 U

dim ker.Az/

D X
z2

C
U

ĈZ.Az i/C X
z2

C
C

ĈZ.Az C i/

X
z2 U

ĈZ.Az C i/ X
z2 C

ĈZ.Az i/ C #

D X
z2 C

ĈZ.Az C cz/ X
z2

ĈZ.Az cz/ C # ;

3.11)

and the result follows.

For the following lemma, recall that D† W T †P / EndC.T †P // denotes the
natural linear Cauchy–Riemann operator on T †P / determined by the holomorphic
structure of T†P ; it is the linearization at the identity of the operator @N†j ' D T' C
j B T' B j acting on maps ' W †P †P We use the bundle map duW T†P u TW
to define linear maps

T †P /
du

u T W /;

EndC.T †P //
du

HomC.T †P ; u T W /:
3.12)

Lemma 3.8. For any smooth vector field v 2 T †P /,

Du.du.v// D du.D†v/:
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Proof. Choose any open subsetU †P withcompact support. On this neighborhood,
the flow ' of v is well defined for sufficiently close to 0, and by definition, if z 2 U
and Y 2 Tz†P

D†v/Y D r N@†j ' Y /
D0

;

where r is any connection on †P Similarly, using the fact that uW .†P ; j / W; J/
and 1W .†P ; j / .†P ; j/ are both holomorphic,

Du.du.v//.Y / D r N@J u B ' / Y / D0

D r OET.u B ' / Y / C J B T.u B ' / B j.Y / j D0

D r OETu B T' Y / C J B Tu B T' B j.Y / j D0

D r OETu B T' Y / C Tu B j B T' B j.Y / j D0

D r du.' z// N@†j ' Y /
D0

D rv.z/.du/ N@†j .1/.Y / C du r N@†j ' Y /
D0

D du.D†v.Y //:

Varying complex structures on the domain can be incorporated into the picture by
fixing j0 2 J.†/ and choosing a Teichmüller slice T through j0 see Definition 3.2).
We can now redefine the Banach space bundle E over T B so that

E.j;u/ D Lp;i HomC..T †P ; j /; u TW; J// ;

and extend the section N@J over this bundle by

N@J W T B E; j; u/ 7! Tu C J B Tu B j:
The linearization at j;u/ 2 N@ 1

J .0/ can now be expressed via its “partial derivatives,”

DN@J j; u/ W TjT ° TuB E.j;u/; y; v/ 7! Guy C Duv

where

Gu W TjT EndC.T †P // HomC..T †P ; j /; u T W; J ///
y 7! J B Tu B y:

We can now present the precise definition of regularity.

Definition 3.9. The curve .†; j; ; u/ 2 Mc is called regular if there exists a

Teichmüller slice T through j such that the operator DN@J j;u/ W Tj T °TuB E.j;u/
is surjective.
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Remark 3.10. This condition clearly does not depend on the choice of map

uW .†P ; j / W; J / representing a given equivalence class inMc; if ' W .†0; j 0/

.†;j / isabiholomorphicmap and u0 D uB', one canuse thepullback' to construct
a Teichmüller slice T 0 through j 0 so that the operators DN@J j 0; u0/ and DN@J j; u/
are conjugate. The next lemma shows also that the surjectivity of DN@J j; u/ – and

in fact the codimension of its image – does not depend on the choice of Teichmüller
slice.

Lemma 3.11. For .†; j; ; u/ 2 Mc and any two Teichmüller slices T and T 0

through j denote by LW TjT ° TuB E.j;u/ and L0
W Tj T 0 ° TuB E.j;u/ the

corresponding linearizations of N@J at j; u/. Then im.L/ D im.L0/.

Proof. Using the inclusion Tj T Lp;i.EndC.T †P //, extend L to

LW Lp;i EndC.T †P //° TuB E.j;u/
y; v/ 7! J B Tu B y C Duv:

For y D D†Y 2 im.D†/ Lp;i.EndC.T †P //, we use the fact that u is J -
holomorphic and write

L.y;0/ D J B Tu B y D du.jy/ D du.D†.jY //:

Then by Lemma 3.8, this equalsDu.du.jY // if Y is smooth, and the same holds for
general Y in the domain of D† by a density argument, thus the restriction of L to
im.D†/ has image contained in im.Du/. SinceLp;i.EndC.T †P // D im.D†/°Tj T

by Corollary 3.6, this implies im.L/ D im.L/. Now using the same argument for
T 0, we have im.L/ D im.L/ D im.L0/.

Since Du is Fredholm and T is finite dimensional, DN@J j; u/ is also Fredholm.
Recalling 3.1) and the definition of ind.uI c/ D vir-dimMcu in 1.1), we have

indD@NJ j; u/ D dim T C ind.Du/ D ind.uI c/ C dim Aut.†P ;j /:

For completeness, we now prove the fact that regularity gives Mc the structure of a

smooth orbifold of dimension ind.uI c/ near u.

Proof of Theorem 0. Assume j0; u0/ 2 N@
1.0/ is regular and let G D Aut.†P ; j0/.J

By Lemma 3.11, the regularity condition is independent of the choice of Teichmüller
slice, so if †P is stable, then using Lemma 3.3 we can pick a slice T through j0 that is
invariant under the natural G-action. Similarly if†P is A or T2, then without loss of
generality we can compose with a diffeomorphism such that j0 belongs to one of the
special Teichmüller slices TA or TT constructed in §3.1 which also admit a natural
G-action), and choose this for T There is now a G-action on T B defined by

' j;u/ D .' j; u B '/:
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J .0/, and the stabilizer of any j; u/ 2 N@
1This clearly preserves N@

1
J .0/ is the finite

subgroup f' 2 Aut.†P ; j0/ j ' j D j u B ' D ug Aut.u/. Since D@NJ j0;u0/
is surjective, Remark 3.10 implies that the same is true for all j; u/ in the G-orbit
of j0; u0/, thus by the implicit function theorem, a neighborhood U N@ 1.0/ ofJ
this orbit admits a natural smooth manifold structure, with dimension ind.u0I c/ C
dim Aut.†P ; j0/. Starting from a small neighborhood of j0; u0/ in @N 1.0/ and
extending

J
this under the G-action, we may assume U to be G-invariant. The quotient

U=G then inherits the structure of a smooth orbifold of dimension ind.u0I c/, with
isotropy group Aut.u0/ at j0; u0/ and a natural isomorphism

T.j0;u0/ U=G/ D kerD@NJ j0;u0/=aut.†P ; j0/:

One can adapt the argument in [Dra04] to show that charts constructed in this way
are always smoothly compatible.

To complete the proof, we show that U=G is homeomorphic to a neighborhood
of .†; j0; ;u0/ inM. Clearly U contains a representative of every J -holomorphic
curve near j0; u0/, so the point is to show that any two such curves j;u/ and j0; u0/

that are equivalent inMc are related by the G-action.
Suppose first that†P is non-stable and is notAor T2: then T contains only j0, and

j0; u/ j0; u0/ if and only if u0 D u B ' for some ' 2 Aut.†P ; j0/ D G, so we are

done. The case A is hardly more complicated: now T is 1-dimensional and M.†P / is
trivial, soM.†P / D T .†P / and j; j 0 2 T are equivalentinM.†P / ifandonly if j D j 0.

Thus j; u/ j 0; u0/ implies j D j 0 and u0 D u B ' for some ' 2 Aut.†P ; j /. But
our construction of TA identifies Aut.†P ; j/ with Aut.†P ; j0/ D G, so again we are

done.
Consider now the stable cases and T2, for which M.†P / is nontrivial. For these,

the groups Aut0.†P ; j/ WD Aut.†P ; j /\Diff0.†; / for every j 2 T are identified
with Aut0.†P ; j0/; this is a nontrivial statement only for †P D T2, where our explicit
construction of T D TT2 identifies every Aut0.T2; j / with T2, acting by
translations. Meanwhile, for each j 2 T there is a finite subgroup Gj Aut.†P ; j/
Gj D Aut.†P ;j / in the stable cases) naturally isomorphic to the stabilizer of

OEj 2 T .†P / under the M.†P /-action, such that Aut.†P ; j/ is the semidirect product

of Gj with Aut0.†P ; j0/. Nowif j; u/ and j 0;u0/ are two elements of U that
represent equivalent curves, so j 0 D j and u0 D uB for some 2 DiffC.†; /
we need to show that 2 G. In terms of the M.†P /-action on T .†P /, OE OEj D OEj 0

implies that if j and j 0 are both sufficiently close to j0, then OE belongs to the
stabilizer of OEj0 i.e. OE OEj0 D OEj0 Thus there is a unique ' 2 Gj0 such that
OE' D OE 2 M.†P /,and by construction, ' j D j0. Itfollows that B' 1/ j D j
so B ' 1

2 Aut0.†P ; j / D Aut0.†P ; j0/, and is thus a product of two maps in
Aut.†P ; j0/.



378 C. Wendl CMH

3.3. The generalized normal bundle. For the remainder of this section, we shall
consider a fixed non-constant holomorphic curve j; u/ 2 N@

1
J .0/ T B and

examine the operator DN@J j; u/ D Gu C Du more closely. When we refer to †P or

† as a Riemann surface, we will always mean with complex structure j
As was observed in [IS99], the operator Du defines a natural holomorphic structure

on the bundle u TW †P : indeed, the complex linear part of Du is also a

Cauchy–Riemann type operator, so there is a unique holomorphic structure whose
local holomorphic sections vanish under this operator. This induces a holomorphic
structure on HomC.T †P ; u T W /, and one can then show cf. [IS99]) that

du 2 HomC.T †P ; u T W //
is a holomorphic section. Thus if z0 is an interior critical point of u, we can choose
a holomorphic trivialization of HomC.T†P ; u T W / near z0 and express du as a

Cn-valued function of the form

z z0/kF.z/ 3.13)

for some k 2 N and Cn-valued holomorphic function F with F.z0/ ¤ 0. In this
case we define the order of the critical point by

ord.duIz0/ D k:

A similar definition is possible for z0 2 Crit.u/ \@† since du satisfies the totally
real boundary condition du.@†/ L, where

L D fA 2 HomC.T †P ; u T W /j@† j A.T .@†// ƒg:

Indeed, onecan then choose a trivialization near z0 such that du satisfies the Schwartz
reflection principal, and define ord.duI z0/ again via 3.13) after reflection. Define
the 1

2Z-valued algebraic count of critical points by

Z.du/ D X
z2du 1.0/\int†P

ord.duI z/ C
1

2 X
z2du 1.0/\@†

ord.duI z/: 3.14)

The expression 3.13) has a second important purpose: the complex subspace of
Tu.z/W spanned in the trivialization by F.z/ 2 Cn nf0g allows us to define a smooth
rank 1 subbundle

Tu u TW

such that for any z 2 †P nCrit.u/, Tu/z D im du.z/. We willcall this thegeneralized
tangent bundle to u.

Lemma 3.12. The intersection Tu/z \ ƒz is 1-dimensional for all z 2 @†.
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Proof. It can never be 2-dimensional since Tu/z is a complex subspace and ƒz is
totally real. Moreover, it is clearly at least 1-dimensional whenever du.z/ ¤ 0, as

then T u.Y / 2 Tu.z/L D ƒz for any Y 2 Tz@†. Since critical points are isolated
and the condition dim.Tu/z \ƒz D 0 is open, the result follows.

By the lemma, we can define a totally real subbundle

`T
D ƒ\ Tuj@† Tuj@†;

and by construction du now defines a section of the complex line bundle

HomC.T†P ; Tu/ †P

with totally real boundary condition du.@†/ LT where

LT
D fA 2 HomC.T †P ;Tu/j@† j A.T .@†// `T

g:

As defined in the appendix, the algebraic count of zeroes for this section is precisely

Z.du/.
Observe that both T†P and Tu admit natural extensions over the compactified

surface †x; we define this extension for Tu via its natural identification with T†P
under du since u is immersed near infinity. There is also a natural trivialization of

T†P at infinity defined by the cylindrical coordinates s; t/ 2 Z and we can define
also over @† such that the Maslov index T†P ; T.@†// vanishes. Then

c1.T †P / D †P /:

Now choose any trivializationˆ of Tu over @† and define it at infinity to be the same

as The combination of andˆ induces a trivialization of HomC.T †P ; Tu/ over @†

and at infinity, which we will also denote by ˆ Then we can apply Proposition A.2,
noting that the winding terms are zero by construction, and obtain

1 HomC.T†P ; Tu// CZ.du/ D cˆ 1

2
ˆ HomC.T †P ; Tu/; LT /: 3.15)

To break this down further, note that the natural bundle isomorphism

T†P HomC.T †P ;Tu/ Tu; v A 7! Av;

sends T .@†/ LT to `T thus

1.T †P / C cˆc1̂ Tu/ D c 1 HomC.T †P ; Tu// D †P / C c1̂ HomC.T †P ; Tu//;

and

ˆ Tu; `T / D T†P ;T .@†// C ˆ HomC.T †P ; Tu/; LT /
D ˆ HomC.T †P ; Tu/; LT /;
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so 3.15) implies

c1̂ Tu/ D †P /
1

2
ˆ Tu; `T / C Z.du/: 3.16)

We next choose a generalized normal bundle Nu †P which we define to be
any rank n 1 subbundle of u TW such that

u TW D Tu °Nu;

and the following conditions are satisfied:

1) On the cylindrical neighborhoods Uz for z 2 Nu matches the hyperplane
distributions and thus extends to infinity as Nujiz D j z

2) For z 2 @†, there is always a real n 1/-dimensional intersection `Nz
WD

Nu/z \ƒz, thus defining a totally real subbundle

`N
Nuj@†

such that `T ° `N
D ƒ.

3.4. Splitting the linearization. The splittingu TW D Tu°Nu defines projection
maps T 2 HomC.u TW; Tu// and N 2 HomC.u TW; Nu//, both of which
are smooth and satisfy exponential decay conditions due to the asymptotic behavior
of u. It follows that these define bounded linear projection operators

ƒ u T W /°V °XW 1;p;i T
W 1;p;i

`T Tu/° V T ;

ƒ u T W /°V °XW 1;p;i N W 1;p;i
`N Nu/ °X ;

where V T T †P / under the mapTu/ is the isomorphic image of V †

duW T †P / Tu/, v 7! Tu B v, and without loss of generality X 2 Nu/.
There is thus a Banach space splitting

ƒ u T W /°V °X D W 1;p;iW 1;p;i ° W 1;p;i
`T Tu/ ° V T

`N Nu/°X ;

and a similar splitting

Lp;i HomC.T †P ; u T W // D Lp;i HomC.T †P ; Tu//°Lp;i HomC.T †P ; Nu//;

so that with respect to these splittings, the operator

ƒ u T W / ° V ° X Lp;i HomC.T †P ; u T W //Du W W 1;p;i
can be written in matrix form as

Du D
DTu DNTu
DTN u

:
u DN
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It is trivial to show that

u W W 1;p;iDT Lp;i HomC.T †P ;Tu//`T Tu/° V T

and

u W W 1;p;iDN
`N Nu/°X Lp;i HomC.T †P ; Nu//

each satisfy the appropriate Leibnitz rule for a Cauchy–Riemann type operator. The
former is asymptotic at each puncture z 2 to the degenerate asymptotic operator

J0 d
dt

on a trivial complex line bundle; removing the exponential weight as in §2.1,

this operator becomes J0 d
dt i, giving Conley–Zehnder index 1 with respect to

u to W 1;p;ithe natural trivialization Thus the restriction of DT `T Tu/ has index

†P / C 2c1̂ Tu/ C ˆ Tu; `T / #

and adding the dimension of V T we find

u / D †P / C 2cˆind.DT
1 Tu/ C ˆ Tu; `T / C #

D 3 †P / C # C 2Z.du/

D dim Aut.†P ; j / dim T .†P / C 2Z.du/;

3.17)

where the second line follows from 3.16).
We callDNu the normal Cauchy–Riemann operator atu. It is also Fredholm; from

the asymptotic identification ofNu with along orbits, we seethatDNu is asymptotic
to Az at each puncture z 2 We can use .3.16/ to relate its index to ind.uI c/.
Abbreviate ĈZ. c / D Pz2 C ĈZ. z C cz/

Pz2 ĈZ. z cz/. Then
removing the exponential weights as in §2.1, we apply the Riemann–Roch formula
2.1) and repeat the calculation in 3.11) to find

u / D n 1/ †P / C 2cˆind.DN
1 Nu/ C ˆ Nu; `N /

C X
z2 C

ĈZ.Az C i/ X
z2

ĈZ.Az i/C dim X

D n 1/ †P / C 2c1̂ Nu/ C ˆ Nu; `N / C ĈZ. cz/

1 u T W / cˆD n 1/ †P / C 2 cˆ 1 Tu/

C ˆ u TW; ƒ/ ˆ Tu;`T / C ĈZ. c /
1 u T W / 2 †P / 2Z.du/ C ˆ uI c/D n 1/ †P / C 2cˆ

D ind.uI c/ 2Z.du/:

3.18)

The main goal for this section is the following:
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Theorem 3. Assume .†; j; ; u/ 2 Mc is a non-constant curve with Morse–Bott
asymptotic orbits and T is any Teichmüller slice through j Then kerDN@J j; u/
contains a subspace ker.Gu C DTu / TjT ° W

1;p;i Tu/`T ° V T of dimension

2Z.du/ Cdim Aut.†P ; j/ such that the normal projection induces a natural isomorphism

kerDN@J j; u/= ker.Gu C DT
u / D kerDN

u ;

and

imDN@J j;u/ D Lp;i HomC.T †P ;Tu//° imDN
u :

In particular, we have

dim kerD@NJ j; u/ D 2Z.du/ C dim Aut.†P ;j / C dim kerDN
u ;

dim cokerDN@J j; u/ D dim cokerDN
u :

Corollary 3.13. .†; j; ; u/ 2 Mc is regular if and only if DNu is surjective.

The reason for this result is essentially that the analysis of the map y; v/ 7!
Guy C Duv when v is a section of Tu can be reduced to Lemma 3.5, which one
can regard as an analytical statement about the smoothness of Teichmüller space. To
achieve this reduction, we introduce certain special Banach spaces of sections: for
each z0 2 Crit.u/, choose holomorphic coordinates and corresponding trivializations
of T†P and Tu near z0 so that the bundle map duW T†P Tu locally takes the form
z 7! zk, where k D ord.duI z0/. Now for any function d W Crit.u/ Z, define the
Banach space

W k;p;i;d T †P /

loc on †P n Crit.u/, class W k;p;i nearto consist of sections v that are of class W k;p

infinity, and such that near each z0 2 Crit.u/, using the coordinates and trivialization
chosen above, the map

zd.z0/v.z/

is of classW k;p. Note that v.z0/ may or may not be well defined: if d.z0/ > 0then v
is allowed to blow upat z0, e.g. it could be meromorphicwith a pole of order d.z0/.
A suitable Banach space norm can be defined using weighting functions supported

near Crit.u/, and the subspaceW k;p;i;d
T.@†/ T †P / isdefined byadding theusualboundary

condition; similarly we can define such spaces on the bundles Tu, EndC.T †P / and

HomC.T†P ; Tu/. These are naturally isomorphic to our original Banach spaces if
d.z/ D 0 for all z 2 Crit.u/.
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The usefulness of this notion lies in the fact that if we choose d.z/ WD ord.duIz/,
then the correspondence v 7! Tu B v defines Banach space isomorphisms

T.@†/ T †P /W 1;p;i;d du
W 1;p;i

`T Tu/;

V † du
V T ;

Lp;i;d EndC.T †P // du Lp;i HomC.T †P ;Tu//:

We will stick with this choice of d henceforward.
Using the fact that zk is holomorphic on the punctured disk for any k 2 Z, it is

easy to show that the natural linear Cauchy–Riemann operator on T †P / defines a

bounded linear map

d W W 1;p;i;dD†
T.@†/ T †P /°V † Lp;i;d EndC.T †P //:

The next result then follows from Lemma 3.8 by a density argument.

T.@†/ T †P /° V †Lemma 3.14. For any v 2 W 1;p;i;d Du.du.v// D du.D†d v/.

Lemma 3.15. The operator

T.@†/ T †P /° V †Ld W Tj T ° W 1;p;i;d Lp;i;d EndC.T †P //
y; v/ 7! jy C D†

d v

is surjective and has kernel of dimension

dim ker.Ld / D 2Z.du/ C dim Aut.†P ; j /:

Proof. We claim first that the result does not depend on the choice of Teichmüller
slice T Indeed, in light of the splitting Lp;i.EndC.T †P // D im.D†/° TjT and

the natural inclusion of this space in Lp;i;d EndC.T †P //, an argument analogous to
that in the proof of Lemma 3.11 shows that Ld has the same image as its natural

extension to Lp;i.EndC.T†P //° W
1;p;i;d

T †T.@†/ P /°V † We are thus free to change

T : in particular, we shall use Lemma 3.4 to assume in the following that all y 2 Tj T
vanish on some fixed neighborhood of Crit.u/ [The subscript d is meant to distinguish Ld and D†d from the operators that

appeared in Lemma 3.5; we shall continue to denote the latter simply by

T.@†/.T†P /° V †
LW TjT ° W 1;p;i Lp;i EndC.T †P //;

T.@†/.T †P / ° V †with D† denoting the restriction to W
1;p;i The latter has index
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ind.D†/ D dim Aut.†P ; j / dim T whereas Lemma 3.14 implies that D†d is
conjugate to DTu hence

ind.D†
u / D dim Aut.†P ; j / dim T C 2Z.du/d / D ind.DT

D ind.D†/ C 2Z.du/

and ind.Ld / D ind.L/ C 2Z.du/ D 2Z.du/ C dim Aut.†P ; j /. The result will
follow if we can show that dim ker.Ld / ind.L/ C 2Z.du/.

T.@†/ T †P / as

follows:

To this end, define a 2Z.du/-dimensional subspace P W 1;p;i;d

P shall consist of smooth sections on †P n Crit.u/, supported near Crit.u/,
which in our chosen holomorphic trivializations near any given z0 2 Crit.u/ take the
form

c1

z C
c2

z2 C C
cd.z0/

zd.z0/
3.19)

for ci 2 C if z0 2 int †, or ci 2 R if z0 2 @†. Since every section in P is
holomorphic near Crit.u/, there is an obvious extension of L,

L0
W Tj T ° W 1;p;i °P Lp;i EndC.T †P //;T.@†/.T †P /° V †

which has ind.L0/ D ind.L/ Cdim P D ind.L/ C2Z.du/ D ind.Ld /. Now since

L is surjective by Lemma 3.5, so is L0, and thus dim ker.L0/ D ind.L/ C 2Z.du/.
To finish, we claim that ker.Ld / ker.L0/. Indeed, suppose y 2 Tj T and

v 2 W 1;p;i;d T †P /°V † such that

D†v D j B y:

Then by our assumption on T y vanishes near Crit.u/ and v is therefore a
holomorphic section in this neighborhood, except possibly at points of Crit.u/. Near

z0 2 Crit.u/, the principal part of v in our holomorphic trivialization must have the
form of 3.19): in particular there cannot be an essential singularity or pole of order
higher than d.z0/ since zd.z0/v.z/ is of class W 1;p. There is thus a unique section
in P that equals the principal part near Crit.u/, and subtracting this off we obtain a

section in W 1;p;iT.@†/.T †P / ° V † showing that v belongs to the domain of L0.

Proof of Theorem 3. Any v 2 TuB can be decomposed uniquely as v D du.v†/ C
vN where v† 2 W 1;p;i;d T †P / ° V † and vN 2 W 1;p;i Nu/ ° X Then forT.@†/ `N
y 2 Tj T Lemma 3.14 implies

DN@J j;u/.y; v/ D J B Tu B y C du.D†
d v†/ C DNT

u vN C DN
u vN

D du j B y C D†
d v† C DNT

u vN C DN
u vN :
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u du.v†/, and this maps onto Lp;i.HomC.T †P ; Tu// byThe first term is Guy C DT
u / D 2Z.du/ Cdim Aut.†P ; j /. The desired

description

Lemma 3.15, with dim ker.GuCDT
of kerDN@J j; u/ and imDN@J j; u/ now follows easily from this expression

u vN 2 Lp;i.HomC.T †P ;Tu//.since DNT

Example 3.16. Though we have generally assumed n 2, Theorem 3 also applies
to the case n D 1: then the normal bundle has rank zero and DN@J j; u/ D Gu C
DTu so the theorem says that DN@J j; u/ is a surjective operator of index 2Z.du/ C
dim Aut.†P ; j /. One can apply this to understand the moduli space M.†P ;†P 0/ of
asymptotically cylindrical holomorphic maps

' W .†P ; j/ .†P 0; j0/

between two punctured Riemann surfaces † n and †0

n
0, up to equivalence

by automorphisms on the domain. Such maps are equivalent to holomorphic maps

.†;j / .†0;j 0/ that send to 0. Combining Theorem 3 and Theorem 0, we see

that for any ' 2 M.†P ;†P 0/, the connected component M'.†P ;†P 0/ containing ' is a

smooth orbifold with

dimM'.†P ;†P 0/ D 2Z.d'/;
where of course the right hand side can be computed from the Riemann–Hurwitz
formula. This fact is classical, but it will be useful in the proof of Theorem 2 to view
it in our particular analytical setup.

Before restricting to the four-dimensional case, we mention one more simple
application of Theorem 3. It gives namely an upper bound on the algebraic number
of critical points in terms of the dimension of the kernel. For somewhere injective
curves in the generic case this is simply the index, and we obtain:

Corollary 3.17. For generic J all somewhere injective curves u 2 M satisfy

2Z.du/ ind.uI c/:

So for instance, if @† D ; then somewhere injective curves of index 0 or 1 are

necessarily immersed for generic J This is a simple version of the folk theorem that

generically, spaces of curves with at least a certain number of critical points have

positive codimension.

3.5. The transversality criterion in dimension four. We will now show that Theorem

3 implies Theorem 1 in the case dimW D 4. The key is the fact that Nu †P is
nowa complex linebundle, soDNu will besubject to theconstraints ofProposition 2.2.
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Recall from 1.2) the definition of the normal first Chern number cN uI c/. An
easy exercise combining the index formula with the relations 2.3) between winding

numbers and Conley–Zehnder indices yields the following alternative definition,
reminiscent of 2.4):

1 u T W / †P / CcN uIc/ D cˆ 1
2

ˆ u TW; ƒ/

C X
z2 C

ˆ z C cz/ X
z2

Ĉ z cz/:
3.20)

Proposition 3.18. If u 2 Mc is not constant, then

c1.Nu; `N ; A c / D cN uI c/ Z.du/:

Proof. Choosing appropriate trivializations ˆ the relation follows by a simple
calculation using the definitions 3.20) and

c1.Nu; `N ;A c / D c1̂ Nu/ C
1

2
ˆ Nu; `N /

C X
z2 C

ˆ Az C cz/ X
z2

Ĉ Az cz/

and plugging in 3.16).

To finish the proof of Theorem 1, we relate DNu to a similar operator on a larger
weighted domain: for z 2 regard the numbers cz D i now as exponential
weights and, recalling the notation for weighted Sobolev spaces from §2, extendDNu
to a new operator

Dz
N
u W W 1;p;c Nu/ Lp;c HomC.T†P ; Nu//:

The extended operator is conjugate to an operator on non-weighted spaces asymptotic

toA c so 2.1) gives ind.DzNu / D ind.DNu /. Moreover, Proposition 2.2 together

with Proposition 3.18 above implies forDzNu precisely the transversality criterion and
kernel bound that we would desire for DNu The result then follows because the

domain of DzN u hence kerDNu kerDzNu contains that of DN u

4. Application to spaces of embedded curves

As an application of the transversality theory, we shall in this section state and prove
a stronger version of Theorem 2. For preparation, we review in §4.1 some basic
facts from the intersection theory of asymptotically cylindrical holomorphic curves
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in four dimensions. This theory has been developed by R. Siefring [Sie08] for curves

with fixed asymptotic orbits, and is generalized to the Morse–Bott case in [SW]. We

expand on this in §4.2 by proving some useful formulas involving the intersection
theory for multiple covers of orbits and holomorphic curves. The proof of Theorem 2
then appears in §4.3.

For the remainder of this paper we consider only pseudoholomorphic curves without

boundary.

Notation. In the following, we will often abbreviate the notation by printing
summations with -signs in their index sets, e.g.

X
z1;z2/2 1 2

F z1;z2/:

The intended meaning is then literally,

X
z1;z2/2

C
1

C
2

FC.z1; z2/ C X
z1;z2/2 1 2

F z1; z2/:

Several variations on this scheme will appear.

4.1. Intersection theory for punctured holomorphic curves. This section will
consist only of definitions and statements; we refer to [Sie08], [SW] for all proofs.

Throughout the following, W; J/ is a 4-dimensional almost complex manifold
with cylindrical ends M ; H / whose vector fields X are Morse–Bott. Suppose

uW †P W and u0
W †P 0 W are asymptotically cylindrical holomorphic

curves belonging to moduli spaces Mc and Mc
0

respectively for some choices c, c0

of asymptotic constraints. One of the goals of the intersection theory is to define an
integer i.uI c j u0I c0/ that is invariant as u and u0 move continuously through Mc
andMc

0

respectively, and can be interpreted as an algebraic intersection count for the
two curves. One can show see [Sie08]) that if u and u0 are geometrically distinct,
meaning they do not both cover the same somewhere injective curve, then their
intersections occur only within some compact subset, so the algebraic intersection count

u • u0 is indeed finite and nonnegative. It is not however homotopy invariant in
general, as intersections can run out to infinity under homotopies. There is nonetheless
a well defined notion of an asymptotic intersection number

i1.uIc j u0I c0/ 2 Z

which is also nonnegative, such that the sum

i.uI c j u0I c0/
WD u • u0 C i1.uI c j u0I c0/ 4.1)
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depends only on therespective connectedcomponentsMcu andMc
0

u0 Withsome
additional effort and as yet unpublished) analysis, one can show that i1.uIc j u0I c0/ D 0
for generic somewhere injective curves and generic J : more precisely, the spaces

of curves for which i1.uI c j u0I c0/ > 0 have positive codimension, and so u • u0

attains the maximal possible value i.uI c j u0I c0/ generically.
It is useful to phrase the definition of i.uI c j u0I c0/ in terms of the relative

intersection number u •ˆ u0, where ˆ is an arbitrary choice of trivialization for
along the asymptotic orbits of u and u0. One computes u •ˆ u0 by counting the
intersections of u0 with a small perturbation of u that is offset in the ˆ-direction at

infinity: the resulting integer ishomotopy invariantanddepends on ˆ up to homotopy.
Then as shown in [Sie08], [SW], for each pair of orbits ; 0 and numbers ; 0 2 R,
there are integers ˆ C ; 0 C 0/ such that

i.uI c j u0Ic0/ D u •ˆ u0 X
z;z 0/2 0 /

ˆ z cz; z 0 c0z0/; 4.2)

with the dependence onˆ canceling out on the right hand side. The actual definitions
of ˆ C ; 0 C 0/ are as follows. We set ˆ C ; 0 C 0/ D 0 if and 0

are geometrically distinct orbits, and for any simply covered orbit and m; n 2 N,
if m and n denote the corresponding covers of let

ˆ m
C ; n

C 0/ D mn min ²
ˆ m

C /
m

;
ˆ n

C 0/

n
³: 4.3)

; 0/ when D 0
D 0. Observe thatWe shall use the abbreviated notation ˆ

the right hand side of 4.2) makes sense even when u and u0 are not geometrically
distinct; in particular, we can use it to define i.uI c j uI c/, which is the appropriate
generalization of a “self-intersection number” for punctured holomorphic curves.

If u and u0 are geometrically distinct, then we can directly define the asymptotic
contribution i1.uI c j u0Ic0/, thus giving a more conceptually revealing definition of

i.uI c j u0I c0/ via 4.1). Indeed, any pair of punctures for u and u0 that have the same

sign and indistinct orbits offers a potential for intersections to be “hidden at infinity”.
For two such punctures z 2 and z0 2 0/ denote by

i1̂ uz;u0z0/

1

the relative

ˆ

asymptotic intersection: this is computed by restricting both curves to
suitably small cylindrical neighborhoods of the respective punctures and counting any
intersections that appear near infinity after perturbing u in the ˆ-direction. It turns

out that whenever both curves are J-holomorphic, i uz; u0 / is a priori boundedz0

from below by ˆ z; z0 /: thus the integer

i1.uz; u0
z 0/ WD i1̂ uz; u0

z0/ ˆ z; z0/
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is nonnegative and independent of ˆ Intuitively, it counts the potential intersections
of these two ends that can “emerge from infinity” under homotopies of u and u0

that fix their asymptotic orbits. Additional intersections may appear if either orbit
is unconstrained and allowed to move in a Morse–Bott family: the number of these

is also nonnegative and turns out to depend only on the orbits and their constraints.
Thus for any orbits ; 0 and numbers ; 0 2 R, define

iMB. C ; 0

C 0/ D ˆ ; 0/ ˆ C ; 0 C 0/:

Wewill interpret iMB. z cz; z 0 c0z 0/as the number of “extra” hidden intersections
not counted by i1.uz; u0 / that can emerge as these two ends move genericallyz 0

according to their respective constraints, potentially shifting the asymptotic orbits.
The total asymptotic intersection number is then

i1.uI c j u0I c0/ WD X i1.uz;u0 / C iMB. z cz; z0 c0z / : 4.4)z0 0

z;z0/2 0 /

Each individual term in this sum is nonnegative, and can be expected to vanish under
generic perturbations of u and u0 as “potential” intersections become real.

If uW †P W is somewhere injective,werecall from[MW95] thatu admits a local
description near any critical point allowing one to define a nonnegative singularity
index i.u/: it gives an algebraic count of self-intersections u.z/ D u.z0/ for z ¤ z0

after making local perturbations so that u becomes immersed. As shown in [Sie08],
this still makes sense in the puncturedcasebecause u is necessarily embedded outside
of some compact subset: then i.u/ 0, with equality if and only if u is embedded.

It is however possible for self-intersections to escape to infinity under homotopies,
thus i.u/ is not homotopy invariant, but as with the intersection number, one can add
a nonnegative asymptotic singularity index i1.uI c/ so that the sum

sing.uIc/ WD i.u/ C i1.uIc/ 4.5)

depends only on the connected component Mcu and equals i.u/ generically but not
always. The condition sing.uI c/ D 0 is then necessary and sufficient so that all
somewhere injective curves inMcushould be embedded for generic J ; note that one

still may have u embedded if sing.uI c/ > 0, but then generic curves close to u will
not be. The asymptotic contribution is a sum of the form

2i1.uI c/ D X
z¤z0

2
i1.uz; uz0/ C iMB. z cz; z0 cz 0/

C X
z2

2i1.uz/ C 2iMB. z cz/ ;
4.6)

in which every term is nonnegative if u is J-holomorphic. We interpret i1.uz/ as

the number of self-intersections near the puncture z that may emerge from infinity
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under generic homotopies fixing the orbit z; this can happen if z is multiply
covered, as distinct branches of the cylinder approaching z run into each other under
perturbation. Define

2i1.uz/ D i1̂ uz; uz/ ˆ z/;

/ 2 Z is the “self-intersection analogue” of ˆ ; 0/, giving a differentwhere ˆ
theoretical minimum for i1̂ uz; uz/since the two ends are identical. To write it down
explicitly for the k-fold cover of a simple orbit chooseany nontrivial eigenfunction
e ofA k whose winding about k equals k/, and note that its covering numberˆ
cov.e / 2 N depends on k and ˆ k/ but not on the choice e cf. Lemma 4.2).
Thus we denote

cov k/ WD cov.e /;
and then define

ˆ k/ D k 1/ ˆ k/ C cov k/ 1 : 4.7)

Similarly, iMB. z cz/ counts further self-intersections that may emerge if z
is allowed to move in a Morse–Bott family. This does not happen if every orbit
in the family has the same minimal period, but if z converges to an orbit with
smaller minimal period and thushigher covering number), the existence of additional
branches can hide extra intersections at infinity. The following characterization of
Morse–Bott manifolds will be useful.

Proposition 4.1. If M is a 3-manifold with a Morse–Bott vector field X, then every

Morse–Bott submanifold P M can be described as follows. There exists a number

> 0 such that all but a discrete set of orbits in P have minimal period ; we shall
call these generic orbits. The other orbits will be called exceptional: any such orbit
with period is an m-fold cover of a simply covered orbit for some m 2 called
the isotropy), and k is nondegenerate for all k 2 f1; : : : ; m 1g. The isotropy of
an exceptional orbit is always 2 if dim P D 2.

Now, define iMB. i/ D 0 if i > 0; recall this case is associated with a

constraint that fixes z, thus there can be no “extra” self-intersections appearing due

to Morse–Bott considerations. The definition is as follows if i < 0: given an orbit
set D if it is nondegenerate, otherwise let denote any nearby generic orbit in
the same Morse–Bott family as If is simply covered, k 2 N, and has isotropy
m 2 N, then set

2iMB. k i/ D k.m 1/ k/ C cov k/ cov k/; 4.8)

where / 2 f0; 1g is defined in 3.4). Observe that the two covering terms refer
to homotopic eigenfunctions e of A k and e of A k so if e is an n-fold cover then
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e is as well, hence cov k/ cov k/ The inequality may sometimes be strict,
because e is attached to a km-covered orbit, while the orbit of e is only k-covered.
In any case, clearly iMB. k i/ 0 in general, and it vanishes whenever is a

generic orbit.
For the curve u 2 Mc, choose for each z 2 a generic perturbation z of the

orbit z, setting z D z if either z is nondegenerate or z 2 C Then let

cov1. I c/ D X
z2

cov z/ 1 ;

and

covMB. I c/ D X
z2 U

cov. z/ 1 z/;

with cov. z/ denoting the covering number of z

Theorem Adjunction formula [Sie08], [SW]). For any somewhere injective curve

u 2 Mc,

i.uI c j uI c/ D 2sing.uI c/ C cN uI c/ C cov1. I c/ C covMB. I c/:

4.2. Some covering relations. It will be useful to have formulas relating the
intersection invariants of holomorphic curves and their multiple covers. A prerequisite for
this is to have corresponding covering formulas for periodicorbits, so to start with,
assumeM is a 3-manifold with stable Hamiltonian structure H D X; ; !; J /. Given
an orbit we shall denote the corresponding asymptotic operator by A and the
k-fold cover of by k. Then if A e D e, the eigenfunction has a k-fold cover ek

such that A k ek D k ek. In general, we say that an eigenfunction f of A k is a

k-fold cover if there exists an eigenfunction e of A such that f D ek.
In the following, whenever a trivializationˆ along an orbit appears, we will use

the same notation ˆ to denote the resulting induced trivializations along all covers

of

Lemma 4.2 ([Wena], Lemma 3.5). Suppose ˆ is a trivialization along Then a
nontrivial eigenfunction e of A k is a k-fold cover if and only if windˆ e/ 2 kZ.

Lemma4.3. Suppose is a periodicorbitofX and 2 R. IfA C isnondegenerate
and p. C / D 0, then A k C k is nondegenerate and p. k C k / D 0 for all
k 2 N.

Proof. If p. C / D 0, then A C / contains a pair of neighboring eigenvalues

with opposite signs and eigenfunctions of the same winding number. The k-fold
covers of theseare eigenfunctionsofA kCk with thesameproperties, thusA kCk
is nondegenerate and has even parity.
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Remark 4.4. If 2 R is sufficiently close but not equal to zero, then we may always
assume that for all k 2 N up to some arbitrarily large but finite) bound, A k C
is nondegenerate and k

C k / D
k

C / We can thus replace k with
in the statement above whenever is assumed close to zero, and the same applies to
several statements below.

Corollary 4.5. For any exceptional orbit in a Morse–Bott family, the underlying
simple orbit and all of its nondegenerate covers are odd.

Proposition 4.6. For any periodic orbit ofX, k 2 N and 2 R, there exist integers
q C Ik/ 2 f0; : :: ; k 1g such that

ˆ k
C k / D k ˆ C / q C I k/: 4.9)

Proof. The integer q C I k/ WD ˆ k
C / k ˆ C / is well defined

after observing that all dependence on ˆ in the right hand side cancels, so it remains
only to show that this number is between 0 and k 1. Consider first the case D 0,
and choose a trivialization ˆ0 along such that ˆ0 / D 0. Then there exists an
eigenfunction e of A with negative eigenvalue and windˆ0.e / D 0, and another
eigenfunction eC with nonnegative eigenvalue and windˆ0.eC/ D 1; moreover there
are no eigenfunctions with eigenvalue strictly between that of e and 0. Moving to
the k-fold cover, we obtain eigenfunctions ek and

ekC of A k with

windˆ0.ek/ D 0 eigenvalue < 0,

windˆ0.ekC/ D k eigenvalue 0,

and there is no k-fold covered eigenfunction with eigenvalue strictly between that
of ek and 0. Then by Lemma 4.2, this range of the spectrum of A k contains no
eigenfunctions with winding k. Since the winding depends monotonically on the
eigenvalue, this implies ˆ0 k/ 2 f0; : : : ;k 1g. An analogous argument gives the
corresponding result for C. Finally if ¤ 0, the arguments above give the same

relation between the eigenfunctions of A C and A k C k

In preparation for the next lemma, for any orbit numbers m; n; k 2 N and

i; 2 R, define the nonnegative integers

Qq

m
C i; n

C Ik/ D kmn min ² ˆ m
C i/

m
;

n
C /

n
³

kmn min ²
ˆ m

C i/
m

q m
C iI k/

km
;

n
C /

n ³:

4.10)

C ; 0C 0/ andq C Ik/Thenasimple computationusing thedefinitionsof ˆ
implies:
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Lemma 4.7. For any simply covered orbit m;n; k 2 N and i; 2 R,

ˆ m
C i; n

C / Qq

m
C i; n

C Ik/:km
C ki; n

C / D k ˆ
Returning nowto the contextof a 4-manifoldW with Morse–Bott cylindrical ends

M ; H / let us fix the following notation: u 2 Mc is a holomorphic curve with
domain .† n ; j /, .†; j/ and .†z; |Q/ are closed Riemann surfaces, and ' W .†z; |Q/

.†;j / is a holomorphic branched cover of degree deg.'/ 2 N. This restricts to a

branched cover of punctured surfaces

'P W †z n z † n ;

where z WD ' 1. / and there is a resulting holomorphic curve u B ' W z† n z W

Its asymptotic orbits are related to those of u by

z D
kz
'.z/

at each z 2 z where kz WD ord.d'I z/ C 1, so that ' is kz-to-1 near z. The
constraints c on can then be pulled back to constraints ' c on z like so: for
any 2 constrained to the orbit define ' c by fixing the orbit kz at each

z 2 ' 1. / Then u B ' 2 M' c.

Proposition 4.8. For u 2 Mc and the cover u B ' 2 M' c defined above,

cN u B ' I ' c/ D deg.'/ cN uI c/ C Z.d'P/ C Q;
where Q is a nonnegative integer. Specifically,

Q D X
z2z

q ' z/ c'.z/I kz/:

Proof. Denote
Qu WD uB', Qc WD ' c and observe that for each 2 Pz2' 1. / kz D

k WD deg.'/. Note also that by extending 'P to the circle compactifications of †z n z
and † n one can apply the Riemann–Hurwitz formula and obtain

Z.d'P/ D †z n z/ C k † n /:

Then using 4.9) and Remark 4.4,

1 .' u T W / z† n z / C X
2

X
z2' 1. /

cN QuI Qc/ D cˆ ˆ kz
Qcz/

1 u T W / k † n / C Z.d'P/ C k X
2

D kcˆ ˆ c /

C X
2

X
z2' 1. /

ˆ kz
Qcz/ kz ˆ c /
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D k cN uIc/ C Z.d'P/ C X
z2z

q ' z/ c'.z/I kz/:

Proposition 4.9. For the cover u B ' 2 M' c as in Proposition 4.8 and any other
curve v 2 Mc

0

i.u B 'I' c j vI c0/ deg.'/ i.uI c j vI c0/:

Proof. Again denote k WD deg.'/, kz WD ord.d'I z/ C 1 2 N for each z 2 z Qu WD

u B ' and
Qc WD ' c. The relative intersection number satisfies

Qu •ˆ v D k.u •ˆ v/.
Writing the puncture set of v as 0, we apply Lemma 4.7 with Remark 4.4 in mind
and find

i. QuI Qc j vIc0/ D Qu •ˆ v X
z;z 0/2z 0 /

ˆ z Qcz; z 0 c0z0 /

D k u •ˆ v/ X
;z 0/2 0 /

X
z2' 1. /

ˆ kz
Qcz; z0 c0z0/

D k u •ˆ v/ X
;z 0/2 0 /

X
z2' 1. /

kz ˆ c ; z0 c0z0/

Qq
c ; z 0 c0z0I kz/

D k u •ˆ v/ k X
;z 0/2

0/

ˆ c j z0 c0z 0/

C X
z;z0 /2z 0/

Qq ' z/ c'.z/ j z0 c0z0 j kz/

D k i.uI c j vI c0/ C X
z;z0/2z 0 /

Qq ' z/ Qc'.z/ j z0 c0z 0 j kz/:

The last term is nonnegative.

Definition 4.10. For a given set of punctures the set of all choices of asymptotic
constraints on admits apartial order defined as follows. Wesay c cC ifforevery

z 2 at which the asymptotic orbit z is constrained by c it is also constrained by
cC to the same orbit.

Observe that if c cC, then McC Mc and cz cCz for each z 2 One
expects in

ˆ

general that weaker constraints should lead to larger intersection numbers,
as intersections canmore easily emerge from infinity under moregeneralhomotopies.
Indeed, using c cC together with the fact thatz z C / always has monotone
decreasing dependence on we easily derive the following:
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Proposition 4.11. If c cC and u 2 McC then

cN uI c / cN uI cC/:

Moreover, for any other curve v 2 Mc,

i.uI c j vI c/ i.uI cC j vI c/:

4.3. Multiply covered limits are immersed. We shall now state and prove a
parametrized version of Theorem 2.

Definition 4.12. We will say that u 2 Mc is a stable, nicely embedded curve with
respect to the constraints c) if it is somewhere injective and satisfies the following
relations:

1) i.uI c j uI c/ 0,

2) ind.uIc/ 0,

3) ind.uIc/ > cN uI c/.

Before going further, let us consider the properties of such curves and the
motivation for the definition. Observe first that the combination of ind.uI c/ 0 and the
relation

2cN uIc/ D ind.uIc/ 2 C 2g C # 0.c/ 4.11)

gives the lower bound cN uI c/ 1. Then the adjunction formula together with

i.uI c j uI c/ 0 implies sing.uI c/ D 0, so every somewhere injective curve in Mcu
is embedded. We can also deduce from the adjunction formula that cN uI c/ 0,
and then 4.11) implies ind.uIc/ 2. The index 1 and 2 cases are of particular
interest: since # 0.c/ and ind.uI c/ always have the same parity due to the index
formula, it follows from 4.11) that curves of index 1 or 2 satisfying our conditions

have cN uI c/ D 0 and thus i.uI c j uIc/ D 0. The transversality criterion
ind.uI c/ > cN uI c/ is clearly satisfied, and thus u lives in a 1 or 2-dimensional family

of embedded curves that never intersect each other. These are precisely the curves
that appear in J-holomorphic foliations of W or in the case where W is a symplectization

R M, the finite energy foliations of Hofer, Wysocki and Zehnder [HWZ03].
Isolated curves with ind.uI c/ D 0 can also occur in such foliations surrounded by
families of larger index): we shall show for instance that stable, nicely embedded
index 0 curves appear as the underlying somewhere injective curves when families
of larger index degenerate to multiple covers.

It will be useful to note that due to 4.11), all stable nicely embedded curves also
have the following properties:

1) g D 0,

2) # 0.c/ D 1 if ind.uI c/ D 1, and otherwise # 0.c/ D 0.
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In the cases ind.uI c/ D 1 or 2, we have observed that cN uIc/ D 0 and thus the
adjunction formula also implies cov1. I c/ D covMB. I c/ D 0. We will use this
shortly to prove the following consequence for the unique even puncture z 2 0.c/
in the index 1 case:

Proposition 4.13. If u 2 Mc is a stable, nicely embedded curve with ind.uI c/ D 1,
then the unique even puncture z 2 0 c/ satisfies one of the following:

1) z is nondegenerate and even,

2) z belongs to a 2-dimensional Morse–Bott manifold, and z/ D 0 if and

only if z 2 C

Moreover, z is either simply covered, or is doubly covered such that the underlying
simple orbit is nondegenerate and odd.

Definition4.14. Adaptingsome terminology fromSymplecticFieldTheory[EGH00],
we willcall z 2 a bad puncture if z 2 0.c/ and z D

2 for some nondegenerate

odd orbit

Remark 4.15. In this terminology, Proposition 4.13 says that the unique even puncture

has an orbit of covering number 1 or 2, and is bad in the latter case. In SFT
of course, “bad” also means “to be ignored”: moduli spaces of curves with such

punctures cannot be oriented, but they also need not be counted in constructing the
algebra of the theory.

This is enough preparation to state the strong version of Theorem 2. In the
following, we use expressions such as “for generic J…” or “J is generic” to mean
more precisely: “there exists a Baire subset J J!.W; HC; H / such that the
following is true if J 2 J.” Similarly, “for generic homotopies…” means that there
exists aBaire subset in the space ofsmoothhomotopies in J!.W; HC; H / for which
the statement is true.

Theorem 4. Assume fJ g 2OE0;1 is a smooth 1-parameter family of almost complex
structures in J!.W; HC; H / such that either

1) the homotopy 7! J is generic, or

2) J D J is independent of and is generic.

Suppose n 1 2 OE0; 1 and un W †P W is a sequence of asymptotically
cylindrical J n-holomorphic curves, which are stable and nicely embedded with respect
to some fixed asymptotic constraints c and converge to a smooth J 1 -holomorphic
curve uW †P W Then:

If ind.uI c/ D 0 or ind.uIc/ D 1 with z simply covered for the unique even

puncture z 2 0.c/, then u is a stable, nicely embedded curve.
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If ind.uIc/ D 1 and the unique even puncture z 2 0.c/ is bad with z doubly
covered), or ind.uI c/ D 2, then u is either a stable, nicely embedded curve or
an unbranched multiple cover of a stable, nicely embedded index 0 curve.

In all cases, u is regular.

Note that since sing.uIc/ D 0 for all stable, nicely embedded curves, the Morse–
Bott contribution iMB. z/ also vanishes at each puncture. Plugging in 4.8) leads

immediately to the following consequence:

Lemma 4.16. For any stable, nicely embedded curve u, if z 2 U is an
unconstrained puncture with a degenerate orbit z which is exceptional in the sense of
Proposition 4.1, then z/ D 0 and cov z/ D cov z/.

Proof of Proposition 4.13. The first alternative follows easily from the formula
p. z cz/ D z cz/ ˆ z cz/ and the definition of z/. We have

Ĉalso cov z/ D 1 and OEcov. z/ 1 z/ D 0, implying the same statements

for z due to Lemma 4.16.
If z is nondegenerate, we claim now that it cannot be a multiple cover of any

even orbit 0. Otherwise there are eigenfunctions e of A 0 with identical winding
numbers and eigenvalues of opposite sign, so the corresponding covers give a pair of
neighboring eigenfunctions in thespectrum ofA z ; their eigenvalues are therefore the
largest negative and smallest positive elements of A z /, implying cov z/ > 1,
a contradiction. This leaves two possibilities for the simply covered orbit underlying
z: it is either even and thus is z itself) or is odd but hyperbolic, in which case z

can only be its double cover.
In the Morse–Bott case, suppose first that z/ D 0. Then any section whose

covering number is counted by cov z / has the same winding and hence the same

covering number as a section in kerA z
thus also the same covering number as

z itself. We conclude that z is simply covered, so either z is as well or it is an
exceptional orbit with isotropy 2 as described in Proposition 4.1. The same result
follows if z/ D 1 because OEcov. z/ 1 z/.

In the proof of Theorem 4, we shall need the following small variation on the
usual implicit function theorem:

Lemma 4.17. Suppose f W X Y is a smooth Fredholm map between Banach
spaces with f .0/ D 0, and Q X is a smooth finite dimensional submanifold of X
that contains 0, is contained in f 1.0/ and satisfies

dim ker df .0/ D dim Q:

ThenQalso containsa neighborhood of 0 inf 1.0/; in particular thisneighborhood
is a smooth manifold of dimension dim ker df .0/.
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Proof. Let V D im df .0/ Y and choose a linear projection map V W Y V
along some closed complement. Then V B f W X V is also Fredholm and is
regular at 0, so the implicit function theorem gives V Bf / 1.0/ near 0 the structure
of a smooth manifold of dimension dim ker df .0/. Now

Q f 1 .0/ V B f / 1.0/;

where the spaces on the left and right are manifolds of the same dimension containing

0; the result follows.

To every connected component of the moduli space Mc, one can associate the
data .†; ; P / where † n is the domain of any curve in the component well
defined up to diffeomorphism) and P is the collection of orbits and/or Morse–Bott
submanifolds fPzgz2 that determine the asymptotic behavior of such a curve. Let
us introduce the notation

M.†; ; P / Mc

to indicate the union of all connected components of Mc that have this particular
domain and asymptotic behavior.

Lemma 4.18. For any component M.†; ; P / Mc, there exists a finite set C
containing tuples .†0; 0; P 0; c0/ such that the following is true: if u D v B ' 2
M.†; ; P / is a multiple cover and v is the underlying somewhere injective curve,
then there exists 0; 0; c0/ 2 such that 2

0

.† P 0; C v M.†0; 0; P Mc0/ and
c ' c0 in the sense of Definition 4.10.

Proof. The Riemann–Hurwitz formula constrains the genus of †0 to be less than or
equal to that of †, allowing only finitely many different closed surfaces. Having
chosen †0, the relation z D

kz for z 2 and kz'.z/ WD ord.d'Iz/ C 1 allows kz to
vary between 1 and cov. z/, thus giving a finite range of choices for each puncture.
After making this choice, we can also decide which punctures z; z0 2 might have

the same image under ': this is allowed only when Pz and Pz 0 belong to the same
Morse–Bott manifold, and again presents a finite range of choices. The number of
punctures 0 and their asymptotic limits P 0 are uniquely determined by this choice.
Finally, the constraints c0 can be defined as follows: for any constrained z 2
define WD '.z/ to be a constrained puncture, fixed at the unique orbit such that

D
kz

z Any puncture 2 0 not touched by this algorithm will be considered

unconstrained. By construction now, c ' c0.

Proof of Theorem 4. We will carry out the proof in several stepsassuming fJ g 2OE0;1
is a generic homotopy; the proof for a fixed generic J is the same but slightly simpler
in a few details.
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If u is somewhere injective there’s nothing to prove, so assume u D v B ' for a

somewhere injective curve v W †P 0 W and a holomorphic branched cover ' W †
†0 of degree k 2. By Lemma 4.18, the domain of v is one out of a finite set of
choices and satisfies constraints c0 with c ' c0. For each such choice, there exists
a generic set of homotopies fJ g such that we can assume ind.vIc0/ 1, and the
intersection of all these generic sets is also generic, hence the genericity assumption
implies ind.vI c0/ 1. By 4.11) then, cN vIc0/ 1.

Step 1. We show that cN vIc0/ D 1. Combining Proposition 4.8 and Proposition

4.11 yields

0 cN uIc/ cN uI ' c0/ D kcN vI c0/ C Z.d'P/ C Q;

so the only other alternative is cN vI c0/ D 0, in which case cN uI c/ D Z.d'P/ D
Q D 0. Then all critical points of ' W † †0 are at punctures, and the Riemann–
Hurwitz formula gives 2k 2 of them counting multiplicity) since both † and †0

necessarily have genus zero. Denote kz D ord.d'I z/C1 2 N for each z 2 Now

Q D 0 implies that for each z 2 if D '.z/,

ˆ z ' c0/z/ D ˆ ' c0/z/ D kz ˆkz c0 /;

so depending on the constraints, we have either ˆ z/ 2 kzZ or ˆ z i/ 2 kzZ,
the latter only if 2 0U which implies z 2 U In either case, Lemma 4.2 then
implies that a certain eigenfunction e of A z is a kz-fold cover. If it is the first
case, then cov z/ kz, and this equals cov z / by Lemma 4.16. In the second

ˆ
case, we have cov. z/ kz and e 2 kerA If z/ D 0, then windˆ e/z D

z/ 2 kzZ, so Lemmas 4.2 and 4.16 again imply cov z / D cov z/
kz. Otherwise z/ D 1, so Lemma 4.16 implies that z is generic and thus

z/ cov. z/ 1 D z/ OEcov. z/ 1 kz 1. Putting all of these cases

together and summing over z 2 we find

cov1. Ic/ C covMB. I c/ X
z2

kz 1/ D 2k 2 2:

Thus for large n, i.unI c j unI c/ D 2 sing.unI c/ C cN unI c/ C cov1. Ic/ C
covMB. Ic/ 2, a contradiction.

In light of this result and 4.11), we have either ind.vI c0/ D 0 with all punctures
odd or ind.vI c0/ D 1 with exactly one even puncture.

Step 2. Claim ind.vIc0/ D 0. If not, then ind.vI c0/ D 1 and # 00 c0/ D 1,

00

and since covers of even orbits are always even Lemma 4.3), # 0.c/ 1, implying
ind.uI c/ D 1. In this case u also has exactly one even puncture z 2 0.c/, so

kz D with WD '.z/ 2 c0/. There are now three cases to consider:

1) If is nondegenerate, then so is z and its extremal eigenfunctions are the
k-fold covers of those of giving cov z / k.
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2) If is Morse–Bott with / D 0, then the extremal eigenfunction of a

generic perturbation has the same winding and thus same covering number
as a section in kerA and the same is true for the k-fold cover. Moreover, the

Morse–Bott family containing z is at least k-fold covered, which implies the

z
So again, covsame for sections in kerA z / D cov. z/ k.

3) If / D 1, then Lemma 4.16 implies z is generic, so we can take z D z
without loss of generality and conclude OEcov. z / 1 z/ k.

The conclusion from all of these cases is that cov1. I c/CcovMB. I c/ k 1
1, and since cN uI c/ D 0 for the index 1 case, a contradiction arises again from the
adjunction formula: i.unI c j unIc/ D 2 sing.unI c/ C cN unIc/ C cov1. I c/ C
covMB. Ic/ 1.

Step 3. Since 0 D ind.vI c0/ > cN vI c0/ D 1, it now follows immediately from
Proposition 4.9 and Proposition 4.11 that v is a stable, nicely embedded curve, as

0 i.uI c j uI c/ i.uI ' c0 j uI ' c0/ k2 i.vI c0 j vI c0/:

Step 4. If ind.uIc/ D 1, then its unique even orbit cannot be simply covered since

v has only odd orbits. Thus the even orbit must be a doubly covered orbit at a bad
puncture.

Step 5. We claim u is immersed and has ind.uI c/ > 0. Suppose not, i.e. that

eitherZ.du/ > 0 or ind.uIc/ D 0. Then ind.uI c/ 2Z.du/, so Theorem 1 gives

2Z.du/ dim ker D@NJ 1 j;u/=aut.†P ; j/
2Z.du/ C K.cN uI c/ Z.du/;# 0.c// D 2Z.du/

4.12)

since cN uI c/ Z.du/ < 0. Extending the usual bundle on T B to allow
parametrized J we can now consider a nonlinear operator

N@
W

OE0; 1 T B E; ; j0; u0/ 7! N@J j 0;u0/:

Since v is embedded, every critical point of u arises as a branch point of 'P W †P †P 0,

thus Z.du/ D Z.d'P/, and 4.12) now implies

dim kerD@N. 1; j; u/ 2Z.d'P/ C dim Aut.†P ; j/ C 1: 4.13)

To apply Lemma 4.17, we shall now find a smooth manifold of precisely this
dimension that is contained in N@ 1.0/. The key is to look at the space of holomorphic
branched covers †P †P 0 close to 'P. Observe that since v is embedded and
satisfies the transversality criterion 0 D ind.vI c0/ > cN vI c0/ D 1, for close to

1 we obtain from the implicit function theorem a smooth 1-parameter family of
asymptotically cylindrical pseudoholomorphic maps

v W .†P 0; j / W; J /
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satisfying theconstraints c0, withv 1 D v. Theholomorphic maps from†P to .†P 0; j /
can then be identified with the zero-set of a section

N@†0
W

OE0; 1 T B†0

E†0

; ; j0;'0/ 7! T' 0

C j B T' 0

B j 0;

and by the remarks in Example 3.16, a neighborhood of 'P in @N 1
†0 .0/ is a smooth

manifold of dimension 2Z.'P/ C Aut.†P ; j/ C 1. Now for ; j0; '0/ 2 @N 1
†0 .0/, we

have ;j 0;v B '0/ 2 N@ 1.0/, thus embedding N@
1

†0 .0/ as a smooth submanifold

of dimension 2Z.d'P/ C dim Aut.†P ;j / C 1 in @N 1.0/. It follows that 4.13) is an
equality, and Lemma 4.17 now implies that every element of N@ 1.0/ near 1; j;u/
belongs to this submanifold; this is a contradiction, as it implies that for large n, un
must also be a multiple cover.

Step 6. Since we now know that u is immersed, it is immediate from Theorem 1
that u is regular.

Corollary4.19. For genericJ ifu 2 Mc is astable, nicelyembeddedJ-holomorphic
curve thenMcu is a smooth orbifold of dimension ind.uI c/ with only isolated
singularities. Moreover, the images of any two curves inMcu are either identical or disjoint,
and they are all stable and nicely embedded except for a discrete set of unbranched
multiple covers of embedded curves.

Proof. Thestatement about the images follows from positivityof intersections and the
condition i.uI c j uI c/ 0. The only remaining part not immediate from Theorem 4
is that the multiple covers are isolated; this is related to the fact that the orbifold
singularities must be isolated for orientation reasons see Remark 4.21 below), but
does not followfrom it. So, weclaim thatfor any multiple cover u D vB' arising as a

limit in the theorem, every other curve close to u is somewhere injective. Herewe can

assume ind.uI c/ is 1 or 2, so cN uI c/ D cov1. Ic/ D covMB. I c/ D 0. Now
note that Theorem 3 and the implicit function theorem give a natural isomorphism
TuMc D kerDN since u is immersed, and it will thus suffice to show that nontrivialu
sections 2 kerDNu Nu/ are not multiply covered. Otherwise, using the
natural identification Nu D ' Nv, there exists a nonzero 2 kerDNu and a section

0 2 Nv/ such that D 0
B '. We know that is zero free also at infinity), since

using 2.7), Proposition 3.18 and the usual identification of DNu with an operator on
non-weighted spaces,

Z. / C Z1. / D c1.Nu; `N ;A c / D cN uI c/ D 0:

This implies that the winding of near each puncture z 2 attains the extremal
value ˆ z cz/. But this is impossible if D 0

B ': indeed, the fact that

'P W †P †P 0 is immersed but both surfaces have genus zero implies that there exists
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ẑ

a puncture z 2 at which ' has nontrivial branching order kz WD ord.d'Iz/ > 1,
so the asymptotic winding wind / of near z satisfies

wind ẑ / kz ˆ ' z/ c0'.z//

D ˆ z ' c0/'.z// q ' z/ c0'.z/I kz/
ˆ z cz/ q ' z/ c0'.z/I kz/;

implying q ' z/ c0'.z/Ikz/ D 0 and thus ˆ z cz/ 2 kzZ. Then repeating an
argument that is by now familiar from the proof of Theorem 4, we find a contradiction
in the form cov1. I c/ C covMB. Ic/ > 0.

Remark 4.20. It is shown in [Wenb] that if uW †P W is a stable nicely embedded

index 2 curve, then the nearby curves in Mcu foliate a neighborhood of u.†P / in W

Now suppose u is a multiply covered index 2 curve that is a limit of stable nicely
embedded curves. Then since u is immersed and TuMc consists of zero-free sections
of its normal bundle, the same argument shows that the nearby curves in Mcu again

foliate a neighborhood of u.†P /. In this foliation, u.†P / is an exceptional leaf, being
the embedded image of an isolated index 0 curve. An explicit example is constructed
below.

Remark 4.21. The fact that singularities in a 1-dimensional orbifold are isolated is
obvious, and in two dimensions it is true if the orbifold is oriented, as an oriented
orbifold can onlyhavesingularities ofcodimension at least two. By results in [BM04],
Mu does admit an orientation if u is a stable, nicely embedded curve of index 2, and

the same is true for index 1 if and only if the unique even puncture is not a “bad”
puncture. This excludes singularities in the index 1 case entirely unless the even

puncture is bad, and indeed, we have shown that multiple covers do not appear in
this case. These remarks are not quite enough to prove Corollary 4.19 however,
as in general there can be multiple covers with trivial automorphism groups, which
therefore do not cause singularities.

Example 4.22. We now consider a concrete situation in which nicely embedded
curves of index 2 are seen to converge to an isolated, unbranched multiple cover.

Identify S2 with the extended complex plane and let

W D S 2 S2 / n f.0; 0/; .1;1/; .1;1/g;

choosing the standard complex structure J D i ° i This can be regarded as a

manifold with three negative cylindrical ends asymptotic to the standard contact 3-
sphere, whose Reeb orbits are the fibers of the Hopf fibration. The asymptotics are
therefore Morse–Bott: there is a 2-dimensional family of closed orbits at each end.
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Now for 2 C n f0; 1; 1g, consider the 2-dimensional family of J -holomorphic
four-punctured spheres

u W S2
n f0; 1; 1; 1g W; z 7! z3 z C

z C 1
; z2 :

These are all proper and embedded, with asymptotic behavior as follows:

At 0, u is asymptotic to a fixed doubly covered orbit in the end .0; 0/.

At1, u is asymptotic to a fixed doubly covered orbit in the end .1;1/.
At 1 and 1, u is asymptotic to an arbitrary not fixed) simply covered orbit in
the end .1; 1/.

One can use the setup we have described to show that the moduli space of embedded

holomorphic curves satisfyingprecisely theseasymptotic constraintsandrepresenting
the same relativehomology class is indeeda smooth 2-dimensional manifold: indeed,
ind.uI c/ D 2 and i.uI c j uIc/ D cN uIc/ D cov1. I c/ D covMB. I c/ D 0.
Now as 0, the family converges to the curve u0.z/ D z4; z2/ DW v.z2/, an
unbranched double cover of the embedded 3-punctured sphere

vW S2
n f0; 1; 1g W; z 7! z2; z/;

and with the appropriate asymptotic constraints c0 one can indeed show that

ind.vI c0/ D 0 and i.vI c0 j vI c0/ D cN vI c0/ D 1. Observe that the images

of u for near zero together with the image of v foliate a neighborhood of v in W

Due to the ordering of the punctures, Aut.u0/ is the trivial group, so the moduli space

remains a smooth manifold even with u0 included. If we take the quotient of this
space by forgetting the order of the punctures, it becomes a smooth orbifold in which

u0 has isotropy group Z2.

Remark 4.23. It is also interesting to see what happens to the family u as 1
or 1: here it turns out that u breaks into a J-holomorphic building in the
sense of the SFT compactness theorem [BEH+03]). At 1in particular, the
building includes a component that is an unbranched multiple cover of index 2 over
a nicely embedded index 0 curve. It is work in progress by the author to generalize
Theorem 4 in light of SFT compactness and show that such behavior is quite general:
indeed, that only unbranched multiple covers can arise in such limits, and that there
exists a well behaved gluing theory for buildings of this type.
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Appendix. Counting boundary zeros

In this appendix we define a 1
2Z-valued count of zeroes for sections of a complex

line bundle with totally real boundary condition. Let E; J/ S be a topological
complex line bundle over a compact, connected and oriented surface with boundary.
Partition the boundary into two open and closed subsets @S D @0S t @1S, either of
which may be empty. Now choose a totally real subbundle ` Ej@0S @0S, and

consider the space of all continuous sections
W S E such that @0S/ ` and

¤ 0 on @1S. We will call such sections admissible. Suppose is an admissible
section with a discrete zero set 1.0/ S. If z0 2 1.0/ \ int S, then it is
standard to define the order of the zero ord. I z0/ as the winding number of over a

small loop around z0, computed in any local trivialization. The boundary condition
makes it possible to extend this definition to isolated zeros on @0S as well: for
z0 2 1.0/ \ @0S, choose coordinates identifying a neighborhood U of z0 with
DC D fz 2 C j jzj 1 and Im z 0g, such that z0 D 0 and U\ @S D DC \ R.
Choosealso a local trivializationoverUthat identifies` with DC\R/ R DC C.
Then is represented on this neighborhood by a continuous function f W DC C,
satisfying the boundary condition f DC \ R/ R. We can therefore extend f to

a continuous function f D
W D C on the full disk, satisfying fD.Nz/ D f D.z/.

The order ord. I z0/ is then the order of the isolated zero of fD at 0, i.e. the winding
number of f D for a small circle about 0. This definition does not depend on the
choices.

For an admissible section with discrete zero set 1.0/, we now define the
algebraic count of zeros by

Z. / D X
z2 1.0/\intS

ord. I z/ C
1

2 X
z2 1.0/\@0S

ord. I z/:

Proposition A.1. Suppose 0 and 1 are admissible sections with isolated zeros, and

are homotopic through a family of admissible sections. Then Z. 0/ D Z. 1/.

Proof. This is clear if @0S D ;: then Z. / is the Euler number of E if @1S D ;,
or more generally the homotopy invariant winding number about @1S with respect to
any global trivialization.

We reduce the general case to this by using a doubling argument: define the
conjugate surface SC WD S with the opposite orientation, and the conjugate bundle
EC ; J C/ WD E; J/ SC Then we can glue S to SC along @0S to define the

doubled surface SD, and similarly form a bundle ED; JD/ SD by gluing E; J/
to EC ;J C/ via the unique complex bundle isomorphism Ej@0S EC j@0S that

restricts to the identity on `. Now@SD D @1SD D @1S [ @1SC Any admissible
section of E defines an admissible section D of ED, and the same statement
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applies to homotopies, thus it suffices to prove the following formula relating Z. /
to Z. D/:

Z. D/ D X
z2. D/ 1.0/

ord. D
I z/

D 2 X
z2 1.0/\int S

ord. I z/ C X
z2 1.0/\@0S

ord. I z/

D 2Z. /:

This follows from two important facts which are easy to check: first, if z is a zero of
in int S, its order is the same as that of the corresponding zero in SC Secondly,

if z is a boundary zero of then its order equals its order as an interior zero of D.

The doubling formula Z. D/ D 2Z. / which emerged from this proof is a useful
fact in itself; we shall apply it now to express Z. / in terms of the relative first Chern
number of E and the boundary Maslov index of the pair Ej@0S; `/.

Proposition A.2. For any choice of trivialization ˆ along @S,

Z. / D c1̂ E/ C
1

2
ˆ E;`/ C wind

@̂1S /:

Proof. Label the right hand side yZ. / and observe that it does not depend on ˆ
and depends on only up to homotopy through admissible sections. Moreover, it is
clear that Z. / D yZ. / if @0S D ;, so it will suffice to prove the doubling formula

yZ. D/ D 2 yZ. / Since the orientations of both EC and SC are reversed, we have

windˆD
@1SD D/ D 2 wind

@̂1S / for the natural trivialization ˆD induced byˆ We

claim also that
cˆD
1 ED/ D 2c1̂ E/ C ˆ E; `/;

which will prove the result. This can be reduced to the standard additivity of the
Maslov index under gluing. Construct a new surface Sx S by gluing a disk to
each component of @1S, and glue in trivial bundles along ˆ over these disks to
produce a new bundle Ex; JN/ Sx, such that ExjS D E and cˆ E/x D cˆ E/.1 1
Now @ xS D @0S, and 2c1̂ E/ C ˆ E; `/ is by definition the absolute Maslov
index xE; `/. Alternatively, one can define the latter as ˆ xE; `/ whereˆ is any
trivialization along @ xS that extends globally over xS.) Now the gluing property for

xE; `/ gives

2 xE; `/ D xED
D 2c1 xED

since xSD is closed. But the latter is also equal to 2cˆD
1 ED proving the claim.
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