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Bounding the symbol length in the Galois cohomology of function
fields of p-adic curves
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Dedicated to my teacher Professor R. Parimala on her 60th birthday

Abstract. Let K be a function field of a p-adic curve and / a prime not equal to p. Assume that
K contains a primitive /™ root of unity. We show that every element in the /-torsion subgroup
of the Brauer group of K is a tensor product of two cyclic algebras over K.
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Introduction

Let &k be a field and [ a prime number not equal to the characteristic of k. Let y; be
the group of {™ roots of unity and g; (m) the tensor product of m copies of ;. For
n > 0, let H"(k, uu;) denote the n™ Galois cohomology group with coefficients in

iy Letk* =k \ {0}. We have an isomorphism k*/k*l — H(k, ;). Fora € k*,
let (a) denote its image in H'(k, ;). For ay,....a, € k*, the cup product gives
an element (aq) - (a2) ... (a,) € H*(k, u;(m)), which we call a symbol.

Assume that k contains a primitive /™ root of unity. Fix a primitive /" root of
unity ¢ € k. Then we have isomorphisms p; — p; (i) of Galois groups. Hence we
have isomorphisms H” (k, uy(m)) — H"(k, ;). A symbol in H" (k, j17) is simply
the image of a symbol under this map.

A classical theorem of Merkurjev ([M]) asserts that every element in H2(k, u,)
is a sum of symbols. A deep result of Merkurjev and Suslin (|[MS]) says that ev-
ery element in H2(k, p;) is a sum of symbols. By a theorem of Voevodsky ([V]),
every element in H” (k, u,) is a sum of symbols. Suppose that k is a p-adic field.
Local class field theory tells us that every element in H?(k, ;) is a symbol and
H"(k, 1) = Oforn > 3. If k is a global field, then the global class field theory
asserts that every element in H” (k, y¢;) is a symbol.

lth
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Question 1. Do there exist integers Ny (r)(k) such that every element in H"(k, p;)
is a sum of at most N;(n)(k) symbols?

Of course, the answer to the above question is negative in general. It can be shown
that for K = k(X,..., X,,...), there is no such N;(n)(K) for n > 2, However we
can restrict to some special fields. It is well-known that if N;(n){k} exist for k, then
Ni(n)(k((r))) exist. We ask the following

Question 2. Suppose that N; (r)(k) exist for some field k. Do they exist for k(r)?

This is an open question. However we can restrict to fields of arithmetic interest.
For example we consider the p-adic fields. The most important result in this direction
is the following

Theorem (Saltman, [S1], (cf. [S2])). Let k be a p-adic field and K/ k(t) be a finite
extension. Suppose thatl # p. If A is a central simple algebra over K representing
an element in H*(K, ju;), then ind(A) divides [2.

Let K be as in the above theorem. Suppose p # 2. Let o € H?(K, j15) and A a
central simple algebra over K representing «o. Then by the above theorem, we have
ind(A) = 1,2,4. Ifind(A) = 1, then « is a trivial element. If ind(A) = 2, then it is
well known that ¢ is a symbol. Assume that ind(A) = 4. By a classical theorem of
Albert ([A]), @ is a sum of two symbols. For H3(K, j1;), we have the following

Theorem ([PS2], 3.5, (cf. [PS1],3.9)). Let k be a p-adic field and K / k(t) be a finite
extension. Suppose that | # p. Every element in H>(K, ju;) is a symbol.

Let k£ and K be as above. The field K is of cohomological dimension 3 and
H"(K, ;) = Oforn > 4. By the above theorem, N;(3)(K) = 1 and the only case
where Nj(n)(K) is to be determined is for n = 2. Tt is known that N;(2)(K) > 2
(cf. [S1], Appendix). In this article we prove the following

Theorem. Let k be a p-adic field and K/ k(t) be a finite extension. Suppose that
I # p. Every element in H*(K, j;) is a sum of at most two symbols; in other words,
Ni(2)(K) = 2.

1. Some preliminaries

In this section we recall a few basic facts about Galois cohomology groups and divisors
on arithmetic surfaces. We refer the reader to ([C]), ([Lil]), (JLi2]) and ([Se]).
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Let k be a field and / a prime number not equal to the characteristic of k. Assume
that k contains a primitive /' root of unity. Let ¢ € & be a primitive /™" root of unity.
Let j1; be the group of I roots of unity. Since k contains a primitive /" root of unity,
the absolute Galois group of k acts trivially on ;. For m > 1, let g (m) denote the
tensor product of m copies of y;. By fixing a primitive /™ root of unity ¢ in k, we
have isomorphisms of Galois modules gt (m) — ;. Throughout this paper we fix a
primitive /™ root of unity and identify j; (m) with ;.

Let H"(k, A) be the n™ Galois cohomology group of the absolute Galois group
I' of k with values in a discrete I'-module A. The identification of p;(m) with
gives an identification of H" (k, ju;(1n)) with H"(k, j17). In the rest of this paper we
use this identification.

Let k* = k \ {0}. Fora,b,c € k* we have the following relations in H2(k, 1;).

(1) (a)-(bc) = (a) - (b) 4 (a) - (c);
2) (@)-(b) = —((b) - (@));
3) (@ -G =0
@) (a)-(=a)=0.
If | > 3, we have (@) - (a) = (a) - (—1)}a) = (@) - (—a) = 0.

Let K be a field and / a prime number not equal to the characteristic of K. Let
v be a discrete valuation of K. The residue field of v is denoted by «(v). Suppose
char(x(v)) # [. Then there is a residue homomorphism d,: H" (K, p;(m)) —
H"™ Y c(v), pty(m — 1)). Let o € H™"(K, pu; (m)). We say that « is unramified at v
if d,(a) = 0; otherwise it is said to be ramified at v.

Let X be aregular integral scheme of dimension , with function field K. Let X!
be the set of points of X of codimension 1. A point x € X! gives rise to a discrete
valuation v, on K. The residue field of this discrete valuation ring is denoted by
«(x). The corresponding residue homomorphism is denoted by d,. We say that an
clement { € H*(K, p;(m)) is unramified at x if 0, () = 0; otherwise it is said to
be ramified at x. We define the ramification divisor ramx () = ) x as x runs over
points in X! where ¢ is ramified. Suppose C is an irreducible subscheme of X of
codimension 1. Then the generic point x of C belongs to X! and we set d¢ = 9.
If « € H"(K, j;(m)) is unramified at x, then we say that « is unramified at C. We
say that « is unramified on X if it is unramified at every point of X!,

Let k be a p-adic field and K the function field of a smooth projective geometri-
cally integral curve X over k. By the resolution of singularities for surfaces (cf. [L.i1]
and [Li2]), there exists a regular projective model X of X over the ring of integers O
of k. We call such an X a regular projective model of K. Since the generic fibre X of
X is geometrically integral, it follows that the special fibre X is connected. Further
if D is a divisor on X, there exists a proper birational morphism X’ — X such that
the total transform of D on X is a divisor with normal crossings (cf. [Sh], Theorem,
p. 38 and Remark 2, p. 43). We use this result throughout this paper without further
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reference. If P € X is a closed point and f € K is a unit at P, then we denote the
image of f in the residue ficld at P by f(P).

Let & be a p-adic field and K the function field of a smooth projective geomet-
rically integral curve over k. Let/ be a prime number not equal to p. Assume that
k contains a primitive /™ root of unity. Let & € H?(K, 7). Let X be a regular
projective model of K such that ramx (¢} = C + E, where C and E are regular
curves with normal crossings. We have the following

Theorem 1.1 (Saltman [S1]). Let K, «, X, C and E be as above and P € C U E.
Let R be the local ring at P. Let , 8 € R be local equations of C and E respectively
at P.
() IfP e C\E (or E\NC), thena = o + () - (u) (ora = o' + (8) - (u)) for
some unitu € R, o € H*(K, ;) unramified on R.
(2) If P € CNE, then either a = o + () - (u) + (§)- () ora = o' 4 () - (ud")
for some unitsu,v € R, &' € H?(K, p;) unramified on R.

Let P € C N E. Suppose that « = o’ + () - (u) 4+ (§) - (v) for some units
u,v € R, o € H*(K, y;) unramified on R and 7, & are local equations of C and E
respectively. Then u(P) = d¢ (e}(P) and v(P) = dg(«)(P). Note that u(P) and
v(P) are uniquely defined modulo /™ powers. Following Saltman ([S3], §2), we say
that P is a hot point of « if u(P) and v{P) do not generate the same subgroup of
€(P)* /(P

We have the following

Theorem 1.2 (Saltman ([S3], 5.2). Letk, K, o, X be as above. Then « is a symbol
if and only if there are no hot points of «.

2. The main theorem

Let k be a p-adic field and K/k(¢) be a finite extension. Let ! > 3 be a prime
number not equal to p. Assume that k contains a primitive /™ root of unity. Let
B € H*(K, u;) and X aregular proper model of K. Let ¢: X’ — X be a blow-up
such that X’ is a regular proper model of K and ramy+(8) = C’' 4+ E’, where C' and
E’ are two regular curves with normal crossings (cf. §1 or [S1], Proof of 2.1). Let
Qe C'NE. LetC{ C C"and E] C E’ be the irreducible curves containing Q.
Let R" = Ox o be the regular local ring at Q and m ¢ its maximal ideal. We have
mo = (7’,8"), where 7’ and & are local equations of C| and E| at Q respectively.
Let vy and vy be the discrete valuations on K at C and E respectively.

Lgt P = qbéQ). Let R be the regular local ring at P and mp its maximal ideal.
We have the induced homomorphism ¢*: R — R’ of local rings, which is injective.
Let 7,6 € R be such that mp = (7, 5).
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Lemma 2.1. Supposethat § = B'+(f')-(g') for some [, g’ € K and B’ unramified
on R'. Then Q is not a hot point of B.

Proof. Since B is unramified on R’, the ramification data of S on R’ is same as that
of (f"}-(g’). Since (f') - (g’), being a symbol, has no hot points ([S3], cf. 1.2), O
is not a hot point of S. O

Lemma 2.2. Suppose that B = ' + (§) - (gv) + (f) - (g), where ' is unramified
on R, f € R is not divisible by 6 and v, g € R are units with g(P) = v(P). Then
Q is not a hot point of B.

Proof. Wehavem g = (z/,8’) and § has ramification on R’ only at 7" and &’. Since
R/mp — R'/mg, wehave g(Q) = g(P) = v(P) = v(Q). If C{ (or E]) is the
strict transform of a curve on X, then either § is a local equation of C{ or Ve () =0.
In fact, if Cj is the strict transform of C; on X, then v¢, (8) = Vel (6) and & itself
being a prime in R, the assertion follows.

Suppose that C| and E are strict transforms of two itreducible curves on X. If
& is not a local equation for either C{ or E{, we claim that (§) - (gv) is unramified on
R’. Infact, since g and v are units in R, (&) - (g v) is unramified on R except possibly
at 4. Since f is not divisible by &, (/) - (g) is unramified at 4. Since f is ramified
on R' only at 7" and &’ and ¢ is not one of them, (8) - (gv) is unramified on R’. By
(2.1), O is not a hot point of g. Assume that & is a local equation for one of them,
say Cy. Since & does not divide f', we have d¢/(f) = vg and dg; (B) = g Fi (f),
where bar denotes the image in the residue field of C| and rilde denotes the image
in the residue field of E{. Since B is ramified at £, vg/(f) is not a multiple of /.

We have d¢; (B)(Q) = v(0)g(Q) = g(Q)? and g, (B)(Q) = g(@)" 7"

[ # 2 and VE! (f) is not a muliiple of 7, g(©)? and g(Q)in L generate the same

subgroup modulo I™ powers. Hence Q is not a hot point of A.

Suppose that C/ is a strict transform of an irreducible curve on X and £ is an
VE! (5)§in N

. Since

exceptional curve on X’. We have d E (B) = (gv) . Since Ef is an
exceptional fibre in X, the residue field of R is contained in the residue field at £7.
Hence 5/ (B) = (¢(P)u(P)"#1 Vg(P) 51 = gy =" 5 ) gince  is
ramified at E7, 2v E (6)+v E (f)isnotamultiple of /. Suppose & is a local equation
of C{ at Q. Since é does not divide f and vy (6) = 1, we have SC{ (B) = gv. Thus

BC{ (B)(Q) = g(P)v(P) = g(P)>. Since! # 2 and 2vE{(5) + in(f) 1s not a

multiple of /, the subgroups generated by g(Q)? and g(P)szi @ e1 ) are equal

modulo /" powers. Hence Q is not a hot point of 8. Suppose § is not a local equation
of C{at Q. We have d¢; () = g i ) Since B is ramified at C{, ve/(f) is not a
multiple of /. Thus as above @ is not a hot point of .
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The case E] is a strict transform of an irreducible curve on X and C7 is an
exceptional curve in X’ follows on similar lines.
Suppose thatboth C| and £/ are exceptional curves in X’. Then as above we have

’ 5 ’ / 5 £
de(B) = gAY and ap (8) = g () EH DY) Since fis ram-
ifiedat C{ and E7, 2vey (6)+ vey (f)and 2vg: (8)+ v ( f)are not multiples of /. In

. /7 8 £ 4 8 4
particular, the subgroups generated by g(P)Zvcl( el and g(P)ZvE Alue- 1oL
are equal modulo the /™ powers. Thus Q is not a hot point of j. O

Lemma 2.3. Suppose that f = B+ () - (u) + (8) - (v), where " unramified on R’
and u,v € R units withu(P) = v(P). Then Q is not a hot point of B.

Proof. Since f is ramified at C/, either e () or vey (&) is not divisible by /. In
particular their sum vy (8) is non-zero. We have

vci (8)

der (B)(Q) = u(P)' i o)t = u(p)

Suppose that ve(7d) is a multiple of /. Since vgl (7d) is non-zero, C{ is an ex-

. : /(78
ceptional curve. As in the proof of (2.2), we see that 8(;{ (B) = u(P)vcl - 1.
Which is a contradiction, as § is ramified at C{. Hence Ve (rd) is not a multiple of

r (8 . .
I. Similarly, we have 8E{ BYQ) = u(P)vEl ) and v (7ré) is not a multiple of 7.

/(8 ' (8
Hence u(P)vcl S and u(P)vEl S generate the same subgroup of «( 2)* modulo
K(P)*l and @ is not a hot point of . O

Theorem 2.4. Let k be a p-adic field and K/ k(1) be « finite extension. Let ] be a
prime number not equal to p. Suppose that k contains a primitive [ root of unity.
Then every element in H*(K, j1;) is a sum of at most two symbols.

Proof. If I = 2, then, as we mentioned before, by ([A]), ¢ is a sum of at most (wo
symbols. Assume that/ > 3. Leto € H2(K, y7). Let X be a regular proper model
of K such that ramyx () = C 4+ E, where C and E are regular curves with normal
Crossings.

Let P € C U E be aclosed point of X. Let Rp be the regular local ring at P on
X and m p be its maximal ideal.

Let T be a finite set of closed points of X containing C' N F and at least one closed
point from each irreducible curve in C and . Let A be the semi-local ring at 7' on X.
Letmy,... 7w, 61,...,85 € A beprime elements corresponding to irreducible curves
in C and FE respectively. Let fi = my...7m,8;...8; € A. Let P € C N E. Then
P € C; N E; for unique irreducible curves C; in C and F; in E. Then = = 7; and
8 = §; arelocal equations of C and £ at P. Wehavea = o'+ () - (up)+(8)-(vp)
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ofra = o 4 (7) - (up8') for some units, up, vp € R and o’ unramified on R ([S1],
cf. 1.1). By the choice of fi, we have f; = mdwp for some wp € A which is a unit
at P. Letu € A be such that u(P) = wp(P) lup(P)forall P € C N E. Let
f = fiu € A. Then, wehave (f) = C + E + F, where F is a divisor on X which
avoids C, E and all the points of C N E. Further, for each P € C; N E;, we have
f = m;d;w;; for some w;; € A such that w;; (P) = up(P).

By a similar argument, choose g € K satisfying

(1) (g) = C + G, where G is adivisor on X which avoids C, E, F and also avoids
thepoinsof CNE, CNF,ENF;

(2) if Pe ENFando = o« + (§) - (v) for some unit v € Rp and ¢’ is unramified
at P, then g(P) = v(P).

Since C N E N F =, such a g exists.

We claim that 8 = ¢ + (f) - (g) is a symbol.

Let ¢: X' — X be a blow up of X such that X’ is a regular proper model of K
and ramx/ () = C'+ E’, where C’ and E’ are regular curves with normal crossings.

To show that § is a symbol, it is enough to show that £ has no hot points ([S3],
cf. 1.2). Let Q € C'"NE'. Let P = ¢(Q). Then P is a closed point of X,
R = 0Oxp C Ox.0 = R and the maximal ideal mp of R is contained in the
maximal ideal m g of R’. Letm o = (7’, &), with 7" and &’ be local equations of C’
and E’ at Q respectively.

Suppose that P ¢ C U E. Then « is unramified at  and hence unramified at Q.
By (2.1), Q is not a hot point of j.

Assume that P € C U E.

Suppose that P € C N E. Let & and § be local equations of C and £ at P
respectively. Then mp = (i, 8). By the choice of f and g, we have f = wdw; and
g = mw, for some units wi, w, € R. In particular, § is ramified on R only at &
and 8. Suppose that « = ¢ + (7) - (u) + () - (v) for some units #,v € R and ¢’
unramified on R. We have

B=a+(f) (&)
=o' + ()« (u) + (8) - (v) + (wdw1) - (ww2)
=o'+ () - () + Bw1) - (v) + (W) - () + (7) - (Tw2) + Gw1) - (Tw2)
=o'+ (wih) - (v) + () - (uwwa) + (wy) - (wwav)
=o'+ Wil () + () - (uwa) + Fw1) - (Twav)
=o'+ (i) () + (Ewav) - (wa) + (w3 v™h) - (uws) + Fwi) - (Twav)
—ao + (wl_l) -(v)+ (wz_lv_l) (uwy) + (rwav) - (uw28_1w1_1).

Since o + (w!) - (v) + (w5 v™1) - (wwy) is unramified on R, by (2.1), @ isnot a
hot point of B.
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Suppose that o = o’ + () - (u8") for some units, u, v € R and ¢’ unramified on
R. Then we have

p=a+(f)(g)
=o' + () - W) + (méwy) - (Tw2)
=o' + () - 8" + Gwywy ') - (rws)
=o' + (1) - @8 Gwiwy )™ + Gwiwy 1) - (w2)
=o' + () - (8" Tuwrwy) + Swiwy ) - (wa).
Ifi =1,then B = o + () - (uw]wy) + Gwyws!) - (ws). Since, by the choice
of f,u(P) = wi(P), by (2.3), Q is not a hot point of 3. Assume that/ > 1. Then
1 <i—1<1—1.Leti{ bethe inverse of 1 — i modulo /. We have
B=o + () (6 uwy 'wa) + Bwiwy ) - (wa)
=o' + T wwy ) - () + Gwiwy ') - (wa)
= o + (B wiwy ) () + G wiwy ) - (ws)
+ (@ wwy )™ - (o) + (wiwy ) - (wo)
= o + (0 wywy ) - (o) + (wiwy ) - (w2)
+ (B wiwy ) - (T wg).
Since o + (™ 'wiw; ™) - (w2) + (wiwy ') - (w2) is unramified on R, by (2.1),
Q is not a hot point of §.
Suppose that P € C \ E. We have o = o’ + (x) - (u) for some unit » in R and

o’ unramified on R. We also have f = zf1 for some f; € R which is not divisible
by 7. We have

p=a+(f) ()
=o'+ (@) () + (/1) - (g)
=o' + (D) )+ @f)- () + (fi) - (g)
=o' + (D) + (fi) - (gu).

If f1isaunitin R, thena’ + (f;7!) - (u) is unramified on R, by (2.1), Q is nota hot
point of B. Assume that f; is not a unitin R. Then P € C N F and g = wg; for
some unit g; € R. We have

B=a+(f) (g
=o' 4 (7) - (u) + (2 f1) - (wg1)
=o' + (mg1) - () + (g7") - (W) + (wf1) - (rg1)
=o' + (g7h - w) + (zg1) - (w(mf)™).
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Since o’ + (g71) - (u) is unramified on R, by (2.1), Q is not a hot point of f.

Suppose that P € E \ C. Then & = ¢’ + (8) - (v) for some unit v € R and
f = d&f1 forsome f1 € R which is not divisible by §. Suppose that f7 is a unit in R.
Then, as above, @ is not a hot point of . Assume that fj is not a unit in £. Then
P e EN Fand g is aunitin R. We have

B=a+(f) (g)
=o' + () () + Bf1) - (g)
=d + &) (vg)+ (f1)(g).

Since ¢’ is unramified on R and by the choice of g, g(P) = v(P), by (2.2), Q is not
a hot point of j.

By ([S3], cf. 1.2), g is symbol. Thus & = (f) - (g) — B is a sum of at most two
symbols. O
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