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Finiteness results for flat surfaces: large cusps and short geodesics

John Smillie and Barak Weiss

Abstract. For fixed g and T we show the finiteness of the set of affine equivalence classes of flat
surfaces of genus g whose Veech group contains a cusp of hyperbolic co-area less than T'. We
obtain new restrictions on Veech groups: any non-elementary Fuchsian group can appear only
finitely many times in a fixed stratum; any non-elementary Veech group is of finite index in its
normalizer; and the quotient of H by a non-lattice Veech group admits arbitrarily large embedded
disks. A key ingredient of the proof is the finiteness of the set of affine equivalence classes of
flat surfaces of genus g whose Veech group contains a hyperbolic element with eigenvalue less
than T

Mathematics Subject Classification (2000). 57M50, 37D40.
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1. Introduction

Our objects of study are flat surfaces and their affine automorphism groups. These
structures arise in the study of rational polygonal billiards, in Thurston’s classification
of surface diffeomorphisms in connection with measured foliations, and in complex
analysis. The class of flat surfaces is subdivided into translation surfaces and half-
translation surfaces, which correspond in the complex analysis literature to abelian
and quadratic holomorphic differentials respectively.

Let Aff(M ) denote the affine automorphism group of a flat surface M. Let G =
SL(2, R)if M isatranslation surface, and PS1.(2, R) if M is ahalf-translation surface.
Taking the differential of an automorphism yields a homomorphism D : Aff(M) —
G with finite kernel, whose image ['ps is discrete and is called the Veech group of
M . Alternatively, I'pys is the stabilizer, under the G-action, of M in the stratum J¢
of flat surfaces containing M. For a typical flat surface Aff (M) (and hence Ty ) is
trivial; however surfaces with non-trivial Veech groups are quite interesting. Much
of the interest in the subject was generated by Veech’s discovery [Ve2] of Veech
groups which are non-arithmetic lattices (recall that " is called a lartice if H/ T has
finite area). Many additional Veech groups have been described, including infinitely
generated ones [HuSc2], [Mcl], and there are many mitriguing questions regarding
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groups which may arise as Veech groups. See [HuSc3] for a recent survey of the
field, and [SmWel1] for a problem list.

A fundamental question in this regard is to understand the commensurability
classes of Fuchsian groups which contain Veech groups (recall that a Fuchsian group
is a discrete subgroup of G and two such groups are commensurable if their in-
tersection is of finite index in both). We will describe some restrictions on groups
commensurable to a Veech group I' and on the geometry of the corresponding H/ T".
The question of which groups within a given commensurability class actually arise
as Veech groups is also of considerable interest, see [HuSc1].

It is clear that if I" is a lattice then there is an upper bound on the radius of a
maximal embedded disk. We have the following converse, which provides a new
characterization of lattice surfaces.

Theorem 1.1. If T is commensurable to a Veech group and is not a lattice then for
every R > 0, the quotient H/ T contains an embedded disk of radius R.

We derive a purely group-theoretic property of Veech groups:

Theorem 1.2. A non-elementary Fuchsian group commensurable to a Veech group
is of finite index in its normalizer.

These theorems follow from some finiteness results which mvolve an upper bound
on either the covolume of a cusp for 'y, or the eigenvalue of a hyperbolic element
in ["ps. For a Fuchsian group I", a cusp in H/ I" is determined by a conjugacy class
of a maximal parabolic subgroup P C I'. Associated with this data 1s the cusp area,
i.e., the hyperbolic area of a maximal continuous embedded family of parallel closed
horocycles on H/ I'. We denote the cusp area by #o(I, P). Also, when I is the Veech
group of a flat surface M, the foliation on M in the direction fixed by P is periodic,
i.e. M is decomposed into finitely many maximal embedded metric cylinders. We
denote the number of cylinders by m (M, P). Both of these quantities are invariant
under affine equivalence. That is, forall g € G, I'gpr = gy g™ ! contains the
maximal parabolic subgroup gPg ! and

to(Tepr. gPg™ ") = to(Tay, P), migM,gPg™ ) = m(M, P).
Let
SCm.T) ={(M,P):to0(Tp.P) <T, m(M,P) = m},

where M ranges over all flat surfaces, and P ranges over all maximal parabolic sub-
groups of ['yy (SC stands for ‘small cusp’). We denote by §(3(m, T') the corresponding
set of affine equivalence classes.

The following holds:
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Theorem 1.3. Forany T > 0 and any m € N, the set SC(m, T) is finite.

Our proof yields an explicit bound on # SC(m, T), see Theorem 4.2.

Let ¢ be a Haar measure on G and let I' be a discrete subgroup of G. We denote
the covolume of I" in G by (I"); this number depends only on the conjugacy class
of I'. We deduce:

Corollary 1.4. Let # be a stratum (see § 2.1) of flat surfaces andlet R, T > 0. Then
the following sets are finite.

(1) The set of affine equivalence classes of M € H for which H/ T'ps contains no
embedded ball of radius R.

(i1) The set of affine equivalence classes of M € JK for which i(T'pr) < T.

Note that Veech [Ve2] constructs lattice surfaces M, for all n # 4 (on different
strata) such that (I'pr, ) < 2. Thus one cannot omit the hypothesis that M is
contained in a fixed stratum in Corollary 1.4. Assertion (ii) was proved independently
by Curt McMullen [Mc2], using the algebraic geometry of moduli space.

Suppose I'ys contains a hyperbolic element /2. We denote the larger eigenvalue of
h by A{h) and call it the eigenvalue of (M, h}. Also, associated to h are Markov par-
titions of M (see §5). Welet p = p(M, h) be the minimal number of parallelograms
in a Markov partition. For T > 0 and p € N we define

SMP(p,T) ={(M,h): p(M,h) = p, A(h) < T}

(SMP stands for ‘simple Markov partition’). These quantities are also invariant under
affine equivalence: if & € Tps is hyperbolic then ghg™ € Tgas is also hyperbolic
with p(M, h) = p(gM, ghg™) and A(h) = A(ghg™!). We denote the set of affine
equivalence classes in SMP by SMP. Repeating a folklore argument' we obtain:

Proposition 1.5 (Thurston, Veech). For a fixed T > Oand p € N, ST\TP(% T)is
finite.

The existence of Markov partitions is sketched in [FLP] and we explain it in detail
in the appendix. In particular we show that bounding p is equivalent to bounding the
genus of M. Note that by [Pe], there are pairs (M, h,) with A(h,) — 1, i.e. one
cannot omit a bound on p (or on the topology of M) from the statement.

Recall that the geodesic flow is the restriction of the G-action on J to the one-
parameter subgroup of diagonal matrices. There is a bijective correspondence be-
tween G -orbits of pairs (M, k) as above, and surfaces with a periodic trajectory under

!'The argument is probably due to Thurston. We were unable to find a suitable reference, but see [Th, p. 428]
for a hint and [Ry, Theorem 1.7] for more details.
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the geodesic flow, with the length of the corresponding trajectory equal to log A(%).
Thus Proposition 1.5 is equivalent to the statement, proved by Veech [Vel], that the
number of periodic geodesic trajectories in # of length at most 7' is finite.

For a group I" and % € T we write 2" for the conjugacy class of % in I'. From
Theorem 1.3 and Proposition 1.5 we derive a restriction on Veech groups:

Corollary 1.6. Suppose I is commensurable fo a Veech group. Then for any T > 0,
the following sets are finite:

(Iy {P C T': P isamaximal parabolic subgroup, to(I", P) < T}.
(I1) {h" : h € T is hyperbolic with A(h) < T}.
(1) {fT : f e T is elliptic with cone area at most T'}.

Here the cone area associated withanelliptic f € 'istheareaof B(z¢,R)/Zr(f),
where zy € H is the fixed point of f, Zr(f) is the centralizer of f, and

R=R(f)=sup{r: B(zr.r}/{f) — H/T is injective} . (1)

Given a Fuchsian group, it is natural to ask ‘how often’ it arises as a Veech
group. Cyclic parabolic subgroups are associated with cylinder decompositions and
are easily described. In any stratum there are infinitely many of them belonging to
different G-orbits. Using torus covers one can construct infinitely many flat surfaces
M, in different strata, with the same non-elementary Veech group — see [He] for
infinitely many square-tiled translation surfaces whose Veech group is SL(2,Z).
Also, if I' = I'yy and g € G normalizes I" then also I' = 'y 7. As an application of
our results we show that aside from these simple constructions, each group can only
appear finitely many times, namely:

Corollary 1.7. For any stratum H and any infinite Fuchsian group T which is not
cyclic parabolic, the set
MedH: Ty =T} (2)

contains finitely many N -orbits, where N is the normalizer of 1 in G. In particular
if ' is non-elementary then (2) is finite.

Acknowledgements. We thank Yair Minsky and Yair Glasner for useful discussions.
The support of NSI grant DMS-0302357, BSF grant 2004149 and ISF grant 584-04
is gratefully acknowledged. Some of the results of this paper were announced in
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2. Basics

In this section we set some notation, and collect standard results.

2.1. Flat surfaces. We begin by listing some definitions. For more details we refer
the reader to [MaTa], [Vo], [Zo].

Throughout this paper, S denotes a compact connected orientable surface of
genus g. When S 1s equipped with the structure of a flat surface or a holomor-
phic quadratic differential we will usually denote it by M. When confusion may
arise we will also use M to denote the underlying surface 5. A flat surface admits
several equivalent definitions. It may be thought of as an equivalence class of at-
lases of charts (Uy, o) covering all but a finite set X = Xy C S of singularities,
such that the transition functions ¢y © gagl are of the form z — £z + ¢, and such
that for each o € X the charts combine to form k-pronged singularity at o, where
k =k, € N. If k, = 2 then o is called a removable singularity or marked point.
We always assume that Xps # &. Two atlases M, M’ are compatible it M \U M’
is also an atlas satisfying the same conditions. The atlases M = (U,, ¢, ), M’ are
equivalent if there is a self-homeomorphism 4 : S — S such that i(Xpy) = Zp
and (h(Uy), po © i) is compatible with M’. A flat surface is called a rranslation
surface, or an abelian differential, if there is a compatible atlas in which all transition
functions are of the form z — z 4 ¢. A flat surface which is not a translation surface
is called a half-translation surface.

If M and M’ are flat surfaces, an «affine equivalence from M to M’ is a home-
omorphism which is affine in each chart. An affine equivalence from M to itself is
called an affine automorphism of M, and the group of all such maps is denoted by
Aff(M). For an affine equivalence ¢p: M — M/, the derivative d¢p, at x € M is
well-defined in the case of translation surfaces (i.e. independent of charts around
x and ¢ (x)), and in the case of half-translation surfaces, is well-defined up to £Id.
Additionally it is independent of the point x. Clearly M and M are equivalent if and
only if there is an affine equivalence between them with derivative Id (£I1d) in the
case of translation surfaces (half-translation surfaces). Since the area of M is finite,
the derivative of an affine automorphism of a flat surface M is contained in G, and
the group of all derivatives is the Veech group I's.

Fix the data giving the number of singularities, the vector k= (ko )yex, and the
determination whether or not the flat surfaces are translation surfaces; then the set of
equivalence classes of all atlases sharing this data s called a stratum. Each stratum 1s
equipped with a structure of an affine orbifold, which is locally modelled on a relative
cohomology group, see [MaSm], [MaTa]. The group G acts on . In the case of
translation surfaces, the action is by post-composition on each chart in an atlas. In
the case of half-translation surfaces, for g € G we may choose a representative in
SL(2,R) and let it act on an atlas by post-composition; the resulting equivalence
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class of half-translation surfaces is well-defined.

A flat surface inherits from the plane a singular foliation on S called the horizontal
(resp. vertical) foliation, with each chart foliated into the lines parallel to the x-axis
(resp. y-axis). A saddle connection is a straight segment joining singularities or
punctures, with no singularities or punctures in its interior. The set of all saddle
connections in direction # is denoted by £ (6).

Throughout this paper we identify elements of G with matrices of SL.{(2, R). We
will need the following four one-parameter subgroups of G

_fet’2 0 _ f[cosf —sin#
=V e2) "7 \sinf cosb )

1 s ~ 1 0O
h=(p 1) =G0

We say that Aq,...,Ax € R are commensurable if A;/A; € Q foralli,j €
{1,...,k}. Ifthisholds, we denote by LCM(A 1, . . ., Ax) the smallest positive number
which is an integer multiple of all the A;.

2.2. Cylinder decompositions, gluing patterns. A cylinder for M is a topological
annulus which is isometric to R /wZ x (0, h), for positive /2, w. Itis maximal if it is not
contained in a larger cylinder, and this implies that both of its boundary components
in .S contain singularities. The height, width, and inverse modulus of the cylinder are
h, w, and w/ h respectively, and a curve which wraps around the cylinder parallel to its
boundary is called a waist curve. A cylinder decomposition is a decomposition of M
into maximal cylinders with disjoint interiors. The waist curves of all the cylinders in
a cylinder decomposition are parallel. Two cylinder decompositions of M are called
transverse 1f the slopes of waist curves in each decomposition are different.

2.2.1. Gluing pattern for a pair of cylinder decompositions. Supposefori = 1,2
that we have two transverse cylinder decompositions M = Cl(i) W) smm k) c,S;’Q. For
eachi e {l,...,m1}, j € {1,...,m3}, the intersection Ci(l) N CJ.(Z) consists of a;;
parallelograms. The resulting parallelograms have disjoint interiors and boundary
identifications. To describe how the parallelograms are attached to each other we
follow ideas of [EsOk].

Suppose first that M 1s a translation surface. In this case one can consistently
label the edges of the parallelograms with labels right, left, top, bottom. Label the
parallelograms by 1,...,¥£, let Sg denote the group of permutations on £ elements,
and define 01,0, € S, where a1(k{) = k, (resp. o2(k1) = kj) if the right (resp.
top) edge of the k;th parallelogram is attached to the left (resp. bottom) edge of the
koth parallelogram.
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Replacing the labelling of the parallelograms amounts to replacing o, o, with
rot7 !, roat™! for some t € S;. We denote the equivalence class of (oq,05) €
S¢ x S¢ under simultaneous conjugations by [(o1, 02)], and call [(o1, 02)] the gluing
pattern of M and the given cylinder decompositions. From the gluing pattern it
is simple to recover the number of cylinders in each decomposition, the number of
connected components in each intersection of cylinders, and the stratum to which M
belongs. In particular the following hold:

(1) Fori = 1, 2, 0; has m; cycles, and the length of the jth cycle of oy (resp. o3)
is Y, a;; (resp. Y, aj;).
(i1) The subgroup of S¢ generated by o1, 05 acts transitively on {1,..., £},

Moreover M is completely determined by the dimensions and orientation of the
parallelogram and the corresponding gluing pattern; indeed such information gives
rise to an explicit atlas of charts as in §2.1.

In case M is a half-translation surface, one can define a gluing pattern in a more
complicated way by subdividing each rectangle into four ‘quarter-tiles’. This will
not be used in the current paper.

2.2.2. Gluing pattern for parallelograms. We will also have occasion to consider
flat surfaces made up of finitely many parallelograms, glued along edges. We suppose
that M is a translation surface which is a union of closed metric parallelograms
Py, ..., P,, with disjoint interiors, such that the two directions of parallel sides
are the same for all P; and such that the singularities are on the boundaries of the
parallelograms; replacing M with an affinely equivalent surface, let us assume these
sides are horizontal and vertical. Let &;,...,&;, (respectively ny,...,7¢,) be alist
of the horizontal (resp. vertical) connected components of all intersections P; N P;,
for i # j, which are not points. That is all the & and 7; are all segments; if one of
them contains a singularity of M in its interior we subdivide it in two, so after finitely
many steps the & and 7; do not contain singularities in their interior. Orienting the
&-edges from left to right and the n-edges from bottom to top, we obtain a directed
graph with two kinds of edges, embedded in M and equipped with two additional
structures:

» At each vertex there 1s a cyclic order for the incident edges, obtained by going
around a small neighborhood of the pointin M in the counterclockwise direction.
Moreover along a cycle, consecutive edges of the same kind have opposite
orientations (¢.g. if n; is incoming and 5, is the next n-edge then it is outgoing).

» For cach & (resp. ) segment there are top and bottom (resp. right and left)
labels from {1, ..., m} indicating the parallelograms glued to the segment on
the appropriate side.

We call a graph with these structures a gluing pattern for a decomposition into par-
allelograms. The gluing pattern obeys certain obvious restrictions. For example, at a
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vertex v, if there is no & edge between an incoming and an outgoing 7 edge then the
‘right’ labels of the two 1 edges are the same. Note that the gluing pattern determines
the stratum containing M . Since each vertex of a gluing pattern is either a corner of
a rectangle or a singularity of M, there are only finitely many gluing patterns when
the number of singularities and the number of parallelograms are fixed.

Also associated with a parallelogram decomposition 1s the mertric data consisting
of the lengths of sides of the P; and the lengths of the &- and 7-edges. Given the
gluing pattern and the lengths of the edges, it is possible to calculate the sidelengths of
the P;; thus the gluing pattern places some restrictions on the metric information. It
is clear that the gluing pattern and the metric data taken together uniquely determine
the translation surface M .

One could similarly define a gluing pattern for a parallelogram decomposition of
a half-translation surface. This will not be used in the present paper and is left to the
avid reader.

2.3. Fuchsian groups. A Fuchsian group is adiscrete subgroup of G. Fixing a Haar
measure j on &, we define the covolume of T' in G as the measure of a measurable
fundamental domain for the action of I on G, and denote the covolume by u(I"). It
is easily checked that if M and M are affinely equivalent then 2 (I'ar) = ().
If 1(Tp) < oo then M is called a lattice surface.

An element of a Fuchsian group is called parabolic if it is conjugate to /; or
its inverse, and an automorphism ¢ € Aff(M) is called parabolic it Dy € Ty is
parabolic. The following is well known (see [Ve2, Proposition 2.4]):

Propesition 2.1. If ¢ € Aft(M) is parabolic and Dy fixes the direction 8, then
M ~ £p1(0) is a cylinder decomposition. For any m there is k. = Ky, such that if m
is the number of cylinders in the above decomposition, then there is k < k such that
Y= gak preserves the cylinders and the corresponding inverse moduli Ly, ..., Ly
for ¥ satisfy LCM(p1, ..., i) = pt, where Dy = rghyr_g and n; = pu/p; is the
number of Dehn twists which  induces around a waist curve in the ith cylinder.

For a Fuchsian group I' we now define cusp areas and cone areas. An infinite
cyclic subgroup of G generated by a parabolic element is called parabolic. Suppose
that I' contains a parabolic subgroup P and is non-elementary, that is, not a finite
extension of an abelian group. Suppose also that P is maximal, i.e. not properly
contained in a parabolic subgroup of I'. Choose an element g € G such that

gPg™ = (), 3)

1 —1

and relabelling, replace P and " by gPg™ and gl'g™" respectively. Let H be
the complex upper half plane, leti = +/—1, let €; denote the image of the disk
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{zeH:|z—%i| <¢/2}inH/P,lety: H/P — H/T be the natural map, and let
to = to(I", P) = sup{tr > 0 : g|e, is injective}. 4

We will show in Proposition 3.1 that the set in the right-hand side of (4) is nonempty
and bounded above, so that 7y 1s well-defined, and that fy does not depend on the
choice of g in (3) and satisfies

1o(T, P) = to(xTx~ 1, xPx™ 1) (5)

for x € G. We call g the cusp area of P in I'; a simple computation shows that it is
equal to the hyperbolic area of €.

2.4. Orientation double cover. Suppose M is a half-translation surface. Then there
is a topological branched cover 7: S — S of degree 2 such that the pulled-back flat
surface M is a translation surface called the orientation double cover of M, see
[DoHu, p. 175]. We have:

Proposition 2.2. Let M — M be the orientation double cover of a half-translation
surface M. Then:

» Any automorphismof M lifts to an automorphism of M, with the same derivative.
If a parabolic (resp. hyperbolic) affine automorphism ¢ of M has an associ-
ated cylinder decomposition (resp. Markov partition, see §5) with k cylinders
(resp. parallelograms) then the lifted automorphism ¢ of M has an associated
cylinder decomposition (resp. Markov partition) with at most 2k cylinders (resp.
parallelograms).

» Taking orientation double covers is G-equivariant, i.e. for g € G, gﬂzf is the
orientation double cover of gM .

e Given M there are at most finitely many M such that M is the orientation double
cover of M.

Proof. A proof of the fact that any affine automorphism lifts can be found in [Ry,
Theorem 3.2]. The statement about the number of cylinders and rectangles follows
immediately from the fact that the degree of the cover is 2. The second statement
1s immediate from the construction of the orientation double cover. For the third
statement see e.g. [Vo, §5]. O

2.5. Perron—Frobenius. A matrix A € Maty(R) with all entries non-negative is
called non-negative, and a non-negative matrix is called irreducible if for some k, AF
has all its entries strictly positive. A vector 7 € R is called posizive if all its entries
are strictly positive.

We will need the following classical result (see e.g. [Ga]).
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Proposition 2.3. Suppose A € Maty(R) is anirreducible non-negative matrix. Then:
e There is a unigue (up to scaling) positive eigenvector v of A, and the corre-
sponding eigenspace is one-dimensional.

e Let A be the eigenvalue for which Av™ = Avt. Then for any other eigenvalue

Bof A |B] <A

We denote the eigenvalue A of Proposition 2.3 by A(A4). We will be particularly
interested in irreducible non-negative matrices with integer entries.

Proposition 2.4. Given T > QO and d € N, the set
{tA € Maty(Z) : A isirreducible non-negative, A(A) < T}
is finite.

Proof. This can be deduced from [Ga, Vol 1, p. 63], see [PaPe, Proof of Theorem 6].
O

3. Some hyperbolic geometry

This section contains some standard propositions in hyperbolic geometry related to
cusp areas and cone areas for which a suitable reference could not be found. We will
use the notation introduced in §2.3.

Proposition 3.1. Let T be a Fuchsian group containing the maximal parabolic sub-
group P = (hy). Then X = {t > 0 : ¢|¢, isinjective} is nonempty. If T is
nonelementary then to = sup X < oo, and there is yy € I which is a conjugate of
hy, such that for some s € R, hs_lyohs — l;_tg. The hyperbolic area of €, is ty, and

(5) holds for all x € G.

Proof. We denote the right-action of I on H by

az + c

a b
Z-y_bZ—Fd’ Wherey—(c d)eF.

Let B, = {zeH:|z—%i| <5} and let H; = 98,. By our conventions B,
projects to €; and H, is the horocycle based at O through ¢i, which projects to a
periodic horocycle on H/ P. Let S C Hy be a compact segment whose projection to
H/ P contains a full period of the horocycle. Since the action of T" on H is properly

discontinuous, we can write

Y1.....yN}={y el :SNS-y#@, 0-y # 0L
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To show that X # &, take 0 < ¢ < 1 small enough so that 5, does not intersect
Uf.V:l B, - y; s such r exist because the B, - y; are not based at 0. Suppose if possible
thatforsomey e '~ P, B, N B, -y # &. Inparticular B, N By -y # . Itfollows
from discreteness of I' and maximality of P that P is equal to its own normalizer in
I'. This implies that p = 0-y # 0; then H1 N Hy -y # & (see Figure 1) and since
any element of H; may be mapped to S by suitable powers of /1, there are j, k € Z
such that S N S - 7 # @, where 7 = h{yhk € T'. Thus for some i € {1,..., N}
we have 7 = y; and 8, N B,h |’ y;h7* # @. Since B, is invariant under /, this
contradicts the definition of 7.

Hyy

Hy

Hyy

oHl

p 0

Figure 1. Intersection of horocycles.

Now if I' is nonelementary then it contains y so that 0 - y # 0, so that H; and
Hp - y are horocycles based at different points. Then for all sufficiently large 7,
H, N H, -y # &, which shows sup X < oo. Further, by definition of 7, there is
y € I'such that H,, " H,, -y # @ and B,, N B,, -y = &,i.e, Hy, and Hy, - y are
horocycles based at different points and tangent to each other. We denote the point
of tangency by po.

Since poy~! € H,,, there is 51 such that

po=po-x, Hy-x=Hy -y, wherex = hyy.

We now express x in terms of 7y, as follows.
Let s € R so that pg = pg - by = 1pi. The matrices

—1/3
i 0 0 —1)

a = , W= 6
(0 ré/z) (1 0 @
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satisfy ppra =i =i-w,and H; - w = H,Whereﬁ ={zeH:Imz =1} =
{i-hy : s € R} (see Figure 2). Thus the matrix x' = hgawa'h_; also satisfies
po = po-x', Hy -x" = H,, -y, and this implies

x = thsawa ‘h_. (7)

eal)

/ Vil

i

= pohs

| Yo

Po Hlo

Hq

oH

Figure 2. Tangency of Hy, and Hy,y.
Let yo = x 'hyx = y~'hyy € T. A computation using (7) gives
hs_lyohs.

Finally, note that the hyperbolic area of €, is the same as that of €, - y/i, which
by the above is covered bijectively by {z = x +iy e H: y > 15, 0 < x < 12}

Hence its area 18
18 poo d
/ / —z dx = tg.
0 Io y

Since #o(T", P) only depend on the geometry of H/ ', and a conjugationby x € G
affects an isometry on H/ T, (5) is clear. ]

Suppose I' is a Fuchsian group containing an elliptic element f such that { f)
coincides with the centralizer Zr( f'). The corresponding cone in H/ T" is the image
of B(zg, R(f)) under the map ¢: H/{f) — H/I', where zy € H is the fixed point
of f and R(f) is defined via (1).
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Proposition 3.2. With the above notation, let y € T" such that z¢y is a closest point
to zy in the orbit zy I'. Then the commutator h = [y, f'] is hyperbolic, its eigenvalue
is bounded above by a number depending only on R(f), and the distance from the
axis of h to zy is also bounded by a number depending on R(f).

Proof. Write z = z7,z/ = zy and f' = ypfy~'. Clearly R(f) = d(z,2')/2.
Conjugating I" with an appropriate element of G and relabelling we can arrange
that z = r +iand z/ = —r + i are symmetric with respect to the y-axis in H.
Using the formula for hyperbolic distance (see ¢.g. [Ka, Theorem 1.2.6]) we find
coshd(z,z') = 1 + 212,

On the other hand f = h,rgh_, and f' = h_;rgh,. Computing h = f'f~!
directly we find tr(h) = 2 + 4r%sin? . Since this number is greater than 2, k is
hyperbolic, and since this number is no more than 2 cosh d(z, z’} = 2cosh2R(f),
and the trace determines the eigenvalue, the second assertion follows.

Since ! fixes z and f’ rotates around z’, the distance which z is moved by
h = f'f7!is bounded in terms of R(f). On the other hand the order of f leads
to a lower bound on sin 6 and and hence to a lower bound on the displacement of
h. Now let p1, p» be the points on the axis of /i closest to z and z/ respectively, so
that p> = p1h; consider the quadrilateral joining z, p1, p2, zh. We have bounded
d(p1, p2) from below and d(z, zh) from above, and the angles at py, p, are right
angles. From this it is easy to deduce an upper bound on the length d{ p4, z). O

4. Finiteness of small cusps

In this section we prove a more precise version of Theorem 1.3. The idea is that
when Iy is non-elementary, a cusp in H/ 'y gives rise to two transverse cylinder
decompositions on M, one an image of the other under an affine automorphism, and
the cusp area bounds the combinatorics of the corresponding intersection pattern. We
will first consider translation surfaces, so denote

SCi(m,T) ={(M, P) € SC(m,T) : M is a translation surface},

and by SC1(m, T) the corresponding sets of G-orbits.

Forany T > O and m € N, let N (mn, T) denote the set of pairs (4, D), where
A, D € Mat,,(7Z ), A is symmetric, D is diagonal, DA is non-negative irreducible
and A(DA) < T. The following is an immediate corollary of Proposition 2.4.

Proposition 4.1. Foranym € N and T > 0, #N (m,T) < oc.

Given a symmetric A = (a;;) € Mat,,(Z+),let£ = 3, ; a;;. Denote by £ (A)
the set of simultaneous conjugacy classes [(o1, 02)] for which (i) and (ii) of §2.2 hold,
and such that o1 and o3 are conjugate in Sy.
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Theorem 4.2. For fixed T > 0 andm € N,

#8C,(m, T) < > #P(A).
(A,.DYeN (m,kmT)

Proof. We will construct a map
W: SCy(m, T) — X,
where
X ={(A,D.[(01.02)]) : (A, D) € N(m.knT). [(51.02)] € P(A)}.

such that W(M, P) = W(M’, P’)if and only if there is g € G such that M" = gM
and P’ = gPg~!;in other words, ¥ induces an injective map defined on SC: (m,T).
Let (M', P") € SCi(m,T), that is M’ is a flat surface, T is non-elementary,
and P’ C T'p is maximal parabolic. By a conjugation we may assume that P’ is
the cyclic group generated by /1. Let s, yg, ki1, tp be as in Proposition 3.1, let a be
as (6),let g = a th_g,andlet M = gM’. Then T'yy = gTprg ™! contains the two

elements _
Y1 = htO, Y2 = h—to, (8)

and there is y € 'y such that

ya =y yy. 9)

Moreover P = gP’g ! is generated by y;.

By Proposition 2.1, there is a parabolic affine automorphism ¢; € Aff(M) and
k <k such that D) = y{“ = hg,,, and @1 preserves the cylinders in a horizontal
cylinder decomposition M = C; U --- U Cyp,. Let ¢ € Aff (M) such that y = D,
and let gy = ¥ o1y € Aff(M), so that Dgy = y¥. Tet C/ = ¥~1(C;). Then
M = C{U---UC,, is a vertical cylinder decomposition invariant under ¢5.

Leta,w (resp. a’, w') be positive vectors in R™ recording the heights and circum-
ferences of the cylinders C1, ..., Cy, (resp. C1, ..., C} ). It follows from (8) and (9)
that y = hslwﬁs2 for some s1, 52 € R, where w is as in (6). Since the action of
(resp. hy) does not affect the hei ¢hts and circumferences of horizontal (resp. vertical)
cylinders, and since w affects a rotation by /2, we get

a=d, w=uw.

Nowlet A = (a;;) € Mat,,(Z) where a;; is the number of connected components
of C; N ij . By connectedness of M, A is irreducible. Since i exchanges the
roles of C; and C]f, A is symmetric. By construction, the gluing pattern [(o,03)]
corresponding to the two cylinder decompositions above is in & (A4). We have

0= = Aa. (10)
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Now let n; be the number of Dehn twists induced by ¢; around a waist curve in
C;. By Proposition 2.1 we have kg = n;w; /a;, thatis, if D = diag(ny,...,n,) €
Mat,, (N}, then

kiod = D = DAG.

That is, ktg = A(DA), (D,A) € N(kT) and k < «k;,. Altogether we have
(D, A, [(01,02)]) = ¥(M', P) € X, so to prove the theorem it remains to show
that the G-orbit of (M’, P') may be reconstructed from (D, A, [(01,02)]). Note that
a is uniquely determined up to scaling as the positive eigenvector of DA, and W is
determined from a and A via (10). The scaling parameter is also uniquely deter-
mined by the requirement that M has area one. So (A4, D) determine @ and w, that is,
the heights and circumferences of the rectangles, and [(o1, 02)] determines how they
are to be glued to each other. This determines M, and P is the maximal parabolic
subgroup of I'ys leaving the horizontal direction fixed. O

Proof of Theorem 1.3. By Proposition 2.2, foreach (M, P) € SC(m, T'), the orienta-
tion double cover M alsohas P asa parabolic subgroup of I' 7, and the corresponding
cylinder decomposition has at most 2m cylinders. Thus, if P T’ 4 18 @ maximal
parabolic subgroup containing P, then (M, P) gives rise to (M, P) € SC,(2m, T).
Moreover for a fixed (M , P) there are only finitely many (M, P) from which it arises
in this way. The theorem follows. O

5. Hyperbolic affine automorphisms and Markov partitions

In this section we prove Proposition 1.5. As noted in the introduction, the result is
not new and presumably our argument is also well known. We include it since it does
not appear in the literature.

Let M be a flat surface and let ¢ be a hyperbolic affine automorphism (in a
different terminology, ¢ represents a pseudo-Anosov homeomorphism). Leth = D
be the corresponding element of I'ys, and let A = A(%). By applying g € G, let us
assume that 22 expands the x-axis and contracts the y-axis by a factor of A. A Markov
partition for ¢ is a covering M = Py U --- U P, by closed rectangles, with disjoint
interiors, horizontal and vertical sides, such that the following Markov property 1s
satisfied: for each 7, the image of any vertical (resp. horizontal) side of any P; under
@ (resp. ¢~ 1} is contained in a vertical (resp. horizontal) side of one of the P;. This
means that if int ¢(P;) intersects the interior of some P; then it extends all the way
through to both sides. It is known that a Markov partition exists. A sketch of proof
is given in [FLLP], and we have provided more details in the appendix.

The intersection matrix of ¢ is the p x p integer matrix A = (a;;), where a;; is
the number of connected components of int ¢ (P;) N int ;. One has:
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Proposition 5.1. e A is irreducible.

oA = A(A).

e The vector recording the widths (resp. heights) of the rectangle P; is a positive
eigenvector for A (resp. AT).

Proof. Tt follows from the Markov property that the 7, jth entry of A" counts the
number of components in the intersection " (P;) N P;. Suppose by contradiction
that A is not irreducible, so that there is a sequence ngy — ocand 1 < 7,7 < p so
that

" (PN P =@. (11)

Let o be a horizontal segment in P; and consider its image o under ¢"*. Then oy
is a horizontal segment contained in ¢”* (P;) whose length tends to infinity. Passing
to a subsequence we can assume the left endpoints of o3 converge to x € M, so
that any point along an infinite horizontal ray £ issuing from x is a limit of points of
ok. Since ¢~ ! is an affine automorphism on M which contracts horizontal saddle
segments, there are no horizontal saddle connections on M, so the horizontal line
flow on M is minimal. This implies that £ is dense in M. In particular for large
enough k, ox Nint P; # @, contradicting (11).

Now let w; be the width of P;, so that Aw; is the width of ¢(P;). By the Markov
property @(P;) passes a;; times through P;, so that Aw; = >~ a;;w;. Thatis,

AW = Aw.

Since w is a positive vector, A = A(A). The proof for heights is almost identical.
U

For a non-negative irreducible A € Mat, (Z), let ¥ (A) denote the gluing patterns
(as in §2.2.2) of Markov partitions arising from hyperbolic affine automorphisms
whose intersection matrix is A. We have:

Proposition 5.2. The set §(A) is finite.

Proof. Since ¢ (resp. ¢~ 1) preserves the boundaries of rectangles, but contracts
vertical (horizontal) saddle connections, there are there are no vertical or horizontal
saddle connections for M. Thus each rectangle contributes at most 477 to the total
angle around the singularities of M. In other words the number of rectangles bounds
the number of singularities. Since each edge in a gluing pattern is either bounded by
a singularity or by a full size of a rectangle, this also bounds the number of edges in
a gluing pattern. Thus the number of gluing patterns is finite. O

We now want to show that intersection matrix of ¢ determines the metric data for
the gluing pattern, up to rescaling the surface. We normalize by assuming our surface
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has area one. Let & be the horizontal segments of the gluing pattern corresponding
to Pr,...., P,. We will refine our Markov partition to obtain another partition with
the Markov property. Each &; is a connected component of the intersection of two
of the P;, say P, P». Consider the vertical segments (if any) which issue from the
endpoints of & into the interior of P, P». Any such segment divides a rectangle
vertically into two rectangles, with the same height as before. At least one of the new
rectangles will have width &; .

We denote the resulting rectangle decompositionby M = Q; U ---U @, and
claim that this decomposition also has the Markov property. To see this, note first
that subdividing rectangles by vertical lines does not affect the requirement for ¢!,
which involves only horizontal sides. Now suppose ¢ C Py, P> are as in Figure 3,
Q' C P’ such thatint (@) Nint Q' # @&. There are two cases to consider:

(1) If ¢(Py) does not reach the top of P’ then also int ¢(P;) Nint P’ # & and by
the Markov property for the P;, both ¢(P1) and ¢(P>) go across P’ so ¢(Q)
goes across P’ and hence across Q’.

(2) If @(P1) reaches the top of P’ and P" lies above P’ then ¢ (P1) goes across P’
and @(P2) goes across P” so that ¢(Q) goes across the smaller of the two, i.e.,

©(Q) goes across Q.

R S Iy S N S T e s
Py P
{case 1)
. ¥
3 p

‘ (case 2)

P R N N N T
Q i Ql

P

Figure 3. Markov property for the Q.

Considering all cases in this manner proves the claim.
We can also refine using the #; instead of the &;, cutting rectangles horizontally, to
obtain another Markov partition 71, ..., T;. We define matrices B and C by letting
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b;j (resp. ¢;;) be the number of connected components of int ¢(Q;) Nint Q; (resp.
int ¢(7;) Nint T;). Repeating the proof of Proposition 5.1 we obtain:

Proposition 5.3. e B and C are irreducible.

e A = A(B) = A(C).

e The vector recording the lengths of the segments & (resp. 1;) is a positive
eigenvector for B (resp. C).

We are now in a position to formulate and prove a more precise version of Propo-
sition 1.5. We will consider separately translation and half-translation surfaces, so
we write

SMPy(p, T) = {(M,h) € SMP(p, T) : M is a translation surface},

and denote the corresponding set of G-orbits by SMP; (p,T). Let M(p, T) be the set
of positive integer matrices A with A(A) < T'. This is a finite set by Proposition 2.4.
Then we have:

Theorem 5.4. For a fixed T > O and p € N,

#SMP(p.T) < Y #9(A)
AeM(p.T)

Proof. Given (M, h) € SMP(p, T), wehave constructed A € M(p, T)and agluing
pattern in §(A), and these data only depend on the affine equivalence class of M.
Thus we have defined a map

D Sml(pa T) - U g(A)7
AeM(p,T)

and it remains to show that ® is injective, i.¢. that M and / are uniquely determined
by the matrix A and the gluing pattern, up to an element of G and rescaling the
surface. Normalizing we assume M has area 1. Applying an element g € G we
can assume that the parallelograms in the Markov partition corresponding to (M, h)
are rectangles with the expanding direction horizontal, and moreover the width of
the widest rectangle can be normalized to be 1. With this choice of g we need o
show that the matrix and gluing pattern uniquely determine gM . Since the widths
of the rectangles are in the unique positive eigendirection of A, and by our scaling
convention, the matrix A determines the widths of the rectangles. The heights also
span the unique eigendirection for AT so are determined by A up to scaling. By the
requirement that gM has area 1, the heights are uniquely determined by A. From A
and the gluing pattern one determines the matrices B and C, and the lengths of the &;
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and 7n; give a positive eigenvector of B and C which is thus determined up to scaling.
Since the sidelengths of the rectangles P; are determined, and can also be calculated
using the lengths of the & and 7;, the & and 7; are also uniquely determined. Since
we have specified its gluing pattern and geometry, the flat surface gM is uniquely
determined. O

Proof of Proposition 1.5. By Proposition 2.2, for each (M, i) € SMP(p, T') the ori-
entation double cover M has a hyperbolic affine automorphism ¢ such that the cor-
responding number of parallelograms is at most 2 p. Le., (M, h) € SMP(p, T) gives
rise to (M, h) € SMP;(2p, T'). Also for afixed (M, k) the number of (M, k) covered
in this way is finite. The proposition follows. O

6. Restrictions on Veech groups

Proof of Corollary 1.6. It is easily checked that (I) and (II) depend only on the com-
mensurability class of I', so to prove them we can assume that I' = T’y for a flat
surface M. Since the maximal number of cylinders for a cylinder decomposition
on M is bounded, assertion (I) follows immediately from Theorem 1.3. Similarly
assertion (II) 1s immediate from Proposition 1.5.

To prove assertion (III) we note that in a Veech group there is a uniform upper
bound on the order of an elliptic element by Hurwitz’s theorem, hence such a bound
also exists in any group commensurable with a Veech group. Soitremains to show that
a Fuchsian group I' in which (II) holds and orders of elliptic elements are uniformly
bounded, (III) holds. To see this, given 7" suppose we have a list z, z5, ... of fixed
points for elliptics f1, f>,... in I', such that the corresponding cone areas are no
more than 7. Since the order of the f; is bounded above, we have a uniform upper
bound for R( f;) defined via (1). Let h; be the hyperbolic element corresponding
to f; via Proposition 3.2. Since the eigenvalue of the /; is bounded, by (IT) the list
hy,..., contains only finitely many conjugacy classes. Conjugating the f;’s and
correspondingly the /;’s we may assume that there are only finitely many distinct
elements in the list /11, A5, ... Given i = h; in this list, let A be its axis, and let
Ay C A be a compact fundamental domain for the action of # on A. By a further
conjugation of f; assume that the closest point to z; on A is in Ay. In view of the
upper bound on the order of the f;’s, by Proposition 3.2 z; is within bounded distance
of Ap. By discreteness of I' there are only finitely many z;’s and hence finitely many
fi’s. O

Remark 6.1. The argument proving (III) can be adapted to prove the following
analogue of Theorem 1.3 and Proposition 1.5: for any stratum # and any 7, the set
of affine equivalence classes of pairs (M, f), where M € # and f € 'y is elliptic,
with corresponding cone area at most 7', 1s finite.



332 J. Smillie and B. Weiss CMH
For the proof of Theorem 1.2 we will need the following lemma.

Lemma 6.2. Suppose Ag is a Fuchsian group, T a normal subgroup of Ay, y € T
a non-central element such that for any A € Ao there is T € T with y* = y*. Then
I" is of finite index in Ay.

Proof of Theorem 1.2 (assuming Lemma 6.2). Let I' be a non-elementary Fuchsian
group commensurable to a Veech group, let A be the normalizer of I' in G, and
suppose A/ T isinfinite. Since I is non-elementary it contains a hyperbolic element y
[Ka, Theorem 2.4.4], and A is Fuchsian [Ka, Theorem 2.3.8]. Let

Ao={AeA:y* =y forsomer e T},

In the action of A on conjugacy classes of I', Ag is the stabilizer of the conjugacy
class of v. In particular A is a subgroup of A. According to Lemma 6.2, Ay/ T is
finite so A /Ay is infinite. This implies that the conjugates {y* : A € A} comprise
infinitely many conjugacy classes, in other words I" contains infinitely many hyper-
bolic elements which are conjugate in A, hence have the same eigenvalue, but are not
conjugate in ['. This contradicts Corollary 1.6. O

Proof of Lemma 6.2. Let C be the centralizer of y in Ag and let Co = C N I". Since
Ao 1s Fuchsian, C is cyclic (see [Ka, §2.3]) and therefore Cy is of finite index in C.
By assumption for every A € Ag there is T € I" such that A=t € C, which implies
that Ag = CT. Thus C maps onto Ay/T". Since this surjection factors through
C/Cy, Ao/ T must be finite. O

Proof of Corollary 1.7. Given J, for any M € # and any hyperbolic i € Ty, the
minimal number p(M, /) of parallelograms in a corresponding Markov partition can
assume only finitely many values by Proposition A.1. Let I' contain a hyperbolic
clement /. By Proposition 1.5 the number of G-orbits of M such that 4 € Ty is
finite. In particular the set in (2) intersects only finitely many G-orbits. If M; and
M, are flat surfaces in # such that gM; = M, and I'yy; = 'y, then g € N and if
" is non-elementary then N/ T is finite by Corollary 1.2. O

Proof of Theorem 1.1. Given R let T = 2R. Enlarging 7" we ensure that a cusp of
arca at least T contains an embedded ball of radius R. Enlarging 7 further, in light
of the upper bound on the order of elliptic elements in I', we ensure that any cone of
arca at least T contains an embedded ball of radius R. Thus we may assume H/ T
contain neither a cusp of volume at least 7', nor a cone of area at least 7'; in view of
Corollary 1.6, H/ T has only finitely many cusps and cones, and only finitely many
closed geodesics of length less than 7.

Now let &7 € H/ I" be the union of closed geodesics of length less than 7', cusps
of area less than T, and cones of area less than 7. Then A has finite area. Let N
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be a neighborhood of &, which is large enough so that a closed loop intersecting the
complement of N and homotopic to either a geodesic of length less than 7', a loop
around a cusp of area less than 7', or a loop around a cone point of area less than 7,
must have length at least 2R. Since H/I" has only finitely many cusps and cones,
the area of N is also finite, so H/ " # N.

Let 7: H — H/T be the natural map, and let z € H so that z = n(z) ¢ N.
We claim that 7| gz, gy i injective. Otherwise there is a segment o connecting two
distinct points in B(Z, R), mapping to a closed loop ¢ in H/ T of length less than
2R. Either o has a shortest representative which is a geodesic of length less than 2 R,
or o 1s freely homotopic to a curve around a cusp or cone, that is a curve in N;. But
then the definition of A ensures that the length of o is greater than 7', and this is a
contradiction. O

Proof of Corollary 1.4. In a given stratum there 1s an upper bound on the number of
cylinders in a cylinder decomposition. See [KeMaSm, Lemma, p. 302] or Smillie’s
improved bound as presented in [Na]. Suppose by contradiction that M1, M», ... are
infinitely many affinely inequivalent surfaces, such that for each 7, H/T'; does not
contain an embedded ball of radius R. Here I'; = ['yy; . By Theorem 1.1 the M; are
lattice surfaces, hence for each 7, I'; contains at least one maximal parabolic P;. By
Theorem 1.3, 1o(T;, P;) — oo. A cusp with cusp area ¢y contains an embedded ball
of radius R(7p), where R(fy) — o< as tp — oo — a contradiction proving (i). For a
lattice surface, the cusp area is bounded above by the covolume, implying (11). O

Remark 6.3. It is also possible to deduce Corollary 1.4 and the finiteness of
§E(m, T) N J for any stratum J€, from Proposition 1.5, as follows. To any cusp
one associates the element i = y; v, as in (8) and proves it is hyperbolic, with A (/)
bounded by a number depending on the corresponding cusp area. Our Theorem 1.3
18 stronger in that it does not assume a bound on the topology of the surface, but only
on the number of cylinders in the corresponding cylinder decomposition.

Appendix. The construction of Markov partitions

Proposition A.1. For any stratum J of flat surfaces, there are Ry and Ry such that
for any surface M € 3 and any hyperbolic ¢ € Aff(M)

» any Markov partition for ¢ has at least Ry parallelograms;

* there is a Markov partition for ¢ with at most R, parallelograms.

Proof. Letk = ) .k, so that kr is the total angle around all the singularities
of a surface in J€. Suppose M € H and ¢ € Aff(M) is hyperbolic, with a Markov
partition into parallelograms P, ..., P,. By conjugating we can assume the P; are
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rectangles with horizontal and vertical sides. The horizontal and vertical directions are
contracted by either ¢ or ¢!, but these maps preserve the set of saddle connections,
so (since there are only finitely many saddle connections in any direction) there are
no horizontal or vertical saddle connections on M . In particular each edge of each P;
can only contain one singularity, so that the total angle around singularities coming
from each P; is at most 4;r. This implies that p > R; = k/4, proving the first
assertion.

To prove the second assertion, by Proposition 2.2 it suffices to consider strata
of translation surfaces. Also, if we have a Markov partition for ¢”, the common
refinement of its images under ¢*, i = O,...,r, provides a Markov partition for ¢.
Thus by passing to a suitable finite power of ¢, which can be taken to depend only on
H, we can assume that ¢ fixes all the singularities and all the critical leaves issuing
from singularitics. Assume without loss of generality that the contracting direction
for ¢ (resp. ¢ 1) is vertical (resp. horizontal).

Since there are no horizontal or vertical saddle connections, the foliation in both
the horizontal and vertical direction 1s minimal, so the leaves intersect any transverse
segment. We will construct the edges of the partition in three steps.

(1) Let ¥y be a short closed segment starting at a singularity and going along a
horizontal leaf, say from left to right, and let A be a union of closed segments
starting at each singularity along the vertical leaves (going both up and down)
until the first point of intersection with y. Denote the segments comprising A
bykl,...,lk.

(2) The intersection y N A is finite, so there is a terminal point p which is the right-
most intersection point of A N y. Remove from y the subsegment to the right
of p. We retain the name y for the shorter segment.

(3) Suppose A; ends at p. Continue it further until its next intersection with y. We
retain the names A, A; for this new collection. Since M has no vertical saddle
connections, the new intersection point of A; with y is not one of the previous
ones, and no two of these new intersection points coincide.

We first claim that each connected component of M ~ (y U 1) is arectangle. Take
a segment / C y which is bounded by either a singularity and the first point where
a A¢ comes down to y, or by two consecutive points at which A;’s come down to y.
Consider the union of vertical leaves which begin at points of / and move upwards.
These form a strip, which near y is bounded on both sides by segments in A. By
choice of the A, all these leaves all hit y again ‘at the same time’, i.e., none of these
leaves hit a singularity or a terminal point before returning to . The construction
also ensures that the segments from A on both sides of the strips also extend until the
next intersection with y. Thus the strip is a rectangle bounded by y U A.

We now claim that this partition into rectangles has the Markov property. Since
@~ fixes each singularity and maps each critical leaf to itself, and since it contracts
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the horizontal direction, y is mapped into itself. This implies that lower boundaries
of rectangles map into lower boundaries under ¢ ~!. For identical reasons each A; is
mapped into itself by ¢.

Now note that the endpoints of lower edges of rectangles on y are the terminal
point p, the singularity, and one additional point for each downward pointing edge
in A. Intotal we have 2+ k /2 endpoints which gives 1+ k /2 rectangles. In particular
the number of rectangles depends only on #. O
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