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Finiteness results for flat surfaces: large cusps and short geodesics

John Smillie and BarakWeiss

Abstract. For fixed g and T weshow the finiteness of the setof affine equivalence classes of flat
surfaces of genus g whose Veech group contains a cusp of hyperbolic co-area less than T. We
obtain new restrictions on Veech groups: any non-elementary Fuchsian group can appear only
finitely many times in a fixed stratum; any non-elementary Veech group is of finite index in its
normalizer; and thequotientofHbyanon-latticeVeech groupadmits arbitrarily large embedded
disks. A key ingredient of the proof is the finiteness of the set of affine equivalence classes of
flat surfaces of genus g whose Veech group contains a hyperbolic element with eigenvalue less
than T

Mathematics Subject Classification 2000). 57M50, 37D40.
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1. Introduction

Our objects of study are flat surfaces and their affine automorphism groups. These

structures arise in the study of rational polygonal billiards, inThurston’s classification
of surface diffeomorphisms in connection with measured foliations, and in complex
analysis. The class of flat surfaces is subdivided into translation surfaces and
halftranslation surfaces, which correspond in the complex analysis literature to abelian
and quadratic holomorphic differentials respectively.

Let Aff.M/ denote the affine automorphism group of a flat surface M. Let G D
SL.2; R/ ifM is a translationsurface, andPSL.2; R/ ifM isahalf-translationsurface.
Taking the differential of an automorphism yields a homomorphism DW Aff.M/
G with finite kernel, whose image M is discrete and is called the Veech group of
M. Alternatively, M is the stabilizer, under the G-action, of M in the stratum H
of flat surfaces containing M. For a typical flat surface Aff.M/ and hence M) is
trivial; however surfaces with non-trivial Veech groups are quite interesting. Much
of the interest in the subject was generated by Veech’s discovery [Ve2] of Veech

groups which are non-arithmetic lattices recall that is called a lattice if H= has

finite area). Many additional Veech groups have been described, including infinitely
generated ones [HuSc2], [Mc1], and there are many intriguing questions regarding
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groups which may arise as Veech groups. See [HuSc3] for a recent survey of the
field, and [SmWe1] for a problem list.

A fundamental question in this regard is to understand the commensurability
classes of Fuchsian groups which containVeech groups recall that a Fuchsian group
is a discrete subgroup of G and two such groups are commensurable if their
intersection is of finite index in both). We will describe some restrictions on groups
commensurable to aVeech group and on the geometry of the corresponding H=
The question of which groups within a given commensurability class actually arise
as Veech groups is also of considerable interest, see [HuSc1].

It is clear that if is a lattice then there is an upper bound on the radius of a

maximal embedded disk. We have the following converse, which provides a new
characterization of lattice surfaces.

Theorem 1.1. If is commensurable to a Veech group and is not a lattice then for
every R 0, the quotient H= contains an embedded disk of radius R.

We derive a purely group-theoretic property of Veech groups:

Theorem 1.2. A non-elementary Fuchsian group commensurable to a Veech group
is of finite index in its normalizer.

These theorems followfrom some finiteness results which involve an upper bound
on either the covolume of a cusp for M, or the eigenvalue of a hyperbolic element
in M. For a Fuchsian group a cusp in H= is determined by a conjugacy class

of a maximal parabolic subgroup P Associated with this data is the cusp area,

i.e., the hyperbolic area of a maximal continuous embedded family of parallel closed
horocycles onH= We denote the cusp area by t0. ; P/. Also, when is theVeech
group of a flat surface M, the foliation on M in the direction fixed by P is periodic,
i.e. M is decomposed into finitely many maximal embedded metric cylinders. We

denote the number of cylinders by m.M; P/. Both of these quantities are invariant
under affine equivalence. That is, for all g 2 G, gM D g Mg 1 contains the
maximal parabolic subgroup gPg 1 and

t0. gM; gPg 1/ D t0. M; P/; m.gM; gPg 1/ D m.M;P/:

Let
SC.m; T / D f.M; P/ W t0. M; P/ T; m.M; P/ D mg;

whereM ranges over all flat surfaces, and P ranges over all maximal parabolic
subgroupsof M SC stands for ‘small cusp’). We denoteby SC.m; T / the correspondingfset of affine equivalence classes.

The following holds:
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Theorem 1.3. For anyT > 0 and any m 2 N, the set SC.m; T / is finite.

fOur proof yields an explicit bound on # SC.m; T /, see Theorem 4.2.

fLet be a Haar measure on G and let be a discrete subgroup of G. We denote
the covolume of in G by N /; this number depends only on the conjugacy class

of We deduce:

Corollary 1.4. LetH be a stratum see § 2.1) of flat surfaces and let R; T > 0. Then
the following sets are finite.

i) The set of affine equivalence classes of M 2 H for which H= M contains no
embedded ball of radius R.

ii) The set of affine equivalence classes of M 2 H for which N M/ < T.

Note that Veech [Ve2] constructs lattice surfaces Mn for all n ¤ 4 on different
strata) such that N Mn/ < 2 Thus one cannot omit the hypothesis that M is
contained in a fixed stratum in Corollary 1.4. Assertion ii) was proved independently
by Curt McMullen [Mc2], using the algebraic geometry of moduli space.

Suppose M contains a hyperbolic element h. We denote the larger eigenvalue of
h by h/ and call it the eigenvalue of M; h/. Also, associated to h are Markov
partitions ofM see §5). We let p D p.M; h/ be the minimal number of parallelograms
in a Markov partition. ForT > 0 and p 2 N we define

SMP.p; T / D f.M; h/ W p.M;h/ D p; h/ < T g

SMP stands for ‘simple Markov partition’). These quantities are also invariant under
affine equivalence: if h 2 M is hyperbolic then ghg 1

2 gM is also hyperbolic
with p.M; h/ D p.gM; ghg 1/ and h/ D ghg 1/. We denote the set of affine
equivalence classes in SMP by eSMP. Repeating a folklore argument1 we obtain:

Proposition 1.5 Thurston, Veech). For a fixed T > 0 and p 2 N, eSMP.p; T / is
finite.

The existence of Markov partitions is sketched in [FLP] and we explain it in detail
in the appendix. In particular we show that bounding p is equivalent to bounding the
genus of M. Note that by [Pe], there are pairs Mn;hn/ with hn/ 1, i.e. one

cannot omit a bound on p or on the topology of M) from the statement.
Recall that the geodesic flow is the restriction of the G-action on H to the

oneparameter subgroup of diagonal matrices. There is a bijective correspondence be-tweenG-

orbits of pairs M; h/ as above, and surfaces with a periodic trajectory under

1The argument isprobably due to Thurston. Wewere unable to find a suitable reference, but see [Th, p. 428]
for a hint and [Ry, Theorem 1.7] for more details.
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the geodesic flow, with the length of the corresponding trajectory equal to log h/.
Thus Proposition 1.5 is equivalent to the statement, proved by Veech [Ve1], that the
number of periodic geodesic trajectories in H of length at most T is finite.

For a group and h 2 we write h for the conjugacy class of h in From
Theorem 1.3 and Proposition 1.5 we derive a restriction on Veech groups:

Corollary 1.6. Suppose is commensurable to a Veech group. Then for anyT > 0,
the following sets are finite:

I) fP W P is a maximal parabolic subgroup; t0. ; P/ T g.

II) fh W h 2 is hyperbolic with h/ < T g.

III) ff W f 2 is elliptic with cone area at most T g.

Here thecone areaassociatedwithan elliptic f 2 is theareaofB.zf ;R/=Z f /,
where zf 2 H is the fixed point of f Z f / is the centralizer of f and

R D R.f / D sup
°r W B.zf ; r/=hfi H= is injective : 1)

Given a Fuchsian group, it is natural to ask ‘how often’ it arises as a Veech
group. Cyclic parabolic subgroups are associated with cylinder decompositions and

are easily described. In any stratum there are infinitely many of them belonging to
different G-orbits. Using torus covers one can construct infinitely many flat surfaces

M, in different strata, with the same non-elementary Veech group – see [He] for
infinitely many square-tiled translation surfaces whose Veech group is SL.2; Z/.
Also, if D M and g 2 G normalizes then also D gM. As an application of
our results we show that aside from these simple constructions, each group can only
appear finitely many times, namely:

Corollary 1.7. For any stratum H and any infinite Fuchsian group which is not
cyclic parabolic, the set

fM 2 H W M D g 2)

contains finitely many N-orbits, where N is the normalizer of in G. In particular
if is non-elementary then 2) is finite.

Acknowledgements. We thankYair Minsky andYair Glasner for useful discussions.
The support of NSF grant DMS-0302357, BSF grant 2004149 and ISF grant 584-04
is gratefully acknowledged. Some of the results of this paper were announced in
[SmWe1].
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2. Basics

In this section we set some notation, and collect standard results.

2.1. Flat surfaces. We begin by listing some definitions. For more details we refer
the reader to [MaTa], [Vo], [Zo].

Throughout this paper, S denotes a compact connected orientable surface of
genus g. When S is equipped with the structure of a flat surface or a holomorphic

quadratic differential we will usually denote it by M. When confusion may
arise we will also use M to denote the underlying surface S. A flat surface admits
several equivalent definitions. It may be thought of as an equivalence class of
atlases of charts U ; ' / covering all but a finite set † D †M S of singularities,
such that the transition functions ' B ' 1 are of the form z 7! z C c, and such
that for each 2 † the charts combine to form k-pronged singularity at where

k D k 2 N. If k D 2 then is called a removable singularity or marked point.
We always assume that †M ¤ ¿ Two atlases M; M0 are compatible if M [ M0
is also an atlas satisfying the same conditions. The atlases M D U ; ' / ; M0 are
equivalent if there is a self-homeomorphism hW S S such that h.†M/ D †M 0

and h.U /;' B h/ is compatible with M0. A flat surface is called a translation
surface, or an abelian differential, if there is a compatible atlas in which all transition
functions are of the form z 7! z Cc. A flat surface which is not a translation surface
is called a half-translation surface.

If M and M0 are flat surfaces, an affine equivalence from M to M0 is a
homeomorphism which is affine in each chart. An affine equivalence from M to itself is
called an affine automorphism of M, and the group of all such maps is denoted by

Aff.M/. For an affine equivalence
W M M0, the derivative d x at x 2 M is

well-defined in the case of translation surfaces i.e. independent of charts around

x and x/), and in the case of half-translation surfaces, is well-defined up to Id.
Additionally it is independent of the point x. ClearlyM andM0 are equivalent if and

only if there is an affine equivalence between them with derivative Id Id/ in the
case of translation surfaces half-translation surfaces). Since the area of M is finite,
the derivative of an affine automorphism of a flat surface M is contained in G, and
the group of all derivatives is the Veech group M.

Fix the data giving the number of singularities, the vector Ek D k / 2†, and the
determination whether or not the flat surfaces are translation surfaces; then the set of
equivalence classes of all atlases sharing this data is called a stratum. Each stratum is
equipped with a structure of an affine orbifold, which is locally modelled on a relative
cohomology group, see [MaSm], [MaTa]. The group G acts on H. In the case of
translation surfaces, the action is by post-composition on each chart in an atlas. In
the case of half-translation surfaces, for g 2 G we may choose a representative in
SL.2; R/ and let it act on an atlas by post-composition; the resulting equivalence
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class of half-translation surfaces is well-defined.

Aflat surface inherits from the plane a singular foliation on S called the horizontal
resp. vertical) foliation, with each chart foliated into the lines parallel to the x-axis
resp. y-axis). A saddle connection is a straight segment joining singularities or

punctures, with no singularities or punctures in its interior. The set of all saddle
connections in direction is denoted by LM. /

Throughout this paper we identify elements of G with matrices of SL.2;R/. We

will need the following four one-parameter subgroups of G:

gt D
et=2 0

0 e t= 2 ; r D
cos sin
sin cos ;

0 1 ; hQs D
1 0

hs D
1 s

s 1
:

We say that 1; : :: ; k 2 R are commensurable if i= j 2 Q for all i; j 2
f1;: : : ; kg. If this holds, wedenote byLCM. 1; : : : ; k/ thesmallestpositive number
which is an integer multiple of all the i

2.2. Cylinder decompositions, gluing patterns. A cylinder forM is a topological
annulus which is isometric toR=wZ .0;h/, for positiveh; w. It ismaximal if it is not
contained in a larger cylinder, and this implies that both of its boundary components
in S contain singularities. The height, width, and inverse modulus of the cylinder are

h; w, andw=h respectively, and a curve which wrapsaround the cylinder parallelto its
boundary is called a waist curve. A cylinder decomposition is a decomposition ofM
into maximal cylinders with disjoint interiors. The waist curves of all the cylinders in
a cylinder decomposition are parallel. Two cylinder decompositions ofM are called
transverse if the slopes of waist curves in each decomposition are different.

2.2.1. Gluing pattern for a pair of cylinder decompositions. Suppose for i D 1; 2

that we have two transverse cylinder decompositions M D C i/
1 [ [ C i/

mi For

each i 2 f1; :: : ;m1g, j 2 f1; : : :; m2g, the intersection C
.1/
i \C

.2/
j consists of aij

parallelograms. The resulting parallelograms have disjoint interiors and boundary
identifications. To describe how the parallelograms are attached to each other we
follow ideas of [EsOk].

Suppose first that M is a translation surface. In this case one can consistently
label the edges of the parallelograms with labels right, left, top, bottom. Label the
parallelograms by 1; :: : ;`, let S` denote the group of permutations on ` elements,
and define 1; 2 2 S`, where 1.k1/ D k2 resp. 2.k1/ D k2) if the right resp.

top) edge of the k1th parallelogram is attached to the left resp. bottom) edge of the
k2th parallelogram.
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Replacing the labelling of the parallelograms amounts to replacing 1, 2 with

1 1, 2
1 for some 2 S`. We denote the equivalence class of 1; 2/ 2

S` S` under simultaneous conjugations by OE. 1; 2/ and call OE. 1; 2/ the gluing
pattern of M and the given cylinder decompositions. From the gluing pattern it
is simple to recover the number of cylinders in each decomposition, the number of
connected components in each intersection of cylinders, and the stratum to whichM
belongs. In particular the following hold:

i) For i D 1; 2, i has mi cycles, and the length of the j th cycle of 1 resp. 2)
is

Pi aij resp.
Pi aji

ii) The subgroup of S` generated by 1; 2 acts transitively on f1; :: : ;`g.
Moreover M is completely determined by the dimensions and orientation of the

parallelogram and the corresponding gluing pattern; indeed such information gives
rise to an explicit atlas of charts as in §2.1.

In case M is a half-translation surface, one can define a gluing pattern in a more
complicated way by subdividing each rectangle into four ‘quarter-tiles’. This will
not be used in the current paper.

2.2.2. Gluing pattern for parallelograms. We will also have occasion to consider
flatsurfaces made up of finitelymany parallelograms, gluedalong edges. We suppose

that M is a translation surface which is a union of closed metric parallelograms
P1; : : : ;Pm, with disjoint interiors, such that the two directions of parallel sides
are the same for all Pi and such that the singularities are on the boundaries of the
parallelograms; replacing M with an affinely equivalent surface, let us assume these

sides are horizontal and vertical. Let 1; : : : ; `1 respectively 1;: : :; `2 be a list
of the horizontal resp. vertical) connected components of all intersections Pi \Pj
for i ¤ j which are not points. That is all the i and j are all segments; if one of
them contains a singularity ofM in its interior we subdivide it in two, so after finitely
many steps the i and j do not contain singularities in their interior. Orienting the
-edges from left to right and the -edges from bottom to top, we obtain a directed

graph with two kinds of edges, embedded in M and equipped with two additional
structures:

At each vertex there is a cyclic order for the incident edges, obtained by going
around a smallneighborhood of thepoint inM in the counterclockwisedirection.
Moreover along a cycle, consecutive edges of the same kind have opposite
orientations e.g. if i is incoming and j is the next -edge then it is outgoing).

For each resp. segment there are top and bottom resp. right and left)
labels from f1; : : : ; mg indicating the parallelograms glued to the segment on
the appropriate side.

We call a graph with these structures a gluing pattern for a decomposition into
parallelograms. The gluing pattern obeys certain obvious restrictions. For example, at a
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vertex v, if there is no edge between an incoming and an outgoing edge then the

‘right’ labels of the two edges are the same. Note that the gluing pattern determines
the stratum containing M. Since each vertex of a gluing pattern is either a corner of
a rectangle or a singularity of M, there are only finitely many gluing patterns when
the number of singularities and the number of parallelograms are fixed.

Also associated with a parallelogram decomposition is the metric data consisting
of the lengths of sides of the Pi and the lengths of the - and -edges. Given the
gluing pattern and the lengthsof the edges, it is possible to calculate the sidelengths of
the Pi ; thus the gluing pattern places some restrictions on the metric information. It
is clear that the gluing pattern and the metric data taken together uniquely determine
the translation surface M.

One could similarly define a gluing pattern for a parallelogram decomposition of
a half-translation surface. This will not be used in the present paper and is left to the
avid reader.

2.3. Fuchsian groups. A Fuchsian group isa discrete subgroup ofG. Fixing a Haar
measure on G, we define the covolume of in G as the measure of a measurable
fundamental domain for the action of on G, and denote the covolume by

N / It
is easily checked that if M and M0 are affinely equivalent then N M/ D N. M 0/.
If N M/ < 1then M is called a lattice surface.

An element of a Fuchsian group is called parabolic if it is conjugate to h1 or
its inverse, and an automorphism ' 2 Aff.M/ is called parabolic if D' 2 M is
parabolic. The following is well known see [Ve2, Proposition 2.4]):

Proposition 2.1. If ' 2 Aff.M/ is parabolic and D' fixes the direction then

M X LM. / is a cylinder decomposition. For any m there is D m such that if m
is the number of cylinders in the above decomposition, then there is k such that

D 'k preserves the cylinders and the corresponding inverse moduli 1;: : : ; m
for satisfy LCM. 1; : : : ; m/ D where D D r h r and ni D i is the
number of Dehn twists which induces around a waist curve in the i th cylinder.

For a Fuchsian group we now define cusp areas and cone areas. An infinite
cyclic subgroup of G generated by a parabolic element is called parabolic. Suppose

that contains a parabolic subgroup P and is non-elementary, that is, not a finite
extension of an abelian group. Suppose also that P is maximal, i.e. not properly
contained in a parabolic subgroup of Choose an element g 2 G such that

gPg 1
D hh1i ; 3)

and relabelling, replace P and by gPg 1 and g g 1 respectively. Let H be
the complex upper half plane, let i D

p 1, let Ct denote the image of the disk
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°
z 2 H W z t i2 < t=2 in H=P let ' W H=P H= be the natural map, and let

t0 D t0. ;P/ D supft > 0 W 'jCt is injectiveg: 4)

We will show in Proposition 3.1 that the set in the right-hand side of 4) is nonempty
and bounded above, so that t0 is well-defined, and that t0 does not depend on the
choice of g in 3) and satisfies

t0. ; P/ D t0.x x 1; xPx 1/ 5)

for x 2 G. We call t0 the cusp area of P in ; a simple computation shows that it is
equal to the hyperbolic area of Ct0

2.4. Orientation double cover. SupposeM is a half-translationsurface. Then there
is a topological branched cover

W zS S of degree 2 such that the pulled-back flat
surface Mz is a translation surface called the orientation double cover of M, see

[DoHu, p. 175]. We have:

Proposition 2.2. Let Mz M be the orientation double cover of a half-translation
surface M. Then:

Any automorphismofM lifts to anautomorphism ofMz with thesame derivative.
If a parabolic resp. hyperbolic) affine automorphism ' of M has an associated

cylinder decomposition resp. Markov partition, see §5) with k cylinders
resp. parallelograms) then the lifted automorphism 'Q of Mz has an associated

cylinder decomposition resp. Markov partition) with at most 2k cylinders resp.
parallelograms).

Taking orientation double covers is G-equivariant, i.e. for g 2 G, gMz is the
orientation double cover of gM.
GivenMz there are at most finitely manyM such thatMz is the orientation double
cover of M.

Proof. A proof of the fact that any affine automorphism lifts can be found in [Ry,
Theorem 3.2]. The statement about the number of cylinders and rectangles follows
immediately from the fact that the degree of the cover is 2. The second statement
is immediate from the construction of the orientation double cover. For the third
statement see e.g. [Vo, §5].

2.5. Perron–Frobenius. A matrix A 2 Matd R/ with all entries non-negative is
called non-negative, and a non-negative matrix is called irreducible if for some k, Ak
has all its entries strictly positive. A vector Ev 2 Rd is called positive if all its entries
are strictly positive.

We will need the following classical result see e.g. [Ga]).
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Proposition 2.3. SupposeA 2 Matd R/ is an irreducible non-negativematrix. Then:

There is a unique up to scaling) positive eigenvector vC of A, and the
corresponding eigenspace is one-dimensional.

Let be the eigenvalue for which AvC D vC. Then for any other eigenvalue

of A, j j <

We denote the eigenvalue of Proposition 2.3 by A/. We will be particularly
interested in irreducible non-negative matrices with integer entries.

Proposition 2.4. GivenT > 0 and d 2 N, the set

fA 2 Matd Z/ W A is irreducible non-negative, A/ < T g

is finite.

Proof. This can be deduced from [Ga, Vol 1, p. 63], see [PaPe, Proof of Theorem 6].

3. Some hyperbolic geometry

This section contains some standard propositions in hyperbolic geometry related to
cusp areas and cone areas for which a suitable reference could not be found. We will
use the notation introduced in §2.3.

Proposition 3.1. Let be a Fuchsian group containing the maximal parabolic
subgroup P D hh1i : Then X D ft > 0 W ' jCt is injectiveg is nonempty. If is
nonelementary then t0 D supX < 1; and there is 0 2 which is a conjugate of
h1, such that for some s 2 R, h 1

s 0hs D hQ t20
The hyperbolic area of Ct is t0, and

5) holds for all x 2 G.

Proof. We denote the right-action of on H by

z D
az C c

bz C d c d 2 :; where D
a b

Let Bt D °
z 2 H W jz

t
2 i j < t

2
and let Ht D @ Bt By our conventions Bt

projects to Ct and Ht is the horocycle based at 0 through t i, which projects to a

periodic horocycle on H=P Let S H1 be a compact segment whose projection to

H=P contains a full period of the horocycle. Since the action of on H is properly
discontinuous, we can write

f 1; : :: ; Ng D f 2 W S \ S ¤ ¿; 0 ¤ 0g:
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To show that X ¤ ¿; take 0 < t 1 small enough so that Bt does not intersect

S
N
iD1 Bt i ; such t exist because the Bt i are not based at 0. Suppose if possible

that for some 2 XP, Bt \Bt ¤ ¿ In particularB1\B1 ¤ ¿ It follows
from discreteness of and maximality of P that P is equal to its own normalizer in

This implies that p D 0 ¤ 0; then H1\H1 ¤ ¿ see Figure 1) and since

any element of H1 may be mapped to S by suitable powers of h1, there are j; k 2 Z
such that S \ S Q ¤ ¿; where Q D hj1 hk1 2 Thus for some i 2 f1; : : : ;Ng

we have
Q D i and Bt \ Bth j

1 ih k
1 ¤ ¿ Since Bt is invariant under h1, this

contradicts the definition of t

H1

H1

Ht

p 0

@H

Ht

Figure 1. Intersection of horocycles.

Now if is nonelementary then it contains so that 0 ¤ 0, so that H1 and

H1 are horocycles based at different points. Then for all sufficiently large t
Ht \Ht ¤ ¿ which shows supX < 1. Further, by definition of t0, there is

2 such that Ht0\Ht0 ¤ ¿ and Bt0 \Bt0 D ¿ i.e., Ht0 and Ht0 are
horocycles based at different points and tangent to each other. We denote the point
of tangency by p0.

Since p0 1
2 Ht0 there is s1 such that

p0 D p0 x; Ht0 x D Ht0 ; where x D hs1 :

We now express x in terms of t0, as follows.
Let s 2 R so that pQ0 D p0 hs D t0i. The matrices

a D
t

1=2
0 0

0 t1= 2
0

!; wD
0 1
1 0

6)
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satisfy pQ0 a D i D i w, and H1 w D Hz, where Hz D fz 2 H W
Imz D 1g D

fi hQs W s 2 Rg see Figure 2). Thus the matrix x0 D hsawa 1h s also satisfies

p0 D p0 x0; Ht0 x0 D Ht0 and this implies

x D hsawa 1h s: 7)

p0

@H

Ht0
Ht0

Hz

pQ0 D p0hs

i

H1

Figure 2. Tangency of Ht0 and Ht0

Let 0 D x 1h1x D 1h1 2 A computation using 7) gives

h 1
s 0hs:

Finally, note that the hyperbolic area of Ct0 is the same as that of Ct0 hs, which
by the above is covered bijectively by fz D x C iy 2 H W y t0; 0 x < t20 g.
Hence its area is

Z
t20

Z
1

0 t0

dy
y2

dx D t0:

Since t0. ;P/ only depend on the geometry ofH= and a conjugation by x 2 G
affects an isometry on H= 5) is clear.

Suppose is a Fuchsian group containing an elliptic element f such that hf i
coincides with the centralizer Z f /. The corresponding cone in H= is the image

of B.zf ;R.f // under the map ' W H=hfi H= where zf 2 H is the fixed point
of f and R.f / is defined via 1).
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Proposition 3.2. With the above notation, let 2 such that zf is a closest point
to zf in the orbit zf Then the commutator h D OE ; f is hyperbolic, its eigenvalue
is bounded above by a number depending only on R.f /, and the distance from the
axis of h to zf is also bounded by a number depending on R.f /.

Proof. Write z D zf ; z0 D z and f 0 D f 1. Clearly R.f / D d.z; z0/=2.
Conjugating with an appropriate element of G and relabelling we can arrange
that z D t C i and z0 D t C i are symmetric with respect to the y-axis in H.
Using the formula for hyperbolic distance see e.g. [Ka, Theorem 1.2.6]) we find
cosh d.z; z0/ D 1 C 2t2.

On the other hand f D htr h t and f 0 D h tr ht Computing h D f 0f 1

directly we find tr.h/ D 2 C 4t2 sin2 Since this number is greater than 2, h is
hyperbolic, and since this number is no more than 2 cosh d.z; z0/ D 2 cosh 2R.f /,
and the trace determines the eigenvalue, the second assertion follows.

Since f 1 fixes z and f 0 rotates around z0, the distance which z is moved by
h D f 0f 1 is bounded in terms of R.f /. On the other hand the order of f leads

to a lower bound on sin and and hence to a lower bound on the displacement of
h. Now let p1; p2 be the points on the axis of h closest to z and zh respectively, so

that p2 D p1h; consider the quadrilateral joining z;p1; p2; zh. We have bounded

d.p1; p2/ from below and d.z;zh/ from above, and the angles at p1;p2 are right
angles. From this it is easy to deduce an upper bound on the length d.p1; z/.

4. Finiteness of small cusps

In this section we prove a more precise version of Theorem 1.3. The idea is that
when M is non-elementary, a cusp in H= M gives rise to two transverse cylinder
decompositions onM, one an image of the other under an affine automorphism, and

the cusp area bounds the combinatorics of the corresponding intersection pattern. We

will first consider translation surfaces, so denote

SC1.m;T / D f.M;P/ 2 SC.m; T / W M is a translation surfaceg;

and by SC1.m; T / the corresponding sets of G-orbits.

fFor anyT > 0 and m 2 N, let N.m;T / denote the set of pairs A;D/, where

A;D 2 Matm.ZC/; A is symmetric, D is diagonal, DA is non-negative irreducible
and DA/ < T The following is an immediate corollary of Proposition 2.4.

Proposition 4.1. For any m 2 N andT > 0, #N.m; T / < 1.
Given a symmetric A D aij 2 Matm.ZC/, let ` D Pi;j aij Denote by P.A/

the set of simultaneous conjugacy classes OE. 1; 2/ for which i) and ii) of §2.2 hold,
and such that 1 and 2 are conjugate in S`.
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Theorem 4.2. For fixedT > 0 and m 2 N,

SC1.m;T/ XA;D/2N.m; mT/
#f #P.A/:

Proof. We will construct a map

‰
W

SC1.m; T / X;

where

X D f.A;D; OE. 1; 2/ / W A; D/ 2 N.m; mT /; OE. 1; 2/ 2 P.A/g;

such that ‰.M; P/ D ‰.M0; P0/ if and only if there is g 2 G such that M0 D gM
and P0 D gPg 1; in other words, ‰ induces an injective map defined on SC1.m; T /.fLet M0; P0/ 2 SC1.m; T /, that is M0 is a flat surface, M 0 is non-elementary,
and P0 M 0 is maximal parabolic. By a conjugation we may assume that P0 is
the cyclic group generated by h1. Let s; 0; h1; t0 be as in Proposition 3.1, let a be
as 6), let g D a 1h s, and let M D gM0. Then M D g M0g 1 contains the two
elements

1 D ht0 ; 2 D hQ t0 ; 8)

and there is 2 M such that

2 D
1

1 : 9)

Moreover P D gP 0g 1 is generated by 1.
By Proposition 2.1, there is a parabolic affine automorphism '1 2 Aff.M/ and

k m such that D'1 D
k
1 D hkt0 and '1 preserves the cylinders in a horizontal

cylinder decomposition M D C1 [ [Cm. Let 2 Aff.M/ such that D D
and let '2 D 1'1 2 Aff.M/, so that D'2 D

k
2 Let C0i D 1.Ci/. Then

M D C01 [ [ C0m is a vertical cylinder decomposition invariant under '2.
Let Ea; Ew resp. Ea0; Ew0) be positive vectors in Rm recording the heights and

circumferences of the cylinders C1; : : : ; Cm resp. C01; : : : ;C0m It follows from 8) and 9)

that D hs1 whQs2 for some s1; s2 2 R, where w is as in 6). Since the action of hs
resp. hQs) does not affect the heights and circumferences of horizontal resp. vertical)

cylinders, and since w affects a rotation by 2, we get

Ea D Ea0; Ew D Ew0:

Now let A D aij / 2 Matm.Z/ where aij is the number of connected components
of Ci \ C0j By connectedness of M, A is irreducible. Since exchanges the
roles of Ci and C0j A is symmetric. By construction, the gluing pattern OE. 1; 2/
corresponding to the two cylinder decompositions above is in P.A/. We have

Ew D Ew0 D AEa: 10)
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Now let ni be the number of Dehn twists induced by '1 around a waist curve in
Ci By Proposition 2.1 we have kt0 D niwi=ai that is, if D D diag.n1; : : : ; nm/ 2
Matm.N/, then

kt0 Ea D D Ew D DAEa:

That is, kt0 D DA/, D; A/ 2 N.kT / and k m. Altogether we have

D; A; OE. 1; 2/ / D ‰.M0; P/ 2 X, so to prove the theorem it remains to show
that the G-orbit of M0;P0/ may be reconstructed from D;A; OE. 1; 2/ / Note that

Ea is uniquely determined up to scaling as the positive eigenvector of DA, and Ew is
determined from Ea

and A via 10). The scaling parameter is also uniquely
determined by the requirement thatM has area one. So A;D/ determine Ea and Ew, that is,

the heights and circumferences of the rectangles, and OE. 1; 2/ determines how they
are to be glued to each other. This determines M, and P is the maximal parabolic
subgroup of M leaving the horizontal direction fixed.

Proof of Theorem 1.3. By Proposition 2.2, for each M; P/ 2 SC.m; T /, the orientation

double coverMz also hasP as a parabolic subgroup of
Mz

and the corresponding

cylinder decomposition has at most 2m cylinders. Thus, if Pz Mz
is a maximal

parabolic subgroup containing P, then M; P/ gives rise to Mz ; Pz/ 2 SC1.2m; T /.
Moreover for a fixed Mz ;Pz/ there are only finitely many M;P/ from which it arises
in this way. The theorem follows.

5. Hyperbolic affine automorphisms and Markov partitions

In this section we prove Proposition 1.5. As noted in the introduction, the result is
not new and presumably our argument is also well known. We include it since it does

not appear in the literature.
Let M be a flat surface and let ' be a hyperbolic affine automorphism in a

different terminology, ' represents a pseudo-Anosov homeomorphism). Let h D D'
be the corresponding element of M, and let D h/. By applying g 2 G, let us

assume that h expands the x-axis and contracts the y-axis by a factor of A Markov
partition for ' is a covering M D P1[ [ Pp by closed rectangles, with disjoint
interiors, horizontal and vertical sides, such that the following Markov property is
satisfied: for each i the image of any vertical resp. horizontal) side of any Pi under

' resp. ' 1) is contained in a vertical resp. horizontal) side of one of the Pj This
means that if int '.Pi/ intersects the interior of some Pj then it extends all the way
through to both sides. It is known that a Markov partition exists. A sketch of proof
is given in [FLP], and we have provided more details in the appendix.

The intersection matrix of ' is the p p integer matrix A D aij /, where aij is
the number of connected components of int '.Pi/\ int Pj One has:
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Proposition 5.1. A is irreducible.

D A/.
The vector recording the widths resp. heights) of the rectangle Pi is a positive

eigenvector for A resp. A>).

Proof. It follows from the Markov property that the i j th entry of An counts the
number of components in the intersection 'n.Pi /\ Pj Suppose by contradiction
that A is not irreducible, so that there is a sequence nk 1and 1 i; j p so

that

'nk.Pi/\Pj D ¿: 11)

Let be a horizontal segment in Pi and consider its image k under 'nk Then k
is a horizontal segment contained in 'nk.Pi / whose length tends to infinity. Passing

to a subsequence we can assume the left endpoints of k converge to x 2 M, so
that any point along an infinite horizontal ray ` issuing from x is a limit of points of

k. Since ' 1 is an affine automorphism on M which contracts horizontal saddle
segments, there are no horizontal saddle connections on M, so the horizontal line
flow on M is minimal. This implies that ` is dense in M. In particular for large
enough k, k \ int Pj ¤ ¿ contradicting 11).

Now let wi be the width of Pi so that wi is the width of '.Pi /. By the Markov
property '.Pi / passes aij times through Pj so that wi D Pj aijwj That is,

Ew D A Ew:

Since Ew is a positive vector, D A/. The proof for heights is almost identical.

For a non-negative irreducible A 2 Matp.Z/, let G.A/ denote the gluing patterns
as in §2.2.2) of Markov partitions arising from hyperbolic affine automorphisms

whose intersection matrix is A. We have:

Proposition 5.2. The set G.A/ is finite.

Proof. Since ' resp. ' 1) preserves the boundaries of rectangles, but contracts
vertical horizontal) saddle connections, there are there are no vertical or horizontal
saddle connections for M. Thus each rectangle contributes at most 4 to the total
angle around the singularities ofM. In other words the number of rectangles bounds
the number of singularities. Since each edge in a gluing pattern is either bounded by
a singularity or by a full size of a rectangle, this also bounds the number of edges in
a gluing pattern. Thus the number of gluing patterns is finite.

We now want to show that intersection matrix of ' determines the metric data for
the gluing pattern, up to rescaling the surface. We normalize by assuming our surface
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has area one. Let i be the horizontal segments of the gluing pattern corresponding
to P1; : : : ; Pp. We will refine our Markov partition to obtain another partition with
the Markov property. Each i is a connected component of the intersection of two
of the Pj say P1;P2. Consider the vertical segments if any) which issue from the
endpoints of i into the interior of P1;P2. Any such segment divides a rectangle

vertically into two rectangles, with the same height as before. At least one of the new
rectangles will have width i

We denote the resulting rectangle decomposition by M D Q1 [ [Qr and
claim that this decomposition also has the Markov property. To see this, note first
that subdividing rectangles by vertical lines does not affect the requirement for ' 1,

which involves only horizontal sides. Now suppose Q P1; P2 are as in Figure 3,
Q0 P0 such that int '.Q/\ intQ0 ¤ ¿ There are two cases to consider:

1) If '.P1/ does not reach the top of P0 then also int '.P2/ \ int P0 ¤ ¿ and by
the Markov property for the Pi both '.P1/ and '.P2/ go across P0 so '.Q/
goes across P0 and hence across Q0.

2) If '.P1/ reaches the top of P0 and P00 lies above P0 then '.P1/ goes across P0
and '.P2/ goes across P00 so that '.Q/ goes across the smaller of the two, i.e.,

'.Q/ goes across Q0.

i

P2

Q

P
0

P 00

Q0

P 0

case 1)

case 2)

'
P1

Figure 3. Markov property for the Qj

Considering all cases in this manner proves the claim.
We can also refine using the i instead of the i cutting rectangles horizontally, to

obtain another Markov partition T1; : : : ; Tt We define matrices B and C by letting
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bij resp. cij be the number of connected components of int '.Qi/ \ intQj resp.

int '.Ti/ \ int Tj Repeating the proof of Proposition 5.1 we obtain:

Proposition 5.3. B and C are irreducible.

D B/ D C /.
The vector recording the lengths of the segments i resp. i is a positive

eigenvector for B resp. C).

We are now in a position to formulate and prove a more precise version of Proposition

1.5. We will consider separately translation and half-translation surfaces, so

we write

SMP1.p; T / D f.M; h/ 2 SMP.p; T / W M is a translation surfaceg;

and denote the corresponding set ofG-orbits by eSMP1.p;T /. LetM.p; T / be the set

of positive integer matrices A with A/ < T This is a finite set by Proposition 2.4.

Then we have:

Theorem 5.4. For a fixedT > 0 and p 2 N,

# eSMP1.p; T / X
A2M.p;T/

# G.A/:

Proof. Given.M; h/ 2 SMP1.p; T /, we haveconstructedA 2 M.p;T / and agluing
pattern in G.A/, and these data only depend on the affine equivalence class of M.
Thus we have defined a map

ˆ W
eSMP1.p; T / [A2M.p;T /

G.A/;

and it remains to show that ˆ is injective, i.e. thatM and h are uniquely determined
by the matrix A and the gluing pattern, up to an element of G and rescaling the
surface. Normalizing we assume M has area 1. Applying an element g 2 G we
can assume that the parallelograms in the Markov partition corresponding to M; h/
are rectangles with the expanding direction horizontal, and moreover the width of
the widest rectangle can be normalized to be 1. With this choice of g we need to
show that the matrix and gluing pattern uniquely determine gM. Since the widths
of the rectangles are in the unique positive eigendirection of A, and by our scaling
convention, the matrix A determines the widths of the rectangles. The heights also
span the unique eigendirection for A> so are determined by A up to scaling. By the
requirement that gM has area 1, the heights are uniquely determined by A. From A
and the gluing pattern one determines the matrices B and C, and the lengths of the i
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and j give a positive eigenvector of B and C which is thus determined up to scaling.
Since the sidelengths of the rectangles Pi are determined, and can also be calculated
using the lengths of the i and i the i and j are also uniquely determined. Since
we have specified its gluing pattern and geometry, the flat surface gM is uniquely
determined.

Proof of Proposition 1.5. By Proposition 2.2, for each M; h/ 2 SMP.p;T / the
orientation double cover Mz has a hyperbolic affine automorphism ' such that the
corresponding number of parallelograms is at most 2p. I.e., M; h/ 2 SMP.p; T / gives
rise to Mz ;h/ 2 SMP1.2p; T /. Also for a fixed Mz ;h/ the number of M; h/ covered
in this way is finite. The proposition follows.

6. Restrictions on Veech groups

Proof of Corollary 1.6. It is easily checked that I) and II) depend only on the
commensurability class of so to prove them we can assume that D M for a flat
surface M. Since the maximal number of cylinders for a cylinder decomposition
on M is bounded, assertion I) follows immediately from Theorem 1.3. Similarly
assertion II) is immediate from Proposition 1.5.

To prove assertion III) we note that in a Veech group there is a uniform upper
bound on the order of an elliptic element by Hurwitz’s theorem, hence such a bound
also exists in any group commensurablewith aVeech group. So it remains to showthat
a Fuchsian group in which II) holds and orders of elliptic elements are uniformly
bounded, III) holds. To see this, given T suppose we have a list z1; z2; : : : of fixed
points for elliptics f1; f2; : :: in such that the corresponding cone areas are no
more than T Since the order of the fi is bounded above, we have a uniform upper
bound for R.fi/ defined via 1). Let hi be the hyperbolic element corresponding
to fi via Proposition 3.2. Since the eigenvalue of the hi is bounded, by II) the list
h1; : : :; contains only finitely many conjugacy classes. Conjugating the fi’s and
correspondingly the hi’s we may assume that there are only finitely many distinct
elements in the list h1; h2; : : : Given h D hi in this list, let A be its axis, and let

A0 A be a compact fundamental domain for the action of h on A. By a further
conjugation of fi assume that the closest point to zi on A is in A0. In view of the
upper bound on the order of the fi ’s, by Proposition 3.2 zi is within bounded distance

of A0. By discreteness of there are only finitely many zi’s and hence finitely many

fi ’s.

Remark 6.1. The argument proving III) can be adapted to prove the following
analogue of Theorem 1.3 and Proposition 1.5: for any stratum H and any T the set

of affine equivalence classes of pairs M; f /, whereM 2 H and f 2 M is elliptic,
with corresponding cone area at most T is finite.
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For the proof of Theorem 1.2 we will need the following lemma.

Lemma 6.2. Suppose ƒ0 is a Fuchsian group, a normal subgroup of ƒ0, 2
a non-central element such that for any 2 ƒ0 there is 2 with D Then

is of finite index in ƒ0.

Proof of Theorem 1.2 assuming Lemma 6.2). Let be a non-elementary Fuchsian
group commensurable to a Veech group, let ƒ be the normalizer of in G, and
supposeƒ= is infinite. Since isnon-elementary it contains a hyperbolic element

[Ka, Theorem 2.4.4], and ƒ is Fuchsian [Ka, Theorem 2.3.8]. Let

ƒ0 D f 2 ƒ W D for some 2 g:

In the action of ƒ on conjugacy classes of ƒ0 is the stabilizer of the conjugacy
class of In particular ƒ0 is a subgroup of ƒ. According to Lemma 6.2, ƒ0= is
finite so ƒ=ƒ0 is infinite. This implies that the conjugates f W 2 ƒg comprise
infinitely many conjugacy classes, in other words contains infinitely many hyperbolic

elements which are conjugate in ƒ, hence have the same eigenvalue, but are not
conjugate in This contradicts Corollary 1.6.

Proof of Lemma 6.2. Let C be the centralizer of in ƒ0 and let C0 D C \ Since

ƒ0 is Fuchsian, C is cyclic see [Ka, §2.3]) and therefore C0 is of finite index in C.
By assumption for every 2 ƒ0 there is 2 such that 1

2 C, which implies
that ƒ0 D C Thus C maps onto ƒ0= Since this surjection factors through

C=C0, ƒ0= must be finite.

Proof of Corollary 1.7. Given H, for any M 2 H and any hyperbolic h 2 M, the
minimal number p.M; h/ of parallelograms in a corresponding Markov partition can
assume only finitely many values by Proposition A.1. Let contain a hyperbolic
element h. By Proposition 1.5 the number of G-orbits of M such that h 2 M is
finite. In particular the set in 2) intersects only finitely many G-orbits. If M1 and

M2 are flat surfaces in H such that gM1 D M2 and M1 D M2 then g 2 N; and if
is non-elementary then N= is finite by Corollary 1.2.

Proof of Theorem 1.1. Given R let T D 2R. Enlarging T we ensure that a cusp of
area at least T contains an embedded ball of radius R. Enlarging T further, in light
of the upper bound on the order of elliptic elements in we ensure that any cone of
area at least T contains an embedded ball of radius R. Thus we may assume H=
contain neither a cusp of volume at least T nor a cone of area at least T ; in view of
Corollary 1.6, H= has only finitely many cusps and cones, and only finitely many
closed geodesics of length less than T

Now let N1 H= be the union of closed geodesics of length less than T cusps
of area less than T and cones of area less than T Then N1 has finite area. Let N
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be a neighborhood of N1 which is large enough so that a closed loop intersecting the
complement of N and homotopic to either a geodesic of length less than T a loop
around a cusp of area less than T or a loop around a cone point of area less than T
must have length at least 2R. Since H= has only finitely many cusps and cones,

the area of N is also finite, so H= ¤N.
Let W H H= be the natural map, and let Nz 2 H so that z D Nz/ … N.

We claim that jB.Nz;R/ is injective. Otherwise there is a segment N connecting two
distinct points in B.Nz; R/, mapping to a closed loop in H= of length less than
2R. Either has a shortest representative which is a geodesic of length less than 2R,
or is freely homotopic to a curve around a cusp or cone, that is a curve in N1. But
then the definition of N ensures that the length of is greater than T and this is a

contradiction.

Proof of Corollary 1.4. In a given stratum there is an upper bound on the number of
cylinders in a cylinder decomposition. See [KeMaSm, Lemma, p. 302] or Smillie’s
improved bound as presented in [Na]. Suppose by contradiction thatM1; M2; : : : are

infinitely many affinely inequivalent surfaces, such that for each i H= i does not
contain an embedded ball of radius R. Here i D Mi By Theorem 1.1 the Mi are
lattice surfaces, hence for each i i contains at least one maximal parabolic Pi. By
Theorem 1.3, t0. i; Pi/! 1. A cusp with cusp area t0 contains an embedded ball
of radius R.t0/, where R.t0/! 1as t0 1– a contradiction proving i). For a

lattice surface, the cusp area is bounded above by the covolume, implying ii).

Remark 6.3. It is also possible to deduce Corollary 1.4 and the finiteness of

f
SC.m;T / \ H for any stratum H, from Proposition 1.5, as follows. To any cusp
one associates the element h D 1 2 as in 8) and proves it is hyperbolic, with h/
bounded by a number depending on the corresponding cusp area. Our Theorem 1.3
is stronger in that it does not assume a bound on the topology of the surface, but only
on the number of cylinders in the corresponding cylinder decomposition.

Appendix. The construction of Markov partitions

Proposition A.1. For any stratum H of flat surfaces, there are R1 and R2 such that
for any surface M 2 H and any hyperbolic ' 2 Aff.M/

any Markov partition for ' has at least R1 parallelograms;

there is a Markov partition for ' with at most R2 parallelograms.

Proof. Let k D P 2† k so that k is the total angle around all the singularities
of a surface in H. Suppose M 2 H and ' 2 Aff.M/ is hyperbolic, with a Markov
partition into parallelograms P1; : :: ; Pp. By conjugating we can assume the Pi are
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rectangleswith horizontaland vertical sides. The horizontalandverticaldirectionsare
contracted by either ' or ' 1, but these maps preserve the set of saddle connections,
so since there are only finitely many saddle connections in any direction) there are
no horizontal or vertical saddle connections onM. In particular each edge of each Pi
can only contain one singularity, so that the total angle around singularities coming
from each Pi is at most 4 This implies that p R1 D k=4, proving the first
assertion.

To prove the second assertion, by Proposition 2.2 it suffices to consider strata
of translation surfaces. Also, if we have a Markov partition for 'r the common
refinement of its images under 'i i D 0; :: : ;r, provides a Markov partition for '.
Thus by passing to a suitable finite power of ',which can be taken to depend only on

H, we can assume that ' fixes all the singularities and all the critical leaves issuing
from singularities. Assume without loss of generality that the contracting direction
for ' resp. ' 1) is vertical resp. horizontal).

Since there are no horizontal or vertical saddle connections, the foliation in both
the horizontal and vertical direction is minimal, so the leaves intersect any transverse

segment. We will construct the edges of the partition in three steps.

1) Let be a short closed segment starting at a singularity and going along a

horizontal leaf, say from left to right, and let be a union of closed segments
starting at each singularity along the vertical leaves going both up and down)
until the first point of intersection with Denote the segments comprising
by 1; : : : ; k.

2) The intersection \ is finite, so there is a terminal point p which is the right¬
most intersection point of \ Remove from the subsegment to the right
of p. We retain the name for the shorter segment.

3) Suppose j ends at p. Continue it further until its next intersection with We

retain the names j for this new collection. Since M has no vertical saddle
connections, the new intersection point of j with is not one of the previous
ones, and no two of these new intersection points coincide.

We first claim that each connected component ofM X. [ / is a rectangle. Take
a segment I which is bounded by either a singularity and the first point where
a ` comes down to or by two consecutive points at which ` ’s come down to
Consider the union of vertical leaves which begin at points of I and move upwards.
These form a strip, which near is bounded on both sides by segments in By
choice of the j all these leaves all hit again ‘at the same time’, i.e., none of these

leaves hit a singularity or a terminal point before returning to The construction
also ensures that the segments from on both sides of the strips also extend until the
next intersection with Thus the strip is a rectangle bounded by [We now claim that this partition into rectangles has the Markov property. Since

' 1 fixes each singularity and maps each critical leaf to itself, and since it contracts
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the horizontal direction, is mapped into itself. This implies that lower boundaries
of rectangles map into lower boundaries under ' 1. For identical reasons each j is
mapped into itself by '.

Now note that the endpoints of lower edges of rectangles on are the terminal
point p, the singularity, and one additional point for each downward pointing edge

in In total we have 2Ck=2 endpoints whichgives 1Ck=2 rectangles. In particular
the number of rectangles depends only on H.
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