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Conformal arc-length as %-dimensional length of the set
of osculating circles

Rémi Langevin and Jun O’Hara™

Abstract. The set of osculating circles of a given curve in §3 forms a lightlike curve in the

set of oriented circles in $3. We show that its “%—dimensional measure” with respect to the

pseudo-Riemannian structure of the set of circles is proportional to the conformal arc-length of
the original curve, which is a conformally invariant local quantity discovered in the first half of
the last century.

Mathematics Subject Classification (2000). 53A30, 53B30.
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1. Introduction

The Frenet—Serret formula provides a local expression of a space curve in terms of
the arc-length, the curvature, and the torsion. It is well-known that a space curve is
determined by the curvature and the torsion up to motion of the Euclidean space R?,
i.e. isometric transformation of R3.

Let us consider local theory of space curves in conformal geometry. We remark
that the arc-length is not preserved by Mobius transformations. Three conformal
invariants have been found using a suitable normal form. They are conformal arc-
length, conformal curvature, and conformal torsion (the reader is referred to [CSW]
for example). Just like in the Euclidean case we have:

Theorem 1.1 ([Fi], Theorem 7.2). An oriented connected vertex-free curve is de-
termined up to conformal motion by the three conformal invariants, the conformal
arc-length, the conformal torsion, and the conformal curvature.

In this article, we study the conformal arc-length.

*This work is partly supported by the JSPS (Japan Society for the Promotion of Science) Bilateral Program
and Grant-in-Aid for Scientific Research No. 19540096,
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Definition 1.2. Let C be an oriented curve in R3. Let s, &, t be the arc-length,
curvature, and torsion of C, respectively. The conformal arc-length parameter p of

C 1is given by
dp = Vi + x212 ds. (1.1)

It gives a conformally mvariant parametrization of a vertex-free curve. We call the
1-form (¢~ 1)*dp on the curve C the conformal arc-length element, where ¢ is a map
from some interval / to R? so that C = {c(s)}.

The conformal arc-length was given in [Li] and the above formula was given
in [Ta].

In this paper, we give a new interpretation of the conformal arc-length in terms of
the set of the osculating circles.

Let ¥ be a lightlike curve. Although its length is equal to 0, we can define a

. 3 1
non-trivial “L 2 -measure” of y by

L%(y) lim Z \/||J/(fz+1) -y,

max |¢; | —¢;|—>+0

and a “1 -dimensional length element” dp 1hies bydp 1 = " w dt so that

L2 (y)
L3 = Jydpy gy

Let §(1, 3) denote the set of the oriented circles in R3 (or $3), where we consider
lines in R? as circles. It has a pseudo-Riemannian structure with index 2 which is
compatible with the Mobius transformations. Let C be a curve in R>. The set of
osculating circles to C forms a lightlike curve y in § (1, 3) (Theorem 7.2). Our main
theorem claims that the L 2 -measure of y 1s equal to a constant times the conformal
arc-length of the original curve C (Corollary 7.4).

We also study various properties of curves of osculating circles, or in general,
lightlike curves in the set of oriented circles (or spheres). In each case, a geomeltric
counterpart of the L measure is given.

This article is arranged as follows. In Section 2 we explain how to realize spheres
and Euclidean spaces in Minkowski space. In Section 3 we give the bijection between
the set of codimension 1 oriented spheres and the de Sitter space. In Section 4
we define %—dimensional length element and L?-measure of a lightlike curve. In
Section 5 we study the set of osculating circles to a curve in R? (or S 2), which becomes
a lightlike curve in 3-dimensional de Sitter space. The Section 6 is a preparation (o
the Section 7, where we prove our main theorem. These two sections can be read
independently of the previous section. In the last section we relate lightlike curves
in the space of circles, lightlike curves in the space of spheres and the infinitesimal
Cross ratio.
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In this article we will use the following notations: the letter s 1s used for the
arc-length of a curve in E3 or §3, and the derivative with respect to s is denoted by
putting /. The letter ¢ is for a general parameter, and the derivative with respect to
t is denoted by putting . The letter s is for the arc-length of the set of osculating
spheres to a curve in E3 or S 3, which is a curve in de Sitter space in the Minkowski
space (Section 8).

The authors thank Gil Solanes and Martin Guest for valuable discussions.

2. Spherical and Euclidean models in the Minkowski space
Letn be 1,2, or 3. The Minkowski space R *2 js R" 2 with indefinite inner product:

{(x,y)=—Xoyo + x1¥1+ "+ Xnt1Yn+1-

Define the Loreniz form by £(v) = (v, v). The norm of a vector v is given by
o] = ]£(@)|. A vector v in R?? is called spacelike if £(v) > 0, lightlike if
L(v) = 0and v # 0, and timelike it £(v) < 0. The set of lightlike vectors and
the origin, {v € R *2 | (v,v) = 0}, is called the light cone and will be denoted by
Light. The “pseudo-sphere”, {v € R?*? | (v,v) = 1}, is called the de Sitter space
and will be denoted by A or A?*1,

Figure 1. Model of § 3, light cone and de Sitter space.

Let W be a vector subspace of R ™2, There are three cases which are mutually
exclusive. Let {, }|w denote the restriction of (, ) to W.
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(1) The case when (, )|w is non-degenerate. This case can be divided into two
cases:

(1-a) The case when {, )|w is indefinite. It happens if and only if W intersects
the light cone transversely. In this case W is said to be rimelike.

(1-b) The case when {, )|w is positive definite. It happens if and only if W
intersects the light cone only at the origin. In this case W is said to be
spacelike.

(2) The case when (, )|w is degenerate. It happens if and only if W is tangent to
the light cone. In this case W is said to be isotropic.

The sphere $”, the Euclidean space [E”, and the hyperbolic space H” can be realized
inRY *2 as affine sections of the light cone, i.e., the intersection of an affine (n 4 1)-
space H and the light cone (Figure 2 (top)). We call them spherical, Euclidean, and

Figure 2. Spherical, Fuclidean, and hyperbolic models in the Minkowski space R'll T2 (top).
The geodesic curvature k¢, pictures in affine hyperplanes H (bottom).

hyperbolic models, respectively. Their metrics are induced from the Lorentz form on
RI™ (IGD.

(1) When the affine space H is tangent to the hyperboloid Fy = {x | £(x) =
—1, xp > 0}, the intersection £ight N H is a sphere $” with constant curvature 1.

When the tangent pointis (1,0, ...,0),i.e, when H = {xo = 1}, we will denote
itby $”(1). The n-sphere S ? can be identified with the set of lines through the origin
in the light cone.

(2) When the affine space H is parallel to an isotropic subspace and does not
contain the origin, the intersection Light N H is an Euclidean space E”. For example,
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take two lightlike vectors ny and n, given by
n1:(1,1,0,...,0), nzz(l,—l,O,...,O).

Put
H =n, + (Span{n,))" and EI = Light N H.

Then the intersection can be explicitly expressed as
Eg:{(1+¥,—1+¥,x) |xeRn}, 2.1

where - denotes the standard inner product. There is an isometry obtained by the
projection in the direction of 7 from Efj to {(1,—1,x) | x ¢ R"} =@ R".

The lightlike lines in the light cone gives the bijection between $” (1} \ {n;} and
EG. It is exactly same as the stereographic projection from the north pole N from
S™\ {N} to R" which is tangent to §™ at the south pole through the identifications
S" >~ §7%(1)and R" =~ EJ.

3. De Sitter space as the space of codimension 1 spheres

Let S(n — 1, n) be the set of oriented (n — 1)-spheres X in E” (or §7). Then there is
a bijection from S (n — 1, n) to the de Sitter space A" 1. Let us express this bijection
@ in two ways. In this section we consider E” (or $") as the intersection of the light
cone and an affine hyperplane f in the Minkowski space R'f“.

3.1. Using pseudo-orthogonality. Let X be an oriented (n — 1)-sphere in E”
(or §™). Then X can be obtained in H as the intersection of E” (or $”) and an
affine hyperplane W of H. By taking a cone from the origin of R?*2, ¥ can be
realized in R’f“ as the intersection of the light cone and an oriented codimension 1
vector subspace of R’f“ , T (Figure 3). Let o € A"*! be the endpoint of the positive
unit normal vector to 1.

Definition 3.1. As above, the bijection p: §(n—1,n) — A"*1is given by assigning
oo X,

Since the pseudo-orthogonality 1s preserved by the action of the Lorentz group
0O(4, 1), this bijection is compatible with the action of O(4, 1), i.e.,

p(A-X)=Ap(X) (A0, 1)) 3.1
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Figure 3. The bijection between §(n — 1,n) and A7 1,

3.2. Using geodesic curvature and a normal vector. Let X be a codimension 1
sphere in 8" or in E”. The geodesic curvature of a sphere X means the geodesic
curvature of any geodesic curve on it. Let it be denoted by kg. Let m be a point in X
and »n the unit normal vector to X at m. As is illustrated in Figure 2 (bottom), 7 1s a
vector in T, $™ or T, JE™ which is a subspace of T, 1.

Proposition 3.2. As above, the point 0 = (%) € A is given by
o =kgm + n. (3.2)
When the ambient space is Euclidean, the letter “g” of ko can be dropped off.

Remark. If the orientation of X is reversed then the corresponding point ¢ in A
should be replaced by —o¢. Therefore, we need a sign convention for the geodesic
curvature kg, which we shall fix as follows. (We only argue for a spherical model.)

Choose the unit normal vector » so that if a basis of 7, % consisting of ordered
vectors vy,...,v,—1 gives the positive orientation of 7}, %, then a basis of 7, 8"
consisting of ordered vectors vy, ..., v,_1,n gives the positive orientation of 7,, 8",
Let a be an acceleration vector at m to a geodesic circle of X through m and p the
orthogonal projection to 75, 8™. Then k, is given by p(a) = kgn.

Proof. We give two kinds of proofs for the case whenn = 2.

(1) Assume k, # 0. Firstrecall that if ¢ is a point in the light cone, the orthogonal
complement of Span{g) in the Minkowski space is the codimension 1 hyperplane
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T, Light which is tangent to the light cone along the line Span{g}. It implies that the
line TT+ which is orthogonal to IT is contained in (in fact, it turns out to be equal to)
M gex TgLight. By taking the intersection with the affine 3-space H (Figure 2), it
follows that TT+ M H is the vertex v of a cone which is tangent to S 2(1) = Light N H
along X. Therefore ¢ is given by o = v /||v|| ([HI]).

Let V be the cone with vertex v which is tangent to 2 (or E? or H?) along %
(Figure 2 (bottom)). Develop the cone V' on an Euclidean plane by rolling it. As the
cone is a developable ruled surface, this developing is a isometry. The curve obtained
from X is an arc of a circle whose curvature is equal to the geodesic curvature of %,
which means that ||v — m|| is equal to 1/ kg, (Figure 4).

H
E2

\ /

\center 7/
\ / cone

R2

Figure 4. The projection in the lightlike direction gives an isometry between E2, R? and the
cone in H which is tangent to E? along X.

Therefore we have v = m + én Since m is lightlike and orthogonal to n, we

have (v,v) = kg2, which implies that the unit normal vector to TT is given by
thgv =kgm + n.

(2) We first give a proof for the spherical case. Let X be a circle given by
Y = S2 N W and m a point in X. Since the bijection ¢ is O(4, 1)-equivariant, see
(3.1), we may assume, after an action of O(4, 1) if necessary, that the spherical model
is $2(1), and W and m are given by

W ={(l,cosa,y,z) | y.z€ R} (O<a<?3),
m = (1,cos ¢, sinc, 0).

Since the radius of % in the affine space W is equal to sino (Figure 5) we
have a = (O, y— O), which implies p(a) = (O, cos oe,—“’sz“ O). Since

sinor? sine °
n = £(0,sino, — cos o, 0) it follows that k, = = cota.
Since IT, where ¥ = S2(1)NI,isgivenby IT = {c(1,cos e, y.2) | ¢, y,z € RY,
its unit normal vector o is given by 0 = %(cote, =, 0,0). Therefore we have

o =kgm+ n.
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w
z " 6% .
o il o v
0 . 0
/
a
4

Figure 5. A picture in the section with the  Figure 6. The vertex v of a cone tangent to
plane containing the origin, m, and a. S?(1)at .

A proof for the Euclidean case can be obtained exactly in the same way. The
O(4, 1)-equivariance of the bijection ¢ enables us to locate the model E?2, the sphere
22, and the point m in special positions which make the computation very easy. [

4. %-dimensional measure of lightlike curves

Let y be a lightlike curve in Minkowski space R, or in general, in a pseudo-
Riemannian space R} with index /. (When / > 1 a lightlike curve is called a
null curve in [O’N]. ) We define the Lorentz quadratic form £(v) by {v, v) and the
norm by ||v[| = /|L(v)| for a vector v in R} (/ > 1) as well.

Proposition 4.1. Let y be a compact lightlike curve which is piecewise of class C*4.
Lett € [0, T be the parameter, which is not necessarily the arc-length. We consider
a subdivision 0 = ty <ty -+ < t, = T of the interval [0, T]. Then the following
limit exists, is finite, and generically non-zero:

lim Vil ) =y @)l (@.1)

where § = max{|ti+1 — t;|}.

Proof. We have

vt + B) — y(t) = ph + %hz + %m + o).
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Since y is lightlike, we have
(7. V) =0.{7. ¥) =0. and (}.7)+ (y.¥) =0,
which implies

Ly +h)—y@) =yt +h) —y@),y +h)—y@)

(7.9 . 7)
[
= - (¥, 1) A+ 0.

It follows that

i ————_ [ +|£G)
maijj?ﬂ,woz Viytic) —y@)| —/C \/7sz. 4.3)
O

i

Definition 4.2. Let us call (4.1) the %-dimensional measure or L?-measure of a

lightlike curve y and denote it by L2 ().

Definition 4.3. Let y be a lightlike curve. Define a 1-form dpL ben on y by
¥

dp . = Y1EG)

— dt 4.4)
L2 (y) 12

and call it the %—dimensional length element or L3 -length element of y.

The formula (4.3) implies that the L2 -measure of a lightlike curve y satisfies
1
L2(y)y= | d . 4.5
(v) [y P b (4.5)

Lemma 4.4. The L%—length element of a lightlike curve is well defined, i.e., the
right-hand side of (4.4) does not depend on the parametrization of v up to sign.

Proof. Let t and u be any parameters on y. Let us denote % by putting ” and %
by . Then we have

. du
Y=t

. d . du d(du ,)_du{(du)’ ,+du ,,}
P A A AT P TA VT AT
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Since (y’, ') = 0, and hence (y’, y”) = 0, we have

<d2y d2y>_(du)4(d2y d2y>
dr2’ de2 | \de ) \du2 du?l’

T

5. Lightlike curves in de Sitter spaces

which implies

d?y d?
<_y _y> dr. O

du?’ du?

(& &)
dt?’ di?

In this section we consider two examples of lightlike curves in de Sitter space: a
curve in A? consisting of the osculating circles to a curve in E2 or $2, and that in A*
of the focal spheres to a surface in E3 or §3 along a corresponding line of principal
curvature of the surface.

5.1. Lightlike curves in $(1,2). The set $(1,2) of oriented circles in $2 can be
identified with de Sitter space A* in R}, We give a characterization of a set of
osculating circles to a curve in $2 or E2.

Recall that a point in a plane curve is a verfex if and only if ¥’ = 0 holds at that
point, which happens if and only if the curve has the third order contact at that point.
As the second condition is conformally invariant, we adopt it as the definition of a
vertex of a curve in a sphere (Definition 7.8).

Theorem 5.1. A curve y in §(1,2) is a set of the osculating circles to a vertex-free
curve C in 8% or E? with a non-vanishing velocity vector if and only if y is lightlike
and dim Span{y,y) = 2.

Without the two conditions, C being vertex-free and dim Span(y,y) = 2, the
“if " part of the above statement may fail although the “only if ” part still holds.

Proof. We prove the first statement first.

“Only if ” part. Suppose y is the set of osculating circles to a curve C = {m(s)},
where s is the arc-length of C.

Let T denote the unit tangent vector to C: T = m’. The osculating circle to
the curve C at a point m(s) has the same geodesic curvature as that of C at the
same point, which is kg (s). Therefore Proposition 3.2 implies that y(s) is given by
y(s) = kg (s)m(s) + n(s), which implies that

y'(s) = kg'(s)m(s) + kg(s)m'(s) + n'(s).
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Asm' =T and n’ = —kgT, we have y'(s) = kg'(s)m(s), which proves that y is
lightlike.

Note that m = y’/kg because kg' # 0 as C is vertex-free. Since m(s) is in an
affine subspace H that does not passes through the origin, dim{m, m") = 2, which
implies dim{y’, y”) = 2.

“If ” part. Suppose y is alightlike curve with non-vanishing tangent vectors. Each
tangent vector defines a point in S2 by $2 N Span(y(¢)), which we denote by 7(¢).
Put C = { f(r)}.

Let us denote the derivation with respect to ¢ by putting - above. We may assume,
after reparametrization if necessary, that the x¢-coordinate of (¢) is always equal
to 1. Then the point f(¢) in $2(1) is given by f(r) = y(¢).

As {y(),y(t)) = Land {p(t), y(t)) = O we have

(y(®). 7)) = y(),y0)) = (y(0), ¥ (1)) =

which implies

e (Span{y (1), $(r). ¥ ()" = (Span(f (1), £ (1), F (1))

Since dim Span { f, f y = dim Span(y ¥) = 2 by the assumption, f never vanishes,
therefore dim Span { £ (r), f (t) f (t)) = 3. Since the osculating circle to C at f(r)
is given by 82 N Span{ f(¢). f(t) f(t)) it corresponds to £y(¢) in A3,

(2) Suppose y 1s a lightlike line in de Sitter space. Then it corresponds to a family
of circles which are all tangent to each other at a constant point, which cannot be a
family of osculating circles to a curve in $? or E2. As ¥ = 0 in this case, it implies
the second statement of the theorem. ]

Let us prove that the L?-measure of the lightlike curve y C A? is equal to the
conformal arc-length of C.
Let s be the arc-length of a curve C.

Theorem 5.2. The conformal length p of a curve C in 82, R?, or H? is equal to
N 12 times the %-dimensional measure L2 (y) of the lightlike curve y C A3 which

consists of the osculating circles to C. It is given by fc |k§ |ds (we can drop the

(3 E2d

letter “g” when C is a plane curve).

Proof. Let us denote the derivation with respect to s by putting " as before. Propo-
sition 3.2 and the proof of “only if ” part of Theorem 5.1 imply that y = kgm + n
and y' = k,'m. Therefore the second derivative y” is given by kg”m + k,'T, where
T = ' is the unit tangent vector to C. As the unit vector 7' is orthogonal to the
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y({tis1)

y (i)

Figure 7. An inscribed polygon on a lightlike curve y. A vector y(t; 1) — y(#; ) is timelike in
general.

lightlike vector m and spacelike since all the tangent vectors to the light cone which
are not tangent (o a generatrix are spacelike, we see that

L") = Ly "m + kg'T) = k" £(T) = k.

Therefore, (4.3) implies that the L2 -measure of y s given by

i) = i [ ksl

Since /|kg’| ds = dp by (1.1), this completes the proof. O

Note that (4.2) implies that when k' # 0 the vector y(r + h) — y(1) is timelike
for small enough /.

5.2. Lightlike curvesin §(2,3). We say that a sphere X 1s an osculating sphere of

point (%) in A which corresponds to X satisfies (X o) L Span{f, f, 1. f).

Remark. We use the word “osculating spheres” for curves and “focal spheres™ for
surfaces (Theorem 5.4).

We identify the space $(2,3) of oriented spheres in 3 with the 4-dimensional
de Sitter space A in R3 as before.
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Proposition 5.3. Suppose o is a lightlike curve in §(2,3). Since o’(t) is lightlike,
it defines a point in 83 by S* 0 Span{c’(z)), which will be denoted by f(t). Put
C = {f(t)}. Then a sphere X(t) which corresponds to o(t) is not necessarily an
osculating sphere of C, but it contains the osculating circle to C at f(t).

Proof. The proof is parallel to that of the “if ” part of Theorem 5.1. As (o (z),0(f)) =
1 and {6 (¢),0(t)) = 0 we have

(o). a(1)) = {o(t), 6 (1)) = (o(1), 5 (1)) = 0.

Therefore Span (o (r)) is contained in (Span{c (1), ¢ (1), & (t)))l, which implies that
%(r) = 83N (Span{c(t)))* contains S3 N Span(5(r),5(t), & (r)) which is the
osculating circle of C at f(¢). O

Let us now consider a surface M in 83, H3, or R3. In the Poincaré ball model, the
intersection of a 2-sphere with the ball is called a sphere. It may be a usual geodesic
sphere or a plane of constant curvature between 0 and —1.

Atapoint m € M, a sphere tangent to M at m whose geodesic curvature 18 equal
to one of the principal curvatures k1, k> of M at m, has higher contact with M. Letus
denote them by X and X, and call them focal spheres to M at m. They are distinct
if the point m is not an umbilical point of M .

Theorem 5.4. The curve y; C A* corresponding to the focal spheres X1 along a line
of principal curvature Cy for the principal curvature k1 is lightlike. Its %-dimensional

measure is
1 /
L2(y1) = 3 TIZL \/|X1(k1)|dS,
1

where X1 is the unit tangent vector to Cy which is parametrized by its arc-length s.

Proof. The proof is the same as above (Theorem 5.1) using the formula y(s) =
kgm(s)+ n(s), where kg = ky is the geodesic curvature of the focal sphere ;. The
hypothesis that C; 1s a line of principal curvature associated to the principal curvature
k1 implies that n'(s) = kg X1(s). W

Remark. A similar statement is also valid if M is an hypersurface of some space-
form. The integral |, ¢, V| X1(k1)|ds has already appeared in [Ro-Sa].

6. Space $(1,3) of the oriented circles in S3

The pseudo-Riemannian structure of the space of the oriented circles in R3 (or S3)
also arises naturally in the study of conformal geometry. Each tangent space of § (1, 3)
has an indefinite non-degenerate quadratic form which is compatible with M&bius
transformations.
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6.1. The set of circles as a Grassmann manifold. An oriented circle in R3 (or
§3) can be realized in the Minkowski space R as the intersection of the light cone
and an oriented timelike 3-dimensional vector subspace. Therefore the set §(1, 3)
can be identified with the Grassmann manifold Gr_ (3; R?) of oriented 3-dimensional
timelike subspaces of R3.

Itfollows that the set § (1, 3) is the homogeneous space SO(4, 1)/SO(2)xS0O(2, 1).
We give its pseudo-Riemannian structure explicitly in what follows.

6.2. Pliicker coordinates for the set of circles. Ietus recall the Pliicker coordinates
of Grassmannian manifolds.
Let W be an oriented 3-dimensional vector subspace in R, andlet {x1, x5, x3} be
an ordered basis of W which gives the orientation of W. Define p;,;,i; (0 < ix < 4)
by
X1ip  Xlip Xlis
Dirizis = | X207 X2iy X2ig|- (6.1)
X3i;  X3i, X3ij

Let [W] denote an unoriented 3-space which is obtained from W by forget-
ting its orientation. Then it can be identified by the homogeneous coordinates
[...\ Pitinizs---] € RP ® called the Pliicker coordinates or Grassmann coordinates.
They do not depend on the choice of a base of [W].

The Plicker coordinates p;,;,;, are not independent. They satisfy the Pliicker
relations:

4
Z(_l)kpilizjk Pifode =9 (6.2)
k=1

where ]}{ indicates that the index j; is being removed. There are five non-trivial
Pliicker relations and exactly three of them are independent.

As we are concerned with the orientation of the subspaces, we use the Euclidean
spaces for the Pliicker coordinates in this article instead of the projective spaces which
are used in most cases. The exterior product of x1, x», and x3 in R is given by

xl/\xz/\JC3:(...,piliziB,...)ERIO (i1<i2<i3)
3
through the identification A R> = R10,

Let @_(B;R?) denote the Grassmann manifold of the set of all oriented 3-
dimensional timelike vector subspaces in R,

3
6.3. Pseudo-Riemannian structure of A ]Rf. The indefinite inner product of the

3
Minkowski space R3 naturally induces that of A R3 by
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(x1,¥y1) (x1,y2) (x1,y3)
(X1 AX2 AX3, Y1 A Y2 AY3) =—|(x2,¥1) (%2,y2) (x2,¥3) (6.3)
(x3,y1) (x3,y2) (x3,¥y3)

for any x; and y; in R3. Note that this sign convention is opposite to that in [HJ].

The above formula is a natural generalization of the one for the exterior products
of four vectors which we obtained in [La-OH], where we studied the set of oriented
spheres in S 3,

3
It follows that A R3 can be identified with R'® with a pseudo-Riemannian struc-
ture with index 4, which we denote by R1%, so that {e;, A e, A eiz}ij<ip<is 18 @

3
pseudo-orthonormal basis of A R3 with

; : 1 ifi > 1 -
€ii N €Cis A€iy, €jy NECjy A €jy) = '
TR T T T +1 ifi = 0.

3
Let us realize $(1, 3) as a pseudo-Riemannian submanifold of A R = R}°.

Lemma 6.1. Let W be an oriented 3-dimensional vector subspace in R spanned
by x1,x2,x3. Then W is timelike if and only if

(x1 AXaAX3, X /\xz/\JC3) > 0,
and isotropic (i.e., tangent to the light cone) if and only if
(x1 AXa2ANX3, X1 /\J(?z/\)Cg) = 0.

Proof. Case (1). Suppose W is not isotropic. We may assume without loss of
generality that {xq, x5, x3} 18 a pscudo-orthonormal basis of W. If W is timelike,
one of x1,x, and x; is timelike, and therefore (x| A x5 A X3, X1 AX3 AX3) = 1
by (6.3). If Wis spacelike, then (x1 ANXaANX3, X1 AXa A JC3) =—1.

Case (2). Suppose W is isotropic. Then W is tangent to the light cone at a
lightlike line /. Now we may assume without loss of generality that {x1, x5, x3}isa
pseudo-orthogonal basis of W and that x; belongs to /. Then we have (x; A x2 A
x3,x1/\x2/\x3):0. L]

6.4. Conformal invariance of the pseudo-Riemannian structure. We show that
5 (1, 3) has a pseudo-Riemannian structure which is compatible with Mobius trans-

3
formations of 3. Let O(6, 4) denote the pseudo-orthogonal group of A R} =~ R},
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Definition 6.2. Define a map ¥: Ms(R) — M1o(R) by
Y Ms(R) > A= (Cllj) = l1/(14) = (&]J) e Mlo(R),
where [ = (i17273) and J = (1 j2j3) are multi-indices, and ay s is given by

Aivjr Qirjo Qiyjs
Ary = |Qirj1 Yizjr  Hisjs| -
Qisj1 Qizjo  Qizjs
Lemma 6.3. (1) For all x1,x5,x3 € R we have

(Ax1) A (Ax2)} A (Ax3) = P(A) (x1 Ax2 A x3) (6.3)

for A € M5(R).
2)IfA € O(4, 1) then W(A) € O(6,4).
(3) The restriction of W to O(4, 1) is a homomorphism.

We can say more, although we do not give proof: The matrix ¥ (A) can be
characterized by (6.5). The reverse statement of (2) also holds. The restriction of ¥
to GI(5, R) is a homomorphism whose kernel consists of {£7}.

Proof. (1) The definition of @y implies
W(A) (i) Nei, Aeiy) = (Aei ) A (Aeiy) A (Aeiy).
(2)If A € O(4, 1) then (6.3) and (6.5) imply
(W(A) (e Nei, Aey), W(A)ej Nej, Aejy)) = (e ANeiy, Aeis, ej) Aejy Aejs),

which implies W (A) € O(6, 4). )
(3)Routine calculation in linear algebraimplies W (AB)r; = Y g ajxbgys. O

Corollary 6.4. We have

Pp(A-T) = )y(T)
forT" € §(1,3) and A € O(4, 1), where W is the bijection from §(1,3) to ©(1,3) C
R1° given by (6.7) and W the homomorphism from O(4, 1) to O(6, 4) given in Defi-
nition 6.2.

Proposition 6.5. Let ©(1, 3) be the intersection of the quadric satisfying the Pliicker
relations and the unit pseudo-sphere:

4
b2, (_l)kpilizjk Piviis =0

- Zilzl pi1i2i32 + Zigzl P0i2i32 =1
(6.6)

@(1,3): (""pilizi?,"") ER}LO
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It is a 6-dimensional pseudo-Riemannian submanifold of R }° with pseudo-Riemann-
ian structure of index 2.

Then the set § (1, 3) of oriented circles in S can be identified with ©(1, 3) through
a bijection  given by

o~ —~ ~ 3
e $(1,3) — Gr—(3;R3) —  0(1,3) c A R} = R}°,
w W W

X1 A X2 A X3

W N S3oo) — W = Span{x1, xa,x3) | .
||x1/\x2/\x3||

(6.7)

Proof. Since §(1,3) can be identified with the Grassmann manifold Gr_(3; R?) of
oriented 3-dimensional timelike subspaces of R3, Lemma 6.1 implies that it is enough
to show that the restriction of the indefinite inner product of R }” to each tangent space
of ®(1, 3) induces a non-degenerate quadratic form of index 2.

The conformal invariance of the pseudo-Riemannian structure allows us to assume
that an oriented circle I" passes through (+1,0,0,0) and (0, 1, 0,0). The index can
be calculated in several ways.

(i) T" corresponds to W = Span{eo. e1, e,) in the Grassmannian Gr_(3; R?3). The
tangent space Ty Gr_(2; R?) is isomorphic to Hom(W, W), which is isomorphic
to M3 2(R). We can construct six vectors which form a pseudo-orthonormal basis of
the tangent space explicitly. It turns out that two of them are timelike and the other
four are spacelike.

(i1) The tangent space TTr®(1, 3) can be identified with the pseudo-orthogonal
complements of the subspace spanned by gradients of the defining functions of ®(1, 3)
which appear in (6.6). There are five non-trivial Pliicker relations and exactly three
of them are independent. Two of them give timelike gradients and the rest gives a
spacelike one. On the other hand, the gradient of —; o1 Piyin> + 2151 Poiy” — 1
is spacelike. Hence the index can be given by 4 —2 = 2. O

Since $(1,3) is the homogeneous space SO(4, 1}/SO(2) x SO(2, 1), Proposi-
tion 3.2.6 of [Ko-Yo] also implies that the index of ®(1, 3) is equal to 2.

7. Osculating circles and the conformal arc-length

Let us realize the Euclidean space R? in the Minkowski space R3 as the isotropic
affine section of the light cone Light given by (2.1) in Section 2. We use the following
notation in what follows. Let C = {m(s)} be an oriented curve in R parametrized
by the arc-length s. Let 72 be a map which is induced from r1;

i) = (1 n M 1 M m(s)) cEICRS, (7.1
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where E} is given by formula (2.1).

The osculating circle of a curve C at a point x is the circle with the best contact
with C at x. We will denote it by . It has the second order contact with C at x.

Suppose x, y, and z are points on C'. When x, vy, and z are mutually distinct, let
I'(x, v, z) denote the circle that passes through the points x, y, and z in C whose
orientation is given by the cyclic order of {x, y, z}. When two (or three) of the points
x, y,and z coincide, I'(x, y, z) means a tangent circle (or, respectively, an osculating
circle) whose orientation coincides with that of C at the tangent point.

Let y(u, v, w) be a point in ©(1,3) C R1° which corresponds to a circle

I'(m(u), m(v), m(w))
through the bijection ¥ from §(1,3) to ©(1,3) (see (6.7)). Put y(u) = y(u,u,u).

It corresponds to the osculating circle at m(u).

7.1. The curve of the osculating circles is lightlike. Let us express the osculating
circles using the exterior products of vectors in the Minkowski space.
Observe that (m, m) = 0, as m belongs to the light cone, and that

(m'.m"y=m-m' =1,
where - denotes the standard inner product of R3. Define F5 and F3 by
F2 — (n—/l//’n—/l//>’ F3 — (}’ﬁ ,H,}’ﬁ/”). (7.2)

Then they satisfy

F2 — m// -m// — KZ’

F3 = i e g IC4 + K/Z 4+ KZ‘L'Z
By derivating these equations we obtain a table of ((0), m")(0)) needed in this
article (Table 1).

If u < v < w then m(u),m(v), and m(w) are linearly independent in R?, and
therefore (6.7) implies that y(u, v, w) is given by

m(u) A m(v) Am(w)

y(u,v,w) = (7.3)

() A ) Amw)||

Lemma 7.1. Let T'(s) be an osculating circle to a curve C = {in(s)} in B3 which is
parametrized by the arc-length s. Then I'(s) is given by

T'(s) = E3 N Span {in(s), m (s), m " (s)).
The point y(s) in ©(1, 3) which corresponds to T'(s) is given by
y(s) = m(s) Am'(s) Am"(s). (7.4)
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Table 1. A table of () (0), ) (0)) (Fo = k2, F3 = «* + K+ ic272).

j=0|j=1|j=2|j=3]|j=4
i =0 0 0 —1 F;
i =1 1 0 —F *
=1 F * *
i =3 F3 *

Proof. Consider the limit of y{u, v, w) as both u and w approach v. Taylor’s expan-
sion formula implies

m(s — As) Am(s) Am(s + As')

(4s)?
7

- (m(s) — Asi'(s) + " (s) + O((AS)3)) A (s)

N2
(A;) I?l”(S) . 0((AS/)3))

A (n_fz(s) + A (5) +

AsAs'(As + As'
_ 4s4s ( 25 + As) m(s) Am'(s) A" (s) + higher order terms.

It follows that the osculating circle is given by the vector m(s) A m'(s) A m" (s)
multiplied by a positive number. By Formula (6.3) and Table 1 we have

0 0 -1
mam' am” mam' Am"y=—10 1 0 |=1
_1 O m//_m//

Therefore the osculating circle y(s) is given by

m(s) Am'(s) Am”(s)

lizi(s) A" (s) A" ()]

=m(s)y Am'(s) Am"(s). O

y(s) =

Theorem 7.2. Let y be a curve in (1, 3) which corresponds to the set of osculating
circles of a curve C in E3. Then the curve y is a lightlike curve.

Proof. The formula (7.4) implies

Y (s) = m(s) Am'(s) Am™ (s). (7.5)
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By Formula (6.3) and Table 1 we have

0O 0 0
mam' am” mam' Am”y=—|0 1 x| =0,
0 %
which implies that |y’(s)| = 0. This ends the proof of Theorem 7.2. O

7.2. Conformal arc-length via osculating circles. letC = {m(t)} (0 <t < T)
be a curve in 83 or E3, and y a lightlike curve in $(1,3) which consists of the
osculating circles of C. Let I denote the domain interval of the map m.

Theorem 7.3. By taking the pull-back to 1, the conformal arc-length element dp of

C is equal to ~/12 times the %-dimensional length element dpL 1 ) of y:
Y

dp = y*(V12 dpL%(y)) = v £ dt. (7.6)

Proof. We use the arc-length parameter s of C. Let us abbreviate y®(0) and in @0
as y@ and i @ in the proof. Since
y'=mam am® mam’ am”

Formula (6.3) and Table 1 imply

L") ="y

=(nam Aam® mam am®+20mam Am® mam” am"
+ (171/\]71///\’%///,”—/1/\"—1///\"—1///>
0 0 F 0 -1 0 0 -1 0
= — 0 1 =x|[+2(0 0 —F|+|-1 = *
F, % x F, x 4 0 E I
= Fy—F} (7.7)
= % + 1222 (7.8)

From this we conclude (7.6) since dp = Vi'? + 1212 ds by (1.1) and y*dpL%( o
y

GO g5 by 4.4). [

Remark. A pair of nearby osculating circles is a “timelike pair”,i.e., y (s + As)—y(s)
is timelike for |As| <« 1.
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Corollary 7.4. The conformal arc-length parameter of a point m(t) in a curve C in

S3 or E3 can be expressed using the L -measure of an arc of the lightlike curve y
in §(1,3) which consists of osculating circles to C:

p()—pO) = V12 dim S lly@) —y@ll. (7.9

max |¢j ¢ 1—¢;|—>+0

i
where O < t1 < --- < tx =t is a subdivision of the interval [0, t].
Corollary 7.5. The conformal arc-length parameter can be characterized as the

parameter that satisfies (y,v) = 1. Namely, it is a parameter which makes the
curvature of a curve of osculating circles being identically equal to 1.

Definition 7.6. Let C be acurvein R”. Suppose it can be expressed by the arc-length
as C = {m(s)}. Define the 1-form w¢ on C by

m*wc _ Q/m/// ! — (m// . m//)z ds,
where " denotes the derivation with respect to the arc-length s.

Corollary 7.7. As above the 1-form wc is invariant under Mobius transformations.
Namely, if G is a Mobius transformation then we have G*wg(c) = wc. Whenn =3
this 1-form wc is equal to the conformal arc-length element dp of C.

Remark. Theorem 1.1 of Liu ([Liu]) implies that if C = {m(s)} is a curve in the
light cone such that 72" is not parallel to m then the 1-form wg given by

n—/l*a)é - V(%///’%///> _ (n_a”,n_a”)z ds,

where s is the arc-length, is invariant under any transformation of the form 7" : m(s) —
e Oin(s) .

Lett: R* — EZ < R""? be the natural bijection (2.1). Through this bijection
a Mobius transformation of R” can be expressed as ™! o T o A o ¢ for some A €
O(n + 1, 1) and some transformation T of the previous form of the light cone. Since
tis anisometry and A € O(n + 1, 1) does not change wg, Corollary 7.7 follows from
Liu’s result.

Proof. We prove it when n = 3. Suppose G - C are expressed as G(C) = {ma(1)}
with 7 being the arc-length of G(C). Let y,, and ym, be the curves in § (1, 3) which
consists of the osculating circles to C and G(C), respectively. They are lightlike
curves by Theorem 7.2, The formula (7.7) implies that

Vm/// - — (m// ) m//)z ds = 2 (J/rr:/’ Vn;/) dS,

;1/}'1./22 g — (g - i2)2 dt = (?mz’i;"u)dt’
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where putting - above means taking the derivation with respect to /. Lemma 6.3
shows that the Mobius transformation G € O(4, 1) produces a pseudo-orthogonal
transformation G € O(6, 4), and Y, is given by ym, = G -y,. Since (Vg Vo) =

(G Yo G- Vi) = (V> Vm)» Corollary 7.7 is a consequence of Lemma 4.4. [

The above proof shows that the pull-back to I of w¢ is equal to that of the %—
dimensional length element d P, 3 &) of the curve of osculating circles, where [ 1s the
y

domain interval of the curve C.
Corollaries 7.3 and 7.7 show that the conformal arc-length is in fact invariant
under Mobius transformations.

7.3. Characterization of vertices of space curves in terms of osculating circles

Definition 7.8. We say that a point is a verfex of a curve C if the osculating circle
has the third order contact with C at that point.

Remark. (1) The condition is same as the usual one, k" = 0, for plane curves.

(2) The notion of a vertex is conformally invariant.

(3) By the strong transversality principle (cf. [AGV]), vertex-free curves are gener-
ical in the sense that they form an open dense subset in the C °° topology.

(4) A different definition of vertex can be found in the literature. In some works
vertices are points where the osculating sphere has the 4th order contact (cf.[Ur]).
There are many examples of vertex-free curves in our sense having the 4th order
contact with its osculating sphere. For instance, one can consider plane curves.

Bouquet’s formula says that a curve can be expressed, with suitable coordinates
around a point, as

|
A

3
— _%S +...’
- %SZ +K—/S3 + — (7.10)
— IC‘L' 3+

NS e

where s, «, and t are the arc-length, curvature, and torsion, respectively.
It is easy to check the following lemma using Bouquet’s formula.

Lemma 7.9. Let C be a curve in R3. A point x is a vertex of C if and only if
*+ K22 =0

holds at x, where k and t are the curvature and forsion of the curve C (the derivation
is taken with respect to the arc-length parameter of C).
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Now a vertex can be characterized in terms of the curve of osculating circles.
Suppose E? (or §3) is an Fuclidean (or, respectively, a spherical) model in R3.

Theorem 7.10. Let C = {m(t)} be a curve in E3 or 83 and y(t) a point in ©(1, 3)
which corresponds to the osculating circle to C at m(t). Then the following three
conditions are equivalent for a point m(ty) to be a vertex of C:

(1) $(10) = 0.
2) (y(to). ¥(t0)) = 0, i.e., the %—dimensional length element of y vanishes at ty.

(3) dim Span{y,y) < 2.

Proof. (1) Suppose m(s) is a curve in R? parametrized by the arc-length s, and
C = {m(s)} is a corresponding curve in EJ which is given by (7.1). Then we have

_ (1+m-m 1_I_m-m )
m = . s kd
4 4

., m-m' m-m’
m = " ’m b

2 2
s (m m”"+1 m-m"+1 ,,)
m = 2 b 2 ¥ m X
g x i s g™
Iﬁ/// — ( m///).
2 - 2 7

Suppose 19 corresponds t0 s = 0. We may assume, after a Mobius transformation
if necessary, that «(0) # 0. Lemma 7.9 implies that 72(0) is a vertex if and only if
K'? 4+ k272 = 0. Since

m(s) = m(0) + e1s + xeﬁ + (—k?e; +Kes + K‘E€3)% + O(s*),

n(0) is a vertex if and only if m™(0) = —«2m’(0), which can occur if and only
if m"'(0) = —«2m’(0). As am(0) + bm'(0) + cm™(0) = 0 (a,b,c € R) always
implies @ = 0, m(0) is a vertex if and only if /7 (0),m’(0), and /m"’(0) are linearly
dependent, i.e., m(0) A m'(0) Am"'(0) = 0. Since Formula (7.4) implies that the
left-hand side of the last equation is equal to y’(0), it means the equivalence of the
condition (1) and m(tp) being a vertex.

The condition (2) follows from Lemma 7.9 and Formula (7.8).

The condition (1) implies the condition (3).

On the other hand, if dim Span{y, ¥) < 2 and y(tg) # 0 then ¥(ty) = cy(tp) for
some ¢ € R, which implies the condition (2). O

7.4. Characterization of curves of osculating circles. We identify the set § (1, 3)
of the oriented circles in § 2 with the submanifold (1, 3) of Rio as before. We give
a condition for a curve in $(1, 3) to be a set of osculating circles to a curve in 3.
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Theorem 7.11. A curve y in §(1, 3) is a set of the osculating circles to a vertex-free
curve in 8 3 with a non-vanishing velocity vector if and only if y satisfies the following
three conditions:

(1) y is alightlike curve,
(i) y(¢) satisfies the Pliicker relations for all t,
(iii) dim Span{y(¢),y (1)) = 2.

Without the two conditions, C being vertex-free and dim Span(y,y) = 2, the
“if " part of the above statement may fail although the “only if ” part still holds.

Proof. We begin with the first statement.

“Only if 7 part. The condition (i) follows from Theorem 7.2, the condition (ii)
from Formula (7.5), as it means that y’ is a pure 3-vector and therefore satisfies the
Pliicker relations, and the condition (iii) follows from Theorem 7.10.

“If ” part. Lemma 6.1 implies that y corresponds to an isotropic 3-space tangent
to the light cone. Therefore it defines a point in £}, which we denote by m (¢). Since

7(¢) and ¥ (¢) are linearly independent, i7i(¢) does not vanish. So, we may assume
that ¢ is equal to the arc-length s of 7. Define a map m to R? by (7.1). We may
assume, after a Mobius transformation if necessary, that im” (sg) # 0.

Put

m' x m” 5

_ mwm-n m-n
n =

7 ,H)ER?, where n =

[lm” < m” |

Thenm,m’',m”, n,andn, = (1, 1,0,0, 0) are linearly independent in R?. Therefore,
10 pure 3-vectors obtained as exterior products of three of /n, /', m”, n, and nq are
linearly independent in R}". We need formulae which express y(s) and y'(s) as
linear combinations of them.

For this purpose, we have to show that the point m2(s) belongs to the circle I'(s)
which corresponds to y(s).

This can be proven as follows. We may assume, without loss of generality, that
I (s) can be obtained as the intersection of our model of S 3 or E? in the light cone and
Span{eg, e1, e2). Then, a computation shows that if ) satisfies the two conditions (i)
and (ii) then there is a lightlike pencil P through y(s) (that is a 1-parameter family
of the oriented circles that are contained in a 2-sphere which contains I'(s) and that
are all tangent to ' (s) at a point Q) such that y’(s) is equal to a tangent vector to P
at y(s). It means that the tangent point { above mentioned can be obtained as the
intersection of $3 and the isotropic 3-space that corresponds to y’(s), namely Q is
equal to m(s), which implies m(s) € I'(s) (see [LLa-OH2] for pencils).

Since m(s) € I'(s), y(s) can be expressed as y(s) = a(s)m(s) A up(s) A vols)
for some «(s) € R and uo(s), vo(s) € R3. Therefore y(s) can be expressed as the
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linear combination of the following 6 pure 3-vectors;
mAam am mam An,mAam Any,mAm’ An,mAam” Ang, and mAn AR

If one of the three coefficients of the latter three does not vanish, there is a non-zero
coefficient of i’ Auy A vy (uy,v1d C {m”,n,n1}) of y'(s). Onthe other hand, by
the assumption (ii) of the theorem and the definition of /i, ¥’(s) can be expressed in
the form

y'(s) = b(s)m(s) Au(s) Av(s)  (B(s) € R, u(s),v(s) € (Span(m(s)))" C R}),

which is a contradiction.
Therefore, I'(s) is tangent to C at /i(s), i.e., y (s} is of the form

ys)y=EG)ymam Am”" +n(s)ymam An+C(s)ymAam Any.
By patient computation we get
Yoy) = E 207 + 7 + 4P,

where « is the curvature of C, ||m”||. Since (y'(s),¥'(s)) = 0 and « # 0 by our
assumption, we have n(s) = {(s) = 0. Then, (y(s), y(s)) = 1 implies £(s) = 1,
which completes the proof of the first statement.

The second statement of the theorem can be verified in the same way as in Theo-
rem 5.1, =

The authors thank Martin Guest and Fran Burstall for informing the second author
of the following condition due to Burstall.

Proposition 7.12 (Burstall condition). Suppose y € $(1,3) corresponds to a time-
like 3-space T1 of R3. Recall that T, $(1,3) can be identified with Hom(IT, TT1).

Suppose an element A in Hom(I1, TT1) that corresponds to y can be expressed as
A= (3! : }) = (&) ) with respect to orthonormal bases of T1 and TI+. Then the

conditions (i) and (ii) of Theorem 7.11 are equivalent to the condition (A,'A) = O,
namely,

(ay,ay) = (az,az) = {ay,az) =0,

where a, and a, are considered as vectors in the Minkowski space R?.

Proof. We may assume without loss of generality that T1(zp) = Span{eq, e, e3),
ie.,y(to) = (0,...,0,1). Then IT+(ry) = Span{es, e4). If we use {eo, e1, e2} and
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{e3, e4} as bases of I1(to) and I1+(ry), respectively, the Pliicker coordinates of ¥ (o)
are given by

(P234. D134 D124~ P123: P034» Po24» P23, Pol4» P 013, P012)().’(t0))
=(0,0,d,a;0,—e,—b, f,c, 0).

Then the conditions (i) and (ii) of Theorem 7.11 are given by
—a? —d?+ b 4P+ e?+ f2P=0,
bd —ae =0, —cd+af =0, ce—bf =0,
which are equivalent to
I S L i )
(a,b.c)f(d. e, f),
which, in turn, are equivalent to (see Lemma 9.1.1 (2) of [O’HI1])

(ar,a1) = {(az.az) = (a1.az) = 0. O
7.5. Conformal arc-length and conformal angles

Definition 7.13 (Doyle and Schramm). Let x and y be a pair of distinct points on
acurve C. Let 8¢ (x,y) (0 < 8¢c(x,y) < m) be the angle between I'(x, x, y) and
['(x, y, v). We call it the conformal angle between x and y (see Figure 8).

We note that the conformal angle is conformally invariant because it can be defined
by angles, circles, and tangency, which are preserved by Mobius transformations.
Applying Bouquet’s formula (7.10) to sin ¢ we have

Lemma 7.14. ([La-OH]) Let s, k, T be the arc-length, curvature, and torsion of C,
respectively. Then the conformal angle satisfies

/KIZ I K-Z.CZ

=Y+ O0dx =), (7.11)

Oc(x,y) =

The formula (1.1) of the conformal arc-length implies that the conformal arc-
length can be interpreted in terms of the conformal angle as follows.

Proposition 7.15. The conformal arc-length p satisfies

@(s) = lim \/6 i (M(S)’m(s i AS)).
ds As—0 As
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Figure 8. The conformal angle 8¢ (x, y).

Remark. Put
[T = Span(y(s,s,s + As),y(s,s + As,s + As)).

It is a spacelike 2-plane of R}°. We claim that the intersection of IT and ©(1, 3) is
1-dimensional, morcover it is a circle which is a geodesic of ®(1, 3). The conformal
angle is equal to the distance in § (1, 3) (i.e., the shorter arc-length along this geodesic)
between y(s,s,s + As) and y(s,s + As, s + As).

The above statements can be understood in the timelike 4-space

W = Span{m(s), m’(s), m(s + As),m'(s + As)) C R}

as all the events take place in W. Remark that W intersects S ? ina “bitangent” sphere
3 (m,m + As) that contains the two tangent circles to the curve C, T'(m(s), m(s),
m(s + As)) and ' (m(s), m(s + As), m(s + As)). Therefore, the intersection of
®(1, 3) and the set of oriented circles in the sphere X (m, m + As) = W N 83 can
be isometrically identified with 3-dimensional de Sitter space A® which consists of
oriented circles in X (m, m + As). Through this identification, IT N ©(1, 3) can be
identified with the intersection of a spacelike 2-plane in R3 that corresponds to TT
and A3. It consists of the oriented circles in X (m2, m + As) that pass through both
m(s) and m(s + As). Itis a circle which is a geodesic of A>. The distance between
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any pair of points on this circle is equal to the angle between a pair of corresponding
circles (see Theorem 9.5.1 of [O’H1] or [HI]).

Remark. We have two kinds of infinitesimal interpretation of the conformal arc-
length as the distance between a pair of nearby circles: one by osculating circles
['(x,x,x)and I'(y, vy, ¥) (Theorem 7.4) and the other by tangent circles I'(x, x, y)
and I"(x, y, v) (Proposition 7.15). We remark that the former is a “timelike” pair and
the latter a “spacelike” pair.

8. Integral geometric viewpoint

8.1. Information from two nearby osculating circles

Definition 8.1. ([La-OH]) Let Py, P>, P3, and P4 be points on an oriented sphere
2. They can be considered as complex numbers through an orientation preserving
sterecographic projection from X to C U {oc}. The cross ratio of Py, P, P3, and Py
can be defined by that of the corresponding four complex numbers. We remark that
it does not depend on the stereographic projection that is used to define it.

Let C beacurvein 2 or R?, and § be a sphere which intersects C orthogonally
at a point m(t1) that passes through a nearby point m(t2). Let Oy (i = 1,2) be
the osculating circle to C at m(r;), and y(t;) the intersection point of @,y and §
so that Oy NS = {m(t;), y(1;)}.

Proposition 8.2. The infinitesimal cross ratio

cross(m(r), y(t + dt); m(t + dt), y(1))
_om(t) =y +dr)y m@t+dey—y(t+di)
o om@)—y@) T m+d) -y

is real. The fourth root of its absolute value is equal to ﬁ timmes the pull-back of the

conformal arc-length element of the curve C.

We remark that the infinitesimal cross ratio mentioned above is different from that
defined in [La-OH] and studied in [O’H2].

Proof. Since both the cross ratio and the conformal arc-length element are invariant
under Mobius transformations, we may assume that z(r, ) is the origin and that the
curve C in R? is given by the normal form (see [CSW])

3

_* 5
y=3+ 067, 8.1)

z =0+ O@x*Y).
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Om)

Figure 9. The intersection points of two nearby osculating circles and an almost orthogonal
small sphere §. In Proposition 8.2, ¢ is ¢ and 72 is ¢ + d7.

The normal form above can be obtained from Bouquet’s formula (7.10) by putting
k = 0and k' = 1 at the origin.

Let /i be the diameter of §. Since the conformal arc-length element is given by
vV (k)2 4 k212ds, where s is the arc-length of the curve, it is enough to show that

the cross ratio is of the form ';—z + o).

Since both [|m(t) — v (¢ + dt)|| and ||m(r + dt) — v(¢)| are of order /3, we can
neglect O(h*) terms. Therefore, the z-coordinate in the normal form (8.1) can be
neglected. Then the four points m(r), m(r + dt), y(r), and y(z 4+ dt) are on a circle
that is the intersection of § and the xy-plane, which implies that the infinitesimal
Cross ratio is real.

Let us now consider in the xy-plane. The coordinates of m(t + dt) are given

by (h % up to O(h*). A computation shows that the x-coordinate of the center
of the osculating circle to the curve at (k, ’%3) is % + O(h®), which implies that the

intersection point y(r + dt) of this osculating circle and § is equal to (O, % up to
O(h*). It follows that the absolute value of the infinitesimal cross ratio is given by

_ _ 4
@ =y +dol e+ dy —yOl Bl
lm () — y (D) lm(z + dr) — y(t +dr)| 36
which completes the proof. O

8.2. Integral geometric interpretation of the conformal arc-length element. In
; . 1
the previous section we express the conformal arc-length as the LZz-measure of a
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lightlike curve in the space of circles. The goal of this subsection is Theorem 8.9,
where the conformal arc-length of a space curve C is expressed as the average of the
L% -measures of 1 parameter family of lightlike curves in the space of spheres A* that
can be obtained from the curve of osculating spheres to C.

The statement of Theorem 8.9 is analogous to the following statement in the
sense that something can be expressed as the average of 1 parameter family of other
quantities.

Proposition 8.3. The curvature of a curve C C R? at a point m is proportional to
the average of the curvatures at m of the plane curves obtained as the orthogonal
projections of C on the planes containing the tangent line T,,C to C at m (the
proportionality coefficient is ).

Proof. We only need to project an osculating circle Oy, to C at m on the planes
containing 73, C and observe the curvatures of these projections at the pointm. O

8.2.1. Preliminary lemmas. Theorem 8.9 has two kinds of proofs, a geometric one
using pencils of spheres, pencils of circles and cross ratios, and an algebraic one
using an “anti-isometry” F (where F being an anti-isometry means (F (1), F(v)) =
—{u, v) for any u, v) between two Grassmann manifolds. We start with preliminary
lemmas which are needed for the geometric proof.

Definition 8.4. The Lorentz distance between a pair of spheres 1 and X, is the length
of the geodesic y joining the two corresponding points o1 and o5 in A: dg (o1, 02) =
Jlylde.

Since a geodesic in A can be obtained as the intersection of A with a 2-dimensional
vector subspace of R?, the geodesic y joining o1 and o3 is a subarc of ANSpan (o1, o).
The Lorentz distance between a pair of spheres can be expressed by the Lorentz
distance between their intersections with an orthogonal sphere or an orthogonal circle.

Lemma 8.5. Ler d¢{(01,02) be the Lorentz distance between a pair of spheres X,
and X».

(1) Let S be a sphere orthogonal to %1 and X». Then dg(o1,02) is equal to
the Lorentz distance dg(y1,v2) between the two circles 'y = X1 N S and
' =>>NS.

(2) Let '§ be a circle orthogonal to %, and X». Then dg(o1,02) is equal to the
Lorentz distance d¢ (P, P2) between the two O-spheres 1 = X1 N'§ and
Pr=3NE§.
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Proof. Let oy and o4 be the two points in de Sitier space A* which correspond to the
two spheres % and X5.

(1) can be proven by considering the two points ¢y and o, in de Sitter spaces
A} C A* where A} is the set of the oriented spheres orthogonal to the sphere S.

To be more precise, let IT be a 4-dimensional vector subspace of R} so that S
is the intersection of IT and S3 or E3, namely IT = Span S, and oy be the point in
A* which corresponds to S. Then A3 = A* N (Span{og))t = A* N T1. Since the
geodesic y in A* joining o7 and o is a subarc of A* N Span{oy,05), it is contained
in A3, which proves (1).

(2) can be proven similarly, using de Sitter space A% which is the set of the oriented
spheres orthogonal to the circle ¥ (Figure 10).

Figure 10. Intersection and Lorentz distance.

It can also be proven by the composition of (1) and a 1-dimensional lower analogue
of (1). O

Remark. The Lorentz distance between 2; and X, and the cross ratio of the four
intersection points of ¥ and X, U 3, are related by a diffeomorphism. When the
circle § is a line the cross ratio is given by the formula

1_ 1 2 .1
X —0y B —%
cross(x], xd; 23, x5y =1 —2.°L "2
% —% X—%i
1 —% %

When the four points are on a circle in a complex plane, the four points xij should
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be considered as complex numbers, but the cross ratio is real as the points are on a
circle.
For example, if we name the point as in Figure (10), we have

E_l 2
|cross(x;, x5; x7,X3)| = (eg ) :
et +1

where £ is the Lorentz distance dg (o1, 02).
In particular, when the Lorentz distance between ¥, and X5 is small, we have

E 2
|cross(x1,x2,x1, )| = (_)

We need another lemma to compare the Lorentz distance between a pair of spheres
to the Lorentz distance between their intersections with a sphere or a circle almost
orthogonal to them.

Lemma 8.6. Let X1 and T, be a pair of spheres. Let cross(x{, x3; x%, x3) be the
cross ratio of the intersection of X1 and X, with a circle § which intersects X1 and
2o in the right angles.

(1) Letcross(y{, va: v3,v3) be the cross ratio of the intersection of =1 and o with
a circle § thar makes angles 81 with 21 and 85 with X,. Then the quotient of
cross(x{, x1; x7, x3) and cross(y;, v1; 2, y3) is inan interval [1 — 81, 1+ &1),
where 81 is a function of 61 and 0, which goes to O when 61 and 6, go to +m /2.

(2) Suppose that a sphere S makes angles 61 with X1 and 6, with X,, respec-
tively. Let Cross(z1 , 22, zl, ) be the cross ratio of the intersection of 21 N S
and X, NS wzth a common orthogonal czrcle I' € S. Then the quotient
of Cross(xl,xz, xl, ) and cross(zl,zz, zl, ) is in an interval of the form
[1 — 82, 1 4+ 82], where 85 is a function of 61 and 6, which goes to 0 when 6
and 63 go to /2.

Proof. Let us fix the two spheres X1 and X».

Let us consider the circle § orthogonal to X at y; and y,. It intersects § at y{
and y, making a small angle /2 — 6;. Tt also intersects X at points z; and z, close
to y? and y2 and with an angle close to /2. All the corresponding arcs a;, b; on
both circles have a ratio satistying 1 — § < a;/b; < 1 + §, which implies (1).

The second statement (2) comes from the fact that the circle y is almost orthogonal
to the spheres 1 and X». O

8.2.2. Conformal arc-length as the average of L 2 -measure of lightlike curves in
A4 which are associated to a curve in S3 or R3. Let C = {c(¢)} be vertex-free
curve in S3 or E3. Let I' = {o(¢)} be a curve in A* which is the set of osculating
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spheres of C. Let s (s is in some interval /) be the arc-length of I', and + denote %.
The geodesic curvature vector k¢ is the image of the orthogonal projection of & to
TsA* = (Spano)*t. As {o,0) = {6,06) = 1, and moreover, {,5) = 1 ([La-So],
[Yu]), we have {0, &) = —1, and therefore, the geodesic curvature vector is given by
ke = o + o. Itis lightlike, namely, T is a drill ([La-So]).

Let G, (5 be the geodesic circle of A* which is tangent to I' at o (5) (Figure 11).
Then it is given by G,y = A* N Span{o (5), 5 (5)). A point on it can be expressed
as v(5,0) = cos Bo(5) + sin o (5) for some O. It corresponds to a sphere which
contains the osculating circle to C at ¢(5).

o (5)

I/IQQ

---------
______
- i
- -~
e ~

Figure 11. I is a curve of osculating spheres I'w, 95 () 1s a geodesic circle in A thatis tangent
to ['p at o(§). Lightlike curves made of spheres containing the osculating circles are orthogonal
0 G5 5).

Let V(C) = s 95 (s) be a surface in A* which is the union of the geodesic circles
tangent to I':
V(CY = {v(5,0) = cosBo(5) + sinfo(5) | § € 1,0 < B < 2x}.
The tangent space of V(C) atv = v(s, 8) is given by

T,c.0)V(C) = T,A* N Span{o(5), 6(5), 0 (5)) = TLA* N Span{o (5), 6 (5), k4 (5)).
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As
TvG.0) %) = Span(—sin 8o (s) + cos 90(§))

its orthogonal complement in 7, V(C) is given by Span{o + o) = Span{kg (5)).
It follows that the curves orthogonal to the “foliation” of V{C) by these geodesic
circles {&,(5)} are lightlike. Generically they have cuspidal edges at points of T".
Notice that the angle between two spheres v(s, 8) and v(s, ') is independent of
the value of s.

Remark. We have ds5 = |T |c™dp, where p is the conformal arc-length and 7 is the
conformal torsion given by

2kt 4+ k213 + kit — kT

r (k"2 + k272)5/2

(see [CSW]).

Proposition 8.7. Let C be a vertex-free curve, ¥ a sphere which has the second
order contact with C, and &y a point in A corresponding to Xo. Then there is a
unique lightlike curve & through &, consisting of the spheres % with the second order
contact with C.

The statement without “uniqueness” was proved in Corollary 10 of [La-So].
We remark that a sphere has the second order contact with a curve at a point m if
and only if it contains the osculating circle of the curve at m.

Proof. Every sphere having the second order contact at a point 7 (s) in C can be
written by
cos @ o (5) —sin b o (s)

for some 6 € [0, 27}, where « denotes d/ds. Let n(5) be a curve in A given by
n(3) = cosu(s) o (3) — sinu(s) o (5),

where u(§) is a function. Then we have
n=-cosu(l—u)o—sinu (o + o).

As {o,0) = {6,0) = 1 we have {6,0) = {0,06) = 0. Furthermore we have
{(7,0) = 1 (]La-So], [Yu]). Therefore we have

(;)7 7.7) = (1 - T/'l)za

which implies that 7(s) is lightlike if and only if % (s) = § 4+ € for some constant 6.
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If oy can be expressed as
Go = cosup o (Sg) — sinug o (59)
then o 1s uniquely determined by
6(8) = cos (5 + ug —5g)o(5) —sin (5§ + ug — 5p) 0 (5),
which has the following lightlike tangent vector
7(5) = —sin(E 4 up — 5) (0 3) + 5 (). O
Remark. Let

Vv (8,5) = cos(s + 0)o (5) — sins + 8)o(5),

and vy be a lightlike curve {y (6, -)} in A*. Using one of the curves ¥4 we can
construct a surface My containing C such that C is a line of principal curvature of
My. Then the spheres of g are the osculating spheres to My at points of C. Any
surface tangent to My along C has the same property.

When C is contained in R3, a developable My is obtained as the envelopes of
planes Py (5 + h) satisfying

— the angle between Py (5) and the osculating plane to C at ¢(5) is 0,

— the derivative, with respect to an arc-length parameter s on the curve C, of the
angle between Py (5 4 /) and the osculating plane to C ate(s+h) is —t(s + /),
the opposite of the torsion of the curve C at c(s + £).

Note that yr4 is a curve in the surface V(C') which intersects geodesic circles G, (x)
orthogonally.

Corollary 8.8. The integral of the pull-back of the %-dimensional length element
(Definition 4.3) of the lightlike curves g, Vg™ dp , with 6 moving from O to 27

is proportional to

L2 o)

V€S +6)ds = v/ |2(5) - 1] d5. (8.2)

Proof. Computing the second derivative of g, we get
Vg = —cos@ + 0)(05) + 5(5) — sin(E + )(6G) + ().

As o (5) + o (5) is lightlike and orthogonal to its derivative o () + & (8), we have

200l _ ey J 26O +FO)
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which implies

o 7 4[| L)
ARG TR _/0 T B

) (/2 mdg) </|£(6<§>+ FEN
0

12

This gives the left-hand side of (8.2). . .
On the other hand, the equation (8.2) follows from Table 2 of (0@ o\/))
(0 < i, j < 3), which can be obtained from {5, 5) = 1 ([La-So], [Yu]).

Table 2. A table of (O'(i) , O'(j)).

cl|lol| o o
o 1 10| —1 0
o 1 0 —1
o il 0
o (o) 0

Theorem 8.9. Let C be avertex-free curve. Let T = {0 (5)} be a curve in A* which is
the set of osculating spheres of C, where 5 is the arc-length of . Then the conformal
arc-length of the curve C is, up to the multiplication by a universal constant, equal

to the average with respect to 0 of the L3 -measures of the lightlike curves in
V(C) = {v(5,0) =cos 8o (5) +sinfa(5) |[§el,0<6 <2m}
through cos 8 o (5o) + sin 6 o (3p).

Proof. Itis enough to show that the pull-back of the conformal arc-length element is
proportional to the average of that of the %-dimensional length element.

Let T C A* be the curve of osculating spheres to the curve C, and o (5) the
osculating sphere at the point m(5) to the curve C, where § is an arc-length parameter
on the curve ' C A*. We remark that g is spacelike if C is vertex-free.

Let S be the sphere orthogonal to C atn(s) which also contains the point m (s +7).
We will now follow the intersection with S of the spheres of the different lightlike
curves g, where 6 is the angle of the initial sphere of the family 4 (75) with a chosen
sphere of the second order contact with C at the point mg = ¢(sp).
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Consider two points mn (s} and m(s+h) on C (here we use the arc-length parameter
on the curve C < §3). The set of the spheres {/ (8, s) |8 € S'}and {3 (8,s+h) |0 €
SV are two pencils consisting of the spheres which contain @5y and O y(s+h),
respectively. They intersect the sphere S m two pencils of circles with base points
tm(s), y(s + h)} and {y(s),m(s + h)} (see Figure 9).

As the sphere S is orthogonal to the osculating circle to the curve C at m(s),
which is the base circle of the pencil {1/ (6, s) |6 € S'}, the angle 8 is also the angle
parameter of the pencil of circles {1(#,s) N S |# € S'}. The angle of the circles
SNy, s+ hyand S Ny (B, s + h) is only close to & — 6’ as we know that the
angle of S and O (s+1) 1s close to /2.

Figure 12. Trace of the spheres g (s) and /g (s + /) on an almost orthogonal sphere S (with
a point of § at infinity).

Let 'y denote the circle of S containing the three points mi(s), y (s) an m(s + h).
As the cross ratio cross(m(s), y(s + h), m(s + h), y(s)) is almost real (that is, the
quotient of the imaginary part divided by the real part is of order o(h)), the fourth
point y(s + k) is almost on Ty (that is, after performing homothety which makes the
radius of S being equal to 1 the distance between y{(s + /) and 'y is of order o(/%)).
Therefore the cross ratio cross(m(s), y(s + h),m(s + k), y(s)) is equivalent to the
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Lorentz distance between the two circles S Ny (61, s) and S N ¥ (#y,s + h), where
the value #; is such that § N g, (s) is orthogonal to I'y. Let us now consider the
intersection of the two circles S N ¥ (6,s) and S N ¥ (6,s + h) with the circle I’y
which is orthogonal to S N ¥ (6, s) (see Figure 12). The Lorentz distance between
these two circles is equivalent to the cross ratio

cross(m(s), Ag; By, y1) = 0052(9 — 61) cross(m(s), v, m(s + h), y1).

Using Lemma 8.6, we see that the Lorentz distance between the spheres g (s) and
Vg (s + h) is also equivalent to

cos(8 — 61) cross(m(s), v(s + h),m(s + k), y(s)).

The Lorentz distance between two close disjoint spheres is equivalent to their
Lorentz distance. We can integrate the contribution of the segments g (¢), Vg (s + h)
to the L/2-Jengthes of the curves ¥y C A. Ttis

(fe . | cos(6 — 81)|1/2d8) V2 Vleross(m(s), y (s + h), m(s + h), y(s))].

This provides the constant in the statement of Theorem 8.9. O

Remark. There is an alternative proof of Theorem 8.9 using (8.2) and an anti-
isometry between two Grassmann manifolds.

Recall that the set §(1,3) of oriented circles in S can be identified with the
Grassmann manifold Gr_ (3;R3) of oriented 3-dimensional timelike subspaces of
R3. The orthogonal complement of a timelike 3-space is a spacelike 2-space. There-
fore, there is a bijection between Gr_(3; R3) < R1° and the Grassmann manifold
Gry(2;R3) c RL of oriented 2-dimensional spacelike subspaces of R3 that can be
obtained by assigning the orthogonal complement. This bijection is a restriction of an
anti-isometry F (here F being an anti-isometry means {F{(u), F(v)) = —(u, v) for
any u,v) between R1? and R}? that exchanges spacelike and timelike subspaces
([La-OH2]).

Through this anti-isometry, the osculating circle y corresponds (0 ¢ A ¢ in
Gry (2;R3), and therefore, ¥ corresponds to @ A & 4+ & A &. Then, by Table 2
we have £(¥) = £(&) — 1, which implies that the pull-back of the 3-dimensional
length element of y, and hence the pull-back of the conformal arc-length element, is

given by y/|£(5") — 1| d5. Now Corollary 8.8 implies that the integral of the pull-

back of the %—dimensional length element of the lightlike curves vy, w@*dpL 1 s

a
with 6 moving from O to 27 is proportional to the pull-back of the conformal arc-
length element, which completes the proof.
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The reader is referred to [O’N] for pseudo-Riemannian metrics, [Ak-Go], [Fi],
[HI], [MRS], [Ro-Sa], and [Sul], [Su2] for further details in conformal differential
geometry, and [Yu] for the construction of a conformally invariant moving frame
along a curve in a spherical model in R3.

Note added in proof. The idea of getting a sort of pseudo arc-length of lightlike
curves (Definition 4.3) has already appeared in Vessiot [Ve] in which the author
used imaginary elements in geometry. See also Study [Stu] and Blaschke [Bla],
Paragraph 22. The authors thank Dr. Steven Verpoort for the above references. Also
notice the use of imaginary elements by Darboux [Dar], Chapter 6, to study spheres
(pentaspherical coordinates).
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