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A characterization of round spheres in terms of blocking light

Benjamin Schmidt and Juan Souto

Abstract. A closed Riemannian manifoldM is said to have cross compact rank one symmetric
space) blocking if whenever p ¤ q are less than the diameter apart, all light rays from p can be

shaded away from q with at most two point shades. Similarly, a closed Riemannian manifold is
said to have sphere blocking if for each p 2 M all the light rays from p are shaded away from
p by a single point shade. We prove that Riemannian manifolds with cross and sphere blocking
are isometric to round spheres.

Mathematics Subject Classification 2000). Riemannian manifold, cross blocking, sphere
blocking, blocking number.

Keywords. 53C20, 53C22, 37D40.

In this note we characterize constant curvature spheres in terms of light blocking
properties.

Definition Light). Let X; Y be two nonempty subsets of a Riemannian manifoldM,
and letGM.X; Y /denote thesetof unit speedparametrized geodesics

W
OE0; L M

with initial point .0/ 2 X and terminal point L / 2 Y The light from X to Y is
the set

LM.X; Y / D f 2 GM.X; Y / j interior. / \ X [ Y / D ;g:

A subset Z M blocks the light from X to Y if the interior of every 2 LM.X; Y /
meets Z.

Intuitively, we are postulating that X emits light traveling along geodesics, that

Y consists of receptors, and that X and Y are opaque while the remaining medium

M n fX [ Y g is transparent. From this point of view, LM.X;Y / is the set of light
rays from X to Y and a set Z blocks the light from X to Y if it completely shades X
away from Y This simple model ignores diffraction, the dual nature of light, and all
aspects of quantum mechanics.

Awell-knownresultofSerre[Se51] asserts that for closedM and pointsx; y 2 M,
the set GM.x; y/ of geodesic segments joining x and y is always infinite. In contrast,
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LM.x; y/ is sometimes infinite and sometimes not. For instance, if x and y are

different points on the standard round sphere Sn with distance less than then

LSn.x; y/ consists of exactly two elements. In particular, we see that, under the
same assumptions, it suffices to declare two additional points in Sn to be opaque in
order to block all the light rays from x to y.

Definition Blocking number). Let x; y 2 M be two not necessarily distinct) points
in M. The blocking number bM.x; y/ for LM.x; y/ is defined by

bM.x; y/ D inffn 2 N [ f1g j LM.x; y/ is blocked by n pointsg:

The study of blocking light also known as security) seems to have originated in
the study of polygonal billiard systems and translational surfaces see e.g. [Fo90],

[Gu05], [Gu06], [GuA], [HS98], [Mo04], [Mo05], [MoA], [MoB], and [Ta]). More
recently, blocking light has been studied in Riemannian spaces see e.g. [BaGu],

[BG], [GB], [GS06], [He], and [LS07]). Here we give a characterization of the round
sphere in terms of its blocking properties.

If x, y are two distinct points in the standard round sphere Sn closer than then,
as remarked above, bSn.x;y/ 2. This property does not characterize the round
sphere amongst all closed Riemannian manifolds. In fact, every compact rank one
symmetric space, or CROSS for short, has the following property:

Cross blocking: For every pair of distinct points x;y 2 M with dM.x; y/ <
diam.M/, we have bM.x; y/ 2.

Apart from cross blocking, the round sphere also has the following property:

Sphere blocking: For every point x 2 M, we have bM.x; x/ D 1.

The CROSSes are classified and consist of the round spheres Sn, the projective
spaces KPn where K denotes one of R, C, or H, and the Cayley projective plane,
each one endowed with its symmetric metric. It is not difficult to check that the round
sphere is the only CROSS with sphere blocking.

In [LS07] it was conjectured that a closed Riemannian manifold with cross and
sphere blocking is isometric to a round sphere. We prove that this is the case:

Theorem 1. A closed Riemannian manifoldM has cross and sphere blocking if and

only if M is isometric to a round sphere.

In order to prove Theorem 1 we show that manifolds as in the statement are

Blaschke manifolds. Recall that a compact Riemannian manifold M is said to be
Blaschke if its injectivity radius and diameter coincide. Berger [Be78] proved that a

Blaschke manifold diffeomorphic to the sphere is in fact isometric to a round sphere.
This was used in [LS07] to prove Theorem 1 for Blaschke manifolds.
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In [LS07] it was also conjectured that a closed Riemannian manifold with cross

blocking is isometric to a compact rank one symmetric space. We prove that this is
the case in dimension two:

Theorem 2. A closed Riemannian surface M has cross blocking if and only if M is
isometric to a constant curvature sphere or projective plane.

Section 1 contains some preliminary material concerning Morse theory for path
spacesandpropertiesof totally convexsubsets in Riemannian manifolds. In Section 2
we prove Theorems 1 and 2.

Acknowledgements The first author was partially funded by an NSF Postdoctoral
Fellowship during the period this work was completed. He thanks the FIM Institute
for Mathematical Research for its hospitality during the earlier stages of writing.
The second author would like to thank the Department of Mathematics of Stanford
University for its hospitality while most of this paper was being written.

1. Preliminaries

In order to fix notation we start reviewing some well-known definitions and results

in differential geometry. We then review the basic aspects about Morse theory on
path spaces and about totally convex subsets in Riemannian manifolds needed in
Section 2. Good references for this material include Milnor’s Morse Theory [Mi63]
and Cheeger and Ebin’s Comparison Theorems in Riemannian Geometry [CE75].

1.1. Basic definitionsand notation. LetM be aclosed manifold with aRiemannian
metric h ; i and induced norm k k. The length and energy of a piecewise smooth
curve

W
OE0; T M are given by

LM. / D Z k P t/kdt;

EM. / D Z k P t/k
2 dt:

1.1)

The Cauchy–Schwarz inequality implies that L. /2 T E. / with equality if
and only if has constant speed k Pk. A curve with constant speed 1 is said to
be parametrized by arc-length. The distance dM.x; z/ between two points in M is
the infimum of the lengths of curves joining them and the diameter diam.M/ is the
maximal distance between points in M. A parametrized curve

W .0; T / M is
a geodesic if it is locally distance minimizing. Equivalently, fulfills the geodesic
differential equation; hence, geodesics are smooth. We will often say that the image
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of a geodesic is a geodesic as well. Geodesics will usually be denotedby Greek letters

; ; ; : : : A variation of geodesics is a smooth map s; t/ s.t/ where s is a

geodesic for all s. The vector field @

@s s.t/ along the curve 0 is said to be a Jacobi
field. A vector field along a geodesic is a Jacobi field if and only if it satisfies the so

called Jacobi equation, a second order ordinary differential equation. In particular,
the space of Jacobi fields along a geodesic is a finite dimensional vector space and
every Jacobi field J is determined by its initial value and derivative. Two points x
and y in M are conjugate along a geodesic arc joining them if there is a nonzero
Jacobi field along vanishing at x and y.

By the Hopf–Rinow theorem, any two points in M are joined by a geodesic
segment whose length realizes the distance between them. Moreover, for every point

p 2 M and for every direction v 2 TpM there is a geodesic t 7! expp.tv/ starting
at p with direction v. Thus we obtain the so called exponential map

expp W TpM M:

The exponential map is a local diffeomorphism in some small neighborhood of 0 2
TpM. The injectivity radius injp.M/ is the maximum of those r > 0 such that

exponential map is injective on the ball B.0; r/ D fv 2 TpM j kvk < rg. The
map p 7! injp.M/ is continuous and hence attains a minimum, the injectivity radius
inj.M/ of the manifold.

For the sake of concreteness we will always assume that the manifolds in question
have injectivity radius inj.M/ 2 and will simply denote the length and energy
functions by L and E instead of LM and EM.

1.2. The space of broken geodesics. Given k 2 N let Lk be the set of piecewise
geodesic curves consisting of at most k edges of at most length 1. To be more precise,
elements 2 Lk are continuous curves

W
OE0; k M

such that for all i D 0; 1; : : : ; k 1 the curve jOEi;iC1 is a geodesic segment with
length at most 1. When we endow Lk with the compact open topology, the valuation
map

Lk MkC1 ; 7! .0/; : : : ; k C 1//
is continuous. Moreover, the assumption that inj.M/ 2 implies that this map is
injective and hence a homeomorphism onto its image. The interior LB

k of Lk, as a

subset of MkC1, is the set of those elements consisting of geodesic arcs of length
strictly less than 1. The tangent space T LB

k
at 2 LB

k
is naturally identified with

the space of the continuous vector fields J along such that J jOEi;iC1 is Jacobi for
all i D 0;1;: : : ; k 1. Observe that this identification of T LBk is consistent with
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k with an open subset of MkC1. In particular, the later pointthe identification of L0
of view induces a Riemannian metric hh ; ii on LBk

Given two points p;q 2 M set

Lk.p;q/ D f 2 Lk.p;q/ j .0/ D p; k/ D qg:

Obviously Lk.p; q/ is a closed subset of Lk homeomorphic to a closed subset of
Mk 1. Moreover, from the description above we obtain that the interior Lk.p;q/B

of Lk.p; q/ as a subset of Mk 1 coincides with the intersection of Lk.p; q/ \ LBk
In particular, the tangent space T Lk.p; q/B of Lk.p; q/B at some curve is given
by the space of continuous vector fields J along which vanish at 0 and k and such

that J jOEi;iC1 is Jacobi for all i D 0;1; : : :; k 1. The energy function E. / is smooth
in LBk and the first variation formula asserts that the derivative of EjLk.p;q/B at some
point is given by

d.EjLk.p;q/B/ / D 2
k 1

X
iD1

h i /; i 1.2)

where t/ D @C t/ @ t/ and @C t/ and @ t/ are the right and left
derivatives at t Let X be the negative gradient of EjLk.p;q/B i.e.,

d.EjLk. .0/; k//B/ / D hhX ; ii
and let be the associated negative gradient flow

0.t/ D X t/; .0/ D 1.3)

Observe that since the vector-field t/ is smooth not only on Lk.p; q/B but on the
whole spaceLBk the vector fieldX and the flow. t/ arealso smooth when considered
on the whole of LBk

In general, gradient lines are not defined for all t 2 R but just for some open

sub-interval. However we claim that the flow is defined for all non-negative t. In
fact, consider the function

W Lk.p; q/ OE0; 1 ; / D length of the longest segment in :

It is easy to check that

lim
t!0; t>0

t// /
t

0:

This implies that is non-increasing and hence that flow lines never come close to
the boundary in positive times since Lk.p; q/B D f < 1g. Thus, we have:
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Lemma 1 LBk is a cage). There is a semi-flow

W
LBk OE0;1/ LBk; ; t/ 7! t/;

such that .0/ D and d
dt t / D X t/ for all and t Moreover, the semi-flow

preserves Lk.p; q/B for all p; q 2 M.

We now consider the restriction of the energy function E to Lk.p; q/B for some

pair of points p; q 2 M. In order to relax notation we write E instead of EjLk.p;q/B

It follows directly from the first variation formula 1.2) that the critical points of E
are precisely the geodesics of length less than k joining p and q.

Lemma2 Third geodesic). Assume that 0; 1 2 Lk.p; q/are minimizinggeodesics

joined by a continuous curve W
OE0; 1 Lk.p; q/, s 7! s. Then there is a third

geodesic 2 Lk.p; q/ joining p to q with E. / maxs2OE0;1 E. s/.

Proof. Let c D E. 0/ D E. 1/, C D maxs2OE0;1 E. s/, and assume that 0; 1 2
Lk.p;q/ are the only geodesic segments joining p and q with energy not more than

C. Then for each s 2 .0;1/; c < E. s/ C and by Lemma 1 and the paragraph
following that lemma,

s t / converges to either 0 or 1 as t 1. Choose t0 > 0
so that for all s 2 OE0; 1 d. s t0/; f 0; 1g/ < d. 0; 1/=3 WD d0. The assumption
that both 0 and 1 are minimizing implies that for s > 0 sufficiently close to zero
resp. close to 1), d. s t0/; 0/ < d0 resp. d. s t0/; 1/ < d0.) Finally, for

i D 0; 1, define Si OE0; 1 by Si D fs 2 .0; 1/ j d. s t0/; i/ < d0g. Then .0; 1/
is the disjoint union of the two nonempty open sets S0 and S1, a contradiction.

1.3. Totally convex subsets

Definition. A set C in a complete Riemannian manifold M is called totally convex

if whenever p; q 2 C and is a geodesic segment from p to q, then C.

A closed totally convex set C M has the structure of an embedded topological
submanifold with smooth interior and possibly nonempty and nonsmooth boundary
see e.g. [CE75, Chapter 8]). The next result is Theorem 8.14 in [CE75].

Theorem 3. Let C be a compact boundaryless totally convex set C in M. Then the
inclusion C M is a homotopy equivalence.

The idea behind the proof is to apply the negative gradient flow of the energy
functional on the space LC consisting of curves in M with endpoints in C. As C
is totally convex, the only critical points are the constant curves into C. It follows
that C LC is a deformation retract, proving that the relative homotopy groups

i.M;C/ vanish. The next corollary is an easy consequence of Theorem 3.
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Corollary 1. Assume that M is a closed geodesic in a closed Riemannian
manifoldM ofdimensionat least two. Then there exists a geodesic segment W

OE0; 1 M
with endpoints in but not completely contained in

Proof. If not, then M is a totally convex subset and hence by Theorem 3, M
is homotopy equivalent to This is a contradiction since the fundamental class

OEM 2 Hdim.M/.M; Z=2Z/ is a nonzero element.

2. Main theorems

In this section we prove Theorems 1 and 2. The bulk of the work lies in proving the
following technical result.

Proposition 1. Suppose thatM is a closed Riemannian manifold with cross blocking.
IfM is not a Blaschke manifold, then there is simple closedgeodesic M of length
2 inj.M/.

Proof. We assume that M has been scaled so that inj.M/ D 2. Choose p 2 M
with injp.M/ D inj.M/ and let cut.p/ TpM be its cut-locus. Choose 2 cut.p/
with k k D 2 realizing the injectivity radius. For r > 0 and v 2 TpM denote by

B.v;r/ Tp.M/, the open ball with radius r and center v. We first argue that there is
an open neighborhood U TpM of for which the restriction of expp W TpM M
to U \ cut.p/ is one-to-one.

Indeed, if this were not the case, then the restriction of expp to B. ;r/\cut.p/ is

not one-to-one for each r > 0. Fix a positive "0 smaller than 1
2 By continuity of the

exponential map and the distance function in M, there is a sufficiently small r0 > 0
so that for all 0; 1 2 B. ; r0/ we have that

dM expp
0

2
; expp

1
2 < "0

2
:

Let " < minf"0; r0;diam.M/ 2g and choose 0; 1 2 B. ;"/ \ cut.p/ with
expp. 0/ D expp. 1/ WD q. Define i W

OE0; 4 M by i t/ WD expp t i
4

for
i D 0; 1. Note that both 0 and 1 are minimizing geodesics between p and q with

L. i / 2 C " for i D 0; 1. We consider the curve

p W
OE0; 1 TpM; p.s/ D .1 s/

0

2 C s 1
2

in the tangent space to M at p and its image under the exponential map

W
OE0; 1 M; s/ D expp. p.s//:
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For each s 2 OE0;1 we have that

dM.q; s// dM.q; .0// C dM. .0/; s//
2 C "

2 C
"0

2
< 1C "0 < 2:

Therefore, there is a unique curve q W
OE0; 1 B.0; 2/ TqM with expq. q.s// D

s/. For s 2 OE0; 1 ; define the one parameter family of curves s 7! s by

s.t/ D ´expp t p.s/
2

for t 2 OE0; 2 ;
expq .4 t/ q.s/

2 for t 2 OE2; 4 :

Figure 1. The variation s interpolating by not much longer curves between the geodesics 0
and 1.

It is easy to check that L. sjOEi;iC1 / < 1 for all s 2 OE0; 1 and i D 0;: : : ; 3 so that

this family defines a continuous curve W
OE0; 1 L4.p; q/B, s 7! s, connecting

0 and 1. One also checks easily that for each s 2 OE0; 1 the curve s has at most
energy .1C"0/2 so that by Lemma 2, there is a third geodesic 2 L4.p; q/B joining
p to q with E. / .1 C "0/2. It follows that L. / 2 C 2"0 < 3. Note that since
each of ; 0, and 1 have length strictly less than 4, no two can intersect in their
interiors without contradicting inj.M/ D 2. Hence, bM.p; q/ 3, a contradiction
to cross blocking since dM.p;q/ 2 C " < diam.M/.

We have proved that there is some open neighborhood U TpM of such that

the restriction of expp to U \ cut.p/ is one-to-one. From now on, let U be such a

neighborhood.
We argue next that there are at least two distinct unit speed minimizing geodesics

0; 1 W
OE0; 2 M joining p and q WD expp. / and hence exactly two by the cross

blocking condition). Define

rp W
@ xB.0; 1/ .0; diam.M/ ;

rp.v/ D supft 2 .0;diam.M/ j dM.p;expp.tv// D tg:

It is well known that the function rp is continuous. Hence, the function

ip W xB.0;1/ n f0g TpM; ip.x/ D rp
x

kxk
x

is continuous as well. Therefore, i 1
2 in xB.0; 1/. Choosep U/ is an open subset of

i > 0 sufficiently small so that the set Vi WD xB 2 ; i \ xB.0;1/ is contained in
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i 1
p U / Note that Vi is homeomorphic to a basic closed set of 0 in the upper half
space Rnxn 0 and that the map expp B ip is continuous and one-to-one on Vi Hence,

expp.ip.Vi // does not cover an entire neighborhood of q so that we find a sequence

of points qi 2 M expp.ip.Vi// converging to q. For each, i let

i W
OE0; 2 M

be a minimizing geodesic joining p to qi and define 0 W
OE0; 2 M by 0.t/ D

expp.t 2/. Up to passing to a subsequence the minimizing geodesics i converge to
a second unit speed geodesic 1 W

OE0; 2 M joining p to q.
Next we argue that 0 and 1 together form a closed geodesic. If not, then either

P0.0/ ¤ P1.0/ or P0.2/ ¤ P1.2/. We assume the latter, the former case being
handled symmetrically. Fix a positive " < 1 and choose v 2 T 1

q M making obtuse

angle with both P0.2/ and P1.2/. Note that for all sufficiently small s, the distance
between the points i .2 "/ and s/ D expq.sv/ is less than one and in particular

they areconnected by aunique minimizinggeodesic segment is W
OE0; 1 M. By the

first variation formula the energy E. i
s/ is strictly decreasing for sufficiently small s.

Fix s0 < " positive and small enough such that E. i
s0 / < E. i0/ D "2.

For i D 0; 1 define broken geodesics i W
OE0; 3 M by

i t / D ´ i
2 "

2 t for t 2 OE0; 2 ;
i
s0 t 2/ for t 2 OE2; 3 :

The curves 0; 1 belong to L3.p; expq.s0v//B and have at most energy

E. i/
.2 "/2 C 2"2

2
< 2:

Since dM.p; expq.s0v// < 2 is less than the injectivity radius, the points p and

expp.s0v/ are connected by a unique geodesic segment shorter than 2. The uniqueness

of implies that the flow lines 7! i / of the flow provided by Lemma 1
and starting in 0 and 1 respectively converge to with 1. We conclude that

0 and 1 are homotopic through piecewise geodesics with three segments having

energy not more than .2 "/2C2"
2

2 : See Figure 2.

Figure 2. Flowing 0 and 1 to the geodesic
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Similarly, the once broken geodesics joining i.2 "/ to q defined by concatenating

is0 with jOE0;s0 traversed in the opposite direction are homotopic to i jOE2 ";2

through once broken geodesics of total energy not more than 2"2. Combining these

homotopies with those between 0 and 1 yields a continuous curve
W

OE0; 1

L4.p; q/B, s 7! s, joining and with maxs2OE0;
.2 "/2C4"

2

0 1 1 E. s/ : By2
Lemma 2, there is a third geodesic

W
OE0; 4 M joining p to q with E. / <

.2 "/2 C4"
2

2
One easily checks that L. / < 4. Therefore, cannot intersect 0

or 1 in their interiors without contradicting inj.M/ D 2. Hence bM.p;q/ 3,
contradicting cross blocking since d.p; q/ D 2 < diam.M/.

We obtain that P0.0/ D P1.0/ and P0.2/ D P1.2/, completing the proof of
Proposition 1.

Next, we prove Theorems 1 and 2.

Theorem 1. A closed Riemannian manifoldM has cross and sphere blocking if and

only if M is isometric to a round sphere.

Proof. We first scale the metric on M so that inj.M/ D 2. To begin with we claim
that M is a Blaschke manifold. Otherwise there is simple closed geodesic M
with

L. / D 2 inj.M/ < 2diam.M/ 2.1)

by Proposition 1. By Corollary 1, there is a geodesic segment
W

OE0; 1 M with
end-points in not entirely contained in Up to replacing by a subsegment whose
end-points are again in we can assume that the interior of is disjoint from Let
x and y be the end-points of If x D y then and are two light rays from x to
itself with disjoint interior. Hence one needs at least two points to block x from itself
contradicting the assumption that M has sphere blocking. Assume now that x ¤ y.
Then and the two subsegments of connecting x and y are three light rays with
disjoint interior. This implies that x and y have blocking number bM.x; y/ 3.
Since M is assumed to have cross blocking we obtain that x and y are at distance

diam.M/ and hence has at least length 2 diam.M/ contradicting 2.1).
We have proved thatM is Blaschke. As mentioned in the introduction, Theorem 1

follows now from [LS07, Corollary 3.7] where it was shown that Blaschke manifolds
with sphere blocking are isometric to round spheres.

Theorem 2. A closed Riemannian surface M has cross blocking if and only if M is
isometric to a constant curvature sphere or projective plane.

Proof. Assume thatM is a closed Riemannian surface with cross blocking that does

nothaveconstant positive curvature. By[Be78], M is not Blaschke. ByProposition1,
there is a simple closed geodesic M of length 2 inj.M/ < 2diam.M/:
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We first claim that must generate 1.M/. To see this, fix p 2 and an essential
map f W

OE0; 1 ; f0;1g/ M; p/ representing an element in 1.M; p/ not in the
subgroup generated by Let" > 0be small, choose a point q 2 \B.p; "/ different
from p, and let 0 denote the subsegment of joining p to q of length less than ".
Concatenating f with 0 yields a map f 0

W
OE0; 1 M with f .0/ D p, f .1/ D q,

and with the property that any other curve joining p to q homotopic to f 0 relative to
the endpoints must have energy strictly greater than ". A curve minimizing energy
in this homotopy class is a geodesic segment joining p to q with image not entirely
contained in Up to passing to a subsegment of with distinct endpoints p0 and
q0, we may assume that the interior of never intersects But then and the two
subsegments of joining p0 to q0 are three light rays with distinct interiors. AsM is
assumed to be cross blocked, d.p0; q0/ D diam.M/, a contradiction, completing the
proof that generates 1M. In particular M is diffeomorphic to either S2 or RP2.

Next, assume thatM is diffeomorphic to S2. Then bounds a Riemannian 2-disc

D S2. By [HS94], there is a geodesic segment
W

OE0; 1 D making right angles
at both ends with In particular, the endpoints of are distinct. Hence, and the
two subsegments of joining .0/ to .1/ are three light rays between these points
with distinct interiors. Again, as M is cross blocked, the distance between these

endpoints is diam.M/, a contradiction.
Thus, M is diffeomorphic to RP2. Lift to a closed geodesic

Q
S2. Let

AW S2 S2 be the order two covering transformation corresponding to and for
p 2 Q let p0 D A.p/. We shall say that such a pair of points p;p0 2 are an
antipodal pair. Note that the same reasoning as in the above two paragraphs shows
that any geodesic segment

W
OE0; 1 S2 with endpoints in Q

and interior disjoint
from Q satisfies .0/ D .1/ or .1/ D .0/0. It follows easily that Q

has no
transversal self-intersections and that each pair of subsegments of Q joining antipodal
pairs are minimizing. Fix a hemisphere † bounded by Q. We will next prove that †
is isometric to a constant curvature hemisphere, contradicting the assumption thatM
does not have constant curvature, and completing the proof of the theorem.

For p 2 Q
let T Cp Q/ TpS2 denote the set of unit tangent vectors based at p

either tangent to Q or pointing into the hemisphere †.
By [HS94], there is a constant speed paramaterized geodesic segment

W
OE0; 1

† making right angles with Q at both endpoints. Let p D .0/ and L D length
Then by the above remarks, .1/ D p0. Note that p0 is conjugate to p along
for otherwise there are geodesic segments arbitrarily close to joining p to a point
p00 2 Q distinct from but arbitrarily close to p0. Let Conj.p/ TpS2 denote the
tangential conjugate locus to p and C the component containing P.0/. By work of
Warner in [Wa65], C is a smooth 1-submanifold of TpS2 transverse to the radial
directions.

Let v WD
P.0/

kP.0/k 2 T Cp Q/ and note that for all vectors v0 sufficiently close to v in

T Cp Q/, the geodesic ray v0 t / D expp.tv0/ crosses
Q in a small neighborhood of p0
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at time close to L. By the above remarks, the point of intersection of each such ray
must be p0 and the antipodal pair p and p0 are conjugate along each such ray. Let
U TpC Q/ be the largest open interval around v with the property that each ray in a

direction through U first leaves † through the point p0. Note that the times the rays

in directions from U leave † through p0 vary smoothly with v0 2 U. This follows
since p and p0 are conjugate along each such ray and since C is a smooth curve. By
the first variation formula, they actually all leave at time exactly L. It follows that U
is closed and hence that U D T Cp Q/ and L D 2 inj.M/ D length Q=2.

It now follows that for each q 2 Q
sufficiently close to p, there is a geodesic

ray entering † from q and leaving † at a point in Q
close to p0. By repeating the

argument in the last paragraph, it follows that for q sufficiently close to p, every
geodesic entering † at q first exits † at its antipodal point q0 at time exactly L. Let
U0 denote the largest open interval around p in Q

with the property that every ray
entering † from a point in U exits † at its antipode at time L. Then U0 is clearly
closed, whence U0 D Q: By [Ba83], † is a round hemisphere, completing the proof.
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