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Contact homology of Hamiltonian mapping tori

Oliver Fabert

Abstract. In the general geometric setup for symplectic field theory the contact manifolds can
be replaced by mapping toriM of symplectic manifolds M; !/ with symplectomorphisms
While the cylindrical contact homology ofM is given by theFloer homologies of powers of
the other algebraic invariants of symplectic field theory for M provide natural generalizations
of symplectic Floer homology. For symplectically aspherical M and Hamiltonian we study
the moduli spaces of rational curves and prove a transversality result, which does not need the
polyfold theory by Hofer, Wysocki and Zehnder. We use our result to compute the full contact
homology of M Š S 1 M.
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1. Introduction and main results

1.1. Symplectic field theory in the Floer case. This paper is concerned with
symplectic field theory in the Floer case. Symplectic field theory SFT) is a very large
project designed to describe in a unified way the theory of holomorphic curves in
symplectic and contact topology. To be more precise, it approaches Gromov–Witten
theory in the spirit of a topological quantum field theory by counting holomorphic
curves in cylinders over contact manifolds and symplectic cobordisms between them.
It was initiated by Eliashberg, Givental and Hofer in their paper [EGH] and since then
has found many striking applications in symplectic geometry and beyond. While most

of the current applications lie in finding invariants for contact manifolds, there exists
a generalized geometric setup for symplectic field theory, which contains contact
manifolds as special case.

Following [BEHWZ] and [CM2] a Hamiltonian structure on a closed .2m 1/-
dimensional manifold V is a closed two-form on V which is maximally
nondegenerate in the sense that ker D fv 2 TV W v; / D 0g is a one-dimensional
distribution. Note that here we and [CM2]) differ slightly from [EKP]. The Hamiltonian

structure is required to be stable in the sense that there exists a one-form on
V such that ker ker d and v/ ¤ 0 for all v 2 ker f0g. Any stable Hamiltonian

structure .!; / defines a symplectic hyperplane distribution D ker ; /
where is the restriction of and a vector field R on V by requiring R 2 ker and

R/ D 1 which is called the Reeb vector field of the stable Hamiltonian structure.

Examples for closed manifolds V with a stable Hamiltonian structure .!; / are
contactmanifolds, circle bundles and mapping tori ([BEHWZ], [CM2]). For this note
that when is a contact form on V then it is easy to check that WD d ; / is a

stable Hamiltonian structure and the symplectic hyperplane distribution agrees with
the contact structure. For the other two cases, let M; !/ be a symplectic manifold.
Then any principal circle bundle S1 V M and any symplectic mapping torus

M V S1, i.e., V D M D R M=f.t; p/ t C 1; p//g for 2
Symp.M; !/ carries also a stable Hamiltonian structure. For the circle bundle the
Hamiltonian structure is given by the pullback under the bundle projection and
the one-form is given by any S1-connection form. On the other hand, the stable

Hamiltonianstructure on the mapping torus V D M is given by lifting the symplectic
form to 2 2.M / via the natural flat connection TV D TS1 °TM and setting

D dt for the natural S1-coordinate t on M While in the mapping torus case

is always integrable, in the circle bundle case the hyperplane distribution may be
integrable or non-integrable, even contact.

Symplectic field theory assigns algebraic invariants to closed manifolds V with a

stable Hamiltonian structure. The invariants are defined by counting J -holomorphic
curves in R V with finite energy, where the underlying closed Riemann surfaces
are explicitly allowed to have punctures, i.e., single points are removed. The almost
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complex structure J on the cylindrical manifold R V is required to be cylindrical in
the sense that it isR-independent, links the two natural vector fields onR V namely
the Reeb vector field R and the R-direction @s, by J@s D R, and turns the symplectic
hyperplane distribution on V into a complex subbundle of TV D TV \ JT V
It follows that a cylindrical almost complex structure J on R V is determined by
its restriction J to TV which is required to be -compatible in the sense that

; J / defines a metric on Note that in [CM2] such almost complex structures

J are called compatible with the stable Hamiltonian structure and that the set of these

almost complex structures is non-empty and contractible.
While the punctured curves in symplectic field theory may have arbitrary genus

and arbitrary numbers of positive and negative punctures, it is shown in [EGH] that

there exist algebraic invariants counting only special types of curves: While in
rational symplectic field theory one counts punctured curves with genus zero, contact
homology is defined by further restricting to punctured spheres with only one positive
puncture. Further restricting to spheres with both just one negative and one positive
puncture, i.e., cylinders, the resulting algebraic invariant is called cylindrical contact
homology. Note however that contact homology and cylindrical contact homology
are not always defined. In order to prove the well-definedness of cylindrical) contact

homology it however suffices to show that there are no punctured holomorphic
curves where all punctures are negative or all punctures are positive). While the
existence of holomorphic curves without positive punctures can be excluded for all
contact manifolds using the maximum principle, which shows that contact homology
is well-defined for all contact manifolds, it can be seen from homological reasons

that for mapping toriM there cannot exist holomorphic curves in R M carrying
just one type of punctures, which shows that in this case both contact homology and
cylindrical contact homology are defined.

Symplectic field theory hence provides a wealth of invariants. However, almost
all computations performed so far only use the simplest one, cylindrical contact
homology: While cylindrical contact homology is computed e.g. for subcritical
Stein-fillable contact manifolds ([Y1]), Brieskorn varieties ([K]) and toroidal
threemanifolds ([BC]), computations of the higher invariants are performed so far only
for overtwisted contact manifolds in [Y2] and sketched in [EGH] for prequantization
spaces and in [CL] for unit cotangent bundle of tori.

1.2. Main theorem and outline of the proof. While it can be seen that the cylindrical

contact homology for mapping tori M agrees with the Floer homology of
the powers of i.e., the subcomplex for the period T 2 N agrees with the Floer
homology of T the other algebraic invariants of symplectic field theory, in particular,

the full contact homology, provide natural generalizations of symplectic Floer
homology. While Floer homology for Hamiltonian symplectomorphisms over a suitable

coefficient ring is known to be isomorphic to the tensor product of the singular
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homology with rational coefficients of the underlying symplectic manifold with the
graded group algebra QOEH2.M/ generated by H2.M/,

QOEH2.M/ D ° Pq.A/eA
W A 2 H2.M/;q.A/ 2 Q ; degeA D hc1.TM/; Ai;

the case of arbitrary symplectomorphisms is much more complicated, see [CC] and

the references therein. So we restrict our attention to the Hamiltonian case, where the
symplectomorphism is Hamiltonian, i.e., the time-one map of the symplectic flow
of a HamiltonianH W

S1 M R. In thiscase the Hamiltonian flow H provides us

with a natural diffeomorphismM Š S1 M, so that we can replaceM by S1 M
equipped with the pullback stable Hamiltonian structure H; H/ on S1 M given

by!H D CdH^dt, H D dt with symplecticbundle H D TM and Reeb vector
fieldRH D @tCXH whereXH is thesymplecticgradientofHtt t D H.t; / In[EKP]
this is also called the Floer case. Furthermore R M ; J/ can be identified with
R S1 M;JH/ equipped with the pullback cylindrical almost complex structure,

which is nonstandard in the sense that the splitting T.R S1 M/ D R2°TM is
not JH-complex. Let HC M ; J/ denote the contact homology of the symplectic
mapping torus M with chosen cylindrical almost complex structure J on R M

Main Theorem 1. Let M;!/ be a closed symplectic manifold, which is symplectically

aspherical, hOE! ; 2.M/i D 0, and let
W M M be a Hamiltonian

symplectomorphism. Then we have

HC M ; J/ Š S MNH 2.M; Q/ QOEH2.M/ ;

where S is the graded symmetric algebra functor.

For the proof we observe that the cylindrical almost complex structure JH on

R S1 M is specified by the choice of an S1-family of almost complex structures

Jt on M and an S1-dependent Hamiltonian H W
S1 M R. In order to

get an S1-symmetry on moduli spaces of curves with three or more punctures, we
restrict ourselves to almost complex structures Jt and Hamiltonians Ht which are

independent of t 2 S1, so that only holomorphic cylinders need to be counted for the
differential in contact homology.

We achieve transversality for all moduli spaces by considering domain-dependent

Hamiltonian perturbations. This means that, for defining the Cauchy–Riemann
operator for curves, we allow the Hamiltonian to depend explicitly on points on the
punctured sphere underlying the curve whenever the punctured sphere is stable, i.e.,
there are no nontrivial automorphisms, where we follow the ideas in [CM1]. Note
however that in contrast to the Gromov–Witten case we now have to make coherent
choices for the different moduli spaces simultaneously, i.e., the different Hamiltonian
perturbations must be compatiblewith gluing of curves insymplectic field theory. For
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the cylindrical moduli spaces the Hamiltonian perturbation is domain-independent,
and it isknown from Floer theory that in general we mustallowH todepend explicitly
on t 2 S1 to achieve nondegeneracy of the periodic orbits and transversality for the
moduli spaces of Floer trajectories. However, the gluing compatibility requires that
also the Hamiltonian perturbation for the cylindrical moduli spaces is independent

of t 2 S1. We solve this problem by considering Hamiltonians H, which are so

small in the C2-norm that all orbits are critical points of H and all cylinders between
these orbits correspond to gradient flow lines between the underlying critical points.
Note however that we cannot achieve this with a single Hamiltonian function, but
have to rescale the function depending on the period T 2 N, which in turn implies
that we have to compute the contact homology using an infinite sequence of different
Hamiltonian functions.

Observe that the closed orbits of the Reeb vector fieldRH on S1 M have integer
periods, where the set of closed orbits of period T 2 N is naturally identified with the
T -periodic orbits of XH on M. It follows that the chain complex A; @/ for contact
homology naturally splits, A D LT2N

AT whereAT is generatedby allmonomials

q.x1;T1/ : :: q.xn;Tn/, with Ti-periodic orbits xi;Ti/ and T1 C C Tn D T and it is
easily seen from homologicalreasons that this splitting is respected by the differential
@. Furthermore, given two differentHamiltonian functionsH1; H2 W

S1 M Rthe
corresponding chain map ˆW A1; @1/ A2; @2/, defined as in [EGH] by counting
holomorphic curves in R S1 M equipped with a non-cylindrical almost complex

structure JHz which itself can be defined using a homotopy Hz W R S1 M R
from H1 to H2, also respects the splittings A1 D LT2N

AT1, A2 D LT 2N
AT2

Let TN 2 N be a sequence of maximal) periods with TN TNC1 and

limN!1 TN D1and let HN W S1 M R, N 2 N be a sequence of Hamiltonians

with corresponding chain complexes AN ; @N /, N 2 N. Assume that for every

N 2 N we have defined a chain map ˆN W AN; @N/ ANC1;@NC1/ using a

homotopy HzN W R S1 M R interpolating between HN and HNC1, which by
the above arguments restricts to a map from ATN to AT

NC1
for every T 2 N. Defining

S 1 M; JHN/ D H A TNHC TN
N ; @N/ D M

T TN

H AT
N; @N/

we obtain a directed system CN;ˆN;M/ with CN D HC TN S1 M; JHN/ and

ˆN;M D ˆN BˆNC1 B : : : BˆM 1 BˆM for N M. Setting TN D 2N we prove
the main result by showing that for every S1-independent Hamiltonian H W M R,
which is sufficiently small in the C2-norm and Morse, there is an isomorphism

lim
N!1

HC 2N S1 M; J H=2N/ Š S MN H 2.M;Q/ QOEH2.M/ :

This paper is organized as follows.
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While we prove in2.1 all the fundamentalresultsaboutpseudoholomorphic curves
in Hamiltonian mapping tori, Section 2.2 is devoted to explaining the central ideas

of the proof the main theorem, namely how we get an S1-symmetry on all moduli
spaces of domain-stable curves, but still have nondegeneracy for the closed orbits
and transversality for all moduli spaces. We collect all the important results about the
moduli spaces in Theorem 2.6. After recalling thedefinition of the Deligne–Mumford
space of stable punctured spheres in 3.1, we define the underlying domain-dependent
Hamiltonian perturbations in 3.2 and prove in 3.3 that the construction is compatible
with the SFT compactness theorem. After describing in detail the necessary Banach

manifold setup for our Fredholm problems in 4.1, we prove in 4.2 the fundamental
transversality result for the Cauchy–Riemann operator. Since all our results only
hold up to a maximal period for the asymptotic orbits, i.e., we have to rescale our
Hamiltonian perturbation during the computation of contact homology in Section 6,
we generalize all our previous results to homotopies of Hamiltonian perturbations
in 5.1 and 5.2. After describing the chain complex underlying contact homology in
6.1, we prove the main theorem using our previous results about moduli spaces of
holomorphic curves in R S1 M.
Acknowledgements. This research was supported by the German Research
Foundation DFG). The author thanks U. Frauenfelder, M. Hutchings and K. Mohnke for
useful conversations and their interest in his work. Special thanks finally go to my
advisor Kai Cieliebak and to Dietmar Salamon, who gave me the chance to stay at

ETH Zurich for the winter term 2006/07, for their support. Finally thanks go to the
referee for his valuable comments.

2. Moduli spaces

2.1. Holomorphic curves in R S1 M. Let M; !/ be a closed symplectic
manifold and let be a symplectomorphism on it. As already explained in the
introduction, the corresponding mapping torusM D R M=f.t; p/ tC1; p//g
carries a natural stable Hamiltonian structure .!; / given by lifting the symplectic
form to a two-form onM via the flat connection TM D TS1°TM and setting

D dt. It follows that thecorrespondingsymplectic vector bundle D ker isgiven
by TM and the Reeb vector field R agrees with the S1-direction @t on M In this
paper we restrict ourselves to thecase where hOE! ; 2.M/i D 0 and is Hamiltonian,
i.e., the time-one map of the flow of a Hamiltonian H W

S1 M R. In this case

observe that the Hamiltonian flow H provides us with the natural diffeomorphism

ˆ W S1 M Š M ; t; p/ 7! t; H t; p//;
so that we can replaceM by S1 M equipped with the pullback stable Hamiltonian
structure.
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Proposition 2.1. The pullback stable Hamiltonian structure H; H/ on S1 M
is given by

H
D C dH ^dt; H

D dt

with symplectic bundle H and Reeb vector field RH given by

H
D TM; RH

D @t C XH
t ;

where XHt is the symplectic gradient of Ht D H.t; /

Proof. Using

dˆ D .1; XH
t dt C d H

t /W TS1 °TM TS1 °TM

we compute for v1 D v11; v12/; v2 D v21; v22/ 2 TS1 °TM,

H v1; v2/ D dˆ v1/; dˆ v2//

D XH
t dt/.v11/ C d H

t v12/; XH
t dt/.v21/ C d H

t v22//

D XH
t ; XH

t /dt v11/dt v21/ C d H
t v12/;d H

t v22//

C XH
t ; d H

t v22//dt v11/ C d H
t v12/;XH

t /dt v21/

D v12; v22/ C d H
t v12/; XH

t /dt v21/

d H
t v22/; XH

t /dt v11/

D v1; v2/ C dH ^ dt/.v1; v2/

and H
D B dˆ D dt. On the other hand, it directly follows that H D TM,

while RH D @t XH spans the kernel oft H,

H ;RH / D ; @ t XH
t / C dH dt.@t C XH

t / dH.@ t C XH
t / dt

D ; XH
t / C dH D 0

t / D 1.with H.RH/ D dt.@ t XH

As in the introductionwe consideran almostcomplexstructure J on thecylindrical
manifold R S1 M, which is required to be cylindrical in the sense that it is
Rindependent, links the Reeb vector fieldRH and theR-direction @s, by J@s D RH D
@ t CXHt and turns the symplectic hyperplane distribution H

D TM into a complex
subbundle of T.S1 M/. It follows that J on R S1 M is determined by its
restriction to H

D TM, which is required to be H -compatible, so that J is
determined by the S1-dependent Hamiltonian Ht and an S1-family of !-compatible
almost complex structures Jt on the symplectic manifold M; !/.

Let us recall the definition of moduli spaces of holomorphic curves studied in
rational SFT in the general setup. Let V;!; / be a closed manifold with stable
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Hamiltonian structure with symplectic hyperplane distribution and Reeb vector
field R and let J be a compatible cylindrical almost complex structure on R V
Let PC; P be two ordered sets of closed orbits of the Reeb vector field R on V

i.e.,
W R V t C T / D t/, P D R, where T > 0 denotes the period

of Then the parametrized) moduli space M0.V IPC; P ; J/ consists of tuples

F; zk //, where fz1 ;: : : ; zn g are two disjoint ordered sets of points onCP1, which

are called positive and negative punctures, respectively. The map F W SP R V
starting from the punctured Riemann surface SP D CP1 f.zk /g is required to satisfy
the Cauchy–Riemann equation

N@

J F D dF C J.F/ dF i D 0

with the complex structure i on CP1. Assuming we have chosen cylindrical coordinates

k W R S1 SP around each puncture zk in the sense that k 1; t/ D
zk

the map F is additionally required to show for all k D 1; : : :; n the asymptotic
behaviour

lim
s! 1

F B k /.s; t C t0/ D 1; k Tk t//
with some t0 2 S1 and the orbits k 2 P where Tk > 0 denotes period of k
Observe that the group Aut.CP1/ of Möbius transformations acts on elements in
M0.V IPC; P ; J/ in an obvious way,

' F; zk // D F B ' 1; '.zk //; ' 2 Aut.CP1 /;
and we obtain the moduli spaceM.V IPC; P ; J/ studied in symplectic field theory
by dividing out this action.

It remains to identify the occuring objects in our special case. First, one immediately

verifies that all closed orbits of the vector field RH D @t XH on S1t M
are of the form

t/ D t C t0; x.t//;
and therefore have natural numbers T 2 N, i.e., the winding number around the S1-
factor, as periods. Since we study closed Reeb orbits up to reparametrization, we can
set t0 D 0, so that can be identified with x W R=T Z M, which is a T -periodic
orbit of the Hamiltonian vector field,

Px.t/ D XH
t x.t //:

Hence we will in the following write D x; T /, where T 2 N is the period and x
is a T -periodic orbit of the Hamiltonian H. We denote the set of T -periodic orbits
of the Reeb vector field RH on S1 M by P.H; T /.

For the moduli spaces of curves observe that in R S1 M we can naturally
write the holomorphic map F as a product,

F D h; u/W
SP R S1/ M:
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Proposition 2.2. F W
SP R S1 M is J -holomorphic precisely when h D

h1;h2/W SP R S1 is holomorphic and uW SP M satisfies the h-dependent
perturbed Cauchy–Riemann equation of Floer type,

N@J;H;hu D ƒ0;1 du C XH h2;u/ dh2/

D du C XH h2;u/ dh2 C J.h2; u/ du C XH h2; u/ dh2/ i:

Proof. Observing that J.t;p/ W T.R S1/°TM T.R S1/°TM is given by

t; p/ Jt.
p/!J.t;p/ D

i 0

with t; p/ D XHt p/ ds C Jt.p/XHt p/ dt we compute

dh; du/ C J.h; u/ dh;du/ i D dh C i dh i;
du C J.h2; u/ du XH h2; u/ dh1 C J.h2; u/XH h2; u/ dh2/ i/

D N@h;du XH h2;u/ dh1 i C J.h2; u/ du C XH h2; u/ dh2/ i/:
Finally observe that dh1 i D dh2 if N@h D 0.

Recalling that our orbit sets are given by P D f.x1 ; T1 /; : : : ; x
n ; T

n /g, we
use the rigidity of holomorphic maps to prove the following statement about the map
component hW SP R S1. Let T D T1 C C Tn

denote the total period
above and below, respectively.

Lemma 2.3. The map h D h1;h2/ exists if and only if T C D T and is unique up
a shift s0; t0/ 2 R S1,

h.z/ D h0 z/ C s0; t0/

for some fixed map h0 D h01; h02/. In particular, every holomorphic cylinder has a
positive and a negative puncture, there are no holomorphic planes and all holomorphic

spheres are constant.

Proof. The asymptotic behavior of the map F near the punctures implies that

h B k.s; t C t0/ s! 1 1;Tkt/

with some t0 2 S1. Identifying R S1 Š CP1 f0; 1g, it follows that h extends
to a meromorphic function h on CP1 with zC1 ; : : : ; zC

nC
poles of order T C

1 ; : : : ;T C
nC

and z1 ; : : :; zn zeros of order T1 ; : : : ; Tn Since the zeroth Picard group of CP1
is trivial, i.e., every divisor of degree zero is a principal divisor, we get that such
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meromorphic functions exist precisely when T C D T On the other hand it
follows from Liouville’s theorem that they are uniquely determined up to a nonzero
multiplicative factor, i.e., h D a h0 with a 2 C Š R S1 for some fixed
h0 W CP1 CP1. For every JH-holomorphic sphere h; u/ observe that h is
constant, h D s0;t0/, and therefore u is a Jt0-holomorphic sphere inM, which must be
constant by hOE! ; 2.M/i D 0.

Note that the lemma also holds when is no longer Hamiltonian by defining

h D B F using the holomorphic bundle projection
W R M R S1.

It follows that we only have to study punctured JH-holomorphic curves

h; u/ W SP R S1 M, SP D CP1 f.zk /g with two or more punctures, where it
remains to understand the map u. Note that by Proposition2.2 theperturbed Cauchy–
Riemann equation for u depends on the S1-component h2 D h02 C t0 of the map h.
Starting with the case of two punctures, we make precise the well-known connection

between symplectic Floer homology and symplectic field theory for Hamiltonian
mapping tori.

Proposition 2.4. The JH-holomorphic cylinders connecting the RH-orbits xC;T /
and x ; T / inR S1 M correspond to the Floer connectingorbits inM between the
one-periodic orbits xC.T / and x T / of the Hamiltonian HT t; / D T H.T t; /
and the family JT t; / D J.T t; / of !-compatible almost complex structures.

Proof. When n D 2, i.e., z D z ; zC/, we find an automorphism ' 2 Aut.CP1/
with '.z / D 0, '.zC/ D1. Since in the moduli space two elements are considered
equal when they agree up to an automorphism of the domain, we can assume that

z D .0; 1/. It follows from Lemma 2.3. that hW CP1 f0; 1g Š R S1 R S1
is of the form

h.s; t/ D T s C s0;T t C t0/

with T D T C C T We can assume that h is given by h.s; t/ D T s;T t/ after
composing with the automorphism'.s; t/ D s s0=T; t t0=T / ofR S1. Nowthe
claim follows from the fact that the Cauchy–Riemann equation for uW R S1 M
reads as

N@J;Hu @s D @su C J.T t; u/ @tu C T XH T t; u// D 0;

with T XH D XT H.

2.2. How to achieve transversality with S1-symmetry. For understanding the
curves with more than two punctures, observe that in these cases the underlying
punctured Riemann spheres SP are stable, so that every automorphism ' of SP

preserving the ordering of the punctures is the identity. While this implies that different
maps h D h0 C.s0;t0/ give different elements in the moduli space, the main problem
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is that the solutions for u moreover depend on the S1-component h2 D h02 C t0 of
the chosen map h, that is, the S1-parameter t0. Instead of studying how the solution
spaces for u vary with t0 2 S1, it is natural to restrict to special situations when the
solution spaces are t0-independent. Moreover, when this can be arranged in a way
that all asymptotic orbits are nondegenerate and we can achieve transversality for
the moduli spaces, we can use the resulting S1-symmetry on the moduli spaces to
show that they do not contribute to the algebraic invariants in rational symplectic field
theory. It is easily seen that the Cauchy–Riemann equation is independent of t0 2 S1
when both the family ofalmost complex structures J.t; / and the Hamiltonian H.t; /
are independent of t 2 S1. Hence for the following we will always assume that

J.t; / J; H.t; / H:

Nondegeneracy of the periodic orbits. It is well-known from symplectic Floer
homology that we can achieve that all one-periodic orbits x;1/ 2 P.S1 M; H/ are
nondegenerate by choosingH to be a time-independent Morse functionH

W M R
with a sufficiently small C2-norm, so that, in particular, the only one-periodic orbits
of H are the critical points of H. While this sounds promising to solve the first of
our two problems, note that in contrast to symplectic Floer homology we do not only
study curves which are asymptotically cylindrical to one-periodic orbits x;1/ but
allow periodic orbits x; T / of arbitrary period T 2 N. Now the problem is that the

T -periodic orbits of H are in natural correspondence with one-periodic orbits of the
Hamiltonian T H, while T H need no longer be C2-small enough. In order to solve
this problem, we fix a maximal period T D 2N and replace the original Hamiltonian

H by H=2N so that all orbits up to the maximal period 2N are nondegenerate, in
particular, critical points of H=2N i.e., of H.

Transversality for the Cauchy–Riemann operator. So it remains the problem of
transversality. Although the definition of the algebraic invariants of symplectic field
theory suggests that all we have to do is counting true JH-holomorphic curves in
R S1 M, it is implicit in the definition of all pseudoholomorphiccurve theories that

before counting the geometric data has tobe perturbed in such a way that the Cauchy–
Riemann operator becomes transversal to the zero section in a suitable Banach space
bundle over a suitable Banach manifold of maps. It is the main problem of symplectic
field theory, as well as Gromov–Witten theory and symplectic Floer homology for
general symplectic manifolds, that transversality for all moduli spaces cannot be
achieved even for generic choices for JH. In fact the problem already occurs for
the trivial curves, i.e., trivial examples of curves in symplectic field theory, see [F].
In order to solve these problems virtual moduli cycle techniques were invented, see

[LiuT], [LT], [FO]; furthermore they were the starting point for the polyfold project
by Hofer, Wysocki and Zehnder, see [H] and the references therein. In order to
solve the transversality problem in our S1-symmetric special case, we combine the
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approach in [CM1] for achieving transversality in Gromov–Witten theory with the
well-known connection between symplectic Floer homology and Morse homology
in [SZ] as follows.

Case of domain-stable curves n 3). It is well-known, see e.g. [Sch], that
transversality in Floer homology and Gromov–Witten theory can be achieved by
allowing the almost complex structure on the symplectic manifold M;!/ to depend

on points on the punctured Riemann surface underlying the holomorphic curves, i.e.,
introducing domain-dependent almost complex structures. In this paper we fix the
S1-independent almost complex structure J and introduce domain-dependent Hamiltonian

perturbations H, which however are still S1-independent, where we show in
Section 4 that the resulting class of domain-dependent cylindrical almost complex
structures JH on R S1 M is still large enough to achieve transversality for all
moduli spaces of curves with three or more punctures. Here we let H rather than J
depend on the underlying punctured spheres, so that we achieve transversality also
for the trivial curves, i.e., the branched covers of trivial cylinders. Note that in order
to make the latter transversal, it is clearly necessary to make the stable Hamiltonian

structure on S1 M domain-dependent. In order to make the choices for the
domain-dependent Hamiltonian perturbationsH compatible with gluing of curves in
symplectic field theory, the perturbations must vary smoothly with the position of the
punctures z D z1 ; : :: ; z

n
/

H D Hz W CP 1
fz1 ; : : :; z

n g/ M R:

In order to guarantee that finite energy solutions are still asymptotically cylindrical
over periodic orbits of the original domain-independent Hamiltonian H, we require
that Hz agrees with H over the cylindrical neighborhoods of the punctures.
Furthermore, in order to ensure that the automorphism group of CP1 still acts on the
moduli space, they must satisfy H'.z/ D ' Hz D Hz B ' 1. When the number of
punctures is greater or equal than three, i.e., the punctured Riemann sphere is stable,
it follows that Hz should depend only on the class OEz 2 M0;n in the moduli space of
n-punctured Riemann spheres.

Outline of the construction of domain-dependent Hamiltonians. For the
construction of such domain-dependent structures we follow the ideas in [CM1], where
for precise definitions we refer to the upcoming section on domain-dependent Hamiltonian

perturbations. For n 3 denote by M0;n the moduli space of stable genus
zero curves modelled over the n-labelled tree with one vertex, i.e., the moduli space

of Riemann spheres with n marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne–Mumford
space Mx0;n D `T MT which, equipped with the Gromov topology, provides the
compactification of the moduli space M0;n. It is a crucial observation that we have
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a canonical projection W Mx0;nC1 Mx0;n by forgetting the nC1/
st marked point

and stabilizing. Note that to any nodal curve z we can naturally associate a nodal
Riemann surface †z D` 2T

S fz z g with punctures zk/, obtained by gluing
a collection of Riemann spheres S Š CP1 at the connecting nodes z 2 CP1. It
then follows that the map

W Mx0;nC1 Mx0;n is holomorphic and the fibre 1.OEz /
is naturally biholomorphic to †z. We then choose for every n 3 smooth maps

H.n/
W Mx0;nC1 C1.M/ and for OEz 2 Mx0;n then define Hz to be the restriction

ofH.n/ to the fibre 1.OEz / Š †z. In particular, for z 2 M0;n Mx0;n we get from

†z Š CP1 a map

Hz D H n/
j 1.OEz / W CP1 C1.M/:

Assuming thatH.2/; : :: ; H.n 1/ arealready chosen, the compatibility for the
domaindependent Hamiltonians under gluing of the underlying Riemann surfaces is
ensured by specifying H.n/ on the boundary @M0;nC1 D Mx0;nC1 M0;nC1

using

H.2/; : : : ; H.n 1/. For this observe that @M0;nC1
consists of the fibres 1.OEz / Š

†z over OEz 2 @M0;n D Mx0;n M0;n and of the punctures z1; : : : ; zn 2 CP1 D †z

in the fibres over OEz 2 M0;n. In order to see that we can indeed define H.n/ inductively

we crucially use that there are no holomorphic planes and spheres. Assuming
we have determined H.n/ for n 2, we organize all maps into a map

H W a
n

M0;nC1 C1.M/:

Note that for n D 2 the spaceM0;nC1 just consists of a single point.

Case of cylinders n D 2). For curves with two or less punctures, the compatibility
with the action of Aut.CP1/ implies that Hz must be independent of points on the
domain, i.e., just a function on M. On the other hand it is known from symplectic
Floer homology that for fixed almost complex structure J it is important to let the
Hamiltonian explicitly be S1-dependent to have transversality for generic choices,
which seems to destroy our hopes for computing the symplectic field theory of R
S1 M with S1-independent H and J To overcome this problem, we remind
ourselves that we already assume H to be so small such that all one-period orbits are

nondegenerate, in particular, critical points ofH. Furthermore by Proposition 2.4 we
know that the JH-holomorphic cylinders naturally correspond to Floer connecting
orbits. The important observation is now to by choosingH with small C2-norm, e.g.
byrescaling, we can achieve that all Floer trajectories u are indeed Morse trajectories,
i.e., gradient flow lines u.s; t/ u.s/ of H between the critical points x and xC
withrespect to the metric ; J /onM. When thepair H; ; J // is Morse–Smale,
the linearization Fu of the gradient flow operator is surjective, and it is shown in [SZ]
that this indeed suffices to show that the linearization Du of the Cauchy–Riemann
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operator is surjective as well. More precisely, we use the following lemma, which is
proven in [SZ].

Lemma 2.5. Let H;J / be a pair of a Hamiltonian H and an almost complex structure

J on a closed symplectic manifold with hOE! ; 2.M/i D 0 so that H; ;J //
is Morse–Smale. Then the following holds:

If > 0 is sufficiently small, all finite energy solutions uW R S1 M of
N@J; Hu D @su C J.u/.@tu C X H u// D 0 are independent of t 2 S1.

In this case, the linearization Du of N@J; H is onto at any solution uW R S1
M.

Recall that we fixed a maximal period T D 2N and let P.H=2N ; 2N / denote

the set of periodic orbits of the Reeb vector field RH=2N for the Hamiltonian H=2N
with period less or equal than 2N We collect our results about moduli spaces of
holomorphic curves in R S1 M in the following

Theorem 2.6. Let M; !/ be a closed symplectic manifold which is symplectically

aspherical, equipped with an !-compatible almost complex structure J and

H W M R so that Lemma 2.5 is satisfied with D 1. Further assume that for any
ordered set of punctures z D z1 ; : : : ; z

n / containing three or more points we have

constructed a domain-dependent HamiltonianperturbationHz W CP1 fzg/ M
R of H with the properties outlined above. Then, depending on the number of punctures

n we have the following result about the moduli spaces of JH-holomorphic
curves in R S1 M:

n D 0: All holomorphic spheres are constant.

n D 1: Holomorphic planes do not exist.

n D 2: For T 2N the automorphism group Aut.CP1/ acts on the

parametrized moduli spaceM0.S1 M; xC; T /; x ; T /; J H=2N / of holomorphic
cylinders with constant finite isotropy group Z=T Z and the quotient can be
naturally identified with the space of gradient flow lines of H with respect to
the metric ;J / on M between the critical points xC and x
n 3: For PC; P P.H=2N ; 2N / the action of Aut.CP1/ on the
parametrized moduli space is free. There still remains a free S1-action on the
moduli space after dividing out the R-translation, where the quotient is given
by

f.u; z/ W u W CP1
fzg M W 1/; 2/g= Aut.CP1/

with

1/: duCX
H= 2N
z z; u/ dh0

2CJ.u/ duCX
H=2N
z z; u/ dh02/ i D 0;

2/: u B k s;t/ s! 1 xk :
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Proof. Observe that all statements rely on Proposition 2.2 and Lemma 2.3. For

n D 2 we additionally use Proposition 2.4 and Lemma 2.5 and remark that the
critical points and gradient flow lines of H=2N are naturally identified with those of
H. For the statement about the isotropy groups observe that for h.s; t/ D T s;T t/
and u.s;t/ D u.s/ we have

h;u/ D h B '; u B '/ '.s; t/ D s; t C
k
T

; k2 Z=T Z:

For the case n 3 observe that the action of Aut.CP1/ is already free on the
underlying set of punctures.

3. Domain-dependent Hamiltonians

Based on the ideas in [CM1] for achieving transversality in Gromov–Witten theory,
we describe in this section a method to define domain-dependent Hamiltonian
perturbations. In the following we drop the superscript for the punctures, z D zk/,
since for the assignment of Hamiltonians we do not distinguish between positive and
negative punctures.

3.1. Deligne–Mumford space. We start with the following definition.

Definition 3.1. A n-labelled tree is a triple T;E;ƒ/, where T; E/ is a tree with
the set of vertices T and the edge relation E T T The set ƒ D ƒ / 2T

is a

partition of the index set I D f1; : : : ; ng D Sƒ We write E if ; / 2 E.

A tree is called stable if for each 2 T we have n D ]ƒ C ]f W E g 3.
For n 3 a n-labelled tree can be stabilized in a canonical way, see [CM1], [MDSa],
where one first deletes vertices with n < 3to obtain st.T / T and then modifies

E; ƒ in the obvious way.

Definition 3.2. A nodal curve of genus zero modelled over T D T; E; ƒ/ is a tuple

z D z / E ; zk// of special points z ;zk 2 CP1 such that for each 2 T the
special points in Z D fz W E g[ fzk W k 2 ƒ g are pairwise distinct.

To any nodal curve z we can naturally associate a nodal Riemann surface †z D

` 2T
S fz z g with punctures zk/, obtained by gluing a collection of

Riemann spheres S Š CP1 at the points z 2 CP1. A nodal curve z is called
stable if the underlying tree is stable, i.e., every sphere S carries at least three special
points. Stabilization of trees immediately leads to a canonical stabilization z st.z/
of the corresponding nodal curve.
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Denote byMzT CP1/E CP1/n the space ofall nodal curves of genus zero)
modelled over the tree T D T; E; ƒ/. An isomorphism between nodal curves z, z0

modelled over the same tree is a tuple D / 2T
with 2 Aut.CP1/ so that

z/ D z0, i.e., z0 D z / and z0k D zk/ if k 2 ƒ Observe that induces
a biholomorphism

W †z †z0 Let GT denote the group of biholomorphisms.

For stable T the action of GT on MzT is free and the quotient MT D MzT GT is a

finite-dimensional) complex manifold.

Definition 3.3. For n 3 denote by M0;n the moduli space of stable genus zero
curves modelled over the n-labelled tree with one vertex, i.e, the moduli space of
Riemann spheres with n marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne–Mumford
space

Mx0;n Da
T

MT ;

which, equipped with the Gromov topology, provides the compactification of the
moduli spaceM0;n of punctured Riemann spheres.

By a result of Knudsen see [CM1], Theorem 2.1) the Deligne–Mumford space

Mx0;n carries thestructure ofa compact complex manifold of complex dimensionn 3.
For each stable n-labelled tree T the space MT Mx0;n is a complex submanifold,
where anyMT ¤ M0;n is of complex codimension at least one inMx0;n.

It is a crucial observation thatwe have acanonical projection W Mx0;nC1 Mx0;n
by forgetting the n C 1/st marked point and stabilizing. The map is holomorphic
and the fibre 1.OEz / is naturally biholomorphic to †z. Moreover, for OEz 2 Mx0;n,

every component S †z is an embedded holomorphic sphere in Mx0;nC1. Note

thatM0;nC1 ¦ 1.M0;n/ as 1.OEz /\M0;nC1 D CP1 f.zk/g for OEz 2 M0;n.

3.2. Definition of coherent Hamiltonian perturbations. With this we are now
ready to describe the algorithm how to find domain-dependent Hamiltonians Hz
on M.

For n D 2 let H.2/
W M R be the domain-independent Hamiltonian from

Theorem 2.6, i.e., such that with the fixed almost complex structure J onM Lemma 2.5
is satisfied with D 1.

For n 3 we choose smooth maps H.n/
W Mx0;nC1 C1.M/. For OEz 2 Mx0;n

we then define Hz to be the restriction of H.n/ to the fibre 1.OEz / Š †z. In
particular, for z 2 M0;n Mx0;n we get from †z Š CP1 a map

Hz D H n/
j 1.OEz / W CP1 C1.M/;

where the biholomorphism †z Š CP1 is fixed by requiring that z1;z2; z3/ are
mapped to .0; 1; 1/. Further let dz D inffd.zk;zl/ W 1 k < l ng denote
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the minimal distance between two marked points with respect to the Fubini–Study
metric on CP1, let Dz.z/ be the ball of radius dz=2 around z 2 CP1 and set

Nz D Dz.z1/ [ [Dz.zn/. Then we choose H.n/ so that Hz agrees with H.2/

on Nz.
The gluing compatibility is ensured by specifying H.n/ on the boundary

@M0;nC1 D Mx0;nC1 M0;nC1, which consists of the fibres 1.OEz / D †z over
OEz 2 @M0;n D Mx0;n M0;n and the points z1; : :: ; zn 2 CP1 D †z in the fibres
over OEz 2 M0;n.

Note that we have already set Hz.zk/ D H.2/. For OEz 2 @M0;n D Mx0;n M0;n
we have Hz D H.n/

j 1.OEz /W †z C1.M/ with †z D ` S and ]T 2.
As before let Z D fz1 ; : : : ;zn g denote the set of special points on S Then we
want that

HzjS D Hz

for z D zk /.
Since n D ]Z < n, this requirement implies that a choice for the map

H.n/
W Mx0;nC1 C1.M/ also fixes the maps H.n0/

W Mx0;n0 C1 C1.M/ for
n0 < n.

If H.k/
W Mx0;kC1 C1.M/, k D 2; : :: ; n 1 are compatible in the above

sense we call them coherent. We show how to find H.n/
W Mx0;nC1 C1.M/ so

that H.2/; : : :; H.n/ are coherent.

Let OEz 2 @M0;n with †z D ` S Under the assumption that Hz was

chosen to agreewithH.2/ on the neighborhoodNz of the special points it follows that

allHz fit together to a smooth assignmentHz
W †z C1.M/. Let T D T; E; ƒ/

be the tree underlying z. Then it follows by the same arguments that the maps H.n /
fit together to a smooth map HT W

1.MxT / C1.M/. Now let
W T T 0 be a

surjective tree homomorphism with ]T 0 2. Then MxT MxT 0 and it follows from
the compatibility ofH.2/; : : :; H.n 1/ thatHT andHT

0

agree on 1.MxT /. Hence
we get a unique assignment on @M0;nC1 D 1.`fMT W ]T 2g/.

After having specified the map H.n/
W Mx0;nC1 C1.M/ on the boundary

@M0;nC1, we choose H.n/ in the interior M0;nC1
so that H.n/ is smooth on the

compactification Mx0;nC1) and H.n/ agrees with H.2/ on Nz 1.OEz / for all
OEz 2 M0;n.

Assuming we have determined H.n/ for n 2, we organize all maps into a map

H W a
n

M0;nC1 C1.M/:

Note that for n D 2 the space M0;nC1
just consists of a single point. A map

H as above, i.e., for which all restrictions H.n/
W M0;nC1 C1.M/, n 2 N are

coherent, is again called coherent.
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Together with the almost complex structure J recall that this defines a
domaindependent cylindrical almost complex structure JH on R S1 M,

J H
W a

n
M0;nC1 Jcyl.R S 1 M/:

With this generalized notion of cylindrical almost complex structure we call, according

to Theorem 2.6, a map F D h; u/W CP1 fzg R S1 M JH-holomorphic
when it satisfies the domain-dependent Cauchy–Riemann equation

N@

J h; u/ D d.h; u/ C J H
z z;h; u/ d.h; u/ i D 0;

which by Proposition 2.2 is equivalent to the set of equations N@h D 0 and

N@J;H.u/ D du C X H
z z; u/ dh0

2 C J.u/ du C XH
z z; u/ dh02/ i D 0

with XHz z; / denoting the symplectic gradient of Hz.z; / W M R.

Since Hz.z; / agrees with the Hamiltonian H.2/
W M R near the punctures, it

follows that any finite-energy solution of the modified perturbed Cauchy–Riemann
equation again converges to a periodic orbit of the Hamiltonian flow of H.2/ as

long as all possible asymptotic orbits are nondegenerate. Observe that it follows
from the definition of Hz that the group of Möbius transformations still acts on
the resulting moduli space of parametrized curves. We show in the section on
transversality that for any given almost complex structure J on M we can find
Hamiltonian perturbations H W `nM0;nC1 C1.M/, so that all moduli spaces

M0.S1 MIPC;P IJ H=2N / are cut out transversally simultaneously for all maximal

periods 2N N 2 N.

3.3. Compatibility with SFT compactness. It remains to show that the notion
of coherent cylindrical almost complex structures JH is actually compatible with
Gromov convergence of JH-holomorphic curves in R S1 M.

Definition 3.4. A JH-holomorphic level ` map h; u; z/ consists of the following
data:

A nodal curve z D ` S 2 Mx0;n and a labeling
W T f1; : : : ; `g, called

levels, such that two components ; 2 T with E have levels differing by
at most one.

JH-holomorphic maps F D h ;u /W S R S1 M satisfying the
equation d.h ;u / C JHz z; h ; u / d.h ; u / i D 0) with the following
behaviour at the nodes.

If / D / C 1 then z is a negative puncture for h ; u / and z a

positive puncture for h ;u / and they are asymptotically cylindrical over the
sameperiodic orbit; else, if / D / then h ; u / z / D h ; u / z /



Vol. 85 2010) Contact homology of Hamiltonian mapping tori 221

With this we can give the definition of Gromov convergence of JH-holomorphic

maps.

Definition 3.5. A sequence of stable JH-holomorphic maps h ;u ;z / converges
to a level ` holomorphic map h; u; z/ if for any 2 T T is the tree underlying z)
there exists a sequence of Möbius transformations 2 Aut.CP1/ such that:

for h; u/ D h1; h2; u/ D h1; ;h2; ;u / 2T there exist sequences si i D
1; : : : ;` with

h1 B C s /
1 h1; ; h2;u / B

1 h2; ;u /

for all 2 T in Cl1oc SP/,

for all k D 1; : : : ;n we have / 1.zk/ zk if k 2 ƒ zk 2 S

and / 1
B z for all E

Note that a level ` holomorphic map h;u; z/ is called stable if for any l 2
f1;: : : ; `g there exists 2 T with / D l and h ; u / is not a trivial cylinder and,
furthermore, if h ; u / is constant then the number of special points n D ]Z 3.
Although any holomorphic map h ; u ; z / 2 M0.S1 MIPC; P I JH/ with
n D ]PC C ]P 3 is stable, the nodal curve z underlying the limit level `
holomorphic map h; u; z/ need not be stable. However, we can use the absence of
holomorphic planes and non-constant) holomorphic spheres in R S1 M to prove
the following lemma about the boundary ofM.S1 MIPC; P I JH/=R.

Lemma 3.6. Assume that the sequence h ;u ; z / 2 M.S1 MIPC;P IJH/
Gromov converges to the level ` holomorphic map h; u; z/. For thenumberofspecial
points n on the component S †z it holds that

n n D ]PC C ]P for any 2 T

if n D n for some 2 T then all other components are cylinders, i.e., carry
precisely two special points.

Proof. We prove thisstatement by iteratively letting circlesonCP1 collapse to obtain
the nodal surface †z.

For increasing the maximal number of special points on spherical components
on a nodal surface we must collapse a special circle with all special points on one

hemisphere. Even after collapsing further circles to nodes there always remains one
component with just one special point a node). Since by hOE! ; 2.M/i D 0 there
are no holomorphic planes and bubbles this cannot happen, which shows the first part
of the statement. For the second part observe that collapsing circles with more than
one special point on each hemisphere leads to two new spherical components which
carry strictly less special points than the original one.



222 O. Fabert CMH

Let n 3. For chosen H W `nM0;nC1 C1.M/ recall that for stable nodal
curves z we defined Hz D Hj 1.OEz / W †z C1.M/. For general nodal curves z
with n 3) we can use the stabilization z st.z/ and the induced map st

W †z
†st.z/ to define

Hz.z/ WD Hst.z/.st.z//; z 2 †z

compare [CM1], Section 4)with correspondingcylindrical almost complexstructure
JHz z/ WD JHst.z/.st.z// 2 Jcyl.S1 M/.

Proposition 3.7. A JH-holomorphic level ` map h; u; z/ is JHz -holomorphic.

Proof. Ifz isstable this follows directly from the construction ofJH as the restriction
of JHz to a component S †z agrees with JHz when z D z1 ; : : :; zn / denotes

the ordered set of special points on S If z is not stable the proposition relies on the
following two observations.

Since there are no spherical components with just one special point all special
points on stable components of †z are preserved under stabilization, i.e., a node

connecting a stable component with an unstable one is not removed but becomes a

marked point on †st.z/.
On the other hand points on a cylindrical component a tree of cylinders) are

mapped understabilization to the node connecting it to a stable component which then
is a marked point for the nodal surface †st.z/). Since JHst.z/

near special points agrees

with complex structure JH.2/
chosen for cylinder we have JHz z/ D JHst.z/.st.z// D

JH.2/
for any z 2 †z lying on a cylindrical component.

In order to show the gluing compatibility we prove the following proposition.

Proposition 3.8. Let h ;u ; z / be asequence of JHz -holomorphic maps converging

to the level ` map h; u; z/. Then h; u;z/ is JHz -holomorphic.

Proof. Recall from the definition of Gromov convergence that for any 2 T the
tree underlying z) there exists a sequence 2 Aut.CP1/ and for any i 2 f1; : : :; `g
sequences si 2 R such that h1 B Cs / h1; and h2; u / B h1; ; u /
Hence it remains to show that

J H
z B J H

z

in C1.S ; Jcyl.S1 M// as 1for all 2 T
Since the projection from the compactified moduli space to the Deligne–Mumford

spaceMx0;n is smooth see Theorem 5.6.6 in [MDSa]), it follows from h ;u ; z /
h; u;z/ that z D st.z / st.z/ inMx0;n.
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For 2 st.T / and z 2 S we have st.z/ D z and it follows that

z// st.z/; z/ 2 Mx0;nC1:z ;

Since JH.n/
W Mx0;nC1 Jcyl.S1 M/ is continuous, we have

JH
z z// J H

st.z/.z/ D J H
z z/

in Jcyl.S1 M/ for all z 2 S The uniform convergence in all derivatives follows

by the same argument using the smoothness of JH.n/

On the other hand, if … st.T / and z 2 S then st.z/ D z 2 st.z/ if E In
Mx0;nC1 we have that

z ; z// z; z /
/ 1.since z// z 2 S and therefore

J H
z z// JH

z z/st.z/.st.z// D J H

4. Transversality

We follow [BM] for the description of the analytic setup of the underlying Fredholm
problem. More precisely, we take from [BM] the definition of the Banach space

bundle over the Banach manifold of maps, which contains the Cauchy–Riemann
operator studied above as a smooth section.

4.1. Banach space bundle andCauchy–Riemann operator. For a chosen coherent
Hamiltonian perturbationH

W `nM0;nC1 C1.M/ and fixedN 2 N, we choose

ordered sets of periodic orbits

P D f.x1 ; T1 /; : : : ; xn ; T
n /g P.H .2/=2N ; 2N /;

where n D nC C n Instead of considering CP1 Š S2 with its unique conformal
structure, we fix punctures z ;0

1 ;: : : ; z ;0
n 2 S2 and let the complex structure on

SP D S2 fz
;0

1 ; : : : ;z ;0
n g vary. Following the constructions in [BM] we see that

the appropriate Banach manifold Bp;d R S1 MI xk ;Tk // for studying the
underlying Fredholm problem is given by the product

Bp;d R S1 M; xk ;Tk // D H 1;p;d
const SP; C/ Bp MI xk // M0;n

withd > 0 andp > 2, whose factors are defined as follows.
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loc SP; M/, whichThe Banach manifold Bp.MI xk // consists of maps u 2 H1;p

converge to the critical points xk 2 Crit.H.2// as z 2 SP approaches the puncture

z ;0
k More precisely, if we fix linear maps ‚k W R2m Txk

M, the curves satisfy

u B s; t/ expk D xk .‚k vk s; t//

for some vk 2 H1;p.R S1; R2m/, where exp denotes the exponential map for
the metric ; J / on M.

const SP; C/ consists of maps h 2 H 1;pThe space H1;p;d
loc SP; C/, for which there exist

s ;k
0 ; t ;k

0 / 2 R2 Š C, such that for all k D 1; : : : ;n the maps

R S1 R2; s; t/ 7! h B k /.s; t/ s
;k

0 ; t ;k
0 // e

d s

const SP; C/ consists of maps differingare in H1;p.R S1; C/. In other words, H1;p;d

asymptotically from a constant one by a function, which converges exponentially fast
to zero.

Finally M0;n denotes, as before, the moduli space of complex structures on the
punctured sphere SP, which clearly is naturally identified with its originally defined
version, the moduli space of Riemann spheres with n punctures.

Here we representM0;n explicitly by finite-dimensional families of almost) complex

structures on SP, so that TjM0;n becomes a finite-dimensional subspace of

fy 2 End.T SP/ W yj C jy D 0g:

Note that in [BM] the authors work with Teichmüller spaces, since the corresponding
moduli spaces of complex structures, obtained by dividing out the mapping class

group, become orbifolds for non-zero genus.
Note that for the identification

Bp;d R S1 M; xk ;Tk // D H
1;p;d

const SP; C/ Bp
MI xk // M0;n

we identify hN 2 H 1;p;d
const SP; C/ with the map hW SP R S1 given by h D h0 C hN,

where h0 denotes an arbitrary fixed holomorphic map h0W
SP R S1 Š CP1

f0;1g, so that z ;0 is a pole/zero of order T Note that we do not use asymptotick k
exponential weights depending on d 2 RC) for the Banach manifoldBp.MI xk //,
since we are dealing with nondegenerate asymptotics.

Let H1;p.u TM/ consist of sections 2 H1;p
loc u TM/, such that

B s;t/ d expk D xk /.‚k vk s; t// ‚k
;0

k s; t /

with ;0
k 2 H1;p.R S1;R2m/ for k D 1; : :: ; n. Note that here we take the

differential of expx W Txk k
M M at ‚ v s; t/ Tk 2 xkk M, which maps the
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tangent space to M at xk
to the tangent space to M at

expxk .‚k vk s; t// D u B k s;t /:

Then the tangent space to Bp;d R S1 MI xk ; Tk // at hN; u;j / is given by

T
hN;u;j /B

p;d R S1
MI xk ; Tk // D H 1;p;d

const SP; C/°H1;p u TM/°TjM0;n:

Consider the bundle ƒ0;1 j;J u TM, whose sections are 0,1)-forms on SP with
values in the pullback bundle u TM equipped with the complex structure J The
space Lp.ƒ0;1 j;J u TM/ is defined similarly as H1;p.u TM/: it consists of
sections 2 Lploc, which asymptotically satisfy

/ s; t/k @s D d expxk /.‚k vk s; t// ‚k
;0

k s; t/

with ;0
k 2 Lp.R S1; R2m/.

Over Bp;d D Bp;d R S1 MI xk ; Tk // consider the Banach space bundle

Ep;d Bp;d with fibre

Ep;d
hN;u;j D Lp;d ƒ0;1 j;i C/ ° Lp ƒ0;1

j;J u TM/:

Assume thatwehave fixeda coherent Hamiltonian perturbationH
W `M0;nC1

C1.M/. Our convention at the beginning of this section, i.e., fixing the punctures
on S2 but letting the almost complex structure j W T SP T SP vary, now leads to a

dependency H.j; z/ D H.n/.j; z/ on the complex structure j on SP and pointsz 2 SP.

For the following exposition letus assumeN D 0 in order to keep the notation simple.
The Cauchy–Riemann operator

N@JH h; u; j / D N@j;JH h; u/ D d.h; u/ C J H j; z;h; u/ d.h; u/ j
is a smooth section in Ep;d Bp;d and naturally splits,

N@j;JH h; u/ D N@h; N@J;Hu/ 2 Lp;d ƒ0;1
j;i C/°Lp ƒ0;1 j;J u TM/:

Here @N D @Nj;i is the standard Cauchy–Riemann operator for maps hW SP; j /
R S1 and N@J;H is the perturbed Cauchy–Riemann operator given by

N@J;H.u/ D du C XH j; z; u/ dh0
2 C J.u/ du C XH j; z; u/ dh0

2/ j;
where again XH.j; z; / denotes the symplectic gradient of H.j; z; / W M R. It
follows that the linearization DhN;u;j of N@

JH at a solution hN; u; j/ splits,

DhN;u;j D DhN;u °Dj;
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with Dj W TjM0;n Ep;d
hN;u;j and

DhN;u D diag.@N; Du/W H1;p;d
const SP; C/ °H1;p u TM/

Lp;d ƒ0;1 j;i C/°Lp ƒ0;1 j;J u TM/;

where

DuW H1;p u TM/ Lp ƒ0;1 j;J u TM/;
Du D r C J.u/ r j Cr J.u/ du j

Cr XH j;z;u/ dh0
2 Cr rH.j; z; u/ dh0

1

is the linearization of the perturbed Cauchy–Riemann operator N@J;H.

4.2. Universal moduli space. Let Hǹ.MIH.2/; : : :; H.n 1// denote the Banach

manifold consisting of C`-maps H.n/
W M0;nC1 C`.M/, which extend as C`-

maps to Mx0;nC1
as induced by H.k/, k D 2;: : : ; n 1 and H.n/.j; / D H.2/ on a

neighborhood N0 SP of the punctures.
Note that it is essential to work in the C`-category since the corresponding space

of C1-structures just inherits the structure of a Fréchet manifold and we later cannot
apply the Sard-Smale theorem.

n.MIH.2/; : : :; H.n 1// at H D H.n/ is given byThe tangent space to H` D H`

n.MIH .2/; : : :; H n 1// D H`THH` n.MI0; : : : ; 0/:

The universal Cauchy–Riemann operator @NJ hN; u;j;H/ WD @N JH h;u; j /extends

to a smooth section in the Banach space bundle EO p;d Bp;d H` with fibre

EO
p;d
hN;u;j;H D Ep;d

hN;u;j D Lp;d ƒ0;1 j;i C/ °Lp ƒ0;1 j;J u TM/:

Letting JH.2/;: : : ; JH.n 1/ denote the domain-dependent cylindricalalmost complex

structures on R S1 M induced by J and H.2/; : : : ; H.n 1/, we define the

universal moduli spaceM.S1 MIPC; P I JH.2/
; : : : ; JH.n 1// as the zero set of

the universal Cauchy–Riemann operator,

M.S1
MIPC; P I J H.k//n 1

kD2/
D f.hN; u; j;H/ 2 Bp;d H`

W
@NJ hN; u;j;H/ D 0g:

Theorem 4.1. For n 3 let H.2/; : : : ; H.n 1/ be fixed. Then for any chosen

P C; P / with ]P C C ]P D n, the universal moduli space

M.S1 MIPC; P I JH.k//n 1

kD2
/
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is transversally cutoutby theuniversalCauchy–Riemann operator N@J W Bp;d H`
EO p;d for d > 0 sufficiently small. In particular, it carries the structure of a C1-
Banach manifold.

The proof relies on the following two lemmata.

Lemma 4.2. The operator N@
W H1;p;d

const SP;C/ Lp;d.ƒ0;1 j;i C/ is onto.

Proof. Fix a splitting

const SP;C/ D H 1;p;d
SP; C/ ° nH1;p;d

where n C1.SP; C/ is a 2n-dimensional space of functions storing the constant
shifts see [BM]). Given a function 'd W

SP R with .'d B k /.s; t/ D e d s,

multiplication with 'd defines isomorphisms

H 1;p;d
SP; C/ Š H1;p

SP; C/;

Lp;d T SP i;i C/ Š Lp T SP i;i C/;

under which N@ corresponds to a perturbed Cauchy–Riemann operator

N@d D N@ C Sd W H1;p
SP; C/ Lp T SP i;i C/:

With the asymptotic behaviour of 'd one computes

S
;k

d t/ D Sd B k /. 1; t/ D diag. d; d/
so that the Conley–Zehnder index for the corresponding paths ‰ ;k

W R Sp.2m/
of symplectic matrices is 1 for d > 0 sufficiently small. Hence the index of
N@

W H1;p;d
const SP; C/ Lp;d T SP i;i C/ is given by

ind N@ D dim n
C ind N@d D 2n C n C 1 .2 n/ D 2;

where the sum in the big bracket is the usual index formula for Cauchy–Riemann
type operators. On the other hand, it follows from Liouville’s theorem that the kernel
of @N consists of the constant functions on SP, so that dim coker @N D 0.

Lemma 4.3. For n 3 the linearization Du;H of N@J u;H/ D N@J;H.u/ is surjective

at any hN;u; j;H/ 2 M.S1 MIPC; P I JH.k//n 1

kD2
/.

Proof. TheoperatorDu;H is the sum of the linearizationDu of the perturbed Cauchy–
Riemann operator N@J;H and the linearization of N@J in the H`-direction,

DH W THH ` Lp ƒ0;1
j;J u TM/;

DHG D XG j; z; u/ dh0
2 C J.u/XG j;z;u/ dh01:
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We show that Du;H is surjective using well-known arguments. Since Du is
Fredholm, the range of Du;H in Lp.ƒ0;1 j;J u TM/ is closed, and it suffices to
prove that the annihilator of the range of Du;H is trivial.

We identify the dual space of Lp.ƒ0;1 j;J u TM/ with Lq.ƒ0;1 j;J u TM/,
1=p C 1=q D 1 using the L2-inner product on sections in ƒ0;1 j;J u TM, which
is defined using the standard hyperbolic metric on SP; j / and the metric ;J /
on M.

Let 2 EO
q;d
hN;u;j;H D Lq;d.ƒ0;1 j;i C/°Lq.ƒ0;1 j;J u TM/ such that

hDu;H ; G/; i D 0

for all 2 H1;p.u TM/ and G 2 THH`. Then surjectivity of Du;H is equivalent
to proving 0.

From hDu ; i D 0 for all 2 H1;p.u TM/, we get that is a weak solution
of the perturbed Cauchy–Riemann equation Du D 0, where Du is the adjoint of
Du. By elliptic regularity, it follows that is smooth and hence a strong solution. By
unique continuation, which is an immediate consequence of the Carleman similarity
principle, it follows that 0 whenever vanishes identically on an open subset

of SP.

On the other hand we have

0 D hDHG; i D
Z

SP
hJ.u/XG j; z; u/ dh0

1 C XG j;z;u/ dh02; z/i dz

D
Z

SP
hrG.j; z; u/ dh0

1 J.u/rG.j;z; u/ dh02; z/i dz

for all G 2 THH`. When z 2 SP is not a branch point of the map h0 W SP R S1,
observe that we can write

z/ D 1.z/ dh0
1 C 2.z/ dh0

2

with 2.z/ C J.u/ 1.z/ D 0, since is a 0,1)-form. It follows that

hrG.j;z; u/ dh0
1 J.u/rG.j; z; u/ dh02; z/i

D hrG.j; z; u/ dh0
1 J.u/rG.j; z;u/ dh02; 1.z/ dh0

1 J.u/ 1.z/ dh0
2i

D hrG.j; z; u/; 1.z/i kdh
0
1k

2
C hJ.u/rG.j; z; u/;J.u/ 1.z/i kdh

0
2k

2

D kdh
0
k

2
hrG.j; z;u/; 1.z/i D kdh

0
k

2 dG.j; z; u/ 1.z/;

where kdh0k
2

D kdh01k
2

C kdh02k
2 and dG.j; z; / denotes the differential of

G.j;z; / W M R.
With this we now prove that vanishes identically on the complement of the set

of branch points of h0, which by unique continuation implies D 0. Assume to the
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contrary that z0/ ¤ 0 for some z0 2 SP, which is not a branch point. Since is a

0,1)-form it follows that 1.z0/ ¤ 0 and we obviously can find G0 2 C1.M/ such
that

dG0.u.z0// 1.z0/ > 0:

Setting j0 WD j let ' 2 C1.Mx0;nC1; OE0; 1 / be a smooth cut-off function around

j0; z0/ 2 M0;nC1
with '.j0; z0/ D 1 and '.j; z/ D 0 for j; z/ 62 U.j0;z0/. Here

the neighborhood j0; z0/ 2 U1.j0/ U2.z0/ D U.j0;z0/ Mx0;nC1
is chosen so

small that

U.j0;z0/\ Mx0;nC1 M0;nC1/ D ;; U2.z0/\N0 D ;;
and dG0.z; u.z// 1.z/ 0 for all z 2 U2.z0/.

With this defineGW Mx0;nC1 M Rby G.j; z; p/ WD '.j; z/ G0.p/. But this
leads to the desired contradiction since we found G 2 THH` D Hǹ.MI 0; : : :; 0/
with

hDH G; i D Z
U2.z0/

kdh
0 z/k

2 dG.j; z; u/ 1.z/ dz > 0:

Proof of Theorem 4.1. For n 3 we must show that the linearization DhN;u;j;H of

the universal Cauchy–Riemann operator @NJ is surjective at any element hN; u; j;H/
inM.S1 MIPC; P I JH.k//n 1

kD2
/. Using the splittingDhN;u;j;H D DhN;u;H CDj

we show that the first summand

const SP; C/ ° TuBp MIPC;P /°THH`

Lp;d ƒ0;1 j;i C/°Lp ƒ0;1 j;J u TM/
DhN;u;H W H 1;p;d

is onto. However, since

DhN;u;H D diag.@N; Du;H /;

this follows directly from the surjectivity of N@ and Du;H D Du C DH.

The importance of the above theorem is that, combined with Lemma 2.5, we
obtain transversality for all moduli spaces of holomorphic curves in R S1 M
asymptotically cylindrical over periodic orbits up to the given maximal period 2N
Moreover we can achieve that this holds for all maximal periods simultaneously.

Corollary 4.4. For n D 2 and T 2N the moduli spaces

M.S1
MI xC; T /; x ; T /I JH=2N /

are transversally cut out by the Cauchy–Riemann operator for all N 2 N. For n 3
we can choose H.n/ 2 H`, simultaneously for all N 2 N, so that the moduli spaces

M.S1 MIPC; P I J H=2N / are transversally cut out by the resulting Cauchy–
Riemann operator for all PC; P P.H.2/=2N ; 2N / with #PC C #P D n.
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Proof. For n D 2 the linear operator

DhN;u D diag.@N; Du/

is surjective since Du is onto by Lemma 2.5. Indeed, recall that we have chosen the
pair H.2/; J/ to be regular in the sense that H.2/; ; J // is Morse–Smale, which
implies that all pairs H.2/=2N ; J / for any N 2 N are again regular, since the stable
and unstable manifolds are the same.

For n 3 and N D 0 the Sard–Smale theorem applied to the map

M.S1 MIPC; P I JH.k//n 1

kD2/ H`
kD2

/; hN; u; j;H/ 7! Hn.MI H k//n 1

reg.P C; P / D H`tells us that the set of Hamiltonian perturbationsH` reg.P C; P ; 0/,

for which the moduli space M.S1 MIPC; P I JH/ is cut out transversally by
the Cauchy–Riemann operator N@

JH is of the second Baire category in H` D
Hǹ.MI H.k//n 1

kD2
/. Since there exist just a countable number of tuples PC; P /

with ]P C C ]P D n, it follows that H` reg.0/ D TfH`reg D H` reg.P C; P ; 0/ W

]P C C ]P D ng is still of the second category.
Replacing H.2/; : :: ; H.n 1/ in the above argumentation, for each N 2 N, by

H.2/=2N ; : : : ;H.n 1/=2N we obtain sets of regular structures Hr̀eg.N /, for which

the moduli spaces M.S1 MIPC; P I JH=2N / are cut out transversally for all

reg D TfH`PC; P P.H.2/=2N ; 2N /. However, it follows that H` reg.N / W

N 2 Ng is still of the second category in H`.

5. Cobordism

Since our statements only hold up to a maximal period for the asymptotic orbits,
we cannot use the same coherent Hamiltonian perturbation to compute the full contact

homology. As seen above we must rescale the Hamiltonian for the cylindrical
moduli spaces, which clearly affects the Hamiltonian perturbations for all punctured
spheres. For showing that the graded vector space isomorphism we obtain is actually
an isomorphism of graded algebras, we construct chain maps between the differential
algebras for the different coherent Hamiltonian perturbations, which are defined by
counting holomorphic curves in an almost complex manifold with cylindrical ends.

5.1. Moduli spaces. For a given Hamiltonian H W M R let Hz W R M R
be a smooth homotopy with Hz.s; / D H=2 for s 1 and Hz.s; / D H for s

C1. Besides that Hz defines a homotopy of stable Hamiltonian structures Hz ; Hz/
with corresponding constant) symplectic hyperplane bundles Hz

D TM and

Rdependent Reeb vector fields RHz s; t; p/ D @t CXHz s; t; p/, it equips R S1 M



Vol. 85 2010) Contact homology of Hamiltonian mapping tori 231

with the structure of a symplectic manifold with stable cylindrical ends

1; 1 S1 M;!H=2 ; H=2/ and OEC1; C1/ S 1 M;!H; H /;

where the symplectic structure on the compact, non-cylindrical part 1;C1/
S1 M is given by

Hz

D
Hz

C ds ^ dt

with Hz
D C dHz ^ dt.

Together with the fixed !-compatible almost complex structure J on M, the

homotopy Hz further equips R S1 M with an almost complex structure JHz by

requiring that it turns Hz
D TM into a complex subbundle with complex structure

J and
JHz @s D

RHz s; / D @ t C
XHz s; /:

It follows that R S1 M;JHz/ is an almost complex manifold with cylindrical
ends 1; 1 S1 M; J H=2/ and OEC1; C1/ S1 M; JH/. Note that JHz

is indeed Hz -compatible.
For our applications we clearly have to replace the Hamiltonian H W M R by

the domain-dependent Hamiltonian perturbation H W `nM0;nC1 M R from
before. It follows that the Hamiltonian homotopy Hz has to depend explicitly on
points on the underlying stable punctured spheres, i.e., for the following we consider
coherent Hamiltonian homotopies

Hz W a
n

M0;nC1 R M R;

with corresponding domain-dependent almost complex structures

JHz
W a

n
M0;nC1 J.S 1 M/:

While it isagain clear that the modulispaces of JHz -holomorphiccurveswith more
than two punctures come with an S1-symmetry, it remains to verify nondegeneracy

for the asymptotic orbits and transversality for the curves. Note for the first that we
again have to consider rescaled versions HzN W `nM0;nC1 R M R with

HzN s/ D Hz.s=2N /=2N Since HzN s/ D H=2NC1 for s 2N and HzN s/ D
H=2N for s C2N it is clear that the nondegeneracy holds for all asymptotic orbits
of period less or equal to 2N

While we show below that we can again achieve transversality for all JHz -
holomorphic curves withmore than threepunctures makinguse of the domain-dependency

of the almost complex structure, it remains to guarantee transversality for JHz -
holomorphic cylinders. Note that in analogy to Proposition 2.4 it follows that all
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JHz
N

-holomorphic cylinders connecting orbits xC; T / and x ; T / with T 2N are

in natural correspondence to cylinders in M connecting the critical points xC, x
which satisfy the R-dependent perturbed Cauchy–Riemann equation

@NJ;Hu @s D @su C J.u/ @tu C T XHz T s; u// D 0:

While in general transversality generically only holds for t-dependent Hamiltonian
homotopies Hz, we can now make use of the following natural generalization of
Lemma 2.5.

Lemma 5.1. Let H;J / be a pair of a Hamiltonian H and an almost complex structure

J ona closed symplectic manifoldwith hOE! ; 2.M/i D 0so that H; ; J // is
Morse–Smale. Choose ' 2 C1.R; RC/ with '.s/ D 1=2 for s 1 and '.s/ D 1
for s 1, and let Hz W R M R, Hz.s; p/ D '.s/ H.p/. Then the following
holds:

The linearization Fzu of rJ;Hz u D @su C J.u/XHz s;u/ is surjective at all
solutions.

If > 0 is sufficiently small, all finite energy solutions uW R S1 M of
N@J;Hz u D @su C J.u/.@tu C XH s;u// D 0 with Hz s; / D Hz. s; / are

independent of t 2 S1.

In this case, the linearization zDu D zDu of N@J;Hz
is onto at any solution

uW R S1 M.

Proof. The proof is a simple generalization of the arguments given in [SZ] and we
just show the first statement. Let 'Q W R RC with @

s'Q D '. Then uQ.s/ D u.'Q.s//
satisfies rJ;Hz uQ D 0 whenever uW R M is a solution of rJ;Hu D 0, since

@
suQ CrHz.s;uQ/ D @s'Q.s/ @su C '.s/ rH.u/:

For
Q 2 Lp.uQ TM/ we find 2 Lp.u TM/ so that Q.s/ D 'Q.s//. Assuming

that hFQu Q; Qi D 0 for all Q 2 H1;p. Qu TM/, it follows that hFu ; i D 0 for all 2
H1;p.u TM/ by identifying Q.s/ D 'Q.s//, where FzuQ, Fu denote the linearizations
of rJ;Hz rJ;H at

Qu;u, respectively. The regularity of H; J/ provides us with
the surjectivity of Fu at any solution uW R M, so that and therefore

Q
must

vanish.

With the fixed Hamiltonian H.2/
W M R for the cylinders we choose the

Hamiltonian homotopy for the cylinders Hz.2/
W R M R to be

Hz .2/.s; p/ D '.s/ H.2/.p/;
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so that Hz.2/.s; / D H.2/=2 for s 1 and Hz.2/.s; / D H.2/. After possibly
rescaling H.2/, we can and will assume that both Lemma 2.5 and Lemma 5.1 hold
with D 1 for the fixed J and the chosen H.2/, Hz.2/, respectively.

Before we prove transversality in the next subsection, let us state the following
analogue of Theorem 2.6. Denote by JHz

N the domain-dependent almost complex
structure on R S1 M induced by HzN

Theorem 5.2. Depending on the number of punctures n we have the following result

about the moduli spaces of JHz
N -holomorphic curves in R S1 M:

n D 0: All holomorphic spheres are constant.

n D 1: Holomorphic planes do not exist.

n D 2: For T 2N the automorphism group Aut.CP1/ acts on the

parametrized moduli space M0.S1 M; xC; T /; x ; T /;JHz
N / of holomorphic

cylinders with constant finite isotropy group ZT and the quotient can be
naturally identified with the space of gradient flow lines of H.2/ with respect to
the metric ; J / on M between the critical points xC and x of H.2/. In
particular, we have

]M.R S1
MI xC; T /; x ; T /IJHz

N / D ix ;xC

since the zero-dimensional components are emptyfor xC ¤ x and just contain
the constant path for xC D x
n 3: For PC P.H.2/=2N ; 2N / and P P.H.2/=2NC1; 2N / the
action of Aut.CP1/ on the parametrized moduli space is free. There remains a
free S1-action on the moduli space, where the quotient is given by

f.s0; u; z/ W s0 2 R; u W CP1
fzg M W 1/; 2/g= Aut.CP 1/

with

1/: du C
XHzN

z z; h0
1 C s0; u/ dh0

2

C J.u/ du C
XHzN

z z; h0
1 C s0; u/ dh0

2/ i D 0;

2/: u B k s; t/ s! 1 xk :

Proof. The proof is completely analogous to the one of Theorem 2.6. Note that

it follows by Lemma 2.3 that hW CP1 fzg R S1 can be identified with
s0; t0/ 2 R S1 and that the map u nowsatisfies an s0-dependent perturbed Cauchy–

Riemann equation. For n D 2 observe that by Lemma 4.1 we can identify M.S1

MI xC;T /; x ;T /I JHz/ with the space of all uW R MN satisfyingrJ;Hz.2/u D 0,

u.s; t / x which following the proof of Lemma 4.1 can be identified with the
space of uQ.s/ D u.'Q.s// satisfying rJ;H.2/u D 0.



234 O. Fabert CMH

5.2. Transversality. For the remaining part of this section we discuss transversality,
where we again restrict ourselves to the case N D 0.

Since N@

JzH h; u/ D .@Nh; @NJ;Hz;s0u/ with

N@

J;Hz;s0u D du C
XHz j; z; h0

1 C s0; u/ dh0
2

C J.u/ du C XHz j; z; h0
1 C s0; u/ dh0

2/ i;

where XHz j; z; s; u/ denotes the symplectic gradient of Hz.j;z; s; / W M R, it
follows that the linearization Dh;u of N@

J zH is again of diagonal form.

It follows that for n D 2 we get transversality from Lemma 4.2 and Lemma 5.1
by the special choice of Hz.2/.

For n 3 letus describe the setup for the underlying universal Fredholm problem.
As before the Cauchy–Riemann operator extends to a C1-section in a Banach

space bundle zEp;d Bp;d Hz`. Here Bp;d D Bp;d R S1 MIPC; P /
denotes the manifold of maps from Section 5, which is given by the product

Bp;d R S1
MI xk ; Tk // D H 1;p;d

const SP; C/ Bp
MI xk // M0;n;

n.MI H.k//n 1while the set of coherent Hamiltonian perturbations H`
kD2/ is now

replaced by the set of coherent Hamiltonian homotopies

Hz` D Hzǹ.MIHI Hz k//n 1

kD2/

for fixed coherent Hamiltonian H W `nMnC1 M R and Hz.2/;: : : ; Hz.n 1/.

Any Hz.n/
2 Hz` is a C`-map

Hz n/
W M0;nC1 R M R;

which extends to a C`-map onMx0;nC1 R M, so that

on Mx0;nC1 M0;nC1/[.M0;n N0/ R M it is givenbyHz.2/; : : : ; Hz.n 1/,

Hz.n/
D H.n/=2 onM0;nC1 1; 2N / M,

and Hz.n/ D H.n/ onM0;nC1 C2N; C1/ M,
where N0 SP again denotes the fixed neighborhood of the punctures. It follows that

the tangent space at Hz D Hz.n/
2 Hz` is given by

THzHz
`
n D Hzǹ.MI 0I .0/n 1

kD2
/:
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Since the linearization of N@

J zH at hN; u; j; Hz/ 2 Bp;d Hz` is again of diagonal

form,

DhN;u;j;Hz D Dj C diag.@N; Du;Hz /;

TjM0;n° H 1;p;d
const SP; R2/°H 1;p u TM/° THzHz

`

Lp;d T SP j;i R2/ °Lp ƒ0;1
j;J u TM/;

it remains by Lemma 4.2 to prove surjectivity of D which is the linearization ofu;Hz

the perturbed Cauchy–Riemann operator N@J;s0 u; Hz/ D @N
Hz;

u/. Since the proofJ; s0
is in the central arguments completely similar to Lemma 4.3, we just sketch the main
points.

Assume for some 2 Lq.ƒ0;1 j;J u TM/ that hDu;Hz
; zG/; i D 0 for all

; Gz/ 2 H1;p.u TM/° THzHz`, where again 1=pC1=q D 1. From h ; Du i D 0
for all we already know that it suffices to show that vanishes on an open and dense
subset.

Now observe that it follows from the same arguments used to prove Lemma 4.3
that

0 D hDHz Gz; i D
Z

SP B
kdh

01.z/k
2 d zG.j; z; h10.z/ C s0; u.z// 1.z/ dz

for all Gz 2 THzHz`, where B is the set of branch points of h0
W

SP R S1, we again

write z/ D 1.z/ dh01 C 2.z/ dh02 with 2.z/CJ.u/ 1.z/ D 0 for z 2 SP B
and whered zG.j; z; h10 z/Cs0; / is the differential of zG.j; z; h10 z/Cs0; / W M R.
But with this we can prove as before that vanishes identically on the open and dense

subset SP B.
Assume to the contrary that z0/ ¤ 0, i.e., 1.z0/ ¤ 0 for some z0 2 SP B. As

in the proof of Lemma 4.3 we find G0 2 C1.M/ so that

dG0.u.z0// 1.z0/ > 0:

Setting j0 WD j we organize all fixed maps h0 W
SP R S1 for different j

on SP into a map h0 W M0;nC1 R S1. Let 'z 2 C1.Mx0;nC1 R; OE0; 1 / be a

smooth cut-offfunctionaround j0; z0; h10 j0; z0/Cs0/ 2 M0;nC1 Rwith '.j0; z0;
h10 j0; z0/Cs0/ D 1 and '.j;z;h10 j; z/Cs/ D 0 for j;z;s/ 62 U.j0; z0; s0/. Here
the neighborhood U.j0;z0; s0/ Mx0;nC1 R is chosen so small that

U.j0; z0; s0/ \ Mx0;nC1 M0;nC1/ [ M0;nC1 N0/ R D ;;
U.j0;z0; s0/ \ Mx0;nC1 1; 1/[ C1; C1/ D ;;

and dG0.z; u.z// 1.z/ 0 for all z; j; h10 j;z/ C s/ 2 U.j0; z0;s0/.
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Defining Gz
W Mx0;nC1 R M R by Gz.j; z; s; p/ WD '.j; z; s/ G0.p/, this

leads to the desired contradiction since we found Gz 2 THzHz` D Hzǹ.MI 0I 0; : : :; 0/
with

hDHz Gz; i D
Z

SP B
kdh

01.z/k
2 d zG.j0; z;h10.j0; z/ C s0; u.z// 1.z/ dz > 0:

We have shown that the universal moduli space

M R S1 MIPC; P I J
H

I
JHz;.k//n 1

kD2

is again transversally cut out by the Cauchy–Riemann operator N@J Further it follows
by the same arguments as in Section 4 that we can choose a smooth) coherent
Hamiltonian homotopy Hz W `nM0;nC1 R C1.M/ such that for all N 2 N
and PC;P the moduli spacesM.R S1 MIPC; P I

JHz / are transversally cutN
out by the Cauchy–Riemann operator.

6. Contact homology

6.1. Chain complex. The contact homology of S1 M equipped with the stable

Hamiltonian structure H; H/ is defined as the homology of a differential graded
algebra A; @/, which is generated by closed orbits of the Reeb vector field RH and
whose differential counts JH-holomorphic curves with one positive puncture. As in
[EGH] we start with assigning to any x; T / 2 P.H/, which is good in the sense of

[BM], a graded variable q.x;T / with

deg q.x;T / D dim M=2 2 C CZ.x; T /:

Here CZ denotes the Conley–Zehnder index for x; T /, which is defined as in [EGH]
after fixing a basis for H1.S1 M/ and choosing a spanning surface between the
orbit x; T / and suitable linear combinations of these basis elements. Note that in
the corresponding definition in [EGH] one adds m 3, where m denotes the complex
dimension of R S1 M. Further we assume, as in [EGH], that H1.S1 M/ and
hence H1.M/ is torsion-free, where we use that the torsion-freedom of H S1/ also
yields the Künneth formula for H S1 M/. Let

QOEH2.S1 M/ D ° Pq.A/eA
W A 2 H2.S1 M/;q.A/ 2 Q

be the group algebra generated by H2.S1 M/ Š H2.M/ ° H1.S1/ H1.M//
with grading given by

deg eA
D hc1.TM/; Ai:
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Since c1.TM/ clearly vanishes on H1.S1/ H1.M/ we can and will work with the
reduced group ring QOEH2.M/ With this let A be the graded commutative algebra
of polynomials in the formal variables q.x;T / assigned to good periodic orbits with
coefficients inQOEH2.M/ Let C be the vector space overQfreely generated by the
graded variables q.x;T /, which naturally splits, C D LT CT with CT generated

by the good orbits of integer period T Since C is graded, we can define a graded
symmetric algebra S.C / and it follows that

A D S.C / QOEH2.M/ :

For the following we assume that all occuring periodic orbits are good. Note that

to any holomorphic curve in M.S1 MIPC; P I JH/ we assign as in [EGH] a

homology class A 2 H2.S1 M/ after fixing a basis for H1.S1 M/ and choosing
spanning surfaces between the asymptotic orbits in PC; P P.H/ and suitable
linear combinationsof these basis elements. Requiring that thedifferential@

W A A
satisfies a graded Leibniz rule, it is defined by see [EGH], p. 621)

@q.x0;T0/ D X
P ;A

]MA.S 1
MIPC; P I JH /=R q.x 1 / : : : q.x1

;T n / eA;n ;T

where MA.S1 MIPC;P IJH/ denotes the one-dimensional component of
the moduli space of holomorphic curves with PC D f.x0; T0/g and with arbitrary
orbit set P D f.x1 ; T1 /; : :: ; xn ; Tn /g representing the class A 2 H2.M/ Š
H2.S1 M/=.H1.S1/ H1.M//.

For T1; : : : ; Tn/ 2 Nn let A.T1;:::;Tn/ denote the subspace of A spanned by
monomials q.x1;T1/ : : : q.xn;Tn/,

A T1;:::;Tn/
D S T1;:::;Tn/.C / QOEH2.M/

with

S T1;:::;Tn/.C / D S.CT1 C Tn/;
where S denotes the projection from the tensor to the symmetric algebra, in
particular, A.T1;:::;Tn/ does not depend on the ordering of the T1; :: : ;Tn. Since

]M.S1 MIPC; P I JH/=R D 0 for T1 C C Tn ¤ Tk by Lemma 1.1.3,
it follows that the differential @ respects the splitting

A D M
T 2N

AT ;

where AT D LT1C CTnDT
A.T1;:::;Tn/.
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6.2. Proof of the main theorem. In what follows we use our results about
holomorphic curves in R S1 M to prove the main theorem. At first we compute

H A 2N
; @/ D LT 2N H AT ; @/ using our results about moduli spaces of

holomorphic curves inR S1 M inTheorem 2.6 together with the transversality results.

With the fixed almost complex structure J on M let H W `M0;nC1 C1.M/
be a coherent Hamiltonian perturbation as before, in particular, H.2/ satisfies
Lemma 2.5 with D 1. Following corollary 4.4 we further assume that H is chosen

such that transversality holds for all moduli spaces M.S1 MIPC; P I J H=2N /,
P P.H.2/=2N; 2N /, simultaneously for all N 2 N. Together with
Theorem 2.6 it then follows that for defining the algebraic invariants we only have

to count gradient flow lines of the function H.2/ on M with respect to the metric
gJ D ;J / on M. For N 2 N let AN; @N/ denote the differential algebra for
the domain-dependent Hamiltonian H=2N

W `M0;nC1 C1.M/ and the fixed
almost complex structure J on M. For the computation of the contact homology
subcomplex we use special choices for the basis elements in H1.S1 M/ and the
spanning surfaces as follows: Choose a basis for H1.S1 M/ D H1.S1/°H1.M/
containing the canonical basis element OES1 of H1.S1/, which is represented by the
circle x ; 1/W S1 S1 M, t 7! t; x / for some point x 2 M. For any periodic
orbit x; T / 2 P.H.2/=2N ; 2N / we have OE.x; T / D T OES1 2 H1.S1 M/, since

x is a constant orbit inM, and we naturally specify a spanning surface S.x;T / between

x; T / and the T -fold cover of x ; 1/ by choosing a path x W
OE0;1 M from x

to x and setting S.x;T/W S1 OE0; 1 S1 M, S.x;T /.t; r/ D T t; x.r//.

Lemma 6.1. Let HM D HM M; H.2/;gJ IQ/ denote the Morse homology
for the Morse function H.2/ and the metric gJ D ; J / on M with rational
coefficients. Then we have

N ; @N/ D S 2N
MN HM 2 QOEH2.M/ ;H A 2N

where

S 2N
MNHM 2 D M

T1C CTn 2N

S T1;:::;Tn/ MNHM 2 :

Proof. For the grading of the q-variables we have

deg q.x;T / D dim M=2 2 C CZ.x;T / D ind H.x/ 2;

when we choose a canonical trivialization of TM over x ; 1/ and extend it over
the spanning surfaces to a canonical trivialization over x;T /, that is, the map

‚ W
S1 R2m x TM D S1 TxM is independent of S1. It follows that
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CT agrees with the chain group CM 2 for the Morse homology for T 2N and

therefore

N D S 2N
MNA 2N CM 2 QOEH2.M/ :

Here it is important to observe that any x; T / 2 P.H.2/=2N ; 2N / is indeed good
in the sense of [BM]: note that it follows from CZ.x;T / D ind H.x/ dim M=2
that CZ.x; T / has the same parity for all T 2N

On the other hand it follows from Theorem 2.6 that the differential @
W A A

indeed agrees with the differential in Morse homology. Further it follows from
the above choice of spanning surfaces that they all represent the trivial class A 2
H2.M/ D H2.S1 M/=.H1.S1/ H1.M//: Indeed, letting u denote the gradient
flow line between x0 and x it follows that u represents the class A D T OES1

OE x0]u] x 2 H1.S1/ H1.M/. Using the theorem of Künneth we hence in fact
have

N ; @/ D H S T1;:::;Tn/ MNH A T1;:::;Tn/ CM 2 QOEH2.M/ ; @/

D S T1;:::;Tn/ H MN CM 2; @
Morse QOEH2.M/

D S T1;:::;Tn/ MN HM 2 QOEH2.M/

and the claim follows.

With thiswecan nowcomplete the proof of the main theorembyusingTheorem5.2
and the transversality result of Section 5.

To this end choose a coherent Hamiltonian homotopy Hz W `nM0;nC1 R
C1.M/ as in Section 5, i.e., with Hz.j;z;s; p/ D H.j; z; p/=2 for small s and

Hz.j;z;s; p/ D H.j; z; p/ for large s such that for all N 2 N and PC;P the

moduli spaces M.R S1 MIPC; P I JHz / are transversally cut out. Let JHz
N N

denotes the coherent non-cylindrical almost complexstructure onR S1 M induced
by J and Hz=2N

Let ‰N W AN ; @N / ANC1; @NC1/ be the chain homotopy, defined as in
[EGH], by counting holomorphic curves with one positive puncture and an arbitrary
number of negative punctures in the resulting almost complex manifold R S1

M; JHz
N / with cylindrical ends. Then it follows from Theorem 5.2 that the restriction

‰ T
N W ATN ;@N / AT

NC1
;@NC1/ is the identity for T 2N since again all curves

with threeor more punctures come in S1-familiesandallzero-dimensionalcylindrical
moduli spaces just consist of trivial gradient flow lines.
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