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Contact homology of Hamiltonian mapping tori

Oliver Fabert

Abstract. In the general geometric setup for symplectic field theory the contact manifolds can
be replaced by mapping tori My of symplectic manifolds (M, @) with symplectomorphisms ¢.
While the cylindrical contact homology of My is given by the Floer homologies of powers of ¢,
the other algebraic invariants of symplectic field theory for My provide natural generalizations
of symplectic Floer homology. For symplectically aspherical M and Hamiltonian ¢ we study
the moduli spaces of rational curves and prove a transversality result, which does nof need the
polyfold theory by Hofer, Wysocki and Zehnder. We use our result to compute the full contact
homology of My = Stx M.
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1. Introduction and main results

1.1. Symplectic field theory in the Floer case. This paper is concerned with sym-
plectic field theory in the Floer case. Symplectic field theory (SFT) is a very large
project designed to describe in a unified way the theory of holomorphic curves in
symplectic and contact topology. To be more precise, it approaches Gromov—Witten
theory in the spirit of a topological quantum field theory by counting holomorphic
curves in cylinders over contact manifolds and symplectic cobordisms between them.
It was initiated by Eliashberg, Givental and Hofer in their paper [EGH] and since then
has found many striking applications in symplectic geometry and beyond. While most
of the current applications lie in finding invariants for contact manifolds, there exists
a generalized geometric setup for symplectic field theory, which contains contact
manifolds as special case.

Following [BEHWZ] and [CM2] a Hamiltonian structure on a closed (2m — 1)-
dimensional manifold V' is a closed two-form @ on V' which is maximally nonde-
generate in the sense thatkerw = {v € TV : w(v,-) = 0} is a one-dimensional
distribution. Note that here we (and [CM2]) differ slightly from [EKP]. The Hamil-
tonian structure is required to be stable in the sense that there exists a one-form A on
V such that ker @ C ker dA and A(v) # Oforall v € ker w — {0}. Any stable Hamil-
tonian structure (w, A) defines a symplectic hyperplane distribution (§ = ker A, we ),
where wg is the restriction of w, and a vector field R on V by requiring R € ker @ and
A(R) = 1 which is called the Reeb vector field of the stable Hamiltonian structure.

Examples for closed manifolds V' with a stable Hamiltonian structure (@, A) are
contact manifolds, circle bundles and mapping tori (| BEHWZ], [CM2]). For this note
that when A is a contact form on V', then it is easy to check that (w := dA,A) isa
stable Hamiltonian structure and the symplectic hyperplane distribution agrees with
the contact structure. For the other two cases, let (M, @) be a symplectic manifold.
Then any principal circle bundle S — V — M and any symplectic mapping torus
M -V - Sliie, V=M, = Rx M/{(t,p) ~ (t + 1,¢(p))} for ¢ €
Symp(M, w) carries also a stable Hamiltonian structure. For the circle bundle the
Hamiltonian structure is given by the pullback 7 *« under the bundle projection and
the one-form A is given by any S!-connection form. On the other hand, the stable
Hamiltonian structure on the mapping torus V- = M 1s given by lifting the symplectic
form to @ € Q2(My) via the natural flat connection TV = TS! & TM and setting
A = dt for the natural S'-coordinate 1 on M. While in the mapping torus case &
is always integrable, in the circle bundle case the hyperplane distribution £ may be
integrable or non-integrable, even contact.

Symplectic field theory assigns algebraic invariants to closed manifolds V' with a
stable Hamiltonian structure. The invariants are defined by counting J-holomorphic
curves in R x V' with finite energy, where the underlying closed Riemann surfaces
are explicitly allowed to have punctures, i.e., single points are removed. The almost



Vol. 85 (2010) Contact homology of Hamiltonian mapping tori 205

complex structure J on the cylindrical manifold R x V' is required to be cylindrical in
the sense that it is R-independent, links the two natural vector fields on R x V', namely
the Reeb vector field R and the R -direction dy, by Jd; = R, and turns the symplectic
hyperplane distribution on V' into a complex subbundle of TV, & = TV N JTV.
It follows that a cylindrical almost complex structure J on R x V' is determined by
its restriction Jg to § C TV, which is required to be wg-compatible in the sense that
wg (-, J¢-) defines a metric on §. Note that in [CM2] such almost complex structures
J are called compatible with the stable Hamiltonian structure and that the set of these
almost complex structures 1s non-empty and contractible.

While the punctured curves in symplectic field theory may have arbitrary genus
and arbitrary numbers of positive and negative punctures, it is shown in [EGH] that
there exist algebraic invariants counting only special types of curves: While in ra-
tional symplectic field theory one counts punctured curves with genus zero, contact
homology is defined by further restricting to punctured spheres with only one positive
puncture. Further restricting to spheres with both just one negative and one positive
puncture, i.e., cylinders, the resulting algebraic invariant is called eylindrical contact
homology. Note however that contact homology and cylindrical contact homology
are not always defined. In order to prove the well-definedness of (cylindrical) con-
tact homology it however suffices to show that there are no punctured holomorphic
curves where all punctures are negative (or all punctures are positive). While the
existence of holomorphic curves without positive punctures can be excluded for all
contact manifolds using the maximum principle, which shows that contact homology
is well-defined for all contact manifolds, it can be seen from homological reasons
that for mapping tori M there cannot exist holomorphic curves in R x My carrying
just one type of punctures, which shows that in this case both contact homology and
cylindrical contact homology are defined.

Symplectic field theory hence provides a wealth of invariants. However, almost
all computations performed so far only use the simplest one, cylindrical contact
homology: While cylindrical contact homology is computed e.g. for subcritical
Stein-fillable contact manifolds ([Y1]), Brieskorn varieties ([K]) and toroidal three-
manifolds ([BC]), computations of the higher invariants are performed so far only
for overtwisted contact manifolds in [Y 2] and sketched in [EGH] for prequantization
spaces and in [CL] for unit cotangent bundle of tori.

1.2. Main theorem and outline of the proof. While it can be seen that the cylin-
drical contact homology for mapping tori My agrees with the Floer homology of
the powers of ¢, i.e., the subcomplex for the period T € N agrees with the Floer
homology of ¢T, the other algebraic invariants of symplectic field theory, in partic-
ular, the full contact homology, provide natural generalizations of symplectic Floer
homology. While Floer homology for Hamiltonian symplectomorphisms over a suit-
able coefficient ring 18 known to be isomorphic to the tensor product of the singular
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homology with rational coefficients of the underlying symplectic manifold with the
graded group algebra Q[ H>(M )] generated by H2(M ),

QH(M)] = { Y q(A)e : A € Ho(M),q(A) € Q). dege? = (c1(TM), 4),

the case of arbitrary symplectomorphisms is much more complicated, see [CC] and
the references therein. So we restrict our attention to the Hamiltonian case, where the
symplectomorphism ¢ is Hamiltonian, i.e., the time-one map of the symplectic flow
of a Hamiltonian H : S'xM — R. In this case the Hamiltonian flow ¢ provides us
with a natural diffeomorphism My =~ S x M, so that we can replace M, by S1x M
equipped with the pullback stable Hamiltonian structure (o, A1) on S x M given
byw? = w+dH rdt, 7 = dr withsymplecticbundle £ = TM and Reeb vector
field R = 9,4 X}, where X is the symplectic gradientof H, = H(t,-). In[EKP]
this is also called the Floer case. Furthermore (R x My, J) can be identified with
(R x S!x M, JH) equipped with the pullback cylindrical almost complex structure,
which is nonstandard in the sense that the splitting 7(R x S! x M) = R2@® TM is
not JH -complex. Let HC, (Mg, J) denote the contact homology of the symplectic
mapping torus Mg with chosen cylindrical almost complex structure J on R x M.

Main Theorem 1. Ler (M, w) be a closed symplectic manifold, which is symplecti-
cally aspherical, {{®], mo(M)) = 0, andlet p: M — M be a Hamiltonian symplec-
tomorphism. Then we have

HCu(My, J) = &(ED) Heoa(M, Q)) ® QUH(M)],
N

where © is the graded symmelric algebra functor.

For the proof we observe that the cylindrical almost complex structure J ¥ on
R x S! x M is specified by the choice of an S!-family of almost complex struc-
tures J, on M and an S!-dependent Hamiltonian H: S' x M — R. In order to
get an S'-symmetry on moduli spaces of curves with three or more punctures, we
restrict ourselves to almost complex structures J, and Hamiltonians H,, which are
independent of € S, so that only holomorphic cylinders need to be counted for the
differential in contact homology.

We achieve transversality for all moduli spaces by considering domain-dependent
Hamiltonian perturbations. 'This means that, for defining the Cauchy—Riemann op-
erator for curves, we allow the Hamiltonian to depend explicitly on points on the
punctured sphere underlying the curve whenever the punctured sphere is stable, i.e.,
there are no nontrivial automorphisms, where we follow the ideas in [CM1]. Note
however that in contrast to the Gromov—Witten case we now have to make coherent
choices for the different moduli spaces simultaneously, i.e., the different Hamiltonian
perturbations must be compatible with gluing of curves in symplectic field theory. For
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the cylindrical moduli spaces the Hamiltonian perturbation is domain-independent,
and it 1s known from Floer theory that in general we must allow H to depend explicitly
ont € S! to achieve nondegeneracy of the periodic orbits and transversality for the
moduli spaces of Floer trajectories. However, the gluing compatibility requires that
also the Hamiltonian perturbation for the cylindrical moduli spaces 1s independent
of t € S'. We solve this problem by considering Hamiltonians H, which are so
small in the C2-norm that all orbits are critical points of H and all cylinders between
these orbits correspond to gradient flow lines between the underlying critical points.
Note however that we cannot achieve this with a single Hamiltonian function, but
have to rescale the function depending on the period 7 € N, which in turn implies
that we have to compute the contact homology using an infinite sequence of different
Hamiltonian functions.

Observe that the closed orbits of the Reeb vector field R¥ on S x M have integer
periods, where the set of closed orbits of period T € N is naturally identified with the
T -periodic orbits of X7 on M. It follows that the chain complex (20, d) for contact
homology naturally splits, %1 = @y A7, where A7 is generated by all monomials
G(x1.Ty) - - - 4 (xp.Ty)» With T;-periodic orbits (x;, T;)and 71 + -+ T, = T, and it is
easily seen from homological reasons that this splitting is respected by the differential
d. Furthermore, given two different Hamiltonian functions Hy, Hs : S1xM — Rthe
corresponding chain map ®: (A, dy) — (A,, d;), defined as in [EGH] by counting
holomorphic curves in R x S x M equipped with a non-cylindrical almost complex
structure J 7, which itself can be defined using a homotopy H: R x S!' x M — R
from H; to Ha, also respects the splittings 2; = Pyeny AL Ao = Pypren AL

Let Ty € N be a sequence of (maximal) periods with 7y < Tn4+; and
limy oo Ty =occandlet Hy: S!xM — R, N e Nbea sequence of Hamiltoni-
ans with corresponding chain complexes (Uy,dn ), N € N. Assume that for every
N € N we have defined a chain map @y : (Ay,dn) — Ay41,dy41) using a
homotopy Hy: R x S x M — R interpolating between Hy and Hy 41, which by
the above arguments restricts to a map from 91]7;, to QIK, 4 forevery T € N. Defining

HCETN (81 x M. JHN) = Ho 5™ on) = @ Ho(2(h, )
T<Twn

we obtain a directed system (Cy, @y ) with Cy = HC,,?TN (S x M, JH~) and
Pypy=OyoPyi10...0Dy 10Dy for N < M. Setting Ty = 2 we prove
the main result by showing that for every S!-independent Hamiltonian H: M — R,
which is sufficiently small in the C ?-norm and Morse, there is an isomorphism

N—o0

lim HCS2" (S x M, JH/?V) ~ @(@ Hos(M. Q)) & Q[H,(M)].
N

This paper is organized as follows.
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While we prove in 2.1 all the fundamental results about pseudoholomorphic curves
in Hamiltonian mapping tori, Section 2.2 is devoted to explaining the central ideas
of the proof the main theorem, namely how we get an S'-symmetry on all moduli
spaces of domain-stable curves, but still have nondegeneracy for the closed orbits
and transversality for all moduli spaces. We collect all the important results about the
moduli spaces in Theorem 2.6. After recalling the definition of the Deligne-Mumford
space of stable punctured spheres in 3.1, we define the underlying domain-dependent
Hamiltonian perturbations in 3.2 and prove in 3.3 that the construction is compatible
with the SFT compaciness theorem. After describing in detail the necessary Banach
manifold setup for our Fredholm problems in 4.1, we prove in 4.2 the fundamental
transversality result for the Cauchy—-Riemann operator. Since all our results only
hold up to a maximal period for the asymptotic orbits, i.e., we have to rescale our
Hamiltonian perturbation during the computation of contact homology in Section 6,
we generalize all our previous results to homotopies of Hamiltonian perturbations
in 5.1 and 5.2. After describing the chain complex underlying contact homology in
6.1, we prove the main theorem using our previous results about moduli spaces of
holomorphic curves in R x St x M.

Acknowledgements. This research was supported by the German Research Foun-
dation (DFG). The author thanks U. Frauenfelder, M. Hutchings and K. Mohnke for
useful conversations and their interest in his work. Special thanks finally go to my
advisor Kai Cieliebak and to Dietmar Salamon, who gave me the chance to stay at
ETH Zurich for the winter term 2006/07, for their support. Finally thanks go to the
referee for his valuable comments.

2. Moduli spaces

2.1. Holomorphic curves in R x S x M. Let (M, ) be a closed symplectic
manifold and let ¢ be a symplectomorphism on it. As already explained in the
introduction, the corresponding mapping torus My = RxM/{(t, p) ~ (¢t+1.¢(p))}
carries a natural stable Hamiltonian structure (@, A) given by lifting the symplectic
form @ to a two-form on M via the flat connection TMy = TS! @ TM and setting
A = drt. Itfollows that the corresponding symplectic vector bundle £ = ker A is given
by TM and the Reeb vector field R agrees with the S'-direction d; on M. In this
paper we restrict ourselves to the case where ([w], m2(M)) = 0 and ¢ is Hamiltonian,
1.e., the time-one map of the flow of a Hamiltonian H : S ' v M — R. In this case
observe that the Hamiltonian flow ¢ provides us with the natural diffeomorphism

®:S'x M > My, (1, p) > (.5 (1. p)),

so that we can replace My by S x M equipped with the pullback stable Hamiltonian
structure.
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Proposition 2.1. The pullback stable Hamiltonian structure (o™, 27)y on ST x M
is given by
o = w+dH ndt, M = di

with symplectic bundle & H and Reeb vector field R given by
g = 1M, RY =03, +XF,
where X,;H is the symplectic gradient of Hy = H(t,").
Proof. Using
dd =1 XE @dt +dp?)y. TS'&TM - TS' & TM
we compute for vy = (v11,v12),v2 = (V21,v22) € TS' & TM,

o (v1,v2) = W(dD(vy), dD(v2))
= (X[ ® d)(vi) + dop (v12). (X[ & d)(var) + dopf! (v22))
= o(XH2, XD)dt (v11)dt (va1) + o(dpF (v12), dpF (v22))
+ (X2, dpf waa)dt (vir) + w(de] (vi2). XF)dt(var)
= w(v12,v22) + 0(dp (v12), XF)d1t (v))
— w(dp (va2), X F)dt(v11)
= w(vy,v2) + (dH ~di)(vy,v2)
and A = L od® = dr. On the other hand, it directly follows that ¥ = TM,
while R = 3, — X H spans the kernel of w?
T (R =w(, 3 = XEY+dH -dr(d, + XE)—dH@, + X)) - dt
= —ow(, XI +dH =0

with A (RFY = dr (3, — XF) = 1. ]

Asin the introduction we consider an almost complex structure J on the cylindrical
manifold R x S x M, which is required (o be cylindrical in the sense that it is R-
independent, links the Reeb vector field RH and the R-direction d;, by Jd; = RH =
d, + X H and turns the symplectic hyperplane distribution £ = TM into a complex
subbundle of T(S! x M). It follows that J on R x S x M is determined by its
restriction to £ = TM, which is required to be wgm -compatible, so that J is
determined by the S !-dependent Hamiltonian H, and an S*-family of w-compatible
almost complex structures J; on the symplectic manifold (M, w).

Let us recall the definition of moduli spaces of holomorphic curves studied in
rational SFT in the general setup. Let (V,w,A) be a closed manifold with stable
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Hamiltonian structure with symplectic hyperplane distribution & and Reeb vector
field R and let J be a compatible cylindrical almost complex structure on R x V.
Let P+, P~ be two ordered sets of closed orbits y of the Reeb vector field R on V,
ic, y: R - V,y(t+T) = y(t), y = R, where T > 0 denotes the period
of y. Then the (parametrized) moduli space M°(V; PT, P~ J) consists of tuples
(F.(zF)), where {zF, ..., z;ci Y are two disjoint ordered sets of points on CIP !, which

are called positive and negative punctures, respectively. The map F: S >RxV
starting from the punctured Riemann surface S = CP! — {(z;f)} is required to satisfy
the Cauchy—Riemann equation

0;F =dF + J(F)-dF -i =0

with the complex structure i on CPP1. Assuming we have chosen cylindrical coordi-
nates 7 : R* x S' — S around each puncture z¥ in the sense that yrF (£oc,7) =
z,,f, the map F is additionally required to show forall k = 1,...,n~ the asymptotic
behaviour

lim (F oy)(s,t + 1) = (Loo, yF (TF1))

s—+o0

with some to € S and the orbits y,;—L e P*, where TkjE > 0 denotes period of y]j:.
Observe that the group Aut(CIP!) of Mobius transformations acts on elements in
MYV P, P~,J) in an obvious way,

o (F. () = (Fop ™ p(zf)). ¢ € Aut(CPY),

and we obtain the moduli space M(V; PT, P~, J) studied in symplectic field theory
by dividing out this action.

It remains to identify the occuring objects in our special case. First, one immedi-
ately verifies that all closed orbits y of the vector field R¥ = 9, — X ,fq on St x M
are of the form

() =t + to, x(1)),
and therefore have natural numbers T € N, i.¢., the winding number around the S i
factor, as periods. Since we study closed Reeb orbits up (o reparametrization, we can
set rp = 0, so that y can be identified with x: R/TZ — M, which is a T -periodic
orbit of the Hamiltonian vector field,

i) = X7 (x)).

Hence we will in the following write y = (x, T), where T € N is the period and x
is a T -periodic orbit of the Hamiltonian H. We denote the set of T -periodic orbits
of the Reeb vector field R¥ on S' x M by P(H, T).

For the moduli spaces of curves observe that in R x S! x M we can naturally
write the holomorphic map F as a product,

F=(huy:sS—>RxSHYx M.



Vol. 85 (2010) Contact homology of Hamiltonian mapping tori 211

Proposition 2.2. F: S > RxS'x Mis J- holomorphic precisely when h =
(h1.h2): S — R x St is holomorphic and w: S — M satisfies the h-dependent
perturbed Cauchy—Riemann equation of Floer type,
drmau = A" (du + X (hy,u) ® dhy)
= du + X (ha,u) ® dhy + J(haou) - (du + XH (hy,u) ® dhy) - 1.

Proof. Observing that J(z, p): TR x SH®TM — T(R x S') @ TM is given by

oo i 0
16D = At p) 7o)

with A(t, p) = —XF (p) @ ds + J,(p) X F (p) ® dt we compute

(dh,du)+ J(hou)-(dh,du)-i = (dh+i-dh-i,
du + (J(ha,u) - du — X T (hy,u) @ dhy + J(ha, )X (hy, u) ® dhs) - i)
= @h,du— X" (ha,u) @ dhy -i + J(ha,u) - (du + XH (hayu) @ dhs) - i).

Finally observe that dh; - i = —dh, if 0h = 0. O

Recalling that our orbit sets are given by P* = {(x", T"), ..., (x5, T5)}, we
use the rigidity of holomorphic maps to prove the followmg statement abouf the map
component i: S — R x S'. Let T = TF + ..+ + T*, denote the total period
above and below, respectively.

Lemma 2.3. The map h = (hy, h») exists if and only if TT = T~ and is unique up
a shift (sg, to) € R x St,

h(z) = h°(z) + (s0, to)
for some fixed map h° = (hY,hY). In particular, every holomorphic cylinder has a

positive and a negative puncture, there are no holomorphic planes and all holomor-
phic spheres are constant.

Proof. The asymptotic behavior of the map F near the punctures implies that

ho (st + to) 2= (oo, Tyt)

with some 75 € S!. Identifying R x S! 2 CP! — {0, oo}, it follows that / extends
to a meromorphic function # on CP! with z', .. ., z; poles of order T;", ..., T,:Sr

and z,,...,z,— zeros of order 7 , ..., T,—. Since the zeroth Picard group of CP!
is (rivial, i.e., every divisor of degree zero 1s a principal divisor, we get that such
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meromorphic functions exist precisely when 7+ = T7. On the other hand it fol-
lows from Liouville’s theorem that they are uniquely determined up to a nonzero
multiplicative factor, i.e., h = a - h° witha € C* =~ R x S! for some fixed
hp: CP! — CP!. For every J# -holomorphic sphere (%, u) observe that & is con-
stant, h = (8¢, #p), and therefore u is a Jy,-holomorphic sphere in M, which must be
constant by ([w], 72 (M)) = 0. O

Note that the lemma also holds when ¢ is no longer Hamiltonian by defining
h = 7 o F using the holomorphic bundle projection 7: R x My — R x S1.

It follows that we only have to study punctured J#-holomorphic curves
(h,u): $ > RxS'xM,S = CP'—{(z)} with two or more punctures, where it
remains to understand the map 1. Note that by Proposition 2.2 the perturbed Cauchy—
Riemann equation for u depends on the S*-component s> = h9 + 4 of the map h.
Starting with the case of two punctures, we make precise the well-known connec-
tion between symplectic Floer homology and symplectic field theory for Hamiltonian
mapping tori.

Proposition 2.4. The J T -holomorphic cylinders connecting the R® -orbits (x, T)
and (x~, T)inRxS'xM correspondto the Floer connecting orbitsin M between the
one-periodic orbits x* (T ) and x~(T-) of the Hamiltonian Hr(t,-)y =T - H(Tt,")
and the family Jyp(t, -y = J(Tt, ) of w-compatible almost complex structures.

Proof. Whenn = 2,ie.,z = (z7,z™1), we find an automorphism ¢ € Aut(CP?!)
withg(z™) = 0, p(z 1) = oo. Since in the moduli space two elements are considered
equal when they agree up to an automorphism of the domain, we can assume that
z = (0, o0). Itfollows from Lemma2.3. thath: CP!—{0,00} @ RxS! - Rx S!
is of the form

his,t) = (T's +s0, Tt + tg)

with T = T 4+ T~. We can assume that 4 is given by h(s,t) = (Ts, T't) after
composing with the automorphism ¢ (s, 1) = (s—so/T,t—to/ T)of Rx S!. Now the
claim follows from the fact that the Cauchy—Riemann equation for u: R x St — M
reads as

Oy gu -3y = dgu + J(Tt,u)- Qu + T - X7 (Tt,u)) =0,

with 7 - X7 = xT'H O

2.2. How to achieve transversality with S!-symmetry. For understanding the
curves with more than two punctures, observe that in these cases the underlying
punctured Riemann spheres S are stable, so that every automorphism ¢ of s pre-
serving the ordering of the punctures is the identity. While this implies that different
maps h = h¥ + (sg, tp) give different elements in the moduli space, the main problem
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is that the solutions for ¥ moreover depend on the S'-component hy = h9 + 1o of
the chosen map 4, that is, the S !-parameter 1o. Instead of studying how the solution
spaces for u vary with to € S, it is natural to restrict to special situations when the
solution spaces are fg-independent. Moreover, when this can be arranged in a way
that all asymptotc orbits are nondegenerate and we can achieve transversality for
the moduli spaces, we can use the resulting S!-symmetry on the moduli spaces to
show that they do not contribute to the algebraic invariants in rational symplectic field
theory. Itis easily seen that the Cauchy—Riemann equation is independent of 75 € S*
when both the family of almost complex structures J (¢, -) and the Hamiltonian H (¢, -)
are independent of ¢+ € S!'. Hence for the following we will always assume that

Jt,y=J, H(t,-)=H.

Nondegeneracy of the periodic orbits. It is well-known from symplectic Floer
homology that we can achieve that all one-periodic orbits (x, 1) € P(S!x M, H) are
nondegenerate by choosing H to be a time-independent Morse function H: M — R
with a sufficiently small C2-norm, so that, in particular, the only one-periodic orbits
of H are the critical points of H. While this sounds promising to solve the first of
our two problems, note that in contrast to symplectic Floer homology we do not only
study curves which are asymptotically cylindrical to one-periodic orbits (x, 1) but
allow periodic orbits (x, T} of arbitrary period T € N. Now the problem is that the
T -periodic orbits of H are in natural correspondence with one-periodic orbits of the
Hamiltonian 7 - H, while T - H need no longer be C?-small enough. In order (o solve
this problem, we fix a maximal period T = 2% and replace the original Hamiltonian
H by H/2", so that all orbits up to the maximal period 2V are nondegenerate, in
particular, critical points of H/2V,i.e., of H.

Transversality for the Cauchy—Riemann operator. So it remains the problem of
transversality. Although the definition of the algebraic invariants of symplectic field
theory suggests that all we have to do is counting true J# -holomorphic curves in
R xS x M, itis implicit in the definition of all pseudoholomorphic curve theories that
before counting the geometric data has to be perturbed in such a way that the Cauchy—
Riemann operator becomes transversal to the zero section in a suitable Banach space
bundle over a suitable Banach manifold of maps. Itis the main problem of symplectic
field theory, as well as Gromov—Witten theory and symplectic Floer homology for
general symplectic manifolds, that transversality for all moduli spaces cannot be
achieved even for generic choices for J 7. In fact the problem already occurs for
the trivial curves, i.e., trivial examples of curves in symplectic field theory, see [F].
In order to solve these problems virtual moduli cycle techniques were invented, see
[LiaT], [LT], [FOJ; furthermore they were the starting point for the polyfold project
by Hofer, Wysocki and Zehnder, see [H] and the references therein. In order to
solve the transversality problem in our S!-symmetric special case, we combine the
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approach in [CM1] for achieving transversality in Gromov—Witten theory with the
well-known connection between symplectic Floer homology and Morse homology
in [SZ] as follows.

Case of domain-stable curves (n > 3). It is well-known, see e.g. [Sch], that
transversality in Floer homology and Gromov—Witten theory can be achieved by
allowing the almost complex structure on the symplectic manifold (M, w} to depend
on points on the punctured Riemann surface underlying the holomorphic curves, i.e.,
introducing domain-dependent almost complex structures. In this paper we fix the
S L-independent almost complex structure J and introduce domain-dependent Hamil-
tonian perturbations H , which however are still S!-independent, where we show in
Section 4 that the resulting class of domain-dependent cylindrical almost complex
structures JH on R x S x M is still large enough to achieve transversality for all
moduli spaces of curves with three or more punctures. Here we let H rather than J
depend on the underlying punctured spheres, so that we achieve transversality also
for the trivial curves, i.e., the branched covers of trivial cylinders. Note that in order
to make the latter transversal, 1t 1s clearly necessary (o make the stable Hamilto-
nian structure on S x M domain-dependent. In order to make the choices for the
domain-dependent Hamiltonian perturbations i/ compatible with gluing of curves in
symplectic ficld theory, the perturbations must vary smoothly with the position of the
punctures z = (zE, .. .,z:i),

H=H;: (CPl—{ZfE,...,Z:i})xMaR.

In order to guarantee that finite energy solutions are still asymptotically cylindrical
over periodic orbits of the original domain-independent Hamiltonian H, we require
that H, agrees with H over the cylindrical neighborhoods of the punctures. TIur-
thermore, in order to ensure that the automorphism group of CP! still acts on the
moduli space, they must satisfy Hy(z) = ¢« H; = H; o ™!, When the number of
punctures is greater or equal than three, 1.e., the punctured Riemann sphere is stable,
it follows that H; should depend only on the class [z] € My, in the moduli space of
n-punctured Riemann spheres.

Outline of the construction of domain-dependent Hamiltonians. For the con-
struction of such domain-dependent structures we follow the ideas in [CM1], where
for precise definitions we refer to the upcoming section on domain-dependent Hamil-
tonian perturbations. For n > 3 denote by My, the moduli space of stable genus
zero curves modelled over the n-labelled tree with one vertex, i.e., the moduli space
of Riemann spheres with » marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne—Mumford
space Mo,n = ||y Mr which, equipped with the Gromov topology, provides the
compactification of the moduli space Mg ,. It is a crucial observation that we have



Vol. 85 (2010) Contact homology of Hamiltonian mapping tori 215

a canonical projection 7 : J\T(o,nﬂ — ﬂo,n by forgetting the (n + 1)** marked point
and stabilizing. Note that to any nodal curve z we can naturally associate a nodal Rie-
mann surface X; = [ [,c7 So/{Zap ~ 284} With punctures (z ), obtained by gluing
a collection of Riemann spheres S, = CP! at the connecting nodes zyg € CP!. It
then follows that the map 7 : MO,HH — Mo,n is holomorphic and the fibre 71 ([z])
is naturally biholomorphic to ;. We then choose for every n > 3 smooth maps
H™: Mone1 — C®(M) and for [z] € My, then define H: to be the restriction
of H™ to the fibre 7~ 1([z]) =~ ¥,. In particular, forz € My, C ﬂo,n we get from
¥, = CP! amap

H; = H®| 1q,): CP! — C®(M).

Assuming that H @) Lo H (n—1) gre already chosen, the compatibility for the domain-
dependent Hamiltonians under gluing of the underlying Riemann surfaces is en-
sured by specifying H ") on the boundary dMg 41 = Mo’n+1 — Mo 41 USING
H® .. H®D_ For this observe that d.Mg_, 4 consists of the fibres 77 1([z]) =
3, over [z] € Mo, = ﬂg,n — Mo, and of the punctures z1,...,z, € CP! = b 38
in the fibres over [z] € My ,. In order to see that we can indeed define H ") induc-
tively we crucially use that there are no holomorphic planes and spheres. Assuming
we have determined H™ for n > 2, we organize all maps into a map

H: | [Mongr— C®(M).

Note that for n = 2 the space Mg, ,+1 just consists of a single point.

Case of cylinders (7 = 2). For curves with two or less punctures, the compatibility
with the action of Aut(CP!) implies that H; must be independent of points on the
domain, i.e., just a function on M. On the other hand it is known from symplectic
Floer homology that for fixed almost complex structure J it is important to let the
Hamiltonian explicitly be S!-dependent to have transversality for generic choices,
which seems to destroy our hopes for computing the symplectic field theory of R x
S1 x M with Sl—independent H and J. 'To overcome this problem, we remind
ourselves that we already assume H to be so small such that all one-period orbits are
nondegenerate, in particular, critical points of H. Furthermore by Proposition 2.4 we
know that the J# -holomorphic cylinders naturally correspond to Floer connecting
orbits. The important observation is now to by choosing H with small C2-norm, e.g.
by rescaling, we can achieve that all Floer trajectories u are indeed Morse trajectories,
i.e., gradient flow lines u (s, ¢) = u(s) of H between the critical points x~ and x™
withrespect to the metricw(:, J-) on M. When the pair (H, (-, J-}) is Morse-Smale,
the linearization F,, of the gradient flow operator is surjective, and it is shown in [SZ]
that this indeed suffices to show that the linearization D,, of the Cauchy—Riemann
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operator 1s surjective as well. More precisely, we use the following lemma, which is
proven in [SZ].

Lemma 2.5. Let (H, J) be a pair of a Hamiltonian H and an almost complex struc-
ture J on a closed symplectic manifold with ([@], m2(M)) = 0 so that (H, w(-, J-})
is Morse—Smale. Then the following holds:

* If t > 0 is sufficiently small, all finite energy solutions u: R x St — M of
dy.cgu = dgu + J(w)(8u + XTH(u)) = 0 are independent of t € S.
 Inthis case, the linearization D], of J J.tH is onto at any solutionu: R x S Loy

M.

Recall that we fixed a maximal period T = 2% and let P(H /2, < 2¥) denote
the set of periodic orbits of the Reeb vector field R/ 2% for the Hamiltonian H o
with period less or equal than 2%V, We collect our results about moduli spaces of
holomorphic curves in R x S x M in the following

Theorem 2.6. Let (M,w) be a closed symplectic manifold which is symplecti-
cally aspherical, equipped with an w-compatible almost complex structure J and
H: M — R so that Lemma 2.5 is satisfied with t = 1. Further assume that for any
ordered set of punctures z = (ch, ey Z::i) containing three or more points we have

constructed a domain-dependent Hamiltonian perturbation Hy : (CP1—{z\)x M —
R of H with the properties outlined above. Then, depending on the number of punc-
tures n we have the following result about the moduli spaces of JH -holomorphic
curves in R x S x M:

* n = 0: All holomorphic spheres are constant.

* n = 1. Holomorphic planes do not exist.

o n = 2: For T < 2V the automorphism group Aut(CP') acts on the para-
metrized moduli space M°(S' x M, (xT,T), (x~,T), JH/2N) of holomorphic
cylinders with constant finite isotropy group 7./ T 7. and the quotient can be

naturally identified with the space of gradient flow lines of H with respect to
the metric w(-, J-) on M between the critical points x and x™.

e n > 3 For P, P~ < P(H/2N,< 2Y) the action of Aut(CP) on the
parametrized moduli space is free. There still remains a free S'-action on the
moduli space after dividing out the R-translation, where the quotient is given
by

{(u,2) 1u: CP — {2} = M : (1), (+2)}/ Aut(CP1)

with
(+1): du+ X2 (2, 0) ® dh+ T(u) - (du+ X (z,u) @ dhD) i = 0,

+
(%2):u o Wf(s, 1) R xff.
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Proof. Observe that all statements rely on Proposition 2.2 and Lemma 2.3. For
n = 2 we additionally use Proposition 2.4 and Lemma 2.5 and remark that the
critical points and gradient flow lines of H/2% are naturally identified with those of
H . For the statement about the isotropy groups observe that for fi(s,t) = (T's, Tt)
and u (s, 1) = u(s) we have

k
(hyu) =(hop,ucp) <= p(s,t) = (s,t—i—T), keZ/TZ.

For the case n > 3 observe that the action of Aut(CP!) is already free on the
underlying set of punctures. [

3. Domain-dependent Hamiltonians

Based on the ideas in [CM1] for achieving transversality in Gromov—Witten theory,
we describe in this section a method to define domain-dependent Hamiltonian per-
turbations. In the following we drop the superscript for the punctures, z = (z ),
since for the assignment of Hamiltonians we do not distinguish between positive and
negative punctures.

3.1. Deligne-Mumford space. We start with the following definition.

Definition 3.1. A n-labelled tree is a triple (7, E, A), where (T, E) is a tree with
the set of vertices 7 and the edge relation £ C T x T. The set A = (Ag)per 152
partition of the index set I = {1,....n} =) Ay. We write ¢EB if (o, ) € E.

A tree is called stable if for each o € T we have ny, = #iA, + 8{p : « EB} > 3.
For n = 3 an-labelled tree can be stabilized in a canonical way, see [CM1], [MDSa],
where one first deletes vertices « with n, < 3 to obtain st(7) C T and then modifies
E, A in the obvious way.

Definition 3.2. A nodal curve of genus zero modelled over T = (T, E, A) is a tuple
z = ((zop)arp. (zx)) of special points zyg, zx € CP! such that for each « € T the
special points in Zo = {zpp 1 aEB} U {zk 1 k € Ay} are pairwise distinct.

To any nodal curve z we can naturally associate a nodal Riemann surface X, =
Haer Sa/{zap ~ zpe) with punctures (zx), obtained by gluing a collection of
Riemann spheres S, = CP! at the points z,p € CP!. A nodal curve z is called
stable 1f the underlying tree 1s stable, 1.¢., every sphere S, carries at least three special
points. Stabilization of trees immediately leads to a canonical stabilization z — st(z)
of the corresponding nodal curve.
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Denote by My C (CPHYE x(CPHY” the space of all nodal curves (of genus zero)
modelled over the tree T = (T, E, A). An isomorphism between nodal curves z, z’
modelled over the same tree is a tuple ¢ = (Pg)eer With ¢y € Aut(CP!) so that
P(z) =2, ie., Z(;ﬁ = Po(zqp) and z;, = o (zx) if k € A,. Observe that ¢ induces
a biholomorphism ¢: X, — 2. Let Gy denote the group of biholomorphisms.
For stable T the action of G on ﬂT is free and the quotient My = MT /Gr isa
(finite-dimensional ) complex manifold.

Definition 3.3. For n > 3 denote by My , the moduli space of stable genus zero
curves modelled over the n-labelled tree with one vertex, 1., the moduli space of
Riemann spheres with » marked points. Taking the union of all moduli spaces of
stable nodal curves modelled over n-labelled trees, we obtain the Deligne—-Mumford
space

C/\’_to,n - ]_[ MTu
T

which, equipped with the Gromov topology, provides the compactification of the
moduli space My, of punctured Riemann spheres.

_ By aresult of Knudsen (see [CM1], Theorem 2.1) the Deligne-Mumford space
My, carries the structure of a compact complex manifold of complex dimension n—3.
For each stable n-labelled tree 7 the space M1 C J\Zogn 1s a complex submanifold,
where any M1 # My , is of complex codimension at least one in J\Zo,n.

It is a crucial observation that we have a canonical projection 7 : M03n+1 — J\T(o,n
by forgetting the (rn + 1)* marked point and stabilizing. The map 7 is holomorphic
and the fibre 7~ 1([z]) is naturally biholomorphic to X,. Moreover, for [z] € Mo.n,
every component S, C X, is an embedded holomorphic sphere in J\/_(o,n“. Note
that Mo n+1 & 7 (Mon) as 71 ([2]) N Mony1 = CP — {(zp)} for [2] € Mo,n.

3.2. Definition of coherent Hamiltonian perturbations. With this we are now
ready to describe the algorithm how to find domain-dependent Hamiltonians H
on M.

Forn =21let H®: M — R be the domain-independent Hamiltonian from The-
orem 2.6, 1.e., such that with the fixed almost complex structure J on M Lemma 2.5
is satisfied with r = 1.

For n > 3 we choose smooth maps H ) Mo,n+1 — C*(M). For [z] € J‘Zo,n
we then define H; to be the restriction of H ™) 10 the fibre 77 '([z]) =~ ;. In
particular, for z € Mg, C My, we get from I, = CP! a map

HZ = H(n)|ﬂ71([d)2 (C]P)l — COO(M),

where the biholomorphism %, = CP! is fixed by requiring that (z1, z2, z3) are
mapped to (0, 1, 00). Further let d; = inf{d(zx.,z;) : 1 < k < [ < n} denote
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the minimal distance between two marked points with respect to the Fubini—Study
metric on CP!, let D;(z) be the ball of radius d,/2 around z € CP! and set
N; = D;(z1) U---U D;(z,). Then we choose H™ 5o that H, agrees with H®
on N,

The gluing compatibility is ensured by specifying H™ on the boundary
IMonr1 = av_(o,n“ — Mo.n+1, which consists of the fibres r(z]) = >, over
[z] € AIMy,, = J(O,n — My, and the points zy, ...,z, € CP! = ¥, in the fibres
over [z] € Mo,,.

Note that we have already set H,(z¢) = H®@ For [z] € My, = J(o,n — Mo
we have H; = H™ |, 1,3 2, — C®(M) with £, = [[Sy/ ~ and §T > 2.
As before let Zo = {z¥, ..., z, } denote the set of special points on Sy. Then we
want that

Hg|Sa — Hga

for z% = (z}).

Since ngy = §Z4 < n, this requirement implies that a choice for the map
H® . fA/_(O,n+1 — C%(M) also fixes the maps H®) . ﬂo)nf_kl — C>*(M) for
n’ < n.

It H®: f(o,kﬂ — C*®(M), k = 2,...,n — 1 are compatible in the above
sense we call them coherent. We show how to find H ™ : J\/_(o,n+1 — C®(M) so
that H®, ..., H™ are coherent.

Let [z] € OMp, with X, = [] S,/ ~. Under the assumption that H,« was
chosen to agree with H ) on the neighborhood N« of the special points it follows that
all H,« fittogether to asmooth assignment H,: X, — C*(M). LetT = (T, E, A)
be the tree underlying z. Then it follows by the same arguments that the maps H )
fit together to a smooth map H? : 771 (M7) — C®(M). Nowlett: T — T'bea
surjective tree homomorphism with §77 > 2. Then M7 C M7 and it follows from
the compatibility of H®, ... . H"=D that HT and HT" agree on 7' (M7). Hence
we get a unique assignment on d Mg 1 = 7L [{M7 : §T > 2}).

After having specified the map H®: M0’n+1 — C*(M) on the boundary
dMo.ns1, we choose H™ in the interior Mo+ so that H® is smooth (on the
compactification Mo 1) and H () agrees with H® on N, < 77 1([z]) for all
[Z] < Mo,n-

Assuming we have determined H ™ for n > 2, we organize all maps into a map

H: ]_[MO,n+1 — C(M).

Note that for n = 2 the space Mo n4+1 Just consists of a single point. A map
H as above, i.e., for which all restrictions H ™ Monr1 = C(M), n € N are
coherent, 1s again called coherent.
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Together with the almost complex structure J recall that this defines a domain-
dependent cylindrical almost complex structure J# on R x S1 x M,

JH UMO,n+1 — Jea(R x ST x M).
n

With this generalized notion of cylindrical almost complex structure we call, accord-
ing to Theorem 2.6, amap F = (h,u): CP'—{z} — R xS x M J# -holomorphic
when it satisfies the domain-dependent Cauchy—Riemann equation

9, () = dhw) + Iz hou) - d(hu) i =0,
which by Proposition 2.2 1s equivalent to the set of equations oh = 0 and
dra() =du+ XF(zou)® dhg + J(u) - (du + X[ (z,u) @ dhS)-i = 0

with X H (z, ) denoting the symplectic gradient of H(z,-): M — R.

Since H(z, -) agrees with the Hamiltonian H®): M — R near the punctures, it
follows that any finite-energy solution of the modified perturbed Cauchy—Riemann
equation again converges to a periodic orbit of the Hamiltonian flow of H® as
long as all possible asymptotic orbits are nondegenerate. Observe that it follows
from the definition of H, that the group of Mdbius transformations still acts on
the resulting moduli space of parametrized curves. We show in the section on
transversality that for any given almost complex structure J on M we can find
Hamiltonian perturbations H : [ [, Mona+1 — C°°(M), so that all moduli spaces

MO(SLx M; P, P~ JH2YY are cut out transversally simultaneously for all max-
imal periods 2N N e N.

3.3. Compatibility with SFT compactness. It remains to show that the notion
of coherent cylindrical almost complex structures J 7 is actually compatible with
Gromov convergence of J -holomorphic curves in R x S x M.

Definition 3.4. A J -holomorphic level £ map (h,u, z) consists of the following
data:

o Anodalcurve z = [[ S,/ ~€ J\Zo,n and a labeling o : T — {1,..., £}, called
levels, such that two components o, f € T with «Ef have levels differing by
at most one.

o JH holomorphic maps Fy = (hg.ty): Se — R x ST x M (satisfying the
equation d{(hy, uy) + JZ‘Z (z,hg,ug) - d(hg,uy) -1 = 0) with the following
behaviour at the nodes.

If o(a) = o(B) + 1 then zgp is a negative puncture for (hq, ue) and zg, a
positive puncture for (4, ug) and they are asymptotically cylindrical over the
same periodic orbit; else, if o («) = o (B), then (hy, uy)(zeg) = (hg. up)(zga)-
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With this we can give the definition of Gromov convergence of J -holomor-
phic maps.

Definition 3.5. A sequence of stable J ¥ -holomorphic maps (%", u”, z") converges
to a level £ holomorphic map (&, u, z) if for any « € T (T is the tree underlying z)
there exists a sequence of Mobius transformations ¢> € Aut(CP?) such that:

o for (h,u) = (h1,h2,u) = (h1,a.h2,4.ua)aer there exist sequences s7, i =
1,...,£ with

By o gl + 58— hia. (i, u") 0 ph > (haq.ta)

forall @ € T in C2°(S),

oc

» forallk = 1....,n wehave (¢2) '(z}) — zx itk € Ay (2 € Sa),
 and (p2) 1o ¢p — Zap for all E.

Note that a level £ holomorphic map (h,u,z) is called stable if for any [ <
{1,..., £} thereexists ¢ € T witho (o) = [ and (hy, uy) 1S not a trivial cylinder and,
furthermore, if (/14, Uy ) is constant then the number of special points ny, = §Z, > 3.
Although any holomorphic map (", u”,z") € M(S! x M; P+, P~ JH) with
n = Pt + 1P~ > 3 is stable, the nodal curve z underlying the limit level £
holomorphic map (%, u, z) need not be stable. However, we can use the absence of
holomorphic planes and (non-constant) holomorphic spheres in R x S x M to prove
the following lemma about the boundary of M(S' x M; PT, P~; JH)/R.

Lemma 3.6. Assume that the sequence (h”,u*,z") € M(S! x M; P+, P~ JH)
Gromov converges to the level £ holomorphic map (h, u, z)}. For the number of special
poinits ny on the component Sy C Xz it holds that

s ng <n=HPY + 4P~ foranya €T,

* ifng = n for some « € T then all other components are cylinders, i.e., carry
precisely two special points.

Proof. We prove this statement by iteratively letting circles on CP! collapse to obtain
the nodal surface X,.

For increasing the maximal number of special points on spherical components
on a nodal surface we must collapse a special circle with all special points on one
hemisphere. Even after collapsing further circles to nodes there always remains one
component with just one special point (a node). Since by {[w], 72 (M )) = O there
are no holomorphic planes and bubbles this cannot happen, which shows the first part
of the statement. For the second part observe that collapsing circles with more than
one special point on each hemisphere leads to two new spherical components which
carry strictly less special points than the original one. H
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Letn > 3. For chosen H: ], Mo,nt1 — C°°(M) recall that for stable nodal
curves z we defined H; = H|, 1) : Lz — C*(M). For general nodal curves z
(with n > 3) we can use the stabilization z — st(z) and the induced map st : X; —
Yi(z) to define

H (z) := Hy)(st(z2)), ze€X;

(compare [CM1], Section 4) with corresponding cylindrical almost complex structure
JZH (Z) = Js{{@)(St(Z)) < gcyl(sl X M)

Proposition 3.7. A JH -holomorphic level £ map (h,u,z)is J zH -holomorphic.

Proof. 1f z is stable this follows directly from the constructionof J 7 as the restriction
of J; H 10 a component S, C 2, agrees with J_5 7 when z¢ = (z7,...,z,, ) denotes
the ordered set of special points on Sy. If z is not stable the proposition relies on the
following two observations.

Since there are no spherical components with just one special point all special
points on stable components of X, are preserved under stabilization, i.e., a node
connecting a stable component with an unstable one is not removed but becomes a
marked point on Xg(;).

On the other hand points on a cylindrical component (a tree of cylinders) are
mapped under stabilization to the node connecting it to a stable component (which then
is a marked point for the nodal surface g (;)). Since JH a(z) Dear special points agrees

with complex structure J H'® thosen for cylinder we have J, Hzy= g8 t(z) (st(z)) =

JH ® for any z € X lying on a cylindrical component. ]

In order to show the gluing compatibility we prove the following proposition.

Proposition 3.8. Ler(hV,u”,z") be asequence of J Z‘f{ -holomorphic maps converging
to the level £ map (h,u,z). Then (h,u,z) is JZH -holomorphic.

Proof. Recall from the definition of Gromov convergence that for any « € 7 (the
tree underlying z) there exists a sequence ¢ € Aut(CP1)and foranyi € {1,..., £}
sequences s € R such that 4] o ¢}, + S;(a) — Ny g and (hs, u”)o Pl — (hya, tg).
Hence it remains to show that

I ops— a1

in C®(Sy, Fey(S' x M))asv — oo foralla € T.

Since the projection from the compactified moduli space to the Deligne-Mumford
space My, 1s smooth (see Theorem 5.6.6 in [MDSal)), it follows from (4", u",z") —
(h,u,z)thatz¥ = st(z") — st(z) in J\/_to,n.
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For o € st(T') and z € S, we have st(z) = z and it follows that
(2", $4(2)) = (5t(2), 2) € Mon+1-

. (n) — . .
Since JH: Mo.nr1 — {r’CyI(Sl x M) is continuous, we have

JE@u2) — 15 (2) = 1F(2)

in $eu(S U'x M) for all z € S,. The uniform convergence in all derivatives follows

: ()
by the same argument using the smoothness of J &

_ On the other hand, if & ¢ st(T') and z € Sy, then st(z) = zg, € st(z) if «£P. In
Mo.n+1 we have that

(2", ¢4(2)) = (2. 280)
since (¢E)_1(¢>; (z)) — zp4 € Sy and therefore

TR e (2) — I stz = I (2) O

4. Transversality

We follow [BM] for the description of the analytic setup of the underlying Fredholm
problem. More precisely, we take from [BM] the definition of the Banach space
bundle over the Banach manifold of maps, which contains the Cauchy—Riemann
operator studied above as a smooth section.

4.1. Banach space bundle and Cauchy-Riemann operator. For a chosen coherent
Hamiltonian perturbation H: | ], Mon+1 — C*(M)andfixed N € N, we choose
ordered sets of periodic orbits

PE={(xETH),..., x5, TEN c P(HP 2N < 2M),
I #&] gk 3

where n = nt + n™. Instead of considering CP! 2 S? with its unique conformal

structure, we fix punctures zli’o, oz € S and let the complex structure on
S =252_— {zf’o, cee, sz’o} vary. Pollowing the constructions in [BM] we see that

the appropriate Banach manifold 874 (R x S x M: (xF, TF)) for studying the
underlying Fredholm problem is given by the product

BPYR x S x M, (xF, TE)) = HLEA(S, C) x BP(M: (xF)) x Mo

const

with d > 0 and p > 2, whose factors are defined as follows.
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The Banach manifold B7 (M ; (x )) consists of maps u € H1 P(S, M), which

converge to the critical points xf e Crit( H®) as z € S approaches the puncture

,,f 0 More precisely, if we fix linear maps @,f = R TX%M , the curves satisty

uoyE(s,1) = exXp & (OF -vif(s. 1)

for some v € HLP(R* x ST, R?™), where exp denotes the exponential map for
the metric w(-, J-) on M.

The space Hcglﬂtd(S C) consists of maps /1 € Hl (S C), for which there exist
stk 15Ky € R?2 = €, such that for all k = 1,.... n* the maps

RE x ST R2, (5,0) > ((hopE)(s, 1) — (5375, 15%)) - e

are in HY? (RE x S, C). In other words, H2Z:4 (S, C) consists of maps differing
asymptotically from a constant one by a function, which converges exponentially fast
to zero.

Finally My , denotes, as before, the moduli space of complex structures on the
punctured sphere S, which clearly is naturally identified with its originally defined
version, the moduli space of Riemann spheres with » punctures.

Here we represent My, explicitly by finite-dimensional families of (almost) com-
plex structures on S , $0 that 7; Mo,, becomes a finite-dimensional subspace of

{y € End(TS) s vji+ jy =0}

Note that in [BM] the authors work with Teichmiiller spaces, since the corresponding
moduli spaces of complex structures, obtained by dividing out the mapping class
group, become orbifolds for non-zero genus.

Note that for the identification

BPYR x St x M, (xF, TE) = HEEA(S, C) x BP(M: (xF)) x Mo

const

we identify 1 € HL2:4(S,C) with the map 7 § — R x S givenby h = h0 + h,
where h° denotes an arbitrary fixed holomorph1c map h°: S — R x S! =~ CP! —
{0, 00}, so that z,, =045 a pole/zero of order Tk . Note that we do not use asymptotic
exponential weights (depending on d € R™) for the Banach manifold 8% (M ; (x f)),
since we are dealing with nondegenerate asymptotics

Let H?(u*TM) consist of sections £ € H,:” (u*TM), such that
Eoyi(s.0)=(d GXPA%)(@?CE v (s.0) OF g (5.1)

with §i Ve HLP(RE x ST, R2™) for k = 1,...,n. Note that here we take the
differential of eXPp, i TX%M — M at ©Ff -vE(s,1) € TxkiM , which maps the
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tangent space to M at xk to the tangent space to M at
eXp, + (OF -vE(s,1) = u oy (s,1).
Then the tangent space to 874 (R x S x M; (x,f, Tki)) at (71, u, j) is given by

T(huj)ﬁpd(Rxsl XM (xk :Tki)) 1pd(S,C)@Hl’p(M*TM)@TjMO,n.

const

Consider the bundle A%! ® 5.0 w*TM, whose sections are (0,1)-forms on S with
values in the pullback bundle »*TM equipped with the complex structure J. The
space LP(A%! ®; 5 u*TM) is defined similarly as HVP(u*TM): it consists of
sections « € L¥ , which asymptotically satisfy

loc*
(i)Y a(s, 1) - 35 = (d exp i)(@k vE(s, 1) - OF ,jto(s r)

with af’o e LALRT x 81, B2y,
Over 8P4 = BPYR x ST x M; (xff, Tki)) consider the Banach space bundle
gr4 — 8P4 with fibre

85’5] = LAY ®;, ©) @ LY (A" ;5 u*TM).

Assume that we have fixed a coherent Hamiltonian perturbation H : [ [ Mo 41 —
C°(M). Our convention at the beginning of this section, i.e., fixing the punctures
on SZ but letting the almost complex structure j: TS — TS vary, now leads to a
dependency H(j,z) = H™(},z) on the complex structure j on S and points z € S
For the following exposition letus assume N = 0 inorder to keep the notation simple.

The Cauchy—Riemann operator

0 m(hou, j)=0; yulhou) =dhu)y+ TP,z hou)-d(h,u) - j
is a smooth section in £7°¢ — B¢ and naturally splits,

gj,lH(hv u) = (dh, SJ,HM) € Lp’d(/\o’1 ®;, C) @ LP (A ®; 7 u*TM).

Here 0 = d ;i 1s the standard Cauchy—Riemann operator for maps 4 : (S,j) —
R x St and 9 g is the perturbed Cauchy-Riemann operator given by

07 () =du+ X", zu0) ®dhS + J(u) - (du+ XH (j.z,u) ® dhl) - .

where again X7 (}, z, -) denotes the symplectic gradient of H(j,z,-): M — R. It

follows that the linearization Dh ", of d & atasolution (h,u, j) splits,

D_

hu‘]_Dﬁ,u@D"
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with D;: T; Mo — gff, and

Dy, = diag(d, D,): Huli (S,C) @ HYP (u*TM)
— LPA R, C) @ LP(A™ ®,.7 u*TM),

where

Dy: H*"P(w*TM) — LP(A"!' ®; 5 u*TM),
Dyt =VE+TJW)-VE-j +Ved(u)-du-j
+VeXH(jzou) @ dhY 4+ VeVH(j, 2, u) @ dh?

is the linearization of the perturbed Cauchy—Riemann operator 0 J.H.

4.2. Universal moduli space. Let #¢(M: H®, ... H® V) denote the Banach
manifold consisting of C*-maps H " : Mopy1 — C (M), which extend as C*-
maps 0 Mo 41 asinducedby H® k =2,....n—1and H™(j,-) = H®P ona
neighborhood Ny C S of the punctures.

Note that it is essential to work in the C*-category since the corresponding space
of C*-structures just inherits the structure of a I'téchet manifold and we later cannot
apply the Sard-Smale theorem.

The tangent space to #¢ = HE (M HP ... H* Vyat H = H™ is given by

TH&’ffﬁ(M;H(”,...,H(”‘”) — ¥4 (M:0,...,0).

The universal Cauchy—Riemann operator 7 (ﬁ, i, 1 B i= B JH (h,u, j)extends

to a smooth section in the Banach space bundle g4 . gr4d x 3¢ with fibre

gffJH @,f = LPYAY @ C) @ LP(AY @, 5 u*TM).

Letting J 7 @ P " denote the domain-dependent cylindrical almostcom-
plex structures on R x S' x M induced by J and H® ..., H®=D we define the

universal moduli space M(S' x M; PT, P~; JHZ ,JH(nil)) as the zero set of
the universal Cauchy—Riemann operator,

i —. H(k) H—
M(SYx M, PT, P (JHT )y
= {(h.u,j. H)ye BP% x #*: 37(h.u. j. H) = 0}

Theorem 4.1. For n > 3 let H®, ... H®D pe fixed. Then for any chosen
(P, P )y with Pt + 8P~ = n, the universal moduli space

M(ST < M: PT, P (JH" izl
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is transversally cut out by the universal Cauchy—Riemann operator Ay BPAxH' —
P4 for d > 0 sufficiently small. In particular, it carries the structure of a C -
Banach manifold.

The proof relies on the following two lemmata.

Lemma 4.2. The operator 9: H L-p.d (S,C) —> LP4 (AL ®;.i C) is onto.

const
Proof. Fix a splitting
Huld(S,0) = HWP4(5,C) @ T

where I © C%(S, C) is a 2n-dimensional space of functions storing the constant
shifts (see [BM]). Given a function pgz: S — R with (pag o YE)(s,1) = e4s,
multiplication with ¢4 defines isomorphisms

HYP4(S,.C) = HY?(S,C),
LP4(T*S ®,; C) —> LP(T*S ®;, C).
under which 9 corresponds to a perturbed Cauchy—Riemann operator
0g =9+ Sq: HYP(S,C) — LP(T*S ®,; C).
With the asymptotic behaviour of g4 one computes
STH(t) = (Sq oY) (Ho0, 1) = diag(Fd, Fd)

so that the Conley—Zehnder index for the corresponding paths W% : R — Sp(2m)
of symplectic matrices is F1 for d > 0 sufficiently small. Hence the index of

9: HLP4 (S €) — LP4(T*S ®;; C) is given by
indd =dmI" +inddy; =2n+ (—n+1-2—n)) =

where the sum in the big bracket is the usual index formula for Cauchy—Riemann
type operators. On the other hand, it follows from Liouville’s theorem that the kernel
of @ consists of the constant functions on S, so that dim coker d = 0. |

Lemma 4.3. Forn > 3 the linearization Dy, g of dy(u,H)y =19 7.1 (1) is surjective
atany (h,u, j, H) € M(S" x M: P+, P~ ()12,

Proof. The operator Dy, g is the sumof the linearization Dy, of the perturbed Cauchy—
Riemann operator 97, g and the linearization of d; in the J¢-direction,

Dy:Tg#Ht — LP(A" ®; ; u*TM),
DG =X%(j,z.u) @ dhS + J)X%(j.z.u) ® dh?.
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We show that D, g is surjective using well-known arguments. Since D,, is
Fredholm, the range of Dy, g in LP(A%! ®; 7 u*TM) is closed, and it suffices to
prove that the annihilator of the range of Dy, g is trivial.

We identify the dual space of L? (A% ®; y u*TM) with LY(A®! ®; j u*TM),
1/p + 1/q = 1 using the L?-inner product on sections in A*! ®; ; u*TM, which
is defined using the standard hyperbolic metric on (S, j) and the mettic w(-, J-)
on M.

Letn € ég;j’jﬂ = LAY ®;; C)@® LI(A%' ®; 7 u*TM) such that

(Dy,g - (€. G).m) =0

forall § € HY?(u*TM) and G € Ty J*. Then surjectivity of D, g is equivalent
to proving n = 0.

From {D,&,n) = Oforall £ € HYP(u*TM), we get that 7 is a weak solution
of the perturbed Cauchy—Riemann equation D;;n = 0, where D, is the adjoint of
D,,. By elliptic regularity, it follows that 7 1s smooth and hence a strong solution. By
unique continuation, which is an immediate consequence of the Carleman similarity
principle, it follows that » = 0 whenever n vanishes identically on an open subset
of S.

On the other hand we have
(Ja)X(jz,0) ® dBY + X (j,z,u) ® dh, n(z)) dz

S

0=(DuG,n) = [
_ [_(vc;(j,z, u) ® dh? — J)VG (), z.1) @ dhl. y(2)) dz
S

forall G € Ty #¢. When z € S is not a branch point of the map #°: § — R x S,
observe that we can write

n(z) = 71(z) ® dh] + n2(2) ® dh
with 75 (2) + J(u)n1(z) = 0, since 5 is a (0,1)-form. It follows that

(VG(j,z,u)®@dh — J()VG(],z,u) ® dh), n(z))
= (VG(j,z,u) @dh — J)VG(j,z,u) @ dhY, n1(z) @ dhY — J(w)n:1 () ® dh)
= (VG(j,z,u),m(@) - |dh|1* + (J)VG(,z,u), J)m (2)) - |dh3|?
= ||dh°|” -{VG(j,z,u),m(2)) = [|dh°|* -dG(j,z,u) - m(2),
where ||dh°|? = ||dR)|* + ||dhY|)? and dG(j,z,-) denotes the differential of
G(j,z,): M - R.

With this we now prove that 7 vanishes identically on the complement of the set
of branch points of 4%, which by unique continuation implies 7 = 0. Assume (o the
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contrary that n(zo) # 0 for some z, € S, which is not a branch point. Since « is a
(0,1)-form it follows that 77, (z¢) # 0 and we obviously can find Gy € C°°(M) such
that

dGo(u(zo)) - m(zo) > 0.
Setting jo := j,letp € C® (Mg 41, [0, 1]) be a smooth cut-off function around

(Jo.20) € Mo,nt+1 With p(jo,z0) = L and ¢(j,z) = 0 for (j,z) & U(jo,zo). Here
the neighborhood (o, zo)} € Ui(jo) x Ua(zo) = U(jo, zo) C Mo,n+1 1s chosen so
small that

U(jo.20) N (Mopnt1 — Mon+1) =@, Ua(zo) N Ny = @,

and dGo(z, u(z)) - n(z) = 0forall z € Us(zg).

With this define G: Mo 41 XM — Rby G(j,z, p) := ¢(j. 2)-Go(p). But this
leads to the desired contradiction since we found G € Ty H* = Jé’,f (M;0,...,0)
with

(Da -Gy = [ @I - 46Uz mE dz=0. O
Uz (zo

Proof of Theorem 4.1. For n > 3 we must show that the linearization Dy, ; g of

5.]9
the universal Cauchy—Riemann operator dy is surjective at any element (h,u, j. H)
inM(S'xM; P+, P~ (JHY )3_5). Using the splitting D, .y = Dj , y+ D;

we show that the first summand
Djop Hold(S,0) @ T,8P(M: P, P7) @ Ty J¢*
— LAY & ©) @ LP(A™ ®;7 u*TM)

1s onto. However, since )
Dy . g = diag(d, Dy u).

this follows directly from the surjectivity of 3 and Dua =Dy + Dp. ]

The importance of the above theorem is that, combined with Lemma 2.5, we
obtain transversality for all moduli spaces of holomorphic curves in R x ST x M
asymptotically cylindrical over periodic orbits up to the given maximal period 2% .
Moreover we can achieve that this holds for all maximal periods simultaneously.

Corollary 4.4. Forn =2 and T < 2V the moduli spaces
M(S' x M; (x*,T), (x=, T); JH2")

are transversally cut out by the Cauchy—Riemann operator forall N € N. Forn > 3
we can choose H™ e #°, simultaneously for all N € N, so that the moduli spaces
M(Stx M; P, P, JH/ZN) are transversally cut out by the resulting Cauchy—
Riemann operator for all PY, P~ C P(H® /2N < 2Ny with#P+ +#P~ = n.
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Proof. For n = 2 the linear operator
D;,, = diag(d. Dy,)

18 surjective since Dy, 1s onto by Lemma 2.5. Indeed, recall that we have chosen the
pair (H®, J) to be regular in the sense that (H @, w(-, J-}) is Morse—Smale, which
implies that all pairs (H® /2N J)forany N € N are again regular, since the stable
and unstable manifolds are the same.

Forn > 3 and N = 0 the Sard—Smale theorem applied to the map

_ R ar— . T .
M(S' x M PT, P (T2 — H (M (HONZY),  (hou,j H) — H

tells us that the set of Hamiltonian perturbations J{,’rﬁg(P TF = J(,’rﬁg (Pt,P™,0),

for which the moduli space M(S Ix M. Pt P J H } is cut out transversally by

the Cauchy-Riemann operator d;z, is of the second Baire category in Kt =
Jt?,f (M:(H (k))z;lz). Since there exist just a countable number of tuples (P, P7)
with {P + P~ = n, it follows that #5, = H% (0) = N{HL(PH. P7.0) :
P + P~ = n}is still of the second category.
Replacing H®, ..., H®~1 in the above argumentation, for each N € N, by
H® 2N H® D /2N we obtain sets of regular structures J€r€g (N), for which

the moduli spaces M(S! x M: PT, P~ JH2YY are cut out transversally for all
Pt P~ c P(HP /2N, < 2V). However, it follows that K, = M{HL,(N) :

reg

N e N1 is still of the second category in K*. H

5. Cobordism

Since our statements only hold up to a maximal period for the asymptotic orbits,
we cannot use the same coherent Hamiltonian perturbation to compute the full con-
tact homology. As seen above we must rescale the Hamiltonian for the cylindrical
moduli spaces, which clearly affects the Hamiltonian perturbations for all punctured
spheres. For showing that the graded vector space isomorphism we obtain is actually
an isomorphism of graded algebras, we construct chain maps between the differential
algebras for the different coherent Hamiltonian perturbations, which are defined by
counting holomorphic curves in an almost complex manifold with cylindrical ends.

5.1. Moduli spaces. For a given Hamiltonian H: M — R let H:RxM > R
be a smooth homotopy with H (s, = H/2fors < —1and H(s,") = H fors >
+1. Besides that H defines a homotopy of stable Hamiltonian structures (™ AH)
with corresponding (constant) symplectic hyperplane bundles EH = TM and R-
dependent Reeb vector fields R (s, ¢, p) = 9, + X7 (5,1, p), itequips R x S' x M
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with the structure of a symplectic manifold with stable cylindrical ends
((—oc0, —1] x S' x M, 0®/2 AH/2y and ([+1, +00) x S x M, 0™, 1H),

where the symplectic structure on the compact, non-cylindrical part (—1,+1) x
S! x M is given by

QHZLUH—I—dS/\dl‘

with o = w + d H A dt.

Together with the fixed w-compatible almost complex structure J on M, the
homotopy H further equips R x .S ! x M with an almost complex structure J 7 by
requiring that it turns £# = TM into a complex subbundle with complex structure
J and N N .

JH 95 = R¥(s,) = 8+ XH (s, ).

It follows that (R x ST x M, JH) is an almost complex manifold with cylindrical
ends ((—oo, —1]x S' x M, J#/Z) and ([+1, +o0) x ST x M, J¥). Note that J ¥
is indeed w ! -compatible.

For our applications we clearly have to replace the Hamiltonian #: M — R by
the domain-dependent Hamiltonian perturbation H: [], Mon+1 X M — R from
before. It follows that the Hamiltonian homotopy H has to depend explicitly on
points on the underlying stable punctured spheres, i.e., for the following we consider
coherent Hamiltonian homotopies

H: ]_[Mo,n+1xRxM—>R,
n

with corresponding domain-dependent almost complex structures

I ] Mopsr — g(S' x M),

While it is again clear that the moduli spaces of ./  -holomorphic curves with more
than two punctures come with an S !-symmelry, it remains to verify nondegeneracy
for the asymptotic orbits and transversality for the curves. Note for the first that we
again have to consider rescaled versions H N: L, Mon+1 xR x M — R with
Hn(s) = H(s/2Y)/2N. Since Hy(s) = H/2N* fors < -2 and Hy(s) =
H /2N fors > +2%, itis clear that the nondegeneracy holds for all asymptotic orbits
of period less or equal to 2%

While we show below that we can again achieve transversality for all J ¥ -holo-
morphic curves with more than three punctures making use of the domain-dependency
of the almost complex structure, it remains to guarantee transversality for J -
holomorphic cylinders. Note that in analogy to Proposition 2.4 it follows that all
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J A‘? -holomorphic cylinders connecting orbits (x*, T) and (x~, T) with T < 2% are
in natural correspondence to cylinders in M connecting the critical points x*, x~,
which satisfy the R-dependent perturbed Cauchy—Riemann equation

dymu-ds = dgu+ Ju)- @u + T - XT(Ts,u)) = 0.

While in general transversality generically only holds for ¢-dependent Hamiltonian
homotopies H, we can now make use of the following natural generalization of
Lemma 2.5.

Lemma 5.1. Let (H, J) be a pair of a Hamiltonian H and an almost complex struc-
ture J on a closed symplectic manifold with {[w], mo(M)) = Oso that (H, w(-, J-)) is
Morse-Smale. Choose ¢ € C*(R, R"‘) with p(s) = 1/2 fors < —l and p(s) = 1
fors > 1, and let H:RxM —> R, H(s, p) = o(s) - H(p). Then the following
holds:

s The linearization F, of V, gu = dsu + J(u)Xﬁ(S, u) is surjective at all
solutions.

o If T > 0 is sufficiently small, all finite energy solutions u: R x St — M of
dy geu = dsu + J(u)(dru + XH (s, u)) = 0with H*(s,-) = tH(ts, ") are
independent of t € S1.

* In this case, the linearization ﬁu = 5; of P 7. fie is onto at any solution
u: Rx S —> M.

Proof. The proof 1s a simple generalization of the arguments given in [SZ] and we
just show the first statement. Let ¢: R — R™ with d;¢ = ¢. Then @1(s) = u(g(s))
satisfies V 7 i = 0 whenever u: R — M is a solution of Vy gu = 0, since

dsil + VH (s,11) = 05¢0(s) - dsu + o(s) - VH(u).

Forn € LP(u*TM) we find n € LP(u*TM) so that 7(s) = n(¢(s)). Assuming
that (Fg€,7) = Oforall € € HYP(i*TM), it follows that (F,&,7) = Oforall § €
HY“?(u*TM)by 1dent1fy1ng$ (s) = E(@(s)), where Fy, F,, denote the linearizations
of V 7.5 Vg at u,u, respectively. The regularity of (H, J) provides us with
the surjectivity of F,, at any solution ¥: R — M, so that n and therefore 7 must
vanish. ]

With the fixed Hamiltonian H?: M — R for the cylinders we choose the
Hamiltonian homotopy for the cylinders H@®: R x M — R to be

HPs, p) = ¢(s)- HP(p),
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so that H@(s,.) = H@ /2 for s < —1 and HP(s,-) = H®. After possibly
rescaling H®), we can and will assume that both Lemma 2.5 and Lemma 5.1 hold
with 7 = 1 for the fixed J and the chosen H®, H®  respectively.

Before we prove transversality in the next subsection, let us state the following

analogue of Theorem 2.6. Denote by J A’? the domain-dependent almost complex
structure on R x S! x M induced by Hy.

Theorem 5.2. Depending on the number of punctures n we have the following result
about the moduli spaces of J ]{,7 -holomorphic curves in R x S x M :

» n = 0. All holomorphic spheres are constant.

* n = 1: Holomorphic planes do not exist.

e n = 2. For T < 2N the automorphism group Aut(CP') acts on the para-
metrized moduli space M°(S' x M, (x™,T),(x™, T),JNH~) of holomorphic
cylinders with constant finite isotropy group Zp and the quotient can be nat-
urally identified with the space of gradient flow lines of H 2 with respect (o

the metric w(-, J-) on M between the critical poinis x© and x~ of H®
particular, we have

HMR x S'x M: (x+, ), (x 7, T ) = 8, o+
since the zero-dimensional components are empty for x # x~ and just contain
the constant path for xT = x~.
e n>3 For Pt ¢ P(H®/2N < 2Ny and P~ ¢ P(H@ 2N+, < 2N) fhie

action of Aut(CIPY) on the parametrized moduli space is free. There remains a
free S'-action on the moduli space, where the quotient is given by

{(s0,u,2) 5o e R,u: CP — 4z} — M : (x1), (¥2)}/ Aut(CP)
with
(k1) du + XTIV (2,09 + s, 1) ® dh
+ T(u) - (du+ XV (2,19 4 s0,0) ® dRY) -i =0,

s—to0 +

(%2). uo w,f(s,t) — X .

Proof. The proof is completely analogous to the one of Theorem 2.6. Note that
it follows by Lemma 2.3 that h: CP' — {z} — R x S! can be identified with
(50, to) € Rx ST and that the map u now satisfies an so-dependent perturbed Cauchy—
Riemann equation. For n = 2 observe that by Lemma 4.1 we can identify M(S! x

M;(xt,T), (x~, T);JNﬁ)Wim the spaceofallu: R — M satisfying Vj,g(z)u =0,
u(s,t) — x*, which following the proof of Lemma 4.1 can be identified with the
space of u(s) = u(p(s)) satisfying V; goyu = 0. O]
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5.2. Transversality. For the remaining part of this section we discuss transversality,
where we again restrict ourselves to the case N = 0.
Since aiH (h,u) = (dh, 81 B u) with

8y fsot = du+ X (2,08 + s0,u) ® dhl
£ Tw) (du+ XA (G2, 00 4 sg.u) @ dhY) i
where X # (/. z,s,u) denotes the symplectic gradient of H(j,z,5.): M = R, it

follows that the linearization Dy, ,, of d g7 is again of diagonal form.

It follows that for n = 2 we get (ransversality from Lemma 4.2 and Lemma 5.1
by the special choice of H ),
Forn > 3letus describe the setup for the underlying universal Fredholm problem.

As before the Cauchy—Riemann operator extends to a €' °°-section in a Banach
space bundle £2¢ — 8P4 x ¢ Here B»¢ = B4R x S x M; P+, P7)
denotes the manifold of maps from Section 5, which is given by the product

B[R x ST x M; (vE, TE)) = Hli'(8,C) x B2 (M (x5E)) x Mo .,

const

while the set of coherent Hamiltonian perturbations Jr’f,f (M; (H* ))z;lz) is now re-
placed by the set of coherent Hamiltonian homotopies

HE = JLMH (H®)ZY)
for fixed coherent Hamiltonian H: ||, Mu4+1 x M — R and H® . Hn-D,
Any H®™ e #tisa C*-map
H™. Mont1 X Rx M — R,
which extends to a C E-map on J\T(o,nﬂ x R x M, so that
e on ((ﬂo,nH—Mo,nH)U(Mo,nXNO)) xRxM itisgivenby H® ... H®#~D,
« H® = H™ /2 0n My x (—o0, —2V) x M,

e and H® = H® on M, a1 X (+2V, +o00) x M,

where Ny C S again denotes the fixed neighborhood of the punctures. It follows that
the tangent space at H = H®™ e % is given by

T = JL(M;0; (0)72).
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Since the linearization of 0 gaat (ﬁ, U, j, H ) e BPA x ot is again of diagonal
form, a

Dj., ;g = D;+diag(®d, D, 7),

TiMon ® HEEA(S,RY) @ HYP (w*TM) @ TgH*

const

— LPNT*S ®;; RY) & LP (A" ® ;.7 u*TM),

it remains by Lemma 4.2 to prove surjectivity of D,, g, which is the linearization of
the perturbed Cauchy—Riemann operator 97,5, (v, H) = 0 J. .50 (). Since the proof
is in the central arguments completely similar to Lemma 4.3, we just sketch the main
points. -

Assume for some 77 € LY(A%! ®; 7 w*TM) that (D, 5(§,G),n) = 0 for all
(5,G) € H"P(u*TM)® T H*, where again 1/p + 1/q = 1. From (1, D,£) = 0
for all £ we already know that it suffices to show that 7 vanishes on an open and dense
subset.

Now observe that it follows from the same arguments used to prove Lemma 4.3
that

0= (DgGu) = [ IR -dGU. 2o + 50,4 () dz

forall G € Ty J¢, where B is the set of branch points of £°: § — R x S, we again
write 7(z) = n(2) @ dhY +n2(2) ® dh§ with na(2) + J(u)n1(z) = Oforz € S—B
and where d G (§. z, h}(z)+s0. -) is the differential of G (7. z, h}(z)+50.-): M — R.
But with this we can prove as before that n vanishes identically on the open and dense
subset S — B.

Assume to the contrary that 7(zo) # 0, i.e., 71(zo) # 0 for some zp € S — B. As
in the proof of Lemma 4.3 we find Gy € C°°(M) so that

dGo(u(zo)) - n1{zo) > 0.

Setting jo := j, we organize all fixed maps S — R x S! for different j
on S into a map ho: Mont1 — Rx S Let @ € C®(Monr1 x R, [0,1]) be a
smooth cut-off function around (jo, zo, £ (jo, zo) +50) € Mo, n11 xR with ¢(jo, zo,
hd (o, z0) +s0) = 1 and go(j,z,hé(_j,z)—l—s) = 0for (j,z,s) € U(jo, 2o, o). Here
the neighborhood U<y, zo, so) C Mo,n+1 X R is chosen so small that

U(jo.20.50) N (((Monsr1 — Mont1) U (Moat1 x No)) x R) =0,
U(jo,z0,50) N (Mops1 x ((—o0, =D U (+1,+00))) =

and dGo(z, u(z)) - n1(z) = Oforall (z, j,h}(j,z) + s) € U(jo, 20, 50).
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Defining G: Mo n+1 X R x M — Rby G(j.z.s. p) := ¢(j,2.5) - Go(p), this
leads to the desired contradiction since we found G € Tz H# b= Jﬁ’,‘f (M;0,0,....0)
with

(D -G.m) =f_ @I - dG o,z o, 2) + so. u(a) - (2) dz > 0.

We have shown that the universal moduli space
M(R x S'sxM: Pt P JH: (Jﬁ’(k))z;lz)

is again transversally cut out by the Cauchy—Riemann operator 9 ;. Further it follows
by the same arguments as in Section 4 that we can choose a (smooth) coherent
Hamiltonian homotopy H: [ [, Mon+1 X R — C°(M) such that forall N € N

and PT, P~ the moduli spaces M(R x S' x M; P+, P~; JI"\?) are transversally cut
out by the Cauchy—-Riemann operator.

6. Contact homology

6.1. Chain complex. The contact homology of S! x M equipped with the stable
Hamiltonian structure (w, A ) is defined as the homology of a differential graded
algebra (21, 9), which is generated by closed orbits of the Reeb vector field R¥ and
whose differential counts J  -holomorphic curves with one positive puncture. As in
[EGH] we start with assigning to any (x, 7)) € P(H ), which is good in the sense of
[BM], a graded variable g, 1y with

deg q(x,T) = dim M/2 — 24 [ch(x, T)

Here j1cz denotes the Conley—Zehnder index for (x, T'), which is defined as in [EGH]
after fixing a basis for H;(S! x M) and choosing a spanning surface between the
orbit (x, 7") and suitable lincar combinations of these basis elements. Note that in
the corresponding definition in [EGH] one adds m — 3, where 1 denotes the complex
dimension of R x S x M. Further we assume, as in [EGH], that H;(S! x M) and
hence H; (M) is torsion-free, where we use that the torsion-freedom of H.(S1) also
yields the Kiinneth formula for H.(S! x M). Let

Q[H2 (ST x M) = {Y q(A)e? : A € Hy(S' x M).q(A) € Q}

be the group algebra generated by Ho(S! x M) =~ H>(M) & (H(SY) ® H{(M))
with grading given by
dege? = (¢ (TM), A).
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Since ¢1(TM ) clearly vanishes on H{(S') ® H, (M) we can and will work with the
reduced group ring Q[ H> (M )]. With this let 2. be the graded commutative algebra
of polynomials in the formal variables g 1) assigned to good periodic orbits with
coefficients in Q[ H2 (M )]. Let C. be the vector space over QQ freely generated by the
graded variables g(, 7, which naturally splits, Cx. = Py CI with CT generated
by the good orbits of integer period 7. Since C, 1s graded, we can define a graded
symmetric algebra ©(C,) and it follows that

A = B(Cr) ® Q[HL(M))].

For the following we assume that all occuring periodic orbits are good. Note that
to any holomorphic curve in M(S! x M; P, P~ ) we assign as in [EGH] a
homology class A € H»(S! x M) after fixing a basis for H(S! x M) and choosing
spanning surfaces between the asymptotic orbits in P+, P~ C P(H) and suitable
linear combinations of these basis elements. Requiring that the differential 9: 2 — A
satisfies a graded Leibniz rule, it is defined by (see [EGH], p. 621)

09 (x0,To) = Z fM(STx M; P, P JHY/R P T - -, B e,
P A

where MA(S' x M;PT P~ J H ) denotes the one-dimensional component of
the moduli space of holomorphic curves with P = {(x¢, Tp)} and with arbitrary
orbit set P~ = {(x7.7T;),....(x,.T, )} representing the class A € Ho(M) =
Hy(S' x M)/(H (S") ® Hi(M)).

For (Ty,...,T,) € N™ let AT1-Tn) denote the subspace of 2 spanned by
monomials Q(x1,T1) -+« 9xn,Tn)>

with
eT-Tlcy=6(Cch g ..@ cM,

where @ denotes the projection from the tensor to the symmetric algebra, in par-
ticular, 2171-Tn) does not depend on the ordering of the Ty,...,T,. Since
HM(ST x M; PT, P~ JH)/R = 0 for Ty + -+ T, # Ty by Lemma 1.1.3,
it follows that the differential d respects the splitting

a:@sﬂ”,

TeN

T _ (T1,....Tx)
where 21 = @Tl Joer b= AL i,
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6.2. Proof of the main theorem. In what follows we use our results about holo-
morphic curves in R x S x M to prove the main theorem. At first we compuie
H., (?ISZN, d) = PBroonv He (AT, 3) using our results about moduli spaces of holo-
morphic curves in R x S x M in Theorem 2.6 together with the transversality results.

With the fixed almost complex structure J on M let H: || Mo 41 — C(M)
be a coherent Hamiltonian perturbation as before, in particular, H @) satisfies
Lemma 2.5 with 7 = 1. Following corollary 4.4 we further assume that H is chosen
such that transversality holds for all moduli spaces M(S! x M; P+, Pp—; JH/ 2N),
PE c P(H® /2N < 2Ny simultancously for all N € N. Together with The-
orem 2.6 it then follows that for defining the algebraic invariants we only have
to count gradient flow lines of the function H® on M with respect to the metric
g7y =owi, JYyon M. For N € N let (Up,dn) denote the differential algebra for
the domain-dependent Hamiltonian H/2"V: [[ Mon+1 — C(M) and the fixed
almost complex structure J on M. For the computation of the contact homology
subcomplex we use special choices for the basis elements in H1(S! x M) and the
spanning surfaces as follows: Choose a basis for H;(S'x M) = H{(S1) & H{(M)
containing the canonical basis element [S!] of H;(S!), which is represented by the
circle (x*,1): S — S!x M, t +— (¢, x*) for some point x* € M. Tor any periodic
orbit (x,T) € P(HP /2N < 2Ny wehave [(x, T)] = T[S!] € Hi(S! x M), since
x is a constant orbit in M, and we naturally specify a spanning surface S¢x, 1) between
(x, T) and the T'-fold cover of (x*, 1) by choosing a path yx: [0, 1] — M from x*
to x and setting Sx,7y: ST x [0, 1] = ST x M, Sie.ry(t, 1) = (Tt,y:(r)).

Lemma 6.1. Let HM, = HM.(M,—H® g;:Q) denote the Morse homology
for the Morse function —H @) and the metric g7 = w(, J) on M with rational
coefficients. Then we have

HAQUF" 0y) = 6= (@D HM.) & QUH (M),
N

where

@EM(@HM*_Z) _ EB @(Tl,...,Tn)(EB HM*_z).

N Tyt Ty<2W N
Proof. For the grading of the g-variables we have
deggx. 7y =dimM/2 —2 4 pcz(x,T) = ind_g(x) — 2,

when we choose a canonical trivialization of TM over (x*, 1) and extend it over
the spanning surfaces to a canonical trivialization over (x,7T), that is, the map
®: S' x R — x*TM = S! x T, M is independent of S'. It follows that
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CI agrees with the chain group CM,_, for the Morse homology for T < 2V and
therefore

a2 = g=2¥ (@ CM*_Z) ® Q[Ha(M)).
N

Here it is important to observe that any (x, T) € P(H® /2N < 2¥) is indeed good
in the sense of [BM]: note that it follows from pucz(x, T) = ind—g(x) —dim M/2
that pecz(x, T') has the same parity for all 7 < N,

On the other hand it follows from Theorem 2.6 that the differential 9: A — A
indeed agrees with the differential in Morse homology. Further it follows from
the above choice of spanning surfaces that they all represent the trivial class A €
Hy(M) = Hy(S'x M)/ (H (S ® H1(M)): Indeed, letting u denote the gradient
flow line between xo and x it follows that u represents the class 4 = T[S!] ®
[yxofiull — vx] € H(S1) ® H{(M). Using the theorem of Kiinneth we hence in fact
have

= 01T (H, (D) CMas, M) @ QIH (M)
N

_ @(Tl,...,Tn)(@ HM*—z) ® Q[H,(M)]
N

and the claim follows. [

With this we can now complete the proof of the main theorem by using Theorem 5.2
and the transversality result of Section 5.

To this end choose a coherent Hamiltonian homotopy H: [, Monr1 xR —
C°(M) as in Section 3, i.c., with H(j,z,s, p) = H(j.z, p)/2 for small s and
H(j,z.s,p) = H(j.z, p) for large s such that for all N € N and PT, P~ the
moduli spaces M(R x S UsM: P, P J f\f ) are transversally cut out. Let J A‘?
denotes the coherent non-cylindrical almost complex structure on R x S ! x M induced
by J and H /2N

Let Uy: (Ayn,0y) — (Ay41,dn+1) be the chain homotopy, defined as in
[EGH], by counting holomorphic curves with one positive puncture and an arbitrary
number of negative punctures in the resulting almost complex manifold (R x S L x
M, J II\}' )} with cylindrical ends. Then it follows from Theorem 5.2 that the restriction
Wi (AL, dn) — (AL, . dn 1) is the identity for T < 27 since again all curves
with three or more punctures come in S -families and all zero-dimensional cylindrical
moduli spaces just consist of trivial gradient flow lines.
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