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Abstract. Let k be an algebraically closed field of characteristicp > 0. Let D be a p-divisible
group over k. Let nD be the smallest non-negative integer for which the following statement
holds: if C is a p-divisible group over k of the same codimension and dimension asD and such
that COEpnD is isomorphic to DOEpnD then C is isomorphic to D. To the Dieudonné module
of D we associate a non-negative integer `D which is a computable upper bound of nD. If D
is a product Qi2I Di of isoclinic p-divisible groups, we show that nD D `D; if the set I has

at least two elements we also show that nD maxf1; nDi ; nDi CnDj 1 j i;j 2 I; j ¤ ig.
We show that we have nD 1 if and only if `D 1; this recovers the classification of minimal
p-divisible groups obtained by Oort. If D is quasi-special, we prove the Traverso truncation
conjecture for D. If D is F-cyclic, we explicitly compute nD. Many results are proved in the
general context of latticed F-isocrystals with a certain) group over k.
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1. Introduction

Let p 2 N be a prime. Let k be an algebraically closed field of characteristic p. Let
c; d 2 N [ f0g be such that r WD c Cd > 0. Let D be a p-divisible group over k
of codimension c and dimension d. The height of D is r. Let nD 2 N [ f0g be the
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smallest number for which the following statement holds: if C is a p-divisible group
of codimension c and dimension d over k such that COEpnD is isomorphic to DOEpnD

then C is isomorphic toD. We have nD D 0 if and only if cd D 0. For the existence
of nD we refer to [Ma, Chapter III, Section 3], [Tr1, Theorem 3], [Tr2, Theorem 1],
[Va1, Corollary 1.3], or [Oo2, Corollary 1.7]. For instance, one has the following
gross estimate nD cd C1 cf. [Tr1, Theorem 3]). The classical Dieudonné theory
says that the category of p-divisible groups over k is antiequivalent to the category of
Dieudonné modules over k. Thus the existence of nD gets translated into a suitable
problem pertaining to Dieudonné modules and thus to a particular type of latticed

F -isocrystals over k see Section 1.1 below for precise definitions).
Traverso’s truncation conjecture predicts that nD minfc; dg, cf. [Tr3, Section

40, Conjecture 4]. This surprising and old conjecture is known to hold only in
few cases like for supersingular p-divisible groups over k; see [NV, Theorem 1.2]).
To prove different refinements of this conjecture, one needs to have easy ways to
compute and estimate nD. Each estimate of nD represents progress towards the
classification of p-divisible groups over k; implicitly, it represents progress towards the
understanding of the ultimate stratifications defined in [Va1, Section 5.3] and thus
also) of the special fibres of all integral canonical models of Shimura varieties of
Hodge type. The goal of the paper is to put forward basic principles that compute
either nD or some very sharp upper bounds of nD.

For the sake of generality, a great part of this paper will be worked out in the
context of latticed F-isocrystals with a certain) group over k.

1.1. Latticed F -isocrystals. LetW.k/ be the ring ofWitt vectors with coefficients in
k. Let B.k/ be the field of fractions of W.k/. Let be the Frobenius automorphism
of W.k/ and B.k/ induced from k.

By a latticed F -isocrystal over k we mean a pair M; / where M is a free

p
MOE 1W.k/-module of finite rank and

W
MOE 1

p is a -linear automorphism. We

recall that if M/ M, then the pair M; / is called an F -crystal over k. We also
recall that if pM M/ M, then the pair M; / is called a Dieudonné module
over k and # WD p 1

W M M is called the Verschiebung map of M; /
The composite of W.k/-linear maps endows End.M/ with a natural structure of a

W.k/-algebra and thus also of a Lie algebra over W.k/). We denote also by the -
linear automorphism of End.MOE 1

p / to e/ WD BeB 1.
p / that takes e 2 End.MOE 1

Let GB.k/ be a connected subgroup of GL
MOE 1

p
such that its Lie algebra Lie.GB.k// is

left invariant by i.e., wehave Lie.GB.k/// D Lie.GB.k//. LetG be the schematic
closure of GB.k/ in GLM. The triple M; ;G/ is called a latticed F -isocrystal with
a group over k, cf. [Va1, Definition 1.1 a)]. Let g WD Lie.GB.k//\End.M/; it is a

Lie subalgebra of End.M/ which as a W.k/-submodule is a direct summand. If G is
smooth over Spec.W.k//, then g D Lie.G/. Let nG 2 N [ f0g be the i-number of
M; ;G/ introduced in [Va1, Definition 3.1.4]. Thus nG is thesmallest non-negative
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integer for which the following statement holds:

If g 2 G.W.k// is congruent to1M modulo pnG, then there exists h 2 G.W.k//
which is an isomorphism between M; g ;G/ and M; ; G/ equivalently,
between M; g / and M; / In other words, we have hg h 1 D equivalently,

hg h/ 1 D 1M).

In [Va1] we developed methods that provide good upper bounds of nG see [Va1,
Section 3.1.3 and Example 3.1.5]). The methods used exponential maps and applied
to all possible types of affine, integral group schemes G over Spec.W.k//. But when
the type of G is simple like when G is GLM), then one can obtain significantly better
bounds. This idea was exploited to some extent in [Va1, Section 3.3] and it is brought
to full fruition in this paper. Accordingly, in the whole paper we will work under the
following assumption:

1.1.1. Assumption. We haveM ¤ 0, the W.k/-submodule g of End.M/ is a W.k/-
subalgebra of End.M/ and not only a Lie subalgebra of End.M/), and thus) G is
the group scheme over Spec.W.k// of invertible elements of g.

Typical cases we have in mind: i) G is either GLM or a parabolic subgroup
scheme of GLM; ii) G is the centralizer in GLM of a semisimple W.k/-subalgebra
of End.M/; and iii) g is W.k/1M ° n, with n a nilpotent subalgebra without unit)
of End.M/.

1.1.2. Newton polygon slopes. Dieudonné’s classification of F -isocrystals over k
see [Di, Theorems 1 and 2], [Ma, Chapter 2, Section 4], [De], etc.) implies that we

have a direct sum decomposition MOE 1
p D L 2Q

W. / that is left invariant by and
that has the property that all Newton polygon slopes of W. /; / are We recall
that ifm 2 N is the smallest number such that m 2 Z, then there exists a B.k/-basis

for W. / which is formed by elements fixed by p m m. One says that M; / is
isoclinic if there exists a rational number such that we have MOE1

p D W. / We

consider the direct sum decomposition into B.k/-vector spaces

End.MOE 1
p / D LC ° L0 °L

that is left invariant by and such that all Newton polygon slopes of LC; /
are positive, all Newton polygon slopes of L ; / are negative, and finally all
Newton polygon slopes of L0; / are 0. We have direct sum decompositions

LC D L ; 2Q < Hom.W. /;W. //, L D L ; 2Q < Hom.W. /;W. //,
and L0 D L 2Q

End.W. //. Thus both LC and L are nilpotent subalgebras

without unit) of End.M/.
We have L0 D End.MOE 1

p / if and only if M; / is isoclinic.
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1.2. Level modules and torsions. We define

OC ´ fx 2 End.M/\ LC j
q x/ 2 End.M/ \ LC for all q 2 Ng

D \ q End.M/\LC/:
q2N[f0g

Let A0 WD fe 2 End.M/ j e/ D eg be the Zp-algebra of endomorphisms of

M; / Let O0 be the W.k/-span of A0; it is a W.k/-subalgebra of End.M/\ L0.
We have identities

O0 D A0 Zp W.k/ D \q2N[f0g

q End.M/\L0/ D \q2N[f0g

q End.M/\L0/:

We also define

O ´ fx 2 End.M/\ L j q x/ 2 End.M/\L for all q 2 Ng

D \ q End.M/\L /:
q2N[f0g

As all Newton polygon slopes of LC; / are positive, for each x 2 LC the
sequence q.x//q2N of elements of LC converges to 0 in the p-adic topology. This
implies that there exists s 2 N such that psx 2 OC. Thus we have OCOE

1
p D LC.

As OC is a W.k/-submodule of the finitely generated W.k/-module End.M/, we
conclude that OC is a lattice of LC. A similar argument shows that O0 and O are

lattices of L0 and L respectively). We have the following relations: OC/ OC,
O0/ D O0 D 1.O0/, 1.O / O LCL0 C L0LC LC, L0L0 L0,

and L0L C L0L L These relations imply the following:

i) Both OC and O are left and right O0-modules.

ii) The direct sum OC ° O0 resp. O0 ° O is a W.k/-subalgebra of End.M/
that has OC resp. O as a nilpotent, two-sided ideal.

Let O WD OC°O0°O ; it is a lattice of End.M/OE
1
p contained in End.M/. In

general, O is not a W.k/-subalgebra of End.M/ see Example 2.2). Thus we call O
the level module of M; /

Let OG WD g\OC/° g\O0/° g\ O /; it is a lattice of gOE
1
p contained in g.

We refer to OG as the level module of M; ; G/. We note down that O D OGLM
By the level torsion of M; ; G/ we mean the unique number `G 2 N [ f0g for

which the following inclusions hold

p`Gg OG g .1/

and which obeys the following two disjoint rules:
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a) if g D OG and if the two-sided ideal of the W.k/-algebra g generated by
g\OC/° g\O / is not topologically nilpotent, then `G WD 1;

b) in all other cases, `G is the smallest non-negative integer for which 1) holds.

1.2.1. A connection to [Va1]. Let mG WD T g; / be the Fontaine–Dieudonné
torsion of g; / introduced in [Va1, Definitions 2.2.2 a) and b)]. We recall that

mG is the smallest non-negative integer with the property that there exists a W.k/-
submodulemof g which contains pmGg and for which the pair m; / is a Fontaine–
Dieudonné p-divisible object over k in the sense of loc. cit. One has a direct sum

decomposition m; / D Lj2J mj ; / such that each pair mj; / is an elementary
Fontaine–Dieudonné p-divisible object over k. The pair mj ; / is a special type of
isoclinic latticed F -isocrystals over k that are definable over Fp; let j 2 Q be the
Newton polygon slope of mj ; / One basic property of mj ; / is the following:
if j > 0 resp. j D 0 or j < 0), then we have mj/ mj resp. mj / D mj
or 1.mj / mj Thus if j > 0 resp. j D 0 or j < 0), then we have

mj g \OC resp. mj g \ O0 or mj g\O This implies that m OG.
Therefore we have `G mG except in the case when g D OG D m and `G D 1.
This implies that `G maxf1; mGg. In general, `G can be smaller than mG see

Example 2.2).

1.2.2. Example. We assume that all Newton polygon slopes of g; / are 0. Then
we have OG D g \ O0 and `G is the smallest non-negative integer such that we
have inclusions p`Gg OG g. As the W.k/-module g is a direct summand of
End.M/, we have OG D g \O0 D gOE

1 \ O0. This implies that OG/ D OGp
and therefore OG has a W.k/-basis formed by elements of g \ A0. Thus OG; / is
a Fontaine–Dieudonné p-divisible object over k; therefore `G D mG.

Our first main goal is to prove see Section 3) the following theorem.

1.3. Main Theorem A. We recall that M; ;G/ is a latticed F-isocrystal with a
group over k and that we work under Assumption 1.1.1.

a) We have the inequality nG `G.

b) Assume that M; / is a direct sum of isoclinic latticed F-isocrystals over k.
Then we have nGLM D `GLM

We neither know nor expect examples with nGLM < `GLM Our second main
goal is to apply Main Theorem A to study p-divisible groups over k.

1.4. First applications to p-divisible groups. Let D and nD be as in the beginning
paragraph of the paper. We say that D is isoclinic if its contravariant) Dieudonné
module is isoclinic. If M; / is the Dieudonné module of D, then let

`D WD `GLM 2 N [ f0g:



170 A. Vasiu CMH

We call D̀ the level torsion of D. The following elementary lemma is our starting
point for calculating and estimating nD.

1.4.1. Lemma. We assume that M; / is the Dieudonné module ofD. Then we have

nD D nGLM

See [Va1, Lemma 3.2.2 and Corollary 3.2.3] and [NV, Theorem 2.2 a)] for two
proofs of Lemma 1.4.1 the second proof is not stated in the language of latticed

F -isocrystals with a group). Accordingly, we call nD the i-number i.e., the isomorphism

number) of D. Based on Lemma 1.4.1, we have the following corollary of
Main Theorem A.

1.4.2. Basic Corollary. For each non-trivial p-divisible group D over k we have

nD `D. If D is a direct sum of isoclinic p-divisible groups over k, then we have

nD D `D.

The inequality nD `D was first checked for the isoclinic case in [Va1, Example

3.3.5].

1.4.3. Proposition. We assume that D D Qi2I Di is a direct sum of at least two
isoclinic p-divisible groups over k. Then we have the following basic estimate:

nD maxf1; nDi ;nDi C nDj 1 j i; j 2 I; j ¤ ig:

Proposition 1.4.3 is proved in Section 4.5. Example 4.6.2 shows that in general,
Proposition 1.4.3 is optimal. The next proposition proved in Section 4.7) describes
the possible range of variation of nD and `D under isogenies.

1.4.4. Proposition. Let D Dz be an isogeny between non-trivial p-divisible
groups over k. Let 2 N [ f0g be the smallest number such that p annihilates the
kernel of this isogeny. Then we have nD D̀ `Dz C 2 Thus, if Dz is a direct
sum of isoclinic p-divisible groups, then we have nD `D nDz C 2

In general, the constant 2 of Proposition 1.4.4 is optimal see Example 4.7.1).

1.5. Minimal and quasi-special types. Let B D fe1; : : : ; er g be a W.k/-basis

forM. Let be an arbitrary permutation of the set Jr WD f1; : : :; rg. Let M; / be
the Dieudonné module over k with the property that for each s 2 f1; : : : ;dg we have

es/ D pe s/ and for each s 2 fd C 1; : : : ; d C cg we have es/ D e s/. Let
C be a p-divisible group over k whose Dieudonné module is M; / For a cycle

i D es1; : : : ; esri / of let ci and di D ri ci be the number of elements of the
sets fs1; : : : ; srig\ fd C1; : : : ; d Ccg and fs1; : : : ;srig\ f1; :: : ;dg respectively),

and let i WD
di
ri 2 Q \ OE0; 1

1.5.1. Definitions. We recall that c and d are non-negative integers such that r WD

c Cd > 0, that D is a p-divisible group over k of codimension c and dimension d,
and that Jr D f1; : : : ;rg.
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a) We say that D is F -cyclic resp. F-circular), if there exists a permutation
resp. an r-cycle permutation of Jr such that D is isomorphic to C

b) We say that is a minimal permutation, if the following condition holds:

/ for each cycle i D es1;: : : ; esri / of and for all q 2 N and u 2 f1; :: : ;rig,
we have q

esu/ D pOEq i C"q.su/ e q.su/ for some number "q.su/ 2 f0; 1g.

c) We say that D is minimal, if there exists a minimal permutation of Jr such
that D is isomorphic to C

d) Anon-trivial truncated Barsotti–Tate groupB of level 1 over k is called minimal,
if there exists a p-divisible group Dz over k such that DzOEp is isomorphic to B
and nDz 1.

e) Let m WD g:c:d:fc; dg 2 N and let d1; r1/ WD
d
m ; r

m /. We say that D is

isoclinic quasi-special resp. isoclinic special), if we have r.M/ D pdM
resp. we have r1.M/ D pd1M). We say that D is quasi-special resp.

special), if it is a direct sum of isoclinic quasi-special resp. isoclinic special)

p-divisible groups over k.

The terminology F-cyclic and F -circular is suggested by Definition 1.2.4 c) in
[Va2]. The terminology minimal p-divisible groups and minimal truncated Barsotti–
Tate groups of level 1 is the one used in [Oo3] and [Oo4]. It is easy to check that

the above definitions of minimal p-divisible groups over k and of minimal truncated
Barsotti–Tate groups of level 1 over k are equivalent to the ones used in [Oo3, Section

1.1] this also follows from Main Theorem B below). Moreover D is minimal
if and only if DOEp is minimal, cf. Main Theorem B below. The terminology special
see e)) is as in [Ma, Chapter III, Section 2]. If D is F -cyclic, then it is also

quasispecial but it is not necessarily special see Lemma 4.2.4 a) and Example 4.7.1). The
class of isomorphism classes of quasi-special p-divisible groups of codimension c
and dimension d over k, is a finite set see Lemma 4.2.4 b)); this result recovers and

refines slightly [Ma, Chapter III, Section 3, Theorem 3.4].
A systematic approach to C ’s was started in [Va2] and [Va3] using the language

of Weyl groups the role of a permutation of Jr is that one of a representative of
the Weyl group of GLM with respect to its maximal torus that normalizes W.k/es
for all s 2 Jr); for instance, we proved that for two permutations 1; 2 of Jr the

p-divisible groups C 1 and C 2 are isomorphic if and only if C 1
OEp and C 2

OEp

are isomorphic cf. [Va3, Theorem 1.3 a) and Fact 4.3.1]). The p-divisible groups

C are also studied in [Oo4] using the language of cyclic words in the variables
and #. We note down that in the condition / it suffices to consider natural numbers

q which are at most equal to the order of i Thus we view b) and d) as a more
practical form of [Oo4, Section 4].

In Section 4.6 we prove the following theorem.
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1.5.2. Theorem. We assume that the non-trivial p-divisible groupD is quasi-special
for instance, D is F -cyclic or special). Then D is a direct sum of isoclinic p-

divisible groups over k and thus we have nD D `D. Moreover, we have an inequality
nD minfc; dg i.e., the Traverso truncation conjecture holds for D.

The proof of the inequality part of Theorem 1.5.2 relies on Proposition 1.4.3
and on an explicit formula for nD see property 4.6 ii); if D is F -cyclic, see also
Scholium 4.6.1).

The importance of minimal p-divisible groups stems from the following theorem
to be proved in Section 5.1.

1.6. Main Theorem B. Let D be a non-trivial p-divisible group over k. Then the
following three statements are equivalent:

a) we have D̀ 1;

b) we have nD 1 equivalently, DOEp is minimal);

c) the p-divisible group D over k is minimal.

The implication c))(b) was first checked for the isoclinic case in [Va1, Example

3.3.6] and for the general case in [Oo3, Theorem 1.2]. A great part of [Oo4] is
devoted to the proof of the equivalence between b) and c), cf. [Oo4, Theorem B].

2. Preliminaries

Let M; / be a latticed F-isocrystal over k. In this section we include simple
properties that pertain to M; / Let M WD Hom.M; W.k//.

The notations p, k, c, d, r D c Cd, D, nD, W.k/, B.k/, M; ; G/, g, MOE 1
p D

L 2Q W. / LC, L0, L OC, A0, O0, O OG, `G, `D, Jr D f1; : : : ;rg, M; /
and C introduced in Section 1 will be used throughout the paper. Let Dt be the
pdivisible group over k which is the Cartier dual of D. For m 2 N, let Wm.k/ WD

W.k/=pmW.k/.
Allfinitely generatedW.k/-modulesandall finitedimensional B.k/-vector spaces

are endowed with the p-adic topology. As in Section 1.2, in the whole paper we keep

the following order: first C, next 0, and last

2.1. Duals and homs. Let
W M OE

1
p M OE

1
p

be the -linear automorphism that

takesf 2 M OE
1
p to Bf B

1
2 M OE

1
p The latticedF-isocrystal.M ; / iscalled

the dual of M; / cf. [Va1, Section 2.1]. The canonical identification End.M/ D
M W.k/ M defines an identification End.M/; / D M; / M ; / of latticed
F -isocrystals over k. If M; / is the Dieudonné module of D, then M ; p / is the
Dieudonné module of Dt. Let M1; 1/ and M2; 2/ be two latticed F -isocrystals
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p Hom.M1;M2/OE
1over k. Let 12 W Hom.M1; M2/OE

1
p be the -linear automorphism

p ; M2OE 1
p / to 2 Bf B

1that takes f 2 Hom.M1OE
1

1 2 Hom.M1OE 1
p ; M2OE

1
p /

The latticed F -isocrystal Hom.M1;M2/; 12/ over k is called the hom of M1; 1/
and M2; 2/. Thus M ; / is the hom of M; / and W.k/; / The dual of
Hom.M1; M2/; 12/ is Hom.M2;M1/; 21/ here 21 is defined similarly to 12).

Thus the dual of End.M/; / is End.M/; / itself.
If B is a W.k/-basis for M, let B WD fx j x 2 Bg be the dual W.k/-basis

for M Thus for x; y 2 B, we have x y/ D ixy. For q 2 Z and x; y 2 B,
let aq.x; y/ 2 B.k/ be such that we have q.x/ D Py2B aq.x;y/y. We have

q.x / D Py2B q.a q.y; x//y and hence q.x / D Py2B q.aq.y; x//y
This implies:

/ If s 2 Z, then we have ps q.M/ M i.e., psaq.x; y/ 2 W.k/ for all
x; y 2 B) if and only if we have ps q.M / M i.e., psaq.y;x/ 2 W.k/
for all x; y 2 B).

The set fx y j x; y 2 Bg is a W.k/-basis for End.M/ D M W.k/ M

2.2. Example. We assume that we have a direct sum decompositionM D W.k/°N
such that acts on W.k/ as does, we have N/ N, and N; / is isoclinic of
Newton polygon slope 2 Q\ .0;1// n Z. We have a direct sum decomposition
of latticed F -isocrystals over k

End.M/; / D End.N /; / ° N; / ° N ; /° W.k/; /:
The W.k/-span of the product N N taken inside End.M/) is End.N /. As N/
N and N 1.N / we have N OC and N O As … Z, we have

O \End.N/ ¤ End.N /. Thus OCO ª O. Therefore O is not a W.k/-subalgebra
of End.M/.

We take G such that g is the W.k/-subalgebra N ° W.k/1N of End.M/. As

N OC and 1M 2 O0, we have g D OG D g\OC/° g\O0/ and g\OC/ is
a nilpotent, two-sided ideal of the W.k/-algebra g. Thus `G D 0, cf. the rule 1.2 a).

If the pair N; / is not a Dieudonné–Fontaine p-divisible object over k, then the
Dieudonné–Fontaine torsionmG of g; / is positive and in fact it can be any natural
number).

2.3. Lemma. We assume that nGLM D 0. Then there exists an integer s such that we

have M/ D psM. Thus End.M// D End. M// D End.M/ and therefore
we have O0 D End.M/ and `GLM D 0.

Proof. Let q 2 N. By induction on q we show that the Lemma holds if the rank r
of M is at most q. If q D 1 and r D 1, then the Lemma is obvious. The passage

from q to q C 1 goes as follows. We can assume that r D q C 1. By multiplying
with p s for some s 2 Z, we can assume that M/ is a W.k/-submodule of
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M that contains a direct summand of M of rank at least 1. Let Qx 2 M n pM be
such that Qx/ 2 M n pM. Let gQx 2 GLM.W.k// be such that gQx Qx/ D Qx. As

nGLM D 0, M; / is isomorphic to M; gQx / Thus there exists x 2 M n pM such
that x/ D x. Let M0 be the W.k/-submodule of M generated by elements fixed
by ; it is a direct summand of M which contains x.

IfM0 D M, then we are done as M/ D M. Thus to end the proof it suffices to
show that the assumption that M0 ¤ M leads to a contradiction. Let M1 WD M=M0
and let 1W M1 M1 be the -linear endomorphism induced by For each
element g1 2 GLM1 W.k// there exists an element g 2 GLM.W.k// that fixes M0
and that maps naturally to g1. As M;g / and M; / are isomorphic and due to
the definition of M0, we easily get that M1; 1/ and M1; g1 1/ are isomorphic.
Thus the i-number of M1; 1; GLM1/ is 0. As the rank of M1 is less than q C 1,
by induction we get that there exists a natural number s1 such that M1/ D ps1M1
we have s1 ¤ 0, due to the definition of M0). Let z1 2 M1 n pM1 be such

that 1.z1/ D ps1z1. Let Qz 2 M be such that it maps naturally to z1. We have

zQ/ ps1
zQ 2 M0. Let yQ 2 M0 be such that yQ/ ps1

yQ D zQ/ C ps1 Qz. If
z WD QzC Qy, then we have z/ D ps1z. As z maps naturally to z1 2 M1 npM1, the

W.k/-module M0 ° W.k/z is a direct summand of M. Let gxz 2 GLM.W.k// be
such that it permutes x and z, it normalizes M0 ° W.k/z, and it acts identically on

M0°W.k/z/=.W.k/x°W.k/z/ and onM=.M0°W.k/z/. The Newton polygon
slopes of M; gxz / are 0, s1

2
and s1. As the Newton polygon slopes of M; / are

0 and s1 and as s1 2 N, we get that M; / and M; gxz / are not isomorphic. This
contradicts the equality nGLM D 0.

2.4. Lemma. Let x 2 End.M/ be such that for all q 2 N resp. for all q 2 N) we

have q.x/ 2 End.M/. Then we have x 2 OC °O0 resp. we have x 2 O0 °O

Proof. We will prove only the non-negative part of the Lemma as the non-positive
part of it is proved in the same way. Thus we assume that we have q.x/ 2 End.M/
for all q 2 N. We write x D xC C x0 C x where xC 2 LC, x0 2 L0, and

x 2 L There exists a number s 2 N such that psxC 2 OC and psx0 2 O0.
Thus q.psxC/ 2 OC End.M/ and q.psx0/ 2 O0 End.M/. We easily
get that we have ps q.x / 2 End.M/ for all q 2 N. This implies that x D 0
as all Newton polygon slopes of L ; / are negative). Thus x D xC C x0. The

sequence q.xC//q2N
converges to 0 as all Newton polygon slopes of LC; / are

positive). Thus there exists
Qq 2 N such that yC WD

Qq.
xC/ 2 OC. Let y WD

Qq.x/
and y0 WD y yC D Qq.x0/ 2 End.M/ \ L0. As for each q 2 N we have

q.yC/ 2 OC End.M/ and q.y/ 2 End.M/, we also have q.y0/ 2 End.M/.
Thus y0 2 O0. Therefore x0 D Qq.y0/ 2 Qq.O0/ D O0. This implies that for all
q 2 N [ f0g we have q.x0/ 2 O0 End.M/. Thus for all q 2 N [ f0g we have

q.xC/ D q.x/ q.x0/ 2 End.M/ i.e., xC 2 OC. Therefore x D xC C x0 2
OC °O0.
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2.5. Invertible elements. In this section we recall basic properties of invertible
elements of W.k/-subalgebras of End.M/. Let h be a W.k/-subalgebra of End.M/.

i) If x 2 h has an inverse x 1 in End.M/ i.e., if x 2 h \ GLM.W.k//), then
the determinant of x is an invertible element of W.k/ and therefore from the
Cayley–Hamilton theorem we get that x 1 is a polynomial in x with coefficients
in W.k/; thus x 1

2 h i.e., x is an invertible element of h).

ii) Each invertible element of h is also an invertible element of any other W.k/-
subalgebra of End.M/ that contains h.

iii) If we have a direct sum decomposition h D n ° h0 such that h0 is a W.k/-
subalgebra of h and n is a nilpotent, two-sided ideal of the W.k/-algebra h,
then we have a short exact sequence 1 1M C n h \ GLM.W.k//
h0\GLM.W.k// 1 which splits and which is defined by the following rule:
if x 2 n and y 2 h0 are such that x Cy 2 h\ GLM.W.k//, then the image of

x C y in h0 \ GLM.W.k// is y.

iv) We recall that a two-sided ideal i of the W.k/-algebra h is called topologically
nilpotent if for all m 2 N there exists

mQ 2 N such that we have an inclusion
imQ pmh this implies that Tm2N im D 0). If x 2 i, then the element

1M C P1mD1. x/m
2 1M C i is well defined and is the inverse of 1M C x.

This implies that an element of h is invertible if and only if its image in h=i is
an invertible element of h=i.

3. The proof of Main Theorem A

In this section we prove Main Theorem A see Sections 3.4 and 3.5). We begin
by introducing certain W.k/-algebras and group schemes over Spec.W.k// and by
presenting basic properties of them see Sections 3.1 and 3.2). In Section 3.3 we list
simple properties of isomorphism classes of certain latticed F -isocrystals over k. All
these properties play a key role in Section 3.4. In Sections 3.6 and 3.7 we include
two remarks as well as a more general variant of Theorem 1.3 b).

3.1. Group schemes of invertible elements. Let hC WD g\OC and h0 WD g\O0.
Let h WD hC ° h0/ C p`Gg. As O0 and OC ° O0 are W.k/-algebras and as

p`Gg is a two-sided ideal of the W.k/-algebra g, it is easy to see that h is a W.k/-
subalgebra of g. Let h WD h\O As p`Gg OG see 1)), we have a direct sum
decomposition

h D hC ° h0/ C p `Gg D hC ° h0 ° h : .2/

Let …CW h h be the projection on hC along h0 ° h
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Let H, HC0, and H0 be the affine group scheme over Spec.W.k// of invertible
elements of h, hC ° h0, and h0 respectively). Due to Section 2.5 ii), we have a

sequence

H0.W.k// 6 HC0.W.k// 6 H.W.k// 6 G.W.k// .3a/

of subgroups. As hC and h are nilpotent subalgebras without unit) of h, we have

1M C hC 6 HC0.W.k// and 1M C h 6 H.W.k//: .3b/

From Section 2.5 iii) we get that we have a natural split short exact sequence

1 1M C hC HC0.W.k// H0.W.k// 1: .3c/

Based on 2), for each element h 2 H.W.k// we can write uniquely

h D 1M C a.h/ C b.h/ C c.h/;

where a.h/ 2 hC, b.h/ 2 h0, and c.h/ 2 h We have a.h/ D …C.h/.

3.1.1. The ideal i. If `G D 0, let i be the two-sided ideal of the W.k/-algebra h D g
generated by hC and h If `G 1, let i WD hC C h C p`Gg. We check that i
is a topologically nilpotent, two-sided ideal of h. If `G D 0, this is so by the very
definitions seerules 1.2 a)and b)). We assume that `G 1. This implies that p`Gg
is a topologically nilpotent, two-sided ideal of h. AshC is a nilpotent, two-sided ideal
of hC°h0, its image in h=p`Gg D hC°h0=OE.hC°h0/\ p`Gg is a nilpotent,
twosided ideal. Thusp`GgChC is a topologicallynilpotent, two-sided ideal ofh. Ash is
a nilpotent, two-sided idealof h0°h and as h0°h surjects onto h=.p`GgChC/ D
h0=OEh0 \.p`GgChC/ the image of h in h=.p`GgChC/ is a nilpotent, two-sided
ideal. From the last two sentences, we get thati D p`GgChCCh is a topologically
nilpotent, two-sided ideal of h.

3.1.2. Fact. For each element h D 1M Ca.h/ Cb.h/ Cc.h/ 2 H.W.k//, we have

1M C b.h/ 2 H0.W.k//. Therefore also 1M C a.h/ C b.h/ 2 H0C.W.k//.
Proof. As 1M C b.h/ and h are congruent modulo i, the first part of the fact follows
from Section 2.5 iv). The last part of the fact follows from 3c).

3.1.3. On H0. As h0 D g \O0, we have h0/ D h0 see Example 1.2.2). Let
h0Zp be the Zp-subalgebra of h0 formed by elements fixed by Let H0Zp be
the affine group scheme over Spec.Zp/ of invertible elements of h0Zp The group
scheme H0Zp is a Zp-structure of H0 and thus the Frobenius automorphism acts

naturally on H0.W.k// D H0Zp W.k//: for 2 H0.W.k// we have / D /
The scheme H0Zp is an open subscheme of the vector group scheme over Spec.Zp/
defined by h0Zp viewed only asaZp-module). Thus theaffine, smoothgroup scheme

H0Zp has connected fibres.

3.1.4. Lemma. Let fC be a W.k/-submodule of hC. Let j WD fC ° h0 ° h We

consider the following three conditions:
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i) we have …C.fCh C h fC/ fC;
ii) the W.k/-module fC is a left and right h0-module;

iii) we have f2C fC i.e., fC is an algebra).

Then the following three properties hold:

a) Conditions i) and ii) hold if and only if j is a left and right h0 ° h -module.

b) Conditions ii) and iii) hold if and only if fC ° h0 is a W.k/-subalgebra of

hC ° h0.

c) The three conditions i) to iii) hold if and only if j is a W.k/-subalgebra of h.

Proof. As h0 ° h is a W.k/-subalgebra of h, j is a left and right h0° h -module if
and only if we have fCh0Ch0fCCfCh Ch fC j. Wehave fCh Ch fC j if
and only if i) holds. As hC is a left and right h0-module, we have fCh0 Ch0fC j
if and only if fCh0 C h0fC fC and thus if and only if ii) holds. Part a) follows
from the last three sentences. As hC is an algebra and a left and right h0-module,
we have fC ° h0/2 fC ° h0 if and only if f2C C fCh0 C h0fC fC and thus

if and only if conditions ii) and iii) hold. Thus b) holds. Part c) follows from a)
and b).

3.2. Subalgebras. In this section we list several subalgebras of h.

3.2.1. Frobenius filtration of hC. For i 2 N [ f0g let

hC;i WD hC \ i g/ D hC \ i g \ LC/:

Wehave hC;0 D hC, hC;i/ hC;iC1 hC;i and each hC;i is aW.k/-module and
a nilpotent algebra. As i h0/ D h0 see Section 3.1.3) and as hC is a left and right
h0-module, hC;i is also a left and right h0-module. As all Newton polygon slopes of

hC; / are positive, we have T1i
D0 hC;i D 0. Thus hC;i/i2N[f0g

is a decreasing,
separated, and exhaustive filtration of hC to be called the Frobenius filtration.

3.2.2. The Theta operations. We assume that hC ¤ 0. Let M.hC/ be the set of

W.k/-submodules of hC endowed with the pre-order relation defined by inclusions.
We consider the increasing operators ‚;‚a;‚s W M.hC/ M.hC/ that take fC 2
M.hC/ to

‚.fC/ WD f2C C …C.fCh C h fC/ C fC/ 2 M.hC/;

‚a.fC/ WD f2C C…C.fCh Ch fC/, and ‚s.fC/ WD …C.fCh Ch fC/. We have

identities ‚.fC/ D ‚a.fC/ C fC/ and ‚a.fC/ D f2C C‚s.fC/. The lower right
indices a and s stand for algebraic and slope module respectively), as suggested by
Lemma 3.1.4 a) and c). For i 2 N [ f0g let

fi WD ‚i
hC/:
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As ‚ is increasing and as ‚.hC/ hC, we have fiC1 D ‚.fi/ fi hC.

3.2.3. Lemma. We assume that hC ¤ 0. Let i 2 N [ f0g. Then ei WD fi ° h0° h
is a W.k/-subalgebra of h.

Proof. We use induction on i. For i D 0 we have e0 D h and thus the Lemma holds.
The passage from i to i C 1 goes as follows. We check that the three conditions i)
to iii) of Lemma 3.1.4 hold for fC WD fiC1. As fiC1 fi, we have ‚s.fiC1/‚s.fi/ ‚ fi / D fiC1. Thus condition 3.1.4 i) holds. To check that condition
3.1.4 ii) holds, it suffices to show that each one of the following four elements f2i
…C.fih / …C.h fi /, and fi/ of M.hC/ are left and right h0-modules; we will
only check that they are left h0-modules as the arguments for checking that they are

right h0-modules are entirely the same. As fi is a left h0-module, f2i is also a left
h0-module. Wehave h0…C.fih / D …C.h0fih / D …C.fih / the last equality as

fi is a left h0-module). We have h0…C.h fi/ D …C.h0h fi/ D …C.h fi/ the last

equality as h is a left h0-module). We have h0 fi/ D h0/ fi / D h0fi/ D
fi /. Thus condition 3.1.4 ii) holds. As f2

iC1
f2i fiC1, condition 3.1.4 iii)

also holds. Thus eiC1 is a W.k/-subalgebra of h, cf. Lemma 3.1.4 c). This ends the
induction.

3.2.4. Lemma. We assume that hC ¤ 0. Let i 2 N [ f0g. Then ‚s.hC;i/ hC;i
Thus hC;i ° h0 ° h is a W.k/-subalgebra of h.

Proof. Let x 2 hC;i and y 2 h As z WD xy C …C.xy/ 2 h0 ° h we have

Qz WD
i z/ 2 g \ O0 ° O / As x 2 hC;i and y 2 h g \ O we have

xQ WD
i x/ 2 g \ LC and

yQ WD
i y/ 2 g \L Thus …C.xy/ D z C xy Di

zQ CxQyQ/ 2
i g/ i.e., …C.xy/ 2 hC\ i g/ D hC;i A similar argument shows

that …C.yx/ 2 hC;i Thus ‚s.hC;i / hC;i. As hC;i is an algebra and a left and

right h0-module see Section 3.2.1), from Lemma 3.1.4 c) we get that hC;i°h0°h
is a W.k/-subalgebra of h.

3.2.5. Lemma. We assume that hC ¤ 0. Then fa;1 WD
T1i

D0‚ia.hC/ is 0.

Proof. Let i be as in Section 3.1.1. Let n0 be the topologically nilpotent, two-sided
ideal of the W.k/-algebra h0 such that we have i D hC ° n0 ° h We will check

by induction on q 2 N that fa;1 iq C n0 C h As fa;1 hC i, the basis of
the induction holds. The passage from q to qC1 goes as follows. Let i 2 N be such
that ‚ia.hC/ iq C n0 C h i. We have

‚iC1a hC/ D .‚ia.hC//
2C‚s.‚ia.hC// iq

Cn0Ch /2C‚s.hC\.iq
Cn0Ch //

iqC1 C n0 C h C‚s.hC \ iq
C n0 C h //:

Let x 2 hC\.iqCn0Ch / i andy 2 h i. Wehave…C.xy/ xy 2 n0°h
and xy 2 iqC1C.n0Ch /h iqC1Cn0Ch Thus…C.xy/ D OE…C.xy/ xy C



Vol. 85 2010) Reconstructing p-divisible groups from their truncations of small level 179

xy 2 iqC1 Cn0 Ch A similar argument shows that …C.yx/ 2 iqC1 Cn0 Ch
From the last twosentencesweget that‚s.hC\.iqCn0Ch // iqC1Cn0Ch We

conclude that‚iC1a hC/ iqC1Cn0Ch This implies that fa;1 iqC1Cn0Ch
This ends the induction.

As i is topologicallynilpotent, we haveTq2N.iqCn0Ch / Tq2N.pqhCn0C
h / D n0Ch This implies that fa;1 n0Ch Thus fa;1 hC\.n0Ch / D 0
i.e., fa;1 D 0.

3.2.6. Lemma. We assume that hC ¤ 0. Then f1 WD
T1i

D0 fi is 0.

Proof. We show that the assumption that f1 ¤ 0 leads to a contradiction. Aswe have

inclusions 0 ¨ f1 fi hC D hC;0 and as T1i
D0 hC;i D 0, there exists a greatest

number i0 2 N [ f0g for which there exists i 2 N such that we have inclusions

f1 fi hC;i0
As ‚s.hC;i0C1/ hC;i0C1

cf. Lemma 3.2.4) and as h2

ja

cf. Section 3.2.1), we have i0C1.
C;i0C1 C hC;i0C1/

hC;i0C1 ‚.hC;i0C1/ hC; Based on this and the
inclusion hC;i0/ hC;i0C1, an easy induction on j 2 N shows that the images of

fiCj D ‚j fi/ and ‚ fi/ in hC;i0 hC;i0C1
coincide. Let j0 2 N be such that we

have‚j0a hC/ hC;i0C1, cf.Lemma3.2.5. Thus the image offiCj0 in hC;i0 hC;i0C1
is 0. Therefore f1 fiCj0 hC;i0C1

and this contradicts the choice of i0. Thus

f1 D 0.

3.3. Isomorphism properties. In this section we list properties of the isomorphism
classes of those latticed F -isocrystals with a group over k which are of the form
M; g ; G/ with g 2 G.W.k//. We recall that acts on H0.W.k// as does, cf.

Section 3.1.3.

3.3.1. Lemma. a) We have H0.W.k// D f
1 / j 2 H0.W.k//g.

b) If m 2 N, then

Ker.H0.W.k// H0.Wm.k///

D f
1 / j 2 Ker.H0.W.k// H0.Wm.k///g:

c) For each 2 HC0.W.k//, we have / 2 HC0.W.k//.
d) Let fC and f be two left and right h0-modules contained in hC and h

respectively). Let g 2 H.W.k// be such that a.g/ 2 fC and c.g/ 2 f Then there
exists an element h0 2 H0.W.k// such that for g0 WD h0g h0/ 1

2 H.W.k// we

have a.g0/ 2 fC, b.g0/ D 0, and c.g0/ 2 f
Proof. AsH0Zp is an affine, smoothgroup schemeover Spec.Zp/ whose special fibre
is connected see Section 3.1.3), a) and b) are only theWitt vectors version of Lang
theorem for affine, connected, smooth groups over Fp; see [NV, Proposition 2.1] and

its proof for details. As hC/ hC and H0.W.k/// D H0.W.k//, from 3c) we
get that for each 2 HC0.W.k// we have / 2 HC0.W.k//. Thus c) holds.
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We prove d). We have 1M C b.g/ 2 H0.W.k//, cf. Fact 3.1.2. Let h0 2
H0.W.k// be such that 1M C b.g/ D h 1

0 h0/, cf. a). We have

g0 D h0a.g/ h0/ 1
C h0OE1M C b.g/ h0/ 1

C h0c.g/ h0/ 1

D 1M C h0a.g/ h0/ 1
C h0c.g/ h0/ 1:

As fC and f are left and right h0-modules, we have h0a.g/ h0/ 1
2 fC and

h0c.g/ h0/ 1
2 f Therefore a.g0/ D h0a.g/ h0/ 1

2 fC and c.g0/ D
h0c.g/ h0/ 1

2 f Thus d) holds.

3.3.2. Lemma. Let g D 1M C c.g/ 2 1M C h Then there exists an element

h 2 G.W.k//\ .1M C h OE
1 / such that we have hg h/ 1

D 1M.p

Proof. For i 2 N[f0g let gi WD
i g/ D 1M C i c.g//. As i.O / O we

have i h / g\O g\h OE
1
p and thus i c.g// is a nilpotent element of g.

This implies that gi D 1M C i c.g// is an invertible element of g i.e., we have

gi 2 G.W.k//. We have g D g0. For i 2 N we have gi/ D gi 1. As all Newton
polygon slopes of L ; / are negative, the sequence i c.g///i2N of elements of
g\O converges to 0. This implies that the element h WD limi!1 gigi 1 : :: g1 2
G.W.k// is well defined. We compute that

hg h/ 1
D lim
i!1

gigi 1 : : : g1g g1/ 1 : : : gi 1/ 1 gi / 1

D lim
i!1

gi : : : g0g 1
0 : : :g 1

i 1

is equal to limi!1 gi D 1M.

3.4. Proof of 1.3 a). We prove Theorem 1.3 a). Let gQ 2 G.W.k// be congruent to
1M modulo p`G. As gQ 1M 2 p`Gg h, we have

gQ 2 h. As gQ 2 GLM.W.k//, we
have

gQ 2 H.W.k// cf. Section 2.5 i)). Thus to prove Theorem 1.3 a), it suffices to
prove the following stronger statement:

/ for each element g in H.W.k// there exists an element hg in G.W.k// such
that hgg hg/ 1

D 1M.

We will first prove the following lemma.

3.4.1. Lemma. Let g 2 H.W.k//. Then there exists an element hC 2 HC0.W.k//
such that gC WD hCg hC/

1
2 H.W.k// has the property that a.gC/ D 0.

Proof. We can assume that hC ¤ 0. For i 2 N [ f0g, let ei D fi ° h0 ° h be the

W.k/-subalgebra of h constructed in Lemma 3.2.3. By induction on i 2 N[ f0g we
show that there exists hi 2 HC0.W.k// such that gi WD hig hi/ 1

2 H.W.k//
has the property that a.gi/ 2 ei Taking h0 D 1M, we have g0 D g 2 h D e0. Thus
the basis of the induction holds. The passage from i to i C 1 goes as follows.
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We will take hiC1 to be a product of the form hi;Chi;0hi Let ii 2 N [ f0g be
the greatest number such that we have b.gi/ 2 pii h0. Let hi;0 2 Ker.H0.W.k//
H0.Wii k/// be such that hi;0.1M C b.gi// hi;0/ 1

D 1M, cf. Lemma 3.3.1 b).
The element giC1;0 WD hi;0gi hi;0/ 1

2 H.W.k// has the properties that

a.giC1;0/ 2 fi and b.giC1;0/ D 0, cf. proof of Lemma 3.3.1 d) applied with

fC; f / D fi; h / Let hi;C WD 1M a.giC1;0/ 2 1M C hC 6 HC0.W.k//.
We compute that

giC1 D hiC1g hiC1/
1
D hi;Chi;0gi hi;0/ 1 hi;C/

1
D hi;CgiC1;0 hi;C/

1

D OE1M a.giC1;0/ OE1M C a.giC1;0/ C c.giC1;0/ OE1M a.giC1;0// 1

D OE1M a.giC1;0/2 a.giC1;0/c.giC1;0/ C c.giC1;0/ OE1M a.giC1;0// 1 :

As a.giC1;0/ 2 fi the three elements a.giC1;0/2, …C. a.giC1;0/c.giC1;0//, and

a.giC1;0// belong to ‚.fi / D fiC1. As …C. a.giC1;0/c.giC1;0// 2 fiC1, we
get that a.giC1;0/c.giC1;0/ 2 eiC1. As eiC1 is a W.k/-algebra, we conclude that

both 1M a.giC1;0// and OE1M a.giC1;0/ OE1M Ca.giC1;0/ Cc.giC1;0/ belong
to eiC1. From Section 2.5 i) we get that OE1M a.giC1;0// 1

2 eiC1. Thus we
have giC1 2 eiC1. This ends the induction.

Due to Lemma 3.2.6, the sequences a.gi //i2N[f0g
and a.giC1;0//i2N[f0g of

elements of hC converge to0. Wehaveb.giC1/ D OE1M a.giC1;0/ OE1M Ca.giC1;0/C
c.giC1;0/ OE1M a.giC1;0// 1 1M a.giC1/ c.giC1/ 2 h0. From the last two
sentences we easily get that the sequence b.giC1//i2N[f0g of elements of h0
converges to 0. Thus the sequence ii /i2N[f0g of non-negative integers converges to1.
This implies that the sequence hi;0/i2N[f0g

of elements of H0.W.k// converges to
1M. As hi;C D 1M Ca.giC1;0/, the sequence hi;C/i2N[f0g

converges to 1M. Thus
the sequence hi;Chi;0/i2N[f0g of elements ofHC0.W.k// converges also to 1M. As

hiC1 D hi;Chi;0hi we get that the sequence hi/i2N[f0g
of elements ofHC0.W.k//

converges to an element hC 2 HC0.W.k//. We have gC D hCg hC/
1

D
limi!1 hig hi/ 1

D limi!1 gi 2 T1i
D0

ei D T1i
D0 fi ° h0 ° h Thus

gC 2 h0 ° h cf. Lemma 3.2.6. Therefore a.gC/ D 0.

3.4.2. End of the proof of 1.3 a). Let g 2 H.W.k//. Let hC 2 HC0.W.k//
and gC 2 H.W.k// be as in Lemma 3.4.1. Let h0 2 H0.W.k// be such that
for g0 WD h0gC h0/ 1

2 H.W.k// we have a.g0/ D b.g0/ D 0, cf. Lemma
3.3.1 d) applied with fC;f / D .0; h / Let h 2 G.W.k// be such that we
have g0 D h 1 h / cf. Lemma 3.3.2. Due to 3a), the element hg WD h h0hC
belongs to G.W.k//. Wehavehgg hg/ 1 D h h0hCg hC/

1 h0/ 1 h / 1
D

h h0gC h0/ 1 h / 1
D h g0 h / 1

D 1M. Thus the statement 3.4 /
holds. This ends the proof of Theorem 1.3 a).

3.4.3. Remarks. a) The proof of Theorem 1.3 a) can be also worked out using
p`Gg C h0 C h instead of h D p`Gg C hC C h0.
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b) If g 2 HC0.W.k//, then hg D h0hC 2 HC0.W.k//. Thus we have

an identity HC0.W.k// D f
1 / j 2 HC0.W.k//g to be compared with

Lemma 3.3.1 a)).

3.5. Proof of 1.3 b). We prove Theorem 1.3 b). We consider a direct sum
decomposition

M D L
i2I

Mi .4a/

with theproperty that for allelements i of the finite set I we have Mi OE
1
p / D Mi OE

1
p

and Mi; / is isoclinic. For instance, we can take I to be the set of Newton polygon
slopes of M; / and then as each Mi we can take M \W.i/ see Section 1.1.2 for
W. / with 2 Q). For each i 2 I let i 2 Q be the unique Newton polygon
slope of Mi; / In Section 3.5.1 we do not assume that the association i i is
one-to-one.

3.5.1. Scholium. One computes `GLM as follows. For i 2 I let Bi be a W.k/-basis

for Mi Let B WD Si2I Bi; it is a W.k/-basis for M. Let B WD fx j x 2 Bg be
the W.k/-basis for M which is the dual of B see Section 2.1).

Due to 4a), we have direct sum decompositions

End.M/\ LC D Li;j2I
i< j

Hom.Mi; Mj/;

End.M/\ L0 D Li2I
End.Mi /;

and

End.M/ \ L D Li;j2I
i< j

Hom.Mj; Mi/:

Thus End.M/ D End.M/\LC/° End.M/\L0/° End.M/\L / and therefore

End.M/=O D OE.End.M/\ LC/=OC ° OE.End.M/\ L0/=O0

° OE.End.M/\L / O :
4b)

For i;j 2 I x 2 Bi and y 2 Bj we define a number `.x; y/ 2 N [ f0g via the
following two rules:

if i j let `.x;y/ 2 N [ f0g be the smallest number such that we have

p`.x;y/ q.x y / 2 Hom.Mj; Mi/ for all q 2 N;

if i < j let `.x;y/ 2 N [ f0g be the smallest number such that we have

p`.x;y/ q.x y / 2 Hom.Mj; Mi / for all q 2 N.
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Let `C, `0, ` 2 N [ f0g be the smallest numbers such that p`C annihilates
End.M/ \ LC/=OC, p`0 annihilates End.M/ \ L0/=O0, and p` annihilates
End.M/\L / O As

OC D \q2N[f0g

q End.M/ \ LC/ D \q2N[f0g

End. q M/\LC/;

`C is the smallest non-negative integerwith the property that we havep`C.End.M/\
LC/ q.M/\LC for all q 2 N i.e., we havep`C q.End.M/\LC/ End.M/
for all q 2 N). As fx y j x 2 Bi;y 2 Bj ; i; j 2 I; i > jg is a W.k/-basis

for End.M/\ LC, we get that `C is the smallest non-negative integer such that we
have p`C q.x y / 2 Hom.Mj; Mi/ for all q 2 N, all i;j 2 I with i > j and
all x 2 Bi and y 2 Bj Therefore

`C WD maxf`.x; y/ j x 2 Bi; y 2 Bj ; i; j 2 I; i > jg: .5a/

Similar arguments show that

`0 D maxf`.x; y/ j x;y 2 Bi ; i 2 Ig .5b/

and that

` WD maxf`.x; y/ j x 2 Bi;y 2 Bj ; i; j 2 I; i < j g: .5c/

From 4b) and the very definitions of `C, `0, and ` we get that maxf`C;`0; ` g 2
N [ f0g is the smallest number such that pmaxf`C;`0;` g annihilates End.M/=O.

Next we define a number "GLM 2 f0; 1g via the following rules. IfO D End.M/,
let "GLM WD `GLM cf. rules 1.2 a) and b)); we have `C D `0 D ` D 0 and
thus `GLM D maxf"GLM ; `C; `0; ` g. If O ¤ End.M/, let "GLM WD 0; we have

`GLM D maxf`C;`0; ` g cf. rule 1.2 b)). From the last two sentences and the
formulas 5a), 5b), and 5c) we get that, regardless of what O is, we have

`GLM D maxf"GLM ;`C;`0; ` g D maxf"GLM ; `.x; y/ j x;y 2 Bg: .6a/

The latticed F -isocrystals Hom.Mj; Mi /; / and Hom.Mi; Mj /; / are dual to
each other cf. Section 2.1) and the dual of the W.k/-basis fx y jx 2 Bi; y 2 Bj g
of Hom.Mj;Mi/ is the W.k/-basis fy x j x 2 Bi; y 2 Bjg of Hom.Mi;Mj /.
Based on this, from the property 2.1 / we get that for all i; j 2 I we have an

equality

maxf`.x; y/ j x 2 Bi;y 2 Bjg D maxf`.y;x/ j x 2 Bi; y 2 Bjg: .6b/

3.5.2. Reduction steps and notations. Let ` WD `GLM Based on Theorem 1.3 a),
we have nGLM ` Thus to prove that nGLM D `, it suffices to show that nGLM >
` 1. If nGLM D 0, then ` D 0 see Lemma 2.3) and therefore nGLM > ` 1. Thus
to prove that nGLM D `, it suffices to show that for ` 2 we have nGLM > ` 1. To
check this we can assume that the map I Q that takes l 2 I to l 2 Q is injective
i.e., for each element l 2 I we have Ml D M \W. l/).
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Let q be the smallest positive integer for which the following two properties hold:

i) there exists a W.k/-basis B D [l2IBl for M which is contained in [l2IMl
and for which there exist elements i; j 2 I x 2 Bi Mi and y 2 Bj Mj
such that cf. 6a) and 6b)) we have `.x; y/ D ` and j i ;

ii) we have eq;x;y WD p`.x;y/ q.x y / D p` q.x y / 2 Hom.Mj;Mi/ n
p Hom.Mj; Mi /.

The existence of q follows from 6a), 6b), and the very definition of the numbers

`.x; y/.
For z 2 M, let az;q be the unique integer such that we have q.z/ 2 paz;qM n

paz;qC1M. We can choose the W.k/-basis B D [l2IBl such that we have a
direct sum decomposition M D Lz2B W.k/p az;q q.z/ i.e., we have q.M/ D
Lz2B W.k/p az;qz. Let

ai;q WD minfaz;q j z 2 Big and bj;q WD maxfaz;q j z 2 Bj g:

Therefore ai;q is the greatest integer such that we have q.Mi/ pai;qMi and bj;q is
the smallest integer such that we have pbj;qMj q.Mj/. The smallest number s 2
N[ f0g with the property that ps q.Hom.Mj; Mi// D ps Hom. q.Mj /; q.Mi// is
contained in Hom.Mj; Mi /, equals maxf0;bj;q ai;qg; as eq;x;y 2 Hom.Mj;Mi/ n
p Hom.Mj;Mi/, we have s ` x;y/ D ` 2. As s maxf`C;`0g ` we
conclude that 2 ` D s D bj;q ai;q. It is easy to see that we have maxf`C;`0g
ay;q ax;q ` x; y/, cf. property ii) for the second inequality. From the last two
sentences we get that ax;q D ai;q and ay;q D bj;q. Thus we have ` D `.x; y/ D
ay;q ax;q D bj;q ai;q. As ` D ay;q ax;q > 0, we have x ¤ y.

3.5.3. The set ƒ. Let ƒ WD fw 2 Mi n pMi j aw;q D ax;qg; it is the set of those

elements w 2 Mi for which p ax;q q.w/ is a direct summand ofM. Obviously the
set ƒ is stable under multiplication by invertible elements of W.k/. For w 2 ƒ let

gw WD 1M C p` 1w y 2 End.M/I

it is the endomorphism of M that fixes each element z 2 B n fyg and that takes y
to y C p` 1w. As ` 2, we have gw 2 GLM.W.k//. As each gw is congruent
to 1M modulo p` 1, to prove that nGLM > ` 1 it suffices to show that there
exists an element w 2 ƒ such that the latticed F -isocrystals M; gw / and M; /
are not isomorphic. We show that the assumption that this is not true leads to a

contradiction. This assumption implies that for each element w 2 ƒ there exists an
element hw 2 GLM.W.k// which isan isomorphism between M;gw / and M; /
Thus we have hwgw h 1

w D i.e., we have

hwgw D hw/: .7a/
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We write hw D 1M Cuw, where uw 2 End.M/. Substituting the expressions of hw
and gw in 7a), we come across the following identity

uw Cp` 1w y Cp` 1uw.w y / D uw Cp` 1 OEw Cuw.w/ y D uw/
.7b/

here uw.w y / is the product inside End.M/ of uw and w y In other words,

if vw WD w C uw.w/ then the pair uw;vw/ is a solution of the following equation

U C p` 1V y D ˆ U / .7c/

in variables U and V that can take values in End.M/OE
1
p

and M respectively).

3.5.4. Fact. There exists an isomorphism between M; gw / and M; / defined by
an element hQw of GLM.W.k// which has the following two properties:

i) it acts identically on each Ml with l 2 I n fi; j g and leaves invariant Mi ;

ii) if i ¤ j then it acts identically on Mi leaves invariant Mi °Mj and acts
identically on Mi CMj /=Mi

Proof. We will prove this only in the case when i ¤ j as the case i D j is even

simpler). We know that gw acts identically on each Ml with l 2 I n fjg and on

Mi ° Mj/=Mi This implies that each Ml with l 2 I n fjg is the maximal direct
summand of M such that all Newton polygon slopes of Ml; gw / are equal to l
and thatMi°Mj is the maximal direct summand ofM such that all Newton polygon
slopes of Mi ° Mj ; gw / are equal to either i or j From this and the fact that

hw 2 GLM.W.k// is an isomorphism between M; gw / and M; / we get that hw
leaves invariant eachMl with l 2 I n fjg as well asMi °Mj Even more, from the
second sentence of this proof we get that hw restricted to each Ml with l 2 I n fjg
is an automorphism hlw of Ml; / and moreover hw induces an automorphism of

Mi °Mj /=Mi; / and thus an automorphism hjw of Mj ; /
Let h0w WD Ql2I hlw 2 Ql2I GLMl W.k// 6 GLM.W.k//; it is an automorphism

of M; / The element hQw WD h 1
0whw 2 GLM.W.k// has all the desired

properties.

To reach the desired contradiction we can assume that we have hw D hQw, where
hQw is as in Fact 3.5.4. We first consider the case when i ¤ j
3.5.5. The case i ¤ j We assume that i ¤ j i.e., j < i As hw D hQw, we have

uw 2 Hom.Mj; Mi /. From this and the relation i ¤ j we get that uw.w/ D 0. As

j < i all Newton polygon slopes of Hom.Mj; Mi /; / are positive. Therefore
for each V in Mi the sequence m.p` 1V y //m 0 converges to 0 and thus

all the solutions of the equation 7c) in Hom.Mj; Mi/OE
1
p Mi are of the form

P1mD0 m.p` 1V y /;V /. From this and the relation uw.w/ D 0 we get the
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following identity

uw D 1X
mD0

m p ` 1w y /: .7d/

We have the following two properties of the terms of the sum 7d).

i) All the terms of the sum of 7d) belong to 1
p Hom.Mj; Mi / this is so as w

and y belong to a W.k/-basis for M formed by elements of [l2IMl and therefore
the element `.w; y/ can be defined as in Section 3.5.1 and it is equal to `.x; y/ D `).
Moreover, all but a finite number of these terms belong to Hom.Mj; Mi/.

ii) The term q.p` 1w y / of the sum of 7d) belongs to 1
p Hom.Mj; Mi / n

Hom.Mj; Mi/ cf. property 3.5.2 ii) and the fact that aw;q D ax;q).

Let be an invertible element of W.k/. Let
N 2 knf0g be its reduction modulo p.

Based on properties i) and ii), the condition that the element u w obtained as in
7d) belongs to Hom.Mj; Mi / is expressed by N being a solution of a system of

polynomial equations in one variable which have coefficients in k and which contain
at least one polynomial of degree at least pq. Therefore there exist such elements

with the property that we have u w 2
1 Hom.Mj; Mi/ n Hom.Mj; Mi /. Thusp

for such an element we have w 2 ƒ and h w D 1M C u w … GLM.W.k//.
Contradiction.

3.5.6. Extra reduction steps. To reach the desired contradiction we can assume
that i D j i.e., i D j cf. Section 3.5.5. As hw D hQw and i D j to reach a

contradiction we can assume based on Fact 3.5.4 i) thatMi D M i.e., that I D fig).
Thus M; / is isoclinic and we have O D O0 D A0 Zp W.k/, cf. Section 1.2.

3.5.7. Lemma. We recall that vw D w C uw.w/. Then we have vw 2 ƒ.
Proof. Due to the definition of q, we have s.gw/ 2 GLM.W.k// for all s 2
f1;: : : ; q 1g but q.gw/ … GLM.W.k//. From this and the equation 7a) we get
that s.hw/ 2 GLM.W.k// for all s 2 f1; : : : ;qg but qC1.hw/ … GLM.W.k//.
Thus we have s.uw/ 2 End.M/ for all s 2 f1;: : : ; qg but qC1.uw/ … End.M/.

Due to this and the identity 7b) we get that q.p` 1vw y / … End.M/. If
q.p` 1vw y / …

1
p

End.M/ or if vw 2 pM, then we have `0 ` C 1 and

this contradicts 6a). Thus we have q.p` 1vw y / 2
1
p End.M/ n End.M/ and

vw 2 MnpM. Therefore q.p`vw y / 2 End.M/np End.M/ and vw 2 MnpM.
But we also have q.p`x y / 2 End.M/ n p End.M/, cf. property 3.5.2 ii).
From the last two sentences and the very definitions of aw;q and ax;q, we get that

avw;q D ax;q. From this and the relation vw 2 M npM we conclude that vw 2 ƒ.
3.5.8. Lemma. Let u; v/ 2 End.M/ M be a solution of the equation 7c).

a) Then we have fu; p` 1v y g End.M/\ 1O.p
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b) Let v1 2 pM. Then there exists a solution uCu1;vCv1/ of the equation 7c)
with u1 2 O.

Proof. We have pp` 1v y 2 p` End.M/ O. It is easy to see that for each

element wQ 2 O, the equation CwQ D / in has a solution in O/ D O D O0
and thus also in End.M/. Let Qu 2 O be such that we have QuCpp` 1v y D Qu/.
Thus pu Qu D pu Qu/ belongs to A0OE

1
p \End.M/ D A0 O. Therefore we

have u 2 End.M/ \ 1
pO. Thus a) holds. Part b) follows from the fact that there

exists u1 2 O such that u1 C p`v1 y D u1/.

3.5.9. Morphisms between k-schemes. Let M be the affine space scheme) over k
defined naturally by the k-vector space M=pM. Let 'q W M M be the morphism
of k-schemes that takes N 2 M.k/ D M=pM to the element of M.k/ which is the
reduction modulo p of p ax;q q. / 2 M, where 2 M is an arbitrary lift of mN

The set Im.ƒ M=pM/ is the set of k-valued points of the open, non-empty
subscheme S WD ' 1

q Mnf0g/ ofM. For each solution u; v/ 2 End.M/ M of the
equation 7c), a similar argument to the proof of Lemma 3.5.8 shows that v modulo

p determines u modulo A0 up to a finite number of possibilities. From this and the
identity w D vw uw, we get that the association that takes w; uw/ modulo p to vw
modulo p has finite fibres. Thisassociation can beviewed as the one defined naturally
at the level of k-valued points) by a morphism of k-schemes whose codomain is S

and whose domain has the same dimension r as S. By reasons of dimensions, we get
the following:

i) There exists an open, non-empty subscheme V of S which has the property
that each k-valued point

Nv
of V is of the form vw modulo p for some elements

w 2 ƒ and uw 2 End.M/ such that w; vw/ WD w;wCuw.w// is a solution of the
equation 7c).

Let Ox WD
1
p O=O and let xE be the image of End.M/ \ 1

p O in Ox. Both Ox and

Ex are k-vector spaces. Let O and E be the affine spaces schemes) over k defined
naturally by the k-vector spaces Ox and Ex respectively). Let N

W O O be the
morphism which takes a k-valued point of O defined by some element o 2

1 O top

pO we think of N asthe k-valued point of O defined by the element o/ o 2
1

a Let F WD E \ N 1.E/. Thus F is aa finite, surjective endomorphism of Gr2
closed subscheme of O equipped with a morphism m1W F E induced from N we

think of m1 as a homomorphism between closed subgroup schemes of Gr2a Based
on Lemma 3.5.8 a) we can speak about the natural images Nuw and Nvw;y of uw and

p` 1vw y respectively) inOx and thus aboutk-valued points denoted in the same

way) Nuw 2 F.k/ and Nvw;y 2 E.k/ with the property that m1 maps Nuw to Nvw;y.
We have a natural morphism of k-schemes m2 W V E which at the level of

k-valued points maps a k-valued point of V represented by an element v 2 ƒ to the
k-valuedpoint of Edefined by the imageof p` 1v y 2 p` 1 End.M/ 1 Op inOx.
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From the property i) and the previous paragraph we get that the natural morphism

W V E F V

associated to the fibre product of m1 and m2, is surjective. As the morphism N
W

O

O has finite fibres and it is of finite type, the finite type morphism is quasi-finite and
therefore it is generically finite. From this, the property i), and Lemma 3.5.8 b) we
get the following:

ii) There exists an element v 2 ƒ that defines naturally a k-valued point of V
and there exists a finite subset x of k such that for each algebraically closed field k1
that contains k and for every invertible element of W.k1/ whose reduction modulo

p does not belong to x the following equation in U,

U C p` 1 v y D k1/.U /; .7e/

obtained from 7c) by replacing V; / with v; k1 /, possesses a solution in
End.M W.k/ W.k1//. Here k1 is the Frobenius automorphism of the ring W.k1/
ofWitt vectors with coefficients in k1.

3.5.10. Good choice of We will take k1 to be an algebraic closure of k..X//,
where X is an independent variable. We identify W.k/OEOEX with a W.k/-subalgebra

of W.k1/ that contains the invertible element X D X;0; : : :/ of W.k1/. We will take

WD X, where is an invertible element of W.k/. Wehave k1 X/ D Xp. For this
choice of the equation 7e) has up to addition of elements in the free Zp-module
1
p A0 of rank r2) a unique solution

u X D 1X
mD0

Xpm m p` 1 v y / .7f/

in 1
p O W.k/ W.k1/. In fact we have u X 2

1
p End.M/ W.k/ W.k/OEOEX As

v 2 ƒ, from the property 3.5.2 ii) we get that the term Xpq q.p` 1 v y / of
7f) does not belong to End.M/ W.k/ W.k1/. The last two sentences imply that

the intersection u X C
1
pA0/\ OEEnd.M/ W.k/ W.k1/ is empty and therefore we

reached the desired contradiction.

3.5.11. End of the proof. The contradiction we reached implies that nGLM > ` 1.
Thus nGLM D ` D `GLM This ends the proof of Theorem 1.3 b) and therefore also

of Main Theorem A.

3.6. Remarks. Suppose M; / is a direct sum of isoclinic latticed F -isocrystals
over k.

a) We have a direct sum decomposition g D g \ LC/ ° g\L0/° g\L /
of W.k/-modules. Thus OG D g \O and therefore g=OG End.M/=O. From
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this inclusion we easily get the following monotony properties: we have `G `GLM
and therefore cf. Main Theorem A) we also have nG nGLM

b) We assume that M; / is the Dieudonné module of D; thus `GLM D `D.
We will use the notations of Section 3.5. We also assume that there exist elements

x; y 2 B such that `.x;y/ 2 and we have x 2 Bi and y 2 Bj with j < i
Let g 2 GLM.W.k// be the element that fixes each z 2 B n fyg and that takes y
to y C p`.x;y/ 1x. Let Dg be a p-divisible group over k whose Dieudonné module
is isomorphic to M; g / Then DgOEp`.x;y/ 1 is isomorphic to DOEp`.x;y/ 1 and

Dg has the same Newton polygon as D as j ¤ i If by chance we also have an
identity `D D `.x; y/, then Section 3.5 can be easily adapted to give us that, up to
a replacement of x 2 Bi by a multiple of it with an invertible element of W.k/, we
can assume that Dg is not isomorphic to D.

3.7. Variant of 1.3 b). Let M; ;G/ be a latticed F -isocrystal with a group over

k such that Assumption 1.1.1 holds. We assume that the following two conditions
hold:

i) we have nG 1 and a directsum decomposition g D g\LC/° g\L0/° g\
L / or g D g\ LC/°OEg\.L0°L / or g D OEg\.LC°L0/ ° g\ L /
of W.k/-modules;

ii) for all q 2 N, there exists a W.k/-basis B for M and a sequence of inte¬

gers az;q/z2B such that certain subsets of fx y j x; y 2 Bg are W.k/-
bases for all direct summands of g listed in i) and moreover we have M D
Lz2B W.k/p az;q q.z/.

Then the proof of Theorem 1.3 b) see Section 3.5) can beentirely adapted to give
us that nG D `G. We only add here two things. First, if by chance in Section 3.5.2
we have `.x;y/ D `GLM with x 2 Bi and y 2 Bj such that j > i then
one needs to use q instead of q) with q 2 N in order to reach the desired
contradiction. Second, if we have g D g\ LC/ ° OEg \ L0 ° L / resp. g D
OEg\ LC °L0/ ° g\L / then one needs to use Lemma 2.4 in order to be able

to treat g\ L0 °L / resp. g\ LC ° L0/) in the same manner as g\L resp.
as g \ LC).

4. Direct applications to p-divisible groups

In this section we prove the results stated in Sections 1.4.2 to 1.4.4 see Sections 4.5
to 4.7). In Sections 4.1 to 4.4 we introduce basis invariants of p-divisible groups
over k and we present basic properties of them that are needed in Sections 4.5 to 4.7.
Until the end we will assume that M; / is the Dieudonné module of D.
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4.1. Definitions. a) Let q 2 N. Let D.q/ 2 N [ f0g be the greatest number
such that we have q.M/ p D.q/M. Let D.q/ 2 N [ f0g be the smallest
number such that we have p D.q/M q.M/. Let iD.q/ WD D.q/ D.q/; as

p D.q/M q.M/ p D.q/M, we have iD.q/ 2 N [ f0g.
b) We assume that D is isoclinic. Let m WD g.c.d.fc; dg. Let c1; d1; r1/ WD

c
m ; d

m; r
m /. Let uD WD supf0; D.r1n/ d1n j n 2 Ng. Let QuD WD supf0; d1n

D.r1n/ j n 2 Ng. Let vD WD supf0; D.rn/ dn j n 2 Ng. Let QvD WD

supf0; dn D.rn/ j n 2 Ng. Proposition 4.3 c) and b) below will imply that uD,
Qud vD, and QvD are non-negative integers and therefore that in their definition we can

replace sup by max.

c) Let M1; 1/ and M2; 2/ be the Dieudonné modules of two isoclinic
pdivisible groups D1 and D2 respectively) over k. Let 1 and 2 be the unique
Newton polygon slopes of D1 and D2 respectively). Let `D1;D2 2 N [ f0g be the
smallest number that has the following property:

i) if 1 2, thenfor all q 2 N theW.k/-module q.p`D1;D2 Hom.M1; M2// D
p`D1;D2 Hom. q.M1/; q.M2// is included in Hom.M1; M2/;

ii) if 1 > 2, then for allq 2 N theW.k/-module q.p D̀1;D2 Hom.M1; M2// D
p`D1;D2 Hom. q.M1/; q.M2// is included in Hom.M1; M2/.

d) Let "D WD "GLM where the number "GLM 2 f0; 1g is as in Scholium 3.5.1.

4.1.1. Remark. If cd D 0, then O0 D End.M/ and therefore `D D "D D 0.
If c;d 1 and D is ordinary i.e., isomorphic to Qp=Zp/c ° p1/d then

O D End.M/ and the two-sided ideal of the W.k/-algebra End.M/ generated by

OC ° O is End.M/; thus `D D "D D 1. If c; d 1 and D is not isomorphic
to Qp=Zp/c ° p1/d then End.M/ ¤ O and therefore `D > 0 and "D D 0;
moreover `D 2 N is the smallest number such that we have p`D End.M/ O cf.
rule 1.2 b)).

4.2. Simple properties. In this section we list few simple properties of the invariants
we have introduced so far.

4.2.1. Fact. We have nD D nDt and `D D D̀t

Proof. We show that nD nDt Let C be a p-divisible group of codimension c and
dimension d over k. If COEpnDt is isomorphic to DOEpnDt then taking Cartier duals
we get that CtOEpnDt is isomorphic to DtOEpnDt and thus that Ct is isomorphic to Dt.
Taking Cartier duals, we get that C is isomorphic to D. This implies that nD nDt
As D is the Cartier dual of Dt, we also have nDt nD. Thus nD D nDt

As M ; p / is the Dieudonné module of Dt, under the natural identification
End.M / D End.M/, the level module of M ; p / gets identified with O. Thus
we have `D D `Dt



Vol. 85 2010) Reconstructing p-divisible groups from their truncations of small level 191

4.2.2. Fact. The following three properties hold:

a) for all q 2 N, we have inclusions

M p D.q/ q M/ p iD.q/M .8a/

which are optimal in the sense that we also have

M ª p D.q/C1 q M/ and p D.q/ q M/ ª p iD.q/C1MI .8b/

b) for all q 2 N, we have Dt.q/ D q D.q/ and Dt.q/ D q D.q/;
c) ifD is isoclinic, then we have uD D QuDt QuD D uDt vD D QvDt

and
QvD D vDt

Proof. Part a) follows from the very Definition 4.1 a). As p D.q/M q.M/
p D.q/M, we have p D.q/M q.M / p D.q/M i.e., pq D.q/M
p /q.M / pq D.q/M As M ;p / is the Dieudonné module of Dt and

due to 8a) and 8b), we get that b) holds. We prove c). Due to b) we have an
equality D.r1n/ d1n D r1n Dt.r1n/ d1n D c1n Dt.r1n/. This implies
that uD D QuDt By replacing D with Dt, we get that uDt D QuD. Similar arguments
show that vD D QvDt and QvD D vDt Thus c) holds.

4.2.3. Lemma. We assume that D is isoclinic. Let WD
d
r 2 Q\ OE0; 1 be its unique

Newton polygon slope. Then the following two properties hold:

a) we have D.q/ q D.q/;
b) if D.q/ D q or if D.q/ D q then we have D.q/ D D.q/ D q

Proof. As 'q WD p D.q/ q is a q-linear endomorphism ofM, the Newton polygon
slopes of 'q are on one hand non-negative and on the other hand are all equal to
q D.q/. Thus D.q/ q If q D D.q/, then all the Newton polygon
slopes of 'q W M M are 0 and therefore we have 'q.M/ D M. This implies that

D.q/ D D.q/ D q The part involving D.q/ is proved in the same way but
working with p D.q/ q.

4.2.4. Lemma. a) If D is either F -cyclic or special, then D is also quasi-special.

b) The class Qc;d of isomorphism classes of quasi-special p-divisible groups of
codimension c and dimension d over k, is a finite set.

Proof. Each isoclinic special p-divisible group over k is isoclinic quasi-special. Each

F -cyclic p-divisible group over k is a direct sum of F -circular p-divisible groups
over k. Based on the last two sentences, it suffices to prove a) in the case when D
is F -circular. Let be an r-cycle of Jr such that D is isomorphic to C We have

r M/ D pdM and therefore C is isoclinic quasi-special of Newton polygon slope
d
r

Thus a) holds.
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Toprove b) itsuffices to showthat for all pairs c; d/ 2 N[f0g/
2 with cCd > 0,

the class Ic;d of isomorphism classes of isoclinic quasi-special p-divisible groups of
codimension c and dimension d over k, is a finite set. We assume that D is isoclinic
quasi-special. Then we have r.M/ D pdM. Therefore 'r WD p d r

W M M
is a r -linear automorphism of M. Let MW.Fpr/ WD fx 2 M j 'r.x/ D xg. We

haveMW.Fpr / W.Fpr / W.k/ D M. Moreover MW.Fpr // MW.Fpr /. Therefore
the Dieudonné module M; / is definable over the finite field Fpr Thus every
isoclinic quasi-special p-divisible group of codimension c and dimension d over k
has a Dieudonné module over k which i) is isomorphic to M; g / for a suitable
element g 2 GLM.W.k//, and ii) it is definable over Fpr

LetM D F1°F 0 be a direct decomposition such that F1=pF 1 is the kernel of
modulo p. We have 1

pF 1
C F 0/ D M. Thus the cocharacter

W Gm GLM
that fixes F 0 and that acts on F 1 via the inverse of the identity character of Gm, is a

Hodge cocharacter of M; ; GLM/ in the sense of [Va1, Section 2.2.1 d)]. Thus the
triple M; ; GLM/ is a latticed F -isocrystal with a group over k for which the W -
condition of loc. cit. holds. From the Atlas Principle applied to M; ;GLM/ and to
an emphasized family of tensors indexed by the emptyset see [Va1, Theorem 5.2.3]),
we get that the set of isomorphism classes of Dieudonné modules over k which are

of the form M;g / with g 2 GLM.W.k// and which are definable over the finite
field Fpr is finite. From this and the classical Dieudonné theory, we get that the class

Ic;d is a finite set.

4.3. Proposition. We assume that D is isoclinic. Then the following six properties
hold:

a) we have D̀ D maxfiD.q/ j q 2 Ng;
b) if WD

d then we have limq! D.q/
r 1 q D limq!1

D.q/
q D ;

c) if M0 resp. Mz0) is the W.k/-submodule of M generated by elements fixed by

'r1 WD p d1 r1 resp. by 'r WD p d r then uD resp. vD) is finite and it is
the smallest non-negative integer such that puD resp. pvD) annihilates M=M0
resp. M=Mz0);

d) if M1 resp. Mz1) is the smallest W.k/-submodule of MOE 1
p which is generated

by elements fixed by 'r1 resp. by 'r and which containsM, then
QuD resp. QvD)

is finite and it is the smallest non-negative integer such that pQuD resp. pQvD)

annihilates M1=M resp. Mz1=M);
e) we have uD D QuD resp. vD D QvD);

f) we have uD `D.

Proof. We prove a). The W.k/-span of endomorphisms of M; / is O D O0.
The number D̀ is the smallest number such that p`D End.M/ O End.M/,



Vol. 85 2010) Reconstructing p-divisible groups from their truncations of small level 193

cf. Example 1.2.2. As O D Tq2N[f0g
q.End.M// D Tq2N[f0g

End. q.M// D
Tq2N[f0g

End.p D.q/ q.M//, D̀ is the smallest non-negative) integer such that

we have p`D End.M/ End.p D.q/ q.M// for all q 2 N. Thus from 8a) and
8b) we get that `D is the smallest integer which is greater than or equal to iD.q/ for

all q 2 N. From this a) follows.
We prove b). From a) we get that iD.q/ D D.q/ D.q/ `D. Thus

D
q

D
q

D
q C

`D
q

cf. Lemma 4.2.3 a). From these inequalities we get that

b) holds.

We will prove c) only forM0 as the case ofMz0 is argued in the same manner. We

have M0 D Tn2N[f0g 'n
r1 M/. As 'n

r1 M/ D p d1n r1n.M/, from 8a) and 8b)

we get that p D.r1n/ d1nM 'n
r1 M/ and p D.r1n/ d1n 1M ª 'n

r1 M/. Thus the
smallest non-negative number s such that we have psM 'n

r1 M/ for all n 2 N is

supf0; D.r1n/ d1n j n 2 Ng and therefore it is uD. Thus c) holds.

We will prove d) only for M1 as the case of Mz1 is argued in the same manner.
The W.k/-submoduleM1 ofM is the largest W.k/-submoduleofM generated by
elements fixed by p d1 r1. As M ;p / is the Dieudonné module of Dt, the
analogue of p d1 r1 for Dt is the r1-linear automorphism p c1.p /r1

D p d1 r1 of

M OE
1
p Thus from c)applied toDt, we get that uDt is the smallest non-negative integer

with the property thatpuDt annihilatesM M1 As QuD D uDt see Fact4.2.2 c))
and as the W.k/-modulesM1=M andM M1 are isomorphic, we get that QuD is the
smallest non-negative integer such that pQuD annihilates M1=M. Thus d) holds.

We will prove e) for uD and QuD as the case of vD and QvD is argued in the same

manner. As pQuDM1 M and as pQuDM1 is W.k/-generated by elements fixed by

'r1 we have pQuDM1 M0. Thus pQuD annihilates M=M0 and therefore
QuD uD,

cf. c). A similar argument shows that M1 p uDM0 and that QuD uD. Thus

uD D QuD i.e., e) holds.
We prove f). Each endomorphism of M; / maps M0 to M0. Thus O D O0

End.M0/. But due to c), the smallest number s 2 N [ f0g such that ps End.M/
End.M0/ is uD. As p`D End.M/ O End.M0/, we get that uD `D. Thus f)
holds.

4.3.1. Remark. We have M0 Mz0 M and M Mz1 M1. Thus vD D vQD

uD D uQD. The W.k/-submodule M0 resp. Mz0) of M is the largest one with the
property that M0; / resp. Mz0; / is the Dieudonné module of an isoclinic special
resp. isoclinic quasi-special) p-divisible group over k. Thus we call uD D QuD

resp.

vD D QvD) theManin height resp. theManin quasi-height) ofD, cf. [Ma, Chapter III,
Section 2]. Similarly, the W.k/-submodule M1 resp. Mz1) of MOE

1 is the smallestp
one with the properties that it contains M and that M1; / resp. Mz1; / is the
Dieudonné module of an isoclinic special resp. isoclinic quasi-special) p-divisible
group over k.
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4.4. Proposition. We assume that D D Qi2I Di is a product of at least two
nontrivial isoclinic p-divisible groups over k. Then the following three properties hold:

a) for all i; j 2 I with i ¤ j we have `Di;Dj D `Dj ;Di;
b) we have `Di D `Di;Di and `D D maxf"D; `Di ; `Di;Dj j i 2 I;j 2 I n figg;
c) if i;j 2 I with i ¤ j and if the Newton polygon slope i of Di is less

than or equal to the Newton polygon slope j of Dj then we have `Di;Dj D
maxf0; Di q/ Dj q/ j q 2 Ng.

Proof. Let M D Li2I Mi be the direct sum decomposition such that Mi; / is
the Dieudonné module of Di Let Bi be a W.k/-basis for Mi Let B WD [i2IBi
For x;y 2 B, let `.x;y/ 2 N [ f0g be defined as in Scholium 3.5.1. We have

`Di;Dj D maxf`.y; x/ j x 2 Bi; y 2 Bjg, cf. the very definitions. Thus a) is a

particular case of Formula 6b). As Di is isoclinic, we have "Di D 0. Thus b) is a

particular case of Formulas 6a), 5a), 5b), and 5c). We prove c). Due to 8a), for
all q 2 N we have

Hom. q Mi /; q Mj // Hom.p Di q/Mi;p Dj q/Mj /

D p Dj q/ Di q/ Hom.Mi; Mj /:

From this and making use of 8a) and 8b) we get that there exist a direct summand of

Hom. q.Mi /; q.Mj //which is a direct summand of p Dj q/ Di q/ Hom.Mi; Mj/
as well. Thus the smallest number s 2 N [ f0g with the property that for all
q 2 N the W.k/-module ps q.Hom.Mi; Mj// is included in Hom.Mi; Mj/, is

maxf0; Di q/ Dj q/ j q 2 Ng. From this and the rule i) of the Definition 4.1 c),
we get that c) holds.

4.4.1. Example. We assume thatD is isoclinic and thatd < r 2d. Thus WD
d
r 2

Q \ OE
1
2; 1/. For q 2 N we have Dt.q/ D.q/ D q 2 D.q/, cf. Fact 4.2.2 b).

From this and Proposition 4.4 c) we get that D̀t;D D maxf0; q 2 D.q/ j q 2 Ng.
As "D D0, fromProposition4.4 a) and b)weget that `D°Dt Dmaxf`D;`Dt;`Dt;Dg.
As `D D D̀t D maxfiD.q/ j q 2 Ng cf. Fact 4.2.1 and Proposition 4.3 a)), we
conclude that

`D°Dt D maxfiD.q/; q 2 D.q/ j q 2 Ng:

4.5. Proof of 1.4.3. We assume that D D Qi2I Di is a product of at least two
non-trivial isoclinic p-divisible groups over k. LetM D Li2I Mi be the direct sum

decomposition defined by the product decomposition D D Qi2I Di. As nD D `D
and as for i 2 I we have nDi D `Di cf. Corollary 1.4.2), based on Proposition 4.4 a)
and b), to prove Proposition 1.4.3 it suffices to show that for all i; j 2 I with i ¤ j
we have

`Di;Dj maxf0; `Di C `Dj 1g: .9/
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As `Di;Dj D `Dj ;Di see Proposition 4.4 a)), to check the inequality 9) we can

assume that i j. Wehave Di q/ q i q j Dj q/, cf. Lemma 4.2.3 a).

Thus Di q/ Dj q/. Based on Proposition 4.4 c), to prove the inequality 9) it
suffices to showthat for all q 2 N wehave Di q/ Dj q/ maxf0; `DiC`Dj 1g.
We have iDi q/ C iDj q/ `Di C `Dj cf. Proposition 4.3 a). From this and the
inequality Di q/ Dj q/ we get:

Di q/ Dj q/ D iDi q/ C Di q/ C iDj q/ Dj q/

`Di C `Dj C Di q/ Dj q/ `Di C `Dj :
10)

If we have an equality Di q/ Dj q/ D `Di C `Dj then Dj q/ D Di q/ D
q i D q j and therefore also Di q/ D q i and Dj q/ D q j D q i cf.
Lemma 4.2.3 b)). Thus the assumption that Di q/ Dj q/ D `Di C`Dj implies
that Di q/ Dj q/ D 0 D `Di C `Dj maxf0; `Di C `Dj 1g. From this and

10) we get that the inequality Di q/ Dj q/ maxf0; `Di C `Dj 1g always
holds; therefore the inequality 9) holds. This ends the proof of Proposition 1.4.3.

4.6. Proof of 1.5.2. Let D D Qi2I Di be a product decomposition into isoclinic
quasi-special p-divisible groups over k. For i 2 I let ci and di be the codimension
and the dimension respectively) of Di and let i WD

di
ri Let M D Li2I Mi be

the direct sum decomposition such that Mi; / is the Dieudonné module of Di. As
each Di is isoclinic, we have nDi D `Di and nD D D̀ cf. Corollary 1.4.2). For

i 2 I we have ri.Mi / D pdiMi cf. Definition 1.5.1 e). Let m0 N be thei 2
greatest divisor of g.c.d.fci;dig such that for ci2;di2; ri2/ WD

ci ; di ; ri / we have
m0 m0 m0

i i i
ri2.Mi / D pdi2Mi This identity implies that

i) we have Di ri2/ D Di ri2/ D di2 andforall q 2 N wehave Di qCri2/ D
Di q/ C di2 and Di q C ri2/ D Di q/ C di2.

From i) we get that for all q 2 N we have iDi q C ri2/ D iDi q/. From this
and Proposition 4.3 a) applied to Di we get that

ii) nDi D `Di D maxfiDi q/ j q 2 Ng D maxfiDi q/ j q 2 f1;: : : ; ri2gg.

As the function Di / defined for 2 N is increasing, for all q 2 f1; : : : ; ri2g
we have iDi q/ Di q/ Di ri2/ D di2. From this and ii) we get that

nDi D `Di di2. It is easy to see that the p-divisible group Dt is isoclinic
quasispecial

i
and that the analogue of the triple ri2; di2; ci2/ for it is ri2;ci2; di2/. Thus

we have nDti
ci2. As nDi D nDti

see Fact 4.2.1), we have nDi ci2. Thus

nDi D D̀i minfci2;di2g minfci;dig: .11a/

This proves Theorem 1.5.2 if D D Di i.e., if I D fig.
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We assume that I has at least two elements. From Proposition 1.4.3 we get that

nD D `D maxf1;nDi C nDj j i 2 I; j 2 I n figg. From this and 11a) we get
that

nD maxf1;minfci2 C cj2; di2 C dj2g j i;j 2 I; i ¤ j g: .11b/

As ci2Ccj2 c and di2Cdj2 d, we haveminfci2Ccj2; di2Cdj2g minfc;dg.
Fromthisand 11b)weget thatnD D `D maxf1; minfc; dgg. But ifminfc; dg D 0
i.e., if cd D 0), then nD D `D D 0. Thus, regardless of what the product cd is, we

have nD D `D minfc;dg. This ends the proof of Theorem 1.5.2.

4.6.1. Scholium. Let be a permutation of Jr D f1; : : : ; rg. Let o be the order of
We assume that D; / is C ; /; thus D is F -cyclic and therefore cf. Lemma

4.2.4 a)) quasi-special. We will translate the property 4.6 ii) and Proposition 4.4 a)
and b) in terms only of the permutation Let D Qi2I i be the product
decomposition of the permutation into cycles. As in Section 1.5, we write i D
es1 ; : : : ;esri / for some number ri 2 N which can be 1). Let Mi be the W.k/-span

of fes1 ; : : : ; esri g. We have pMi Mi / Mi cf. the definition of Thus we
have a direct sum decomposition M; / D Li2I.Mi; / of Dieudonné modules.
Let D D Qi2I Di be the product decomposition that corresponds to the direct sum
decomposition M; / D Li2I.Mi; / Each p-divisible group Di is F -circular

and quasi-special. Let ci;di D ri ci; i D
di
ri 2 N [ f0g be as in Section 1.5.

Due to the property 4.6 i), the difference iDi q/ D Di q/ Di q/ depends

only on q modulo o. For s 2 Jr and q 2 f1; : : : ; og, let q.s/ 2 N [ f0g be such

that we have es/ D p q.s/e q.s/. Thus q.s/ is the number of elements of the
sequence es; es/; : : : ; q 1.es/ that belong to the set fe1; : : : ; edg. We have

Di q/ D minf q.sj / j j 2 f1; : :: ; rigg 12a)

and

Di q/ D maxf q.sj / j j 2 f1; : : : ;rigg: 12b)

The W.k/-basis B D fe1; : : : ; erg for M is a disjoint union of W.k/-basis for Mi ’s.

We consider the standard W.k/-basis fes et j s; t 2 Jrg for End.M/ defined by
B. We have q

es et / D p q.s/ q.t/e q.s/ e q.t/. If o.s/ > o.t/ resp.

o.s/ D o.t/ or o.s/ < o.t/), then es et belongs to LC resp. to L0 or L and

therefore the number `.es; et / defined in Scholium 3.5.1 is maxf0; q.t/ q.s/ j
q 2 f1; :: : ;ogg resp. is maxf0; q.s/ q.t/jq 2 f1; : : : ;ogg). From Formula 6a)
we get that

`C D maxf"C ; `.es; et / j s; t 2 Jrg: .12c/

4.6.2. Example. We assume that c D d D 8; thus r D 16. Let D 1 2,

where 1 D .9 10 5 11 12 6 7 8/ and 2 D .1 2 13 3 4 14 15 16/ are
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8-cycles. We have o D 8. Let D D C D D1 ° D2 be the product
decomposition corresponding to the cycle decomposition D 1 2. All Newton polygon

slopes of D1 and D2 are 1
2 and it is easy to see that Dt1 is isomorphic to D1.

We have iD1 .1/; : :: ; iD1 .8// D .1; 2;2; 2; 2; 2; 1; 0/; thus nD1 D 2 cf. property

4.6 ii)). From Fact 4.2.1 we get that nD2 D 2. We have 1.9/; : : : ; 8.9// D
.0; 0; 1; 1; 1; 2;3;4/ and 1.1/; : : : ; 8.1// D .1; 2; 2;3;4; 4; 4; 4/. Therefore

1.9/ 1.1/; : : : ; 8.9/ 8.1// D 1; 2; 1; 2; 3; 2; 1; 0/ and thus

`.e9; e1/ D `.e1; e9/ D 3. This implies that nD D `D 3. From Proposition 1.4.3
we get that nD 3. Thus nD1°D2 D nD D 3 D nD1 C nD2 1.

Plenty of similar examples can be constructed in which the identity nD1°D2 D
nD1 C nD2 1 holds and D1 and D2 are isoclinic of equal height and different
dimension.

4.7. Proof of 1.4.4. The Dieudonné module of Dz is Mz ; / where Mz is a W.k/-
submodule of M which contains p M. Let Oz D OzC ° Oz0 ° Oz be the level
module of Mz ; / If D and Dz are ordinary, then Proposition 1.4.4 is trivial. Thus
to prove Proposition 1.4.4, we can assume that D and Dz are not ordinary; thus from
Remark 4.1.1 we get that `D resp. `Dz/ is the smallest natural number such that we

have p`D End.M/ O resp. we have p`zD End.Mz/ Oz). As p M Mz M,
we have

p2 End.M/ p End.Mz/ End.M/: .13/

zD

For q 2 N we have q.p OzC/ p OzC End.Mz/\ LC. As p OzC End.M/
cf. 13)), we get that p OzC OC. A similar argument shows that p Oz0 O0 and

p Oz O Thus p Oz O. From this, the inclusion p` End.Mz/ Oz, and
13) we get that

p2 C`zD End.M/ p C`zD End.Mz/ p Oz O End.M/:

Thus `D 2 C `Dz
Based on this inequality, Proposition 1.4.4 follows from

Corollary 1.4.2. This ends the proof of Proposition 1.4.4.

4.7.1. Example. We assume that c D d. We have r D 2d. Let WD .12 : : :r/;
its cyclic decomposition is D i with i as an index). As r M/ D p

r
2.M/, the

F -circular p-divisible group C is supersingular. If d 2, then 2.M/ ¤ pM
and therefore C is not special. As d e1/ D pd edC1 and d

edC1/ D e1, we
have D.d / D 0 and D.d/ D d. This implies iD.d / D d and therefore from
Proposition 4.3 a) we get that nC D `C d. As nC d cf. Theorem 1.5.2),
we have nC D d. See [NV, Example 3.3] for a simpler proof that nC D d in
loc. cit. C is denoted as Cd Let E be a supersingular p-divisible group over k of
height 2. From [NV, Remark 2.6 and Example 3.3] we get that the smallest number

2 N [ f0g such that we have an isogeny C Ed is WD d
d 1
2 e. It is well

known that Ed is uniquely determined up to isomorphism by Ed OEp for instance,
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see [NV, Scholium 2.3] or see Formula 12c) applied to the minimal permutation

.1 d C 1/ : : : d r/ of Jr Thus nEd D 1. If d is odd, then D
d 1 and therefore2

nC D d D nEd C 2 This implies that in general, Proposition 1.4.4 is optimal.

4.7.2. Example. Weassume thatr > 0and thatDis isoclinic. LetM0 andMz0 be as in
Proposition4.3 c). LetD0 andDz0 bethep-divisible groups over k whose Dieudonné
modules are isomorphic to M0; / and Mz0; / respectively), cf. Remark 4.3.1. To
the inclusionsM0 M andMz0 M correspond isogeniesD D0 andD Dz0

whose kernels are annihilated by puD D pQuD and pvD D pQvD respectively), cf.
Proposition 4.3 c). Let jD WD nD0 and jQD WD nDz0 From Propositions 1.4.4 and
4.3 f) we get that

uD nD D `D minfjD C 2uD; jQD C 2vDg: .14a/

If c1; d1; r1/ is as in Definition 4.1 b), then jD minfc1; d1g cf. 11a)). From this
and 14a) we get

uD nD 2uD C minfc1;d1g: .14b/

5. On Main Theorem B

In Section 5.1 we prove Main Theorem B. Sections 5.2 and 5.3 present two
applications of Main Theorem B. For instance, Theorem 5.3 presents applications to
extensions between two minimal p-divisible groups over k. We recall that M; / is
the Dieudonné module of D.

5.1. The proof of MainTheorem B. If nD 1, then DOEp is minimal cf. Definition
1.5.1 d)). If DOEp is minimal, then there exists a p-divisible group Dz over k such
that

nDz 1 and DzOEp is isomorphic to DOEp ; the codimension and the dimension of

Dz are c and d respectively) and thus from the very definition of nDz we get that D
is isomorphic to Dz and therefore that we have nD D nDz 1. Thus we have nD 1
if and only if DOEp is minimal. As nD `D see Corollary 1.4.2), 1.6 a) implies
1.6 b). Thus to end the proof of Main Theorem B, it suffices to show that 1.6 b)
implies 1.6 c) and that 1.6 c) implies 1.6 a).

5.1.1. On 1.6 b) 1.6 c). Let 1; #1 W M=pM M=pM be the reductions
modulo p of ; # W M M. In [Kr] see also [Oo1, Section 2.3) and Lemma 2.4)]
and [Mo, Section 2.1]) it is shown that there exists a k-basis fb1; : : : ; br g forM=pM
and a permutation of Jr D f1; : : : ; rg such that the following two properties hold:

i) if s 2 f1; : : : ; dg, then 1.bs/ D 0 and #1.b s// D bs, and

ii) if s 2 fd C 1; : :: ; rg, then 1.bs/ D b s/ and #1.b s// D 0.
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Let # WD p 1
W M M; if s 2 f1; : : : ; dg, then # e s// D es, and if

s 2 fd C 1; : : : ; rg, then # e s// D pes. Properties i) and ii) imply that the
k-linear map M=pM M=pM that takes bs to es modulo p, is an isomorphism
between M=pM; 1; #1/ and the reduction modulo p of M; ;# / This means
that DOEp is isomorphic to C OEp cf. the classical Dieudonné theory. As nD 1, we
get that D is isomorphic to C

We check that is a minimal permutation in the sense of Definition 1.5.1 b).
Let D Qi2I i be the product decomposition of into cycles. We write i D
es1 ; : : : ;esri /, where ri 2 N. Let ci di D ri ci and i D

di
ri be as in Section 1.5.

Let Mi WD Lri
uD1

W.k/esu Let D D Qi2I Di be the product decomposition
defined by the direct sum decomposition M; / D Li2I.Mi; / Each Di is an

q

F -circular p-divisible group over k and therefore isoclinic. From Proposition 4.4 b)
we get that nDi nD 1. But nDi D `Di D maxfiDi q/ j q 2 Ng, cf.
Corollary 1.4.2 and Proposition 4.3 a). From the last two sentences we get that for
all q 2 N we have iDi q/ 2 f0; 1g. Thus either Di q/ D Di q/ or Di q/ C 1 D

Di q/. If Di q/ D Di q/, then from Lemma 4.2.3 a) we get that Di q/ D
Di q/ D q i. If Di q/C1 D Di q/, then from Lemma 4.2.3 a) we get thateither

Di q/; Di q// D OEq i ; OEq i C 1/ or Di q/; Di q// D q i 1; q i /. But
the second possibility is excluded by Lemma 4.2.3 b). We conclude that in all cases

we have Di q/; q/ 2 fOEq ;OEq C 1g. Therefore pOEq iDi i i C1Mi q.Mi/
pOEq i Mi Thus for each u 2 f1; : : : ; ri g, we have esu/ D pOEq i C"q.su/e q.su/
for some number "q.su/ 2 f0;1g. As this property holds for all pairs q; i/ 2 N I

is a minimal permutation. As D is isomorphic to C we get that D is minimal.
Thus 1.6 b) implies 1.6 c).

5.1.2. On 1:6 c/ 1:6 a/. To prove that 1.6 c) implies 1.6 a), we can assume

that is a minimal permutation of Jr that D D C and that D Let D
Qi2I i M D Li2I Mi and D D Qi2I Di be the decompositions obtained as in
Section 5.1.1. For i 2 I let i D es1 ; : :: ; esri /, ci di D ri ci and i D

di
ri

be

as in Section 1.5. As the permutation is minimal, for all u 2 f1; : : : ;rig we have
q

esu/ D pOEq i C"q.su/e q.su/ for some number "q.su/ 2 f0; 1g. This implies that
pOEq i C1Mi q

Mi/ pOEq i Mi Thus

Di q/; Di q/ 2 fOEq i ; OEq i C 1g: .15/

From 15) and the fact that iDi q/ 0, we get that iDi q/ 2 f0; 1g. From this
and Proposition 4.3 a), we get that nDi D `Di 1. If D D Di i.e., if I D fig),
then `D 1 and thus 1.6 a) holds. If I has at least two elements, then from
Proposition 1.4.3 we get that `D D nD 1. Thus regardless of what I is, we have

`D 1. This ends the argument that the implication 1.6 c) 1.6 a) holds. This
ends the proof of Main Theorem B.

5.2. Corollary. We assume that D̀ 2. Then nD D `D.
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Proof. If nD 1, then D is minimal cf. Main Theorem B) and therefore F -cyclic;
thus nD D `D cf. Theorem 1.5.2). As nD `D 2, we have nD D `D even if
nD D 2.

The next theorem generalizes and refines [Va1, Proposition 4.5.1].

5.3. Theorem. We assume that we have a short exact sequence 0 D1 D
D2 0 of p-divisible groups over k, withD1 andD2 as minimal p-divisible groups.

a) Then we have nD `D 3.

b) We assume that d D c 3 and thatD1 andD2 are isoclinic of Newton polygon

d and d 1
d respectively). Then nD D `D 2.slopes 1

Proof. Let 0 D1 Dz D2 0 be the pull forward of our initial short exact
sequence via the multiplication by p isogeny D1 D1. The kernel of the resulting
isogeny D Dz is annihilated by p. The p-divisible group D12 WD D1 °D2 is
minimal. As DzOEp is isomorphic to D12OEp from the equivalence between 1.6 b)
and c) we get that Dz is isomorphic to D12 and that nDz 1. As Dz is F -cyclic and
thus a direct sum of isoclinic p-divisible groups, we have nD D̀ nDz C 2 3
cf. Proposition 1.4.4). Thus a) holds.

We prove b). We know that there exists an isogenyD12 D whose kernelK is
annihilated by p. We will choose such an isogeny of the smallest degree possible. It
is well known that up to isomorphisms, there exists a unique p-divisible group over k
of height d and Newton polygon slope

d
where 2 f1; d 1g see [De, Chapter IV,

Section 8]). Thus if K has a proper subgroup scheme K1 resp. K2) whose image
in D1 resp. in D2) is trivial, then D012 WD D12=K1 resp. D012 WD D12=K2) is
isomorphic to D12 and thus we would get an isogeny D12 D0

12 D of smaller
degree. This implies that the projections of K on D1 and D2 are monomorphisms.
Thus the codimension and the dimension of K are both at most 1. Based on the last

two sentences, as d 3 we easily get that K is either trivial or isomorphic to p.
If K is trivial, then D is minimal and therefore we have nD 1 in fact we have

nD D 1). Thus to prove b), we can assume that K is isomorphic to p. We reached

the case when we have isogenies

D12 D12= p D D12=. p k p/ D D1= p k D2= p:

At the level of Dieudonné modules, this means the following things. Let N12 WD

L2d
sD1

W.k/es be a free W.k/-module of rank r D 2d. Let W N12 N12 be
the -linear endomorphism such that it takes e1; : : : ;ed/ and edC1;: : : ; e2d/ to

pe2;e3; : : : ; ed; e1/ and pedC2; : : : ; pe2d; edC1/ respectively). We can assume

that N12; / is the Dieudonné module of D1= p k D2= p cf. the mentioned
uniqueness property). AsD D12=. p k p/ D D1= p kD2= p is an isogeny
of kernel p and as K maps monomorphically to both D1 and D2, there exists an
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invertible element 2 W.k/ such that we can identify M with N12 C W.k/. e1p C
1

edC1/. Moreover, if M12 WD N12 W.k/1 e1 W.k/ 1
p C p C pedC1, then M12; / is
the Dieudonné module of D12.

We check that `D 2. We have

p2 End.M/ p Hom.M12; N12/CW.k/OE.p e1CpedC1/ e1 End.M/: .16/

The latticed F -isocrystal Hom.M12; N12/; / is isomorphic to End.M12; / and

moreoverwe have `D12 1. From this and the fact thatHom.M12; N12/ End.M/,
we get that O contains p Hom.M12; N12/. It is easy to see that for all q 2 N we
have q..p e1 C pedC1/ e1/ 2 End.M/; like p e1 C pedC1/ e1/ D
p /e2CpedC2/ e2 2..p e3CpedC1/ e1/ D p 2. /e3Cp2edC3/ e3

etc. Thus p e1 C pedC1/ e1 2 OC ° O0, cf. Lemma 2.4. Based on 16) we
conclude that p2 End.M/ O. Thus `D 2. From Corollary 5.2 we get that

nD D `D 2. Thus b) holds.
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