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SL, (Z|t]) is not FP,,_,

Kai-Uwe Bux, Amir Mohammadi and Kevin Wortman™

Abstract. We prove the result from the title using the geometry of Euclidean buildings.
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1. Introduction

Little is known about the finiteness properties of SL,, (Z[¢]) for arbitrary n.

In 1959 Nagao proved that if &k is a field then SL, (k[¢]) is a free product with amal-
gamation [Na]. It follows from his description that SL.»(Z[t]) and its abelianization
are not finitely generated.

In 1977 Suslin proved that when » > 3, SL,,(Z[¢]) is finitely generated by ele-
mentary matrices [Su]. It follows that H(SL,(Z[t]), Z) is trivial when rn > 3.

More recent, Krsti¢ and McCool proved in [Kr-Mc] that SL3(Z[¢]) is not finitely
presented.

In this paper we provide a generalization of the results of Nagao and Krstié—
McCool mentioned above for the groups SL, (Z[t]).

Theorem 1. Ifn > 2, then S, (Z[t]) is not of type FP,_;.

Recall that a group I is of type FP,, if there exists a projective resolution of Z as
the trivial ZI' module

P,— Py 1 —> - —>P—>Py—>7Z -0

where each P; is a finitely generated, projective ZI" module.
In particular, Theorem 1 implies that there isno K(SL,,(Z[¢]), 1) with finite (n—1)-
skeleton, where K(G, 1) is the Eilenberg—Mac Lane space for G.

*Supported in part by an N.S.F. Grant DMS-0604885.
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1.1. Outline of the paper. The general outline of this paper is modelled on the
proofs in [Bu-Wo 1] and [Bu-Wo 2], though some important modifications have to be
made to carry out the proof in this setting.

As in [Bu-Wol] and [Bu-Wo2], our approach is to apply Brown’s filtration cri-
terion [Br1]. Here we will examine the action of S1.,,(Z[¢]) on the locally infinite
Euclidean building for SL, (Q((z1))). In Section 2 we will show that the infinite
groups that arise as cell stabilizers for this action are of type FP,, for all m, which is
a technical condition that is needed for our application of Brown’s criterion.,

In Section 3 we will demonstrate the existence of a family of diagonal matrices that
will imply the existence of a “nice” isometrically embedded codimension | Euclidean
space in the building for SL, (Q((r~1))). In [Bu-Wo 1] analogous families of diagonal
matrices were constructed using some standard results from the theory of algebraic
groups over locally compact fields. Because Q((r~1)) is not locally compact, our
treatment in Section 3 is quite a bit more hands on.

Section 4 contains the main body of our proof. We use (ranslates of portions of
the codimension 1 Euclidean subspace found in Section 3 to construct spheres in the
Euclidean building for SL,(Q((r1))) (also of codimension 1). These spheres will
lie “near” an orbit of SL, (Z[t]), but will be nonzero in the homology of cells “not as
near” the same SL, (Z[t]) orbit. Theorem 1 will then follow from Brown’s criterion.

1.2. Background material. Our proof relies heavily on the geometry of the Eu-
clidean and spherical buildings for SL,(Q((t™1))). A good source of information
for the former topic is Chapter 6 of [Br2]. For the latter, we recommend Chapter 5
of [Ti].

2. Stabilizers

Lemma 2. If X is the Euclidean building for SL,(Q((t™1))), then the SL, (Z[t])
stabilizers of cells in X are VP, for all m.

Proof. 1et xo € X be the vertex stabilized by SL, (Q[[r~']]). We denote a diagonal
matrix in GL, (Q((+~!))) withentries 51, 52, ..., 5, € Q((t 7)) by D(s1,52, ..., 5n),
and we let © € X be the sector based at xp and containing vertices of the form
D™, "2 "™ )xg where each m; € Zandmy > my > -+ > iny,.

The sector @ is a fundamental domain for the action of SL, (Q[¢]) on X (see
[Sol). In particular, for any vertex z € X, there is some /, € SL,(Q[r]) and some
integers my > my > -+ > m, with z = AL D (¢, 172, .. ™ )xg. We let
hy =h, D (¢, "2, .., 1",

For any N € N, let Wy be the (N + 1)-dimensional vector space

Wy = {p(t) € C[t] | deg(p(1)) < N}
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which is endowed with the obvious Q—structure. If Nq,..., N> in N are arbitrary
then let

2
G{Nl """ an} = {x € 1_[:-1=1 WNi | det(x) = 1}

where det(x) is a polynomial in the coordinates of x. To be more precise this is
obtained from the usual determinant function when one considers the usual n x n
matrix presentation of x, and calculates the determinant in Mat, (C[¢]).

For our choice of vertex z € X above, the stabilizer of z in SL,(Q((r™1)))
equals /SL, (Q[[+ DA, 1. And with our fixed choice of /i, there clearly exist some

.....

Furthermore, conditions on N/ force a group structure on G; = Gy N7....N%,}- There-
43

fore, the stabilizer of z in S1,, (Q[¢]) is the Q—points of the affine Q-group G, and
the stabilizer of z in SL,,(Z[t]) is G.(Z).

The action of SL,(Q[¢]) on X is type preserving, so if ¢ C & is a simplex with
vertices z1, 2o, - - - , Zm, then the stabilizer of o in SL,,(Z[¢]) is simply

(Gz, N---NG,, W)

That s, the stabilizer of o in SL, (Z[¢]) is an arithmetic group, and Borel-Serre proved
that any such group 1s FP,, for all m [Bo-Se]. [

3. Polynomial points of tori

This section 1s devoted exclusively to a proof of the following

Proposition 3. There is a group A < SL,(Z[t]) such that the following holds:
{1y 4 22 70,

(ii) There is some g € SL,(Q((r™ 1)) such that gAg™" is a group of diagonal
maltrices.

(111)) No nontrivial element of A fixes a point in the Fuclidean building for

SL, (Q((t71))).

The proof of this proposition is modelled on a classical approach to finding diag-
onalizable subgroups of SL,(Z). The proof will take a few steps.

3.1. A polynomial over Z|[t] with roots in Q((t™1)). Let {p1.p2. p3....} =
{2,3,5,...} be the sequence of prime numbers. Letg; = 1. For2 < i < n, let

gi = pi—1 + 1.
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Let f(x) € Z[r][x] be the polynomial given by

7 = [ [T +an] -1

i=1

It will be clear by the conclusion of our proof that f(x) is irreducible over Q(z), but
we will not need to use this directly.

Lemma 4. There is some o € Q((t™1)) such that f(a) = 0.

Proof. We want to show that there are ¢; € Q such thatif & = Y 72 ¢;#17'" then
fa) =0.

To begin let co = —1. We will define the remaining ¢; recursively. Define ¢;
by o +qpt =Y 72 cixttT™ Thus, ¢;x = ¢; wheni > 1, each cq is contained
n Q, and Co,1 — 0.

That « is a root of f is equivalent to

n H oC . o0 n .
1= l_[(a +qxt) = l_[ (Zcz',kfl_m) = Z( Z ( l_[ Cik,k))tn(l_”-
k=1 k=1 i=0 i=0 YF L ig=i k=1

Our task 1s to find ¢;,’s so that the above 1s satisfied.
Note that for the above equation to hold we must have

0-t"= > (ﬁ cik,k)t”(l_o).

That is,
i
0= l_[ Co’k
k=1
which 1s an equation we know is satisfied because c¢p,; = 0. Now assume that we
have determined cg,cq,...,cm—1 € Q. We will find ¢;, € Q.

Notice that the first coefficient in our Laurent series expansion above which in-
volves ¢, 18 the coefficient for the 1" term. This follows from the fact that each
I} 18 nonnegative.

Since

S (TTes)
Yk—tix=m k=1

is the coefficient of the ™ term in the expansion of 1, we have

o= % (Tews)
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The above equation is linear over Q in the single variable ¢, and the coefficient
of ¢, 18 nonzero. Indeed, 22=1 ir = m,eachiy > 0,and co,...,cm—1 € Q are
assumed to be known quantities. Thus, ¢, € Q. O

3.2. Matrices representing ring multiplication. By Lemma 4 we have that the
field Q(r) (@) < Q((r71)) is an extension of Q(r) of degree d where d < n. It
follows that Z[¢][«] is a free Z[¢]-module of rank d with basis {1, @, a2, ..., 971},

For any y € Zt][e], the action of y on Q(r)(e) by multiplication is a linear
transformation that stabilizes Z[¢][c«]. Thus, we have a representation of Z[¢][c] into
the ring of d x d matrices with entries in Z[r]. We embed the ring of d x d matrices
with entries in Z[7] into the upper left corner of the ring of » x n matrices with entries
in Z[z].

By Lemma 4

n
[Jew+an =1
i=1

so each of the following matrices are invertible:
o+ qgrl, 0 +4qgatf, ..., O+ gut.

(We will be blurring the distinction between the elements of Z|[r][«] and the matrices
that represent them.)

Forl <i <n—1,weleta; = o+ g;+1t. Since q; 1s invertible, it 1s an element
of GL,(Z[t]), and hence has determinant =1. By replacing each a; with its square,
we may assume that a; € SL,(Z[r]) foralli. Welet A = {a1,...as—1) sothat A is
clearly abelian as it is a representation of multiplication in an integral domain. This
group A will satisfy Proposition 3.

3.3. A is free abelian on the ;. To prove part (i) of Proposition 3 we have to show
that if there are m; € Z with

n—1

1_[ gt =]

i=1

then each m; = 0. But the first nonzero term in the Laurent series expansion for « 1s
—t, which implies that the first nonzero term in the Laurent series expansion for each
a; 18 —t + g;+1t = p;t. Hence, the first nonzero term of

n—1
m;
[[a" =1
i=1
18

n—1
H(Pif)mi =§,

=
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Thus

n—1
[ =

i=1

and it follows by the uniqueness of prime factorization that »; = O for all i as desired.
Thus, part (1) of Proposition 3 is proved.

3.4. A isdiagonalizable. Recall that« is a d x d matrix with entries in Z[f] where d
is the degree of the minimal polynomial of « over Q(¢). Let that minimal polynomial
be g(x). Because the characteristic of Q(r) equals 0, g(x) has distinct roots in
Q1 Her).

Let Q(x) be the characteristic polynomial of the matrix @. The polynomial @
also has degree d and leading coefficient +1 with @ («) = 0. Therefore,g = +0.
Hence, @ has distinct roots in Q(z }(«) which implies that « is diagonalizable over
Q(r)(er) < Q((r~1)). That is to say that there is some g € SL,(Q((+™1))) such that
gag~!is diagonal.

Because every element of Z[][«] is a linear combination of powers of ¢, we have
that g(Z[t][e])g™" is a set of diagonal matrices. In particular, we have proved part
(11) of Proposition 3.

3.5. A has trivial stabilizers. To prove part (iii) of Proposition 3 we begin with the
following

Lemma 5. If I < SL,(Q[t]) is bounded under the valuation for Q((r™1Y), then the
eigenvalues for any y € I lie in Q.

Proof. We let X be the Fuclidean building for SL, (Q((r~!))). By the Bruhat-Tits
fixed point theorem, I'z = z for some z € X.

Let xo € X be the vertex stabilized by SL, (Q[[z~!]]). We denote a diagonal ma-
trix in GL,, (Q((z~1))) with entries 51, 52, ...,5, € Q((t71))* by D(s1, 52, ...,5,),
and we let © € X be the sector based at x¢ and containing vertices of the form
D™ ™2 ™n)xy where each m; € Z and my > my > +++ > ny,.

The sector @ is a fundamental domain for the action of SL,(Q][¢]) on X [So]
which implies that there is some i € SL, (Q[¢]) with iz € &.

Clearly we have (hT'h~!)hz = hz, and since eigenvalues of AT'h ™! are the same
as those for I', we may assume that I" fixes a vertex z € ©.

Fix my,...,my € Z,my > -+ > my, > 0,such that z = D({™, ..., 1" )xy.
Without loss of generality, there is a partition of n — say {k1,...,k¢} — such that

oo muy =1{q1,-...91, 92,42, oo, qe, ... qe}
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where each g; occurs exactly k; times and
g1 > 42 > > 4i.

We have that D™, ... ¢™)"ITD(™ ... t"™")xg = xo. That gives us,
D™y, . )T IT D™ L) C SL,(Q[[t~]]). Furthermore, a trivial cal-
culation of resulting valuation restrictions for the entries of

D™, SL, Qe D D™, L )]

shows that I is contained in a subgroup of SL,(Q((r~!))) that is isomorphic to
‘
[[SLg @ U
i=1

where U < SL,(Q((r™1))) is a group of upper-triangular unipotent matrices.
The lemma is proved. [

Our proof of Proposition 3 will conclude by proving

Lemma 6. No nontrivial element of A fixes a point in the Euclidean building for

SLa(Q((7H)).

Proof. Suppose a € A fixes a point in the building. We will show thata = 1. Let
F(x) € Z[t][x] be the characteristic polynomial for a € SL, (Z[t]). Then

Fx)=+]]x=8)
i=1

where each f; € Q((r=1) is an eigenvalue of a. By the previous lemma, each
B; € Q. Hence, each 8; € Q = Q N Q((r™1)). It follows that F(x) € Z[x] so that
each f; is an algebraic integer contained in Q. We conclude that each j; is contained
inZ.

Recall, that a has determinant 1, and that the determinant of a can be expressed
as []/—, Bi. Hence, each f; is a unit in Z, so each eigenvalue 8; = +1. It follows —
by the diagonalizability of @ — that « is a finite order element of A = Z"~!. That is,
a=1. [

We have completed our proof of Proposition 3.
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4. Body of the proof

Let P < SL,(Q((r™1))) be the subgroup where each of the first n — 1 entries
along the bottom row equal 0. Let R,,(P) < P be the subgroup of elements that
contain a (n — 1) x (n — 1) copy of the identity matrix in the upper left corner. Thus
R, (P) = Q((t~1))"~! with the operation of vector addition.

let L < P be the copy of SL,—1(Q({(x™1))) in the upper left corner of
SL,(Q((z™1))). We apply Proposition 3 to L (notice that the n in the proposition is
now an n — 1) to derive a subgroup A < L that is isomorphic to Z" 2. By the same
proposition, there is a matrix g € L such that gAg ™! is diagonal.

Let b € SL,(Q((+™1))) be the diagonal matrix given in the notation from the
proofs of Lemmas 2 and 5 as D(r,7,....r,t~"~ D). Note that » € P commutes
with L, and therefore, with A. Thus the Zariski closure of the group generated by
b and A determines an apartment in X, namely g~ '+ where 4 is the apartment
corresponding to the diagonal subgroup of SL,(Q((r~1))).

4.1. Actions on g‘l.A. If x4 € g_la%, then it follows from Proposition 3 that the
convex hull of the orbit of x. under A is an (n — 2)-dimensional affine space that we
will name V. Furthermore, the orbit Ax, forms a lattice in the space V.

We let g7 1A (o0) be the visual boundary of g~ 1w in the Tits boundary of X.
Recall that the Tits boundary of X is isomorphic to the spherical building for
SL,(Q((r~1))). The definition of visual boundary used above is the standard defini-
tion from CAT(0) geometry.

The visual boundary of Vi, is clearly an equatorial sphere in g~ A (o0). Precisely,
we let P~ be the transpose of P. Then P and P~ are opposite vertices in g~ A (o0).
It follows that there is a unique sphere in g~ A (c0) that is realized by all points
equidistant to P and P~. We call this sphere Sp p—.

Lemma 7. The visual boundary of V., equals Sp_p—.

Proof. Since g € PN P, itsuffices to prove that gV, 1s the sphere in the boundary
of +# that is determined by the vertices P and P~ .

Note that gVy, is a finite Hausdorff distance from any orbit of a point in 4
under the action of the diagonal subgroup of L. The result follows by observing
that the inverse transpose map on SL, (Q((t™1))) stabilizes diagonal matrices while
interchanging P and P~ O

We let Ry, R,, ..., R,y be the standard root subgroups of R, (P). Recall that
associated to each R; there is a closed geodesic hemisphere H; € A{oo) such that
any nontrivial element of R; fixes H; pointwise and translates any point in the open
hemisphere A(o0) — H; outside of A(o0). Note that 0H; is a codimension 1 geodesic
sphere in A(00).
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We let M < g~ 'A(o0) be the union of chambers in g~ A(oo) that contain the
vertex P. There is also an equivalent geometric description of M :

Lemma 8. The union of chambers M € g~ A(oc) can be realized as an (n — 2)-

simplex. Furthermore,
n—1

M= ()¢ H
i=1
and, when M is realized as a single simplex, each of the n — 1 faces of M is contained
in a unique equatorial sphere g~ 0H; = g~ ' H;.

Proof. Let M" C A(oc) be the union of chambers in 4(oc) containing the vertex
P. Since M = g~'M’, it suffices to prove that M’ is an (n — 2)-simplex with
M’ = ('Z] H; and with each face of M’ contained in a unique 3H;.

For any nonempty, proper subset / € {1,2,...,n}, we let VJ be the |/|-dimen-
sional vector subspace of Q((¢~1))" spanned by the coordinates given by I, and we
let Pr be the stabilizer of Vy in SL,(Q((¢~1))). For example, P = Pg15, n—1}.

Recall that the vertices of #A(oo) are given by the parabolic groups Py, that edges
connect Py and Py exactly when / € [/ or I C I, and that the remaining simplicial
description of A (oc) is given by the condition that A(oc) is a flag complex.

We let 'V be the set of vertices in #A(oc) of the form Py where & # J C
{1,2,...,n — 1}. Note that M’ is exactly the set of vertices 'V together with the
simplices described by the incidence relations inherited from A(oc). Thus, M’ is
easily seen to be isomorphic to a barycentric subdivision of an abstract (n—2)-simplex.
Indeed, if M’ is the abstract simplex on vertices Py13, Pi2y, ..., Piz—1), then a sim-
plex of dimension & in M’ corresponds to a unique Py € V with [J| = k 4+ 1. So
we have that M’ can be topologically realized as an (n — 2)-simplex.

Let F; be a face of the simplex M’. Then there is some 1 <7 < n — 1 such that
the set of vertices of F; is exactly { Py1y, Py, - .., P13y — Py

Note that R; Vi = Vy exactly when n € I implies 7 € I. It follows that R; fixes
M’ pointwise, and thus M’ C H; forall 1 <i < n — 1. Furthermore, if P; € H;
forall 1 <i <n—1,then R; Py = Py foralli sothatn € I implies i € [ for all
1 <i <n—1. As I must be a proper subset of {1,2,...,n}, we have P; € V, so
that M’ = (/=] H;.

All that remains to be verified for this lemma is that F; € dH;. For this fact,
recall that F; is comprised of (n — 3)-simplices in A(o0) whose vertices are given
by Py where J € {1,2,...,n — 1} — {i}. Hence, if ¢ € A(oc) is an (n — 3)
simplex of A (o0) witha € F;, then o is a face of exactly 2 chambers in A(c0): €p
and € p,, where € p contains P and thus €p € M ' and Cp ,» contains Py where
J'=1{1,2,...,n} —{i}and thus €p,, & M’ Turthermore,o = Cp NCp ,.

Since R; Vyr # Vi, it follows that €p,, is not fixed by R;. Since Cp, is fixed
by R; we have thato = Cp N Cp,, C dH;. Therefore, F; C dH;. O
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For any vertex y € X, we let €, € X be the union of sectors based at y and
limiting to a chamber in M. Thus, C, is a cone. Note also that because any chamber
in g7 1A (o0) has diameter less than 7z /2, it follows that M N S p,p— = ¥. Therefore,
if we choose x«, y € g~ 1A such that x4 is closer to P than y, then C; € g~ 1o and
Vi, N Cy 18 a simplex of dimension n — 2.

We will set on a fixed choice of y before xx, and we will choose y to satisfy the
below

Lemma 9. There is some y € g~ ' such that the Q[[t ~1]]-points of R, (P) fix C,
pointwise.

Proof. 1etxg be the pointin X stabilized by SL,, (Q[[t~]]). Recall that R,,(P)M =
M so that the Q[[t~1]]-points of R, (P) fix C,, pointwise.

Because M C g~ 1 A(c0), thereisa y € Cy, N g~ 1A, Any such y satisfies the
lemma. [

Choose e such that with x. = e as above and with y as in Lemma 9, there exists a
fundamental domain D, for the action of A on V, thatis contained in C;,. The choice
of e can be made by travelling arbitrarily far from y along a geodesic ray in g~ 1A
that limits to P.

By the choice of D, we have that
AD, =71,

and that the Q([[r~!]])-points of R,,(P) fix D..

4.2. The filtration. We let
Xo = SL,(Z[t]) D,

and for any i € N we choose an SL,, (Z[f])-invariant and cocompact space X; € X
somewhat arbitrarily to satisfy the inclusions

o0
Yocxicxc--cl X=X
i=1

In our present context, Brown’s criterion takes on the following form [Brl1].

Brown’s Filtration Criterion. By Lemima 2, the group SL.,(Z[t]) is not of type
FP,_y if forany i € N, there exists some class in the homology group Hy—2(Xo, Z)
which is nonzero in H,_»(X;, 7).
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4.3. Translation to P moves away fromfiltration sets. The following is essentially
Mahler’s compactness criterion.

Lemma 10. Given any i € N, there is some k € N such that b*e ¢ X;.

Proof. The lemma follows from showing that the sequence
(SLa(Z[1)b¥ e} < SLa(ZIINX

is unbounded.
Since stabilizers of points in X are bounded subgroups of SL, (Q({(r™1))), the
claim above follows from showing that the sequence

{SLa(Z[MNh* 1  SLa(ZD\SLA Q™))

1s unbounded.
But bounded sets in SL, (Z[t])\SL,(Q((t~1))) do not contain sequences of el-

ements {SL, (Z[t])ge}e such that 1 € g;l(SLn (Z[1]) — {1} g¢. And clearly b*’s
contract some root groups to 1. Thus none of the sequences above 1§ bounded. O

4.4. Applying Brown’s criterion. As is described by Brown’s criterion, we will
prove Theorem 1 by fixing X; and finding an (n — 2)-cycle in X that is nontrivial in
the homology of X;.

Recall that we denote the standard root subgroups of R, (P) by Ry, ..., Ry—1.
Each group g~ ! R; g determines a family of parallel walls in g~ 14, By Lemma 8,
each face of the cone C), is contained in a wall of one of these families.

Choose r; € g 'R g for all j such that bk e is contained in the wall determined
by r; where k is determined by / as in Lemma 10. In particular, rjb"c e = bke.

The intersection of the fixed point sets in g~ ' of the elements 7y, ..., Fa_q
determine a cone that we name Z. Note that Z is contained in — and 1s a finite
Hausdorff distance from — the cone C,.

Let Z~ € g1 be the closure of the set of points in g~ 1A that are fixed by
none of the r;. The set Z~ is a cone based at b¥e, containing y, and asymptotically
containing the vertex P~.

As the walls of Z™ are parallel to those of Z — and hence of C,, we have that
Z~ N Vgisan (n — 2)-dimensional simplex. We will name this simplex o.

The component of Z~ — V, that contains b¥¢ is an (n — 1)-simplex that has o as
a face. Call this (n — 1) simplex Y.

For any £ € N, there are exactly 2”1 possible subsets of the set {rf, — r,f_l}.
For each such subset S¢, we let
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and

OS5, = ( l_[ g)o.

gESy

Notice that the product of group elements in the equations above are well-defined
regardless of the order of the multiplication since R,, (P ) is abelian. In the degenerate
cases, l_[ge@g =1,s0Yyg=Yandog = 0.

Forany £ € N, welet Yy = | g, Ys,. Because the wall in g~ 1A determined by
rf is the same as the wall determined by r;, the space Yy 1s a closed ball containing
b* ¢ whose boundary sphere is Ug , 05, Indeed the simplicial decomposition of ¥

described above is isomorphic (o the simplicial decomposition of the ynit ball in R" !
that is given by the n — 1 hyperplanes defined by setting a coordinate equal to 0.

Let wg = |J s, 05,. Thus wg = 38Y;. Furthermore, the building X is (n — 1)-
dimensional and contractible, so any (n — 1)-chain with boundary equal to @y must
contain Yy and thus »%e. That is for all £ € N

[we] # 0 € Huz(X — b¥e, 7)

If we can show that wy; € Xy for some choice of £, then we will have proved our
main theorem by application of Brown’s criterion since we would have

] # 0 € Hys(X;, 7)
by Lemma 10.

Lemma 11. There exists some £ € N such that &y € Xj.

Proof. For any u € R, (P) there is a decomposition ¥ = u’u” where the entries of
u’ € R, (P) are contained in Q[¢] and the entries of u” € R, (P) are contained in

Q=)
Forany a € A and u € R, (P) there is a power £{a, u) € N such that

(a "ut ) = (a7 ua)) @) e SLy(Z[1]).

(For the above equality recall that A < L normalizes R, (P} and the group operation
on R, (P) is vector addition.)

There are only finitely many @ € A such that a D, N ¢ # @ (or equivalently, such
thata D, N Z~ # @). Call this finite set O < A.

At this point we fix

n—1
=] []¢@r.

acD i=1
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Thus,

[a_l( l_[ g)a}/ e SL,(Z][t])

gESy

for any @ € £ and any Sy C {rfinZ},

Because w; = (g, 05, and o5, = ([ges, £)0 = ([ es, £)(AD.NZ7), we
can finish our proof of this lemma by showing

( l_[ g)aDe C Xy

gEeSy

forcacha € & € A < SL,(Z[r]) and each Sy < {rf}?;ll. For this, recall that the
QI[[r~1]]-points of R, (P) fix D, and thus

( 1] g)aDe = a[a_l( ] g)a]De
gESy g€Sy
=ala™( [T )alta™( T &)ar" D
gEeSy gE€Sy
= afa™! _ g)a]’De
geSy
< SLa(Z[t]) De
= Xy 1
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