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Foliations and global inversion

Eduardo Cabral Balreira

Abstract. We consider topological conditions under which a locally invertible map admits a
global inverse. Our main theorem states that a local diffeomorphism f: M — R” is bijective
if and only if H,_1(M) = O and the pre-image of every affine hyperplane is non-empty and
acyclic. The proof is based on some geometric constructions involving foliations and tools from
intersection theory. This topological result generalizes in finite dimensions the classical analytic
theorem of Hadamard-Plastock, including its recent improvement by Nollet—Xavier. The main
theorem also relates to a conjecture of the aforementioned authors, involving the well-known
Jacobian conjecture in algebraic geometry.

Mathematics Subjeet Classification (2000). Primary 58K15; Secondary 57R30.
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1. Introduction

In this paper we are concerned with the problem of finding topological conditions
ensuring that a local diffeomorphism is bijective. A classical result in this direction
is the well-known Hadamard—Plastock Theorem (see [5] and [11]). It states that a
Banach space local diffeomorphism f: X — X is bijective provided

inf || Df(x)"'7! > 0. (1.1)
xeX

The proof of the Hadamard—Plastock Theorem follows from simple arguments
involving covering spaces. In recent years new topological and geometric ideas have
been introduced in the subject of global invertibility, pushing the field in different
directions (see, for instance, [1], [6], [7], [8], [9], [12], [15], [18], [20], and [21]).
The emerging picture reveals that global invertibility 1s also influenced by more subtle
topological phenomena. In [7], Nollet and Xavier established a substantial improve-
ment to the Hadamard—Plastock Theorem when dim X < oco. Using degree theory,
they showed in [7] that a local diffeomorphism f: R” — R” is bijective if there
exists a complete Riemannian metric g on R” such that

inf |Df(x)*v|lg >0 forallve S" ' (1.2)
x€RR
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Notice that (1.2) is an improvement of (1.1) since
IDFE) T = 1Df ) I = inf I DFG |

Furthermore, it is easy to produce examples that satisfy (1.2) butnot (1.1). Arguments
from elementary Morse theory (see [10, p. 112]) show that if (1.2) holds, then the
pre-images of affine hyperplanes H must satisfy f~'(H) x R = R” (note that
Df(xy*v = V{(f(x),v)). In particular, by the Kiinneth formula, f ~}(H) is acyclic
(recall that a topological space is called acyclic if it has the homology of a point).

In this paper we show that the above mentioned analytical results are but a mani-
festation of a topological phenomenon.

Theorem 1.1. A local diffeomorphism f: R" — R”" is bijective if and only if the
pre-image of every affine hyperplane is non-empty and acyclic.

In Section 3 we will point out a connection between the above theorem and the
Jacobian conjecture in algebraic geometry. The non-trivial half of Theorem 1.1 con-
sists in establishing injectivity and surjectivity. Its proof is based on some geometric
constructions involving foliations, and the computation of intersection numbers of
certain chain complexes. Theorem 1.1 also allows for an analytic corollary that is
stronger than the results in [7], in the sense that one can choose the metric to suit the
unit vector v.

2. Preliminaries

Given a compact smooth manifold M™ and a finite cover, we would like to have a
systematic way to describe the intersections of the sets in the cover. Likewise, once
a point is given we want to describe exactly all the sets in the cover that contain
the given point. To this end, we will consider a triangulation of M and view the
top dimensional cells as the sets of the covering. We set our notation as follows.
Denote by T(M) a triangulation on M (whose existence is guaranteed by [17]) and
let e(k);j be the j k-cell of T(M). The set of indexes of k-cells will be denoted by
E(k) C N. Also, given a triangulation 7 (M), let T (M) be the k-skeleton of M.
Whenever the context is clear, we will refer to the triangulated space simply as M.

This combinatorial approach allow us to easily address the properties we men-
tioned above. For instance, given a simplex e (k);, the star of e(k); describes all the
simplexes that contain e(k);. In our results, we will be interested in finding all the
(k + 1)-simplexes that contain e(k);. This is easily accomplished by looking at the
vertices of the link of e(k);, denoted by Lk (e(k);).

We now review the basic definitions from intersection theory. We define in M™ the
intersectionnumber (mod 2)between A7 a p-cycleand BY ag-cycle, where p+q = n
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by #(A”, B7). We note that when A, B represent transverse submanifolds, then
#(AX, B"K) represents the number of geometric intersections mod 2. The property
that we highlight is that intersection number depends only on the homology class.
For details and formal definitions we refer the reader to [14].

Finally, we can also define linking numbers between cycles. Let X# and Y9!
be two nonintersecting cycles in R” with p +¢ = n. For ZP ! a bounding chain of
X2, ie. dZPT! = X?, we define the linking number between X? and Y471 as

Lk(X?, Y9 Yy =#(zZPT ve ™, (2.1)

which is independent of the choice of the bounding chain of X7.

3. Injectivity

Letus consider alocal diffeomorphism f: M — R”, where M is a smooth connected
manifold. Our goal is to understand under which topological conditions the map f
is injective. There is a conceptual link between injectivity and connectedness. For
instance, it is clear that a locally invertible map is injective if and only if the pre-image
of every O-dimensional affine subspace (i.e., a point) is connected (possibly empty).
An analogous statement can be made 1if one goes one dimension higher and considers
lines instead of points, that 1s, a locally invertible map is injective if the pre-image of
every line is connected.

In view of these observations, Nollet and Xavier [ 7] made the following conjecture.

Conjecture 3.1. A local diffeomorphism f: R” — R” is injective if the pre-images
of every affine hyperplane is connected (possibly empty).

At the present time this conjecture remains open and its significance 1s better seen
in Algebraic Geometry where it would provide a positive answer for the Jacobian
conjecture (recall that the Jacobian conjecture states that a polynomial local biholo-
morphism F: C" — C" is invertible, see [3], [16]). Indeed, if F': C" — C" isa
polynomial local biholomorphism, and H C C" is a real hypersurface foliated by
complex hyperplanes V', then by a Bertini type theorem F~1(V) is connected for a
generic V' (see [13], Corollary 1 of Theorem 3.7). From this one can ecasily check
that F~1(H) is connected and hence one would establish the Jacobian conjecture.

The result below establishes a weaker version of the Nollet—Xavier conjecture,
where connectedness is replaced by acyclicity.

Theorem 3.2. A local diffeomorphism f: R* — R" is injective if the pre-image of
every dffine hyperplane is either empty or acyclic.
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In fact, we observe that we may weaken the hypotheses of Theorem 3.2 to obtain
the following stronger result. We say that an affine hyperplane H C R” is parallel
to aline £ in R” providedthat { " H = @or{ C H.

Theorem 3.3. forn > 3, let {: M — R" be a local diffeomorphism where M is a
(necessarily non-compact) connected manifold with H,_ (M) = 0. If there exists a
line £ in R™ such that the pre-image of every affine hyperplane parallel to 1 is either
empty or acyclic, then [ is injective.

The proof of Theorem 3.3 1s based on geometric constructions of chain complexes,
the computation of the intersection number between these objects, and the maximal 1ift
of lines. Since the computation of intersection numbers is done with objects belonging
to the domain of f, we need to require the extra assumption on the homology of M .
Observe that the cases in Theorem 3.3 when rn = 1, 2 are trivially true without any
extra assumptions on M .

We stress that in our arguments we will only require the existence of local lifts. In
fact, by the Hadamard—Plastock Theorem [11], if all lines admit glebal lifts the map
is already bijective. We refer to a local lift of aline £ = {rw | w € R", ¢ € R} with
respect to f as a path «: (—g,6) — M, & > O such that f (x(r)) = tw. Observe
that by the Inverse Function Theorem, if £ is a diffcomorphism a local lift of a line
always exists in the above sense. We say that «: (—48,8) — M is the maximal lift
of £ if § = sup{e | o admits a local lift for ¢ > 0}. Furthermore, £ has a global lift
if its maximal lift satisfies § = oo. Finally, what is important for us is the fact that
the maximal lift of a line is properly embedded in the domain. In our notation, « 18
properly embedded if it leaves every compact set of M as |¢| increases to 4.

3.1. Beginning of the proof of Theorem 3.3. Assume that there is a point p in
the image of f with at least two distinct points g and ¢ in its pre-image. Since
translations do not change any of the hypotheses, we assume for simplicity that p = 0.
Our goal is to construct a (n — 1)-cycle I'~! so that the intersection number of T~}
with the maximal lift of the line £ passing through the origin will necessarily be zero,
as the maximal lift is properly embedded. A simple argument will then show that f
must have a critical point along the lift, thus establishing the desired contradiction.
First, we give an outline of the proof. Consider ¢ > 0 so that the ball V' =
B(0; &) C f(M)has diffeomorphic pre-images Uy and U; around g and g1, respec-
tively. Next, let Y be the (n — 1)-equatorial disk of V' determined by £, that is, the
intersection of the orthogonal hyperplane to £ and V. The cycle I'"~! we seek will be
constructed to resemble a topological cylinder that connects the induced equatorial
disks of Uy to Uy, denoted by Xy and X, respectively. We construct =1 as follows.
Take a hyperplane parallel to £ which intersects V' tangentially at v and is denoted
by J,. As we change the hyperplane J{, by moving it around dV, the pre-images
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u; € dU; of v, fori = 0, 1, can be continuously connected by paths in £ ~1(3,), at
least for nearby hyperplanes. In this way we construct small lateral pieces of I'"~1,

One then tries to put together all those local data. In so doing, one is forced to
consider the situation where, for a fixed hyperplane H,,, there are multiply-defined
paths joining the same pre-images of points in £ ~!(7(,). Whenever this occurs, the
topological hypotheses that #~1(H,) is acyclic will be used to fill in the gaps. See
Figure 3.1 for a depiction of this process when n = 3.

Figure 3.1. Construction of paths connecting dXq to dX | by the revolution of affine hyperplanes.

In order to determine how the lateral pieces will fit together and how such gaps
should be filled, we consider a combinatorial decomposition of dY in terms of a
triangulation. Here we observe that Y = S”"~2, so such triangulation always exist.
The process of putling together the pieces of I~ will be done in steps according
to the dimension of the carrier of each point. More precisely, first we consider a
point and the (n — 2)-cells it may possibly belong and construct chain complexes
that correspond to the lateral pieces indicated above. Next, points that belong to the
lower dimensional skeleton of dY will be consider more than once in the initial step.
Hence, in the following step we consider the (n — 3)-skeleton of dY and determine the
bounding chains according to the higher dimensional cells that contain it. We repeat
this process until we consider the O-skeleton of dY . The existence and properties of
'~ are established in the following lemma.

Lemma 3.4. There exists a geometric (singular) chain complex T" 1 € S,_1(M)
that may be represented as T" ! = Xy + W + X such that W"™! is a chain
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complex with OW = 3Xy + 0X1 and for all g € supp W"™! (in its image in M),
there exists v € dY so that g € f~1(Hy).

The proof of Lemma 3.4 follows the outline above where we will construct all
the singular chain complexes of W"~! and the attaching maps. This argument uses
ideas from combinatorial topology and we postpone it until next section. We proceed
to establish Theorem 3.3, but first we remark that we are interested in the existence
of a geometric intersection (i.e., number of points in the set theoretical intersection)
between T'*~! and the maximal lift of £. Therefore we consider intersection num-
bers and homology with Z, coefficients, thus avoiding heavier notational concerns
regarding orientation and leaving the proof simpler and more geomeilric.

Assuming =1 is constructed as in Lemma 3.4, we compute the intersection
number of I'*~! and the maximal lift of £ starting at go which we denote by y. We
claim that y must intersect I'*~! in another point besides go and we will show that it
is q1. First, we see that y 1s properly embedded in M . Indeed, if we decompose y as
Y— A Y4+ as the maximal lift of £ in the negative and positive direction, respectively,
starting at go. Itis then clear that y_ and y are not entirely contained in any compact
subset of M, otherwise the lift would not be maximal.

Now, the fact that T"~! € S, (M), ie., a cycle and H,_; (M) = 0 implies
that there exists a bounding singular chain X”, with d¥” = I'"~! and a compact
set K so that ¥* < K. Thus I'""! is a representative of the trivial element in
Hy,_1(M,M — K). We also have that y € H{(M, M — K) and from the fact that
intersection numbers depend only on the homology class, we have

#T" 1 y)y=0. (3.1)

Indeed, H,— (M, M — K) = H,_1(M/M — K) and since X" C K, we have
"=~ 0in Hy,—1(M/M — K) as well.
From Lemma 3.4 and by definition of intersection numbers, we can write (3.1) as
follows:
0= #T""y)
= #(Xo,y) + #W"1l ) + #(X1.y) (3.2)
= | + 0 + #(Xl,)/),

where the first term is 1 since f is a local diffeomorphism and the images of y and
X; are orthogonal and the second term is zero since y N W*~! = @. Therefore, it
must be that #(X;, v) = 1. In particular, y N X; # @ and by the choice of &, it must
be that y N X1 = {g1}. For a geometric depiction see Figure 3.2.

Finally let « C f~1(£) be the path segment from go to ¢;. The image of « is
a loop in £ that has a point p € £ N f(M) that is furthest from p. Now it is clear
that f fails to be locally invertible at the corresponding pre-image of p, giving us the
desired contradiction. Therefore f must be injective. H
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Figure 3.2. Construction of a closed chain complex I'?~1 by revolving affine hyperplanes.

3.2. Reassemblage of hyperplanes and a chain complex construction. We now
establish Lemma 3.4, needed to complete the proof of Theorem 3.3. While outlining
the construction of I'*~! earlier, we encountered a key problem which simply put
is attributed to the lack of uniqueness on the choice of the path used to connect the
pre-images of a point in dY . In our construction this is reflected as follows: although
each path may be defined continuously within a neighborhood of a fixed point, as
we consider the intersection of two neighborhoods there will possibly be two choices
of paths. We claim that whenever ambiguity occurs, we may use the hypotheses of
acyclicity of the pre-images of hyperplanes to define chain complexes to circumvent
this problem.

We do this by considering a triangulation of dY with sufficiently small mesh to
be determined during the proof. Heuristically, we view a neighborhood of a generic
point as the top dimensional cell containing it and the triangulation will provide a
way to keep track of the intersection of the multiple neighborhoods. Let e(k); be the
cells of such triangulation, where & = 0,...,n — 2 denotes the dimension of cach
celland j € E(k) C N is the indexing set of the k-cells. From the initial choice of
& > 0, we may also define an induced triangulation via the local diffeomorphism on
dXo and 0X; with cells e(k)} and e (k)}, respectively.

We construct W~ ! in n — 1 steps which we enumerate from 0 to n — 2. In step k
we consider points in the (n — 2 — k)-skeleton of dY, denoted by 0¥(,—2—k), and
show that the possibly multiply defined chains are obtained by looking at all the higher
dimensional cells containing such points and that these chains give rise (o a cycle.
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Then by using the acyclicity hypotheses, we have that such cycle can be realized as
the boundary of another chain complex which will be the building blocks of W"~!,

Step 0. The initial process is analogous to what has been outlined before, but to
establish our notation we provide the formal argument. Given the initial triangulation
of Y ,take v € e(n—2)¢ and let u; be the pre-image of v in dX; fori = 0, 1. Fromthe
connectedness hypotheses of f~'(J{(,), there is a path W, (v) C f~'(J(,) joining
o to uy, that is, W' (v) is a 1-chain with W, (v) = ug + u.

Next, we can continuously modify W;!'(v) for all points in a neighborhood of
v € dY. This follows because ng (v) is compact and 1 is a local diffeomorphism.
By repeating this construction for every point in dY, we obtain a cover of dY from
which we extract a finite subcover as dY is compact. Then take finitely many barycen-
tric subdivisions of dY until its mesh is smaller than the minimum diameter of the
subcover.

Finally we redo the assignment of ng (v) for each v € e(n — 2); using the newly
obtained triangulation. This has the property that for each (n — 2)-cell we may define
a (n — 1)-chain complex denoted by ng x e(n — 2)¢ from the continuous family of
paths for cach £ € E(n — 3).

Step 1. In this next step, we consider points in the (rn — 3)-skeleton of dY as these are
the points which we possibly assigned two different 1-chain complexes in the previous
step. Forv € e{n —3),, we may identify all the (n — 2)-cells that contain e (n — 3); by
looking at the vertices of Lk(e(rn — 3);). In this case, we have preciscly two points as
e(n — 3)¢ belongs to exactly two top dimensional cells say, e(n —2); and e(n — 2),.
From the previous step, we constructed two possibly distinct chain cormplexes W (v)
and W, (v) contained f~1(J{(,) joining uo to uy. If itis the case they are already the
same, we are done. Otherwise, consider the 1-chain U, (v) = W' (v) + W, (v). We
claimU} (v)isacycle. Indeed, dU,; (v) = IW} (v)+3IW, (v) = uo+us+ug+u; =
0, since we are using Z,-coefficients. From the hypotheses that f~1(7H,) is acyclic,
we have that U} (v) is the boundary of a 2-chain denoted by W7 (v).

Now, using the fact that f is a local diffeomorphism and WE2 (v) is compact, we
can continuously define W2 (u) for all u in a neighborhood of v in d¥(,—3). Note
that in this step we are only considering points in the (n — 3)-skeleton. Therefore
we obtain a cover of dY(,—3) which by compactness we extract a finite subcover.
Next, we iterate finitely many barycentric subdivisions of the triangulation on 0¥
until its mesh is smaller than the minimum diameter of the subcover. We then redo
the construction of the chain complexes up to this point in steps O and 1 using the new
triangulation. We do this so the 2-chain complex defined above can be continuously
assigned for each point within a (n — 3)-cell and we obtain a (n — 1)-cell denoted by
W£2 x e(n — 3) foreach £ € E(n — 3).

Step k. For a generic step k (1 < k < n — 2), we consider points in the (n — 2 — k)-
skeleton of dY . Forv € e(n — 2 — k)¢, we look at the (n — 1 — k)-cells that contain
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e(n — 2 — k),. This is the case because in the previous step k& — 1, we have defined
k-chains Wik (v) over v these cells that v belong, for some /. A systematic way to
consider these cells is to look at the vertices of Lk(e(n — 2 — k)z). Let us assume
that those are e(n — 1 — k)1, e(n — 1 —k)s,...,e(n — 1 — k);. We now define
ng(v) = Wk@) 4+ -+ ij(v) C fYH,) and we claim that ng(v) is a cycle.
Indeed,

J J
IUf @) = o o wE@) = D awkw)
i=1 i=1

(3.3)

J

=Y U =) wET ),
El

i=1

where the chains Uik ~1(v) were constructed in the previous step in a similar manner
and ¢’ corresponds to the index of all (n — k)-cells that contains v.

The chain Ul.k_l(v) is formed by looking at all the (n — k)-cells that contain
e(n — 1 — k); and hence will contain e(n — 2 — k). Therefore, these (n — k)-cells
can also be determined by looking at the edges of Lk(e(n — 2 — k);). Observe that
for a fixed 7, as we look at the chains of type WX=1(v) that comprise U¥~1(v) we
can alternatively look at the collection of edges in Lk(e(n — 2 — k)g) that make
up Ul.k_1 (v) and the chains %’f‘l(v) will be the vertices of such edges. However,
because each edge contains exactly two vertices, as we do this for all 7 each term in the
last summation in (3.3) appears twice. Since our computation uses Z, coefficients,
we have (3.3) is zero establishing that Uﬁk (v) is a cycle.

Again, from the hypotheses that ~1(J{(,) is acyclic, we find a bounding (k 4 1)-
chain Wt (v) < f71(3,) of UF(v), that is, dWf 1 (v) = UF(v). Next, an
analogous argument as in step 1 is used to find a neighborhood of v in Y (,—2—x)
where the assignment of ng *1(v) is continuous for all points within it. This follows

from the local diffeomorphism of f and compaciness if Wfk *1(v). This induces a
cover of 9Y(,_»_x) and by compaciness we extract a finite subcover. Finally, we
take finitely many barycentric subdivisions of dY until the mesh is smaller than the
minimum diameter of the subcover.

Using the new triangulation, we repeat the assignment of the chain complexes in
cach of the previous steps 0 through k. In particular, this defines ng () for all
points in e{(n — 2 — k), and by the modification argument indicated above, we obtain
a (n — 1)-chain denoted by WSt x e(n —2 — k) for each £ € E(n —2 — k).

Once we have completed all the 7 — 1 steps, we put together the singular complexes
constructed from the (n — 1)-chains in each step by means of their attaching maps
along their common boundary which will be explicitly computed. In order to finish
the proof, we show that dW"~! = 90X, 4+ 9X; and thus once we attach X and X
to the boundary we will have the cycle '~ ! we seek.
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We consider the decomposition of W#~! from the (n — 1)-chains in each step,

that is,
n—2

wet=3%" 3 Wt xemn—2-k),. (3.4)

k=0 {eE(n—2—k)
For simplicity, let Sy = > rcpms—1) Wﬁ"”rl x e(n —2 — k), then oW"~1 =

z;% dSk. We now analyze each term separately. For k = 0,

aSo=(3 Y W!xe(—2y)

LeE(n—2)
= Y W!'xem—e+ Y Wlxde(n—2)
bLcE(n—2) LeE(n—2)
= Y (O +e@pDxem =2+ Y > W' xem—23),
LeE(n—2) LeE(n—2) jn—3

= 30Xy + 0X; + Z Z W xe(m—3), 4
LeF (n—=2) ju—3

where j,—3 denotes the index of all (n — 3)-cells that belong to the boundary of
e(n —2)y. In general, for 0 < k < n — 2,

asi=03( > Wi xem—2-k))

teE(n—2-k)
= Y Wt xem—2-kx+ Y W xde(n—2—k)
£LeE(n—2-k) LeE(n—2-k)

= Z Z I/Vji—l—k xen—1—k)

teE(n—2-k)Jn—1-%

4+ Z Z Wﬁk+1 xen—3—k); . .,

teE(n—2—k)Jn—3k

where j,_1_r denotes the index of all (n — 1 — k)-cells that contain e(n — 2 — k)g
and j,_3— denotes the index of all (n — 3 — k)-cells that belong to the boundary of
e{(n —3 — k). Finally, fork =n — 2,

B8y, = a( 3 o Xe(())g)

LeE(0)
= > oW xe(@p+ Y W x 3e(0),
LeE(D) LeE(0)

= Z Z I/Vj?_z x e(0), + 0,

LeE(0) N
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where j; denotes the index of all 1-cells that contain e (0), in its boundary.

Observe that the second summation term of 9.5 is the same as the first summation
term of Sg 41 as we count each chain twice. Since we are using Zj-coefficients, (3.4)
simplifies to W~ ! = 39X, + 9X].

Finally, from the construction of W"~! we see that for each ¢ € supp W" !,
g € f~YJ(,) for some v € Y. This concludes the proof of Lemma 3.4. ]

4. Surjectivity

In this section we consider the question of when a local diffeomorphism f: M — R”
is surjective, based on the topology of the pre-images of hyperplanes. The trivial
example of an inclusion map of the region between two planes satisfies Theorem 3.3
but it is not surjective. This indicates that further assumptions must be added. On the
other hand, we are able to eliminate the homological assumption on the domain.

Theorem 4.1. Let f: M — R" be a local diffeomorphism where M is a connected
manifold. If the pre-image of every dffine hyperplane is non-empty and acyclic, then
[ is surjective.

The proof is based on geometric constructions involving foliation theory and the
computation of linking numbers between certain singular chain complexes in the
range R"™. We remark that since the computation of linking numbers will occur in
R”, it is not necessary to make any further assumptions on the homology groups of
M . 'This is unlike the situation in Theorem 3.3, where we assumed H, (M) = 0.

Combining Theorem 4.1 and Theorem 3.3, we obtain the following characteriza-
tion of R”, forn > 2.

Theorem 4.2. A smooth connected manifold M is diffeomorphic to R" if and only if
H,_1(M) = 0 and there exists a local diffeomorphism f: M — R”" such that the
pre-image of every affine hyperplane is non-empty and acyclic.

4.1. ProofofTheoremd.1. We establish surjectivity by showing that for each R > 0
the ball of radius R is fully contained in f(M), that is, B(0; R) C f(M). Since
translations do not change any of our hypotheses, let us assume that 0 € f(M) and
singleouto € f~1(0) C M.

Next, from the local diffeomorphism assumption, there exists € > 0 such that
B(0;e) C f(M)and f~'(B(0;¢)) has a diffeomorphic component W”~!(g) which
contains 0 € M. Observe that for R < ¢, we trivially have B(0; R) C f(M), so we
restrict ourselves to the case R > ¢.

We argue that we can find a way to expand B(0;¢) within the image of f so
that it will contain a ball of radius any R. To this end, we shall choose directions
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for this expansion as follows. For v € S"~!, let H{, be the canonical codimension
one foliation of R” by hyperplanes orthogonal to v. Since the leaf space of H,
is homeomorphic to R, we parameterize the leaves of JH,, by H,(¢) where ¢ is the
distance of the hyperplane H, (¢} to the origin. Because H,(r) = H_,(—t), we
will only consider ¢+ > 0. Let N, = f*J{, be the pullback foliation of M which,
by definition, has the connected components of ! (9{,(¢)) as leaves. Since our
hypotheses states that the pre-images of hyperplanes are non-empty and connected,
the leaf space of N, is homeomorphic to R and we then write N, (t) = £~ (3, (1)).
Next, we claim that for each v € $"~!, we may find a global transversal y, (o the
foliation N, that may be used to expand the image of f. More precisely, we have
the following result.

Lemma 4.3. For each u € W" Y (e) with f(u) = v, v € S"1, there exists
a smooth path y,: [0,00) — M with y, © N, such that f(yv(t)) e H,(t) for
t €10, R].

The proof follows directly from transverse modification arguments in foliation
theory (see [2]) and the fact that the leaves of N, are non-empty and connected.

As we proceed with the proof of Theorem 4.1, let us fix a canonical identification
of S 1 to dB(0; &) and W"1(g). By applying LLemma 4.3, we obtain directions y,,
from which to expand W"~1(¢) up to y, NN, (R). Then for a fixed v, we can locally
modify y, so that we can carry an entire neighborhood of v in W"~1(g) along y,
using the compactness of y, ([0, R]). Repeating this process for each v € W"~1(g),
we obtain a cover of W"~!(¢). However, because there is no canonical choice for y,,
points belonging to the intersection of two neighborhoods may have multiply defined
paths. Our approach will be similar to the one in Section 3. The key difference here
is that we also need to control how each neighborhood is pushed along the global
transversal y,,.

Intuitively, we will push the cells of W~ (¢) along y, and possibly create broken
pieces at each instant . Using the hypotheses that N, () is acyclic and f is a diffeco-
morphism we will define bounding chains filling the gaps in each leaf. Furthermore,
we will argue that these chain complexes constructed for s, 7 will be homologous,
hence we say that they are homologous relative to ¢. This process is depicted in
Figure 4.1 and it is stated precisely in the lemma below.

Lemma 4.4. For each R > 0, there exists a family of geometric (singular) chain
complexes W"™1(t) that are homologous in M\ {o} for t € (0, R] such that:

i) Fort € (0,e], Wn=l(t) = f=1(3B(0: 1)).

i) If g € supp W"(1), then g € Ny(t) for some v € S 1.
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Figure 4.1. A local assemblage of chain complexes based on the triangulation of a sphere.

The proof of Lemma 4.4 uses combinatorial topology and foliation theory to
explicitly construct such cycles. Since the process is lengthy and rather technical, we
postpone it and continue with the proof of Theorem 4.1.

Our strategy to show that B(0; R) C (M) is by contradiction. Suppose there is
p ¢ f(M). Wecompute the linking number between p and f (W"~1(1)) = Z"~1(1)
in two ways, yielding different values. This argument is similar to standard reasoning
in degree theory and is geometric in nature. As before, we work with Z,-coefficients.

Notice that since £ is continuous, we have that Z”~1(¢) is a family of homologous
cyclesin R™\ {0}. Thenfor¢ € (0,¢], Z"1(¢+) = dB(0; t) and we have that the origin
is contained in the inside of Z"~1(¢), more precisely, the linking number between
the origin and Z"~1(¢) is equal to 1.

From (ii) of Lemma 4.4, we have that 0 ¢ Z"~!(z) for each t € (0, R] and
as mentioned above, Z"1(r) ~ Z" 1(R) in R\ {0}. Therefore as intersection
numbers, thus linking numbers are invariant under the same homology class, we have

Lk(Z"1(1),0) =1 foreache <t < R, (4.1)

where we consider the 0-normal cycle formed by the origin and a suitable point in
the complement of a compact set containing Z"~1(z).

We claim that p is inside Z" 1(R), that is, Lk(Z"'(R), p) = 1. Indeed,
consider the segment Y ! from 0 to p. We have that Y! N Z"1(R) = #, otherwise



86 E. Cabral Balreira CMH
it would imply p € f(M). By definition,
#HZ"HR)x YY) =#(Y x Z"1(R)) = 0. (4.2)

Computing the linking number between the cycle Z”~!(R) and dY ! using the
fact that 3Y ! is a normal O-cycle, we have

0=#T1x Z" Y(R)) = Lk(@Y!, Z" 1(R)) = Lk(Z"1(R), oY )

_ ~ _ (4.3)
= Lk(Z" YR),0 — p) = LK(Z" Y (R),0) — LK(Z""1(R), p).
Combining (4.3) and Lk(Z"~1(R), 0) = 1 we obtain
Lk(Z"Y(R), p) = 1. (4.4)

Observe that Z"~1(g) = dB(0; ¢), hence Lk(Z"~!(¢), p) = 0. Finally, from the
assumption that p ¢ f(M), we have Z" Y (R) ~ Z"71(¢) in R* — {p} and again
by the invariance of linking numbers on the homology class we obtain

Lk(Z"Y(R), p) = LK(Z" ! (e), p) = 0. (4.5)

This is a contradiction, therefore it must be the case that p € f(M ) and hence f
is surjective. O

4.2. The construction of a family of homologous cycles. We now complete the
proof of Theorem 4.1 by establishing the technical proof of Lemma 4.4, We employ a
similar technique as in Section 3, that 1s, we use triangulations as a tool to keep track
of intersections in the coverings. For simplicity, let W*~1(¢) = W and consider a
triangulation of W with cells e(k)g; k = 0,...,n — 1l and £ € E(k) C N where
E (k) is the set of indexes of all the k-cells in W,

The idea of the construction of W#~1(z) is in essence geomelric, and can be
outlined as follows. Consider a triangulation with sufficiently small mesh. For each
top dimensional cell of W, we push it along a global transversal y,, emanating from
one of its points up to the level R and use the local modification of y,, for points within
the cell to push these points. The key issue 1s that a point v belonging to the boundary
of a top dimensional cell may be pushed along multiple choices of y,,, one for each
top dimensional cell it belongs to. Hence the W"~1(¢r) may not be well defined;
geometrically, this will create broken pieces at each level. However, by considering
the collections of cells that contain v, via the link of v, we will show that for each 7,
the multiply defined chain complexes form a cycle in the pre-image of J(, (¢). Thus
by acyclicity, we can fill these gaps with bounding chains. Furthermore, the process
will be done so it 1s homologous relative to ¢, that 1s, as we consider different chain
complexes for each r. Now, as we begin to formally describe W7~ 1(¢), we will do
so 1n steps enumerated from O to n — 1, outlined below.
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Step 0. For each point v € W, suppose v € e(n — 1)y for some £ € E(n — 1).
From Lemma 4.3 we obtain a global transversal y, to the foliation N,,. We then
define the following O-chains, that is, points where y,, intersect the leaves of N,. Let
WP (v, 1) = yu(r) € Ny(r) for t € [e, R]. By compactness of y, ([0, R]) and the fact
that 1 is a local diffeomorphism, there is aneighborhood V,, C M of y,, ([0, R]) such
that we can continuously modify y, to obtain a global transversal y, for all v in a
neighborhood ), C W of v, as depicted in Figure 4.2.

Figure 4.2. Local modification of global transversals.

Then, by the compactness of W, we obtain a finite subcover of W from {O,}.
Now with such subcover, we iterate finitely many barycentric subdivisions of W until
its mesh is smaller than the minimum diameter of the subcover. In this process, we
obtain a new triangulation of W with the property that, for each v € e(n — 1)¢, we
may continuously define y,, for all points in e(n — 1),. In fact, we define, for cach
t €le, Rland £ € E(n—1),a (n — 1)-chain denoted by W, (r) x e(n — 1)¢ which is
topologically equivalent to W,f) (v,1) x e(n — 1) and varies continuously on 7.
Step 1. Consider points v in the (n — 2)-skeleton of W. Suppose v € e(n — 2)y
for some £ € E(n — 2). Then v belongs to the intersection of two (n — 1)-cells
that can be determined by looking at the vertices in Lk (e(n — 2);). Without loss of
generality let v € e(n — 1)1 Ne(n — 1)2. Then foreach ¢ € [e, R], we have defined in
the previous step the points W (v, ), W,) (v, 1) € Ny(r) along path emanating from
each top dimensional cell. Now we can join such points by a path W' (v, r) lying in
Ny () as it is acyclic.

Once we construct ng (v, 1), we claim that it can be locally modified for all
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points in a neighborhood of (v, ) in W(,_5y x [e, R]. Indeed, for each v € W, _y)
and r € [g, R], the path %l (v, t} is compact and hence we may find a neighborhood
U(v,t) C M of ng (v, t) such that the (local) gradient flow of the height function
fo: M — R" given by f,(x) = (f(x),v) can be used to continuously define
ng (v, t) for nearby 7. Also, the fact that f is a local diffeomorphism continuously
defines W,! (v, 1) for all nearby v in W, _s).

The process above provides a cover {U(v, 1)} of W,—2) x[e, R]. By compactness,
we may find a finite subcover which induces a cover of W. Indeed, in step 0 each
top dimensional cell is pushed diffeomorphically along the global transversal y,,. We
can now iterate finitely many barycentric subdivisions of W so its mesh is smaller
than the minimum diameter of the subcover above restricted to W. Next, we repeat
all the constructions up to this point using the new triangulation. Observer that this
guarantees that each cell e(n — 2), is contained in a member of the finite subcover.

Now let us consider a partition of [e, R]| induced by this subcover, that is, we have
ce=1ty <t <---<ty = Rforsome N € N. From the choice of subdivision we
can continuously modify %l (v,t)fort € (t;,ti+1)and v € e(n—2); by the argument
above. The key problem is that for the endpoint we may possibly have two chains
defined, each coming from the adjacent intervals. However, the fact that each leaf
of N, is acyclic yields a similar construction as the transverse modification method
(see [2]) to ensure that whenever ambiguity occurs, the choice will be homologous
relative to 7.

The details are as follows. Foreachi = i,..., N — 1, let the two choices for
a bounding chain W/ (v,;) be W, (v, )~ and W' (v, 1), where W,!'(v.;)7 is
the chain defined continuously from ng (v,1), t € (tji—1,t;) and the second one,
W/ (v, ;)T is the chain defined continuously from W' (v, 1), ¢ € (ti,t;41). By
default, we agree to always choose ng (v.#;)". This will not be ambiguous because
we can choose either chain complex. Indeed, W' (v, 1;)~ ~ W' (v, ;)" since from
construction they have the same boundary and, by acyclicity of N, (z;), there is a
bounding chain contained in Ny (¢; ). Finally, we must consider a new neighborhood
U(v, ;) of such bounding chain where the restriction of £ is a diffeomorphism. Doing
so forevery v € W,_pyandi = 1,..., N we obtain a new cover of W by adding

the collection of sets U(v, 1) to the finite subcover considered up to this point. This
is done to ensure that the process will always yield chains homologous relative to
t. Then iterate finitely many barycentric subdivisions of W to obtain a triangulation
with mesh sufficiently small to define chains %1 (v, t) continuously for all points
v € e(n —2)g for each £ and by construction these chains are homologous relative to
¢t with continuously varying bounding chains.

This adaptation of the transverse modification argument produces for each ¢ €
[e. Rl and £ € E(n — 2), a (n — 1)-chain complex denoted by W, (1) x e(n — 2);
which is topologically equivalent to ng (v,1) x e(n —2)p, v € e(n — 2)g, and is
homologous relative to ¢. This concludes step 1.
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Now we give the general procedure for 1 <k <n — 1.

Step k: Consider points in the (n — 1 — k)-skeleton of W. Supposev € e(n —1—k),
for some £ € E(n — 1 — k). We are interested in identifying all the (n — k)-cells that
contain e(n — 1 — k), in its boundary, i.e., that contain v. This can be accomplished
by looking at the vertices of Lk(e(n — 1 —k)g). for simplicity, suppose that those are
e(n—k),e(n—k)s,...,e(n —k), for some m € N, Foreach ¢ € [, R], consider
the (kK — 1)-chain

WE(w,0) + -+ WE (v, 1), (4.6)

where the chains WJ,-k_l(v, t} were constructed in step £k — 1. We claim that the
(k — 1)-chain in (4.6) is a cycle. Indeed,

m

a(Zm: ij_l(v,t)) = Zm: WE =3 (Z WE2(v, z)), @.7)
j=1

J=1 =1 ¢

where £ corresponds to the index of all (n—k +1)-cellsin W thatcontain e(n—1—k ).
Now the argument is completely analogous to the one given in the injectivity case,
1.e, it follows from the observation that an edge contains exactly two vertices. Since
Ny (t) is acyclic, there exists a k-chain W/ (v, 1) that bounds pIY ij_l (v,1).

We now argue that the chain %"‘ (v, t) may be continuously modified with respect
to v and within the same homology classrelative to 2. This 1s similar to the construction
as in step 1, except that we repeat it for each interval of the partition obtained in step
k — 1, so we omit the details. Finally, foreachs € [e, Rland £ € E(n — 1 — k), we
obtain a (n — 1)-chain denoted by ng (t)xe(n—1—k)y whichforv € e(n—1—k);,
is topologically equivalent to %k (v,1) x e(n — 1 — k)¢, and is homologous relative
to the parameter ¢.

Remark 4.1. In the last step n — 1, we consider the O-skeleton of W which is discrete,
hence no further subdivisions are necessary.

Once all n steps are completed, for each r € [e, R], we put together all the
constructed chain complexes via the obvious attaching maps based on the intersection
of the cells in W as indicated by their construction in each step. This defines W~ 1(z)
as follows:

n—1

wrl =" Y W) xe(n—1—k).

k=0£LcE{(n—1-k)

We observe that W~ 1(t) ~ W"1(s) in M\ {0} fort,s € [g, R]. Indeed, by
construction if £, s € (t;—1, 5} fori = 1,..., N, we can use the local gradient flow
of the corresponding height functions to continuously modify the chain W”~1(z) to
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W"=1(s), each chain Wgn_l_k (t) x e(k)g ata time, Otherwise, the only problem is at
the end points 7;, where again by construction, the chains of Wwr—l (t; ) arc homologous
in N(1;) = {p € M|p € Ny(t;) for some v € S"'}, thus ensuring that W"~1(r)
are homologous in M\ {o}.

It now remains to show that W"~1(z) is a cycle in M. The computation be-
low is quite similar to the one done in Section 3. For simplicity, let Si(f) =
>t Bty WE@) x e(n — 1 —k)g, s0 that IW" 71 (r) = 3 720 98k (1),

Considering each term separately, we have for k = 0,

BSo(t)ZB( > %O(t)xe(n—l)z)

LeE(n—1)
= Y WO xe(n—1)y + Y WPt)xde(n— 1)
fteE(n—1) fteFE(n—1)

=0+ Z Z WE0 xen—2), .,

LeE(n—1)jn—2

where j,—» denotes the index of all (n — 2)-cells that belong to the boundary of
e{(n — 1);. In general, for 1 < k <n —1,

aSk(t):E)( 3 ng(z‘)xe(n—l—k)g)

teE(n—1-Kk)
= > WO xelm—1—k)
LeE(n—1-k)
+ > W) xde(n—1— k)
LeE(n—1-k)

= Y Y Wil xetm—1-k)

feE(n—1-k)Jn—&
+ > > WO xetm—2—k),_, .
LeE(n—1—k) jn—2—k

where j,_j denotes the index of all (n — k)-cells that contain e(n — 1 — k), and
Ju—2—k denotes the index of all (n — 2 — k)-cells that belong to the boundary of
e(n — 1 —k)y. Finally, fork =n — 1,

98,10 =3 3 WO xe(O) )

LeE(0)
= > oW ) x e+ Y W) x 0e(0);
LeE (D) e E(0)

= > > W) xeO)+ 0O,

LeE(0) N1
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where j; denotes the index of all 1-cells that contain e (0), in its boundary.

As we sum the terms in W™~ 1(z), we see that the second summation term appear-
ing in 95k (¢) coincided with the first summation in dSg11(¢). Indeed, these terms
count the same objects twice, and hence we obtain zero (recall that we are working
with Z, coefficients). Therefore W”~1(¢) is a cycle and this finishes the proof of
Lemma 4 .4. [

5. Final remarks

Having obtained independent results on injectivity and surjectivity, we note that our
main result follows from Theorem 3.3 and Theorem 4.1. Recall

Theorem 1.1. A local diffeomorphism [ R" — R”" is bijective if and only if the
pre-image of every affine hyperplane is non-empty and acyclic.

We also have the following analytic condition that establishes whether a local
diffeomorphism is bijective. Given a complete Riemannian metric g on R” and a
smooth function z; R" — R, the gradient of / relative to g, denoted by V&, satisfies
gx(V8h,w) = dhy(w) for all w € R". Our analytic result is the following.

Corollary 5.1. A local diffeomorphism [ R" — R” is bijective if for each v €
S*=1 there exists a complete metric g, on R" such that
inf |V& f,(x)|g, > 0. 5.0
xeR”?
It 1s easy to see that such condition implies that the pre-images of hyperplanes are
acyclic, hence the result follows. We compare this result with the work in [7] where

we can now choose the metric to suit the unit vector. Finally, We can also state an
analytical result implying only injectivity.

Corollary 5.2. A local diffeomorphism f: R" — R”" is injective provided there
exists w € S with the property that for each unit vector v perpendicular to w,
there exists a complete Riemannian metric g,, on R" such that

inf [|[Df(x)*v|g, > O. (5.0)
xeR#

Observe that in our injectivity results we did not need topological hypotheses on
the pre-image of every hyperplanes, hence the result holds.
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